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Abstract: In this paper we complete the topological description
of the space of representations of the fundamental group of a
punctured surface in SL2(R) with prescribed behavior at the
punctures and nonzero Euler number, following the strategy
employed by Hitchin in the unpunctured case and exploiting
Hitchin-Simpson correspondence between flat bundles and Higgs
bundles in the parabolic case. This extends previous results by
Boden-Yokogawa and Nasatyr-Steer. A relevant portion of the
paper is intended to give an overview of the subject.
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1. Introduction

Representations ρ : π1(M)→ G of the fundamental group of of a manifoldM
inside a Lie group G naturally arise as monodromies of (G,G/H)-geometric
structures à la Ehresmann [17] [18] on M (see also [25] and [28]).

From a differential-geometric point of view, the datum of such a rep-
resentation is equivalent to that of a flat principal G-bundle on M (or of
a vector bundle of rank N endowed with a flat connection and with mon-
odromy in G, in case G ⊂ GLN is a linear group): flatness is somehow the
counterpart of the homegeneity of G/H.

Conversely, a way of “understanding” such a representation ρ is to
geometrize it, namely to find a geometric structure on M with monodromy
ρ.

1.1. Closed surfaces

Let S be a compact connected oriented surface of genus g(S) ≥ 2.

1.1.1. Hyperbolic structures. A remarkable example of geometric
structure on S is given by hyperbolic structures, that is hyperbolic met-
rics on S up to isotopy. Indeed, a hyperbolic metric is locally isometric
to the upper half-plane H2, and so it induces a (PSL2(R),H

2)-structure
on S with monodromy representation ρ : π1(S)→ PSL2(R) ∼= Isom+(H

2). A
result credited to Fricke-Klein [20] (see also Vogt [64]) states that hyperbolic
structures on S are in bijective correspondence with a connected component
of the space Rep(S,G) of conjugacy classes of representations π1(S)→ G
with G = PSL2(R).

1.1.2. Euler number of a representation in PSL2(R). The con-
nected components of the whole space Rep(S,PSL2(R)) can be classified
according to a topological invariant of the RP1-bundle over S associated
to each such representation ρ: the Euler number eu(ρ) ∈ Z. The bound
|eu(ρ)| ≤ −χ(S) was proven by Milnor [48] and Wood [71]; then Goldman
[26] showed that each admissible value corresponds exactly to a connected
component of the representation space and that monodromies of hyperbolic
structures correspond to the component with eu = −χ(S). It is easy to see
that ρ : π1(S)→ PSL2(R) can be lifted to SL2(R) if and only if eu(ρ) is even.

Remark 1.1. More refined invariants of a representation are given by
bounded characteristic classes. The bounded Euler class for topological S1-
bundles was investigated by Matsumoto [45] and the analogous Toledo
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invariant for G/H of Hermitian type by Toledo [62]. Bounded Euler and
Toledo classes were used by Burger-Iozzi-Wienhard [10] to characterize max-
imal representations.

1.1.3. Local study of the representation spaces. Traces of a local
study of Rep(S,G) are already in Weil [66] [67]. A more general treatment
of the tangent space at a point [ρ] and the determination of the smooth locus
of Rep(S,G) can be found in Goldman [23], Lubotzky-Magid [41] and in the
lectures notes [24] by Goldman and [39] by Labourie. A deeper analysis of
the singularities of such moduli space can be found in Goldman-Millson [29].

1.1.4. Symplectic structure on the representation space. When G
is reductive, a natural symplectic structure on the smooth locus of Rep(S,G)
is defined by Atiyah-Bott [2] by using the equivalence between representa-
tions of the fundamental group of S in G and flat G-bundles on S.

In the case of the Fricke-Klein component of Rep(S,PSL2(R)), such a
symplectic structure was seen by Goldman [23] to agree with the Hermi-
tian pairing defined by Weil [65] using Petersson’s work [55] on automorphic
forms. Ahlfors [1] showed that such a Weil-Petersson pairing defines a Kähler
form, which is rather ubiquitous when dealing with deformations of hyper-
bolic structures (see for instance [70], [61], [9]).

1.1.5. Flat unitary bundles and holomorphic bundles. Consider the
case G = UN and fix a complex structure I on S. Representations of π1(S)
in the unitary group UN were object of a classical theorem by Narasimhan-
Seshadri [53], in which a real-analytic correspondence is established between
irreducible representations π1(S)→ UN and stable holomorphic vector bun-
dles of rank N and degree 0 on the Riemann surface (S, I). One direction is
easy, since every flat complex bundle is I-holomorphic; for the other direc-
tion, the authors show that stable bundles of degree 0 admit a flat Hermitian
metric: their argument essentially works by continuity method; a variational
proof of this statement was found later by Donaldson [15] proving the con-
vergence of the Hermitian Yang-Mills flow, as suggested in the fundamental
work of Atiyah-Bott [2].

1.1.6. Flat bundles and Higgs bundles. The celebrated paper [31]
by Hitchin treated the case of representations in G = SL2 and established
a real-analytic correspondence between irreducible ρ : π1(S)→ SL2(C) and
stable Higgs bundles (E,Φ), namely holomorphic vector bundles E → (S, I)
of rank N and trivial determinant endowed with a holomorphic End0(E)-
valued (1, 0)-form Φ on (S, I) and subject to a suitable stability condition.
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Compared to Narasimhan-Seshadri’s, the correspondence is less intuitive,
since the holomorphic structure on E does not agree with the underlying
holomorphic structure on the flat complex vector bundle V → S determined
by the representation ρ (coming from the fact that locally constant functions
are holomorphic) but it is twisted: the exact amount of such twisting is
determined by the aid of the harmonic metric on V , whose existence was
shown by Donaldson [16]. For G = GLN or G = SLN , the existence of the
harmonic metric was proven (on any compact manifold) by Corlette [12]
(and later Labourie [38]) and the correspondence (in any dimension) was
proven by Simpson [57], who also clarified the general picture by showing
[59] [60] that the fundamental objects to consider are local systems (classified
by a “Betti” moduli space), vector bundles with a flat connection (classified
by a “de Rham” moduli space) and holomorphic Higgs bundles (classified
by a “Dolbeault” moduli space) and by constructing their moduli spaces.

1.1.7. Correspondence for SL2(R). Back to the rank 2 case, among
the many results contained in [31], Hitchin could determine which Higgs
bundles correspond to monodromies of hyperbolic metrics, thus parametriz-
ing Teichmüller space by holomorphic quadratic differentials on (S, I) (note
that the Higgs field in Hitchin’s work identifies to the Hopf differential of
the harmonic map in Wolf’s parametrization [68]). Moreover, the space of
isomorphism classes of Higgs bundles (E,Φ) carries a natural S1-action
u · (E,Φ) = (E, uΦ), which is also rather ubiquitous when dealing with har-
monic maps with a two-dimensional domain (for instance [8]); in rank 2,
the locus fixed by the (−1)-involution [(E,Φ)]↔ [(E,−Φ)] is identified to
the locus of unitary (if Φ = 0) or real (if Φ 	= 0) representations. This allows
Hitchin to fully determine the topology of the connected components of
Rep(S,PSL2(R)) with non-zero Euler number as that of a complex vector
bundle over a symmetric product of copies of S. The real component with
Euler number zero seems slightly subtler to treat, since it contains certain
classes of reducible representations (or, equivalently, of strictly semi-stable
Higgs bundles) for which the correspondence does not hold.

1.2. Surfaces with punctures

Let S be a compact connected oriented surface and let P = {p1, . . . , pn} ⊂ S
be a subset of n distinct marked points. Denote by Ṡ the punctured surface
S \ P and assume χ(Ṡ) < 0.
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1.2.1. Absolute and relative representation space. The space
Rep(Ṡ, G) of conjugacy classes of representations ρ : π1(Ṡ)→ G can be par-
titioned according to the boundary behavior of ρ. More explicitly, fix an
n-uple c = (c1, . . . , cn) of conjugacy classes in G and define Rep(Ṡ, G, c) as
the space of conjugacy classes of representations ρ : π1(Ṡ)→ G that send a
loop positively winding about the puncture pi to an element of ci ⊂ G.

1.2.2. Spherical and hyperbolic structures. Similarly to the case of
a closed surface, isotopy classes of metrics of constant curvature K are the
easiest examples of geometric structures on Ṡ; a standard requirement is
to ask that the completion of such metrics has either conical singularities
or geodesic boundary of finite length (or cusps, if K < 0) at the punc-
tures. Monodromies of spherical structures (K = 1) naturally take values
in PSU2

∼= SO3(R) but can be lifted to SU2: if S has genus 0, such liftability
imposes restrictions on the angles of the conical points of a spherical metric
[51]. Monodromies of hyperbolic structures (K = −1) determine conjugacy
classes of representations ρ : π1(Ṡ)→ PSL2(R), which are also liftable to
SL2(R).

1.2.3. Euler number of a representation in PSL2(R). The Euler
number of a representation ρ : π1(Ṡ)→ PSL2(R) and a generalized Milnor-
Wood inequality |eu(ρ)| ≤ −χ(Ṡ) are treated by Burger-Iozzi-Wienhard in
[10], who also show that all values in the interval [χ(Ṡ),−χ(Ṡ)] are attained
and that representations ρ with eu(ρ) = −χ(Ṡ) correspond to monodromies
of complete hyperbolic metrics on Ṡ. Since eu : Rep(Ṡ,PSL2(R))→ R is
continuous and its restriction to the locus Rep(Ṡ,PSL2(R), c) is locally con-
stant, it is an invariant of the connected components of Rep(Ṡ,PSL2(R), c).

1.2.4. Local structure and Poisson structure. Similarly to the closed
case, representations π1(Ṡ)→ G (possibly with prescribed boundary values)
correspond to flatG-bundles with the same boundary monodromy; the defor-
mation theory is also analogous. If G is reductive, a natural Poisson struc-
ture [30] can be defined on the smooth locus of Rep(Ṡ, G), which restricts
to a symplectic structure on the smooth locus of the spaces Rep(Ṡ, G, c)
(see for instance [50] [49] for its link with Weil-Petersson structure when
G = PSL2(R) and for explicit formulae in the case of surfaces with conical
points or with boundary geodesics).

1.2.5. Flat unitary bundles and holomorphic parabolic bundles.
Unitary representations π1(Ṡ)→ UN determine a complex vector bundle
V̇ → Ṡ of rank N endowed with a flat connection and a parallel Hermitian
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metric. Such a vector bundle admits a canonical extension V → S (Deligne
[13]), in such a way that the connection may have at worst simple poles at P
with eigenvalues of the residues in [0, 1) and the natural parallel Hermitian
metric H vanishes at P of order in [0, 1). Mehta-Seshadri [47] introduced the
important notion of a parabolic structure on V at P , namely a filtration of
the fibers of V over P by order of growth with respect to H, and established
the analogue of Narasimhan-Seshadri’s result: for every complex structure
I on S, there is a correspondence between irreducible flat unitary bundles
on Ṡ of rank N with prescribed monodromy at the punctures and stable
holomorphic bundles of rank N and (parabolic) degree 0 on (S, I) with
parabolic structure at P of prescribed type. As in the closed case, going
from a flat bundle to a holomorphic parabolic bundle is easy; conversely,
the existence of a flat Hermitian metric on a stable holomorphic bundle
of degree 0 with prescribed polynomial growth at the parabolic points pi
was achieved in [47] essentially by continuity method, and then proved by
Biquard [3] using a variational approach.

1.2.6. Flat bundles and parabolic Higgs bundles. In a fundamen-
tal article [58] Simpson established the correspondence between irreducible
representations ρ : π1(Ṡ)→ GLN (C) and parabolic I-holomorphic vector
bundles E• of rank N and degree 0 endowed with a Higgs field Φ ∈
H0(S,KS ⊗ End(E•)) subject to a suitable stability condition, the weights
of E• and the residues of Φ at P being determined by the values of ρ on
peripheral loops. The real-analytic nature of Simpson’s correspondence was
proven by Konno [36] and Biquard-Boalch [4]. The case of a general alge-
braic reductive group G was recently treated by Biquard, Garcia-Prada and
Mundet i Riera [5].

1.2.7. Topological study of moduli spaces of Higgs bundles. Fol-
lowing Hitchin’s ideas, Boden-Yokogawa [7] analyzed some aspects of the
case of G = SL2(C) and in particular the Betti numbers of the moduli space
using Morse theory. Their result was then extended by Logares [40] to the
case of U(2, 1)-Higgs bundles and by Garćıa-Prada, Gothen and Muñoz [21]
to the SL3(C) and GL3(C) cases; on the other hand, Garćıa-Prada, Logares
and Muñoz [22] established the a Milnor-Wood inequality and determined
the connected components of the moduli space of U(p, q)-Higgs bundles.

A different approach via orbifold structures was taken by Nasatyr-Steer
[54], who implemented Hitchin’s ideas in rank 2 and also determined the
topology of the relative SL2(R)-representation space in the case of positive
Euler number and elliptic boundary monodromy of finite order.
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1.2.8. Content of the paper. After giving an overview of the subject
and of the fundamental results of the theory mentioned above, we focus on
the topology of the real locus of the moduli space of parabolic SL2-Higgs
bundles, and in particular on what happens as the parabolic structure
degenerates, or equivalently on the topology of SL2(R)-representation
spaces as some of the boundary monodromies cease to be strictly elliptic.

Fix a complex structure I on S. Given conjugacy classes ci ⊂ sl2(C),
numbers w1(pi) ∈ [0, 12 ] and a line bundle D on S, we consider the moduli
space Higgss(S,w, 2,D, c) of stable parabolic Higgs bundles (E•,Φ) on S
of rank 2 with parabolic weights w1(p1), 1− w1(pi) (briefly, of type w),
det(E•) ∼= D and residue Respi

(Φ) in ci.
In order to avoid to introduce too much notation at this point, we prefer

not to give here complete statements of the main results contained in this
paper but rather to list them in an informal way:

(1) stable parabolic Higgs bundles in Higgss(S,w, 2,D, c) that correspond
to representations ρ : π1(Ṡ)→ SL2(R) with eu(ρ) > 0 are character-
ized in Lemma 3.11 and Theorem 4.14;

(2) a classification of the connected and the irreducible components of the
locus of Higgss(S,w, 2,D, c) mentioned in (1) and of its closure and
the determination of their topology is obtained in Proposition 3.14 and
Proposition 3.16; in particular, these results combine in Theorem 4.14
to show that the closure (for the classical topology) of each connected
component of Rep(Ṡ, SL2(R), c) with eu > 0 is homeomorphic either
to a complex affine space or to an H1(S;Z/2Z)-cover of a complex
affine bundle over a symmetric product of S \ Phyp, where Phyp = {pi ∈
P | ci hyperbolic};

(3) again by Proposition 3.16 and Theorem 4.14, the closure of each con-
nected component of Rep(Ṡ,PSL2(R), c) with eu > 0 is homeomorphic
to a complex affine bundle over a symmetric product of S \ Phyp;

(4) the connected components of Rep(Ṡ,PSL2(R), c) are classified by their
Euler number by Corollary 4.15;

(5) the connected components of Rep(Ṡ,PSL2(R), c) that can host mon-
odromies of hyperbolic structures are determined in Proposition 2.21
and their topology is deduced in Corollary 4.16.
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The precise topological description of such representation spaces in the
punctured case can be compared to the one in the closed case by looking at
Theorem 2.19 and Theorem 2.20.

Remark 1.2. In the special case of all elliptic boundary monodromies, the
above results (1-4) are already in [7] and, for elliptic boundary monodromies
of finite order, the same topological description was obtained in [54]. The
case of monodromy representations of hyperbolic structures with cusps (and
so maximal Euler number) was analyzed by Biswas, Arés-Gastesi and Govin-
darajan [6]. Similarly to what happens with closed surfaces, the work of Wolf
[69] on harmonic maps that “open the node” from nodal Riemann surfaces
to smooth hyperbolic surfaces relates to the case of an SL2(R)-Higgs bundle
with imaginary residues at the punctures.

As an example of a by-product of our analysis, we describe the topology
of components of the representation space that can contain monodromies of
hyperbolic structure (see also Corollary 4.16).

Corollary 1.3 (Topology of uniformization irreducible compo-
nents). Let ρ be the monodromy representation of a hyperbolic metric
on Ṡ of area 2πe > 0 whose completion has conical singularities of angles
ϑ1, . . . , ϑk > 0 at p1, . . . , pk, cusps at pk+1, . . . , pr and geodesic boundaries
of lengths �r+1, . . . , �n > 0. Let ci be the conjugacy class of the monodromy
ρ about the i-th end of Ṡ and let s0 = #{i ∈ {1, . . . , k} |ϑi ∈ 2πN+}.
Then [ρ] belongs to the irreducible component of Rep(Ṡ,PSL2(R), c) with
Euler number e = −χ(Ṡ)−∑k

i=1
ϑi

2π > 0, and such irreducible component
is real-analytically diffeomorphic to a holomorphic affine bundle of rank
3g − 3 + n−m over Symm−s0(S \ {pk+1, . . . , pn}), where m =

∑k
i=1

⌊
ϑi

2π

⌋
.

Moreover, its closure Rep(Ṡ,PSL2(R), c) is homeomorphic to a holomorphic
affine bundle of rank 3g − 3 + n−m over Symm−s0(S \ {pr+1, . . . , pn})

1.3. Structure of the paper

In Section 2 we review the definition of representation space of the funda-
mental group of a punctured surface Ṡ and the basic smoothness results.
Then we recall the (Riemann-Hilbert) correspondence between representa-
tions of the fundamental group of a surface in an algebraic group G and
flat principal G-bundles. In particular, we review the case of a linear group
G ⊂ GLN and the flat vector bundle of rank N attached to a representa-
tion. Then we analyze the case of a PSL2(R)-representation ρ and we discuss
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the Euler number of ρ, some well-known fundamental results on the topol-
ogy of the PSL2(R)-representation space and we compare our results with
those. Finally, we briefly mention monodromy representations coming from
hyperbolic structures possibly with cusps, conical singularities and geodesic
boundaries.

In Section 3 we first recall the notion of parabolic bundle following
Simpson and we show examples over the disk Δ, originating (à la Mehta-
Seshadri) from representations π1(Δ̇)→ U1 and π1(Δ̇)→ SU2. Similarly, we
introduce the definition of Higgs bundles and show examples coming from
π1(Δ̇)→ GLN (C) with N = 1, 2. Then we recall the notion of slope stability
and of moduli space of stable parabolic Higgs bundles. Finally, we specialize
to the case of G = SL2 and we study the topology of the locus fixed by the
involution [(E•,Φ)]↔ [(E•,−Φ)] and that corresponds to representations in
SL2(R) with eu > 0.

In the final Section 4 we recall first the main correspondence results in
the theory of representations of fundamental groups of surfaces and holomor-
phic (parabolic) (Higgs) bundles. Then we illustrate how the correspondence
works for SL2(R) and for PSL2(R) and we describe the topology of the com-
ponents of the representation space. We finally conclude with two corollaries
about uniformization components.
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1.5. Notation

Let S be compact, connected, oriented surface of genus g(S) and P =
{p1, . . . , pn} be a subset of distinct points of S. Denote by Ṡ the punctured
surface S \ P and assume χ(Ṡ) < 0.

Let π be the fundamental group π1(Ṡ, b), where b ∈ Ṡ is a base point,

and fix a universal cover (˜̇S, b̃)→ (Ṡ, b) on which π then acts by deck trans-
formations.

Fix a standard set {α1, β1, . . . , αg(S), βg(S), γ1, . . . , γn} of generators of
π, that satisfy the unique relation [α1, β1] · · · [αg(S), βg(S)]γ1 · · · γn = Id. In
particular, γi is freely homotopic to a small loop that simply winds about
the puncture pi counterclockwise. We will also write ∂i for the conjugacy
class of γi in π (or, equivalently, for the free homotopy class of γi on Ṡ).

We will denote by G a reductive real or complex algebraic group with
finite center Z = Z(G) and by g its Lie algebra. If ci is a conjugacy class or
a union of conjugacy classes in G, then we denote by ci its closure for the
classical topology. Similarly, if ci is a conjugacy class or a union of conjugacy
classes in g, we denote by ci its closure. We use the symbol c for an n-uple
(c1, . . . , cn) and c for an n-uple (c1, . . . , cn), and similarly for their closures
c and c.

If r = (r1, . . . , rn) is a string of n non-negative real numbers, then ‖r‖1
will denote their sum r1 + r2 + · · ·+ rn.

1.5.1. Convention. We view H ⊂ CP1 via z �→ [1 : z], so that a matrix
in PSL2(R) acts on H as

(
a b
c d

)
· z =

c+ dz

a+ bz

Consider the transformations Rθ, T ∈ PSL2(R) defined as

Rθ =

(
cos(θ/2) − sin(θ/2)
sin(θ/2) cos(θ/2)

)
, T =

(
1 0
1 1

)

Isometries of H conjugate to Rθ (resp. to T , or to T−1) in PSL2(R) are called
rotations of angle θ (resp. positive unipotents, or negative unipotents).
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2. Representations of the fundamental group and flat
bundles

2.1. Representation spaces

We denote by Repb(Ṡ, G) the set of homomorphisms ρ : π → G. The map
Repb(Ṡ, G)→ G2g(S)+n that sends

ρ �→
(
ρ(α1), ρ(β1), . . . , ρ(αg(S)), ρ(βg(S)), ρ(γ1), . . . , ρ(γn)

)
establishes an identification between Repb(Ṡ, G) and the locus of

(A1, B1, . . . , Ag(S), Bg(S), C1, . . . , Cn) ∈ G2g(S)+n

such that [A1, B1] · · · [Ag(S), Bg(S)]C1 · · ·Cn = Id.

The algebraic structure on Repb(Ṡ, G) induced as a subvariety of
G2g(S)+n is independent of the choice of the generators of π.

The group G acts on Repb(Ṡ, G) by conjugation, that is the element
g ∈ G sends a homomorphism ρ ∈ Repb(Ṡ, G) to Adg ◦ ρ. Given any other
base-point b′ ∈ Ṡ, the isomorphism Repb(Ṡ, G) ∼= Repb′(Ṡ, G) depends on
the choice of a path between b and b′, but it becomes canonical after factoring
out the action of G.

Definition 2.1. The representation space Rep(Ṡ, G) is the Hausdorffiza-

tion of the topological quotient
�
Rep(Ṡ, G) := Repb(Ṡ, G)/G.

If G is compact, then all G-orbits in Repb(Ṡ, G) are closed and so the

map
�
Rep(Ṡ, G)→ Rep(Ṡ, G) is a homeomorphism.

Remark 2.2. If G is a complex group, then Rep(Ṡ, G) agrees with the
GIT quotient Repb(Ṡ, G)//G. If G is real and GC is its complexification,
then Rep(Ṡ, G) is a locally semialgebraic subset (i.e. locally defined by real
algebraic equalities and inequalities) inside the real locus Rep(Ṡ, GC)(R),
see for instance [32].

2.1.1. Closed case. For closed surfaces (n = 0 and so Ṡ = S), the fol-
lowing result was proven by Rapinchuk, Benyash-Krivetz and Chernousov
[56].

Theorem 2.3 (Irreducibility for representations in SLN (C) and
PSLN (C)). The algebraic varieties Repb(S,G) are irreducible for G =
SLN (C), PSLN (C).
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Problem 1 (Topology of representation spaces). Assuming n = 0,
determine the topology of Repb(S,G) and Rep(S,G): in particular, enumer-
ate the connected components (for the classical topology) of Rep(S,G).

We will see below that the above problem was almost completely solved
by Hitchin [31] for G = SL2(R), PSL2(R).

2.1.2. Punctured case. Assume now n > 0. Since π1(Ṡ) is free on
2g(S) + n− 1 generators, Repb(Ṡ, G) is isomorphic to G2g(S)+n−1 and G
acts diagonally by conjugation on each factor of G2g(S)+n−1.

The situation becomes more interesting if we consider the relative situ-
ation.

Definition 2.4. Let c = (c1, . . . , cn), where ci is a conjugacy class in G (or
possibly a finite union of conjugacy classes). The relative homomorphism
space Repb(Ṡ, G, c) is the locus in Repb(Ṡ, G) of homomorphisms ρ : π → G
such that ρ(∂i) ∈ ci.

Equivalently, Repb(Ṡ, G, c) is the preimage of c ⊂ Gn under the evalua-
tion map ev : Repb(Ṡ, G)→ Gn that sends ρ to

(
ρ(γ1), . . . , ρ(γn)

)
.

If G is a complex group, then conjugacy classes and their closures are
algebraic subvarieties and so Repb(Ṡ, G, c) is an algebraic subvariety of
Repb(Ṡ, G). If G is real, then conjugacy classes and their closures are in
general semialgebraic subsets and so Repb(Ṡ, G, c) is semialgebraic inside
Repb(Ṡ, G).

Example 1. In the special case of G = PSL2(R) conjugacy classes con-
sisting of hyperbolic or elliptic elements are algebraic and closed; on the
other hand, the class c ⊂ PSL2(R) consisting of positive unipotent ele-
ments (or negative unipotent elements) is semi-algebraic and not closed:
indeed, its classical closure c consists of c ∪ {Id} and its Zariski closure is
c ∪ {Id} ∪ (−c).

The definition of Repb(Ṡ, G, c) as well as the induced (semi-)algebraic
structure are independent of the choice of the loops γ1, . . . , γn.

Definition 2.5. The relative representation space Rep(Ṡ, G, c) is the Haus-

dorffization of the topological quotient
�
Rep(Ṡ, G, c) := Repb(Ṡ, G, c)/G.

As in the absolute case, if G is a complex group, then Rep(Ṡ, G, c) agrees
with the GIT quotient Repb(Ṡ, G, c)//G and it is an algebraic subvariety of
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Rep(Ṡ, G). If G is real, then Rep(Ṡ, G, c) is a locally semialgebraic subset
of Rep(Ṡ, G).

Problem 2 (Topology of relative representation spaces). Assuming
n > 0, determine the topology of Repb(Ṡ, G, c) and Rep(Ṡ, G, c): in partic-
ular, enumerate the connected components (for the classical topology) of
Rep(Ṡ, G, c).

Same remarks and questions hold for representations with boundary
values in c.

Remark 2.6. In light of the short exact sequence 0→ Z → G→ G/Z → 0,
we can view Repb(Ṡ, G) as an H1(Ṡ, Z)-bundle over Repb(Ṡ, G/Z). It is
easy to see that, if c̃i ⊂ G is the preimage of the conjugacy class ci ⊂ G/Z
under the projection G→ G/Z, then Repb(Ṡ, G, c̃) is an H1(S,Z)-bundle
over Repb(Ṡ, G/Z, c).

2.2. Flat G-bundles

Let G be the sheaf of smooth functions with values in G and G the subsheaf
of locally constant functions.

It is well-known that there is a bijective correspondence between G-local
systems on Ṡ and principal G-bundles ξ → Ṡ endowed with a flat connec-
tion ∇ ∈ Ω1(ξ, g)G. Indeed, for every flat G-bundle (ξ,∇), the sheaf ξ of
parallel sections of ξ is a local system; vice versa, given a G-local system ξ,
the G-bundle whose sheaf of smooth sections is ξ = G ×G ξ is endowed with
a flat connection induced by the exterior differential d : O → Ω1. Such a
construction also establishes a correspondence between framed flat principal
G-bundles (ξ,∇, τ) consisting of a flat G-bundle (ξ,∇) on Ṡ with a trivi-
alization τ : ξb

∼−→ G at the base point b ∈ Ṡ and framed G-local systems
(ξ, τ ′) consisting of a G-local system ξ with a trivialization τ ′ : ξ

b

∼−→ G at
b. The isomorphisms τ and τ ′ are called framings.

Notation. We will denote by Fl(Ṡ, G) the set isomorphism classes of flat
principal G-bundles on Ṡ and by Flb(Ṡ, G) the set of isomorphism classes of
b-framed flat principal G-bundles on Ṡ.

We wish to recall the well-known correspondence between flat G-bundles
and G-representations of π and to adapt it to the framed case.



Representations of Punctured Surface Groups in PSL2(R) 413

Consider the trivial G-bundle ξ̃ := ˜̇S ×G→ ˜̇S with the framing τ̃ : ξ̃b̃ =

{b̃} ×G
∼−→ G given by the projection onto the second factor. The flat con-

nection ∇̃ on ξ̃ is simply given by the de Rham differential.
Given a representation ρ ∈ Repb(Ṡ, G), the fundamental group π acts on

ξ̃, and more precisely via deck transformations on the factor ˜̇S and viamL ◦ ρ
on the factor G, where mL is the action of G on G by left multiplication. As
a consequence, ∇̃ descends to a flat connection ∇ on the G-bundle ξρ := ξ̃/π
on Ṡ. Moreover, τ̃ induces a framing τ : ξb

∼−→ G through the isomorphism
ξ̃b̃

∼−→ ξb. This construction determines an application

Ξb : Repb(Ṡ, G) −→ Flb(Ṡ, G).

Vice versa, given a framed flat G-bundle (ξ,∇, τ), the holonomy represen-
tation based at b descends to a homomorphism π → Aut(ξb) ∼= G by the
flatness of ∇, and so via τ to a homomorphism ρ := holb(ξ) : π → G. This
construction determines an application

holb : Flb(Ṡ, G) −→ Repb(Ṡ, G).

It is easy to check that Ξb and holb are set-theoreticallly inverse of each
other.

Any two trivializations τ1, τ2 : ξb → G at b are related by a unique ele-
ment g ∈ G, namely τ2 = mL(g) ◦ τ1. Hence, factoring out the action of G

one obtains the applications Ξ :
�
Rep(π,G)→ Fl(Ṡ, G) and

�
hol : Fl(Ṡ, G)→

�
Rep(π,G) which are set-theoretically inverse of each other.

Remark 2.7. Viewing Flb(Ṡ, G) as a quotient of the space of flat connec-
tions on G× Ṡ → Ṡ, it is possible to endow Flb(Ṡ, G) with the structure
of (real or complex) analytic variety that makes holb and Ξb analytic iso-
morphisms. Since we do not want to go deeper in this direction, we can
alternatively just put on Flb(Ṡ, G) the analytic structure induced by holb
and Ξb.

The correspondence in the relative case is dealt with analogously.

Notation. Denote by Flb(Ṡ, G, c) the set of isomorphism classes of b-
framed flat G-bundles on Ṡ with holonomy along the path ∂i in ci, and by
Fl(Ṡ, G, c) the set of isomorphisms classes of G-bundles on Ṡ with holonomy
along the i-th end in ci. Analogous notation for flat bundles with boundary
monodromy in c.
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The same construction as above works in the relative case and we sum-
marize the discussion in the following statement.

Lemma 2.8 (Equivalence between representations of π1 and flat
G-bundles). The applications

Repb(Ṡ, G, c)

holb
��
Flb(Ṡ, G, c)

Ξb

��

are set-theoretically inverse of each other. By factoring the G-action by con-
jugation on the representation and by left multiplication on the b-framing,
we recover the correspondence

�
Rep(Ṡ, G, c)

�

hol
��
Fl(Ṡ, G, c).

Ξ

��

We call the composition Fl(Ṡ, G, c)
�

hol−→
�
Rep(Ṡ, G, c)→ Rep(Ṡ, G, c)

simply hol.

2.3. Smoothness

Given a representation ρ : π → G, we denote by gρ ⊂ g (resp. Gρ ⊂ G) the
subset of elements which are invariant under the adjoint action of π though
ρ.

We can naturally identify Aut(ξρ) with the centralizer ZG(ρ(π)) = Gρ of
ρ(π) in G and the space TIdAut(ξρ) of first-order automorphisms with gρ ∼=
H0(Ṡ,Ad(ξρ)), where Ad(ξρ) is the flat g-bundle with monodromy Ad ◦ ρ.

Definition 2.9. A representation ρ is stable if gρ = {0} and the orbit G · ρ
is closed in Repb(Ṡ, G). We denote by Repsb(Ṡ, G) the subset of Repb(Ṡ, G)
consisting of stable representations, and similarly by Reps(Ṡ, G) the corre-
sponding locus in Rep(Ṡ, G).

Since we are assuming G algebraic, gρ = {0} if and only if Z(ρ(π)) is
finite. A proof of the following statement can be found in [33].

Lemma 2.10 (Proper action of G on Repsb). A representation ρ ∈
Repb(Ṡ, G) is stable if and only if ρ(π) is not contained in P × Z for any
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parabolic subgroup P ⊂ G. The action of G by conjugation on the subset
Repsb(Ṡ, G) is proper and with finite stabilizers.

Remark 2.11. If G is a finite cover of PGLN (K) with K = R,C, then
ρ ∈ Repb(Ṡ, G) is stable if and only if ρ is irreducible (that is, ρ does not
preserve any proper projective subspace of KPN−1).

A standard deformation theory argument shows that first-order defor-
mations of ξ are parametrized by H1(Ṡ,Ad(ξ)). The proof of the following
result can be found for instance in [23], [33], [39].

Proposition 2.12 (Tangent space to representation spaces). For
every representation ρ ∈ Repb(Ṡ, G), we have

H0(Ṡ; Ad(ξρ)) ∼= gρ and H2(Ṡ; Ad(ξρ)) ∼=
{
(g∨)ρ if n = 0

0 otherwise

by Poincaré duality. The centralizer Gρ acts on H1(Ṡ; Ad(ξρ)) by adjunction
and the quotient can be identified to T[ρ]Rep(Ṡ, G). Hence, the stable locus
is an open dense orbifold in the representation spaces and

Repsb(Ṡ, G) Reps(Ṡ, G)

dim (−χ(Ṡ) + 1) dim(G) −χ(Ṡ) dim(G)

for any n ≥ 0.

For n > 0 we have H0(Ṡ, Δ̇; Ad(ξ)) = 0 and H2(Ṡ; Ad(ξ)) = 0, and so
the tangent space T[ρ]Rep(Ṡ, G, c) in the relative case can be analyzed by

means of the following exact sequence associated to the couple (Ṡ, Δ̇)

0→ H0(Ṡ; Ad(ξ))→ H0(Δ̇; Ad(ξ))→ H1(Ṡ, Δ̇; Ad(ξ))→
→ H1(Ṡ; Ad(ξ))→ H1(Δ̇; Ad(ξ))→ H2(Ṡ, Δ̇; Ad(ξ))→ 0

where the Δi’s are disjoint open contractible neighbourhoods of the pi’s and
Δ̇ =

⋃n
i=1 Δ̇i is the union of the punctured disks Δ̇i = Δi \ {pi}.

In fact, since G is reductive, the Lie algebra g has a non-degenerate
invariant symmetric bilinear form, which induces an Ad-invariant iso-
morphism g ∼= g∨. By Lefschetz duality, H2(Ṡ, Δ̇; Ad(ξ)) ∼= H0(Ṡ; Ad(ξ))∨

and H1(Ṡ, Δ̇; Ad(ξ)) ∼= H1(Ṡ; Ad(ξ))∨. Thus, we obtain the Gρ-equivariant
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exact sequence

0 −→ gρ −→ H0(Δ̇; Ad(ξ))
ε∨−→ H1(Ṡ; Ad(ξ))∨ −→

−→ H1(Ṡ; Ad(ξ))
ε−→ H1(Δ̇; Ad(ξ)) −→ (g∨)ρ −→ 0.

Cocycles in ker(ε) induce first-order deformations ρt of ρ such that for every
i the boundary value ρt(γi) is conjugate to ρ(γi) for all t. Thus, taking
Gρ-coinvariants, we obtain T[ρ]Rep(Ṡ, G, c) ∼= ker(ε)Gρ .

Combining the above computation with the properness in Lemma 2.10,
we can conclude as follows.

Corollary 2.13 (Tangent space to relative representation spaces).
For n > 0, the locus Reps(Ṡ, G, c) is a smooth orbifold of dimension

Repsb(Ṡ, G, c) Reps(Ṡ, G, c)

dim (−χ(S) + 1) dim(G) + dim(c) −χ(S) dim(G) + dim(c)

Moreover, the singular locus of Reps(Ṡ, G, c) consists of those [ρ] with
boundary values in the singular locus of c.

2.4. Flat vector bundles

Let K = R,C and consider first G = GLN (K). To every flat principal G-
bundle ξ on Ṡ we can associate a vector bundle V = ξ ×G KN of rank N
endowed with a natural flat connection∇ in such a way that the monodromy
of (V,∇) coincides with that of ξ.

Vice versa, given a flat vector bundle (V,∇), we can construct the asso-
ciate flat principal G-bundle ξ using the same locally constant transition
functions as V , so that ξ has the same monodromy as V .

This establishes a correspondence

Fl(Ṡ,KN )
��
Fl(Ṡ,GLN (K)).��

where Fl(Ṡ,KN ) is the set of isomorphism classes of flat vector bundles
of rank N . An analogous correspondence holds for framed flat bundle, or
for flat bundles with monodromy at the punctures in prescribed conjugacy
classes.

For G = SLN (K), the correspondence is between flat principal SLN -
bundles and flat vector bundles V of rank N endowed with a trivialization
of their determinant det(V ) = ΛNV .
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Similarly, flat PGLN -bundles correspond to flat KPN−1-bundles. Such a
KPN−1-bundle P need not be a projectivization of a flat vector bundle, since
its monodromy need not lift to GLN (K).

In the real case, PSL2N+1(R) = PGL2N+1(R); whereas flat PSL2N (R)-
bundles correspond to flat orientable RP2N−1-bundles.

The following is a reformulation of Remark 2.11.

Corollary 2.14. If G/Z = PGLN (K) with K = R,C and ρ : π → G, then
the induced flat KPN−1-bundle P is irreducible (i.e. it has no proper flat
projective subbundle) if and only if ρ is stable.

For this reason, we will also write Repirr instead of Reps when dealing
with groups G which are finite covers of PGLN (K).

2.5. The case of PSL2

Assume now that G/Z = PSL2(C), namely that G = SL2(C),PSL2(C), and
so g = sl2(C). Then to each flat principal G-bundle ξ → Ṡ we can associate
a flat CP1-bundle P := ξ ×G CP1 on Ṡ.

We have seen in Remark 2.11 that ρ is stable if and only if it is irre-
ducible, namely if and only if no point of CP1 is fixed by ρ(π). The same
holds for G/Z = PSU2 ⊂ PSL2(C). In case G/Z = PSL2(R), stability can
be expressed in terms of non-existence of fixed points in H.

An easy consequence of Corollary 2.13 is the following.

Corollary 2.15 (Smoothness for PSL2). Let G/Z be
PSL2(C), PSU2, PSL2(R) and let c = (c1, . . . , cn) an n-uple of conju-
gacy classes of elements of G.

(a) If G/Z = PSU2, then Repsb(Ṡ, G, c) and Reps(Ṡ, G, c) are smooth orb-
ifolds.

(b) If G/Z = PSL2(C),PSL2(R), then ρ ∈ Repsb(Ṡ, G, c) and [ρ] ∈
Reps(Ṡ, G, c) are singular points if and only if there exists i such that
ρ(∂i) ∈ Z and ci consists of non-central unipotent elements.

Condition (b) in the above lemma can be easily understood by remem-
bering that the only non-closed conjugacy class in PSL2(C) is the class c
of non-trivial unipotent elements, whose closure contains the identity as a
singular point of c.
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2.6. Euler number of PSL2(R)-representations

Let P̃SL2(R) be the universal cover of PSL2(R) and let Z · ζ ⊂ P̃SL2(R) be
its center, where ζ = exp(R) and

R = π

(
0 −1
1 0

)
∈ sl2(R)

is an infinitesimal generator of the subgroup of (counterclockwise) rotations

that fix i ∈ H. We define the rotation number rot : P̃SL2(R)→ R as follows.

If g̃ ∈ P̃SL2(R) is elliptic, then g̃ is conjugate to exp(r ·R) for a unique
r ∈ R. In this case, we define rot(g̃) := r, so that rot(g̃) ∈ Z ⇐⇒ g̃ ∈ Z · ζ.

If g̃ ∈ P̃SL2(R) is not elliptic, then there exists a unique r ∈ Z such that g̃
can be connected to r · ζ through a continuous path of non-elliptic elements.
In this case, we define rot(g̃) := r.

Define also a “fractional” rotation number as {rot} : PSL2(R)→ [0, 1)

by requiring that rot(g̃)− {rot}(g) ∈ Z, where g̃ is any lift of g to P̃SL2(R).
It can be easily seen that rot and {rot} are invariant under conjugation

by elements of PSL2(R) and that the rotation number rot is continuous but
{rot} is not (see also [10] for more properties of the rotation number).

Here we adopt a result by Burger-Iozzi-Wienhard [10] as a definition of
Euler number for a representation ρ : π1(Ṡ)→ PSL2(R).

Definition 2.16. Assume n > 0. The Euler number of ρ : π → PSL2(R) is

eu(ρ) := −
n∑

i=1

ri ∈ R

where ρ̃ : π → P̃SL2(R) is any lift of ρ and ri := rot(ρ̃(γi)) ∈ R.

Notice that eu(ρ) + ‖{r}‖1 ∈ Z, where {ri} := {rot}(ρ(γi)) ∈ [0, 1).

Remark 2.17. If a representation is obtained as a composition ρ′ : π1(S \
{p1, . . . , pn}, b)→ π1(S \ {p1, . . . , pk}, b) ρ−→ PSL2(R) with 0 ≤ k < n, then
{rk+1} = · · · = {rn} = 0 and eu(ρ′) = eu(ρ). This allows to coherently define
the Euler number in the case of an unpunctured surface.

Remark 2.18. Suppose that [ρ] is a singular point of Rep(Ṡ,PSL2(R)).
Then ρ must fix a point of RP1 or it must be Abelian. In the former case,

there exists a lift ρ̃ whose action on the universal cover R̃P1 fixes a point.
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Hence, rot ◦ ρ̃ = 0 and so eu(ρ) = 0 and {rj} = 0 for all j. In the latter case,
ρ Abelian implies eu(ρ) = 0 and so ‖{r}‖1 ∈ Z.

Being invariant under conjugation by elements of PSL2(R), the Euler
number descends to a continuous map

eu : Rep(Ṡ,PSL2(R)) −→ R

and we call Rep(Ṡ,PSL2(R))e the preimage eu−1(e). If n = 0, then eu is
integral and so it is constant on connected components of Rep(S,PSL2(R)).
Moreover, the conjugation by an element in PGL2(R) \ PSL2(R) induces the
isomorphism Rep(S,PSL2(R))e ∼= Rep(S,PSL2(R))−e.

For closed surfaces the topology of Rep(S,PSL2(R))e with e 	= 0 is com-
pletely determined.

Theorem 2.19 (Topology of representation spaces of closed surfaces
in PSL2(R)). Assume n = 0 and g(S) ≥ 2.

(a) Every ρ ∈ Repb(S,PSL2(R)) satisfies |eu(ρ)| ≤ −χ(S) (Milnor [48],
Wood [71]). If eu(ρ) = −χ(S), then ρ is the monodromy of a hyperbolic
metric (Goldman [26]).

(b) Rep(S,PSL2(R))e 	= ∅ if and only if

e ∈ Z ∩
[
χ(S), −χ(S)

]
and, in this case, it is also connected (Goldman [26]).

(c) If e 	= 0, then Rep(S,PSL2(R))e is smooth.
For e > 0 the manifold Rep(S,PSL2(R))e is real-analytically diffeomor-
phic to a complex vector bundle of rank −3

2χ(S)−m over Symm(S),
where m = −χ(S)− e (Hitchin [31]).

Let now n > 0. Given an n-uple c = (c1, . . . , cn) of conjugacy classes in
PSL2(R), we call {ri} the rotation number of any element in ci. Moreover,
we denote by Phyp (resp. Pell, P+, P−, P0) the subset of points pi ∈ P such
that ci is hyperbolic (resp. elliptic, positive unipotent, negative unipotent,
the identity) and we let s− = #P− (resp. s0 = #P0).

The restriction

euc : Rep(Ṡ,PSL2(R), c) −→ R
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of eu has the property that euc + ‖{r}‖1 ∈ Z, where ‖{r}‖1 only
depends on c. Thus, euc is also constant on connected components of
Rep(Ṡ,PSL2(R), c).

As above, we denote by Rep(Ṡ,PSL2(R), c)e the preimage eu−1
c (e) and

we observe that the conjugation by an element of PGL2(R) \ PSL2(R)
induces the isomorphism Rep(Ṡ,PSL2(R), c)e ∼= Rep(Ṡ,PSL2(R), c

−1)−e,
where c−1

i = {g−1 ∈ PSL2(R) | g ∈ ci}.
In analogy with Theorem 2.19 in the closed case, the following result

holds in the punctured case.

Theorem 2.20 (Topology of relative representation spaces of punc-
tured surfaces in PSL2(R)). Assume n > 0 and let c and {r} be as above.

(a) The image of eu : Rep(Ṡ,PSL2(R))→ R is the interval
[
χ(Ṡ),−χ(Ṡ)].

If eu(ρ) = −χ(Ṡ), then all ρ(∂i)’s are hyperbolic or positive unipo-
tent elements for all i and ρ is the monodromy of a hyperbolic
metric with geodesic boundary components and cusps (Burger-Iozzi-
Wienhard [10]).

(b) Assume e > 0 and fix conjugacy classes c1, . . . , cn ⊂ PSL2(R).
Then Rep(Ṡ,PSL2(R), c)e 	= ∅ if and only if

e+ ‖{r}‖1 + s0 + s− ∈ Z ∩
(
0,−χ(Ṡ)

]
and, in this case, it is smooth and connected.

Assume now that e satisfies the hypotheses in (b).

(c) The component Rep(Ṡ,PSL2(R), c)e is real-analytically diffeomorphic
to the complement of s− nowhere-parallel affine subbundles of codi-
mension 1 inside a holomorphic affine bundle of rank −3

2χ(S) + n−
m+ s− over Symm−(s0+s−)

(
S \ (Phyp ∪ P+)

)
, where m = −χ(Ṡ)−

e− ‖{r}‖1.
(d) The locus Rep(Ṡ,PSL2(R), c)e is homeomorphic to an affine holo-

morphic bundle of rank −3
2χ(S) + n−m+ s− over Symm−(s0+s−)(S \

Phyp).

(e) If ci is the class of positive unipotents and c0 is obtained from
c by replacing ci with {Id}, then Rep(Ṡ,PSL2(R), c

0)e includes in
Rep(Ṡ,PSL2(R), c)e as the preimage over pi + Symm−(s0+s−)−1(S \
Phyp) ⊂ Symm−(s0+s−)(S \ Phyp).
If ci is the class of negative unipotents and c0 is obtained from
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c by replacing ci with {Id}, then Rep(Ṡ,PSL2(R), c
0)e includes in

Rep(Ṡ,PSL2(R), c)e as an affine subbundle over Symm−(s0+s−)(S \
Phyp) of codimension 1.

Claims (c-d-e) are consequence of Theorem 4.14, which in turn relies on
Proposition 3.16 and Corollary 3.17. Claim (b) easily follows from (c-d-e).

The case of some ci = {Id} can be also dealt with as in Remark 2.17.

2.7. Hyperbolic metrics

Let � = (�1, . . . , �n) with �i =
√−1ϑi and ϑi > 0 for i = 1, . . . , k and �i ≥ 0

for i = k + 1, . . . , n. We are interested in isotopy classes of hyperbolic metrics
of boundary type � on Ṡ, i.e. metrics on curvature −1 on Ṡ, whose completion
has a conical singularity of angle ϑi at pi for i = 1, . . . , k and a boundary
component of length �i (resp. a cusp if �i = 0) instead of the puncture pi for
i = k + 1, . . . , n.

We assume that the quantity

e� := −χ(Ṡ)−
k∑

i=1

ϑi

2π
= −χ(S)−

k∑
i=1

(
ϑi

2π
− 1

)

is positive, since hyperbolic metrics of boundary type � have total area e� > 0
by Gauss-Bonnet. In this case, denote by Y(Ṡ, �) the space of isotopy classes
of hyperbolic metrics on Ṡ of boundary type �.

Surfaces of curvature −1 are locally isometric to portions of the hyper-
bolic plane H. Given a metric h of curvature −1 on Ṡ, consider the pull-back

h̃ on ˜̇S. Since ˜̇S is simply-connected, local isometries into H glue to give a

global developing map devh : ˜̇S → H, which is a local isometry. Moreover, π
acts on H via a monodromy homomorphism ρh : π → Iso+(H) ∼= PSL2(R)
and devh is π-equivariant. Notice that devh is well-defined up to post-
composition with an isometry of H, and so also ρh is well-defined only as an
element of Rep(Ṡ,PSL2(R)).

We also observe that ρh arises as a monodromy of a flat principal
PSL2(R)-bundle as follows. Pull the trivial PSL2(R)-bundle over H back

via devh to a (trivializable) ξ̃h → ˜̇S. By ρh-equivariance, it descends to a
flat principal PSL2(R)-bundle ξh → Ṡ with holξh = ρh.
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Then we have a composition of real-analytic maps

Y(Ṡ, �) Ξ� �� Fl(Ṡ,PSL2(R), c�)
hol �� Rep(Ṡ,PSL2(R), c�)

h � �� ξh
� �� ρh

where the correspondence between �i and ci is dictated by the following
table

conjugacy class c	 �

Id 2π
√−1 · N+

positive unipotents 0

hyperbolics g with |Tr(g)| = 2| cosh(�/2)| R+

elliptics g with {rot}(g) = {�/(2π√−1)} 2π
√−1 · (R+ \ N+)

In fact, a cusp at pi corresponds to positive unipotent monodromy along γi.

Proposition 2.21 (Uniformization components). Let ϑ1, . . . , ϑk > 0
and �k+1, . . . , �n ≥ 0 and call � = (

√−1ϑ1, . . . ,
√−1ϑk, �k+1, . . . , �n). If e� >

0, then the image of hol ◦ Ξ� is contained inside Rep(Ṡ,PSL2(R), c�)e� .

Proof. After the above discussion, it is enough to notice that the Euler
number eu can be identified to the Toledo invariant (see for instance [10])
and so eu(holh) =

1
2πArea(h). �

2.7.1. Questions. Still little is known in general about the image of

hol ◦ Ξ� : Y(Ṡ, �) −→ Rep(Ṡ,PSL2(R), c�)e�

beside the fact that it is open for the classical topology and so its complement
C� is closed.

Question 1. For which � is the image of hol ◦ Ξ� the whole
Rep(Ṡ,PSL2(R), c�)e�?

Question 2. For which � is C� of zero measure?

Question 3. For which � is C� a countable union of proper (semi-)algebraic
subsets with no internal part?

Question 4. For which � does the mapping class group of (S, P ) act ergod-
ically on Rep(Ṡ,PSL2(R), c�)e�?



Representations of Punctured Surface Groups in PSL2(R) 423

Question 1 has affirmative answer if all the angles are smaller than π.
Roughly speaking, a possible argument is as follows.
Since the angles are smaller than π, simple closed geodesics on Ṡ avoid the
conical points and so their lengths are detected by the traces of the mon-
odromy. Moreover, any pair of pants decomposition of Ṡ gives rise to Fenchel-
Nielsen coordinates (and so Y(Ṡ, �) is diffeomorphic to (R+ × R)3g−3+n) and
this quickly leads to the injectivity of hol ◦ Ξ�. The collar lemma allows to
prove properness, and one concludes that hol ◦ Ξ� is indeed a diffeomor-
phism. In this case, the action of the mapping class group is properly dis-
continuous and with finite stabilizers, and so very far from being ergodic.

Concerning Question 4, Goldman has conjectured that the mapping
class group of a closed surface S acts ergodically on the components
Rep(S,PSL2(R))e with e 	= ∓χ(S). A positive answer to Question 4 would
immediately imply a positive answer to Question 2.

The case of a one-punctured torus was analyzed in complete detail by
Goldman [27]. For closed surfaces of genus 2 more is known now: a proof
of Goldman’s conjecture was given by Marché-Wolff [43] [42]; moreover,
Mathews [44] and Faraco [19] showed that all representations with Euler
number e = ±1 are monodromies of some hyperbolic metric with one conical
point of angle 4π.

3. Parabolic Higgs bundles

In this section, S will denote a compact connected Riemann surface endowed
with complex structure I.

3.1. Parabolic structures

Let E be a holomorphic vector bundle on S, which we constantly identify
with the locally-free sheaf of its sections.

Definition 3.1. Let E be a holomorphic vector bundle on S. A parabolic
structure on E over (S, P ) is a filtration R � w �→ Ew ⊂ E(∞ · P ) of the
sheaf E(∞ · P ) of sections which are meromorphic at P such that

(a) Ew ⊇ Ew′ if w ≤ w′ (decreasing)

(b) for every w ∈ R there exists ε > 0 such that Ew−ε = Ew (left-
continuous)

(c) E0 = E and Ew+1 = Ew(−P ) (normalized).
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We will denote by E• the datum of the bundle E and the given parabolic
structure.

Notation. Denote by Epi
the space of regular germs at pi of sections of

E and by Epi
(∞ · pi) the space of germs at pi of sections of E which are

meromorphic at pi. Given a parabolic structure on E, the induced filtration
on Epi

(∞ · pi) is denoted by w �→ Epi,w.

By definition, the jumps in the filtration at pi occur at those weights
w such that Epi,w � Epi,w+ε for all ε > 0. Thus, a parabolic structure is
equivalent to the datum of a weights

0 ≤ w1(pi) < w2(pi) < · · · < wbi(pi) < wbi+1(pi) = 1

for some bi ∈ [1, rk(E) + 1] and a filtration

Epi
= Epi,w1(pi) � · · · � Epi,wbi

(pi) � Epi,wbi+1(pi) = Epi
(−pi)

for each pi ∈ P .

Notation. We use the symbol w to denote the collection of
(wk(pi),mk(pi))

n
i=1, where mk(pi) = dim(Epi,wk(pi)/Epi,wk+1(pi)) and we will

say that the parabolic bundle E• is of type w. We will also write ‖w‖1 =
(‖w(p1)‖1, . . . , ‖w(pn)‖1), where ‖w(pi)‖1 =

∑bi
k=1mk(pi)wk(pi), and we

will say that w is integral if ‖w‖1 ∈ Nn.

The (parabolic) degree of E• is defined as deg(E•) := deg(E) +∑
pi∈P

‖w(pi)‖1.

Every holomorphic bundle E can be endowed with a trivial parabolic
structure, by choosing bi = 1 and w1(pi) = 0 for all i = 1, . . . , n. This
provides an embedding on the category of holomorphic bundles on S inside
the category of parabolic bundles on S.
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Direct sums, homomorphisms and tensor products of parabolic bundles
are defined as

(E ⊕ E′)pi,w := Epi,w ⊕ E′
pi,w

Hom(E•, E′
•) :=

{
f ∈ Hom(E,E′) | f(Epi,wj(pi)) ⊆ E′

pi,w′
k+1(pi)

if wj(pi) > w′
k(pi)

}

(E ⊗ E′)pi,w′′ :=

( ⋃
w+w′=w′′

Epi,w ⊗ E′
pi,w′

)
⊂ (E ⊗ E′)pi

(∞ · pi).

and we will writew ⊗w′ for the type of a parabolic bundle E• ⊗ E′• obtained
by tensoring E• of type w with E′• of type w′.

It is also possible to define a Hom-sheaf just by letting
Hom(E•, E′•)(U) := Hom (E•|U , E′•|U ) with Hom(E•, E′•)pi,w =
{germs at pi of morphisms E• → E′•+w} and also a dual E∨• :=
Hom(E•,OS).

We will say that a homomorphism is injective if it is so as a morphism
of sheaves, namely if it is injective at the general point of S, and properly
injective if it is injective but not an isomorphism. A parabolic sub-bundle
of E• is just a sub-bundle F ⊆ E, endowed with the induced filtration
Fw := F ∩ Ew; the quotient bundle E/F can be also endowed with a
natural parabolic structure by letting (E/F )w be the image of Ew under
the natural projection E → E/F .

Since H0(U,E•) = Hom(OU , E•|U ) = Hom(OU , E|U ) = H0(U,E), sec-
tions of E• are sections of E and so the same holds for higher cohomology
groups.

In order to understand parabolic structures, it is enough to localize the
analysis and consider bundles on a disk with parabolic structure at the
origin. The typical setting is the following.

Example 2 (Flat vector bundles on a punctured disk). Let N > 0
be an integer and let Δ̇ = Δ \ {p} with p = 0. Let H→ Δ̇ be the universal
cover, defined as u �→ z = exp(2π

√−1 · u), and let b ∈ Δ̇ be a base-point.
Call Ṽ := H× CN → H the trivial vector bundle and endow it with the nat-
ural connection ∇̃ that can be expressed as [∇̃]

˜V = d with respect to the

canonical basis Ṽ = {ṽ1, . . . , ṽn} of sections of Ṽ and a natural holomorphic

structure ∂
˜V
.

Given T = exp(−2π√−1 ·M) ∈ GLN (C), one can lift the natural action of
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π1(Δ̇, b) = 〈γ〉 on H to an action on Ṽ by letting γ · (u, v) = (u+ 1, T (v)).
The induced bundle V̇ := Ṽ /π1(Δ̇, b) inherits a flat connection ∇ that can
be written as [∇]V = d with respect to the basis V = {v1, . . . , vN} of flat

∂
V−holomorphic multi-sections of V̇ . Moreover, chosen the standard deter-

mination of log(z) on Δ̇,⎛⎜⎝ v′1
...
v′N

⎞⎟⎠ := exp
(
log(z) ·M

)⎛⎜⎝ v1
...
vN

⎞⎟⎠
defines a basis V ′ = {v′1, . . . , v′N} of univalent ∂

V−holomorphic sections of V̇
such that [∇]V ′ = d+M dz

z . Notice that ∇ and so Resp(∇) ∈ End(V |p) are
not uniquely defined by T , since exp(−2π√−1 •) : glN (C)→ GLN (C) is not
injective: in particular, the eigenvalues of Resp(∇) are only well-defined in
C/Z.

3.1.1. Rank 1. A parabolic structure at P on a line bundle L→ S is
just the datum of a weight w(pi) ∈ [0, 1) for each pi ∈ P , so that it makes
sense to write L• = L(

∑
iw(pi)pi). The parabolic degree of L• is simply

deg(L•) = deg(L) +
∑

iw(pi).

Notation. If L• = L(
∑

iw(pi)pi) is a parabolic line bundle, we denote
by �L•� its integral part, namely the underlying line bundle L with trivial
parabolic structure and by {L•} := L• ⊗ �L•�∨ = OS(

∑
iw(pi)pi) its frac-

tional part.

We incidentally remark that integral parabolic structures in rank 1 are
trivial.

Example 3 (Unitary line bundles on a punctured disk). Keep the
notation as in Example 2 and let N = 1, v = v1 and T = exp(−2π√−1 · λ) ∈
U1 with λ ∈ [0, 1). With respect to V ′ = {v′}, the flat connection

[∇]V ′ = d+ λ
dz

z

on V̇ with [Resp(∇)]V ′ = λ has monodromy 〈T 〉 and v = z−λv′ is a flat holo-
morphic multi-section of V̇ . Let V → Δ be the extension of V̇ defined by
requiring that v′ is a generator. We can put on V a ∇-invariant metric H
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by prescribing that ‖v‖H = c > 0 is constant, namely

‖v′‖H := c|z|λ

and so such an invariant norm has a zero of order λ ∈ [0, 1) at 0. We can
then put on E := V the same holomorphic structure as V and take e = v′

as a holomorphic generator of E, and define the filtration Ew by

H0(U,Ew) =

{
s ∈ H0(U,E)

∣∣∣ on every neighbourhood U ′ � U of p
|z|ε−w‖s‖H is bounded for all ε > 0

}
so that H0(U,E) = H0(U,Ew) for every w ∈ (−1 + λ, λ] and the jumps
occur at weights in λ+ Z.

The determinant det(E•) of a parabolic bundle E• of rank N is the
parabolic line bundle defined in the standard way as a quotient of E⊗N• by
the alternating action of SN . If E• is of type w, then

det(E•) ∼= det(E)⊗
(

n⊗
i=1

OS

(‖w(pi)‖1pi)
)

In particular, if w is integral, then det(E•) has trivial parabolic structure.

3.1.2. Rank 2 of integral type. Among all parabolic bundles of rank 2
we focus on those of integral type because of their relation with SL2-bundles.

Remark 3.2. A parabolic structure E• on a bundle E of rank 2 on (S, P )
is of integral type w (or, briefly, just integral) if and only if the following
condition holds for every pi ∈ P :

(1) either bi = 1 (degenerate case) and w1(pi) ∈
{
0, 12

}
;

(2) or bi = 2 (non-degenerate case) and
(
0, 12

) � w1(pi) < w2(pi) = 1−
w1(pi) ∈

(
1
2 , 1
)
.

If E• is integral of rank 2, then deg(E•) = deg(E) + #{pi ∈ P |w1(pi) > 0}.

We remark that, if E• is non-degenerate at pi (i.e. bi = 2), then giving
Epi,w2(pi) is equivalent to giving a line Li ⊂ E|pi

. Indeed, knowing Epi,w2(pi),
the line Li can be recovered as the kernel of E|pi

→ (
Epi

/Epi,w2(pi)

)
. Vice

versa, given Li, the germ Epi,w2(pi) is the kernel of Epi
→ E|pi

/Li.
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Example 4 (Type of parabolic line sub-bundle). Let E• be an integral
parabolic bundle of rank 2 and let F ⊂ E be a sub-bundle of rank 1. Then
the jump of the induced parabolic structure on F at pi occurs at wF (pi),
where

E• degenerate at pi E• non-degenerate at pi

wF (pi) w1(pi)
w1(pi) if F |pi

	= Li

1− w1(pi) if F |pi
= Li

The following example illustrates how parabolic structures on holomor-
phic vector bundles arise from unitary representations: since the argument
is local, we will only deal with the case of a bundle over a disk. A complete
treatment can be found in [47].

Example 5 (Rank 2 special unitary vector bundles on a punctured
disk). Keep the notation as in Example 2 and let N = 2 and T ∈ SU2.
Up to conjugation, we can assume that T is diagonal and that T (v1) =
exp(−2π√−1 · λ)v1 and T (v2) = exp(2π

√−1 · λ)v2 with λ ∈ [0, 1), and so
T acts on CP1 as a positive rotation of angle 4πλ that fixes [1 : 0]. The
connection ∇ on V̇ defined as

[∇]V ′ = d+

(
λ 0
0 −λ

)
dz

z
with [Resp(∇)]V ′ =

(
λ 0
0 −λ

)
with respect to the basis V ′ = {v′1 = zλv1, v

′
2 = z−λv2} has monodromy 〈T 〉.

Put on V̇ a ∇-invariant metric H by prescribing that v1, v2 are orthogonal
with ‖vi‖H = ci > 0 and define the univalent sections e1, e2 of V̇ as

e1 = v′1, e2 =

{
v′2 if λ = 0

z · v′2 if λ > 0

and extend V̇ to a vector bundle V → Δ with generators e1, e2. The holo-
morphic vector bundle E := V endowed with the same holomorphic struc-
ture as V has a pointwise orthogonal basis E = {e1, e2} of holomorphic sec-
tions, that satisfy

‖e1‖H = c1|z|λ, ‖e2‖H =

{
c2 if λ = 0

c2|z|1−λ if λ > 0

If λ = 0, then ‖ei‖H = ci and we have a degenerate parabolic structure with
w1 = 0. Similarly, if λ = 1

2 , then ‖ei‖H = ci|z| 12 and w1 =
1
2 .
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Assume now that λ > 0 but λ 	= 1
2 .

If λ ∈ (0, 12), then we let w1 = λ < w2 = 1− λ and L = Ce2 × {p} ⊂ E|p.
Since |z|λ > |z|1−λ, a section s = f1(z)e1 + f2(z)e2 satisfies

ordp‖s‖H = ordp

(
|f1zλ|+ |f2z1−λ|

)
=

=

{
w1 = λ if f1(p) 	= 0, i.e. if s(p) /∈ L

w2 = 1− λ if f1(p) = 0, i.e. if s(p) ∈ L.

If λ ∈ (12 , 1), then we let w1 = 1− λ < w2 = λ and L = Ce1 × {p} ⊂ Ep. In
both cases, Ew is defined by

H0(U,Ew) =
{
s ∈ H0(U,E)

∣∣ ‖s‖H · |z|ε−w bounded near p for all ε > 0
}

and in particular, H0(U,Ew2
) = {s ∈ H0(U,E) | s(p) ∈ L} and

H0(U,Ew) =

⎧⎪⎨⎪⎩
H0(U,E) for w ∈ [0, w1]

H0(U,Ew2
) for w ∈ (w1, w2]

H0(U,E(−p)) for w ∈ (w2, 1).

Observe that such parabolic structure is integral.

3.2. Higgs bundles

Definition 3.3. A parabolic Higgs bundle on (S, P ) is a couple (E•,Φ),
where E• is a holomorphic parabolic vector bundle of rank N and Φ ∈
H0(S,K(P )⊗ End(E•)). The residue of Φ at pi is the induced endomor-
phism Respi

(Φ) ∈ End(E•|pi
) of the filtered vector space E•|pi

.

Here is the motivating example in rank N = 1 on the punctured disk.

Example 6 (Line bundles on a punctured disk). Keep the notation as
in Example 2 and let N = 1 and T = exp[−2π√−1(λ+ iν)] ∈ GL1(C) = C∗

with λ ∈ [0, 1) and ν ∈ R. We can assume that ν 	= 0, as the case ν = 0 has
already been discussed in Example 3. Such a monodromy T is induced by a
flat connection ∇ that can be written as

[∇]V ′ = d+ (λ+ iν)
dz

z
with [Resp(∇)]V ′ = λ+ iν

with respect to V ′ = {v′ = v′1}. The metric H on V̇ defined by

‖v′‖H := c|z|λ
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is harmonic with respect to ∇, since i∂∂ log ‖v′‖2H = 0. Thus,

[∇]V ′ = [∇H ]V ′ +Φ+ Φ =

=

(
d+ λ

dz

z
+ i

ν

2

dz

z
+ i

ν

2

dz

z

)
+

(
i
ν

2

dz

z

)
+

(
−iν

2

dz

z

)
where∇H is a connection on V̇ compatible with the metricH and Resp(Φ) =
iν/2. Extend V̇ to the bundle V = Cv′ ×Δ→ Δ and put on the complex

line bundle E := V the holomorphic structure given by ∂
E
:= ∂

V − Φ, so

that ∇H is a Chern connection on (E, ∂
E
, H). Holomorphic sections of E

are generated then by e = exp(−iν log |z|)v′. Since ‖e‖H = ‖v′‖H = c|z|λ,
the filtration E• is as in Example 3, and so that the jumps occur at λ+ Z.

The following computation is borrowed from [58].

Example 7 (Flat SL2-vector bundles on a punctured disk). Keep
the notation as in Example 2 and let N = 2 and T ∈ SL2(C). If T is diag-
onalizable, then the bundle Ė splits and we are reduced to the rank 1 case
of Example 6. Thus, up to conjugation, we can assume that

[T ]V ′ =

(
1 −πi
0 1

)
, [∇]V ′ = d+

1

2

(
0 1
0 0

)
dz

z

with respect to V ′ = {v′1, v′2} and so [Resp(∇)]V ′ = 1
2

(
0 1
0 0

)
. Put on V̇

the metric H defined by

[H]V ′ =

(
2| log |z||−1 −1

−1 | log |z||
)

which is harmonic for ∇ and extend V̇ to a complex bundle V → S with

basis V ′. Thus, ∇ = ∇H +Φ+ Φ
H
, where

[Φ]V ′ =
1

2

( −| log |z||−1 −1
−| log |z||−2 | log |z||−1

)
dz

z
,

[
Φ
H
]
V ′

=
1

2

(
0 0

| log |z||−2 0

)
dz

z
.

and ∇H is compatible with H. Let now Ė := V̇ as a complex vector bundle
and notice that E = {e1 := v′1 +

v′
2

| log |z|| , e2 := v′2} is a set of generators for Ė,
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which are holomorphic with respect to the operator ∂
E
:= ∂

V − Φ
H
. Thus,

we can extend Ė to a E → Δ by requiring that e1, e2 are generators. A quick
calculation gives

[Φ]E =
1

2

(
0 1
0 0

)
dz

z
, [Φ

H
]E =

1

2

(
0 0

| log |z||−2 0

)
dz

z

and so Φ ∈ H0(Δ,K(p)⊗ End0(Ė)) is a traceless Higgs field with nonzero

nilpotent residue at p and Φ
H

is its H-adjoint. From

c

|log |z|| 12
≤ ‖ej‖H ≤ c′|log |z|| 12

it follows that w1 = 0, the parabolic structure is integral degenerate and the
jumps occur at Z.

A similar computation shows that, for T ′ = −T , the norm satisfies

c|z| 12
|log |z|| 12

≤ ‖ej‖H ≤ c′|log |z|| 12 |z| 12

and so we would still obtain an integral degenerate parabolic structure with
w1 =

1
2 and a traceless Higgs field with nonzero nilpotent residue, but the

jumps would occur at 1
2 + Z.

A morphism of parabolic Higgs bundles f : (E•,Φ)→ (E′•,Φ′) is a map
f : E• → E′• of parabolic bundle that makes the following diagram

E
Φ ��

f
��

E ⊗K(P )

f⊗1
��

E′ Φ′
�� E′ ⊗K(P )

commutative. We will say that f is injective (resp. properly injec-
tive) if f : E → E′ is. A parabolic Higgs sub-bundle of (E•,Φ)
is a sub-bundle F• ⊆ E• such that Φ(F ) ⊆ F ⊗K(P ); the map
Ψ : (E/F )• → (E/F )• ⊗K(P ) induced by Φ makes ((E/F )•,Ψ) into
a parabolic Higgs quotient bundle.

3.3. Stability

The slope of the parabolic bundle E• on (S, P ) is defined as μ(E•) :=
deg(E•)
rk(E) .
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Definition 3.4. A parabolic Higgs bundle (E•,Φ) on (S, P ) is stable (resp.
semi-stable) if μ(F•) < μ(E•) (resp. μ(F•) ≤ μ(E•)) for every properly injec-
tive (F•,Ψ)→ (E•,Φ). A direct sum of stable parabolic Higgs bundles with
the same μ is said polystable.

Remark 3.5. It is well-known that stable bundles are simple, i.e. their
endomorphisms are multiples of the identity, and so the group of their
automorphism is C∗. The same argument works for parabolic Higgs bun-
dles. Indeed, if f : (E•,Φ)→ (E•,Φ) is a non-zero homomorphism, then
μ(E•) ≤ μ(Im(f)) ≤ μ(E•) by semistability of (E•,Φ). This forces Im(f) =
E• because (E•,Φ) is stable. Now pick a point q ∈ S and let λ ∈ C be an
eigenvalue of fq : E|q → E|q. The endomorphism (f − λ · Id) ∈ End(E•,Φ)
is not surjective and so it vanishes by the above argument. It follows that
f = λ · Id.

Semi-stable parabolic Higgs bundles have the Jordan-Hölder property:
if (E•,Φ) is semi-stable, then there exists a filtration

{0} = E0
• � E1

• � E2
• � · · · � E•

by parabolic sub-Higgs-bundles such that the Higgs bundle structure
Grs(E•,Φ) induced on the quotient Es•/Es−1• is stable and with slope
μ(Grs(E•)) = μ(E•). It can be checked that, though the filtration is not
canonical, the associated graded object

Gr(E•,Φ) =
⊕
s

Grs(E•,Φ)

is. As for vector bundles, two parabolic Higgs bundles (E•,Φ), (E′•,Φ′) are
called S-equivalent if Gr(E•,Φ) ∼= Gr(E′•,Φ′). Thus, every semistable object
is S-equivalent to a unique polystable one, up to isomorphism.

3.4. Moduli spaces of parabolic SLn-Higgs bundles

Fix a type w, an N -uple c of conjugacy classes in slN (C) and a base-point
b ∈ Ṡ. Fix also a holomorphic parabolic line bundle D• of type ‖w‖1.

Definition 3.6. A parabolic Higgs bundle of rank N with determinant
D• on (S, P ) of type w is a triple (E•, η,Φ), where E• is a holomorphic
parabolic vector bundle of rank N and type w, endowed with an isomor-
phism η : det(E•)

∼−→ D• and a Higgs field Φ ∈ H0(S,K(P )⊗ End0(E•)).
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An isomorphism (E•, η,Φ)→ (E′•, η′,Φ′) of parabolic Higgs bundles of rank
N with determinant D• is a map f : E• → E′• which is an isomorphism of
parabolic Higgs bundles and such that η = η′ ◦ det(f).

By Remark 3.5, an automorphism f of (E•, η,Φ) must satisfy det(fx) = 1
at all x ∈ S. Hence, if (E•,Φ) is simple, then Aut(E•, η,Φ) = μN · Id, where
μN ⊂ C∗ is the cyclic subgroup of N -th roots of unity.

Denote by Higgsssb (S,N,w,D•, c) the set of isomorphism classes of
quadruples (E•, η,Φ, τ) such that

• (E•, η,Φ) is a semistable parabolic Higgs bundle on (S, P ) of rank N ,
type w and with determinant D•

• Respi
(Φ) ∈ ci for all i = 1, . . . , n

• τ : E|b ∼−→ CN is a framing at b.

We denote by Higgssb ⊆ Higgspsb ⊆ Higgsssb the stable and polystable loci.
The following two results are due to Simpson [58], Konno [36] and Yoko-

gawa [72].

Theorem 3.7 (Moduli space of framed semi-stable parabolic Higgs
bundles). The space Higgsssb (S,N,w,D•, c) is a normal quasi-projective
variety and a fine moduli space of b-framed semi-stable Higgs bundles on
(S, P ) of rank N , type w and with determinant D•. Moreover, the stable
locus Higgssb(S,N,w,D•, c) is smooth.

The group GLN (C) acts by post-composition on the b-framing, and so it

acts on Higgsssb (S,N,w,D•, c): we denote by
�

Higgs(S,N,w,D•; c) the set-
theoretic quotient and by Higgs(S,N,w,D•, c) its Hausdorffization.

Theorem 3.8 (Moduli space of stable parabolic Higgs bundles).
The Hausdorff quotient Higgs(S,N,w,D•, c) is a normal quasi-projective
variety, whose points are in bijection with S-equivalence classes of semi-
stable Higgs bundles on (S, P ) of rank N , type w and with determinant D•.
The open locus Higgss(S,N,w,D•, c) is an orbifold and a fine moduli space
of stable objects.

Let F• be a line bundle on S with parabolic structure of type wF (which
is trivial at b) and fix a trivialization of F• at the basepoint b ∈ Ṡ. Then
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E• �→ F• ⊗ E• induces a GLN (C)-equivariant isomorphism

Higgsssb (S,N,w,D•, c)
∼−→ Higgsssb (S,N,wF ⊗w, F⊗N

• ⊗D•, c)

that preserves polystable and stable locus. Thus, it induces an isomorphism

Higgs(S,N,w,D•, c) ∼= Higgs(S,N,wF ⊗w, F⊗N
• ⊗D•, c)

that preserves the stable locus.

Remark 3.9. Let L• = L(
∑n

i=1w(pi)pi) be a parabolic line bundle on
(S, P ) and let N ≥ 2. Chosen p0 ∈ S, there exist an integer r and a
line bundle Q such that L ∼= Q⊗N ⊗OS(r · p0) with 0 ≤ r < N − 1. Thus,

L• ∼= Q( r
N p0 +

∑n
i=1

w(pi)
N pi)

⊗N . Hence, if n > 0, then we can choose p0 = p1
for instance, and so L• admits an N -root which is a line bundle on S with
parabolic structure at P . If n = 0, then L• admits an N -th root which is a
line bundle (possibly) with parabolic structure at p0.

By the above remark, we can choose an N -th root F• of D∨•
and so we have established an isomorphism Higgss(S,N,w,D•, c)→
Higgss(S,N,wF ⊗w,OS , c).

For rank 2 integral parabolic structures the remark specializes to the
following.

Corollary 3.10 (Odd and even rank 2 integral parabolic structures).
Let N = 2 and fix an integral parabolic type w and a line bundle D with
trivial parabolic structure. Also fix an auxiliary point p0 ∈ Ṡ different from
b and let w0 be the parabolic type of OS(

1
2p0).

Then the moduli space Higgss(S, 2,w,D, c) is isomorphic to either of the
following:

(1) Higgss(S, 2,w0 ⊗w,OS , c), if deg(D) is odd;
(2) Higgss(S, 2,w,OS , c), if deg(D) is even.

3.5. Involution and fixed locus

We now restrict to the case of rank N = 2, and we remark that every element
X ∈ sl2(C) is in the same AdSL2(C)-orbit as −X.

Fix integral w, an n-uple of conjugacy classes c in sl2(C) and a line
bundle D with trivial parabolic structure and let d0 = deg(D).
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Following Hitchin, consider the involution σb : Higgsssb (S, 2,w,D, c)→
Higgsssb (S, 2,w,D, c) defined as σ(E•, η,Φ, τ) := (E•, η,−Φ, τ), and let σ be
the induced map on Higgs(S, 2,w,D, c).

Lemma 3.11 (σ-fixed locus). Let (E•, η,Φ) be a polystable parabolic
Higgs bundle of rank 2, type w, determinant D and with residues at pi
in ci. The point [E•, η,Φ] is fixed under σ if and only if there exists an
isomorphism ι : (E•, η,Φ)

∼−→ (E•, η,−Φ), which happens if and only if one
of the following conditions is satisfied:

(a) Φ = 0 and E• is polystable;

(b) E• ∼= (L∨• ⊗D)⊕ L• with deg(D) ≤ 2 deg(L•) and

0 	= Φ =

(
0 φ
ψ 0

)
, ι = ±

(
i 0
0 −i

)
with respect to this decomposition, where

0 	=φ ∈ Hom(L•, L∨
• ⊗D)⊗K(P )

ψ ∈ Hom(L∨
• ⊗D, L•)⊗K(P ).

If deg(D) < 2 deg(L•), then (E•,Φ) is necessarily stable. If deg(D) =
2 deg(L•), then (E•,Φ) is polystable if and only if ψ 	= 0 too.

Furthermore, if (E•, η,Φ) is stable with Φ 	= 0 and [E•, η,Φ] is fixed by σ,
then

(b1) the isomorphism ι is unique up to {±1};
(b2) if D 	∼= L⊗2• , then the decomposition E• ∼= (L∨• ⊗D)⊕ L• is unique;

(b3) if D ∼= L⊗2• and so E• ∼= L• ⊕ L•, then φ, ψ are not proportional.

Finally, if (E•, η,Φ) is strictly polystable with Φ 	= 0 and [E•, η,Φ] is fixed by

σ, then (E•,Φ) ∼=
(
L• ⊕ L•,

(
φ 0
0 −φ

))
with 0 	= φ ∈ H0(S,K(P )) and

ι = ±
(

0 −1
1 0

)
.

Proof. The argument is essentially the same as in [31], Sec. 10.
In case (a), the Higgs bundle (E•, 0) is polystable. So we assume Φ 	= 0 and
we want to show that (b) holds.
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Since ι ◦ Φ ◦ ι−1 = −Φ, it is easy to check that Φ must vanish at all
points Q where ι is a unipotent automorphism. Moreover, a quick computa-
tion shows that ι must have eigenvalues ±i at Ṡ \Q. Since Φ 	= 0 except at
a finite number of points, ι has everywhere eigenvalues ±i with eigenbundles

L• and L∨• ⊗D, and so ι = ±
(

i 0
0 −i

)
and Φ =

(
0 φ
ψ 0

)
.

Suppose first deg(D) < 2 deg(L•).
Then L• cannot be preserved by Φ by semi-stability, and so φ 	= 0. Moreover,
deg(D)/2 > deg(L∨• ⊗D) implies a line sub-bundle L′• ⊂ E• with deg(L′•) >
μ(E•) = deg(D)/2 must necessarily be L′• = L•. It follows that the projec-
tion L′• → L∨• ⊗D necessarily vanishes and so (E•,Φ) is stable.

Suppose now deg(D) = 2 deg(L•).
Then φ = 0 would imply ψ = 0 by polystability (and vice versa): hence, we
must have φ, ψ 	= 0.

About the second part of the statement, given ι, ι′ : (E•, η,Φ)→
(E•, η,−Φ) isomorphisms of stable Higgs bundles with determinant D,
the composition (ι−1 ◦ ι′) ∈ Aut(E•, η,Φ) and so ι−1 ◦ ι′ = ±Id because
(E•, η,Φ) is simple. Property (b2) easily follows from (b1) and (b). As for
(b3), a destabilizing sub-bundle (necessarily isomorphic to L•) exists if and
only if 0 	= φ, ψ ∈ H0(S,K(P )) are proportional.

Concerning the final claim, it is enough to observe that φ vanishes only
on finitely many points of S and the involution ι must exchange the two
eigenspaces of Φ/φ away from those finitely many points. �

Denote by Higgspsb (S, 2,w,D, c)(R) the set of (E•, η,Φ, τ, {±ι}) such
that (E•, η,Φ, τ) is a polystable parabolic Higgs bundle of rank 2 of type
w with determinant D and residues in c, and ι : (E•, η,Φ)→ (E•, η,−Φ) is
an isomorphism. We denote by Higgssb(S, 2,w,D, c)(R) the locus of stable
objects and by Higgss(S, 2,w,D, c)(R) its quotient by SL2(C).

By the above lemma, Higgss(S, 2,w,D, c)(R) can be identified to the
locus in Higgss(S, 2,w,D, c) fixed by σ, and so we will denote a point just
by (E•, η,Φ).

If c ⊇ 0 = {0}n, then Higgss(S, 2,w,D, c)(R) contains the locus of Φ =
0, namely

Buns(S, 2,w,D) :=
{

(E•, η) stable parabolic rank 2 bundle

of type w with η : det(E•)
∼−→ D

}

Definition 3.12. We say that the couple (w, c) is compatible (with the
σ-involution) if
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• 0 < w1(pi) < 1/2 =⇒ ci = {0}
• w1(pi) = 0; 1/2 =⇒ det(ci) ≥ 0

• s0 + χ(Ṡ) < 0.

Notation. Given w, denote by Jev
deg (resp. Jodd

deg ) the set of indices j ∈
{1, 2, . . . , n} for which w1(pj) = 0 (resp. w1(pj) =

1
2) and let Jdeg = Jev

deg ∪
Jodd
deg .

Given c, we define J0 = {j ∈ Jdeg | cj = {0}}, Jnil = {j ∈ Jdeg | cj nilpotent}
and Jinv = {j ∈ Jdeg | det(cj) 	= 0}.
Finally, call s = #Jdeg, s0 = #J0 and sinv = #Jinv, and also sev = #Jev

deg

and sodd = #Jodd
deg .

Definition 3.13. Given D and compatible (w, c), we say that the couple
(d,a) ∈ Z× {0, 1}n is admissible if

(a) aj = 0 for all j ∈ Jdeg;

(b) e(d,a,w) := 2d− d0 + 2
∑n

i=1 (ai + (−1)aiw1(pi)) ≥ 0

(c) 2d ≤ d0 − χ(S)− ‖a‖1 + sev − s0.

For every admissible (d,a), we denote by Higgss(S, 2,w,D, c)(R)d,a the
locus of isomorphism classes of (E•, η,Φ, {±ι}) in Higgss(S, 2,w,D, c)(R)
for which the following properties hold:

• E• ∼= (L∨• ⊗D)⊕ L• with deg(L) = d

• there are 0 	= φ ∈ H0(S,DKL−2• (P )) and ψ ∈ H0(S,D∨KL2•(P )) such

that Φ =

(
0 φ
ψ 0

)
• Respi

(Φ) ∈ ci

• wL(pi) =

{
w1(pi) if ai = 0

1− w1(pi) if ai = 1.

Thus, e(d,a,w) can be rewritten as e(d,a,w) = 2d− d0 + 2
∑n

i=1wL(pi)
and the admissibility constraints (b-c) read

−2
n∑

i=1

wL(pi) ≤ 2d− d0 ≤ −χ(S)− ‖a‖1 + sev − s0.
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Moreover, the condition e(d,a,w) ≥ 0 is equivalent to deg(L•) ≥ deg(D ⊗
L∨• ); thus, in view of Lemma 3.11, it is understood that we also require
ψ 	= 0, if e(d,a,w) = 0.

We can rephrase our analysis as follows.

Proposition 3.14 (Partition of the σ-fixed locus). The space
Higgss(S, 2,w,D, c) can be decomposed into the disjoint union of the fol-
lowing loci

Buns(S, 2,w,D) if 0 ∈ c
Higgss(S, 2,w,D, c)(R)d,a for admissible (d,a).

3.6. Topology of the σ-fixed locus

Let ci be conjugacy classes and ci be their closures in sl2(C). Throughout this
section, we will assume that (w, c) are compatible, that (d,a) is admissible
and that e(d,a,w) > 0.

We begin with some simple observations.

Lemma 3.15. Let (E•, η,Φ, {±ι}) ∈ Higgss(S, 2,w,D, c)(R)d,a and E• =
(L∨• ⊗D)⊕ L•. Then

(i) for i /∈ Jdeg (w non-degenerate at pi), L
−2• (P + aP ) has parabolic twist

1 + ai − 2wL(pi) ∈ [0, 1) and L2•(−aP ) has twist 2wL(pi)− ai ∈ [0, 1)
at pi;

(ii) for j ∈ Jdeg (w degenerate at pj), L
2 and L−2 have trivial parabolic

structure at pj .

Thus, deg
⌊DL−2• (P )

⌋
= d0 − 2d− ‖a‖1 + sev and deg

⌊D∨L2•
⌋
= 2d− d0 +

‖a‖1 + sodd ≥ 1− n. As a consequence,

m := deg
⌊DL−2• K(P )

⌋
= d0 + 2g − 2− 2d− ‖a‖1 + sev ≥ 0

deg
⌊D∨L2•K(P )

⌋
= −d0 + 2g − 2 + n+ 2d+ ‖a‖1 + sodd ≥ 0

m′ := h0(S,D∨L2•K(P )) = −d0 + g − 1 + n+ 2d+ ‖a‖1 + sodd ≥ 0

since deg(
⌊D∨L2•(P )

⌋
) > 0. Thus, m+m′ = 3g − 3 + n+ s.

Proof. Parts (i) and (ii) are elementary computations. The bound
for deg

⌊D∨L2•
⌋

follows by observing that 0 < e(d,a,w) = 2d− d0 +
2
∑n

i=1wL(pi) ≤ 2d− d0 + ‖a‖1 + n because wL(pi) ≤ ai + 1. Thus, m′ can
be calculated by Riemann-Roch. �
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Since we are assuming e(d,a,w) > 0, a point of
Higgss(S, 2,w,D, c)(R)d,a can be identified with a triple (L•, φ, ψ)
that satisfies certain conditions, up to isomorphism. In fact, the map
L• → L• of multiplication by λ ∈ C∗ induces an isomorphism of (L•, φ, ψ)
with (L•, λ−2φ, λ2ψ). Hence, such a point can be identified with the
triple (L•, Q,−φψ), where Q is an effective divisor in the linear system
|D ⌊L−2•

⌋
K(P )| and −φψ = det(Φ) ∈ H0(S,K2(2P )). Moreover, L−2• can

be reconstructed up to isomorphism from Q: so, given (Q, det(Φ)), there are
exactly 22g choices for L• and the set of such choices is a Pic0(S)[2]-torsor.

Consider then the residues of det(Φ).

• Suppose that i /∈ Jdeg and so w is non-degenerate at pi.
Then necessarily Respi

(Φ) = 0. Thus, we will assume that ci = {0} for
all i /∈ Jdeg.

• Suppose that j ∈ Jdeg and so w is degenerate at pj .
Then the condition on the residue at pj is not automatically satisfied.
For j in Jnil or Jinv, the elements in cj are detected by their determi-
nant det(cj): thus it is enough to require that (−φψ)(pj) = det(cj). For
j ∈ J0, we must require that φ(pj) = 0 and that ordpj

(φψ) > ordpj
(φ).

Consider the space X = Symm(S \ Pinv)×H0(S,K2(P + Pdeg)), where
Pdeg =

∑
j∈Jdeg

pj and Pinv =
∑

j∈Jinv
pj , and the loci

Q = {(Q, q) ∈ X |Q ≤ div(q)}
Ri = {(Q, q) ∈ X |Respi

(q) = det(ci)} for all i = 1, . . . , n.

Moreover, for j ∈ J0 ∪ Jnil, the locus Rj can be split into

R−
j = {(Q, q) ∈ X | pj ∈ Q} corresponding to φ(pj) = 0

R+
j = {(Q, q) ∈ X | ordpj

(q) > multpj
(Q)} corresponding to ψ(pj) = 0

and we call R0
j := R

+
j ∩R−

j for all j ∈ J0. Finally, for every ε : Jnil →
{+,−} we denote by P±(ε) the subsets of points pj such that ε(j) = ±
and let s±(ε) = #P±(ε). Then we define

Rε
:=

⎛⎝ ⋂
j∈Jinv

Rj

⎞⎠ ∩
⎛⎝ ⋂

j∈Jnil

Rεj
j

⎞⎠ ∩
⎛⎝⋂

j∈J0

R0
j

⎞⎠ and R =
⋃
ε

Rε
.

and we call Rε := Rε \⋃j∈Jnil
R0

j and R :=
⋃

εRε.
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The locally closed subvariety Q has codimension m in X and it is iso-
morphic to a holomorphic vector bundle of rank m′ over Symm(S \ Pinv)
and so the above discussion leads to the following conclusion.

Proposition 3.16 (Topology of σ-fixed components). The loci in X
defined above satisfy the following properties.

(a) The locus Q∩Rε
is a holomorphic affine bundle of rank m′ −

[sinv + s0 + s+(ε)] over Symm−[s0+s−(ε)](S \ Pinv). The locus Q ∩
Rε is obtained from Q ∩Rε

by first restricting the affine bundle
over Symm−[s0+s−(ε)] (S \ (P+(ε) ∪ Pinv)) and then removing s−(ε)
nowhere-parallel affine subbundles of codimension 1.

(b) The locus Q ∩R is connected, has pure codimension s+ s0 +m in
X and consists of the irreducible components Q ∩Rε

of dimension
3g − 3 + n− s0. The locus Q ∩R is the disjoint union of all Q ∩Rε.

(c) The morphism

Higgss(S, 2,w,D, c)(R)d,a �� X
(E•, η,Φ) � �� (div(φ), det(Φ))

is a Pic0(S)[2]-torsor over Q ∩R and Higgss(S, 2,w,D, c)(R)d,a is a
Pic0(S)[2]-torsor over Q ∩R.

(d) The restriction Higgss(S, 2,w,D, c)(R)εd,a of the Pic0(S)[2]-torsor in

(c) over the component Q ∩Rε is connected, unless Q∩Rε
is an affine

space (i.e. m− [s0 + s−(ε)] = 0): in this case it is necessarily trivial.

We stress that, by definition,Q ∩Rε = ∅ ifm− [s0 + s−(ε)] < 0 orm′ −
[sinv + s0 + s+(ε)] < 0.

Corollary 3.17 (Topology of Pic0(S)[2]-quotient
of σ-fixed irreducible components). The quotient
Higgss(S, 2,w,D, c)(R)εd,a/Pic0(S)[2] is isomorphic to a holomorphic

affine bundle of rank m′ − [s− s−(ε)] over Symm−[s0+s−(ε)](S \ Pinv) and
Higgss(S, 2,w,D, c)(R)εd,a/Pic0(S)[2] is isomorphic to the complement of
s−(ε) affine codimension 1 subbundles inside a holomorphic affine bundle
of rank m′ − [s− s−(ε)] over Symm−[s0+s−(ε)] (S \ (P+(ε) ∪ Pinv)).

Proof of Proposition 3.16. Considering the above discussion, we are only left
to prove (d).
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The action of Pic0(S)[2] on Higgss(S, 2,w,D, c)(R)εd,a is given by A ·
(E•, η,Φ) �→ (E• ⊗A, η,Φ) for A ∈ Pic0(S)[2].

If m− [s0 + s−(ε)] = 0, then Q∩Rε
is an affine space and so the torsor

is trivial.
Assume now m− [s0 + s−(ε)] > 0 and fix A ∈ Pic0(S)[2]. We want to

show that every (E•, η,Φ) in Higgss(S, 2,w,D, c)(R)εd,a can be connected to
(E• ⊗A, η,Φ) by a continuous path.

Consider the map f : Higgss(S, 2,w,D; c)(R)εd,a → Picd(S)×
Symm−s0(ε)−s−(ε)(S \ Pinv) defined by f(E•, η,Φ) = (L, [φ]), where

E• = (L∨• ⊗D)⊕ L• and Φ =

(
0 φ
ψ 0

)
. Since the knowledge of w

and a allows to reconstruct the parabolic bundle L• out of L, the
image S̃ of f can be identified to the locus of couples (L,Q) such that
Qfix +Q ∈ |DL−2• K(P )|, where Qfix :=

∑
j∈J0

pj +
∑

εj=− pj . Note that

S̃ is an étale cover over Symm−s0(ε)−s−(ε)(S \ Pinv) of degree 22g and f is
a fibration with fiber Cm′−[s−s−(ε)]. Thus, it is enough to show that S̃ is
connected.

Now fix (L,Q) ∈ S̃ and let B : [0, 1]→ Pic0(S) be a continuous path
from OS to A, so that B−2 : [0, 1]→ Pic0(S) is a closed path. Since m−
[s0 + s−(ε)] > 0, we can choose a point x ∈ Q and we can consider the map

S \ Pinv
�� Pic0(S)

y � �� OS(y − x)

which induces a surjection π1(S \ Pinv) � π1(Pic
0(S)). Thus, there exists

a path Y : [0, 1]→ S \ Pinv based at Y (0) = Y (1) = x which is mapped to
a path homotopic to B−2. Define Q(t) := Q− x+ Y (t) and let A(t) be the
unique continuous path in Pic0(S) such that A(0) = OS and A(t)2 = OS(x−
Y (t)). By definition, Qfix +Q(t) ∈ |D(A(t)⊗ L•)−2K(P )|. Since the path
A−2 is homotopic to B−2, we have A(1) = B(1) = A and so the path t �→
(L⊗A(t), Q(t)) joins (L,Q) and (L⊗A,Q). �

Provided e(d,a,w) remains positive, Proposition 3.16 shows that the iso-
morphism class of the moduli space Higgss(S, 2,w,D, c)(R)εd,a remains con-
stant as a parabolic weight w1(pi) is varied within the interval (0, 1/2) and
ci is kept equal to {0}. Moreover, if w1(pi) ∈ (0, 1/2) is pushed to w′

1(pi) =
0; 1/2 and the class ci is switched to c′i = {nilpotents}, then the mod-
uli space is isomorphic to some Higgss(S, 2,w′,D, c′)(R)ε′

d′,a′ , where ε′i = +
if e(d′,a′,w′) > e(d,a,w) > 0, and ε′i = − if 0 < e(d′,a′,w′) < e(d,a,w).
More precisely, we have the following.
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Corollary 3.18 (Varying the parabolic weights). Fix c, d, a and w
such that e = e(d,a,w) > 0, and assume that w is non-degenerate at pi and
ci = {0}. Then Higgss(S, 2,w,D, c)(R)εd,a is isomorphic to

(a) Higgss(S, 2,w′,D, c)(R)ε′
d′,a′ with d′ = d, a′ = a, ε′ = ε and for every

w′ that differs from w only on the i-th entrance and such that 0 <
w′
1(pi) < 1/2 (see also Nakajima [52]);

(b) Higgss(S, 2,w′,D, c′)(R)ε′
d′,a′ wherew′, c′,a′ differ fromw, c,a only on

the i-th entrance, c′i = {nilpotents}, a′i = 0 and either of the following
hold:

ai w′
1(pi) ε′i d′ e′

0 0 − d e− 2w1(pi)

0 1/2 + d e+ (1− 2w1(pi))

1 0 + d+ 1 e+ 2w1(pi)

1 1/2 − d e− (1− 2w1(pi))

as long as e′ = e(d′,a′,w′) > 0.

Similarly, since Respi
(q) = det(ci) is an affine equation in H0(S,K2(P +

Pdeg)), we also have the following result.

Corollary 3.19 (Varying the quadratic residue of det(Φ)). Let
(w, c), d,a be such that e(d,a,w) > 0 and assume that det(ci) > 0. Then
Higgss(S, 2,w,D, c)εd,α is isomorphic to Higgss(S, 2,w,D, c′)εd,α, where c′

differs from c only on the i-th entrance and det(c′i) > 0.

Notice that compact components may also occur, but only in a few
limited cases. If g = 0 and n = 3 + s0, then Higgss(S, 2,w,D, c)(R)εd,a con-
sists of a single point (if it is nonempty) and so it is compact. Biquard-
Tholozan remarked that the other cases of compact components with non-
degenerate parabolic structure correspond to representations that Deroin-
Tholozan [14] call “super-maximal” via Theorem 4.14. I would like to thank
Nicolas Tholozan for drawing my attention to this point.

Corollary 3.20 (Compact components). Assume e = e(d,a,w) > 0
and (g, n) 	= (0, 3 + s0). The locus Higgss(S, 2,w,D, c)(R)εd,a is compact if
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and only if

(�)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
g = 0

s−(ε) = sinv = 0

e(d,a,w) = 1−
∑

i/∈Jdeg

ai=0

(1− 2w1(pi))−
∑

i/∈Jdeg

ai=1

2w1(pi) ∈ (0, 1].

In this case, Higgs bundles [E,Φ] ∈ Higgss(S, 2,w,D, c)(R)εd,a have ψ = 0

and so nilpotent Φ, and the whole component is isomorphic to CPn−3−s0 .
The locus Higgss(S, 2,w,D, c)(R)εd,a is compact if and only if the condition
(�) is satisfied and s+(ε) = 0. Moreover, in this case such component is again
isomorphic to CPn−3−s0 .

Proof. Since e = e(d,a,w) = −d0 + 2d+
∑n

i=1 2wL(pi), we have

m′ − s+ s−(ε) = (−d0 + 2d) + g − 1 + n+ ‖a‖1 + sodd − s+ s−(ε) =

= e−
n∑

i=1

2wL(pi) + g − 1 + n+ ‖a‖1 − sev + s−(ε) =

= g − 1 + e+
∑

i/∈Jdeg

(1 + ai − 2wL(pi)) + s−(ε) ≥ e+ g − 1

In Corollary 3.17, Higgss(S, 2,w,D, c)(R)εd,a is presented as a fibration over
a symmetric product and the fiber is an open subset of an affine space.
Thus, it is compact if and only if the fiber is 0-dimensional and the base is
a symmetric product of a compact surface (i.e. sinv = 0). For the fiber to
be 0-dimensional, we must have m′ ≤ s− s−(ε). Since 1 + ai − 2wL(pi) > 0
for i /∈ Jdeg and e > 0, this implies that g = 0, s−(ε) = 0 and

0 < e = 1−
∑

i/∈Jdeg

(1 + ai − 2wL(pi)) ≤ 1.

Vice versa, if the above numerical conditions are satisfied, it is immediate to
check that the fiber is 0-dimensional and indeed it consists of a single point.
In this case, such component is isomorphic to Symn−3−s0(CP1) ∼= CPn−3−s0 .

Similarly, the open component Higgss(S, 2,w,D, c)(R)εd,a, fibers

over Symn−3−s0(S \ (Pinv ∪ P+)). The numerical conditions for the 0-
dimensionality of the fiber are the same; for the base to be compact we need
sinv = s+(ε) = 0. Again the component will be isomorphic to CPn−3−s0 . �
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4. Hitchin-Simpson correspondence and topology

Fix a complex structure I on the compact surface S and let OS be the sheaf
of I-holomorphic functions on S.

4.1. Closed case

Let S be compact and unpunctured (n = 0).
Since locally constant functions on S are I-holomorphic, a flat C-vector

bundle V on S can be naturally given an I-holomorphic structure ∂
V
.

In particular, if (ξ,∇) is a flat GLN -bundle, then V := ξ ×GLN
CN is a

I-holomorphic bundle endowed with a flat connection, which we will still
denote by ∇ by a little abuse.

The point of departure is then the following classical result.

Theorem 4.1 (Narasimhan-Seshadri [53]). The map that sends a flat
UN -bundle (ξ,∇) on S to the I-holomorphic vector bundle E := ξ ×UN

O⊕N
S

induces a real-analytic homeomorphism

Flirr(S,UN )
∼ �� Buns(S,N)0

between the moduli space of irreducible flat UN -principal bundles on S and
the moduli space of stable I-holomorphic vector bundles of rank N and
degree 0 on (S, I). Such homeomorphism restricts to

Flirr(S, SUN )
∼ �� Buns(S,N,OS)

(ξ,∇) � �� (E, η)

where E = ξ ×SUN
O⊗N

S and η : det(E)
∼−→ OS sends the unit volume ele-

ment to 1.

Such correspondence can be lifted to bundles endowed with a trivializa-
tion τ at the base-point b; moreover, just by taking direct sums it can be
extended to a correspondence between completely reducible b-framed flat
bundles and polystable b-framed I-holomorphic bundles.

Corollary 4.2. There is a real-analytic homeomorphism

Flcrb (S,UN )
∼ �� Bunpsb (S,N)0

(ξ,∇, τ) � �� (E = ξ ×UN
O⊕N

S , τ ′ = τ ⊗UN
CN )
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which restricts to

Flcrb (S, SUN )
∼ �� Bunpsb (S,N,OS)

(ξ,∇, τ) � �� (E = ξ ×SUN
O⊕N

S , η, τ ′).

In the proof by Narasiman-Seshadri, surjectivity is achieved essentially
by continuity method. In particular, it does not provide a way to construct
(ξ,∇) starting from a stable E. The following important result fills such a
gap.

Theorem 4.3 (Donaldson [15]). A holomorphic vector bundle E of rank
N and degree 0 on (S, I) admits a flat invariant metric if and only if E is
polystable. Moreover, such a metric is unique up to automorphisms of E.

In the case of bundles with monodromy not contained in UN , no invariant
Hermitian metric is available. In order to codify all information in term of
holomorphic structures on (S, I), the idea is to replace invariant metrics by
harmonic metrics.

Definition 4.4. A harmonic metric on a flat GLN -bundle (ξ,∇) on (S, I)
is the Hermitian metric H = hhT on the flat bundle V = ξ ×GLN

CN asso-
ciated to a section h : S → ξ ×GLN

(GLN/UN ) that minimizes the energy
with respect to the natural metric on the symmetric space GLN/UN .

Existence and uniqueness of harmonic metrics and was first proven by
Donaldson [16] in the rank 2 case. A more general existence theorem is due
to Corlette: here we recall the statement for Riemann surfaces only.

Theorem 4.5 (Corlette [12]). A flat GLN -bundle (ξ,∇) on (S, I) has a
harmonic metric H if and only if ξ is completely reducible (i.e. ξ is a direct
sum of irreducible flat vector bundles).
Moreover, such an H is unique up to automorphisms of ξ.

Given a Hermitian metric H on the flat vector bundle V = ξ ×GLN
CN ,

the connection ∇ decomposes as

∇ = ∇H +Φ+ Φ
H

where Φ is an End(V )-valued (1, 0)-form, Φ
H

is its H-adjoint and ∇H is
compatible with H. We can define a holomorphic structure on E = V by
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letting ∂
E
= ∂

V − Φ
H
, so that∇H is a Chern connection for the holomorphic

Hermitian bundle (E,H).
Harmonicity of the metric H is then equivalent to the

∂
E−holomorphicity of Φ ∈ C∞(S,K ⊗ End(E)). Thus, once we find a

harmonic metric H on (V,∇), we can produce a Higgs bundle (E,Φ) of
degree deg(E) = deg(V ) = 0.

Conversely, given a Higgs bundle (E,Φ) on (S, I) and a Hermitian metric
H on E, we can consider the underlying complex vector bundle V endowed

with the connection ∇ = ∇H +Φ+ Φ
H
, where ∇H is the Chern connection

on (E,H) and Φ
H

is the H-adjoint of Φ. Harmonicity of the metric H on
(V,∇) is equivalent to the flatness of ∇ and the following theorem provides
the wished counterpart to Theorem 4.5 (proven before by Hitchin [31] in the
rank 2 case).

Theorem 4.6 (Simpson [57]). A GLN -Higgs bundle (E,Φ) on (S, I)
supports a metric H such that the induced (V,∇) is flat if and only if (E,Φ)
is polystable. Moreover, such a metric is unique up to automorphisms of
(E,Φ).

Considering the SLN -bundles correspond to vector bundles with trivial-
ized determinant, we summarize the above results as follows.

Corollary 4.7 (Simpson [59] [60]). There are smooth diffeomorphisms

Flcrb (S,GLN ) �� Higgspsb (S,N)0

Flcrb (S, SLN ) �� Higgspsb (S,N,OS)

which induce a correspondence

Flirr(S,GLN ) �� Higgss(S,N)0

Flirr(S, SLN ) �� Higgss(S,N,OS)

between the space of irreducible flat bundles and the space of stable I-
holomorphic Higgs bundles.

Again, the case N = 2 of above corollary is due to Hitchin [31],
whose construction also implies that the involved diffeomorphisms are
real-analytic. Simpson showed that in general the above correspondence
does not continuously extend over the whole semi-stable locus (see [60],
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pp.38–39).

We remind that flat UN -bundles are always completely reducible.

4.2. Punctured case

Given a flat UN -bundle (ξ,∇) on the punctured surface Ṡ, we can as before
produce a I-holomorphic vector bundle Ė = ξ ×UN

O⊕N
Ṡ

on Ṡ which car-

ries an invariant Hermitian metric H. Moreover, such Ė admits a unique
extension E → S (Deligne extension [13]) such that the induced ∇ has real
residues at pi with eigenvalues 0 ≤ w1(pi) < w2(pi) < · · · < wbi(pi) < 1 for
all pi ∈ P and algebraic multiplicities m1(pi), . . . ,mbi(pi).

Notation. Given an endomorphism f of a complex vector space and a
w ∈ R, we denote by Eigw(f) the direct sum of generalized eigenspaces of f
corresponding to eigenvalues with real part w. We also denote by Eig≥w(f)
the direct sum of all Eigw′(f) with w′ ≥ w.

Equipping each vector space E|pi
with the flag

E|pi
= Eig≥w1(pi)(Respi

(∇)) � · · · � Eig≥wbi
(pi)(Respi

(∇)) � {0}

defines a parabolic structure on E at P of type w.
If a local section s near pi satisfies 0 	= s(pi) ∈ Eigw(Respi

(∇)), then
ordpi

‖s‖H = w and so the parabolic structure just defined corresponds to
the filtration

Ew =

{
s
∣∣∣ ‖s‖H · |zi|ε−w bounded near pi

for all ε > 0 and all pi ∈ P

}
⊂ E(∞ · P )

where zi is a local holomorphic coordinate on S centered at pi.
Thus, Respi

(∇) belongs to the conjugacy class Cl(Mi) ⊂ uN of

Mi =

⎛⎜⎝ w1(Mi)Idm1(Mi) 0 0

0
. . . 0

0 0 wbi(Mi)Idmbi
(Mi)

⎞⎟⎠
where wk(Mi) = wk(pi) and mk(Mi) = mk(pi), and the monodromy of ∇
along ∂i belongs to the conjugacy class ci = Cl(exp[−2π√−1Mi]) ⊂ UN of
exp(−2π√−1Mi).
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Notation. If ci = Cl(Ci) ⊂ UN , then there exists a unique matrix Mi ∈√−1 · uN with real eigenvalues in [0, 1) such that exp(−2π√−1Mi) = Ci.
We will write wk(ci) := wk(Mi) and mk(ci) := mk(Mi) and w(c) for the
collection of all wk(Mi) and mk(Mi).

We can now state the analogue of Theorem 4.1 for punctured surfaces,
whose proof is again by continuity method.

Theorem 4.8 (Mehta-Seshadri [47]). The map that sends a flat UN -
bundle (ξ,∇) on Ṡ to the Deligne extension E• of the I-holomorphic vector
bundle Ė = ξ ×UN

O⊕N
S induces a real-analytic homeomorphism

Flirr(Ṡ,UN , c)
∼ �� Buns(S,w(c), N)0

between the moduli space of irreducible flat UN -principal bundles on Ṡ with
monodromy along ∂i in ci and the moduli space of stable I-holomorphic
parabolic vector bundles of rank N , type w(c) and degree 0 on (S, I).

Such homeomorphism restricts to

Flirr(Ṡ, SUN , c)
∼ �� Buns(S,w(c), N,OS)

(ξ,∇) � �� (E•, η)

where η : det(E•)→ OS sends the unit volume element to 1.

As seen before, the statement extends to b-framed polystable parabolic
bundles.

Corollary 4.9. There are real-analytic homeomorphisms

Flcrb (Ṡ,UN , c)
∼ �� Bunpsb (S,w(c), N)0

Flcrb (Ṡ, SUN , c)
∼ �� Bunpsb (S,w(c), N,OS).

In both cases, irreducible flat bundles correspond to stable I-holomorphic
bundles.

The counterpart to Theorem 4.3 for punctured surfaces was proven by
Biquard using variational methods.

Theorem 4.10 (Biquard [3]). A holomorphic vector bundle E• of rank
N and degree 0 on (S, I) with parabolic structure at P of type w admits a
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flat invariant metric if and only if E• is polystable. Moreover, such a metric
is unique up to automorphisms of E•.

The above achievements (both in the closed and punctured case) cul-
minate in the more general correspondence between flat GLN -bundles on
punctured surfaces and parabolic Higgs bundles proven by Simpson [58].
Here we describe how one direction works, namely how to go from flat bun-
dles to parabolic Higgs bundles.

Given a GLN -bundle ξ on Ṡ, the induced flat vector bundle V̇ = ξ ×GLN

CN can be extended to V → S in such a way that the real parts of the eigen-
values λk(pi) + iνk(pi) of Respi

(∇) satisfy 0 ≤ λ1(pi) < · · · < λbi(pi) < 1.
Moreover, if ξ is completely reducible, an adaptation of Corlette’s theo-
rem in the noncompact case (see also Labourie [38]) ensure the existence
(and uniqueness up to isomorphism) of a tame harmonic metric H on the
flat vector bundle V̇ = ξ ×GLN

CN . This means that ∇ on E := V can

be decomposed as ∇ = ∇H +Φ+ Φ
H
, where ∇H is compatible with H

as before, Φ and its H-adjoint Φ
H

have at worst simple poles at P and
the Higgs field Φ ∈ C∞(S,K(P )⊗ End(E•)) is holomorphic with respect to

∂
E
= ∂

V − Φ
H
.

Furthermore, E can be endowed with a parabolic structure at P of type
w defined by the filtration

E|pi
= Eig≥w1(pi)(Respi

(∇)) � · · · � Eig≥wbi
(pi)(Respi

(∇)) � {0}

where wk(pi) = λk(pi) and mk(pi) = dim Eigλk(pi)(Respi
(∇)).

Notation. Given a matrix M = D + 2M0 ∈ glN (C) in Jordan form, with
D diagonal and M0 nilpotent, we call M ′ = Re(D) +M0 and M ′′ =√−1 Im(D) +M0.

It can be checked that, if Respi
(∇) belongs to Cl(Mi) ⊂ slN

with Mi in Jordan form and so the monodromy along ∂i belongs to
ci = Cl(exp(−2π√−1Mi)), then Respi

(Φ) belongs to ci = Cl(M ′′
i /2) ⊂ slN .

As before, we will denote by w(c) the collection of all wk(Mi) and mk(Mi).

Summarizing our discussion, the correspondence preserves generalized
eigenspaces of holξ(γi), of Respi

(∇) and of Respi
(Φ); inside a single gener-

alized eigenspace it works as illustrated in the table below (borrowed from
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[58]), where ς is a local holomorphic section of E that does not vanish at pi.

At pi (E•,Φ) (V,∇)

jump λ = ordpi
‖ς‖H λ

eigenvalue of
the residue

√−1 ν/2 λ+
√−1 ν

monodromy

e

[
−2π

√−1(λ+
√−1 ν)

]

Remark 4.11. The order of growth of ‖ς‖H near pi may have logarithmic
factors as in Example 7 (see [58]). More precisely, if ς(pi) takes values in a
subspace of V |pi

corresponding to a Jordan block of Respi
(∇) of size m and

eigenvalue λ+
√−1 ν, then

‖ς‖H ∼ |zi|λ| log |zi||l−
m+1

2

where zi is a local coordinate on S at pi and l > 0 is the smallest integer

such that
[
Respi

(∇)− (λ+
√−1 ν) Id]l s(pi) = 0.

The above set-theoretic correspondence can be promoted to a real-
analytic one. Similarly to the closed case treated by Hitchin and Simpson,
the moduli spaces of flat bundles and of Higgs bundles are different holo-
morphic manifestations of the same hyperkähler manifold: the moduli space
of harmonic bundles. This is proven by Konno [36] for Higgs fields with
nilpotent residues and by Biquard-Boalch [4] in general.

Theorem 4.12 (Simpson [58], Konno [36], Biquard-Boalch [4]). Let
Mi ∈ glN be a matrix in Jordan form and let ci = Cl(exp(−2π√−1Mi)) be
a conjugacy class in GLN and ci = Cl(M ′′

i /2) ⊂ glN for i = 1, . . . , n.
There is a real-analytic diffeomorphism

Flcrb (Ṡ,GLN , c)
∼ �� Higgspsb (S,w, N, c)0

between the moduli space of b-framed, completely reducible, flat GLN -
bundles (ξ,∇, τ) on Ṡ with holξ(∂i) ∈ ci and the moduli space of b-framed
polystable Higgs bundles (E•, η,Φ, τ) on (S, I) of parabolic type w = w(c)
at P and degree 0 with Respi

(Φ) ∈ ci.
Under such diffeomorphism, irreducible flat bundles correspond to stable
parabolic Higgs bundles, and so the induced

Flirr(Ṡ,GLN , c)
∼ �� Higgss(S,w, N, c)0
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is a real-analytic diffeomorphism too. Similarly, via

Flcrb (Ṡ, SLN , c)
∼ �� Higgspsb (S,w, N,OS , c)

Flirr(Ṡ, SLN , c)
∼ �� Higgss(S,w, N,OS , c)

SLN -bundles correspond to parabolic Higgs bundles (E•,Φ) endowed with
a trivialization η : det(E•)

∼−→ OS .

4.3. Correspondence and the real locus in rank 2

Following Hitchin [31], consider a point (E•, η,Φ) in Higgss(S,w, 2,OS , c)
fixed by the involution σ that sends Φ to −Φ.

By Lemma 3.11, (E•, η,Φ) may belong to Buns(S,w, 2,OS) or to some
Higgss(S,w, 2,OS , c)(R)d,a.

In the former case, Φ = 0 and so the point corresponds to a flat SU2-
bundle by Theorem 4.8.

In the latter case, Φ 	= 0 and we assume e(d,a,w) > 0. Then Lemma
3.11 provides a splitting E• = L∨• ⊕ L• and an automorphism ι of E• that
preserves the splitting and that sends Φ to −Φ. Moreover, such splitting and
ι are essentially unique, since (E•,Φ) is stable. Let V̇ := Ė and let ∇ (resp.
∇′) be the flat connection on V̇ associated to (E•,Φ) (resp. (E•,−Φ)). It
is easy to see that the flat vector bundles (V̇ ,∇) and (V̇ ,∇′) support the

same tame harmonic metric H, which means that ∇ = ∇H +Φ+ Φ
H

and

∇′ = ∇H − Φ− Φ
H
. Since ι∗(−Φ) = Φ and ι∗(∇′) = ∇, the automorphism

ι preserves ∇H and so is an H-isometry; as a consequence, L• and L∨• are H-
orthogonal and H induces the identification L• ∼= L∨• . Since the anti-linear
involution

T : L∨• ⊕ L• �� L∨• ⊕ L•
(α, β) � �� (β, α)

satisfies T ◦ Φ = Φ
H ◦ T and so commutes with ∇, the monodromy of ∇

preserves V̇ (R) := Fix(T ) ⊂ V̇ and so it defines a representation ρ
R
that

takes values in SL2(R). Moreover, V̇ (R) ↪→ V̇ ∼= L̇⊕ L̇ ∼= V̇ (R)⊗ C and we
identify V̇ (R) to L̇. With more care, such identification can be promoted
to V•(R) ∼= L• and so deg(L•) = deg(V•(R)) = eu(V•(R)) = 1

2eu(PV•(R)) =
eu(ρ

R
).

The above sketchy considerations lead to the following conclusion (a
formal proof can be found for instance in Section 3.6 of [11]).



452 Gabriele Mondello

Lemma 4.13 (Euler number as a first Chern class). The parabolic
degree of L• and the Euler number of ρ satisfy

eu(ρ) = 2 deg(L•) = 2 deg(L) + 2‖wL‖1
for every ρ : π → PSL2(R) ⊂ PSL2(C).

The above discussion then leads to the following result, the bound on d
being a consequence of Proposition 3.16(a) and Lemma 4.13.

Theorem 4.14 (Correspondence for SL2(R)). For every i = 1, . . . , n,
let

• ci be a conjugacy class in SL2(R)

• ci be a conjugacy class in sl2(C)

• w1(pi) ∈ [0, 1/2] and ε : Jnil = {j | cj nilpotent} → {+,−}
• ai ∈ {0, 1}

that match according to the following table

c c wL a

(−1)2w1

(
1 0

0 1

)
0 w1 = 0; 1/2 0

(−1)2w1

(
1 0

ε 1

)
, ε = ±1

(
0 0

1 0

)
w1 = 0; 1/2 0

(−1)2w1

(
e�/2 0

0 e−�/2

)
, � > 0

√−1
8π

(
� 0

0 −�

)
w1 = 0; 1/2 0

(
cos(2πwL) − sin(2πwL)

sin(2πwL) cos(2πwL)

)
0

a+ (−1)aw1

with

0 < w1 < 1/2

0; 1

Table 1. Correspondence between c, c, wL and a.

Let d ∈ Z such that

−‖wL‖1 < d ≤ g − 1 +
sev − ‖a‖1 − s0 − s−(ε)

2
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where sev = #{j |w1(pj) = 0}, s0 = #{i | ci = {Id}} and s−(ε) = #{j ∈
Jnil | εj = −}.
Then there are real-analytic diffeomorphisms

Rep(Ṡ, SL2(R), c)e
∼ �� Higgs(S,w, 2,OS , c)(R)

ε
d,a

Rep(Ṡ,PSL2(R), c)e
∼ �� Higgs(S,w, 2,OS , c)(R)

ε
d,a/Pic

0(S)[2]

where e = 2d+ 2
∑n

i=1wL(pi) > 0 is the Euler number of the associated ori-
ented RP1-bundle. Moreover, the above maps extend to homeomorphisms

Rep(Ṡ, SL2(R), c)e
∼ �� Higgs(S,w, 2,OS , c)(R)

ε
d,a

Rep(Ṡ,PSL2(R), c)e
∼ �� Higgs(S,w, 2,OS , c)(R)

ε
d,a/Pic

0(S)[2]

for the closures c of c and c of c.

Notice that the homeomorphism between Rep(Ṡ, SL2(R), c)e and
Higgs(S,w, 2,OS , c)(R)

ε
d,a may not be smooth if some ci is the class of pos-

itive or negative unipotents: in this case Rep(Ṡ, SL2(R), c)e can be singular
(if non-empty), whereas Higgs(S,w, 2,OS , c)(R)

ε
d,a is non-singular.

Proof of Theorem 4.14. We are only left to prove the last assertion, namely
that the map Rep(Ṡ, SL2(R), c)e → Higgs(S,w, 2,OS , c)(R)

ε
d,a is a homeo-

morphism. We already know that it is bijective and we want to show that
it is continuous and proper.

Endow Ṡ with the unique I-conformal hyperbolic metric of finite area

and its universal cover ˜̇S with the pull-back metric. Let S◦ be the compact
subsurface obtained from S by removing small open disk neighborhoods of

the marked points and let S̃◦ be its preimage inside the universal cover ˜̇S
and F ⊂ ˜̇S be a fundamental domain for the action of π1(Ṡ). We recall that,

for every equivariant harmonic map h̃ : ˜̇S → H2 ∼= SL2(R)/SO2(R), we have

(�)
∣∣∣∇h̃

∣∣∣2 ≤ C · ES◦(h̃)

at every point of S̃◦ ∩ F , where C depends only on the diameter of S̃◦ ∩ F
and ES◦(h̃) is the energy of the restriction of h̃ to S̃◦ ∩ F .

Consider a sequence ρ(k) of representations in Rep(Ṡ, SL2(R), c)e and

let (E
(k)
• , η(k),Φ(k)) be the corresponding Higgs bundle. By Lemma 3.11,

the bundle E(k) is isomorphic to (L
(k)
• )∨ ⊕ L

(k)
• , with L(k) of fixed degree d.
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Suppose now that ρ(k) → ρ and let (E• = L∨• ⊕ L•, η,Φ) the Higgs bun-
dle determined ρ. By Proposition 2.6.1 of [37], there are ρ(k)-equivariant har-

monic maps h̃(k) : ˜̇S → H2 that are locally equi-bounded and equi-Lipschitz.
Thus, h̃(k) locally Lipschitz converges to the unique ρ-equivariant harmonic

map h̃. Thus, ∂
L(k) → ∂

L
and Φ(k) → Φ uniformly on the compact subsets

of Ṡ. Since the parabolic weights are fixed, this implies that L(k) → L and
so Φ(k) → Φ. This proves continuity of the correspondence.

Suppose finally that ρ(k) is divergent. We want to show that ‖Φ(k)|S◦‖2
is divergent. By contradiction, up to extracting a subsequence, ES◦(h̃(k)) =
2‖Φ(k)|S◦‖2 would be bounded. By the locally uniform bound (�), the
h̃(k)|

˜S◦∩F would be equi-Lipschitz and so ρ(k) would have a convergent sub-
sequence. �

Notice that ci determines ai, w1(pi) and ci (and the sign εi, if ci is
nilpotent) and vice versa. Thus we can also draw the following conclusion.

Corollary 4.15 (Components of PSL2(R)-representations). Con-
nected components of Rep(Ṡ,PSL2(R), c) with Euler number e = 2d+
2‖wL‖1 > 0 are classified by the integers d such that −‖wL‖1 < d ≤ g −
1 + 1

2 (s
ev − ‖a‖1 − s0 − s−(ε)).

The topology of Higgs(S,w, 2,OS , c)(R)d,a and of its quotient by
Pic0(S)[2] is described in Proposition 3.16.

4.4. Uniformization components

Let � = (�1, . . . , �n) with �i =
√−1ϑi and ϑi > 0 for i = 1, . . . , k and �i ≥ 0

for i = k + 1, . . . , n. Call s0 = #{i ∈ {1, . . . , k} |ϑi ∈ 2πN+}.
A consequence of the above work is the following result stated in the

introduction.

Corollary 4.16 (Topology of uniformization components). Assume
e� > 0 and consider the monodromy map

hol ◦ Ξ� : Y(Ṡ, �) −→ Rep(Ṡ,PSL2(R), c�)e� .

The space Rep(Ṡ,PSL2(R), c�)e� is real-analytically diffeomorphic to a
holomorphic affine bundle of rank 3g − 3 + n−m over Symm−s0(S \
{pk+1, . . . , pn}), with m =

∑
1≤i≤k

⌊
ϑi

2π

⌋
.
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Proof. The monodromy map takes values in Rep(Ṡ,PSL2(R), c�)e� by
Proposition 2.21. The result then follows from Theorem 4.14 and Propo-
sition 3.16, remembering that cusps correspond to positive unipotents. �

In [14] Deroin-Tholozan show that “super-maximal” components of
PSL2(R)-representations consist of monodromies of hyperbolic metrics.
Deroin told me that this result can be recovered using Corollary 3.20 and
the analysis carried out in Section 3.6 as follows.

Corollary 4.17 (Compact components of representation
spaces). Fix c = (c1, . . . , cn) and e > 0 and assume n > 3 + s0. Then
Rep(Ṡ,PSL2(R), c)e is compact if and only if

(�)

⎧⎪⎨⎪⎩
g = 0

no ci is hyperbolic or negative unipotent

e = 1− ‖{r}‖1 ∈ (0, 1].

Moreover, in this case every representation in Rep(Ṡ,PSL2(R), c)e is the
monodromy of some hyperbolic metric on Ṡ.
Furthermore, Rep(Ṡ,PSL2(R), c)e is compact if and only if (�) holds and no
ci is positive unipotent.

Proof. By Corollary 3.20, representations lying in a compact
Rep(Ṡ,PSL2(R), c)e cannot have hyperbolic or negative unipotent
boundary monodromy.

Fix a complex structure I on S.
Let D be a line bundle of degree d0 = 0 if n− 1 is even, or of degree

d0 = 1 if n− 1 is odd. Fix d = (d0 + 1− n)/2. Let a1 = · · · = an = 0 and let
w1(pi) =

1
2 (1− {ri}). Finally, pick the conjugacy classes ci to be {0} if ci is

elliptic, and to be nilpotent if ci is positive unipotent (and, in this case, we
set εi = +).

By Theorem 4.14, the component Rep(Ṡ,PSL2(R), c)e is homeomorphic
to Higgs(S,w, 2,OS , c)

ε
d,a and so the first and third claims follow from Corol-

lary 3.20.
As for the second claim, remember that all Higgs bundles [E,Φ] in

the compact Higgs(S,w, 2,OS , c)
ε
d,a have ψ = 0 and so Φ is nilpotent.

The harmonic section h of ξρ ×SL2(R) (SL2(R)/SO2(R)) constructed by

Donaldson corresponds to a ρ-equivariant harmonic map h̃ : ˜̇S → H2 ∼=
SL2(R)/SO2(R). Since the quadratic differential det(Φ) pulls back to ˜̇S to
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the Hopf differential of h̃, the vanishing det(Φ) = 0 implies that h̃ is confor-
mal. Hence, the pull-back via h̃ of the hyperbolic metric on H2 descends to
a conformal hyperbolic metric on (Ṡ, I), possibly with extra conical points
of angles in 2πN+, and with monodromy ρ. �

The case (g, n) = (0, 3 + s0) of the pair of pants can be done by hands.

The following result by McOwen [46] and Troyanov [63] is a version of
Koebe’s uniformization theorem [34] [35] for hyperbolic surfaces with conical
singularities.

Theorem 4.18 (Uniformization with conical singularities). For
every ϑ1, . . . , ϑn ≥ 0 such that e√−1ϑ > 0, there exists exactly one metric

on Ṡ with conical singularity of angle 2πϑi at pi (or with a cusp at pi, if
ϑi = 0) and which is I-conformal.

Mimicking Hitchin’s computation [31] in the case of a closed surface, we
then have the following expected consequence.

Corollary 4.19 (Uniformization Higgs bundles). Assume k = n and
let δi =

ϑi

2π − 1. Then the monodromy representation holh : π → PSL2(R) of

the unique hyperbolic metric h in Y(Ṡ, �) with conical singularities of angle
2πϑi at pi which is I-conformal corresponds to the Pic0(S)[2]-equivalence
class of the parabolic Higgs bundle (E•,Φ), with

E• = L∨
• ⊕ L•, Φ =

(
0 1
0 0

)
where L• = B(−1

2δ · P ) and B2 ∼= KS , and so L−2• K(P ) = TS(δ · P )⊗
KS(P ).

Proof. It is enough to notice that the harmonic metric the R2-bundle V̇ → Ṡ
with monodromy holh is provided by the (equivariant) developing map

(˜̇S, h̃)→ H2 = SL2(R)/SO2(R) itself, and then follow Hitchin’s computa-
tion. �
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10e année: 1957/1958. Textes des conférences; Exposés 152à 168; 2e
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