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Connected sum of orientable surfaces and Reidemeister
torsion
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Abstract: Let Σg,n be an orientable surface with genus g ≥ 2 bor-
dered by n ≥ 1 curves homeomorphic to circle. As is well known
that one-holed torus Σ1,1 is the building block of such surfaces. By
using the notion of symplectic chain complex, homological algebra
techniques and considering the double of the building block, the
present paper proves a novel formula for computing Reidemeister
torsion of one-holed torus. Moreover, applying this result and con-
sidering Σg,n as the connected sum Σ1,n#(g − 1)Σ1,0, the present
paper establishes a novel formula to compute Reidemeister torsion
of Σg,n.
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1. Introduction

The topological invariant Reidemeister torsion was introduced by K. Rei-
demeister in [18], where by using this invariant he was able to classify 3-
dimensional lens spaces. This invariant has many interesting applications
in several branches of mathematics and theoretical physics, such as topol-
ogy [7, 11, 12, 18], differential geometry [3, 14, 17], representation spaces
[19, 22, 26], knot theory [6], Chern-Simon theory [25], 3-dimensional Seiberg-
Witten theory [10], algebraic K-theory [13], dynamical systems [8], theoretical
physics and quantum field theory [25, 26]. The reader is referred to [16, 24]
for more information about this invariant.

Symplectic chain complex is an algebraic topological tool and was intro-
duced by E. Witten [25], where using Reidemeister torsion and symplectic
chain complex he computed the volume of several moduli spaces of represen-
tations from a Riemann surface to a compact gauge group.

It is well known that one-holed torus Σ1,1 is a building block of orientable
surfaces Σg,n, g ≥ 2, n ≥ 0. Let us note that closed orientable surface Σ2,0
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of genus 2 can be obtained by gluing two one-holed torus along the common
boundary circle. With the help of homological algebra computations and the
notion of symplectic chain complex, we establish a novel formula (Theorem
3.1.1) for computing Reidemeister torsion of one-holed torus. Furthermore,
considering orientable surface Σg,n as Σ1,n#(g − 1)Σ1,0, and applying the
obtained Reidemeister torsion formula of Σ1,1, we prove novel formulas (The-
orem 3.2.6–Theorem 3.2.10) for computing Reidemeister torsion of Σg,n. Here,
# is the connected sum and (g − 1) denotes (g − 1) copies.

2. Preliminaries

In this section, we give the basic definitions and facts about Reidemeister tor-
sion and symplectic chain complex. For further information and the detailed
proof, the reader is referred to [15, 16, 19–25] and the references therein.

Let C∗ : 0 → Cn
∂n→ Cn−1 → · · · → C1

∂1→ C0 → 0 be a chain complex
of finite dimensional vector spaces over the field R of real numbers. For p =
0, . . . , n, let Bp(C∗) = Im{∂p+1 : Cp+1 → Cp}, Zp(C∗) = Ker{∂p : Cp →
Cp−1}, and Hp(C∗) = Zp(C∗)/Bp(C∗) be p−th homology group of the chain
complex. Using the definition of Zp(C∗), Bp(C∗), and Hp(C∗), we have the
following short-exact sequences

0 −→ Zp(C∗)
ı−→ Cp

∂p−→ Bp−1(C∗) −→ 0,(2.0.1)

0 −→ Bp(C∗)
ı−→ Zp(C∗)

ϕp−→ Hp(C∗) −→ 0.(2.0.2)

Here, ı and ϕp are the inclusion and the natural projection, respectively.
Let sp : Bp−1(C∗) → Cp, �p : Hp(C∗) → Zp(C∗) be sections of ∂p : Cp →

Bp−1(C∗), ϕp : Zp(C∗) → Hp(C∗), respectively. The short-exact sequences
(2.0.1) and (2.0.2) yield

(2.0.3) Cp = Bp(C∗) ⊕ �p(Hp(C∗)) ⊕ sp(Bp−1(C∗)).

If cp, bp, and hp are bases of Cp, Bp(C∗), and Hp(C∗), respectively, then by
equation (2.0.3), we obtain a new basis, more precisely bp� �p(hp)� sp(bp−1)
of Cp, p = 0, . . . , n.

Definition 2.0.1. Reidemeister torsion (R-torsion) of chain complex C∗ with
respect to bases {cp}np=0, {hp}np=0 is defined as the alternating product

T (C∗, {cp}n0 , {hp}n0 ) =
n∏

p=0
[bp � �p(hp) � sp(bp−1), cp](−1)(p+1)

,
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where [ep, fp] is the determinant of the change-base-matrix from basis fp to
ep of Cp.

If 0 → A∗
ı→ B∗

π→ D∗ → 0 is a short-exact sequence of chain complexes,
then by the Snake Lemma we have the long-exact sequence of vector spaces

C∗ : · · · → Hp(A∗)
ıp−→ Hp(B∗)

πp−→ Hp(D∗)
δp−→ Hp−1(A∗) → · · ·

Here, C3p = Hp(D∗), C3p+1 = Hp(B∗), and C3p+2 = Hp(A∗). Clearly, one can
consider bases hD

p , hB
p , and hA

p for C3p, C3p+1, and C3p+2, respectively.

Theorem 2.0.2. ([13]) Let 0 → A∗
ı→ B∗

π→ D∗ → 0 be a short-exact
sequence of chain complexes. Let C∗ be the corresponding long-exact sequence
of vector spaces obtained by the Snake Lemma. Suppose that cAp , cBp , cDp ,
hA
p , hB

p , and hD
p are bases of Ap, Bp, Dp, Hp(A∗), Hp(B∗), and Hp(D∗),

respectively. Suppose also that cAp , cBp , and cDp are compatible in the sense
that [cBp , cAp � c̃Dp ] = ±1, where πp

(
c̃Dp
)

= cDp . Then, the following formula
holds:

T(B∗, {cBp }n0 , {hB
p }n0 ) = T(A∗, {cAp }n0 , {hA

p }n0 ) T(D∗, {cDp }n0 , {hD
p }n0 )

× T(C∗, {c3p}3n+2
0 , {0}3n+2

0 ).

From Theorem 2.0.2 it follows that
Lemma 2.0.3. If A∗, D∗ are two chain complexes, and if cAp , cDp , hA

p , and
hD
p are bases of Ap, Dp, Hp(A∗), and Hp(D∗), respectively, then

T (A∗ ⊕D∗, {cAp � cDp }n0 , {hA
p � hD

p }n0 ) = T(A∗, {cAp }n0 , {hA
p }n0 )

×T(D∗, {cDp }n0 , {hD
p }n0 ).

We refer the reader to [23] for detailed proof and further information.

Definition 2.0.4. Let (C∗, ∂∗, {ω∗,q−∗}) : 0 → Cq
∂q→ Cq−1 → · · · → Cq/2 →

· · · → C1
∂1→ C0 → 0 be a chain complex of real vector spaces with the

following properties:

1) q ≡ 2(mod 4),
2) There is a non-degenerate bilinear form ωp,q−p : Cp × Cq−p → R for

p = 0, . . . , q/2 such that
• ∂−compatible: ωp,q−p(∂p+1a, b) = (−1)p+1ωp+1,q−(p+1)(a, ∂q−pb),
• anti-symmetric: ωp,q−p(a, b) = (−1)p(q−p)ωq−p,p(b, a).

Then, (C∗, ∂∗, {ω∗,q−∗}) is called a symplectic chain complex of length q.
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By the fact q ≡ 2(mod 4), we have ωp,q−p(a, b) = (−1)pωq−p,p(b, a). From
the ∂−compatibility of ωp,q−p, it follows that they can be extended to ho-
mologies [19].

Assume that (C∗, ∂∗, {ω∗,q−∗}) is a symplectic chain complex. Assume also
that cp and cq−p are bases of Cp and Cq−p, respectively. We say that these
bases are ω−compatible, if the matrix of ωp,q−p in bases cp, cq−p is equal to

the k×k identity matrix Ik×k when p �= q/2 and is equal to
(

0l×l Il×l

−Il×l 0l×l

)
otherwise. Here, k = dimCp = dimCq−p and 2l = dimCq/2. Note that every
symplectic chain complex has ω−compatible bases.

Using the existence of ω−compatible bases, the following formula was
proved for calculating R-torsion of symplectic chain complex.
Theorem 2.0.5. ([19]) If (C∗, ∂∗, {ω∗,q−∗}) is a symplectic chain complex
and if cp, cq−p are ω−compatible bases of Cp, Cq−p, and hp is a basis of
Hp(C∗), p = 0, . . . , q, then

T(C∗, {cp}q0, {hp}q0) =
(q/2)−1∏
p=0

(det[ωp,q−p])(−1)p
√

det[ω
q/2,q/2 ]

(−1)q/2
.

Here, det[ωp,q−p] is the determinant of the matrix of the non-degenerate pair-
ing [ωp,q−p] : Hp(C∗) ×Hq−p(C∗) → R in the bases hp, hq−p.

Let M be a smooth m-manifold with a cell decomposition K. Let ci be
the geometric basis for the i−cells Ci(K), i = 0, . . . ,m. Note that associated
to M there is the chain-complex 0 → Cm(K) ∂m→ Cm−1(K) → · · · → C1(K) ∂1→
C0(K) → 0, where ∂i is the boundary operator. T (C∗(K), {ci}mi=0, {hi}mi=0) is
called Reidemeister torsion (R-torsion) of M, where hi is a basis for Hi(K),
i = 0, . . . ,m.

Following the arguments introduced in [19, Lemma 2.0.5], one can con-
clude that R-torsion of a manifold M is independent of the cell-decom-
position K of M. Hence, instead of T (C∗(K), {ci}mi=0, {hi}mi=0) , we write
T (M, {hi}mi=0) .

Theorem 2.0.5 yields the following result, which suggests a formula for
computing R-torsion of a manifold.
Theorem 2.0.6 ([23]). Assume that M is an orientable closed connected
2m−manifold (m ≥ 1). Assume also that hp is a basis of Hp(M) for p =
0, ..., 2m. Then, R-torsion of M satisfies the following formula:

|T(M, {hp}2m
p=0)| =

m−1∏
p=0

|det Δp,2m−p(M)|(−1)p
√
| det Δm,m(M)|

(−1)m
.
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Here, det Δp,2m−p(M) is determinant of matrix of the intersection pairing
(·, ·)p,2m−p : Hp(M) ×H2m−p(M) → R in bases hp, h2m−p.

Theorem 2.0.7 ([23]). Suppose M is an orientable closed connected (2m +
1)−manifold (m ≥ 0) and hp is a basis of Hp(M), p = 0, . . . , 2m + 1. Then,
|T(M, {hp}2m+1

p=0 )| = 1.
Remark 2.0.8. Let S

1 be the unit circle and h0, h1 be bases of H0(S1),
H1(S1) respectively. Then, by Theorem 2.0.7, we have

∣∣T(S1, {h0,h1})
∣∣ = 1.

We refer the reader [15, 19–23] for further applications of Theorem 2.0.5.

3. Main result

In this section, by considering orientable surface Σg,n, g ≥ 2, n ≥ 0 as the
connected sum Σ1,0# · · ·#Σ1,0#Σ1,n (see, Fig.1), we establish a formula to
compute R-torsion of Σg,n, g ≥ 2, n ≥ 0 in terms of R-torsion of Σ1,1. To
obtain this formula, we first prove a formula for computing R-torsion of Σ1,1
(Theorem 3.1.1), then we establish a formula (Proposition 3.2.1) for R-torsion
of Σ1,n, n ≥ 2, and finally using these results we prove the formulas (Theorem
3.2.6–Theorem 3.2.10) to compute R-torsion of Σg,n, g ≥ 2, n ≥ 0 in terms of
R-torsion of Σ1,1.

. . .

Σγ1
1,1 Σγ1,γ2

1,2
γ1 γ2 γg−2 γg−1

Σγg−2,γg−1
1,2 Σγg−1

1,6

Figure 1: Orientable surface Σg,5 with genus g ≥ 2, bordered by n = 5 curves
homeomorphic to circle.

3.1. R-torsion of torus with one boundary circle Σ1,1

Let Σ1,1 be a torus with boundary circle γ. Note that the double of Σ1,1 is Σ2,0.
Clearly, there is the following short-exact sequence of the chain complexes

(3.1.1) 0 → C∗(γ) −→ C∗(Σ1,1) ⊕ C∗(Σ1,1) −→ C∗(Σ2,0) → 0.

The sequence (3.1.1), the Snake Lemma, and homology groups of Σ1,1, Σ2,0,
γ yield the long-exact sequence

H∗ : 0 → H2(Σ2,0)
f→ H1(γ) g→ H1(Σ1,1) ⊕H1(Σ1,1)

h→ H1(Σ2,0)
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i→ H0(γ) j→ H0(Σ1,1) ⊕H0(Σ1,1)
k→ H0(Σ2,0)

�→ 0.(3.1.2)

From exactness of the sequence (3.1.2) and the First Isomorphism Theorem
it follows that Im(g) = Im(i) = 0, Im(k) = H0(Σ2,0), and the isomorphisms:
Im(f) ∼= H2(Σ2,0), Im(h) ∼= H1(Σ1,1) ⊕H1(Σ1,1), Im(j) ∼= H0(γ).
Theorem 3.1.1. Suppose Σ1,1 is a torus with boundary circle γ and Σ2,0 is
the double of Σ1,1. If hΣ1,1

i is a basis of Hi(Σ1,1) and hγ
i is an arbitrary basis

of Hi(γ), i = 0, 1, then there exists a basis hΣ2,0
i of Hi(Σ2,0), i = 0, 1, 2 such

that R-torsion of H∗ in the corresponding bases equals to 1. Furthermore, the
following formula holds

|T(Σ1,1, {hΣ1,1
i }1

0)| =
√√√√ | det Δ0,2(Σ2,0)|√

| det Δ1,1(Σ2,0)|
,

where det Δi,2−i(Σ2,0) denotes the determinant of matrix of the intersection
pairing (·, ·)i,2−i : Hi(Σ2,0) ×H2−i(Σ2,0) → R in the bases hΣ2,0

i , hΣ2,0
2−i .

Proof. Let us first explain the method we will use to show that there exists
a basis hΣ2,0

i of Hi(Σ2,0), i = 0, 1, 2 so that R-torsion of the chain complex
(3.1.2) in the corresponding bases becomes 1.

For p = 0, . . . , 6, let us denote by Cp(H∗) the vector spaces in the long-
exact sequence (3.1.2). Consider the following short-exact sequences:

0 → Zp(H∗) ↪→ Cp(H∗)
∂p→ Bp−1(H∗) → 0,(3.1.3)

0 → Bp(H∗) ↪→ Zp(H∗)
ϕp� Hp(H∗) → 0.(3.1.4)

Here, “↪→” and “�” are the inclusion and the natural projection, respectively.
Assume sp : Bp−1(H∗) → Cp(H∗) and �p : Hp(H∗) → Zp(H∗) are sections of
∂p : Cp(H∗) → Bp−1(H∗) and ϕp : Zp(H∗) → Hp(H∗), respectively. By the
exactness of H∗, we have Zp(H∗) = Bp(H∗) for all p. Hence, the sequence
(3.1.3) becomes

(3.1.5) 0 → Bp(H∗) ↪→ Cp(H∗) → Bp−1(H∗) → 0.

Recall that if for p = 0, . . . , 6, hp, bp, and h∗
p are bases of Cp(H∗), Bp(H∗),

and Hp(H∗), respectively, then R-torsion of H∗ with respect to bases {hp}6
p=0,

{h∗
p}6

p=0 is the alternating product

T

(
H∗, {hp}6

0, {h∗
p}6

0

)
=

6∏
p=0

[
bp � �p(h∗

p) � sp(bp−1),hp

](−1)(p+1)

.



Connected sum of orientable surfaces and Reidemeister torsion 523

From the fact that for p = 0, . . . , 6, Hp(H∗) is zero, it follows that h∗
p = 0

and all �p are the zero map. Thus, R-torsion of H∗ can be rewritten as:

(3.1.6) T

(
H∗, {hp}6

0, {0}6
0

)
=

6∏
p=0

[bp � sp(bp−1),hp](−1)(p+1)
.

Note that J. Milnor proved in [13] that R-torsion does not depend on bases bp

and sections sp, �p. Therefore, in the following method we will choose suitable
bases bp and sections sp so that (3.1.6) is equal to 1. For each p, we will
denote the obtained basis bp � sp(bp−1) by h′

p.
First, let us consider the space C0(H∗) = H0(Σ2,0) in the sequence (3.1.5),

we get

(3.1.7) 0 → B0(H∗) ↪→ C0(H∗)
�→ B−1(H∗) → 0.

Clearly, we can consider the zero map s0 : B−1(H∗) −→ C0(H∗) as a section
of �, because B−1(H∗) is zero. From Splitting Lemma it follows

(3.1.8) C0(H∗) = Im(k) ⊕ s0(B−1(H∗)) = Im(k).

Let us take the basis of Im(k) as μ11k(hΣ1,1
0 , 0)+μ12k(0,hΣ1,1

0 ), where (μ11, μ12)
�= (0, 0). By equation (3.1.8), μ11k(hΣ1,1

0 , 0) + μ12k(0,hΣ1,1
0 ) becomes the ob-

tained basis h′
0 of C0(H∗). Letting the beginning basis h0 (namely, hΣ2,0

0 ) of
H0(Σ2,0) be h′

0, we obtain

(3.1.9) [h′
0,h0] = 1.

Now, the sequence (3.1.5) for C1(H∗) = H0(Σ1,1) ⊕H0(Σ1,1) becomes

(3.1.10) 0 → Im(j) ↪→ C1(H∗)
k→ Im(k) → 0

for B1(H∗), B0(H∗) being Im(j), Im(k), respectively.
By the First Isomorphism Theorem, Im(k) and (H0(Σ1,1) ⊕H0(Σ1,1))/

Ker(k) are isomorphic. Therefore, we can consider the inverse of this isomor-
phism, namely s1 : Im(k) → (H0(Σ1,1) ⊕H0(Σ1,1))/Ker(k), as a section of k.
By Splitting Lemma, we get

(3.1.11) C1(H∗) = Im(j) ⊕ s1(Im(k)).

Note that the given basis h1 of H0(Σ1,1) ⊕H0(Σ1,1) is {(hΣ1,1
0 , 0), (0,hΣ1,1

0 )}.
Using the fact that Im(j) is isomorphic to H0(γ), K1 · j(hγ

0) is a basis of
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Im(j), where the non-zero constant K1 will be chosen. From the fact that
Im(j) and s1(Im(k)) are 1−dimensional subspaces of the 2−dimensional space
H0(Σ1,1) ⊕H0(Σ1,1) it follows that there exist non-zero vectors (ei1 , ei2), i =
1, 2 in the plane such that

j(hγ
0) = e11(h

Σ1,1
0 , 0) + e12(0,h

Σ1,1
0 ),(3.1.12)

s1(hIm(k)) = e21(h
Σ1,1
0 , 0) + e22(0,h

Σ1,1
0 ).(3.1.13)

Let us choose the basis hIm(j) of Im(j) as K1j(hγ
0), where K1 = 1/ detE and

E is the 2 × 2 real matrix [eij ]. By equations (3.1.11)–(3.1.13),{
K1[e11(h

Σ1,1
0 , 0) + e12(0,h

Σ1,1
0 )], e21(h

Σ1,1
0 , 0) + e22(0,h

Σ1,1
0 )

}
is the obtained basis h′

1 for C1(H∗). Hence, we have

(3.1.14) [h′
1,h1] = K1(det(E)) = 1.

We now consider the short-exact sequence (3.1.5) for C2(H∗) = H0(γ). The
fact that B2(H∗) and B1(H∗) are respectively equal to Im(i) and Im(j) yields

(3.1.15) 0 → Im(i) ↪→ C2(H∗)
j→ Im(j) → 0.

For j : H0(γ) → Im(j) being an isomorphism, we can take the inverse of j as
a section s2 : Im(j) → H0(γ) of j. From Splitting Lemma it follows

(3.1.16) C2(H∗) = Im(i) ⊕ s2(Im(j)).

Recall that in the previous step, we chose j(K1hγ
0) as a basis of Im(j). By

equation (3.1.16) and the fact that Im(i) = 0, we have that the obtained basis
h′

2 of C2(H∗) is K1hγ
0 . Thus, by the fact that the given basis h2 of C2(H∗) is

also hγ
0 , we get

(3.1.17) [h′
2,h2] = 1.

Considering the space C3(H∗) = H1(Σ2,0) in the sequence (3.1.5) and using
the fact that B3(H∗), B2(H∗) equal to Im(h), Im(i), respectively, we obtain

(3.1.18) 0 → Im(h) ↪→ C3(H∗)
i→ Im(i) → 0.
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Since Im(i) is zero, we can take zero map s3 : Im(i) → H1(Σ2,0) as a section
of i. By Splitting Lemma, we have

(3.1.19) C3(H∗) = Im(h) ⊕ s3(Im(i)) = Im(h).

The given basis hH1(Σ1,1)⊕H1(Σ1,1) of H1(Σ1,1) ⊕H1(Σ1,1) is{
(hΣ1,1

1,1 , 0), (0,hΣ1,1
1,1 ), (hΣ1,1

1,2 , 0), (0,hΣ1,1
1,2 )

}
.

From the fact that Im(h) is isomorphic to H1(Σ1,1)⊕H1(Σ1,1) it follows that
we can choose the basis hIm(h) of Im(h) as{

h((hΣ1,1
1,1 , 0)), h((0,hΣ1,1

1,1 )), h((hΣ1,1
1,2 , 0)), h((0,hΣ1,1

1,2 ))
}
.

By equation (3.1.19), we have that the obtained basis h′
3 of C3(H∗) is hIm(h).

If we let the beginning basis h3 (namely, hΣ2,0
1 ) of C3(H∗) as h′

3, then we get

(3.1.20) [h′
3,h3] = 1.

Let us consider the sequence (3.1.5) for the space C4(H∗) = H1(Σ1,1) ⊕
H1(Σ1,1). By the fact that B4(H∗), B3(H∗) are equal to Im(g), Im(h), respec-
tively, we obtain

(3.1.21) 0 → Im(g) ↪→ C4(H∗)
h→ Im(h) → 0.

From the fact that h is an isomorphism it follows that we can consider the
inverse of h as a section s4 : Im(h) → H1(Σ1,1)⊕H1(Σ1,1) of h. The fact that
Im(g) is zero and Splitting Lemma yield

(3.1.22) C4(H∗) = Im(g) ⊕ s4(Im(h)) = s4(Im(h)).

Recall that the given basis h4 of H1(Σ1,1) ⊕ H1(Σ1,1) is hH1(Σ1,1)⊕H1(Σ1,1).
Moreover, in the previous step, we chose the basis hIm(h) of Im(h) as{

h((hΣ1,1
1,1 , 0)), h((0,hΣ1,1

1,1 )), h((hΣ1,1
1,2 , 0)), h((0,hΣ1,1

1,2 ))
}
.

It follows from equation (3.1.22) that s4(hIm(h)) = hH1(Σ1,1)⊕H1(Σ1,1) is the
obtained basis h′

4 of C4(H∗). Hence, we have

(3.1.23) [h′
4,h4] = 1.
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Now, we consider the space C5(H∗) = H1(γ) in the short-exact sequence
(3.1.5). Using the fact that B5(H∗), B4(H∗) equal to Im(f), Im(g), respec-
tively, we get

(3.1.24) 0 → Im(f) ↪→ C5(H∗)
g→ Im(g) → 0.

Since Im(g) is zero, the zero map s5 : Im(h) −→ H1(γ) can be considered as
a section of g. From Splitting Lemma it follows that

(3.1.25) C5(H∗) = Im(f) ⊕ s5(Im(g)) = Im(f).

The given basis h5 of H1(γ) is hγ
1 . By equation (3.1.25), we choose the basis

hIm(f) of Im(f) as hγ
1 , which is also the obtained basis h′

5 of C5(H∗). Thus,
we obtain

(3.1.26) [h′
5,h5] = 1.

Finally, considering the space C6(H∗) = H2(Σ2,0) in the sequence (3.1.5) and
using the fact that B6(H∗), B5(H∗) equal to zero, Im(f), respectively, we get

(3.1.27) 0 → 0 ↪→ C6
f→ Im(f) → 0.

For Im(f) being isomorphic to H2(Σ2,0), we consider the inverse of f as section
s6 : Im(f) → H2(Σ2,0) of f. Splitting Lemma results

(3.1.28) C6(H∗) = 0 ⊕ s6(Im(f)) = s6(Im(f)).

From equation (3.1.28) it follows that f−1(hIm(f)) is the obtained basis h′
6

of C6(H∗). If we take the basis h6, namely hΣ2,0
2 , of H2(Σ2,0) as f−1(hIm(f)),

then we get

(3.1.29) [h′
6,h6] = 1.

Equations (3.1.9), (3.1.14), (3.1.17), (3.1.20), (3.1.23), (3.1.26), and (3.1.29)
yield

(3.1.30) T(H∗, {hp}6
0, {0}6

0) =
6∏

p=0
[h′

p,hp](−1)(p+1)
= 1.

Clearly, the natural bases are compatible in the sequence (3.1.1). Then, The-
orem 2.0.2 and (3.1.30) yield us

T(Σ1,1, {hΣ1,1
i }1

0)2 = T(γ1, {hγ
i }1

0) T(Σ2,0, {hΣ2,0
i }2

0).(3.1.31)
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From Remark 2.0.8 and equation (3.1.31), it follows that

(3.1.32) |T(Σ1,1, {hΣ1,1
i }1

0)| =
√
|T(Σ2,0, {hΣ2,0

i }2
0)|.

Theorem 2.0.6 and equation (3.1.32) finish the proof of Theorem 3.1.1.

Remark 3.1.2. Suppose that Σ1,1, Σ2,0, hΣ1,1
i , hSj

i , and hΣ2,0
i are all as in

Theorem 3.1.1. By Poincaré Duallity, Theorem 3.1.1, and [23, Theorem 4.1],
we have ∣∣∣T(Σ1,1, {hΣ1,1

i }1
0)
∣∣∣ =

√√√√∣∣∣∣∣ det Δ0,2(Σ2,0)
det℘(h1

Σ2,0
,Γ)

∣∣∣∣∣.
Here, det Δ0,2(Σ2,0) is the determinant of matrix of the intersection pairing
(·, ·)0,2 : H0(Σ2,0)×H2(Σ2,0) → R in the bases hΣ2,0

0 and hΣ2,0
2 , h1

Σ2,0
= {ωi}4

1

is the Poincaré dual basis of H1(Σ2,0) corresponding to the basis hΣ2,0
1 of

H1(Σ2,0), Γ = {Γ1,Γ2,Γ3,Γ4} is a canonical basis for H1(Σ2,0), i.e. i = 1, 2,
Γi intersects Γi+2 once positively and does not intersect others, and ℘(h1,Γ) =[∫

Γi
ωj

]
is the period matrix of h1

Σ2,0
with respect to Γ.

3.2. R-torsion of orientable surface Σ1,n, n ≥ 2

Proposition 3.2.1. Let Σ1,n be an orientable surface of genus 1 with bound-
ary circles S1, . . . , Sn. For i = 1, . . . , n, let Di denote the closed disk with
boundary Si. Consider the surface Σ1,n−1 obtained by gluing the surfaces Σ1,n
and D1 along the common boundary circle S1 (see, Fig. 2). Consider also the
associated short-exact sequence of chain complexes

(3.2.1) 0 → C∗(S1) −→ C∗(Σ1,n) ⊕ C∗(D1) −→ C∗(Σ1,n−1) → 0,

Σ1,4
Σ1,3

glue
�

=
D1

Figure 2: Orientable surface Σ1,3 is obtained by gluing Σ1,4 and D1 along the
common boundary circle S1.
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and the long-exact sequence

H∗ : 0 → H1(S1)
f→ H1(Σ1,n) g→ H1(Σ1,n−1)

h→ H0(S1)
i→ H0(Σ1,n) ⊕H0(D1)

j→ H0(Σ1,n−1)
k→ 0

obtained by the Snake Lemma for (3.2.1). Let hΣ1,n
ν be a basis of Hν(Σ1,n)

and hD1
0 be an arbitrary basis of H0(D1), ν = 0, 1. Then, for ν = 0, 1 there

exist bases hΣ1,n−1
ν and hS1

ν of Hν(Σ1,n−1) and Hν(S1), respectively so that
R-torsion of H∗ in these bases is 1 and the following formula is valid

T(Σ1,n, {hΣ1,n
ν }1

0) = T(Σ1,n−1, {hΣ1,n−1
ν }1

0) T(S1, {hS1
ν }1

0)T(D1, {hD1
0 })−1

.

Proof. Using the exactness of the sequence H∗ and the First Isomorphism
Theorem, we get Im(h) = 0, Im(k) = H0(Σ1,n−1), and the isomorphisms
Im(f) ∼= H1(S1), Im(i) ∼= H0(S1).

For p = 0, . . . , 5, we denote the vector spaces in long-exact sequence H∗
by Cp(H∗) and consider the short-exact sequence

(3.2.2) 0 → Bp(H∗) ↪→ Cp(H∗) � Bp−1(H∗) → 0.

For each p, let us consider the isomorphism sp : Bp−1(H∗) → sp(Bp−1(H∗))
obtained by the First Isomorphism Theorem as a section of Cp(H∗) →
Bp−1(H∗). Then, we obtain

(3.2.3) Cp(H∗) = Bp(H∗) ⊕ sp(Bp−1(H∗)).

We first consider the vector space C0(H∗) = H0(Σ1,n−1) in (3.2.3). Since
Im k is zero, we have

(3.2.4) C0(H∗) = Im(j) ⊕ s0(Im(k)) = Im(j).

As Im(j) is a 1−dimensional subspace of H0(Σ1,n) ⊕ H0(D1), there is
a non-zero vector (a11, a12) in the plane such that {a11hΣ1,n

0 + a12hD1
0 } is

the basis hIm(j) of Im(j). From equation (3.2.4) it follows that hIm(j) is the
obtained basis h′

0 of C0(H∗). Since Im(j) is equal to C0(H∗), we can choose
the beginning basis h0 (namely, hΣ1,n−1

0 ) of C0(H∗) as hIm(j). Thus, we get

(3.2.5) [h′
0,h0] = 1.

Considering (3.2.3) for C1(H∗) = H0(Σ1,n) ⊕H0(D1), we have

(3.2.6) C1(H∗) = Im(i) ⊕ s1(Im(j)).
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Recall that in the previous step we chose the basis of Im(j) as hIm(j). For
Im(i) being a 1−dimensional subspace of C1(H∗), there are non-zero numbers
b11, b12 such that {b11hΣ1,n

0 +b12hD1
0 } is a basis of Im(i). Let hIm(i) be the basis

{T1[b11hΣ1,n
0 + b12hD1

0 ]} of Im(i). Here, T1 is a non-zero constant which will
be determined later.

On the other hand, s1(Im(j)) is also a 1−dimensional subspace of C1(H∗).
Thus, there is a non-zero vector (b21 , b22) in the plane such that the following
equality holds

s1(hIm(j)) = b21hΣ1,n
0 + b22hD1

0 .

Clearly, the determinant of the matrix B = [bij ] is non-zero. Taking T1
as 1/ detB, then from equation (3.2.6) it follows that {hIm(i), s1(hIm(j))} is
the obtained basis h′

1 of C1(H∗). Since the beginning basis h1 of C1(H∗) is
{hΣ1,n

0 ,hD1
0 }, we obtain

(3.2.7) [h′
1,h1] = T1 detB = 1.

Next, let us consider the space C2(H∗) = H0(S1) in (3.2.3). Using the fact
that Im h is zero, we have

(3.2.8) C2(H∗) = Im(h) ⊕ s2(Im(i)) = s2(Im(i)).

Recall that hIm(i) was chosen in the previous step. It follows from equation
(3.2.8) that s2(hIm(i)) is the obtained basis h′

2 of C2(H∗). Since C2(H∗) is
equal to s2(Im(i)), let the beginning basis h2 (namely, hS1

0 ) of C2(H∗) be
s2(hIm(i)). Hence, we obtain

(3.2.9) [h′
2,h2] = 1.

We now consider the case of C3(H∗) = H1(Σ1,n−1) in (3.2.3). Because Im(h)
is zero, we have the following equality

(3.2.10) C3(H∗) = Im(g) ⊕ s3(Im(h)) = Im(g).

Im(g) is an n−dimensional subspace of the (n+1)−dimensional space H1(Σ1,n)
with the given basis hΣ1,n

1 as
{(

hΣ1,n
1

)
μ

}n+1

μ=1
. From this there are non-zero vec-

tors (cν,1, . . . , cν,n+1), ν = 1, . . . , n such that

hIm(g) =

⎧⎨⎩
n+1∑
μ=1

cν,μg

((
hΣ1,n

1

)
μ

)⎫⎬⎭
n

ν=1
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is the basis of Im(g). By equation (3.2.10), hIm(g) becomes the obtained basis
h′

3 of C3(H∗). Moreover, for C3(H∗) being equal to Im(g), let the beginning
basis h3 (namely, hΣ1,n−1

1 ) of C3(H∗) be hIm(g). Therefore, we have

(3.2.11) [h′
3,h3] = 1.

We now consider (3.2.3) for C4(H∗) = H1(Σ1,n). Then, we get

(3.2.12) C4(H∗) = Im(f) ⊕ s4(Im(g)).

For Im(f) being a 1−dimensional subspace of C4(H∗), there is a non-zero
vector (d1,1, . . . , d1,n+1) such that

{
d1,1

(
hΣ1,n

1

)
1 + · · · + d1,n+1

(
hΣ1,n

1

)
n+1

}
is

a basis of Im(f). Let

hIm(f) =
{
T2

[
d1,1

(
hΣ1,n

1

)
1
+ · · · + d1,n+1

(
hΣ1,n

1

)
n+1

]}
be the basis of Im(f), where T2 is a non-zero constant to be chosen later.

Since s4(Im(g)) is an n−dimensional subspace of (n + 1)−dimensional
space C4(H∗), there are non-zero vectors (dν,1, . . . , dν,n+1), ν = 2, . . . , n + 1
such that the following equality holds

s4(hIm(g)) =

⎧⎨⎩
n+1∑
μ=1

dν,μ
(
hΣ1,n

1

)
μ

⎫⎬⎭
n+1

ν=2

.

Clearly, the determinant of the matrix D = [dij ] is non-zero. If we take T2
as 1/ detD, then by equation (3.2.12) we have that {hIm(f), s4(hIm(g))} is the
obtained basis h′

4 of C4(H∗). For the beginning basis h4 of C4(H∗) being
hΣ1,n

1 , we get

(3.2.13) [h′
4,h4] = T2(detD) = 1.

Finally, let us consider the case of C5(H∗) = H1(S1) in (3.2.3). Since B5(H∗)
is zero, the following equality holds

(3.2.14) C5(H∗) = B5(H∗) ⊕ s5(Im(f)) = s5(Im(f)).

Recall that the basis hIm(f) was chosen for Im(f) in the previous step. By
equation (3.2.14), s5(hIm(f)) becomes the obtained basis h′

5 of C5(H∗). From
the fact that C5(H∗) is s5(Im(f)), it follows that we can take the beginning
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basis h5 (namely, hS1
0 ) of C5(H∗) as s5(hIm(f)). Thus, the following equality

holds

(3.2.15) [h′
5,h5] = 1.

Combining equations (3.2.5), (3.2.7), (3.2.9), (3.2.11), (3.2.13), and (3.2.15),
we have

(3.2.16) T(H∗, {hp}5
0, {0}5

0) =
5∏

p=0
[h′

p,hp](−1)(p+1)
= 1.

The compatibility of the natural bases in the short-exact sequence (3.2.1),
Theorem 2.0.2, Lemma 2.0.3, and equation (3.2.16) finish the proof of Propo-
sition 3.2.1.

Using the arguments in Proposition 3.2.1 inductively, we have the follow-
ing result.
Proposition 3.2.2. Let Σ1,n be an orientable surface of genus 1 with n ≥ 2
boundary circles S1, . . . , Sn. For i = 1, . . . , n, let Di denote the closed disks
with boundary Si. For i = 1, . . . , n − 1, let Σ1,n−i be the surface obtained
from Σ1,n by gluing D1, . . . ,Di along S1, . . . , Si. Consider the surface Σ1,n−i

obtained by gluing the surfaces Σ1,n−i+1 and Di along the common boundary
circle Si, i = 1, . . . , n− 1. Let

0 → C∗(Si) −→ C∗(Σ1,n−i+1) ⊕ C∗(Di) −→ C∗(Σ1,n−i) → 0

be the asociated natural short-exact sequence of chain complexes and H∗
i be

the corresponding long-exact sequence obtained by the Snake Lemma. Let hΣ1,n
ν

be a basis of Hν(Σ1,n) and hDi
0 be an arbitrary basis of H0(Di), ν = 0, 1,

i = 1, . . . , n−1. Then, there exist bases respectively hΣ1,1
ν and hSi

ν of Hν(Σ1,1)
and Hν(Si), ν = 0, 1, i = 1, . . . , n− 1 such that R-torsion of each H∗

i in the
coresponding bases is 1 and the following formula is valid

T(Σ1,n, {hΣ1,n
ν }1

0) = T(Σ1,1, {hΣ1,1
ν }1

0)
n−1∏
i=1

[T(Si, {hSi
ν }1

0)T(Di, {hDi
0 })−1].

Combining Remark 2.0.8 and Proposition 3.2.2, we obtain
Proposition 3.2.3. Let Σ1,n, Si,Di,Σ1,n−i, Hi

∗, hΣ1,n
ν , hDi

0 , hΣ1,1
ν ,hSi

ν be as
in Proposition 3.2.2. Then, the following formula holds

|T(Σ1,n, {hΣ1,n
ν }1

0)| = |T(Σ1,1, {hΣ1,1
ν }1

0)|
n−1∏
p=1

|T(Di, {hDi
0 })|−1

.
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Remark 3.2.4. It should be mentioned that following the arguments in Propo-
sition 3.2.1, one has similar result for the sphere Σ0,k, k ≥ 1 with boundary
circles S1, . . . , Sk. To be more precise, let Di denote the closed disks with
boundary Si, i = 1, . . . , k. Consider the surface Σ0,k−1 obtained by gluing
surfaces Σ0,k and D1 along the common boundary circle S1. Let

0 → C∗(S1) −→ C∗(Σ0,k) ⊕ C∗(D1) −→ C∗(Σ0,k−1) → 0

be the natural short-exact sequence of chain complexes.
Let us first consider the case k ≥ 2. The associated long-exact sequence

obtained by the Snake Lemma is

H∗ : 0 → H1(S1)
f→ H1(Σ0,k)

g→ H1(Σ0,k−1)
h→ H0(S1)

i→ H0(Σ0,k) ⊕H0(D1)
j→ H0(Σ0,k−1)

k→ 0.

If for ν = 0, 1, hΣ0,k
ν is a basis of Hν(Σ0,k) and hD1

0 is an arbitrary basis of
H0(D1), then there are bases respectively hΣ0,k−1

ν and hS1
ν of Hν(Σ0,k−1) and

Hν(S1), ν = 0, 1 so that R-torsion of H∗ in these bases equals to 1 and the
following formula holds

T(Σ0,k, {hΣ0,k
ν }1

0) = T(Σ0,k−1, {hΣ0,k−1
ν }1

0) T(S1, {hS1
ν }1

0)T(D1, {hD1
0 })−1

.

Let us consider the case k = 1. The corresponding long-exact sequence H∗ is

0 → H2(Σ0,0)
f→ H1(S1)

0→ H0(S1)
i→ H0(Σ0,1) ⊕H0(D1)

j→ H0(Σ0,0)
k→ 0.

Let hΣ0,1
0 be a basis of H0(Σ0,1). Let hD1

0 and hS1
1 be arbitrary bases of H0(D1)

and H1(S1), respectively. Then there exist respectively bases hS1
0 , hΣ0,0

ν of
H0(S1), Hν(Σ0,0), ν = 0, 2 such that R-torsion of H∗ in these bases equals to
1 and the following formula is valid

T(Σ0,1, {hΣ0,1
0 }) = T(Σ0,0, {hΣ0,0

0 , 0,hΣ0,0
2 }) T(S1, {hS1

ν }1
0)

×T(D1, {hD1
0 })−1

.(3.2.17)

Equation (3.2.17) suggests a formula for R-torsion of closed disk D. More
precisely, by the fact that R-torsion of a chain complex C∗ of length m can
be considered as an element of the dual of the one dimensional vector space
⊗m

p=0(det(Hp(C)))(−1)p [19, Theorem 2.0.4.], we have T(D1) is a non-zero
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linear functional on the one dimensional real vector space H0(D1). Thus, con-
sidering the basis hD1

0 of H0(D1) so that T(D1, {hD1
0 }) = 1 and using equation

(3.2.17), one has the following formula for R-torsion of closed disk

(3.2.18) T(Σ0,1, {hΣ0,1
0 }) = T(Σ0,0, {hΣ0,0

0 , 0,hΣ0,0
2 }) T(S1, {hS1

ν }1
0).

Moreover, from Remark 2.0.8 and Theorem 2.0.6 it follows that

(3.2.19)
∣∣∣T(Σ0,1, {hΣ0,1

ν }1
0)
∣∣∣ =

∣∣∣∣(hΣ0,0
0 ,hΣ0,0

2

)
0,2

∣∣∣∣ ,
where (·, ·)0,2 : H0(Σ0,0) ×H2(Σ0,0) → R is the intersection pairing of sphere
Σ0,0.

Note that equation (3.2.19) suggests a formula for computing R-torsion
of closed disk Σ0,1 in terms of R-torsion of sphere Σ0,0.

Σ1,1
Σ1,4

Σ2,3 = γ1γ1

glue
�

Figure 3: Orientable surface Σ2,3 is obtained by gluing Σ1,1 and Σ1,4 along
common boundary circle γ1.

The following result proves a formula for R-torsion of Σg,n in terms of
R-torsion of the surfaces Σg−1,1 and Σ1,n+1 and also circle. More precisely,

Proposition 3.2.5. Let g ≥ 2 and n ≥ 1. Consider the surface Σg,n obtained
by gluing the surfaces Σg−1,1 and Σ1,n+1 along the common boundary circle
γ1 (see, Fig. 3). Consider also the associated short-exact sequence of chain
complexes

(3.2.20) 0 → C∗(γ1) −→ C∗(Σg−1,1) ⊕ C∗(Σ1,n+1) −→ C∗(Σg,n) → 0,

and the long-exact sequence

H∗ : 0 → H1(γ1)
f→ H1(Σg−1,1) ⊕H1(Σ1,n+1)

g→ H1(Σg,n)
h→ H0(γ1)

i→ H0(Σg−1,1) ⊕H0(Σ1,n+1)
j→ H0(Σg,n) k→ 0

obtained by the Snake Lemma for (3.2.20). Let hΣg,n
ν be a basis of Hν(Σg,n),

ν = 0, 1. Let hγ1
ν be an arbitrary basis of Hν(γ1), ν = 0, 1. Then, there exist
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bases hΣg−1,1
ν and hΣ1,n+1

ν of Hν(Σg−1,1) and Hν(Σ1,n+1), ν = 0, 1, respectively
such that R-torsion of H∗ in the corresponding bases is 1 and the following
formula holds

T(Σg,n, {hΣg,n
ν }1

0) = T(Σg−1,1, {hΣg−1,1
ν }1

0) T(Σ1,n+1, {hΣ1,n+1
ν }1

0)
× T(γ1, {hγ1

ν }1
0)−1.

Proof. First, we denote the vector spaces in H∗ by Cp(H∗), p = 0, . . . , 5. For
each p, the exactness of H∗ yields the following short-exact sequence

0 → Bp(H∗) ↪→ Cp(H∗) � Bp−1(H∗) → 0.

For all p, considering the isomorphism sp : Bp−1(H∗) → sp(Bp−1(H∗)) ⊆
Cp(H∗) obtained by the First Isomorphism Theorem as a section of Cp(H∗) →
Bp−1(H∗), we obtain

(3.2.21) Cp(H∗) = Bp(H∗) ⊕ sp(Bp−1(H∗)).

Let us consider the space C0(H∗) = H0(Σg,n) in (3.2.21). From the fact that
Im(k) is equal to zero it follows

(3.2.22) C0(H∗) = Im(j) ⊕ s0(Im(k)) = Im(j).

Let us choose the basis of Im j as hΣg,n

0 . From equation (3.2.22) it follows that
the obtained basis h′

0 of C0(H∗) becomes hΣg,n

0 . Since the given basis h0 of
C0(H∗) is also hΣg,n

0 , we have

(3.2.23) [h′
0,h0] = 1.

Next consider C1(H∗) = H0(Σg−1,1) ⊕H0(Σ1,n+1) in (3.2.21), we get

(3.2.24) C1(H∗) = Im(i) ⊕ s1(Im(j)).

As i is injective, let i(hS1
0 ) be the basis of Im(i). In the previous step, we chose

hΣg,n

0 as the basis of Im(j). Thus, by equation (3.2.24), the obtained basis h′
1

of C1(H∗) becomes {i(hS1
0 ), s1(hΣg,n

0 )}.
H0(Σg−1,1) and H0(Σ1,n+1) are both 1−dimensional subspaces of the

2−dimensional space C1(H∗). Thus, there exist non-zero vectors (aν1, aν2),
ν = 1, 2 such that {a11i(hγ1

0 ) + a12s1(hΣg,n

0 )} is a basis of H0(Σg−1,1) and
{a21i(hγ1

0 ) + a22s1(hΣg,n

0 )} is a basis of H0(Σ1,n+1). Clearly, the 2 × 2 matrix
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A = [aνμ] is invertible. Let hΣg−1,1
0 denote the basis {(detA)−1[a11i(hγ1

0 ) +
a12s1(hΣg,n

0 )]} of H0(Σg−1,1) and hΣ1,n+1
0 denote the basis {a21i(hγ1

0 ) +
a22s1(hΣg,n

0 )} of H0(Σ1,n+1). Considering {hΣg−1,n
0 ,hΣ1,n+1

0 } as the beginning
basis h1 of C1(H∗), we have

(3.2.25) [h′
1,h1] = 1.

Now, consider (3.2.21) for the space C2(H∗) = H0(γ1). For h being the zero
map, we get

(3.2.26) C2(H∗) = Im(h) ⊕ s2(Im(i)) = s2(Im(i)).

Recall that the basis of Im(i) was chosen previously as i(hγ1
0 ). From this and

equation (3.2.26) it follows that the obtained basis h′
2 of C2(H∗) becomes hγ1

0 .
From the fact that the beginning basis h2 of C2(H∗) is hγ1

0 it follows

(3.2.27) [h′
2,h2] = 1.

Let us consider C3(H∗) = H1(Σg,n) in (3.2.21). Obviously, we have

(3.2.28) C3(H∗) = Im(g) ⊕ s3(Im(h)) = Im(g).

Let us choose the basis of Im(g) as hΣg,n

1 = {(hΣg,n

1 )ν}2g+n−1
ν=1 . By equation

(3.2.28), we get the obtained basis h′
3 of C3(H∗) as hΣg,n

1 . The fact that the
beginning basis h3 of C3(H∗) is also hΣg,n

1 yields

(3.2.29) [h′
3,h3] = 1.

Considering the space C4(H∗) = H1(Σg−1,1)⊕H1(Σ1,n+1) in (3.2.21), we have

(3.2.30) C4(H∗) = Im(f) ⊕ s4(Im(g)).

As f is injective, we can take the basis of Im(f) as f(hγ1
1 ). In the previous

step, we chose the basis of Im(g) as hΣg,n

1 . Then, from (3.2.30) it follows that
the obtained basis h′

4 of C4(H∗) becomes {f(hγ1
1 ), s4(hΣg,n

1 )}.
Since H1(Σg−1,1) and H1(Σ1,n+1) are respectively (2g − 2) and (n +

2)−dimensional subspaces of the (2g + n)−dimensional space C4(H∗), there
are non-zero vectors (bν1, . . . , bν(2g+n)), ν = 1, . . . , 2g + n such that⎧⎨⎩

2g+n−1∑
μ=1

bνμs4(hΣg,n

1μ ) + bν(2g+n)f(hγ1
1 )

⎫⎬⎭
2+n

ν=1
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is a basis of H1(Σ1,n+1) and⎧⎨⎩
2g+n−1∑
μ=1

bνμs4(hΣg,n

1μ ) + bν(2g+n)f(hγ1
1 )

⎫⎬⎭
2g+n

ν=n+3

is a basis of H1(Σg−1,1). Moreover, the (2g + n) × (2g + n) matrix B = [bνμ]
has non-zero determinant. Let us choose the basis hΣ1,n+1

1 of H1(Σ1
1,n+1) as⎧⎨⎩(detB)−1

2g+n−1∑
μ=1

[b1μs4(hΣg,n

1μ ) + b1(2g+n)f(hS1
1 )],

⎧⎨⎩
2g+n−1∑
μ=1

bνμs4(hΣg,n

1μ ) + bν(2g+n)f(hγ1
1 )

⎫⎬⎭
2+n

ν=2

⎫⎬⎭ ,

and let the basis hΣg−1,1
1 of H1(Σg−1,1) be⎧⎨⎩

2g+n−1∑
μ=1

bνμs4(hΣg,n
νμ ) + bν(2g+n)f(hγ1

1 )

⎫⎬⎭
2g+n

ν=n+3

.

If we consider {hΣg−1,1
1 ,hΣ1,n+1

1 } as the beginning basis h4 of C4(H∗), then we
have

(3.2.31) [h′
4,h4] = 1.

Finally, we consider (3.2.21) for the space C5(H∗) = H1(γ1). The fact that
B5(H∗) equals to zero gives us the following equality

(3.2.32) C5(H∗) = B5(H∗) ⊕ s5(Im(f)) = s5(Im(f)).

In the previous step, f(hγ1
1 ) was chosen as the basis of Im(f). By equation

(3.2.32), the obtained basis h′
5 of C5(H∗) is hγ1

1 . As the beginning basis h5 of
C5(H∗) is also hγ1

1 , we get

(3.2.33) [h′
5,h5] = 1.

Combining equations (3.2.23), (3.2.25), (3.2.27), (3.2.29), (3.2.31), (3.2.33),
we obtain

(3.2.34) T(H∗, {hp}5
0, {0}5

0) =
5∏

p=0
[h′

p,hp](−1)(p+1)
= 1.
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Compatibility of the natural bases in the short-exact sequence (3.2.20), The-
orem 2.0.2, and equation (3.2.34) end the proof of Proposition 3.2.5.

By Proposition 3.2.2 and Proposition 3.2.5, we have

Theorem 3.2.6. Let Σg,n, g ≥ 2, n ≥ 1 be an orientable surface with
boundary circles S1, . . . , Sn. Consider Σg,n as the connected sum Σ1,0# · · ·
#Σ1,0#Σ1,n (see, Fig. 1). From left to right let γ1, . . . , γg−1 be the circles
obtained by the connected sum operation. For i ∈ {1, . . . , g − 1} and j ∈
{1, . . . , n}, Dγi , DSj be the closed disk with boundary circle γi, Sj , respec-
tively. For i ∈ {1, g− 1}, let Σγi

1,1 be the torus with boundary circle γi and for
i ∈ {1, . . . , g − 2}, let Σγi,γi+1

1,2 be the torus with boundary circles γi, γi+1. As-
sume hΣg,n

ν is a basis of Hν(Σg,n), ν = 0, 1. For i ∈ {1, . . . , g− 1}, ν ∈ {0, 1},
assume hγi

ν is an arbitrary basis of Hν(γi). Moreover, for j ∈ {1, . . . , n},
k ∈ {2, . . . , g − 1}, assume h

DSj

0 and hDγk
0 are respectively bases of H0(DSj )

and H0(Dγk). Then, for ν = 0, 1, there exist bases hΣγ1
1,1

ν , hΣ
γg−1
1,1

ν , hΣγi−1,γ̂i
1,1

ν ,

(hγi
ν )′ , i = 2, . . . , g − 1, hSk

ν , k = 1, . . . , n so that the following formula is
valid

T(Σg,n, {hΣg,n
ν }1

0) = T(Σγ1
1,1, {h

Σγ1
1,1

ν }1
0) T(Σγg−1

1,1 , {hΣ
γg−1
1,1

ν }1
0)

×
g−1∏
i=2

T(Σγi−1,γ̂i
1,1 , {hΣγi−1,γ̂i

1,1
ν }1

0)
g−1∏
j=1

T(γj , {hγj
ν }1

0)−1

×
g−1∏
i=2

[T(γi, {(hγi
ν )′}1

0)T(Dγi , {h
Dγi
0 })

−1
]

×
n∏

k=1
[T(Sk, {hSk

ν }1
0)T(DSk

, {hDSk
0 })

−1
].

Here, Σγi−1,γ̂i
1,1 is the torus with boundary circle γi−1 which is obtained by glu-

ing Σγi−1,γi
1,2 and the closed disk Dγi along the common boundary circle γi.

(hγi
ν )′ is the basis of γi by considering Σγi−1,γi

1,2 = Σγi−1,γ̂i
1,1 ∪γi Dγi and applying

Proposition 3.2.2.

From Remark 2.0.8, Remark 3.2.4, and Theorem 3.2.6 it follows that

Theorem 3.2.7. Let Σg,n, Sj , γi, Dγi , DSj , Σγi
1,1, Σγi,γi+1

1,2 , hΣg,n
ν , hγi

ν , h
DSj

0 ,

hDγk
0 , hΣγ1

1,1
ν , hΣ

γg−1
1,1

ν , hΣγi−1,γ̂i
1,1

ν ,
(
hγj
ν
)′
, hSk

ν be as in Theorem 3.2.6. Then, we



538 Esma Dirican and Yaşar Sözen

have

|T(Σg,n, {hΣg,n
ν }1

0)| = |T(Σγ1
1,1, {h

Σγ1
1,1

ν }1
0)||T(Σγg−1

1,1 , {hΣ
γg−1
1,1

ν }1
0)|

×
g−1∏
i=2

|T(Σγi−1,γ̂i
1,1 , {hΣγi−1,γ̂i

1,1
ν }1

0)|

×
g−1∏
i=2

|T(Dγi , {h
Dγi
0 })|−1

n∏
k=1

|T(DSk
, {hDSk

0 })|−1.

Using the same arguments in Proposition 3.2.5, we obtain

Theorem 3.2.8. Let Σg,0, g ≥ 2 be a closed orientable surface. From left to
right let γ1, . . . , γg−1 be the circles obtained by the connected sum operation
for Σg,0 (See Fig 1). Consider the surface Σg,0 obtained by gluing the surfaces
Σg−1,1 and Σ1,1 along the common boundary circle γg−1. Let

0 → C∗(γg−1) → C∗(Σg−1,1) ⊕ C∗(Σ1,1) → C∗(Σg,0) → 0

be the associated short-exact sequence of chain complexes and let

H∗ : 0 → H2(Σg,0)
δ→ H1(γ1)

f→ H1(Σg−1,1) ⊕H1(Σ1,1)
g→ H1(Σg,0)

h→ H0(γ1)
i→ H0(Σg−1,1) ⊕H0(Σ1,1)

j→ H0(Σg,0)
k→ 0

be the corresponding long-exact sequence obtained by the Snake Lemma, where
the connecting map δ is an isomorphism. Let hΣg,0

ν be a basis of Hν(Σg,0), ν =
0, 1, 2. Let hγg−1

1 = δ(hΣg,0
2 ) be the basis of H1(γg−1) and hγg−1

0 be an arbitrary
basis of H0(γg−1). Then, there are bases hΣg−1,1

ν and hΣ1,1
ν of Hν(Σg−1,1) and

Hν(Σ1,1), ν = 0, 1, respectively such that R-torsion of H∗ in the corresponding
bases is 1 and the following formula holds

T(Σg,0, {hΣg,0
ν }2

0) = T(Σg−1,1, {hΣg−1,1
ν }1

0) T(Σ1,1, {hΣ1,1
ν }1

0)
× T(γg−1, {hγg−1

ν }1
0)−1.

Combining Theorem 3.2.6 and Theorem 3.2.8, we have the following re-
sult.

Theorem 3.2.9. Let Σg,0, γi, and δ be as in Theorem 3.2.8. Let Dγi be the
closed disk with boundary circle γi, i = 1, . . . , g−1. For i ∈ {1, g−1}, let Σγi

1,1
be the torus with boundary circle γi and for i ∈ {1, . . . , g − 2}, let Σγi,γi+1

1,2 be
the torus with boundary circles γi, γi+1. Assume hΣg,0

ν is a basis of Hν(Σg,0),
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ν = 0, 1, 2. For i ∈ {1, . . . , g− 1}, ν ∈ {0, 1}, assume hγi
ν is an arbitrary basis

of Hν(γi) such that hγg−1
1 = δ(hΣg,0

2 ). Assume also that for k ∈ {1, . . . , g− 1},
hDγk

0 is a basis of H0(Dγk). Then, for ν = 0, 1, there are bases hΣγ1
1,1

ν , hΣ
γg−1
1,1

ν ,

hΣγi−1,γ̂i
1,1

ν , (hγi
ν )′ , i = 2, . . . , g − 1 so that the following formula is valid

T(Σg,0, {hΣg,0
ν }1

0) = T(Σγ1
1,1, {h

Σγ1
1,1

ν }1
0)T(Σγg−1

1,1 , {hΣ
γg−1
1,1

ν }1
0)

×
g−1∏
i=2

T(Σγi−1,γ̂i
1,1 , {hΣγi−1,γ̂i

1,1
ν }1

0)
g−1∏
j=1

T(γj , {hγj
ν }1

0)−1

×
g−1∏
i=2

[T(γi, {(hγi
ν )′}1

0)T(Dγi , {h
Dγi
0 })

−1
].

Here, Σγi−1,γ̂i
1,1 is the torus with boundary circle γi−1 which is obtained by gluing

Σγi−1,γi
1,1 and the closed disk Dγi along the common boundary circle γi.

By Remark 2.0.8, Remark 3.2.4, and Theorem 3.2.9, we have the following
result

Theorem 3.2.10. Let Σg,0, Σγg−1
1,1 , Σγ1

1,1, Σγi−1,γ̂i
1,1 , Dγi , hΣg,0

ν , hΣγ1
1,1

ν , hΣ
γg−1
1,1

ν ,

hΣγi−1,γ̂i
1,1

ν , hDγi
0 be as in Theorem 3.2.9. Then, the following formula holds

|T(Σg,0, {hΣg,0
ν }1

0)| = |T(Σγ1
1,1, {h

Σγ1
1,1

ν }1
0)| |T(Σγg−1

1,1 , {hΣ
γg−1
1,1

ν }1
0)|

×
g−1∏
i=2

|T(Σγi−1,γ̂i
1,1 , {hΣγi−1,γ̂i

1,1
ν }1

0)|
g−1∏
i=2

|T(Dγi , {h
Dγi
0 })|

−1
.
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