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Linking forms revisited
Anthony Conway, Stefan Friedl and Gerrit Herrmann

Abstract: We show that the Q/Z-valued linking forms on ratio-
nal homology spheres are (anti-) symmetric and we compute the
linking form of a 3-dimensional rational homology sphere in terms
of a Heegaard splitting. Both results have been known to a larger
or lesser degree, but it is difficult to find rigorous down-to-earth
proofs in the literature.

1. Introduction

Let M be an oriented (2n + 1)-dimensional rational homology sphere, i.e.
M is an oriented topological manifold with H∗(M ;Q) ∼= H∗(S2n+1;Q). In
Section 2.2 we recall the definition of the linking form

λM : Hn(M ;Z) ×Hn(M ;Z) → Q/Z.

It follows easily from the definition that it is bilinear and non-singular. This
form, whose definition goes back to Seifert [15, 16], has since then appeared
frequently both in the study of high-dimensional manifolds [9, 18, 19] and in
low dimensional topology [11, 1, 3].

The following proposition states a key property of linking forms.

Proposition 1.1. (Seifert 1935) Let M be a (2n + 1)-dimensional ratio-
nal homology sphere. If n is odd, then the linking form λM on Hn(M ;Z) is
symmetric; otherwise, it is anti-symmetric.

This proposition was first formulated in the 3-dimensional context by
Seifert [15, p. 814]. Since Seifert did not yet have the tools of singular homol-
ogy and cohomology theory at his disposal, he could only give a somewhat
informal proof. Another somewhat informal proof is implicitly given in [7,
p. 59-60], where the linking form is calculated in terms of the intersection
form on a bounding 4-manifold. But to the best of our knowledge there are
not many rigorous proofs for the proposition in the literature.
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Linking forms have been generalized by Blanchfield and many others to
more general coefficients, where the corresponding linking forms are also well-
known to be hermitian. But there are again very few rigorous proofs for these
statements, in fact the only careful proof we are aware of is given in the recent
paper by Powell [13].

We give a rigorous quick proof of Proposition 1.1. We only use cup and cap
products and we expect that the same approach can be used to reprove the
hermitianness statement of Powell [13]. To keep the paper short and readable
we will not attempt to carry out this generalization.

In the following, given coprime natural numbers p and q we denote by
L(p, q) the lens space S3/ ∼ where ∼ is the equivalence relation on S3 that
is generated by

(z, w) ∼
(
ze2πi/p, we2πiq/p).

We give S3 the standard orientation and we endow L(p, q) with the unique
orientation that turns the projection map S3 → L(p, q) into an orientation-
preserving map. The following proposition recalls the arguably most fre-
quently used calculation of linking forms on 3-manifolds.
Proposition 1.2. The linking form of the 3-dimensional lens space L(p, q)
is isometric to the form

Zp × Zp → Q/Z

(a, b) �→ −q

p
· a · b.

This proposition is essential in the classification of lens spaces up to ho-
motopy equivalence; in fact, Whitehead [20] showed that two lens spaces are
homotopy equivalent if and only if their linking forms are isometric.

In the literature, except for the precise sign in the formula, many proofs
of Proposition 1.2 or of equivalent statements can be found. In fact, many
textbooks in algebraic topology contain a proof, see e.g. [8, p. 306], [12, Chap-
ter 69] and [2, p. 364], except that as far as we understand it, none of these
proofs address the precise sign in the calculation. All these proofs work very
explicitly with lens spaces and it is not evident how they generalize to other
3-manifolds.

We will now explain how to calculate the linking form of any rational
homology sphere in terms of a Heegaard splitting. We will then see that this
calculation gives in particular a proof of Proposition 1.2.

Throughout this paper, given g ∈ N we adopt the following notation:

(1) We denote by Xg a handlebody of genus g and we equip it with an
orientation. We denote by Zg a copy of Xg.
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(2) We write Fg = ∂Xg = ∂Zg. We equip Fg with the orientation coming
from the boundary orientation of Xg.

(3) We denote by a1, . . . , ag, b1, . . . , bg ∈ H1(Fg;Z) a symplectic basis for
H1(Fg;Z) such that a1, . . . , ag form a basis for H1(Xg;Z). Recall that
“symplectic basis” means that the intersection form of Fg with respect
to this basis is given by the matrix(

0 Ig
−Ig 0

)

where we denote by Ig the g × g-identity matrix. (For purists a calcu-
lation of the intersection form of a surface using cup products and cap
products can be found in [5, Chapters 47 and 55]).

(4) Given an orientation-reversing self-diffeomorphism ϕ of the genus g sur-
face Fg we write M(ϕ) := Xg ∪ϕ Zg where we identify x ∈ Fg = ∂Xg

with ϕ(x) ∈ ∂Zg. We give M(ϕ) the orientation which turns both the
inclusions Xg → M(ϕ) and Zg → M(ϕ) into orientation-preserving
embeddings. Furthermore, we denote by(

Aϕ Bϕ

Cϕ Dϕ

)

the matrix that represents ϕ∗ : H1(Fg;Z) → H1(Fg;Z) with respect to
the ordered basis a1, . . . , ag, b1, . . . , bg.

One of the first theorems in 3-manifold topology states that every closed
3-manifold can be written as M(ϕ) for some g and some orientation-reversing
diffeomorphism ϕ : Fg → Fg. (Here, and throughout the paper, all manifolds
are understood to be compact, oriented and path-connected.) The following
theorem thus gives a calculation of the linking form for any 3-dimensional
rational homology sphere.

Theorem 1.3. Let g ∈ N and let ϕ : Fg → Fg be an orientation-reversing
diffeomorphism. If M(ϕ) is a rational homology sphere, then Bϕ ∈ M(g×g,Z)
is invertible and the linking form of M(ϕ) is isometric to the form

Zg/BT
ϕZ

g × Zg/BT
ϕZ

g → Q/Z

(v, w) �→ −vTB−1
ϕ Aϕw.
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Remark.

(1) In Theorem 3.5, we will state precisely what isomorphism Z/BT
ϕZ

g →
H1(M(ϕ);Z) we use.

(2) As we mentioned above, the previous calculations of linking forms that
we are aware of do not address the sign question of the formula, i.e. they
only determine the linking form up to a fixed sign. We tried exceedingly
hard to determine the sign correctly. Nonetheless, one should take our
sign with a grain of salt. After we first thought that we had definitely
determined the correct sign, we (and our careful referee) found many
more sign errors.

(3) One could make the case that the statement of Theorem 1.3 is at least
implicit in [14] as explained by Seifert [15, p. 827]. But the calculation
provided in that paper is not very rigorous by today’s standards and it
is also very hard to decipher for a modern reader, even if the reader is
able to understand arcane German. To the best of our knowledge, we
provide the first proof of Theorem 1.3 that is rigorous and that only
uses singular homology and cohomology. Also, similar to our proof of the
symmetry of linking forms, we think that our approach to calculating
linking forms can be generalized quite easily to compute twisted linking
forms of a closed 3-manifold in terms of a Heegaard splitting.

We now return to lens spaces. We denote by X = Z = S1 × D2 the
solid torus and we write F = ∂X = ∂Z. We equip S1, S1 × D2 and F =
∂X = S1×S1 with the standard orientation. Note that with these conventions
a = [S1×1] and b = [1×S1] form a symplectic basis, in the above sense, for the
torus ∂X. Let p, q ∈ N be coprime. We pick r, s ∈ N such that qr− ps = −1.
We write

A =
(
q p
s r

)
and we denote by ϕ : F → F the orientation-reversing diffeomorphism such
that ϕ∗, with respect to the basis given by a = [S1×1] and b = [1×S1], is rep-
resented by the matrix A. (Here S1×1 and 1×S1 are viewed as submanifolds
with the obvious orientation coming from S1.) In [5, Chapter 56] it is proved,
in full detail, that there exists an orientation-preserving diffeomorphism from
L(p, q) to X ∪ϕ Y . Theorem 1.3 thus says that the linking form of L(p, q) is
isometric to the form

Z/p× Z/p �→ Q/Z

(v, w) �→ −v · q
p
· w.
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Remark. One of the ideas of the proof is to reduce the calculation of Poincaré
duality of a 3-manifold to the well-known calculation of Poincaré duality of
the Heegaard surface F of M(ϕ) = X ∪F Z. A similar approach has been
used in [6] to reduce the calculation of the Blanchfield form of a knot to the
Poincaré duality of a Seifert surface.
Remark. Given an (2n + 1)-dimensional manifold M one can also define a
linking form on the torsion submodule of Hn(M ;Z). The same argument as
in the proof of Proposition 1.1 shows that it is symmetric. In the 3-dimensional
context, it should not be very hard to generalize Theorem 1.3 to the case of
3-manifolds that are not rational homology spheres.

We could like to conclude this introduction with the following quote which
we found in [10, p. 21]: “Think with intersections, prove with cup products.”
In low-dimensional topology, many papers dealing with intersection pairing
shy away from working with cup and cap products; instead, one often uses
intuitive but arguably not entirely rigorous arguments. Consequently, one goal
of this paper is to convince readers that cup and cap products are amazing
objects: once one has gotten used to them, not only do they provide wonderful
(and arguably the only) tools for proving certain statements, they can also
be used to give efficient calculations. Finally we would like to point out that
arguments using cup and cap products easily generalize to twisted coefficients
which can no longer dealt with by using “naive” arguments.

Conventions

By a manifold, we mean what is often called a topological manifold, i.e. we do
not require the existence of a smooth structure. Furthermore, all manifolds
are understood to be compact, oriented and path-connected.

Organization

This paper is organized as follows. In Section 2.1, we recall basic facts on the
cup product and the cap product with coefficients. In Section 2.2, we recall
the definition of the linking form, and in Section 2.3 we provide the proof
that linking forms are (anti-) symmetric. Finally, in Section 3, we provide the
proof of Theorem 1.3.

2. Preliminaries

This section recalls the definition of the linking form as well as some standard
facts of algebraic topology. References include [2, 12, 8, 18, 9, 16].
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Before we start out the discussion of the properties of the cup product
and the cap product we make a few remarks on sign conventions:

(1) Bredon [2] defines the coboundary map as δn = (−1)n+1∂∗
n+1 whereas

most other books, e.g. Munkres [12] and Hatcher [8] define the cobound-
ary map as δn = ∂∗

n+1. We choose to follow the latter convention. These
sign conventions influence some of the formulas, e.g. the diagram in
Lemma 2.4 commutes only up to the sign (−1)k+1, whereas following
the approach of Bredon the diagram in Lemma 2.4 would commute.

(2) For the definition of the cup and cap product, we follow the definitions
used in Hatcher [8].
(a) Comparing [8, p. 206] and [2, p. 328] one sees that for the cup

product of cohomology classes in degrees k and l the definitions
differ by the sign (−1)kl.

(b) Comparing [8, p. 239] and [2, p. 335] one sees that for the cap
product of a cohomology class of degree k with a homology class
in degree l the definitions differ by the sign (−1)k(l−k).

We refer to [5, Chapter 51 and 53] we refer to a detailed discussion of
the different sign conventions of cup products and cap products in the
books by Bredon [2], Dold [4], Hatcher [8] and Spanier [17].

The above sign conventions are also the ones used in [5].

2.1. The cup product and the cap product

Let X be a topological space and let G,H be abelian groups. In the fol-
lowing given i = 0, 1, . . . we denote by vi = (0, . . . , 1, . . . , 0) the i-th vertex
of the standard simplex and given points w0, . . . , ws in Rm we denote by
[wr, . . . , wr+s] : Δs → Rm the unique affine linear map that sends vi to wi for
i = 0, . . . , s. The usual definition of the cup product as provided in [8, p. 206]
generalizes to a cup product

Y⊗ : Ck(X;G)×C l(X;H) → Ck+l(X;G⊗H)
(ϕ, ψ) �→

(
Ck+l(X) → G⊗H

σ �→ ϕ(σ◦[v0, . . . , vk])⊗ψ(σ◦[vk, . . . , vk+l])

)
.

A slightly lengthy but uneventful calculation shows, see e.g. [5, Lemma 51.1],
that for f ∈ Ck(X;G) and g ∈ C l(X;H) we have

(2.1) δ(f Y⊗ g) = δ(f) Y⊗ g + (−1)k · f Y⊗ δ(g) ∈ Ck+l(X;G⊗H).
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This implies that the above cup product on cochains descends to a cup prod-
uct

Y⊗ : Hk(X;G) ×H l(X;H) → Hk+l(X;G⊗H).
We denote by Θ: G ⊗ H → H ⊗ G the obvious isomorphism. Then for ϕ ∈
Hk(X;G) and ψ ∈ H l(X;H) the usual proof of the (anti-) symmetry of the
cup product, see e.g. [5, Proposition 51.7], can be used to show that

(2.2) Θ∗(ϕ Y⊗ ψ) = (−1)kl · ψ Y⊗ ϕ ∈ Hk+l(X;H ⊗G).

If H = Z, then using the obvious isomorphism ν : G⊗ Z → G we obtain
the cup product

Y : Hk(X;G) ×H l(X;Z) → Hk+l(X;G⊗ Z) ν∗−→ Hk+l(X;G).

The same holds if G = Z and H is some arbitrary abelian group.
Now let G be an abelian group and let (X,U) be a pair of topological

spaces. The definition of the cap product as provided in [8, p. 239] generalizes
to a cap product

X : Ck(X;G) × Cl(X,U ;Z) → Cl−k(X,U ;G)
(ϕ, σ) �→ ϕ(σ ◦ [v0, . . . , vk]) ⊗ σ ◦ [vk, . . . , vk+l]

which descends to a cap product

X : Hk(X;G) ×Hl(X,U ;Z) → Hl−k(X,U ;G).

If X is path-connected, then we make the identification H0(X;G) = G via
the augmentation map. In this case, we refer to

〈 , 〉 : Hk(X;G) ×Hk(X;Z) → H0(X;G) = G
(ϕ, σ) �→ 〈ϕ, σ〉 := ϕ X σ

as the Kronecker pairing.
Lemma 2.1. Let G be an abelian group and let (X,U) be a pair of topological
spaces.

(1) Let f : (X,U) → (Z, V ) be a map of pairs. If ξ ∈ Hk(Z;G) and σ ∈
Hl(X,U ;Z), then

f∗(f∗(ξ) X σ) = ξ X f∗(σ) ∈ Hl−k(Z, V ;G).

(Hereby note that the map f∗ is the map on relative homology whereas f∗

denotes the map f∗ : Hk(Z;G) → Hk(X;G) on absolute cohomology.)
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(2) If ϕ ∈ Hk(X;G), ψ ∈ H l(X;Z) and σ ∈ Hm(X,U ;Z), then

(ϕ Y ψ) X σ = (−1)kl · ϕ X (ψ X σ) ∈ Hm−k−l(X,U ;G).

Proof. The first statement follows easily from the definitions. For the second
statement, it follows immediately from the definitions that (ψ Y ϕ) X σ =
ϕ X (ψ X σ), see e.g. [5, Lemma 53.5] for details. The desired statement is
now a consequence of the aforementioned (anti-) commutativity of the cup
product.

Now let M be an n-dimensional manifold. (Recall that all manifolds are
assumed to be compact, oriented and path-connected.) As usual we denote
by [M ] ∈ Hn(M,∂M ;Z) the fundamental class. Let G be an abelian group.
The Poincaré duality theorem says that the map

X[M ] : Hk(M ;G) → Hn−k(M,∂M ;G)
ϕ �→ ϕ X [M ]

is an isomorphism. We denote by PDG
M : Hn−k(M,∂M ;G) → Hk(M ;G) the

inverse.
Before we relate the Poincaré duality on a manifold to Poincaré duality on

its boundary we need to discuss conventions. Given an n-dimensional oriented
manifold M we give the boundary ∂M the orientation which is defined by
the convention, that at a point P ∈ ∂M a basis v1, . . . , vn−1 ∈ TP (∂M) is
a positive basis if w, v1, . . . , vn−1 ∈ TPM is a positive basis, where w is an
outward pointing vector of TPM . With this convention, the following lemma
holds. (We refer to [5, Chapter 40] for a more detailed discussion on sign
conventions.)

Lemma 2.2. Let M be an n-dimensional oriented manifold. We denote by

∂ : Hn(M,∂M ;Z) → Hn−1(∂M ;Z)

the connecting homomorphism of the pair (M,∂M). Then

∂[M ] = [∂M ] ∈ Hn−1(∂M ;Z).

The following proposition follows from combining [2, Theorem VI.9.2]
with Lemma 2.2. (Alternatively see also [5, Proposition 55.22].) Note that,
in this instance, the different sign convention of Bredon does not affect the
outcome.
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Proposition 2.3. Let M be an n-dimensional oriented manifold and let G
be an abelian group. We denote by k : ∂M → M the inclusion map. Then for
any p ∈ N0 the following diagram commutes up to the sign (−1)p:

Hn−p(M,∂M ;G)
∂

Hp(M ;G)
k∗

X[M ]

Hn−p−1(∂M ;G) Hp(∂M ;G).
X[∂M ]

2.2. The definition of linking form on rational homology spheres

Let X be a topological space. We denote by β : Hk(X;Q/Z) → Hk+1(X;Z)
the Bockstein homomorphism which arises from the short exact sequence
0 → Z → Q → Q/Z → 0 of coefficients. We define similarly the Bockstein
homomorphism β : Hk(X;Q/Z) → Hk−1(X;Z).

Lemma 2.4. Let Z be an m-dimensional compact manifold. For any k ∈
{0, . . . ,m− 1} the diagram

Hm−k−1(Z;Z) Hk+1(Z;Z)
X[Z]

Hm−k(Z;Q/Z)
β

Hk(Z;Q/Z)
β

X[Z]

commutes up to the sign (−1)k+1.

Proof. The lemma is basically [12, Lemma 69.2], except that in the reference
the sign is not specified. The sign comes from the following general fact: Let
X be a topological space and let G be an abelian group. Furthermore, let
ϕ ∈ Ck(X;G) and let σ : Δl → X be a singular l-simplex. If k ≤ l, then a
straightforward calculation shows that

∂(ϕ X σ) = (−1)k+1 · δϕ X σ + (−1)k · (ϕ X ∂σ).

(If one takes the different sign conventions into account, this equality is ex-
actly [2, Proposition VI.5.1].) In our case σ is a cycle that represents the
fundamental class of Z. It is now clear that in our diagram the sign (−1)k+1

appears. We leave the details of the precise argument to the reader.

Now let M be an (2n + 1)-dimensional rational homology sphere with
n ≥ 1. In this case the Bockstein homomorphisms in homology and cohomol-
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ogy in dimension n are in fact isomorphisms. We denote by Ω the composition

Hn(M ;Z) PDZ
M−−−→ Hn+1(M ;Z) β−1

−−→ Hn(M ;Q/Z) ev−→ HomZ(Hn(M ;Z),Q/Z)
ϕ �→ (σ �→ 〈ϕ, σ〉).

of Poincaré duality, the inverse Bockstein and the Kronecker evaluation map.
Definition. The linking form of a (2n + 1)-dimensional rational homology
sphere M is the form

λM : Hn(M ;Z) ×Hn(M ;Z) → Q/Z

defined by λM (a, b) = Ω(a)(b).
We summarize some key properties of the linking form in the following

lemma.

Lemma 2.5. Let M be a (2n + 1)-dimensional rational homology sphere.
Then the following statements hold:

(1) λM is bilinear and non-singular (i.e. Ω is an isomorphism),
(2) given a and b in Hn(M ;Z), we have

λM (a, b) =
〈
(β−1 ◦ PDZ

M )(a) Y PDZ
M (b), [M ]

〉
,

(3) if n is odd, then the linking form λM is symmetric, otherwise it is anti-
symmetric.

Proof. It is clear that λM is bilinear. To show that λM is non-singular we need
to show that all three homomorphisms in the definition of Ω are isomorphisms.
We only have to argue that the last homomorphism is an isomorphism, but
this in turn is an immediate consequence of the universal coefficient theorem
and the fact that Q/Z is an injective Z-module.

We turn to the proof of (2). By the definition of the Kronecker pairing
we have〈

(β−1 ◦ PDZ
M )(a) Y PDZ

M (b), [M ]
〉

=
(
(β−1 ◦ PDZ

M )(a) Y PDZ
M (b)

)
X [M ].

Next, using Lemma 2.1 (2) and the fact that by definition we have PDZ
M (b)X

[M ] = b, we deduce that this expression reduces to (β−1 ◦ PDZ
M )(a) X b. (If

we look at Lemma 2.1 (2) carefully we see that officially a term (−1)n(n+1)

appears, but fortunately this equals +1.) Looking back at Definition 2.2, this
is nothing but the linking form applied to a and b, as claimed.

We postpone the proof of (3) to the next section.
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Lemma 2.5 might remind the reader of the intersection form of even-
dimensional manifolds. In fact, since the proof of Theorem 1.3 will relate the
linking form of M(ϕ) to the intersection form of the Heegaard surface F , we
briefly recall the definition of this latter form. Namely, given a closed oriented
surface F , the intersection form of F with rational coefficients

QF : H1(F ;Q) ×H1(F ;Q) → Q

is defined as

QF (x, y) :=
〈
PDQ

F (x) Y PDQ
F (y), [F ]

〉
=

(
PDQ

F (x) Y PDQ
F (y)

)
X [F ].

It follows immediately from Lemma 2.1 (2) that for x, y ∈ H1(F ;Q) we have

QF (x, y) =
(
PDQ

F (x) Y PDQ
F (y)

)
X [F ]

= −PDQ
F (x) X

(
PDQ

F (y) X [F ]
)

= −PDQ
F (x) X y = −

〈
PDQ

F (x), y
〉
.

(2.3)

2.3. Symmetry of the linking form

In this section, we shall give a short algebraic proof that the linking form
is (anti-) symmetric. The idea is to use the definition of the linking form in
terms of the cup product, see Lemma 2.5 (2).

Throughout this section we denote by ν : Q/Z ⊗ Z → Q/Z and ν : Z ⊗
Q/Z → Q/Z the obvious isomorphisms. Now recall that by definition we can
decompose the cup product Y as

(2.4) Hk(M ;Z)×H l(M ;Q/Z) Y⊗−−→ Hk+l(M ;Z⊗Q/Z) ν∗−→ Hk+l(M ;Q/Z).

Lemma 2.6. Let X be a topological space. For any x ∈ Hk(X;Q/Z) and
y ∈ H l(X;Q/Z), we have

ν∗(β(x) Y⊗ y) = (−1)k+1 · ν∗(x Y⊗ β(y)) ∈ Hk+l+1(X;Q/Z).

Proof. We denote by ρ the canonical projection from Q to Q/Z. Pick f in
Ck(X;Q) and g in C l(X;Q) so that [ρ∗(f)] = x and [ρ∗(g)] = y. The usual
mild diagram chase in the definition of the Bockstein homomorphism shows
that there exist unique cocycles β(f) in Ck+1(X;Z) and β(g) in C l+1(X;Z)
which satisfy ι∗(β(f)) = δ(f) and ι∗(β(g)) = δ(g); here δ denotes the cobound-
ary map and ι denotes the inclusion map Z → Q. Using (2.1) together with
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the definition of β(f) and β(g), we have the following equality in Hk+l+1(X;
Q⊗Q):

0 = [δ(f Y⊗ g)] = [δ(f) Y⊗ g + (−1)k · f Y⊗ δ(g)](2.5)
= [ι∗(β(f)) Y⊗ g + (−1)k · f Y⊗ ι∗(β(g))].

In order to relate the right hand side of (2.5) to the expressions which ap-
pear in the statement of the lemma, we consider the following commutative
diagram of group homomorphisms

(2.6) Z⊗Q
ι⊗id

id⊗ρ

Q⊗Q

μ

Q⊗ Z

ρ⊗id

id⊗ι

Z⊗Q/Z
ν

Q

ρ

Q/Z⊗ Z
ν

Q/Z,

where ν and μ stand for the obvious multiplication maps. Using (2.5) and the
commutativity of (2.6), we get the following equality in Hk+l+1(X;Q/Z):

0 = (ρ ◦ μ)∗
([
i∗(β(f)) Y⊗ g + (−1)k · f Y⊗ i∗(β(g))

])
=

[
ν∗
(
β(f) Y⊗ ρ∗(g)

)
+ (−1)k · ν∗

(
ρ∗(f) Y⊗ β(g)

)]
= ν∗

(
[β(f)] Y⊗ [ρ∗(g)]

)
+ (−1)k · ν∗

(
[ρ∗(f)] Y⊗ [β(g)]

)
= ν∗(β(x) Y⊗ y) + (−1)k · ν∗(x Y⊗ β(y)).

Note that the third equality follows from the fact that β(f) ∈ Ck+1(X;Z),
ρ∗(g) ∈ Ck(X;Q/Z), ρ∗(f) ∈ C l(X;Q/Z) and β(g) ∈ C l+1(X;Z) are cocy-
cles. The lemma now follows immediately.

We can now finally provide the proof of Proposition 1.1. For the reader’s
convenience we recall the statement.

Proposition 1.1. Let M be a (2n+1)-dimensional rational homology sphere.
If n is odd, then the linking form λM is symmetric, otherwise it is anti-
symmetric.

Proof. Given a and b in Hn(M ;Z), we set x := β−1(PDZ
M (a)) and y :=

β−1(PDZ
M (b)). Using Lemma 2.5 (2), the factorization described in (2.4) and

Lemma 2.6, we obtain

λM (a, b) =
〈
(β−1 ◦ PDZ

M )(a) Y PDZ
M (b), [M ]

〉
= 〈ν∗(x Y⊗ β(y)), [M ]〉 = (−1)n+1 · 〈ν∗(β(x) Y⊗ y), [M ]〉.

(2.7)
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Since n(n + 1) is even it follows from (2.2) that

λM (a, b) = (−1)n+1 · 〈ν∗(y Y⊗ β(x)), [M ]〉.

Proceeding as in (2.7), this is nothing but λM (b, a), which concludes the proof
of the proposition.

3. Proof of Theorem 1.3

Our proof of Theorem 1.3 decomposes into two main steps. First, we provide
a convenient presentation of H1(M ;Z), then we compute the linking form.
We recall some of the notation from the introduction and we add a few more
definitions which shall be used throughout this chapter.

(1) We denote by Xg a fixed handlebody of genus g and we equip it with
an orientation. We denote by Zg a copy of Xg which we also view as an
oriented manifold.

(2) We write Fg = ∂Xg = ∂Zg.
(3) We denote by a1, . . . , ag, b1, . . . , bg ∈ H1(Fg;Z) a symplectic basis for

H1(Fg;Z) such that a1, . . . , ag form a basis for H1(Xg;Z). In particular
the intersection numbers are given by ai ·bj = δij , bi ·aj = −δij , ai ·aj = 0
and bi · bj = 0 for i = 1, . . . , g. Note that this implies that b1, . . . , bg
represent the zero element in H1(Xg;Z). By a slight abuse of notation
we also denote by ai ∈ H1(Xg;Z) the image of ai under the inclusion
induced map H1(Fg;Z) → H1(Xg;Z).

(4) Sometimes we will use the bases of (3) to make the identifications
H1(Fg;Z) = Z2g and H1(Xg;Z) = Zg. Furthermore, since Zg is a copy
of Xg we can use the same basis as for H1(Xg;Z) to make the identifi-
cation H1(Zg;Z) = Zg.

(5) Given an orientation-reversing self-diffeomorphism ϕ of the genus g sur-
face Fg we write M(ϕ) := Xg ∪ϕ Zg where we identify x ∈ Fg = ∂Xg

with ϕ(x) ∈ ∂Zg. Furthermore we denote by(
Aϕ Bϕ

Cϕ Dϕ

)

the matrix that represents ϕ∗ : H1(Fg;Z) → H1(Fg;Z) with respect to
the ordered basis a1, . . . , ag, b1, . . . , bg. If ϕ is understood, then we drop
it from the notation.
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(6) The following diagram summarizes the various inclusion maps arising
in the subsequent discussion:

Fgj

i

k

Xg

l

Zg

m
M.

We give Fg ⊂ M the orientation given by Fg = ∂Xg and viewing Xg

as a submanifold of M . Note that with all of our conventions we have
[Fg] = −[∂Zg] if we view Zg as a submanifold of M .

(7) If g is understood, then we drop it from the notation.

3.1. A presentation for H1(M ;Z)

We start with an elementary lemma.

Lemma 3.1. Let ϕ be a self-diffeomorphism of F = Fg. We have

(
A B
C D

)−1

=
(

DT −BT

−CT AT

)
.

In particular, we have ABT = BAT .

Proof. Since ϕ∗ is a symplectic automorphism of H1(F ;Z), it follows that the
matrix R := ( A B

C D ) preserves the symplectic matrix J :=
(

0 Ig
−Ig 0

)
. In other

words we have RTJR = J which immediately implies that R−1 = J−1RTJ .
The first statement now follows from an elementary calculation.

The second statement follows from multiplying the matrix R = ( A B
C D )

with the inverse we just calculated and considering the top right corner which
necessarily needs to be the zero matrix.

Using this lemma, we can provide a presentation matrix for H1(M(ϕ);Z).

Proposition 3.2. Let ϕ be a self-diffeomorphism of F = Fg. Then the fol-
lowing statements hold:

(1) The abelian group H1(M ;Z) is generated by i∗(a1), . . . , i∗(ag) and with
respect to this generating set, BT is a presentation matrix. More pre-
cisely, the homomorphism Zg → H1(M ;Z) given by er �→ i∗(ar) is an
epimorphism and its kernel is given by BT · Zg.
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(2) If M = M(ϕ) is a 3-dimensional rational homology sphere, then
det(B) �= 0, i.e. B is invertible over the rationals.

Proof. We denote by ι : ∂Z → Z the inclusion map. Since all the spaces
involved are connected, the Mayer-Vietoris sequence of M = X ∪F Z yields
the exact sequence

(3.1) H1(∂Z;Z)

( ϕ−1
∗

−ι∗

)
−−−−−→

H1(X;Z)
⊕

H1(Z;Z)

l∗⊕m∗−−−−→ H1(M ;Z) → 0.

Recalling our choice of bases, we observe that the inclusion induced map
ι∗ : H1(∂Z;Z) → H1(Z;Z) is represented by the matrix (Ig 0). Further-
more, by Lemma 3.1 the map ϕ−1

∗ is represented by (DT − BT ). The map
ι∗ : H1(∂Z;Z) → H1(Z;Z) is evidently an epimorphism and thus we see that
the exact sequence displayed in (3.1) reduces to

ker(ι∗)
ϕ−1
∗−−→ H1(X;Z) → H1(M ;Z) → 0.

Evidently, ker(ι∗) = 0⊕Zg. Since ϕ−1
∗ is represented by the matrix (DT −BT ),

we deduce that the restriction of ϕ∗ to ker(ι∗) is represented by −BT , as
desired. This concludes the proof of the first statement.

The second statement of the proposition is an immediate consequence of
the first statement.

3.2. The computation of the linking form

Recall that we denote by i : F → M the inclusion. The proof of Theo-
rem 1.3 is based on the following observation. If we manage to find a map
θ : H1(M ;Z) → H1(F ;Q/Z) which makes the diagram

(3.2) H1(M ;Z)
PDZ

M

θ

H2(M ;Z) β−1

H1(M ;Q/Z)
i∗

H1(F ;Q/Z)
PDQ/Z

F
H1(F ;Q/Z)

commute, then we can reduce the calculation of the Poincaré duality in the
3-manifold M to the much-better understood Poincaré duality of the surface
F and it will be fairly easy to compute the linking form.
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Indeed, assuming such a map θ exists, we claim that the computation of

λM ◦ (i∗ × i∗) : H1(F ;Z) ×H1(F ;Z) → Q/Z

boils down to the computation of θ ◦ i∗. More precisely, for v, w ∈ H1(F ;Z)
we apply successively the definition of the linking form, the naturality of the
evaluation map (which is a consequence of Lemma 2.1 (1)) and the commu-
tativity of (3.2) to obtain that:

λM (i∗(v), i∗(w)) =
〈
(β−1 ◦ PDZ

M ◦i∗)(v), i∗(w)
〉
M

(3.3)
=

〈
(i∗ ◦ β−1 ◦ PDZ

M ◦i∗)(v), w
〉
F

=
〈
(PDQ/Z

F ◦θ ◦ i∗)(v), w
〉
F

∈ Q/Z.

Summarizing, the proof of Theorem 1.3 now decomposes into two steps: firstly,
we define the map θ : H1(M ;Z) → H1(F ;Q/Z) (and check that it makes (3.2)
commute) and secondly, we compute θ ◦ i∗. To carry out the first step, define
θ as the composition

H1(M ;Z) β−1
−−−→ H2(M ;Q/Z) p∗−−→ H2(M,X;Q/Z)(3.4)
∼=←− H2(Z, F ;Q/Z) ∂−→ H1(F ;Q/Z)

of the following maps: the inverse homological Bockstein homomorphism, the
map induced by the obvious map p : (M, ∅) → (M,X), the inverse of the exci-
sion isomorphism (which is applicable since (M,X,Z) is an excisive triad, full
details can be found in [5, Chapter 43]) and the connecting homomorphism
of the long exact sequence of the pair (Z, F ) with Q/Z-coefficients.

Lemma 3.3. The homomorphism θ defined in (3.4) makes (3.2) commute.
More precisely, we have

PDQ/Z
F ◦θ = i∗ ◦ β−1 ◦ PDZ

M : H1(M ;Z) → H1(F ;Q/Z).

Proof. We consider the maps of pairs p : (M, ∅) → (M,X) and q : (Z, F ) →
(M,X). Note that our orientation conventions from the beginning of the
section implies that we have p∗([M ]) = q∗([Z]) and that [∂Z] = −[∂X] =
−[F ].

Recall that by definition, capping with the fundamental class is the inverse
of the Poincaré duality isomorphism. Keeping this in mind, the lemma will
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be proved if we manage to show that the following diagram commutes:

H1(M ;Z)

θ

H2(M ;Z)
X[M ]
∼=

H2(M ;Q/Z)

∼= β∼=

p∗

H1(M ;Q/Z)
X[M ]
∼=

β

m∗

i∗

H2(M,X;Q/Z)

H2(Z, F ;Q/Z)
q∗∼=

∂

H1(Z;Q/Z)
X[Z]
∼=

k∗

H1(F ;Q/Z)
=

H1(F ;Q/Z)
X−[∂Z]

∼=
=

H1(F ;Q/Z) H1(F ;Q/Z).
X[F ]
∼=

Indeed, starting from the upper right corner and traveling to the lower left
corner, the leftmost path produces the map θ ◦ (PDZ

M )−1, while the rightmost
path produces the map (PDQ/Z

F )−1 ◦ i∗ ◦ β−1.
The top square commutes by Lemma 2.4, to be precise, it commutes since

in our case we have (−1)2 = 1. The third square from the top commutes by
Proposition 2.3. (Note that we had to sneak in a minus sign in front of the [∂Z]
to cancel the minus sign we would otherwise pick up from Proposition 2.3.)
The bottom square commutes since we had observed in the beginning of the
proof that [∂Z] = −[F ]. Finally, the second square (or first and only pentagon,
depending on your point of view), commutes by applying the first statement
of Lemma 2.1. More precisely, applying the first statement of Lemma 2.1 to
the two maps p : (M, ∅) → (M,X) and q : (Z, F ) → (M,X) and using that
p∗([M ]) = q∗([Z]) we obtain that for every ϕ in H1(M ;Q/Z), we have the
following equality in H2(M,X;Q/Z):

p∗(ϕ X [M ]) = p∗(p∗(ϕ) X [M ]) = ϕ X p∗([M ]) = ϕ X q∗([Z])
= q∗(q∗(ϕ) X [Z]) = q∗(m∗(ϕ) X [Z]).

Here the first equality can easily give rise to confusion. The point is that
p : (M, ∅) → (M,X) is a map of pairs of topological spaces which is the
identity on the first entry. In Lemma 2.1 (1) we could have distinguished in
our notation between the maps of pairs of topological spaces and the maps on
the two individual spaces but we declined to do so to keep the notation short.



510 Anthony Conway, Stefan Friedl, and Gerrit Herrmann

The same applies to the last equality, since the map q : (Z, F ) → (M,X) of
pairs of topological spaces, when restricted to the first entry is precisely the
map m.

In the remainder of this paper we use the following notation:

(1) We denote by i the inclusion map F → M .
(2) We denote by ρ : Q → Q/Z the canonical projection.
(3) We denote by ΦZ : Zg → H1(F ;Z) the map that is given by ΦZ(er) =

ar; similarly, we define ΦQ : Qg → H1(F ;Q) and ΦQ/Z : (Q/Z)g →
H1(F ;Q/Z). We will use on several occasions that for Zg ⊂ Qg the
maps ΦZ and ΦQ agree.

(4) If in (3) we replace the ar by br we obtain maps that we denote by ΨZ,
ΨQ and ΨQ/Z.

The next proposition deals with the computation of θ ◦ i∗ : H1(F ;Z) →
H1(F ;Q/Z) on the span of a1, . . . , ag ∈ H1(F ;Z).

Proposition 3.4. For any v ∈ Zg the following equality holds:

(θ ◦ i∗)(ΦZ(v)) = −ΨQ/Z(B−1Av) ∈ H1(F ;Q/Z).

Proof. In this proof we will mostly drop all inclusion maps from the notation,
especially if we work on the chain level. We denote by ã1, . . . , ãg, b̃1, . . . , b̃g
singular chains in F that represent a1, . . . , ag, b1, . . . , bg. Let v = (v1, . . . , vg) ∈
Zg. We denote by Φ̃Z : Zg → C1(F ;Z) the map that is given by Φ̃Z(er) = ãr
and we denote by Ψ̃Z : Zg → C1(F ;Z) the map that is given by Ψ̃Z(er) =
b̃r. We make the obvious adjustments in the notation when we use other
coefficients.
Claim.

(1) There exists x ∈ C2(X;Q) with ∂Q(x) = Ψ̃Q(B−1Av) ∈ C1(F ;Q) ⊂
C1(X;Q).

(2) There exists z ∈ C2(Z;Q) with ∂Q(z) = Φ̃Z(v) − Ψ̃Q(B−1Av) ∈ C1(F ;
Q) ⊂ C1(Z;Q).

Note that Ψ̃Q(B−1Av) is a rational linear combination of b̃1, . . . , b̃g. Since
each b̃r is null-homologous in X we see that Ψ̃Q(B−1Av) is null-homologous
in C∗(X;Q). This shows that there exists a singular 2-chain x ∈ C2(X;Q)
with ∂Q(x) = Ψ̃Q(B−1Av).

We make the usual identification H1(Z;Z) = Zg and H1(Z;Q) = Qg

coming from the fact that Z is a copy of X. Under this identification the map
k∗ ◦ ΦQ : Qg → H1(Z;Q) = Qg is by definition given by the matrix A and
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the map k∗ ◦ ΨQ : Qg → H1(Z;Q) = Qg is by definition given by the matrix
B. Putting these two observations together we see that in H1(Z;Q) = Qg we
have the equality:

k∗
(
ΦQ(v) − ΨQ(B−1Av)

)
= (k∗ ◦ ΦQ)(v) − (k∗ ◦ ΨQ)(B−1Av)
= Av −BB−1Av = 0.

Put differently, the singular 1-chain Φ̃Q(v)−Ψ̃Q(B−1Av)=Φ̃Z(v)−Ψ̃Q(B−1Av)
is null-homologous in C∗(Z;Q), i.e. there exists a singular 2-chain z∈C2(Z;Q)
with ∂Q(z) = Ψ̃Z(v) − Ψ̃Q(B−1Av). This concludes the proof of the claim.

From the definition of the Bockstein homomorphism β : H2(M ;Q/Z) →
H1(M ;Z) as a connecting homomorphism and the above properties of x and
z, it follows immediately that

β([ρ∗(z + x)]) = i∗(ΦZ(v)) ∈ H1(M ;Q/Z).

To conclude the proof of the lemma, recall that the map θ is defined as
the composition

H1(M ;Z) β−1
−−→ H2(M ;Q/Z) p∗−−→ H2(M,X;Q/Z)

∼=←− H2(Z, F ;Q/Z)
∂Q/Z−−−→ H1(F ;Q/Z).

Using the definition of the relative homology group H2(M,X;Q/Z) and the
previous computation, it follows that

(p∗ ◦ β−1 ◦ i∗(ΦZ(v))) = p∗([ρ∗(z + x)]) = ρ∗([z]).

Since z is already a singular chain in C2(Z, F ;Q/Z) it suffices to prove the
following claim.
Claim. We have ∂Q/Z(ρ∗([z])) = −ΨQ/Z(B−1Av) ∈ H1(F ;Q/Z).

By the choice of z we have ∂Q(z) = Φ̃Z(v)−Ψ̃Q(B−1Av) ∈ C1(F ;Q). This
implies that ∂Q/Z(ρ∗([z])) = [ρ∗(Φ̃Z(v)) − ρ∗(Ψ̃Q(B−1Av))] ∈ H1(F ;Q/Z).
But Φ̃Z(v) is an integral class, so we have ∂Q/Z(ρ∗([z])) = −ΨQ/Z(B−1Av) ∈
H1(F ;Q/Z). This concludes the proof of the proposition.

We can now provide the proof of Theorem 1.3. In fact, we will prove the
following slightly more precise statement:
Theorem 3.5. Let g ∈ N and let ϕ : Fg → Fg be an orientation-preserving
diffeomorphism. Suppose that M(ϕ) is a rational homology sphere. Then the
following statements hold:
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(1) The above homomorphism i∗ ◦ ΦZ : Zg → H1(M(ϕ);Z) descends to an
isomorphism

i∗ ◦ Φ: Zg/BT
ϕZ

g ∼=−→ H1(M(ϕ);Z),

in particular the matrix Bϕ ∈ M(g × g,Z) has non-zero determinant.
(2) The isomorphism Φ from (1) defines an isometry from the form

Zg/BT
ϕZ

g × Zg/BT
ϕZ

g → Q/Z

(v, w) �→ −vTB−1
ϕ Aϕw

to the linking form of M(ϕ).

Remark. As a reality check, it is worth verifying that the form given in Theo-
rem 3.5 (2) is actually well-defined. It is clear that the form does not depend
on the choice of the representative w. Furthermore, by Lemma 3.1 we have
ABT = BAT which implies that the form does not depend on the choice of
the representative v.

Proof. Note that statement (1) has already been proved in Proposition 3.2.
Therefore, it is enough to show that for all v, w ∈ Zg we have

λM (i∗(ΦZ(v)), i∗(ΦZ(w))) = vT (B−1A)w ∈ Q/Z.

Combining (3.3) with Proposition 3.4, we obtain the equality

(3.5) λM (i∗(ΦZ(v)), i∗(ΦZ(w))) =
〈
(PDQ/Z

F ◦θ ◦ i∗)(ΦZ(v)),ΦZ(w)
〉
F

= −
〈
PDQ/Z

F (ΨQ/Z(B−1Av)),ΦZ(w)
〉
F
.

The commutativity of the diagram

H1(F ;Q)
PDQ

F

ρ∗

H1(F ;Q) ev

ρ∗

Hom(H1(F ;Q),Q)
ρ∗

H1(F ;Q/Z)
PDQ/Z

F
H1(F ;Q/Z) ev Hom(H1(F ;Q),Q/Z)

now implies that

〈
PDQ/Z

F (ΨQ/Z(B−1Av)),ΦZ(w)
〉
F

= ρ∗
(〈

PDQ
F (ΨQ(B−1Av)),ΦQ(w)

〉
F

)
.

(3.6)
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By the calculation of the intersection form of the surface F given in (2.3) we
have

(3.7) ρ∗
(〈

PDQ
F (ΨQ(B−1Av)),ΦQ(w)

〉
F

)
= −QF

(
ΨQ(B−1Av),ΦQ(w)

)
.

Finally, we recall that the ar and br form a symplectic basis for H1(F ;Z),
i.e. with respect to this basis the intersection form QF is represented by the
matrix

(
0 Ig

−Ig 0

)
. In our context, together with the equality ABT = BAT from

Lemma 3.1 this implies that

QF

(
ΨQ(B−1Av),ΦQ(w)

)
= −

(
0

B−1Av

)T(
0 Ig

−Ig 0

)(
w
0

)
(3.8)

= vTAT (B−1)Tw = vTB−1Aw.

The desired statement now follows from the combination of (3.5), (3.6), (3.7)
and (3.8).
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