Connected sum of orientable surfaces and Reidemeister torsion

ESMA DIRICAN AND YAŞAR SÖZEN

Abstract: Let $\Sigma_{g,n}$ be an orientable surface with genus $g \geq 2$ bordered by $n \geq 1$ curves homeomorphic to circle. As is well known that one-holed torus $\Sigma_{1,1}$ is the building block of such surfaces. By using the notion of symplectic chain complex, homological algebra techniques and considering the double of the building block, the present paper proves a novel formula for computing Reidemeister torsion of one-holed torus. Moreover, applying this result and considering $\Sigma_{g,n}$ as the connected sum $\Sigma_{1,n}\#(g-1)\Sigma_{1,0}$, the present paper establishes a novel formula to compute Reidemeister torsion of $\Sigma_{g,n}$.

Keywords: Reidemeister torsion, symplectic chain complex, homological algebra, orientable surfaces.

1. Introduction

The topological invariant Reidemeister torsion was introduced by K. Reidemeister in [18], where by using this invariant he was able to classify 3-dimensional lens spaces. This invariant has many interesting applications in several branches of mathematics and theoretical physics, such as topology [7, 11, 12, 18], differential geometry [3, 14, 17], representation spaces [19, 22, 26], knot theory [6], Chern-Simon theory [25], 3-dimensional Seiberg-Witten theory [10], algebraic K-theory [13], dynamical systems [8], theoretical physics and quantum field theory [25, 26]. The reader is referred to [16, 24] for more information about this invariant.

Symplectic chain complex is an algebraic topological tool and was introduced by E. Witten [25], where using Reidemeister torsion and symplectic chain complex he computed the volume of several moduli spaces of representations from a Riemann surface to a compact gauge group.

It is well known that one-holed torus $\Sigma_{1,1}$ is a building block of orientable surfaces $\Sigma_{g,n}, g \geq 2, n \geq 0$. Let us note that closed orientable surface $\Sigma_{2,0}$

Received 24 January 2017.

of genus 2 can be obtained by gluing two one-holed torus along the common boundary circle. With the help of homological algebra computations and the notion of symplectic chain complex, we establish a novel formula (Theorem 3.1.1) for computing Reidemeister torsion of one-holed torus. Furthermore, considering orientable surface $\Sigma_{g,n}$ as $\Sigma_{1,n}\#(g-1)\Sigma_{1,0}$, and applying the obtained Reidemeister torsion formula of $\Sigma_{1,1}$, we prove novel formulas (Theorem 3.2.6–Theorem 3.2.10) for computing Reidemeister torsion of $\Sigma_{g,n}$. Here, # is the connected sum and (g-1) denotes (g-1) copies.

2. Preliminaries

In this section, we give the basic definitions and facts about Reidemeister torsion and symplectic chain complex. For further information and the detailed proof, the reader is referred to [15, 16, 19–25] and the references therein.

Let $C_*: 0 \to C_n \xrightarrow{\partial_n} C_{n-1} \to \cdots \to C_1 \xrightarrow{\partial_1} C_0 \to 0$ be a chain complex of finite dimensional vector spaces over the field \mathbb{R} of real numbers. For $p = 0, \ldots, n$, let $B_p(C_*) = \operatorname{Im}\{\partial_{p+1}: C_{p+1} \to C_p\}, Z_p(C_*) = \operatorname{Ker}\{\partial_p: C_p \to C_{p-1}\}$, and $H_p(C_*) = Z_p(C_*)/B_p(C_*)$ be p-th homology group of the chain complex. Using the definition of $Z_p(C_*), B_p(C_*)$, and $H_p(C_*)$, we have the following short-exact sequences

$$(2.0.1) 0 \longrightarrow Z_p(C_*) \xrightarrow{\iota} C_p \xrightarrow{\partial_p} B_{p-1}(C_*) \longrightarrow 0,$$

$$(2.0.2) 0 \longrightarrow B_p(C_*) \xrightarrow{\iota} Z_p(C_*) \xrightarrow{\varphi_p} H_p(C_*) \longrightarrow 0.$$

Here, i and φ_p are the inclusion and the natural projection, respectively.

Let $s_p: B_{p-1}(C_*) \to C_p$, $\ell_p: H_p(C_*) \to Z_p(C_*)$ be sections of $\partial_p: C_p \to B_{p-1}(C_*)$, $\varphi_p: Z_p(C_*) \to H_p(C_*)$, respectively. The short-exact sequences (2.0.1) and (2.0.2) yield

(2.0.3)
$$C_p = B_p(C_*) \oplus \ell_p(H_p(C_*)) \oplus s_p(B_{p-1}(C_*)).$$

If $\mathbf{c_p}$, $\mathbf{b_p}$, and $\mathbf{h_p}$ are bases of C_p , $B_p(C_*)$, and $H_p(C_*)$, respectively, then by equation (2.0.3), we obtain a new basis, more precisely $\mathbf{b}_p \sqcup \ell_p(\mathbf{h}_p) \sqcup s_p(\mathbf{b}_{p-1})$ of C_p , $p = 0, \ldots, n$.

Definition 2.0.1. Reidemeister torsion (R-torsion) of chain complex C_* with respect to bases $\{\mathbf{c}_p\}_{p=0}^n$, $\{\mathbf{h}_p\}_{p=0}^n$ is defined as the alternating product

$$\mathbb{T}(C_*, \{\mathbf{c}_p\}_0^n, \{\mathbf{h}_p\}_0^n) = \prod_{p=0}^n [\mathbf{b}_p \sqcup \ell_p(\mathbf{h}_p) \sqcup s_p(\mathbf{b}_{p-1}), \mathbf{c}_p]^{(-1)^{(p+1)}},$$

where $[\mathbf{e}_p, \mathbf{f}_p]$ is the determinant of the change-base-matrix from basis \mathbf{f}_p to \mathbf{e}_p of C_p .

If $0 \to A_* \xrightarrow{\imath} B_* \xrightarrow{\pi} D_* \to 0$ is a short-exact sequence of chain complexes, then by the Snake Lemma we have the long-exact sequence of vector spaces

$$C_*: \cdots \to H_p(A_*) \xrightarrow{\iota_p} H_p(B_*) \xrightarrow{\pi_p} H_p(D_*) \xrightarrow{\delta_p} H_{p-1}(A_*) \to \cdots$$

Here, $C_{3p} = H_p(D_*)$, $C_{3p+1} = H_p(B_*)$, and $C_{3p+2} = H_p(A_*)$. Clearly, one can consider bases \mathbf{h}_p^D , \mathbf{h}_p^B , and \mathbf{h}_p^A for C_{3p} , C_{3p+1} , and C_{3p+2} , respectively.

Theorem 2.0.2. ([13]) Let $0 \to A_* \stackrel{i}{\to} B_* \stackrel{\pi}{\to} D_* \to 0$ be a short-exact sequence of chain complexes. Let C_* be the corresponding long-exact sequence of vector spaces obtained by the Snake Lemma. Suppose that \mathbf{c}_p^A , \mathbf{c}_p^B , \mathbf{c}_p^D , \mathbf{h}_p^A , \mathbf{h}_p^B , and \mathbf{h}_p^D are bases of A_p , B_p , D_p , $H_p(A_*)$, $H_p(B_*)$, and $H_p(D_*)$, respectively. Suppose also that \mathbf{c}_p^A , \mathbf{c}_p^B , and \mathbf{c}_p^D are compatible in the sense that $[\mathbf{c}_p^B, \mathbf{c}_p^A \sqcup \widetilde{\mathbf{c}_p^D}] = \pm 1$, where $\pi_p\left(\widetilde{\mathbf{c}_p^D}\right) = \mathbf{c}_p^D$. Then, the following formula holds:

$$\begin{split} \mathbb{T}(B_*, \{\mathbf{c}_p^B\}_0^n, \{\mathbf{h}_p^B\}_0^n) &= \mathbb{T}(A_*, \{\mathbf{c}_p^A\}_0^n, \{\mathbf{h}_p^A\}_0^n) \ \mathbb{T}(D_*, \{\mathbf{c}_p^D\}_0^n, \{\mathbf{h}_p^D\}_0^n) \\ &\times \mathbb{T}(C_*, \{\mathbf{c}_{3p}\}_0^{3n+2}, \{0\}_0^{3n+2}). \end{split}$$

From Theorem 2.0.2 it follows that

Lemma 2.0.3. If A_* , D_* are two chain complexes, and if \mathbf{c}_p^A , \mathbf{c}_p^D , \mathbf{h}_p^A , and \mathbf{h}_p^D are bases of A_p , D_p , $H_p(A_*)$, and $H_p(D_*)$, respectively, then

$$T(A_* \oplus D_*, \{\mathbf{c}_p^A \sqcup \mathbf{c}_p^D\}_0^n, \{\mathbf{h}_p^A \sqcup \mathbf{h}_p^D\}_0^n) = \mathbb{T}(A_*, \{\mathbf{c}_p^A\}_0^n, \{\mathbf{h}_p^A\}_0^n) \times \mathbb{T}(D_*, \{\mathbf{c}_p^D\}_0^n, \{\mathbf{h}_p^D\}_0^n).$$

We refer the reader to [23] for detailed proof and further information.

Definition 2.0.4. Let $(C_*, \partial_*, \{\omega_{*,q-*}\}): 0 \to C_q \stackrel{\partial_q}{\to} C_{q-1} \to \cdots \to C_{q/2} \to \cdots \to C_1 \stackrel{\partial_1}{\to} C_0 \to 0$ be a chain complex of real vector spaces with the following properties:

- 1) $q \equiv 2 \pmod{4}$,
- 2) There is a non-degenerate bilinear form $\omega_{p,q-p}: C_p \times C_{q-p} \to \mathbb{R}$ for $p=0,\ldots,q/2$ such that
 - ∂ -compatible: $\omega_{p,q-p}(\partial_{p+1}a,b) = (-1)^{p+1}\omega_{p+1,q-(p+1)}(a,\partial_{q-p}b),$
 - anti-symmetric: $\omega_{p,q-p}(a,b) = (-1)^{p(q-p)}\omega_{q-p,p}(b,a)$.

Then, $(C_*, \partial_*, \{\omega_{*,q-*}\})$ is called a symplectic chain complex of length q.

By the fact $q \equiv 2 \pmod{4}$, we have $\omega_{p,q-p}(a,b) = (-1)^p \omega_{q-p,p}(b,a)$. From the ∂ -compatibility of $\omega_{p,q-p}$, it follows that they can be extended to homologies [19].

Assume that $(C_*, \partial_*, \{\omega_{*,q-*}\})$ is a symplectic chain complex. Assume also that \mathbf{c}_p and \mathbf{c}_{q-p} are bases of C_p and C_{q-p} , respectively. We say that these bases are ω -compatible, if the matrix of $\omega_{p,q-p}$ in bases \mathbf{c}_p , \mathbf{c}_{q-p} is equal to the $k \times k$ identity matrix $I_{k \times k}$ when $p \neq q/2$ and is equal to $\begin{pmatrix} 0_{l \times l} & I_{l \times l} \\ -I_{l \times l} & 0_{l \times l} \end{pmatrix}$ otherwise. Here, $k = \dim C_p = \dim C_{q-p}$ and $2l = \dim C_{q/2}$. Note that every symplectic chain complex has ω -compatible bases.

Using the existence of ω -compatible bases, the following formula was proved for calculating R-torsion of symplectic chain complex.

Theorem 2.0.5. ([19]) If $(C_*, \partial_*, \{\omega_{*,q-*}\})$ is a symplectic chain complex and if \mathbf{c}_p , \mathbf{c}_{q-p} are ω -compatible bases of C_p , C_{q-p} , and \mathbf{h}_p is a basis of $H_p(C_*)$, $p = 0, \ldots, q$, then

$$\mathbb{T}(C_*, \{\mathbf{c}_p\}_0^q, \{\mathbf{h}_p\}_0^q) = \prod_{p=0}^{(q/2)-1} \left(\det[\omega_{p,q-p}] \right)^{(-1)^p} \sqrt{\det[\omega_{q/2,q/2}]}^{(-1)^{q/2}}.$$

Here, $\det[\omega_{p,q-p}]$ is the determinant of the matrix of the non-degenerate pairing $[\omega_{p,q-p}]: H_p(C_*) \times H_{q-p}(C_*) \to \mathbb{R}$ in the bases \mathbf{h}_p , \mathbf{h}_{q-p} .

Let M be a smooth m-manifold with a cell decomposition K. Let \mathbf{c}_i be the geometric basis for the i-cells $C_i(K)$, $i = 0, \ldots, m$. Note that associated to M there is the chain-complex $0 \to C_m(K) \xrightarrow{\partial_m} C_{m-1}(K) \to \cdots \to C_1(K) \xrightarrow{\partial_1} C_0(K) \to 0$, where ∂_i is the boundary operator. $\mathbb{T}(C_*(K), \{\mathbf{c}_i\}_{i=0}^m, \{\mathbf{h}_i\}_{i=0}^m)$ is called *Reidemeister torsion* (R-torsion) of M, where \mathbf{h}_i is a basis for $H_i(K)$, $i = 0, \ldots, m$.

Following the arguments introduced in [19, Lemma 2.0.5], one can conclude that R-torsion of a manifold M is independent of the cell-decomposition K of M. Hence, instead of $\mathbb{T}(C_*(K), \{\mathbf{c}_i\}_{i=0}^m, \{\mathbf{h}_i\}_{i=0}^m)$, we write $\mathbb{T}(M, \{\mathbf{h}_i\}_{i=0}^m)$.

Theorem 2.0.5 yields the following result, which suggests a formula for computing R-torsion of a manifold.

Theorem 2.0.6 ([23]). Assume that M is an orientable closed connected 2m-manifold ($m \ge 1$). Assume also that \mathbf{h}_p is a basis of $H_p(M)$ for p = 0, ..., 2m. Then, R-torsion of M satisfies the following formula:

$$|\mathbb{T}(M, \{\mathbf{h}_p\}_{p=0}^{2m})| = \prod_{p=0}^{m-1} |\det \Delta_{p,2m-p}(M)|^{(-1)^p} \sqrt{|\det \Delta_{m,m}(M)|}^{(-1)^m}.$$

Here, det $\Delta_{p,2m-p}(M)$ is determinant of matrix of the intersection pairing $(\cdot,\cdot)_{p,2m-p}: H_p(M) \times H_{2m-p}(M) \to \mathbb{R}$ in bases \mathbf{h}_p , \mathbf{h}_{2m-p} .

Theorem 2.0.7 ([23]). Suppose M is an orientable closed connected (2m+1)-manifold $(m \ge 0)$ and \mathbf{h}_p is a basis of $H_p(M)$, $p = 0, \ldots, 2m + 1$. Then, $|\mathbb{T}(M, \{\mathbf{h}_p\}_{p=0}^{2m+1})| = 1$.

Remark 2.0.8. Let \mathbb{S}^1 be the unit circle and \mathbf{h}_0 , \mathbf{h}_1 be bases of $H_0(\mathbb{S}^1)$, $H_1(\mathbb{S}^1)$ respectively. Then, by Theorem 2.0.7, we have $|\mathbb{T}(\mathbb{S}^1, {\mathbf{h}_0, \mathbf{h}_1})| = 1$.

We refer the reader [15, 19–23] for further applications of Theorem 2.0.5.

3. Main result

In this section, by considering orientable surface $\Sigma_{g,n}, g \geq 2, n \geq 0$ as the connected sum $\Sigma_{1,0} \# \cdots \# \Sigma_{1,0} \# \Sigma_{1,n}$ (see, Fig.1), we establish a formula to compute R-torsion of $\Sigma_{g,n}, g \geq 2, n \geq 0$ in terms of R-torsion of $\Sigma_{1,1}$. To obtain this formula, we first prove a formula for computing R-torsion of $\Sigma_{1,1}$ (Theorem 3.1.1), then we establish a formula (Proposition 3.2.1) for R-torsion of $\Sigma_{1,n}, n \geq 2$, and finally using these results we prove the formulas (Theorem 3.2.6–Theorem 3.2.10) to compute R-torsion of $\Sigma_{g,n}, g \geq 2, n \geq 0$ in terms of R-torsion of $\Sigma_{1,1}$.

Figure 1: Orientable surface $\Sigma_{g,5}$ with genus $g \geq 2$, bordered by n = 5 curves homeomorphic to circle.

3.1. R-torsion of torus with one boundary circle $\Sigma_{1,1}$

Let $\Sigma_{1,1}$ be a torus with boundary circle γ . Note that the double of $\Sigma_{1,1}$ is $\Sigma_{2,0}$. Clearly, there is the following short-exact sequence of the chain complexes

$$(3.1.1) 0 \to C_*(\gamma) \longrightarrow C_*(\Sigma_{1,1}) \oplus C_*(\Sigma_{1,1}) \longrightarrow C_*(\Sigma_{2,0}) \to 0.$$

The sequence (3.1.1), the Snake Lemma, and homology groups of $\Sigma_{1,1}$, $\Sigma_{2,0}$, γ yield the long-exact sequence

$$\mathcal{H}_*: 0 \to H_2(\Sigma_{2.0}) \xrightarrow{f} H_1(\gamma) \xrightarrow{g} H_1(\Sigma_{1.1}) \oplus H_1(\Sigma_{1.1}) \xrightarrow{h} H_1(\Sigma_{2.0})$$

$$(3.1.2) \qquad \stackrel{i}{\rightarrow} H_0(\gamma) \stackrel{j}{\rightarrow} H_0(\Sigma_{1,1}) \oplus H_0(\Sigma_{1,1}) \stackrel{k}{\rightarrow} H_0(\Sigma_{2,0}) \stackrel{\ell}{\rightarrow} 0.$$

From exactness of the sequence (3.1.2) and the First Isomorphism Theorem it follows that Im(g) = Im(i) = 0, $\text{Im}(k) = H_0(\Sigma_{2,0})$, and the isomorphisms: $\text{Im}(f) \cong H_2(\Sigma_{2,0})$, $\text{Im}(h) \cong H_1(\Sigma_{1,1}) \oplus H_1(\Sigma_{1,1})$, $\text{Im}(j) \cong H_0(\gamma)$.

Theorem 3.1.1. Suppose $\Sigma_{1,1}$ is a torus with boundary circle γ and $\Sigma_{2,0}$ is the double of $\Sigma_{1,1}$. If $\mathbf{h}_i^{\Sigma_{1,1}}$ is a basis of $H_i(\Sigma_{1,1})$ and \mathbf{h}_i^{γ} is an arbitrary basis of $H_i(\gamma)$, i = 0, 1, then there exists a basis $\mathbf{h}_i^{\Sigma_{2,0}}$ of $H_i(\Sigma_{2,0})$, i = 0, 1, 2 such that R-torsion of \mathcal{H}_* in the corresponding bases equals to 1. Furthermore, the following formula holds

$$|\mathbb{T}(\Sigma_{1,1}, \{\mathbf{h}_i^{\Sigma_{1,1}}\}_0^1)| = \sqrt{\frac{|\det \Delta_{0,2}(\Sigma_{2,0})|}{\sqrt{|\det \Delta_{1,1}(\Sigma_{2,0})|}}},$$

where $\det \Delta_{i,2-i}(\Sigma_{2,0})$ denotes the determinant of matrix of the intersection pairing $(\cdot,\cdot)_{i,2-i}: H_i(\Sigma_{2,0}) \times H_{2-i}(\Sigma_{2,0}) \to \mathbb{R}$ in the bases $\mathbf{h}_i^{\Sigma_{2,0}}, \mathbf{h}_{2-i}^{\Sigma_{2,0}}$.

Proof. Let us first explain the method we will use to show that there exists a basis $\mathbf{h}_{i}^{\Sigma_{2,0}}$ of $H_{i}(\Sigma_{2,0})$, i=0,1,2 so that R-torsion of the chain complex (3.1.2) in the corresponding bases becomes 1.

For p = 0, ..., 6, let us denote by $C_p(\mathcal{H}_*)$ the vector spaces in the long-exact sequence (3.1.2). Consider the following short-exact sequences:

$$(3.1.3) 0 \to Z_p(\mathcal{H}_*) \hookrightarrow C_p(\mathcal{H}_*) \stackrel{\partial_p}{\to} B_{p-1}(\mathcal{H}_*) \to 0,$$

$$(3.1.4) 0 \to B_p(\mathcal{H}_*) \hookrightarrow Z_p(\mathcal{H}_*) \stackrel{\varphi_p}{\to} H_p(\mathcal{H}_*) \to 0.$$

Here, " \hookrightarrow " and " \rightarrow " are the inclusion and the natural projection, respectively. Assume $s_p: B_{p-1}(\mathcal{H}_*) \to C_p(\mathcal{H}_*)$ and $\ell_p: H_p(\mathcal{H}_*) \to Z_p(\mathcal{H}_*)$ are sections of $\partial_p: C_p(\mathcal{H}_*) \to B_{p-1}(\mathcal{H}_*)$ and $\varphi_p: Z_p(\mathcal{H}_*) \to H_p(\mathcal{H}_*)$, respectively. By the exactness of \mathcal{H}_* , we have $Z_p(\mathcal{H}_*) = B_p(\mathcal{H}_*)$ for all p. Hence, the sequence (3.1.3) becomes

$$(3.1.5) 0 \to B_p(\mathcal{H}_*) \hookrightarrow C_p(\mathcal{H}_*) \to B_{p-1}(\mathcal{H}_*) \to 0.$$

Recall that if for p = 0, ..., 6, $\mathbf{h_p}$, $\mathbf{b_p}$, and $\mathbf{h_p^*}$ are bases of $C_p(\mathcal{H}_*)$, $B_p(\mathcal{H}_*)$, and $H_p(\mathcal{H}_*)$, respectively, then R-torsion of \mathcal{H}_* with respect to bases $\{\mathbf{h_p}\}_{p=0}^6$, $\{\mathbf{h_p^*}\}_{p=0}^6$ is the alternating product

$$\mathbb{T}\left(\mathcal{H}_*, \{\mathbf{h}_p\}_0^6, \{\mathbf{h}_p^*\}_0^6\right) = \prod_{p=0}^6 \left[\mathbf{b}_p \sqcup \ell_p(\mathbf{h}_p^*) \sqcup s_p(\mathbf{b}_{p-1}), \mathbf{h}_p\right]^{(-1)^{(p+1)}}.$$

From the fact that for p = 0, ..., 6, $H_p(\mathcal{H}_*)$ is zero, it follows that $\mathbf{h}_p^* = 0$ and all ℓ_p are the zero map. Thus, R-torsion of \mathcal{H}_* can be rewritten as:

(3.1.6)
$$\mathbb{T}\left(\mathcal{H}_*, \{\mathbf{h}_p\}_0^6, \{0\}_0^6\right) = \prod_{p=0}^6 \left[\mathbf{b}_p \sqcup s_p(\mathbf{b}_{p-1}), \mathbf{h}_p\right]^{(-1)^{(p+1)}}.$$

Note that J. Milnor proved in [13] that R-torsion does not depend on bases \mathbf{b}_p and sections s_p , ℓ_p . Therefore, in the following method we will choose suitable bases \mathbf{b}_p and sections s_p so that (3.1.6) is equal to 1. For each p, we will denote the obtained basis $\mathbf{b}_p \sqcup s_p(\mathbf{b}_{p-1})$ by \mathbf{h}'_p .

First, let us consider the space $C_0(\mathcal{H}_*) = H_0(\Sigma_{2,0})$ in the sequence (3.1.5), we get

$$(3.1.7) 0 \to B_0(\mathcal{H}_*) \hookrightarrow C_0(\mathcal{H}_*) \xrightarrow{\ell} B_{-1}(\mathcal{H}_*) \to 0.$$

Clearly, we can consider the zero map $s_0: B_{-1}(\mathcal{H}_*) \longrightarrow C_0(\mathcal{H}_*)$ as a section of ℓ , because $B_{-1}(\mathcal{H}_*)$ is zero. From Splitting Lemma it follows

(3.1.8)
$$C_0(\mathcal{H}_*) = \operatorname{Im}(k) \oplus s_0(B_{-1}(\mathcal{H}_*)) = \operatorname{Im}(k).$$

Let us take the basis of $\operatorname{Im}(k)$ as $\mu_{11}k(\mathbf{h}_0^{\Sigma_{1,1}},0) + \mu_{12}k(0,\mathbf{h}_0^{\Sigma_{1,1}})$, where $(\mu_{11},\mu_{12}) \neq (0,0)$. By equation (3.1.8), $\mu_{11}k(\mathbf{h}_0^{\Sigma_{1,1}},0) + \mu_{12}k(0,\mathbf{h}_0^{\Sigma_{1,1}})$ becomes the obtained basis \mathbf{h}_0' of $C_0(\mathcal{H}_*)$. Letting the beginning basis \mathbf{h}_0 (namely, $\mathbf{h}_0^{\Sigma_{2,0}}$) of $H_0(\Sigma_{2,0})$ be \mathbf{h}_0' , we obtain

$$[\mathbf{h}_0', \mathbf{h}_0] = 1.$$

Now, the sequence (3.1.5) for $C_1(\mathcal{H}_*) = H_0(\Sigma_{1,1}) \oplus H_0(\Sigma_{1,1})$ becomes

$$(3.1.10) 0 \to \operatorname{Im}(j) \hookrightarrow C_1(\mathcal{H}_*) \xrightarrow{k} \operatorname{Im}(k) \to 0$$

for $B_1(\mathcal{H}_*)$, $B_0(\mathcal{H}_*)$ being Im(j), Im(k), respectively.

By the First Isomorphism Theorem, $\operatorname{Im}(k)$ and $(H_0(\Sigma_{1,1}) \oplus H_0(\Sigma_{1,1}))/\operatorname{Ker}(k)$ are isomorphic. Therefore, we can consider the inverse of this isomorphism, namely $s_1 : \operatorname{Im}(k) \to (H_0(\Sigma_{1,1}) \oplus H_0(\Sigma_{1,1}))/\operatorname{Ker}(k)$, as a section of k. By Splitting Lemma, we get

(3.1.11)
$$C_1(\mathcal{H}_*) = \operatorname{Im}(j) \oplus s_1(\operatorname{Im}(k)).$$

Note that the given basis \mathbf{h}_1 of $H_0(\Sigma_{1,1}) \oplus H_0(\Sigma_{1,1})$ is $\{(\mathbf{h}_0^{\Sigma_{1,1}}, 0), (0, \mathbf{h}_0^{\Sigma_{1,1}})\}$. Using the fact that Im(j) is isomorphic to $H_0(\gamma)$, $K_1 \cdot j(\mathbf{h}_0^{\gamma})$ is a basis of

 $\operatorname{Im}(j)$, where the non-zero constant K_1 will be chosen. From the fact that $\operatorname{Im}(j)$ and $s_1(\operatorname{Im}(k))$ are 1-dimensional subspaces of the 2-dimensional space $H_0(\Sigma_{1,1}) \oplus H_0(\Sigma_{1,1})$ it follows that there exist non-zero vectors $(e_{i_1}, e_{i_2}), i = 1, 2$ in the plane such that

(3.1.12)
$$j(\mathbf{h}_0^{\gamma}) = e_{11}(\mathbf{h}_0^{\Sigma_{1,1}}, 0) + e_{12}(0, \mathbf{h}_0^{\Sigma_{1,1}}),$$

(3.1.13)
$$s_1(\mathbf{h}^{\text{Im}(k)}) = e_{21}(\mathbf{h}_0^{\Sigma_{1,1}}, 0) + e_{22}(0, \mathbf{h}_0^{\Sigma_{1,1}}).$$

Let us choose the basis $\mathbf{h}^{\text{Im}(j)}$ of Im(j) as $K_1 j(\mathbf{h}_0^{\gamma})$, where $K_1 = 1/\det E$ and E is the 2×2 real matrix $[e_{ij}]$. By equations (3.1.11)–(3.1.13),

$$\left\{K_1[e_{\scriptscriptstyle 11}(\mathbf{h}_0^{\Sigma_{1,1}},0)+e_{\scriptscriptstyle 12}(0,\mathbf{h}_0^{\Sigma_{1,1}})],e_{\scriptscriptstyle 21}(\mathbf{h}_0^{\Sigma_{1,1}},0)+e_{\scriptscriptstyle 22}(0,\mathbf{h}_0^{\Sigma_{1,1}})\right\}$$

is the obtained basis \mathbf{h}'_1 for $C_1(\mathcal{H}_*)$. Hence, we have

$$[\mathbf{h}_1', \mathbf{h}_1] = K_1(\det(E)) = 1.$$

We now consider the short-exact sequence (3.1.5) for $C_2(\mathcal{H}_*) = H_0(\gamma)$. The fact that $B_2(\mathcal{H}_*)$ and $B_1(\mathcal{H}_*)$ are respectively equal to Im(i) and Im(j) yields

$$(3.1.15) 0 \to \operatorname{Im}(i) \hookrightarrow C_2(\mathcal{H}_*) \stackrel{j}{\to} \operatorname{Im}(j) \to 0.$$

For $j: H_0(\gamma) \to \text{Im}(j)$ being an isomorphism, we can take the inverse of j as a section $s_2: \text{Im}(j) \to H_0(\gamma)$ of j. From Splitting Lemma it follows

$$(3.1.16) C_2(\mathcal{H}_*) = \operatorname{Im}(i) \oplus s_2(\operatorname{Im}(j)).$$

Recall that in the previous step, we chose $j(K_1\mathbf{h}_0^{\gamma})$ as a basis of Im(j). By equation (3.1.16) and the fact that Im(i) = 0, we have that the obtained basis \mathbf{h}_2' of $C_2(\mathcal{H}_*)$ is $K_1\mathbf{h}_0^{\gamma}$. Thus, by the fact that the given basis \mathbf{h}_2 of $C_2(\mathcal{H}_*)$ is also \mathbf{h}_0^{γ} , we get

$$[\mathbf{h}_2', \mathbf{h}_2] = 1.$$

Considering the space $C_3(\mathcal{H}_*) = H_1(\Sigma_{2,0})$ in the sequence (3.1.5) and using the fact that $B_3(\mathcal{H}_*)$, $B_2(\mathcal{H}_*)$ equal to Im(h), Im(i), respectively, we obtain

$$(3.1.18) 0 \to \operatorname{Im}(h) \hookrightarrow C_3(\mathcal{H}_*) \stackrel{i}{\to} \operatorname{Im}(i) \to 0.$$

Since $\operatorname{Im}(i)$ is zero, we can take zero map $s_3: \operatorname{Im}(i) \to H_1(\Sigma_{2,0})$ as a section of i. By Splitting Lemma, we have

$$(3.1.19) C_3(\mathcal{H}_*) = \operatorname{Im}(h) \oplus s_3(\operatorname{Im}(i)) = \operatorname{Im}(h).$$

The given basis $\mathbf{h}^{H_1(\Sigma_{1,1}) \oplus H_1(\Sigma_{1,1})}$ of $H_1(\Sigma_{1,1}) \oplus H_1(\Sigma_{1,1})$ is

$$\left\{(\mathbf{h}_{1,1}^{\Sigma_{1,1}},0),(0,\mathbf{h}_{1,1}^{\Sigma_{1,1}}),(\mathbf{h}_{1,2}^{\Sigma_{1,1}},0),(0,\mathbf{h}_{1,2}^{\Sigma_{1,1}})\right\}.$$

From the fact that $\operatorname{Im}(h)$ is isomorphic to $H_1(\Sigma_{1,1}) \oplus H_1(\Sigma_{1,1})$ it follows that we can choose the basis $\mathbf{h}^{\operatorname{Im}(h)}$ of $\operatorname{Im}(h)$ as

$$\left\{h((\mathbf{h}_{1,1}^{\Sigma_{1,1}},0)),h((0,\mathbf{h}_{1,1}^{\Sigma_{1,1}})),h((\mathbf{h}_{1,2}^{\Sigma_{1,1}},0)),h((0,\mathbf{h}_{1,2}^{\Sigma_{1,1}}))\right\}.$$

By equation (3.1.19), we have that the obtained basis \mathbf{h}_3' of $C_3(\mathcal{H}_*)$ is $\mathbf{h}^{\mathrm{Im}(h)}$. If we let the beginning basis \mathbf{h}_3 (namely, $\mathbf{h}_1^{\Sigma_{2,0}}$) of $C_3(\mathcal{H}_*)$ as \mathbf{h}_3' , then we get

$$[\mathbf{h}_3', \mathbf{h}_3] = 1.$$

Let us consider the sequence (3.1.5) for the space $C_4(\mathcal{H}_*) = H_1(\Sigma_{1,1}) \oplus H_1(\Sigma_{1,1})$. By the fact that $B_4(\mathcal{H}_*)$, $B_3(\mathcal{H}_*)$ are equal to $\operatorname{Im}(g)$, $\operatorname{Im}(h)$, respectively, we obtain

$$(3.1.21) 0 \to \operatorname{Im}(g) \hookrightarrow C_4(\mathcal{H}_*) \xrightarrow{h} \operatorname{Im}(h) \to 0.$$

From the fact that h is an isomorphism it follows that we can consider the inverse of h as a section $s_4: \operatorname{Im}(h) \to H_1(\Sigma_{1,1}) \oplus H_1(\Sigma_{1,1})$ of h. The fact that $\operatorname{Im}(q)$ is zero and Splitting Lemma yield

(3.1.22)
$$C_4(\mathcal{H}_*) = \text{Im}(g) \oplus s_4(\text{Im}(h)) = s_4(\text{Im}(h)).$$

Recall that the given basis \mathbf{h}_4 of $H_1(\Sigma_{1,1}) \oplus H_1(\Sigma_{1,1})$ is $\mathbf{h}^{H_1(\Sigma_{1,1}) \oplus H_1(\Sigma_{1,1})}$. Moreover, in the previous step, we chose the basis $\mathbf{h}^{\mathrm{Im}(h)}$ of $\mathrm{Im}(h)$ as

$$\left\{h((\mathbf{h}_{1,1}^{\Sigma_{1,1}},0)),h((0,\mathbf{h}_{1,1}^{\Sigma_{1,1}})),h((\mathbf{h}_{1,2}^{\Sigma_{1,1}},0)),h((0,\mathbf{h}_{1,2}^{\Sigma_{1,1}}))\right\}.$$

It follows from equation (3.1.22) that $s_4(\mathbf{h}^{\text{Im}(h)}) = \mathbf{h}^{H_1(\Sigma_{1,1}) \oplus H_1(\Sigma_{1,1})}$ is the obtained basis \mathbf{h}_4' of $C_4(\mathcal{H}_*)$. Hence, we have

$$[\mathbf{h}_{4}', \mathbf{h}_{4}] = 1.$$

Now, we consider the space $C_5(\mathcal{H}_*) = H_1(\gamma)$ in the short-exact sequence (3.1.5). Using the fact that $B_5(\mathcal{H}_*)$, $B_4(\mathcal{H}_*)$ equal to Im(f), Im(g), respectively, we get

$$(3.1.24) 0 \to \operatorname{Im}(f) \hookrightarrow C_5(\mathcal{H}_*) \xrightarrow{g} \operatorname{Im}(g) \to 0.$$

Since $\operatorname{Im}(g)$ is zero, the zero map $s_5: \operatorname{Im}(h) \longrightarrow H_1(\gamma)$ can be considered as a section of g. From Splitting Lemma it follows that

$$(3.1.25) C_5(\mathcal{H}_*) = \operatorname{Im}(f) \oplus s_5(\operatorname{Im}(g)) = \operatorname{Im}(f).$$

The given basis \mathbf{h}_5 of $H_1(\gamma)$ is \mathbf{h}_1^{γ} . By equation (3.1.25), we choose the basis $\mathbf{h}^{\mathrm{Im}(f)}$ of $\mathrm{Im}(f)$ as \mathbf{h}_1^{γ} , which is also the obtained basis \mathbf{h}_5^{\prime} of $C_5(\mathcal{H}_*)$. Thus, we obtain

$$[\mathbf{h}_5', \mathbf{h}_5] = 1.$$

Finally, considering the space $C_6(\mathcal{H}_*) = H_2(\Sigma_{2,0})$ in the sequence (3.1.5) and using the fact that $B_6(\mathcal{H}_*)$, $B_5(\mathcal{H}_*)$ equal to zero, Im(f), respectively, we get

$$(3.1.27) 0 \to 0 \hookrightarrow C_6 \stackrel{f}{\to} \operatorname{Im}(f) \to 0.$$

For $\operatorname{Im}(f)$ being isomorphic to $H_2(\Sigma_{2,0})$, we consider the inverse of f as section $s_6: \operatorname{Im}(f) \to H_2(\Sigma_{2,0})$ of f. Splitting Lemma results

(3.1.28)
$$C_6(\mathcal{H}_*) = 0 \oplus s_6(\operatorname{Im}(f)) = s_6(\operatorname{Im}(f)).$$

From equation (3.1.28) it follows that $f^{-1}(\mathbf{h}^{\mathrm{Im}(f)})$ is the obtained basis \mathbf{h}_6' of $C_6(\mathcal{H}_*)$. If we take the basis \mathbf{h}_6 , namely $\mathbf{h}_2^{\Sigma_{2,0}}$, of $H_2(\Sigma_{2,0})$ as $f^{-1}(\mathbf{h}^{\mathrm{Im}(f)})$, then we get

$$[\mathbf{h}_6', \mathbf{h}_6] = 1.$$

Equations (3.1.9), (3.1.14), (3.1.17), (3.1.20), (3.1.23), (3.1.26), and (3.1.29) yield

(3.1.30)
$$\mathbb{T}(\mathcal{H}_*, \{\mathbf{h}_p\}_0^6, \{0\}_0^6) = \prod_{p=0}^6 \left[\mathbf{h'}_p, \mathbf{h}_p\right]^{(-1)^{(p+1)}} = 1.$$

Clearly, the natural bases are compatible in the sequence (3.1.1). Then, Theorem 2.0.2 and (3.1.30) yield us

$$(3.1.31) \quad \mathbb{T}(\Sigma_{1,1}, \{\mathbf{h}_i^{\Sigma_{1,1}}\}_0^1)^2 = \mathbb{T}(\gamma_1, \{\mathbf{h}_i^{\gamma}\}_0^1) \, \mathbb{T}(\Sigma_{2,0}, \{\mathbf{h}_i^{\Sigma_{2,0}}\}_0^2).$$

From Remark 2.0.8 and equation (3.1.31), it follows that

(3.1.32)
$$|\mathbb{T}(\Sigma_{1,1}, \{\mathbf{h}_i^{\Sigma_{1,1}}\}_0^1)| = \sqrt{|\mathbb{T}(\Sigma_{2,0}, \{\mathbf{h}_i^{\Sigma_{2,0}}\}_0^2)|}.$$

Theorem 2.0.6 and equation (3.1.32) finish the proof of Theorem 3.1.1.

Remark 3.1.2. Suppose that $\Sigma_{1,1}$, $\Sigma_{2,0}$, $\mathbf{h}_{i}^{\Sigma_{1,1}}$, $\mathbf{h}_{i}^{S_{j}}$, and $\mathbf{h}_{i}^{\Sigma_{2,0}}$ are all as in Theorem 3.1.1. By Poincaré Duallity, Theorem 3.1.1, and [23, Theorem 4.1], we have

$$\left| \mathbb{T}(\Sigma_{1,1}, \{\mathbf{h}_i^{\Sigma_{1,1}}\}_0^1) \right| = \sqrt{\left| \frac{\det \Delta_{0,2}(\Sigma_{2,0})}{\det \wp(\mathbf{h}_{\Sigma_{2,0}}^1, \Gamma)} \right|}.$$

Here, det $\Delta_{0,2}(\Sigma_{2,0})$ is the determinant of matrix of the intersection pairing $(\cdot,\cdot)_{0,2}: H_0(\Sigma_{2,0}) \times H_2(\Sigma_{2,0}) \to \mathbb{R}$ in the bases $\mathbf{h}_0^{\Sigma_{2,0}}$ and $\mathbf{h}_2^{\Sigma_{2,0}}$, $\mathbf{h}_{\Sigma_{2,0}}^1 = \{\omega_i\}_1^4$ is the Poincaré dual basis of $H^1(\Sigma_{2,0})$ corresponding to the basis $\mathbf{h}_1^{\Sigma_{2,0}}$ of $H_1(\Sigma_{2,0})$, $\Gamma = \{\Gamma_1, \Gamma_2, \Gamma_3, \Gamma_4\}$ is a canonical basis for $H_1(\Sigma_{2,0})$, i.e. $i = 1, 2, \Gamma_i$ intersects Γ_{i+2} once positively and does not intersect others, and $\wp(\mathbf{h}^1, \Gamma) = \int_{\Gamma_i} \omega_j$ is the period matrix of $\mathbf{h}_{\Sigma_{2,0}}^1$ with respect to Γ .

3.2. R-torsion of orientable surface $\Sigma_{1,n}, n \geq 2$

Proposition 3.2.1. Let $\Sigma_{1,n}$ be an orientable surface of genus 1 with boundary circles S_1, \ldots, S_n . For $i = 1, \ldots, n$, let \mathbb{D}_i denote the closed disk with boundary S_i . Consider the surface $\Sigma_{1,n-1}$ obtained by gluing the surfaces $\Sigma_{1,n}$ and \mathbb{D}_1 along the common boundary circle S_1 (see, Fig. 2). Consider also the associated short-exact sequence of chain complexes

$$(3.2.1) 0 \to C_*(S_1) \longrightarrow C_*(\Sigma_{1,n}) \oplus C_*(\mathbb{D}_1) \longrightarrow C_*(\Sigma_{1,n-1}) \to 0,$$

Figure 2: Orientable surface $\Sigma_{1,3}$ is obtained by gluing $\Sigma_{1,4}$ and \mathbb{D}_1 along the common boundary circle S_1 .

and the long-exact sequence

$$\mathcal{H}_*: 0 \longrightarrow H_1(S_1) \xrightarrow{f} H_1(\Sigma_{1,n}) \xrightarrow{g} H_1(\Sigma_{1,n-1}) \xrightarrow{h} H_0(S_1)$$
$$\xrightarrow{i} H_0(\Sigma_{1,n}) \oplus H_0(\mathbb{D}_1) \xrightarrow{j} H_0(\Sigma_{1,n-1}) \xrightarrow{k} 0$$

obtained by the Snake Lemma for (3.2.1). Let $\mathbf{h}_{\nu}^{\Sigma_{1,n}}$ be a basis of $H_{\nu}(\Sigma_{1,n})$ and $\mathbf{h}_{0}^{\mathbb{D}_{1}}$ be an arbitrary basis of $H_{0}(\mathbb{D}_{1})$, $\nu=0,1$. Then, for $\nu=0,1$ there exist bases $\mathbf{h}_{\nu}^{\Sigma_{1,n-1}}$ and $\mathbf{h}_{\nu}^{S_{1}}$ of $H_{\nu}(\Sigma_{1,n-1})$ and $H_{\nu}(S_{1})$, respectively so that R-torsion of \mathcal{H}_{*} in these bases is 1 and the following formula is valid

$$\mathbb{T}(\Sigma_{1,n}, \{\mathbf{h}_{\nu}^{\Sigma_{1,n}}\}_{0}^{1}) = \mathbb{T}(\Sigma_{1,n-1}, \{\mathbf{h}_{\nu}^{\Sigma_{1,n-1}}\}_{0}^{1}) \, \mathbb{T}(S_{1}, \{\mathbf{h}_{\nu}^{S_{1}}\}_{0}^{1}) \mathbb{T}(\mathbb{D}_{1}, \{\mathbf{h}_{0}^{\mathbb{D}_{1}}\})^{-1}.$$

Proof. Using the exactness of the sequence \mathcal{H}_* and the First Isomorphism Theorem, we get $\operatorname{Im}(h) = 0$, $\operatorname{Im}(k) = H_0(\Sigma_{1,n-1})$, and the isomorphisms $\operatorname{Im}(f) \cong H_1(S_1)$, $\operatorname{Im}(i) \cong H_0(S_1)$.

For $p=0,\ldots,5$, we denote the vector spaces in long-exact sequence \mathcal{H}_* by $C_p(\mathcal{H}_*)$ and consider the short-exact sequence

$$(3.2.2) 0 \to B_p(\mathcal{H}_*) \hookrightarrow C_p(\mathcal{H}_*) \twoheadrightarrow B_{p-1}(\mathcal{H}_*) \to 0.$$

For each p, let us consider the isomorphism $s_p: B_{p-1}(\mathcal{H}_*) \to s_p(B_{p-1}(\mathcal{H}_*))$ obtained by the First Isomorphism Theorem as a section of $C_p(\mathcal{H}_*) \to B_{p-1}(\mathcal{H}_*)$. Then, we obtain

$$(3.2.3) C_p(\mathcal{H}_*) = B_p(\mathcal{H}_*) \oplus s_p(B_{p-1}(\mathcal{H}_*)).$$

We first consider the vector space $C_0(\mathcal{H}_*) = H_0(\Sigma_{1,n-1})$ in (3.2.3). Since Im k is zero, we have

$$(3.2.4) C_0(\mathcal{H}_*) = \operatorname{Im}(j) \oplus s_0(\operatorname{Im}(k)) = \operatorname{Im}(j).$$

As $\operatorname{Im}(j)$ is a 1-dimensional subspace of $H_0(\Sigma_{1,n}) \oplus H_0(\mathbb{D}_1)$, there is a non-zero vector (a_{11}, a_{12}) in the plane such that $\{a_{11}\mathbf{h}_0^{\Sigma_{1,n}} + a_{12}\mathbf{h}_0^{\mathbb{D}_1}\}$ is the basis $\mathbf{h}^{\operatorname{Im}(j)}$ of $\operatorname{Im}(j)$. From equation (3.2.4) it follows that $\mathbf{h}^{\operatorname{Im}(j)}$ is the obtained basis \mathbf{h}'_0 of $C_0(\mathcal{H}_*)$. Since $\operatorname{Im}(j)$ is equal to $C_0(\mathcal{H}_*)$, we can choose the beginning basis \mathbf{h}_0 (namely, $\mathbf{h}_0^{\Sigma_{1,n-1}}$) of $C_0(\mathcal{H}_*)$ as $\mathbf{h}^{\operatorname{Im}(j)}$. Thus, we get

$$[\mathbf{h}_0', \mathbf{h}_0] = 1.$$

Considering (3.2.3) for $C_1(\mathcal{H}_*) = H_0(\Sigma_{1,n}) \oplus H_0(\mathbb{D}_1)$, we have

$$(3.2.6) C_1(\mathcal{H}_*) = \operatorname{Im}(i) \oplus s_1(\operatorname{Im}(j)).$$

Recall that in the previous step we chose the basis of $\operatorname{Im}(j)$ as $\mathbf{h}^{\operatorname{Im}(j)}$. For $\operatorname{Im}(i)$ being a 1-dimensional subspace of $C_1(\mathcal{H}_*)$, there are non-zero numbers b_{11}, b_{12} such that $\{b_{11}\mathbf{h}_0^{\Sigma_{1,n}} + b_{12}\mathbf{h}_0^{\mathbb{D}_1}\}$ is a basis of $\operatorname{Im}(i)$. Let $\mathbf{h}^{\operatorname{Im}(i)}$ be the basis $\{T_1[b_{11}\mathbf{h}_0^{\Sigma_{1,n}} + b_{12}\mathbf{h}_0^{\mathbb{D}_1}]\}$ of $\operatorname{Im}(i)$. Here, T_1 is a non-zero constant which will be determined later.

On the other hand, $s_1(\text{Im}(j))$ is also a 1-dimensional subspace of $C_1(\mathcal{H}_*)$. Thus, there is a non-zero vector (b_{21}, b_{22}) in the plane such that the following equality holds

$$s_1(\mathbf{h}^{\text{Im}(j)}) = b_{21}\mathbf{h}_0^{\Sigma_{1,n}} + b_{22}\mathbf{h}_0^{\mathbb{D}_1}.$$

Clearly, the determinant of the matrix $B = [b_{ij}]$ is non-zero. Taking T_1 as $1/\det B$, then from equation (3.2.6) it follows that $\{\mathbf{h}^{\mathrm{Im}(i)}, s_1(\mathbf{h}^{\mathrm{Im}(j)})\}$ is the obtained basis \mathbf{h}'_1 of $C_1(\mathcal{H}_*)$. Since the beginning basis \mathbf{h}_1 of $C_1(\mathcal{H}_*)$ is $\{\mathbf{h}_0^{\Sigma_{1,n}}, \mathbf{h}_0^{\mathbb{D}_1}\}$, we obtain

$$[\mathbf{h}'_1, \mathbf{h}_1] = T_1 \det B = 1.$$

Next, let us consider the space $C_2(\mathcal{H}_*) = H_0(S_1)$ in (3.2.3). Using the fact that Im h is zero, we have

(3.2.8)
$$C_2(\mathcal{H}_*) = \text{Im}(h) \oplus s_2(\text{Im}(i)) = s_2(\text{Im}(i)).$$

Recall that $\mathbf{h}^{\mathrm{Im}(i)}$ was chosen in the previous step. It follows from equation (3.2.8) that $s_2(\mathbf{h}^{\mathrm{Im}(i)})$ is the obtained basis \mathbf{h}_2' of $C_2(\mathcal{H}_*)$. Since $C_2(\mathcal{H}_*)$ is equal to $s_2(\mathrm{Im}(i))$, let the beginning basis \mathbf{h}_2 (namely, $\mathbf{h}_0^{S_1}$) of $C_2(\mathcal{H}_*)$ be $s_2(\mathbf{h}^{\mathrm{Im}(i)})$. Hence, we obtain

$$[\mathbf{h}_2', \mathbf{h}_2] = 1.$$

We now consider the case of $C_3(\mathcal{H}_*) = H_1(\Sigma_{1,n-1})$ in (3.2.3). Because Im(h) is zero, we have the following equality

(3.2.10)
$$C_3(\mathcal{H}_*) = \text{Im}(g) \oplus s_3(\text{Im}(h)) = \text{Im}(g).$$

Im(g) is an n-dimensional subspace of the (n+1)-dimensional space $H_1(\Sigma_{1,n})$ with the given basis $\mathbf{h}_1^{\Sigma_{1,n}}$ as $\left\{\left(\mathbf{h}_1^{\Sigma_{1,n}}\right)_{\mu}\right\}_{\mu=1}^{n+1}$. From this there are non-zero vectors $(c_{\nu,1},\ldots,c_{\nu,n+1}),\ \nu=1,\ldots,n$ such that

$$\mathbf{h}^{\mathrm{Im}(g)} = \left\{ \sum_{\mu=1}^{n+1} c_{\nu,\mu} g\left(\left(\mathbf{h}_{1}^{\Sigma_{1,n}} \right)_{\mu} \right) \right\}_{\nu=1}^{n}$$

is the basis of $\operatorname{Im}(g)$. By equation (3.2.10), $\mathbf{h}^{\operatorname{Im}(g)}$ becomes the obtained basis \mathbf{h}_3' of $C_3(\mathcal{H}_*)$. Moreover, for $C_3(\mathcal{H}_*)$ being equal to $\operatorname{Im}(g)$, let the beginning basis \mathbf{h}_3 (namely, $\mathbf{h}_1^{\Sigma_{1,n-1}}$) of $C_3(\mathcal{H}_*)$ be $\mathbf{h}^{\operatorname{Im}(g)}$. Therefore, we have

$$[\mathbf{h}_3', \mathbf{h}_3] = 1.$$

We now consider (3.2.3) for $C_4(\mathcal{H}_*) = H_1(\Sigma_{1,n})$. Then, we get

$$(3.2.12) C_4(\mathcal{H}_*) = \operatorname{Im}(f) \oplus s_4(\operatorname{Im}(g)).$$

For $\operatorname{Im}(f)$ being a 1-dimensional subspace of $C_4(\mathcal{H}_*)$, there is a non-zero vector $(d_{1,1},\ldots,d_{1,n+1})$ such that $\left\{d_{1,1}\left(\mathbf{h}_{1}^{\Sigma_{1,n}}\right)_{1}+\cdots+d_{1,n+1}\left(\mathbf{h}_{1}^{\Sigma_{1,n}}\right)_{n+1}\right\}$ is a basis of $\operatorname{Im}(f)$. Let

$$\mathbf{h}^{\mathrm{Im}(f)} = \left\{ T_2 \left[d_{1,1} \left(\mathbf{h}_1^{\Sigma_{1,n}} \right)_1 + \dots + d_{1,n+1} \left(\mathbf{h}_1^{\Sigma_{1,n}} \right)_{n+1} \right] \right\}$$

be the basis of Im(f), where T_2 is a non-zero constant to be chosen later.

Since $s_4(\operatorname{Im}(g))$ is an n-dimensional subspace of (n+1)-dimensional space $C_4(\mathcal{H}_*)$, there are non-zero vectors $(d_{\nu,1},\ldots,d_{\nu,n+1}), \ \nu=2,\ldots,n+1$ such that the following equality holds

$$s_4(\mathbf{h}^{\text{Im}(g)}) = \left\{ \sum_{\mu=1}^{n+1} d_{\nu,\mu} \left(\mathbf{h}_1^{\Sigma_{1,n}} \right)_{\mu} \right\}_{\nu=2}^{n+1}.$$

Clearly, the determinant of the matrix $D = [d_{ij}]$ is non-zero. If we take T_2 as $1/\det D$, then by equation (3.2.12) we have that $\{\mathbf{h}^{\mathrm{Im}(f)}, s_4(\mathbf{h}^{\mathrm{Im}(g)})\}$ is the obtained basis \mathbf{h}'_4 of $C_4(\mathcal{H}_*)$. For the beginning basis \mathbf{h}_4 of $C_4(\mathcal{H}_*)$ being $\mathbf{h}_1^{\Sigma_{1,n}}$, we get

(3.2.13)
$$[\mathbf{h}'_4, \mathbf{h}_4] = T_2(\det D) = 1.$$

Finally, let us consider the case of $C_5(\mathcal{H}_*) = H_1(S_1)$ in (3.2.3). Since $B_5(\mathcal{H}_*)$ is zero, the following equality holds

(3.2.14)
$$C_5(\mathcal{H}_*) = B_5(\mathcal{H}_*) \oplus s_5(\text{Im}(f)) = s_5(\text{Im}(f)).$$

Recall that the basis $\mathbf{h}^{\mathrm{Im}(f)}$ was chosen for $\mathrm{Im}(f)$ in the previous step. By equation (3.2.14), $s_5(\mathbf{h}^{\mathrm{Im}(f)})$ becomes the obtained basis \mathbf{h}_5' of $C_5(\mathcal{H}_*)$. From the fact that $C_5(\mathcal{H}_*)$ is $s_5(\mathrm{Im}(f))$, it follows that we can take the beginning

basis \mathbf{h}_5 (namely, $\mathbf{h}_0^{S_1}$) of $C_5(\mathcal{H}_*)$ as $s_5(\mathbf{h}^{\mathrm{Im}(f)})$. Thus, the following equality holds

$$[\mathbf{h}_5', \mathbf{h}_5] = 1.$$

Combining equations (3.2.5), (3.2.7), (3.2.9), (3.2.11), (3.2.13), and (3.2.15), we have

(3.2.16)
$$\mathbb{T}(\mathcal{H}_*, \{\mathbf{h}_p\}_0^5, \{0\}_0^5) = \prod_{p=0}^5 \left[\mathbf{h'}_p, \mathbf{h}_p\right]^{(-1)^{(p+1)}} = 1.$$

The compatibility of the natural bases in the short-exact sequence (3.2.1), Theorem 2.0.2, Lemma 2.0.3, and equation (3.2.16) finish the proof of Proposition 3.2.1.

Using the arguments in Proposition 3.2.1 inductively, we have the following result.

Proposition 3.2.2. Let $\Sigma_{1,n}$ be an orientable surface of genus 1 with $n \geq 2$ boundary circles S_1, \ldots, S_n . For $i = 1, \ldots, n$, let \mathbb{D}_i denote the closed disks with boundary S_i . For $i = 1, \ldots, n-1$, let $\Sigma_{1,n-i}$ be the surface obtained from $\Sigma_{1,n}$ by gluing $\mathbb{D}_1, \ldots, \mathbb{D}_i$ along S_1, \ldots, S_i . Consider the surface $\Sigma_{1,n-i}$ obtained by gluing the surfaces $\Sigma_{1,n-i+1}$ and \mathbb{D}_i along the common boundary circle S_i , $i = 1, \ldots, n-1$. Let

$$0 \to C_*(S_i) \longrightarrow C_*(\Sigma_{1,n-i+1}) \oplus C_*(\mathbb{D}_i) \longrightarrow C_*(\Sigma_{1,n-i}) \to 0$$

be the associated natural short-exact sequence of chain complexes and \mathcal{H}_*^i be the corresponding long-exact sequence obtained by the Snake Lemma. Let $\mathbf{h}_{\nu}^{\Sigma_{1,n}}$ be a basis of $H_{\nu}(\Sigma_{1,n})$ and $\mathbf{h}_{0}^{\mathbb{D}_{i}}$ be an arbitrary basis of $H_{0}(\mathbb{D}_{i})$, $\nu=0,1$, $i=1,\ldots,n-1$. Then, there exist bases respectively $\mathbf{h}_{\nu}^{\Sigma_{1,1}}$ and $\mathbf{h}_{\nu}^{S_{i}}$ of $H_{\nu}(\Sigma_{1,1})$ and $H_{\nu}(S_{i})$, $\nu=0,1$, $i=1,\ldots,n-1$ such that R-torsion of each \mathcal{H}_*^i in the coresponding bases is 1 and the following formula is valid

$$\mathbb{T}(\Sigma_{1,n}, \{\mathbf{h}_{\nu}^{\Sigma_{1,n}}\}_{0}^{1}) = \mathbb{T}(\Sigma_{1,1}, \{\mathbf{h}_{\nu}^{\Sigma_{1,1}}\}_{0}^{1}) \prod_{i=1}^{n-1} [\mathbb{T}(S_{i}, \{\mathbf{h}_{\nu}^{S_{i}}\}_{0}^{1}) \mathbb{T}(\mathbb{D}_{i}, \{\mathbf{h}_{0}^{\mathbb{D}_{i}}\})^{-1}].$$

Combining Remark 2.0.8 and Proposition 3.2.2, we obtain

Proposition 3.2.3. Let $\Sigma_{1,n}, S_i, \mathbb{D}_i, \Sigma_{1,n-i}, \mathcal{H}_*^i, \mathbf{h}_{\nu}^{\Sigma_{1,n}}, \mathbf{h}_0^{\mathbb{D}_i}, \mathbf{h}_{\nu}^{\Sigma_{1,1}}, \mathbf{h}_{\nu}^{S_i}$ be as in Proposition 3.2.2. Then, the following formula holds

$$|\mathbb{T}(\Sigma_{1,n}, \{\mathbf{h}_{\nu}^{\Sigma_{1,n}}\}_{0}^{1})| = |\mathbb{T}(\Sigma_{1,1}, \{\mathbf{h}_{\nu}^{\Sigma_{1,1}}\}_{0}^{1})| \prod_{p=1}^{n-1} |\mathbb{T}(\mathbb{D}_{i}, \{\mathbf{h}_{0}^{\mathbb{D}_{i}}\})|^{-1}.$$

Remark 3.2.4. It should be mentioned that following the arguments in Proposition 3.2.1, one has similar result for the sphere $\Sigma_{0,k}, k \geq 1$ with boundary circles S_1, \ldots, S_k . To be more precise, let \mathbb{D}_i denote the closed disks with boundary S_i , $i = 1, \ldots, k$. Consider the surface $\Sigma_{0,k-1}$ obtained by gluing surfaces $\Sigma_{0,k}$ and \mathbb{D}_1 along the common boundary circle S_1 . Let

$$0 \to C_*(S_1) \longrightarrow C_*(\Sigma_{0,k}) \oplus C_*(\mathbb{D}_1) \longrightarrow C_*(\Sigma_{0,k-1}) \to 0$$

be the natural short-exact sequence of chain complexes.

Let us first consider the case $k \geq 2$. The associated long-exact sequence obtained by the Snake Lemma is

$$\mathcal{H}_*: 0 \longrightarrow H_1(S_1) \xrightarrow{f} H_1(\Sigma_{0,k}) \xrightarrow{g} H_1(\Sigma_{0,k-1}) \xrightarrow{h} H_0(S_1)$$
$$\xrightarrow{i} H_0(\Sigma_{0,k}) \oplus H_0(\mathbb{D}_1) \xrightarrow{j} H_0(\Sigma_{0,k-1}) \xrightarrow{k} 0.$$

If for $\nu = 0, 1$, $\mathbf{h}_{\nu}^{\Sigma_{0,k}}$ is a basis of $H_{\nu}(\Sigma_{0,k})$ and $\mathbf{h}_{0}^{\mathbb{D}_{1}}$ is an arbitrary basis of $H_{0}(\mathbb{D}_{1})$, then there are bases respectively $\mathbf{h}_{\nu}^{\Sigma_{0,k-1}}$ and $\mathbf{h}_{\nu}^{S_{1}}$ of $H_{\nu}(\Sigma_{0,k-1})$ and $H_{\nu}(S_{1})$, $\nu = 0, 1$ so that R-torsion of \mathcal{H}_{*} in these bases equals to 1 and the following formula holds

$$\mathbb{T}(\Sigma_{0,k}, \{\mathbf{h}_{\nu}^{\Sigma_{0,k}}\}_{0}^{1}) = \mathbb{T}(\Sigma_{0,k-1}, \{\mathbf{h}_{\nu}^{\Sigma_{0,k-1}}\}_{0}^{1}) \, \mathbb{T}(S_{1}, \{\mathbf{h}_{\nu}^{S_{1}}\}_{0}^{1}) \mathbb{T}(\mathbb{D}_{1}, \{\mathbf{h}_{0}^{\mathbb{D}_{1}}\})^{-1}.$$

Let us consider the case k=1. The corresponding long-exact sequence \mathcal{H}_* is

$$0 \to H_2(\Sigma_{0,0}) \xrightarrow{f} H_1(S_1) \xrightarrow{0} H_0(S_1) \xrightarrow{i} H_0(\Sigma_{0,1}) \oplus H_0(\mathbb{D}_1) \xrightarrow{j} H_0(\Sigma_{0,0}) \xrightarrow{k} 0.$$

Let $\mathbf{h}_0^{\Sigma_{0,1}}$ be a basis of $H_0(\Sigma_{0,1})$. Let $\mathbf{h}_0^{\mathbb{D}_1}$ and $\mathbf{h}_1^{S_1}$ be arbitrary bases of $H_0(\mathbb{D}_1)$ and $H_1(S_1)$, respectively. Then there exist respectively bases $\mathbf{h}_0^{S_1}$, $\mathbf{h}_{\nu}^{\Sigma_{0,0}}$ of $H_0(S_1)$, $H_{\nu}(\Sigma_{0,0})$, $\nu=0,2$ such that R-torsion of \mathcal{H}_* in these bases equals to 1 and the following formula is valid

$$\mathbb{T}(\Sigma_{0,1}, \{\mathbf{h}_0^{\Sigma_{0,1}}\}) = \mathbb{T}(\Sigma_{0,0}, \{\mathbf{h}_0^{\Sigma_{0,0}}, 0, \mathbf{h}_2^{\Sigma_{0,0}}\}) \, \mathbb{T}(S_1, \{\mathbf{h}_{\nu}^{S_1}\}_0^1) \\
\times \mathbb{T}(\mathbb{D}_1, \{\mathbf{h}_0^{\mathbb{D}_1}\})^{-1}.$$

Equation (3.2.17) suggests a formula for R-torsion of closed disk \mathbb{D} . More precisely, by the fact that R-torsion of a chain complex C_* of length m can be considered as an element of the dual of the one dimensional vector space $\bigotimes_{p=0}^m (\det(H_p(C)))^{(-1)^p}$ [19, Theorem 2.0.4.], we have $\mathbb{T}(\mathbb{D}_1)$ is a non-zero

linear functional on the one dimensional real vector space $H_0(\mathbb{D}_1)$. Thus, considering the basis $\mathbf{h}_0^{\mathbb{D}_1}$ of $H_0(\mathbb{D}_1)$ so that $\mathbb{T}(\mathbb{D}_1, \{\mathbf{h}_0^{\mathbb{D}_1}\}) = 1$ and using equation (3.2.17), one has the following formula for R-torsion of closed disk

$$(3.2.18) \mathbb{T}(\Sigma_{0,1}, \{\mathbf{h}_0^{\Sigma_{0,1}}\}) = \mathbb{T}(\Sigma_{0,0}, \{\mathbf{h}_0^{\Sigma_{0,0}}, 0, \mathbf{h}_2^{\Sigma_{0,0}}\}) \ \mathbb{T}(S_1, \{\mathbf{h}_{\nu}^{S_1}\}_0^1).$$

Moreover, from Remark 2.0.8 and Theorem 2.0.6 it follows that

(3.2.19)
$$\left| \mathbb{T}(\Sigma_{0,1}, \{\mathbf{h}_{\nu}^{\Sigma_{0,1}}\}_{0}^{1}) \right| = \left| \left(\mathbf{h}_{0}^{\Sigma_{0,0}}, \mathbf{h}_{2}^{\Sigma_{0,0}}\right)_{0,2} \right|,$$

where $(\cdot,\cdot)_{0,2}: H_0(\Sigma_{0,0}) \times H_2(\Sigma_{0,0}) \to \mathbb{R}$ is the intersection pairing of sphere $\Sigma_{0,0}$.

Note that equation (3.2.19) suggests a formula for computing R-torsion of closed disk $\Sigma_{0,1}$ in terms of R-torsion of sphere $\Sigma_{0,0}$.

Figure 3: Orientable surface $\Sigma_{2,3}$ is obtained by gluing $\Sigma_{1,1}$ and $\Sigma_{1,4}$ along common boundary circle γ_1 .

The following result proves a formula for R-torsion of $\Sigma_{g,n}$ in terms of R-torsion of the surfaces $\Sigma_{g-1,1}$ and $\Sigma_{1,n+1}$ and also circle. More precisely,

Proposition 3.2.5. Let $g \ge 2$ and $n \ge 1$. Consider the surface $\Sigma_{g,n}$ obtained by gluing the surfaces $\Sigma_{g-1,1}$ and $\Sigma_{1,n+1}$ along the common boundary circle γ_1 (see, Fig. 3). Consider also the associated short-exact sequence of chain complexes

$$(3.2.20) 0 \to C_*(\gamma_1) \longrightarrow C_*(\Sigma_{g-1,1}) \oplus C_*(\Sigma_{1,n+1}) \longrightarrow C_*(\Sigma_{g,n}) \to 0,$$

and the long-exact sequence

$$\mathcal{H}_*: 0 \longrightarrow H_1(\gamma_1) \xrightarrow{f} H_1(\Sigma_{g-1,1}) \oplus H_1(\Sigma_{1,n+1}) \xrightarrow{g} H_1(\Sigma_{g,n})$$

$$\xrightarrow{h} H_0(\gamma_1) \xrightarrow{i} H_0(\Sigma_{g-1,1}) \oplus H_0(\Sigma_{1,n+1}) \xrightarrow{j} H_0(\Sigma_{g,n}) \xrightarrow{k} 0$$

obtained by the Snake Lemma for (3.2.20). Let $\mathbf{h}_{\nu}^{\Sigma_{g,n}}$ be a basis of $H_{\nu}(\Sigma_{g,n})$, $\nu = 0, 1$. Let $\mathbf{h}_{\nu}^{\gamma_1}$ be an arbitrary basis of $H_{\nu}(\gamma_1)$, $\nu = 0, 1$. Then, there exist

bases $\mathbf{h}_{\nu}^{\Sigma_{g-1,1}}$ and $\mathbf{h}_{\nu}^{\Sigma_{1,n+1}}$ of $H_{\nu}(\Sigma_{g-1,1})$ and $H_{\nu}(\Sigma_{1,n+1})$, $\nu = 0, 1$, respectively such that R-torsion of \mathcal{H}_* in the corresponding bases is 1 and the following formula holds

$$\mathbb{T}(\Sigma_{g,n}, \{\mathbf{h}_{\nu}^{\Sigma_{g,n}}\}_{0}^{1}) = \mathbb{T}(\Sigma_{g-1,1}, \{\mathbf{h}_{\nu}^{\Sigma_{g-1,1}}\}_{0}^{1}) \, \mathbb{T}(\Sigma_{1,n+1}, \{\mathbf{h}_{\nu}^{\Sigma_{1,n+1}}\}_{0}^{1}) \\
\times \, \mathbb{T}(\gamma_{1}, \{\mathbf{h}_{\nu}^{\gamma_{1}}\}_{0}^{1})^{-1}.$$

Proof. First, we denote the vector spaces in \mathcal{H}_* by $C_p(\mathcal{H}_*)$, $p = 0, \ldots, 5$. For each p, the exactness of \mathcal{H}_* yields the following short-exact sequence

$$0 \to B_p(\mathcal{H}_*) \hookrightarrow C_p(\mathcal{H}_*) \twoheadrightarrow B_{p-1}(\mathcal{H}_*) \to 0.$$

For all p, considering the isomorphism $s_p: B_{p-1}(\mathcal{H}_*) \to s_p(B_{p-1}(\mathcal{H}_*)) \subseteq C_p(\mathcal{H}_*)$ obtained by the First Isomorphism Theorem as a section of $C_p(\mathcal{H}_*) \to B_{p-1}(\mathcal{H}_*)$, we obtain

(3.2.21)
$$C_p(\mathcal{H}_*) = B_p(\mathcal{H}_*) \oplus s_p(B_{p-1}(\mathcal{H}_*)).$$

Let us consider the space $C_0(\mathcal{H}_*) = H_0(\Sigma_{g,n})$ in (3.2.21). From the fact that $\operatorname{Im}(k)$ is equal to zero it follows

$$(3.2.22) C_0(\mathcal{H}_*) = \operatorname{Im}(j) \oplus s_0(\operatorname{Im}(k)) = \operatorname{Im}(j).$$

Let us choose the basis of Im j as $\mathbf{h}_0^{\Sigma_{g,n}}$. From equation (3.2.22) it follows that the obtained basis \mathbf{h}_0' of $C_0(\mathcal{H}_*)$ becomes $\mathbf{h}_0^{\Sigma_{g,n}}$. Since the given basis \mathbf{h}_0 of $C_0(\mathcal{H}_*)$ is also $\mathbf{h}_0^{\Sigma_{g,n}}$, we have

$$[\mathbf{h}_0', \mathbf{h}_0] = 1.$$

Next consider $C_1(\mathcal{H}_*) = H_0(\Sigma_{g-1,1}) \oplus H_0(\Sigma_{1,n+1})$ in (3.2.21), we get

$$(3.2.24) C_1(\mathcal{H}_*) = \operatorname{Im}(i) \oplus s_1(\operatorname{Im}(j)).$$

As i is injective, let $i(\mathbf{h}_0^{S_1})$ be the basis of $\mathrm{Im}(i)$. In the previous step, we chose $\mathbf{h}_0^{\Sigma_{g,n}}$ as the basis of $\mathrm{Im}(j)$. Thus, by equation (3.2.24), the obtained basis \mathbf{h}_1' of $C_1(\mathcal{H}_*)$ becomes $\{i(\mathbf{h}_0^{S_1}), s_1(\mathbf{h}_0^{\Sigma_{g,n}})\}$.

 $H_0(\Sigma_{g-1,1})$ and $H_0(\Sigma_{1,n+1})$ are both 1-dimensional subspaces of the 2-dimensional space $C_1(\mathcal{H}_*)$. Thus, there exist non-zero vectors $(a_{\nu 1}, a_{\nu 2})$, $\nu = 1, 2$ such that $\{a_{11}i(\mathbf{h}_0^{\gamma_1}) + a_{12}s_1(\mathbf{h}_0^{\Sigma_{g,n}})\}$ is a basis of $H_0(\Sigma_{g-1,1})$ and $\{a_{21}i(\mathbf{h}_0^{\gamma_1}) + a_{22}s_1(\mathbf{h}_0^{\Sigma_{g,n}})\}$ is a basis of $H_0(\Sigma_{1,n+1})$. Clearly, the 2 × 2 matrix

 $A = [a_{\nu\mu}]$ is invertible. Let $\mathbf{h}_0^{\Sigma_{g-1,1}}$ denote the basis $\{(\det A)^{-1}[a_{11}i(\mathbf{h}_0^{\gamma_1}) + a_{12}s_1(\mathbf{h}_0^{\Sigma_{g,n}})]\}$ of $H_0(\Sigma_{g-1,1})$ and $\mathbf{h}_0^{\Sigma_{1,n+1}}$ denote the basis $\{a_{21}i(\mathbf{h}_0^{\gamma_1}) + a_{22}s_1(\mathbf{h}_0^{\Sigma_{g,n}})\}$ of $H_0(\Sigma_{1,n+1})$. Considering $\{\mathbf{h}_0^{\Sigma_{g-1,n}}, \mathbf{h}_0^{\Sigma_{1,n+1}}\}$ as the beginning basis \mathbf{h}_1 of $C_1(\mathcal{H}_*)$, we have

$$[\mathbf{h}_1', \mathbf{h}_1] = 1.$$

Now, consider (3.2.21) for the space $C_2(\mathcal{H}_*) = H_0(\gamma_1)$. For h being the zero map, we get

(3.2.26)
$$C_2(\mathcal{H}_*) = \operatorname{Im}(h) \oplus s_2(\operatorname{Im}(i)) = s_2(\operatorname{Im}(i)).$$

Recall that the basis of $\operatorname{Im}(i)$ was chosen previously as $i(\mathbf{h}_0^{\gamma_1})$. From this and equation (3.2.26) it follows that the obtained basis \mathbf{h}_2' of $C_2(\mathcal{H}_*)$ becomes $\mathbf{h}_0^{\gamma_1}$. From the fact that the beginning basis \mathbf{h}_2 of $C_2(\mathcal{H}_*)$ is $\mathbf{h}_0^{\gamma_1}$ it follows

$$[\mathbf{h}_2', \mathbf{h}_2] = 1.$$

Let us consider $C_3(\mathcal{H}_*) = H_1(\Sigma_{q,n})$ in (3.2.21). Obviously, we have

(3.2.28)
$$C_3(\mathcal{H}_*) = \text{Im}(g) \oplus s_3(\text{Im}(h)) = \text{Im}(g).$$

Let us choose the basis of $\operatorname{Im}(g)$ as $\mathbf{h}_1^{\Sigma_{g,n}} = \{(\mathbf{h}_1^{\Sigma_{g,n}})_{\nu}\}_{\nu=1}^{2g+n-1}$. By equation (3.2.28), we get the obtained basis \mathbf{h}_3' of $C_3(\mathcal{H}_*)$ as $\mathbf{h}_1^{\Sigma_{g,n}}$. The fact that the beginning basis \mathbf{h}_3 of $C_3(\mathcal{H}_*)$ is also $\mathbf{h}_1^{\Sigma_{g,n}}$ yields

$$[\mathbf{h}_3', \mathbf{h}_3] = 1.$$

Considering the space $C_4(\mathcal{H}_*) = H_1(\Sigma_{g-1,1}) \oplus H_1(\Sigma_{1,n+1})$ in (3.2.21), we have

$$(3.2.30) C_4(\mathcal{H}_*) = \operatorname{Im}(f) \oplus s_4(\operatorname{Im}(g)).$$

As f is injective, we can take the basis of Im(f) as $f(\mathbf{h}_1^{\gamma_1})$. In the previous step, we chose the basis of Im(g) as $\mathbf{h}_1^{\Sigma_{g,n}}$. Then, from (3.2.30) it follows that the obtained basis \mathbf{h}_4' of $C_4(\mathcal{H}_*)$ becomes $\{f(\mathbf{h}_1^{\gamma_1}), s_4(\mathbf{h}_1^{\Sigma_{g,n}})\}$.

Since $H_1(\Sigma_{g-1,1})$ and $H_1(\Sigma_{1,n+1})$ are respectively (2g-2) and (n+2)-dimensional subspaces of the (2g+n)-dimensional space $C_4(\mathcal{H}_*)$, there are non-zero vectors $(b_{\nu_1}, \ldots, b_{\nu(2g+n)}), \nu = 1, \ldots, 2g+n$ such that

$$\left\{ \sum_{\mu=1}^{2g+n-1} b_{\nu\mu} s_4(\mathbf{h}_{1\mu}^{\Sigma_{g,n}}) + b_{\nu(2g+n)} f(\mathbf{h}_1^{\gamma_1}) \right\}_{\nu=1}^{2+n}$$

is a basis of $H_1(\Sigma_{1,n+1})$ and

$$\left\{ \sum_{\mu=1}^{2g+n-1} b_{\nu\mu} s_4(\mathbf{h}_{1\mu}^{\Sigma_{g,n}}) + b_{\nu(2g+n)} f(\mathbf{h}_1^{\gamma_1}) \right\}_{\nu=n+3}^{2g+n}$$

is a basis of $H_1(\Sigma_{g-1,1})$. Moreover, the $(2g+n)\times(2g+n)$ matrix $B=[b_{\nu\mu}]$ has non-zero determinant. Let us choose the basis $\mathbf{h}_1^{\Sigma_{1,n+1}}$ of $H_1(\Sigma_{1,n+1}^1)$ as

$$\left\{ (\det B)^{-1} \sum_{\mu=1}^{2g+n-1} [b_{1\mu} s_4(\mathbf{h}_{1\mu}^{\Sigma_{g,n}}) + b_{1(2g+n)} f(\mathbf{h}_1^{S_1})], \\
\left\{ \sum_{\mu=1}^{2g+n-1} b_{\nu\mu} s_4(\mathbf{h}_{1\mu}^{\Sigma_{g,n}}) + b_{\nu(2g+n)} f(\mathbf{h}_1^{\gamma_1}) \right\}_{\nu=2}^{2+n} \right\},$$

and let the basis $\mathbf{h}_{1}^{\Sigma_{g-1,1}}$ of $H_{1}(\Sigma_{g-1,1})$ be

$$\left\{ \sum_{\mu=1}^{2g+n-1} b_{\nu\mu} s_4(\mathbf{h}_{\nu\mu}^{\Sigma_{g,n}}) + b_{\nu(2g+n)} f(\mathbf{h}_1^{\gamma_1}) \right\}_{\nu=n+3}^{2g+n}.$$

If we consider $\{\mathbf{h}_1^{\Sigma_{g-1,1}}, \mathbf{h}_1^{\Sigma_{1,n+1}}\}$ as the beginning basis \mathbf{h}_4 of $C_4(\mathcal{H}_*)$, then we have

$$[\mathbf{h}_4', \mathbf{h}_4] = 1.$$

Finally, we consider (3.2.21) for the space $C_5(\mathcal{H}_*) = H_1(\gamma_1)$. The fact that $B_5(\mathcal{H}_*)$ equals to zero gives us the following equality

(3.2.32)
$$C_5(\mathcal{H}_*) = B_5(\mathcal{H}_*) \oplus s_5(\text{Im}(f)) = s_5(\text{Im}(f)).$$

In the previous step, $f(\mathbf{h}_1^{\gamma_1})$ was chosen as the basis of Im(f). By equation (3.2.32), the obtained basis \mathbf{h}_5' of $C_5(\mathcal{H}_*)$ is $\mathbf{h}_1^{\gamma_1}$. As the beginning basis \mathbf{h}_5 of $C_5(\mathcal{H}_*)$ is also $\mathbf{h}_1^{\gamma_1}$, we get

$$[\mathbf{h}_5', \mathbf{h}_5] = 1.$$

Combining equations (3.2.23), (3.2.25), (3.2.27), (3.2.29), (3.2.31), (3.2.33), we obtain

(3.2.34)
$$\mathbb{T}(\mathcal{H}_*, \{\mathbf{h}_p\}_0^5, \{0\}_0^5) = \prod_{p=0}^5 \left[\mathbf{h'}_p, \mathbf{h}_p\right]^{(-1)^{(p+1)}} = 1.$$

Compatibility of the natural bases in the short-exact sequence (3.2.20), Theorem 2.0.2, and equation (3.2.34) end the proof of Proposition 3.2.5.

By Proposition 3.2.2 and Proposition 3.2.5, we have

Theorem 3.2.6. Let $\Sigma_{g,n}, g \geq 2, n \geq 1$ be an orientable surface with boundary circles S_1, \ldots, S_n . Consider $\Sigma_{g,n}$ as the connected sum $\Sigma_{1,0} \# \cdots \# \Sigma_{1,0} \# \Sigma_{1,n}$ (see, Fig. 1). From left to right let $\gamma_1, \ldots, \gamma_{g-1}$ be the circles obtained by the connected sum operation. For $i \in \{1, \ldots, g-1\}$ and $j \in \{1, \ldots, n\}$, \mathbb{D}_{γ_i} , \mathbb{D}_{S_j} be the closed disk with boundary circle γ_i , S_j , respectively. For $i \in \{1, g-1\}$, let $\Sigma_{1,1}^{\gamma_i}$ be the torus with boundary circle γ_i and for $i \in \{1, \ldots, g-2\}$, let $\Sigma_{1,2}^{\gamma_i, \gamma_{i+1}}$ be the torus with boundary circles γ_i, γ_{i+1} . Assume $\mathbf{h}_{\nu}^{\Sigma_{g,n}}$ is a basis of $H_{\nu}(\Sigma_{g,n})$, $\nu = 0, 1$. For $i \in \{1, \ldots, g-1\}$, $\nu \in \{0, 1\}$, assume $\mathbf{h}_{\nu}^{\gamma_i}$ is an arbitrary basis of $H_{\nu}(\gamma_i)$. Moreover, for $j \in \{1, \ldots, n\}$, $k \in \{2, \ldots, g-1\}$, assume $\mathbf{h}_{0}^{\mathbb{D}_{S_j}}$ and $\mathbf{h}_{0}^{\mathbb{D}_{\gamma_k}}$ are respectively bases of $H_{0}(\mathbb{D}_{S_j})$ and $H_{0}(\mathbb{D}_{\gamma_k})$. Then, for $\nu = 0, 1$, there exist bases $\mathbf{h}_{\nu}^{\Sigma_{1,1}^{\gamma_1}}$, $\mathbf{h}_{\nu}^{\Sigma_{1,1}^{\gamma_1-1,\gamma_i}}$, $\mathbf{h}_{\nu}^{\Sigma_{1,1}^{\gamma_1-1,\gamma_i}}$, $\mathbf{h}_{\nu}^{\Sigma_{1,1}^{\gamma_1-1,\gamma_i}}$, $\mathbf{h}_{\nu}^{\gamma_i}$, $i = 2, \ldots, g-1$, i =

$$\begin{split} \mathbb{T}(\Sigma_{g,n},\{\mathbf{h}_{\nu}^{\Sigma_{g,n}}\}_{0}^{1}) &= \mathbb{T}(\Sigma_{1,1}^{\gamma_{1}},\{\mathbf{h}_{\nu}^{\Sigma_{1,1}^{\gamma_{1}}}\}_{0}^{1}) \ \mathbb{T}(\Sigma_{1,1}^{\gamma_{g-1}},\{\mathbf{h}_{\nu}^{\Sigma_{1,1}^{\gamma_{g-1}}}\}_{0}^{1}) \\ &\times \prod_{i=2}^{g-1} \mathbb{T}(\Sigma_{1,1}^{\gamma_{i-1},\widehat{\gamma_{i}}},\{\mathbf{h}_{\nu}^{\Sigma_{1,1}^{\gamma_{i-1},\widehat{\gamma_{i}}}}\}_{0}^{1}) \prod_{j=1}^{g-1} \mathbb{T}(\gamma_{j},\{\mathbf{h}_{\nu}^{\gamma_{j}}\}_{0}^{1})^{-1} \\ &\times \prod_{i=2}^{g-1} [\mathbb{T}(\gamma_{i},\{(\mathbf{h}_{\nu}^{\gamma_{i}})'\}_{0}^{1})\mathbb{T}(\mathbb{D}_{\gamma_{i}},\{\mathbf{h}_{0}^{\mathbb{D}_{\gamma_{i}}}\})^{-1}] \\ &\times \prod_{k=1}^{n} [\mathbb{T}(S_{k},\{\mathbf{h}_{\nu}^{S_{k}}\}_{0}^{1})\mathbb{T}(\mathbb{D}_{S_{k}},\{\mathbf{h}_{0}^{\mathbb{D}_{S_{k}}}\})^{-1}]. \end{split}$$

Here, $\Sigma_{1,1}^{\gamma_{i-1},\widehat{\gamma_i}}$ is the torus with boundary circle γ_{i-1} which is obtained by gluing $\Sigma_{1,2}^{\gamma_{i-1},\gamma_i}$ and the closed disk \mathbb{D}_{γ_i} along the common boundary circle γ_i . $(\mathbf{h}_{\nu}^{\gamma_i})'$ is the basis of γ_i by considering $\Sigma_{1,2}^{\gamma_{i-1},\gamma_i} = \Sigma_{1,1}^{\gamma_{i-1},\widehat{\gamma_i}} \cup_{\gamma_i} \mathbb{D}_{\gamma_i}$ and applying Proposition 3.2.2.

From Remark 2.0.8, Remark 3.2.4, and Theorem 3.2.6 it follows that

Theorem 3.2.7. Let $\Sigma_{g,n}$, S_j , γ_i , \mathbb{D}_{γ_i} , \mathbb{D}_{S_j} , $\Sigma_{1,1}^{\gamma_i}$, $\Sigma_{1,2}^{\gamma_i,\gamma_{i+1}}$, $\mathbf{h}_{\nu}^{\Sigma_{g,n}}$, $\mathbf{h}_{\nu}^{\gamma_i}$, $\mathbf{h}_{0}^{\mathbb{D}_{S_j}}$, $\mathbf{h}_{0}^{\mathbb{D}_{S_j}}$, $\mathbf{h}_{\nu}^{\Sigma_{1,1}^{\gamma_1}}$, $\mathbf{h}_{\nu}^{\Sigma_{1,1}^{\gamma_1}}$, $\mathbf{h}_{\nu}^{\Sigma_{1,1}^{\gamma_1}}$, $\mathbf{h}_{\nu}^{\Sigma_{1,1}^{\gamma_1}}$, $(\mathbf{h}_{\nu}^{\gamma_j})'$, $\mathbf{h}_{\nu}^{S_k}$ be as in Theorem 3.2.6. Then, we

have

$$\begin{split} |\mathbb{T}(\Sigma_{g,n},\{\mathbf{h}_{\nu}^{\Sigma_{g,n}}\}_{0}^{1})| &= |\mathbb{T}(\Sigma_{1,1}^{\gamma_{1}},\{\mathbf{h}_{\nu}^{\Sigma_{1,1}^{\gamma_{1}}}\}_{0}^{1})||\mathbb{T}(\Sigma_{1,1}^{\gamma_{g-1}},\{\mathbf{h}_{\nu}^{\Sigma_{1,1}^{\gamma_{g-1}}}\}_{0}^{1})|| \\ &\times \prod_{i=2}^{g-1} |\mathbb{T}(\Sigma_{1,1}^{\gamma_{i-1},\widehat{\gamma_{i}}},\{\mathbf{h}_{\nu}^{\Sigma_{1,1}^{\gamma_{i-1},\widehat{\gamma_{i}}}}\}_{0}^{1})| \\ &\times \prod_{i=2}^{g-1} |\mathbb{T}(\mathbb{D}_{\gamma_{i}},\{\mathbf{h}_{0}^{\mathbb{D}_{\gamma_{i}}}\})|^{-1} \prod_{k=1}^{n} |\mathbb{T}(\mathbb{D}_{S_{k}},\{\mathbf{h}_{0}^{\mathbb{D}_{S_{k}}}\})|^{-1}. \end{split}$$

Using the same arguments in Proposition 3.2.5, we obtain

Theorem 3.2.8. Let $\Sigma_{g,0}$, $g \geq 2$ be a closed orientable surface. From left to right let $\gamma_1, \ldots, \gamma_{g-1}$ be the circles obtained by the connected sum operation for $\Sigma_{g,0}$ (See Fig 1). Consider the surface $\Sigma_{g,0}$ obtained by gluing the surfaces $\Sigma_{g-1,1}$ and $\Sigma_{1,1}$ along the common boundary circle γ_{g-1} . Let

$$0 \to C_*(\gamma_{g-1}) \to C_*(\Sigma_{g-1,1}) \oplus C_*(\Sigma_{1,1}) \to C_*(\Sigma_{g,0}) \to 0$$

be the associated short-exact sequence of chain complexes and let

$$\mathcal{H}_*: 0 \longrightarrow H_2(\Sigma_{g,0}) \xrightarrow{\delta} H_1(\gamma_1) \xrightarrow{f} H_1(\Sigma_{g-1,1}) \oplus H_1(\Sigma_{1,1}) \xrightarrow{g} H_1(\Sigma_{g,0})$$

$$\xrightarrow{h} H_0(\gamma_1) \xrightarrow{i} H_0(\Sigma_{g-1,1}) \oplus H_0(\Sigma_{1,1}) \xrightarrow{j} H_0(\Sigma_{g,0}) \xrightarrow{k} 0$$

be the corresponding long-exact sequence obtained by the Snake Lemma, where the connecting map δ is an isomorphism. Let $\mathbf{h}_{\nu}^{\Sigma_{g,0}}$ be a basis of $H_{\nu}(\Sigma_{g,0})$, $\nu = 0, 1, 2$. Let $\mathbf{h}_{1}^{\gamma_{g-1}} = \delta(\mathbf{h}_{2}^{\Sigma_{g,0}})$ be the basis of $H_{1}(\gamma_{g-1})$ and $\mathbf{h}_{0}^{\gamma_{g-1}}$ be an arbitrary basis of $H_{0}(\gamma_{g-1})$. Then, there are bases $\mathbf{h}_{\nu}^{\Sigma_{g-1,1}}$ and $\mathbf{h}_{\nu}^{\Sigma_{1,1}}$ of $H_{\nu}(\Sigma_{g-1,1})$ and $H_{\nu}(\Sigma_{1,1})$, $\nu = 0, 1$, respectively such that R-torsion of \mathcal{H}_{*} in the corresponding bases is 1 and the following formula holds

$$\begin{array}{lcl} \mathbb{T}(\Sigma_{g,0},\{\mathbf{h}_{\nu}^{\Sigma_{g,0}}\}_{0}^{2}) & = & \mathbb{T}(\Sigma_{g-1,1},\{\mathbf{h}_{\nu}^{\Sigma_{g-1,1}}\}_{0}^{1}) \; \mathbb{T}(\Sigma_{1,1},\{\mathbf{h}_{\nu}^{\Sigma_{1,1}}\}_{0}^{1}) \\ & \times \; \mathbb{T}(\gamma_{g-1},\{\mathbf{h}_{\nu}^{\gamma_{g-1}}\}_{0}^{1})^{-1}. \end{array}$$

Combining Theorem 3.2.6 and Theorem 3.2.8, we have the following result.

Theorem 3.2.9. Let $\Sigma_{g,0}$, γ_i , and δ be as in Theorem 3.2.8. Let \mathbb{D}_{γ_i} be the closed disk with boundary circle γ_i , $i = 1, \ldots, g-1$. For $i \in \{1, g-1\}$, let $\Sigma_{1,1}^{\gamma_i}$ be the torus with boundary circle γ_i and for $i \in \{1, \ldots, g-2\}$, let $\Sigma_{1,2}^{\gamma_i, \gamma_{i+1}}$ be the torus with boundary circles γ_i, γ_{i+1} . Assume $\mathbf{h}_{\nu}^{\Sigma_{g,0}}$ is a basis of $H_{\nu}(\Sigma_{g,0})$,

 $\begin{array}{l} \nu=0,1,2. \ \textit{For} \ i\in\{1,\ldots,g-1\}, \ \nu\in\{0,1\}, \ \textit{assume} \ \mathbf{h}_{\nu}^{\gamma_i} \ \textit{is an arbitrary basis} \\ \textit{of} \ H_{\nu}(\gamma_i) \ \textit{such that} \ \mathbf{h}_{1}^{\gamma_{g-1}}=\delta(\mathbf{h}_{2}^{\Sigma_{g,0}}). \ \textit{Assume also that for} \ k\in\{1,\ldots,g-1\}, \\ \mathbf{h}_{0}^{\mathbb{D}_{\gamma_k}} \ \textit{is a basis of} \ H_{0}(\mathbb{D}_{\gamma_k}). \ \textit{Then, for} \ \nu=0,1, \ \textit{there are bases} \ \mathbf{h}_{\nu}^{\Sigma_{1,1}^{\gamma_1}}, \ \mathbf{h}_{\nu}^{\Sigma_{1,1}^{\gamma_{g-1}}}, \\ \mathbf{h}_{\nu}^{\Sigma_{1,1}^{\gamma_{i-1},\widehat{\gamma_i}}}, \ (\mathbf{h}_{\nu}^{\gamma_i})', \ i=2,\ldots,g-1 \ \textit{so that the following formula is valid} \end{array}$

$$\begin{split} \mathbb{T}(\Sigma_{g,0},\{\mathbf{h}_{\nu}^{\Sigma_{g,0}}\}_{0}^{1}) &= \mathbb{T}(\Sigma_{1,1}^{\gamma_{1}},\{\mathbf{h}_{\nu}^{\Sigma_{1,1}^{\gamma_{1}}}\}_{0}^{1})\mathbb{T}(\Sigma_{1,1}^{\gamma_{g-1}},\{\mathbf{h}_{\nu}^{\Sigma_{1,1}^{\gamma_{g-1}}}\}_{0}^{1}) \\ &\times \prod_{i=2}^{g-1} \mathbb{T}(\Sigma_{1,1}^{\gamma_{i-1},\widehat{\gamma_{i}}},\{\mathbf{h}_{\nu}^{\Sigma_{1,1}^{\gamma_{i-1},\widehat{\gamma_{i}}}}\}_{0}^{1}) \prod_{j=1}^{g-1} \mathbb{T}(\gamma_{j},\{\mathbf{h}_{\nu}^{\gamma_{j}}\}_{0}^{1})^{-1} \\ &\times \prod_{i=2}^{g-1} [\mathbb{T}(\gamma_{i},\{(\mathbf{h}_{\nu}^{\gamma_{i}})'\}_{0}^{1})\mathbb{T}(\mathbb{D}_{\gamma_{i}},\{\mathbf{h}_{0}^{\mathbb{D}_{\gamma_{i}}}\})^{-1}]. \end{split}$$

Here, $\sum_{1,1}^{\gamma_{i-1},\widehat{\gamma_i}}$ is the torus with boundary circle γ_{i-1} which is obtained by gluing $\sum_{1,1}^{\gamma_{i-1},\gamma_i}$ and the closed disk \mathbb{D}_{γ_i} along the common boundary circle γ_i .

By Remark 2.0.8, Remark 3.2.4, and Theorem 3.2.9, we have the following result

Theorem 3.2.10. Let $\Sigma_{g,0}$, $\Sigma_{1,1}^{\gamma_{g-1}}$, $\Sigma_{1,1}^{\gamma_1}$, $\Sigma_{1,1}^{\gamma_{i-1},\widehat{\gamma_i}}$, \mathbb{D}_{γ_i} , $\mathbf{h}_{\nu}^{\Sigma_{g,0}}$, $\mathbf{h}_{\nu}^{\Sigma_{1,1}^{\gamma_1}}$, $\mathbf{h}_{\nu}^{\Sigma_{1,1}^{\gamma_2}}$, $\mathbf{h}_$

$$\begin{split} |\mathbb{T}(\Sigma_{g,0},\{\mathbf{h}_{\nu}^{\Sigma_{g,0}}\}_{0}^{1})| &= |\mathbb{T}(\Sigma_{1,1}^{\gamma_{1}},\{\mathbf{h}_{\nu}^{\Sigma_{1,1}^{\gamma_{1}}}\}_{0}^{1})| |\mathbb{T}(\Sigma_{1,1}^{\gamma_{g-1}},\{\mathbf{h}_{\nu}^{\Sigma_{1,1}^{\gamma_{g-1}}}\}_{0}^{1})| \\ &\times \prod_{i=2}^{g-1} |\mathbb{T}(\Sigma_{1,1}^{\gamma_{i-1},\widehat{\gamma_{i}}},\{\mathbf{h}_{\nu}^{\Sigma_{1,1}^{\gamma_{i-1},\widehat{\gamma_{i}}}}\}_{0}^{1})| \prod_{i=2}^{g-1} |\mathbb{T}(\mathbb{D}_{\gamma_{i}},\{\mathbf{h}_{0}^{\mathbb{D}_{\gamma_{i}}}\})|^{-1}. \end{split}$$

Acknowledgements

Without proof some results of the present article (Theorem 3.1.1) were announced in the proceeding extended abstract [5]. This research was supported by TÜBİTAK (project no. 114F516). The first author would also like to thank TÜBİTAK for the financial support.

References

[1] Chapman T. A.: Hilbert cube manifolds and the invariance of Whitehead torsion. Bull. Amer. Math. Soc. **79**, 52–56 (1973).

- [2] CHAPMAN T. A.: Topological invariance of Whitehead torsion. Amer. J. Math. 96, 488–497 (1974).
- [3] Cheeger J.: Analytic torsion and the heat kernel. Ann. of Math. 109, 259–322 (1979).
- [4] RHAM G. DE: Reidemeister's torsion invariant and rotation of S^n , Differential analysis, 27–36. University Press, London (1964).
- [5] DIRICAN E., SOZEN Y.: Reidemeister torsion of some surfaces, Amer. Inst. of Phys. Conf. Pro. 1676, 020006-1-020006-4 (2015), doi: 10.1063/ 1.4930432.
- [6] Dubois J.: A volume form on the SU(2)-representation space of knot groups. Algebr. Geom. Topol. **6**, 373–404 (2006).
- [7] Franz W.: Über die Torsion einer Überdeckung. J. Reine Angew. Math. 173, 245–254 (1935).
- [8] HUTCHINGS M., LEE Y-L.: Circle valued Morse theory and Reidemeister torsion. Geom. Topol. 3, 369–396 (1999).
- [9] Kirby R. C., Siebenmann L. C.: On triangulation of manifolds and Haupvermutung. Bull. Amer. Math. Soc. **75**, 742–749 (1969).
- [10] MENG G., TAUBES C. H.: SW = Milnor torsion. Math. Res. Lett. 3, 661–674 (1996).
- [11] MILNOR J.: Two complexes which are homeomorphic but combinatorially distinct. Ann. of Math. **74**, 61–75 (1961).
- [12] MILNOR J.: A duality theorem for Reidemeister torsion. Ann. of Math. **76** (1), 137–147 (1962).
- [13] MILNOR J.: Whitehead torsion. Bull. Amer. Math. Soc. 72, 358–426 (1966).
- [14] MÜLLER W.: Analytic torsion and R-torsion of Riemannian manifolds. Adv. Math. 28, 233–305 (1978).
- [15] OZEL C., SOZEN Y.: Reidemeister torsion of product manifolds and quantum entanglement of pure states with Schmidt rank. Balkan J. Geom. Appl. 17 (2), 66–76 (2012).
- [16] PORTI J.: Torsion de Reidemeister pour les Varieties Hyperboliques. Memoirs of the Amer. Math. Soc. 128 (612), Amer. Math. Soc., Providence, RI (1997).

- [17] RAY D., SINGER I.: R-torsion and the Laplacian of Riemannian manifolds. Adv. Math. 7,145–210 (1971).
- [18] REIDEMEISTER K.: Homotopieringe und Linsenräume. Hamburger Abhandl. 11, 102–109 (1935).
- [19] SOZEN Y.: On Reidemeister torsion of a symplectic complex. Osaka J. Math. 45, 1–39 (2008).
- [20] SOZEN Y.: On Fubini-Study form and Reidemeister torsion. Topology Appl. 156, 951–955 (2009).
- [21] SOZEN Y.: A note on Reidemeister torsion and period matrix of Riemann surfaces. Math. Slovaca. **61** (1), 29–38 (2011).
- [22] SOZEN Y.: On a volume element of Hitchin component. Fund. Math. **217** (3), 249–264 (2012).
- [23] SOZEN Y.: Symplectic chain complex and Reidemeister torsion of compact manifolds. Math. Scand. **111** (1), 65–91 (2012).
- [24] Turaev V.: Torsions of 3-Dimensional Manifolds. **208**. Birkhauser Verlag, Berlin (2002).
- [25] WITTEN E.: On quantum gauge theories in two dimensions. Comm. Math. Phys. **141**, 153–209 (1991).
- [26] WITTEN E.: Quantum field theory and the Jones polynomials. Comm. Math. Phys. 121, 351–399 (1988).

Esma Dirican

Hacettepe University

Faculty of Science

Department of Mathematics

06800, Ankara

Turkey

E-mail: esmadirican131@gmail.com

Yaşar Sözen

Hacettepe University

Faculty of Science

Department of Mathematics

06800, Ankara

Turkey

E-mail: ysozen@hacettepe.edu.tr