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On Classifying Spaces for the Family of
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Abstract: We give a bound for the geometric dimension for the
family of virtually cyclic groups in mapping class groups of an ori-
entable compact surface with punctures, possibly with nonempty
boundary and negative Euler characteristic.
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1. Introduction

Let S be an orientable compact surface with finitely many punctures (pos-
sibly zero punctures) and negative Euler characteristic. The mapping class
group, I'(S), of S is the group of isotopy classes of orientation preserving
diffeomorphisms of S that fix point-wise the boundary. Let m > 2 be an
integer and I';,(S) be the congruence subgroup of I'(.S), this is the subgroup
of those elements that act trivially on H;(S,Z/m).

Classifying spaces, EG, for the family of finite subgroups of a group G,
have been extensively studied. For the mapping class group, it is well-known
that the Teichmiiller space 7 (.S) is a model for ET'(S) by results of Kerckhoff
given in [11]. Later, J. Aramayona and C. Martinez proved in [1] that the
minimal dimension for which there exists a model for ET'(S) coincides with
the virtual cohomological dimension ved(I'(S)), this has been computed by
J. L. Harer in [8].

Finite dimensional models for classifying spaces EG for the family of
virtually cyclics have been constructed for word-hyperbolic groups (Juan-
Pineda, Leary [10]), for groups acting in CAT(0) spaces (Farley [7], Liick
[14], Degrijse and Petrosyan [4]), and many other groups.
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A method to construct a model for EG is to start with a model for EG
and then try to extend this to obtain a model for EG. In [15] Liick and
Weiermann gave a general construction using this idea.

The smallest possible dimension of a model of EG is denoted by gdG
and is called the geometric dimension of G for the family of virtually cyclic
subgroups. We prove that gdI'(S) is finite. Degrijse and Petrosyan proved
this fact in [4] for closed surfaces of genus at least 2, although our method
produces a larger bound, it is more general since it includes surfaces with
boundary and our techniques are different from theirs.

This paper is organized as follows: we review the fundamental material
about classifying spaces and mapping class groups in sections 2 and 3 respec-
tively. In section 4, we develop the analysis of commensurators of infinite
virtually cyclic subgroups in the mapping class groups and we prove:

Proposition 1. Let S be an orientable closed surface with finitely many
punctures and x(S) < 0. Let m > 3 be fizved. Let C = (g) C I'(S) be infinite
cyclic and n € N such that D = (g") C I';,(S). Then

Nr(s)[C] = Nr(s)(D)

where Npg)[C] is the commensurator of C' and Ny(g)(D) is the normalizer
of D. Furthermore, the subgroup D may be chosen to be mazximal in T, (S).

From Proposition 1 and a description of normalizers of infinite cyclic
subgroups that we develop in section 4, we prove the following:

Theorem 1. Let S be an orientable compact surface with finitely many
punctures and x(S) < 0. Then gdI'(S) < oo, that is, the mapping class group
[(S) admits a finite dimensional model for ET'(S).

Our main result is the following:

Main Theorem. Let S be an orientable compact surface with finitely many
punctures and x(S) < 0. Let m > 3, then

(1) gFm(S) <wcd(I'(9)) + 1;
(2) Let [['(S) : T (9)] be the index of T'y,(S) in I'(S), then

gd0(S) < [D(S) : T1n(S)] - gdl(S)
< [D(S) : Tu(S)] - (ved(I(S)) + 1).
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Where ved(T'(S)) is the virtual cohomological dimension of T'(S). We point
out that the bound in (1) is sharp.

A key result in finding the above is the following Proposition which we
could not find in the literature and we think is one of the most interesting
contributions of this work, see Proposition 5.11.

Proposition 2. Let S be an orientable compact surface with finitely many
punctures and x(S) < 0. Let m > 3, then the group I, (S) satisfies the prop-
erty that every infinite virtually cyclic subgroup is contained in a unique
maximal virtually cyclic subgroup.

We emphasize that Degrijse and Petrosyan proved in [4] the finiteness
of gdI'(S) by other methods. In this work we outline a method that gives a
precise description of a model for the classifying space for virtually cyclics of
mapping class groups. It depends on certain Teichmiiller spaces and mapping
class groups of subsurfaces of S.

Acknowledgment: A. Trujillo would like to thank John Guaschi for many
fruitful conversations.

2. Classifying Spaces for Families

Let G be a group. A family F of subgroups of G is a set of subgroups of G
which is closed under conjugation and taking subgroups. The following are
natural examples of families of G:

{1} = the trivial subgroup;
FIN g = finite subgroups of G;
VCY ¢ = virtually cyclic subgroups of G;
ALLqG = all subgroups of G.

Definition 2.1. Let F be a family of subgroups of G. A model of the
classifying space ExG for the family F is a G-CW-complex X, such that
all of its isotropy groups belong to F and if YV is a G-CW-complex with
isotropy groups belonging to F, there is precisely one G-map ¥ — X up to
G-homotopy.

In other words, X is a terminal object in the category of G-CW com-
plexes with isotropy groups belonging to F. In particular, two models for
ErG are G-homotopy equivalent.
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Definition 2.2. Let G be a group, H C G and X a G-set. The H-fized
point set XH is defined as

X ={reX| foralheH h-z=uz}.

Theorem 2.3. [13, Thm. 1.9] A G-CW-complex X is a model of ErG if
and only if the H-fized point set X is contractible for H € F and is empty
for H¢ F.

The smallest possible dimension of a model of ExG is called the geo-
metric dimension of G for the family F and is usually denoted as gdzG.
When a finite dimensional model of ExG does not exist, then gd G = oo.
We abbreviate EG := Erzy .G and call it the uniwversal G-CW-complex
for proper G-actions, and we abbreviate EG := Eycy_, G. We denote by
gdG = gdrzy,G and gdG = gdyey G- It is known that for any groups
Hy, Ho,

(1) @(Hl X HQ) < @Hl +@HQ
For a subgroup H C G, and a family F of G, denote by
F N H = {subgroups of H belonging to F},

the family of subgroups of H induced from F. A model of ErnpH is given
by restricting the action of G to H in a model of ExG. Then

(2) gdrnpH < gdzG.

2.1. Constructing models from models for smaller families

We will use the construction given by W. Liick and M. Weiermann in [15]. In
particular for the families FZN C VC), it is as follows: Let VCX = VCYq —
FIN g be the collection of infinite virtually cyclic subgroups of G. Define
an equivalence relation, ~, on VC& as

(3) VAW <= |VNW| =,

for V-and W in VC{, where | x| denotes the cardinality of the set x. Let
[VCZ] denote the set of equivalence classes under the above relation and let
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[H] € [VCZ] be the equivalence class of H. Define
(4) Ne[H] ={g € G ||g~ Hg N H| = oo},

this is the isotropy group of [H| under the G-action on [VCZ] induced by
conjugation. Observe that Ng[H| is the commensurator of the subgroup
H C G. Define a family of subgroups of Ng[H] by

(5) G[H] == {K € VC3_ 1) | |K N H| = 00} U FIN ng ().

The method to build a model of EG from one of EG is given in the
following theorem.

Theorem 2.4. [15, Thm.2.3] Let VCZ and ~ be as above. Let I be a
complete system of representatives, [H], of the G-orbits in [VCZ] under the
G-action coming from conjugation. Choose arbitrary Ng[H|-CW-models for
E(Ng[H]), Egi)(NG[H]) and an arbitrary G-CW-model for E(G). Define
X a G-CW-complex by the cellular G-pushout

imner G X o E(NG[H]) —— E(G)
lH[H]eI ida X N [l

Himer G X nem) Egia(Na[H]) —— X

such that fig) is a cellular Ng[H]-map for every [H] € I and i is an inclusion
of G-CW-complexes, or such thal every map f) is an inclusion of N¢g|H]-
CW-complexes for every [H| € I and i is a cellular G-map. Then X is a
model for Eg(G).

The maps in Theorem 2.4 are given by the universal property of classify-
ing spaces for families and inclusions of families of subgroups. Observe that
if gdG is finite and both gd N [H] and gdgy Ng[H] are uniformly bounded,
then gdG is finite.

Remark 2.5. Observe that if H, K € VCZ and both Cx and Ck are infi-
nite cyclic subgroups of H and K respectively, let ~ as in (3)

(6) H~ K ifonlyif Cy~Cg, and

NglH] ={9€ G ||g"'Hgn H| = oo}
(7) ={g€G|lg ' CygnCx| = c}.
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Let CZ be the set of infinite cyclic subgroups C' of G. Then the equivalence
relation ~ given in (3) can be defined in CZ¥, we will denote by [CZ] the set
of equivalence classes.

3. Mapping Class groups

Let S be an orientable compact surface with a finite set P, called punctures,
of points removed from the interior. We will assume that the surface has
negative Euler characteristic. References for this section are [5], [9] and [6].

Let Diff 7(S,0S5) denote the group of orientation preserving difeomor-
phisms of S that restrict to the identity on the boundary 05. We endow this
group with the compact-open topology.

Definition 3.1. The mapping class group of S, denoted I'(.S), is the group
['(S) = mo(Diff (S, 99)),

that is, the group of (smooth) isotopy classes of elements of Diff (S, 9.9)
where isotopies are required to fix the boundary pointwise.

Congruence subgroups. Let m € Z, m > 1. We denote by I';,(S) the
kernel of the natural homomorphism

0(S) — Aut(H;(S,Z/m1Z))

defined by the action of diffeomorphisms on the homology group, I';,,(S) is
called the congruence subgroup of I'(S). Note that this subgroup has finite
index in I'(5).

Complex of curves. An essential curve is a simple closed curve of S
that is not homotopic to a point, a puncture, or a boundary component.
The complex of curves, denoted by C(5), is the abstract simplicial complex
associated to S such that, (i) Vertices are isotopy classes of essential
curves, we denote by V(S) the set of vertices; (ii) C(S) has a k-simplex
for each (k 4 1)-tuple of vertices, where each pair of corresponding isotopy
classes have disjoint representants. The realization of a simplex is the
union of mutually disjoint curves that represent its vertices. The mapping
class group acts on V(S): if f € T'(S), a € V(S), the action is given by
f-a= f(a). Then I'(S) acts on C(S), since this action sends simplicies
into simplicies.
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Dehn twists. Let «, 8 be isotopy classes of simple closed curves in 5. We
will denote the Dehn twist about « as T,,. Let f € I'(S) and j,k € Z — {0}.
We have the following properties of Dehn twists, see [5, Sec. 3.3],

1) T4 = T§ iff a = B and j = k;

Je—1 _mi .
2) fTaf™ =Ty
3) TaTy =TTy iff i(a, B) = 0.

3.1. Classification of elements in I'(S)

We will first assume that S has empty boundary. We assume the reader is
familiar with the theory of transverse singular foliations. See [5] or [6] for
references.

Pseudo-Anosov diffeomorphisms. A diffeomorphism ¢ € Diff*(S) is
called pseudo-Anosov if there exists a pair of transverse measured foliations
(F5, 1), (F*, pu*) of S and a real number A > 1 such that

i O(F, ) = (F5, A7 ); and G(F*, ) = (F*, A®).

ii. the 1-prongs singularities of these foliations belong to the set of punc-
tures.

The measure foliation (F*, 1*) is called the stable foliation for ¢ and (F*, u*)
is called the unstable foliation for ¢, and X is the dilatation of ¢.

Definition 3.2. An element f € I'(S) is called pseudo-Anosov if it is rep-
resented by a pseudo-Anosov diffeomorphism.

Definition 3.3. An element f is called reducible if f fixes some simplex of
C(S) and irreducible otherwise.

Among the irreducible elements, those of finite order are periodic and
those of infinite order are pseudo-Anosov. There is the following classification
theorem for elements of the mapping class group, see [5, Thm. 13.2].

Theorem 3.4. (NIELSEN-THURSTON CLASSIFICATION) Let g,n > 0. Let
S be an orientable surface of genus g and n punctures. Each f € T'(S) is
either periodic, reducible, or pseudo-Anosov. Further, pseudo-Anosov map-
ping classes are neither periodic nor reducible. A periodic element is repre-
sented by a finite order diffeomorphism.
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Figure 1: The homomorphism ng_(f) is the identity on the shaded regions
and coincides with f on the unshaded regions.

Surfaces with boundary. If S has non-empty boundary, we define
f€T(S) to be pseudo-Anosov if f restricts to a pseudo-Anosov diffeo-
morphism on the punctured surface obtained by removing the boundary 0.5.

3.2. Induced homomorphisms from inclusions

Let S be an orientable closed surface with finitely many punctures. Let S’
be an orientable compact subsurface of S, the inclusion S’ — S induces a
natural homomorphism

(8) n: D(S") = T(9),

let g € T'(S’") and ¢ € Diff*(S’,05") be a representative difeomorphism of
g. Then 7n(g) is defined as the isotopy class of the difeomorphism which
coincides with ¢ in S” and is the identity in S — S’

Let o € C(S) with vertices a1, ..., a; and C' be its realization in S. Let N,
be an open regular neighborhood of C' in S and denote by S, =S — N, =
S1U---USg, where each S; is a connected component. Let 3; and ~; denote
the two boundary components of N, that are isotopic to «; in S.

Remark 3.5. Suppose that the surface S has genus g and n punc-
tures. Note that x(S,) = x(S) and x(S;) < —1, therefore k < —x(S) and
r < %, see [5] page 249.

See [5, Thm. 3.18] as a reference for the following homomorphisms.
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TGN

Figure 2: Corking each boundary component with a 1-punctured disc.

Cutting the surface. From the inclusions S, — S and S; — S denote
the induced homomorphisms by

9) ns,: I'(Ss) = T'(S), ns,: T'(Si) — I'(9),

with ker(ng ) = (T, T7Y, ..., T3. T71). Observe that I'(S,) = ]-f: I'(S;) and
1S, Bl Brt A, i=1

any element in the image ng, (I'(Sy)) leaves each subsurface S; of S invariant.

Corking. We glue a 1-punctured disk in each boundary component of
Sg, that is, we corked all boundary components, and denote this surface by
3; =51 U---USg, where the S\’Z are the connected components of S, (see
Figure 2). Note that the surface S, has the same Euler characteristic as S.

From the inclusion S, — S';, the induced homomorphism defined as (8)
is called the corking homomorphism of S,, and it is denoted by

(10) 0s,: T(Ss) = I(S,),

with ker(0g,) = (Tp,,...,T5,,T5,, ..., Ty, ). Let Q; be the set of punctures in S,
coming from boundary components of S;. Note that 0g, (I'(S;)) = F(@-, Q)
is the subgroup of F(S\’Z) that fixes pointwise all p € Q;. Since I'(S,) =
15, T(S:) and 65, = TIE_,fs,, then

(11) 0s,: T(Ss) — [[T(S:, Q).

Note that H . (SZ, Q;) can be seen as the subgroup of F(S ) that fixes
cach subsurface S; and fixes pointwise the punctures in Q = Uk, 9
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3.3. Pure elements

Let S be an orientable compact surface with finitely many punctures. A
diffeomorphism ¢ € Diff ' (S) is called pure if there exists a 1-submanifold
C' (possibly empty) of S such that the following conditions are satisfied:

(P) C is the realization of an element o € C(S) or C' is empty; if C' # (), v
fixes C, it does not rearrange the components of S — C, and it induces
on each component of S — C a diffeomorphism isotopic to either a
pseudo-Anosov or the identity diffeomorphism.

We call an element f € T'(S) pure if the isotopy class of f contains a pure
diffeomorphism. We call H C I'(S) pure if H consists of pure elements.

Theorem 3.6. [9, Cor. 1.5 and 1.8] If m > 3, then I';,(S) is a torsion free
group and a pure subgroup of T'(.S).

From now on, we will consider the subgroup I';,,(S) with m > 3.

Canonical reduction system. Let G C I'y, (). An isotopy class a € V (S)
is called an essential reduction class for G if the following conditions are
satisfied (i) g(o) = o for all g € G; (ii) if € C(S) with i(e, B) # 0, * then
h(B) #  for some h € G. The set of essential reduction classes of G is a
simplex of C(S) and it is called a canonical reduction system of G and it
is denoted by ¢(G). In general, for a subgroup H C I'(S) define o(H) :=
o(HNT,,(9)) and for f € I'(S) define o(f) := o ((f)).

Lemma 3.7. [9, Sec. 7.2, 7.3] Let f € I'(5), and G C T'(5).
(i) If H < G has finite index, then o(G) = o(H),
(ii) o(fGf7Y) = fo(G).

Lemma 3.8. Let S be an orientable compact surface with finitely many
punctures. If f, g € T'(S) are such that f7 = gfPg~! for some p,q € Z — {0},
then go(f) = a(f).

Proof. The hypothesis entails that o(f?) = o(gfPg'), by Lemma 3.7
o(f)=o(f) and o(gffg') =0ol9fg ),

then o(gfg~!) =o(f) and by Lemma 3.7 o(gfg~!) = go(f), therefore
go(f) = o(f). O

*The geometric intersection number of a and f is denoted by i(«, 3).
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Figure 3: The canonical form of ¥, where each subsurface is fixed. A shaded
region indicates a pseudo-Anosov component or a Dehn Twist and a unshade
region indicates an identity component.

Canonical Form. By cutting S along a reduction system ¢’ of an element
in I'(S) and applying the Nielsen-Thurston classification Theorem to each
subsurface of S, we can obtain a decomposition of the element as follows,
see Figure 3.

Theorem 3.9. [5, Cor. 13.3] Let f € I'(S) and 0 = o(f) be its canonical
reduction system with vertices o, ..., . Let S, = S1 U ... U S be as before
and let Ny = Spy1 U -+ U Sk, be the union of pairwise disjoint closed neigh-
borhoods Siy; of curves representatives of the a;. Then there is a represen-
tative ¢ of f that permutes the S;, so that some power of ¢ leaves invariant
each S;. Moreover, there exists an integer p > 0 so that ¢P(S;) = S; for all
1 and

r

k

i=1 j=1

where each f; € T'(S;) is either pseudo-Anosov or the identity and n; € Z
for1 <j<r.

When f €T,,(S) and m > 3 the integer p can always be taken to be
one.

3.4. Stabilizers

In this section, we shall consider S with empty boundary. The stabilizers
I'(S), will be used to understand the normalizers of reducible elements of

r(S).
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Let 0 € C(S) and S, = S1U---U Sk be as in Section 3.1. Denote the
stabilizer subgroup of o in I'(S) by

['(5)o = {g € T(5)[g(0) = o}.

Proposition 3.10. [5, Prop. 3.20] Let o € C(S) with vertices o, ..., . and
Sy =51U---USk. Then there is a well defined homomorphism

—
o

(13) po: D(S)y — T(S,).

where ker(ps) = (Tw,, .., Tw, ) is the free abelian subgroup generated by Dehn

r

twists about the curves anq, ..., au..

Let T'(S)? be the finite index subgroup of I'(S), that fixes each o; with
orientation, since elements in T'(S)% are orientation-preserving, it follows
that they also preserve the sides of each curve «; in S, thus they fix each
subsurface S;. Denote the restriction ps o = pg|p(s)g, then p, o = 63077501.
Therefore we have that

k
(14) po0: T(8)) = [ 1S Q)
i=1

is surjective and ker(ps,0) = ker(ps).

Remark 3.11. By [9, Thm. 1.2], elements in T';,(S), do not rearrange
the components of S, and fix each curve of o, so I',,(S), C T'(S)Y. Let
feln(S), o =o(f) with vertices aq, ..., a,, and let the canonical form of
f be as follows

f= H?:lﬁsi (?z) §:1T23j-
Moreover, assume that pso(f) = (f1, ..., fx). Note that f € I';,(S), and
(?17 7?16) € Ugal(f)

Since pyo(f) = 95077501( f) and ps.o is well defined, then

(fla ) fk) = 95',, (71a a?k)
= (05,(f1), 05, (Fr),

hence for each i, f; = 0s,(f,), therefore f; is pseudo-Anosov or the identity.
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4. Commensurators in I'(.S)

In order to build a model EI'(S) as mentioned in Sec. 2.1, we need to know
the commensurators of the infinite virtually cyclic subgroups in I'(.S).

4.1. Condition (C) for I'(S)

Using the following condition, we may give a description of the commensu-
rators of infinite virtually cyclic subgroups.

(C) For every g,h € G, with |h| = oo, and k,[ € Z,
if ghfg=t=hn! then |k| =l

Proposition 4.1. Let S be an orientable compact surface with finitely
many punctures and x(S) < 0. The group I'(S) satisfies condition (C).

Proof. Case I. The proof when S has empty boundary is given in Proposi-
tions 4.2 and 4.3, since elements with infinite order in I'(S) are reducible or
pseudo-Anosov.

Case II. Assume 0S # () and it has b connected components. Let f, g €
I'(S), with |f| = oo such that gfPg~' = f4 for some p,q € Z — {0}. Let

-~

Os: F(S) - F(S)

be the corking homomorphism of S as in (10), then ker(fg) ~ Z° is the
free abelian group generated by Dehn twists about curves isotopic to the
boundary components of S. Since ker(fg) is central in I'(S), if f € ker(fs)
we conclude that p = q.

On the other hand, if f ¢ ker(fg), applying g, we have

05(9)0s(f)P0s(9)~" = 0s(f)7,
and |0g(f)| = oo, applying Case I we conclude that |p| = |q|. O

About powers of a pseudo-Anosov diffeomorphism we have the following:
Suppose that S has empty boundary. Let f € I'(S) be a pseudo-Anosov ele-
ment and ¢ be a pseudo-Anosov diffeomorphism in its class, with (73, u3),
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( f;, ,ug) the stable and unstable foliations of ¢ respectively and Ay its dilata-
tion. For n € Z — {0},

(15) Q" (Fg 1) = (Fgs Ay " 1)
?"( ¢7M¢) (}m )\qs.uqs)

The reader may consult [6] and [17] as references.

Proposition 4.2. Let S be an orientable closed surface with finitely many
punctures and x(S) < 0. Let r € N and hq,...,h, € I'(S) be pseudo-Anosov
mapping classes, suppose that there exist g1, ..., g» € I'(S) and a permutation
v € 3, such that

(16) gihig; ' = hl

Sy forallie {1,...1},

for some p,q € Z — {0}, then |p| = |q|.

Proof. Suppose that p >0 and let I = {1,...,r}. For each ¢ € I, let ¢; be
pseudo-Anosov diffeomorphisms in the class h;, for each i there exists G; €
Diff*(S) in the class g;, such that G;¢PG; " = (b?y(i), this follows by the
uniqueness of pseudo-Anosovs [6, Exp. 12].
Let (F7, 1) and (F}*, pi') be the stable and unstable foliations, respectively,
of ¢;, with dilatation A; > 1, i € I. By (15), if n >0 (or n <0), (F7, 1)
and (F}*, p)') are the stable and unstable (unstable and stable) foliations
respectively of ¢7" with dilatation A (or ;™).

Suppose that ¢ > 0. Then G; sends the stable and unstable foliations of
¢ to the stable and unstable foliations of qﬁ‘ff(i) respectively ([6, Lem. 16,
Exp. 12]). Since the foliations are uniquely ergodic, the measure is up to a
constant, that is,

G(F,17) = (F5ays ki) GRS i) = (Foy b)),
with ab = 1. Thus

o (Fiay a5 y) = 030 (GIFT 1)
= Gl GG (F}, 1))
= Go;(F7, 1)
= G(F N ")

( o} )\7, a/%)a
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then the diffeomorphisms ¢! and (;Sfy(z.) have the same dilatation. Then for
each 7, we have \!' = )\3 5+ Since A; > 1, for all 4, A has only one real positive
g-root, then we can conclude that

A=A

(i), for all 4.

If for some i, (i) = i, then we conclude that p = q. If v(i) # ¢ for all i, let
n > 2 be the minimum positive integer such that v"(1) = 1. Since )\E = A\y)
for all 4, then

P

(17) )\,3&(1) = )\,ya+1(1), a < {0, ...,TL}7

thus A\ = )\53) . Since A1 > 1, we conclude that p = ¢q. On the other hand,
if ¢ <0, we have that A = )\;(Z), and in a similar way, we conclude p =
—q. [

Proposition 4.3. Let S be an orientable closed surface with finitely many
punctures and x(S) < 0. Let f € I'(S) be a reducible element such that f9 =
gfPg~t for some g € T(S) and p,q € Z — {0}, then |q| = |p|.

Proof. Let 0 = o(f), suppose that o has vertices a1, ..., a,. By hypothesis
and by Lemma 3.8, go = 0, so g lies in the stabilizer I'(S),. Let p, as in
Theorem 3.10,
po: T(S)y — T(S,).

Case 1. Suppose that f € ker(p,), that is, f=II}_,T7; without loss of
generality we can suppose that gdc{ni,...,n,} = 1. Note that g may per-
mute aq,...,ay, let 0 € 3, such that g(a;) = s for all i € I. Since the
als have disjoint realizations in S, the Dehn twists T, commute, thus by
hypothesis and because gT,, g~ = Ty(ar) = Tas, (see [5, Sec. 3.3]), we have
the following,

I_ T3 = gIl;_ T g~
=1L, T8
then we conclude that gn; = pns-1(;) for all i € I, we can regard these as
vectors v1 = (n1,...,n;) and vy = (ng-1(1),--sNs-1()) in Z" and pvy = qua.
Then v; and vy are in the same line of R”, and since v is obtained by a
permutation of the coordinates of vy, we conclude that v; = vy or v1 = —wva,
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therefore [p| = |q|.

Case 2. Since TI',,,(S) QT'(S) is of finite index, we may assume that f €
m(S5). Suppose that f ¢ ker(ps). Since f € I'y,(S), po(f) fixes each subsur-

faceS of S,. Let J = {1,...,k}, for every j € J, leth—pU( )]S S —>S

Note that p,(g) may permute the subsurfaces S; of S, let 9 = ps(9)lg

for each j € J and let v € ¥j, such that g;: S -8 ( ), forall j €J. By

hypothesis we have that p,(f)? = pg(g)pa(f)ppg( )~1, then

(18) gjfp gt fq ()’ for all j € J.

Since f € I, (S) and p,(f) # Id, for some [ € J, f; is pseudo-Anosov (see
Remark 3.11). Let > 0 be the minimum positive integer such that v*(I) =
[, from (18) it follows that

Gy 2@y = Flagy  forallic {0,1,.. 2},

Then f7 is pseudo-Anosov for each i € {0, 1,...,& — 1}. Observe that S

and S i() are homeomorphic for all 7 € {0,1, ...,z — 1}, then we can apply
Proposmon 4.2, therefore [p| = |q|. O

2. Description of commensurators

We denote by C(f) and Ng(f) the centralizer and normalizer respectively
of the subgroup (f) in G.

Theorem 4.4. [3, Thm. 6.1] Let S be an orientable compact surface with
finitely many punctures. Let G C T'(S) be a pure subgroup. If f,g € G are
such that ft = g* for some t > 1, then f = g.

Lemma 4.5. Let S be an orientable compact surface with finitely many
punctures. Let f € I',,,(S), t € Z — {0} and let I" be either I'(S) or I';,(.5),
then

Cr(f) =Cr(f") and Nr(f) = Nr(f%).

Proof. Suppose that t > 1. Since N, (s)(f) € Nr, (s)(f"), we need to prove
that NI‘m(S)(ft> - NFm(S) (f) If he NF,,L(S) (ft), we have

(=) = (")
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for some i € {1,—1}. Since fi,hfh~! € T,,(S) and T',,(9) is pure (Thm.
3.6), we can apply Theorem 4.4 and we conclude that

nfR = £,

therefore, h € Ny, (g)(f). Thus I'p,(S) is a normal subgroup of I'(S), we can
use Theorem 4.4 in similar way to prove that Np(s)(f) = Nr(s) (f). We have
the proof for the centralizers by taking : = 1. O

Lemma 4.6. Let S be an orientable compact surface with finitely many
punctures. Let o € C(S) with vertices az,...,a, and f = II}_, T}¢, with n; €
Z — {0}, then for any k # 0,

Nr(s)(f) = Nrs) (f5)-

Proof. Let g € NF(S)(fk), we will prove that g € Np(g)(f). By Lemma 3.7,
g(0) = 0 and g may permute the classes ai,...,a,. Let 6 € ¥, such that
g(a;) = ag(;) for all i. By the results about Dehn twists given in Section 3.1
and since f7¥ = gfFg~1, for some j € {1,—1}, we have
AT = gl T g
= T

Qs (i)

then we conclude that jkn; = kng(;) for all i, so jn; = ns(;) for all 7. On the
other hand, we have that

gfg ' =gl_ Tlig™*
=1L, T3,

Qs(i)?
since jn; = ng(; then
gfgt =T Tag” = 17,
therefore g € Np(g(f)- O

Lemma 4.7. [14, Lem. 4.2] Suppose that G satisfies Condition (C). Then,
for any C' € Cg there is a nested sequence of subgroups

N(C) € Ng(21C) € Na(3IC) C No(41C) C -
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where k!C is the subgroup of C given by {h*'|h € C}, observe that

Na[C] = | Ne (k).
k>1

The subgroup Ng(K!C) denotes the normalizer of k!C' in G.

We will follow the same notation as Section 2.1. Let CZ be the set of
infinite cyclic subgroups of G.

Proposition 4.8. Let S be an orientable closed surface with finitely many
punctures and x(S) < 0. Let m > 3 be fized. Let C' = (g) € Chlsy and n € N
such that g" € T',,(S). Then

Nr(s)[C] = Nr(s)(g")-
Furthermore, the subgroup (g") can be choosen maximal in Cﬁi’n (S)"

Proof. Let C € CRyg), [C] its class and suppose that C' = (g). From Lemma
4.7, we have that

Nrs)[C] = | Nresy(6™).
k>1

Let n € N such that g" € I'),(.5), by Lemma 4.5, we have that
Nr(s)(9) € Nrgs) (%) € -+ € Nrgsy(9™) = Npgsy (9
for any k£ > 1, and Np(g) (g™) = Nr(s)(g"), then

Nr(s)[C] = Nr(s)(9").

We will prove in Proposition 5.11 that (g") is contained in a unique maximal
Cecpr (8)’ therefore

Nr(s)[C] = Nr(s)(9") = Nr(s)(C).

By Lemma 4.6, we have:
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Corollary 4.9. Let S be an orientable compact surface with finitely many
punctures. Let o € C(S) with vertices au,...,or, and f = II[_ T, with n; €
Z —{0}. Then

Nr)[(f)] = Nrs) (f)-
4.3. Description of normalizers

For surfaces with empty boundary, by the Nielsen-Thurston Classification
Theorem, infinite order elements are pseudo-Anosov or reducible.

Theorem 4.10. [17, Thm. 1] Let S be an orientable closed surface with
finitely many punctures. Let f € I'(S) be a pseudo-Anosov mapping class.
The centralizer Crs)(f) is a finite extension of an infinite cyclic group. The
normalizer, Np(s)(f) is either equal to Cps)(f) or contains Cp(g)(f) as a
normal subgroup of index 2.

Since I',,,(S) is torsion free for m > 3, for g € I',,,(S) a pseudo-Anosov
mapping class, we know that Cr, (s)(9) = Nr, (s)(g) is an infinite cyclic
group.

Let f €T,,(S) be reducible and o = o(f) with vertices a1, ..., .. By
Lemma 3.8, Crs)(f) and Np(g)(f) are subgroups of the stabilizer I'(S),.
Recall that I'(S)? is the subgroup of I'(.S), that fixes each a; with orienta-

(e

tion. Denote by OF(S)(f)O = C[‘(S)(f) N F(S)O and NF(S)(f)O = NF(S)(f) N

[

I'(S)J, the finite index subgroups of Crg)(f) and Nrg)(f) respectively.

Proposition 4.11. Let S be an orientable closed surface with finitely many
punctures. Let f € T'p,(S) with peo(f) = (f1,--., fx), then

(19)  1—=2" —Cr)(f)° —> 11y Crg) () — 1,
and Crsy(f)° has index < 2k in, Nrs)(f)°.

Proof. Write f in its canonical form as in (12),

= H?:lnsi (f:) §=1T§f7

by Remark 3.11 we have

(20) (f17"'7fk> - (051<?1)7795k(7k))



280 Daniel Juan-Pineda and Alejandra Trujillo-Negrete

Let g € T'(S)?, following the method of Theorem 3.9, since g fixes each sub-
surface S; of S, and each «; with orientation, g can be written as

g9 =T 1ns, (G5 T3,

and g; can be reducible, periodic or pseudo-Anosov, for each i. In a similar
way as in Remark 3.11,

Po0(9) = (g1, s 9k) = (05,(G1); -, 05, (Gk))-

Thus
(21) 9fg™" =1 s, (G)ms. (Fi)ns, (@)~ 05, T,
then
f=gfg™!
if and only if ns,(f;) = ns,(@:)ns, (fi)ns.(g;) . for all i,

if and only if f; =g,f;g;", foralli.

The result follows since by the definition of 7g,, its kernel is generated by
elements of the form Tz7." ! and any commutator has no Dehn twists about
boundary components.

Now, if 95’ (?z) - 95 (gz)es (?1)95 (?z)_1> then gz?zyz—lf_l € ker 05
which is generated by Dehn twists about boundary components of .S;, then
we have glfzgl f = Id, therefore

fi=9:f.9; for all 4,
if and only if 6, (f;) = (M%@%@Nlhﬂa
if and only if f; =g¢; figi for all 4,

which follows by the equality given in (20).

Since there are no restrictions for m; with j € {1,...,r}, we conclude (19).
From the equality (21), if some n; # 0, then Crg)(f)° = Nrg)(f)".

On the other hand, if n; = 0, for all 7, since each f; is the identity or pseudo-

Anosov, in case f; is pseudo-Anosov, C ( fi) is a subgroup of index 1 or
2 in Ny Si)( fi) (Theorem 4.10), therefore we conclude that Cpg)( ) has
index < 2k in Npg)(f)°. O

By Proposition 4.11 and Theorem 4.10, if we rename the subsurfaces S; as
necessary, we have:
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Proposition 4.12. Let S be an orientable closed surface with finitely many
punctures. Let f €T, (S) with peo(f) = (Id§1’ o Idg s fay1s .o fr) where
fat1y -y fr are pseudo-Anosov. Then

(22) 1—=2"— Crs) () —= 1 TS, Q) [Ty Vi — 1,

where V; = Cr g Q,)(fj) is virtually cyclic for each j € {a+1,...,k}.

SURFACES WITH BOUNDARY. Suppose that S has b # 0 boundary compo-
nents (1, ..., B, let the corking homomorphism fg: I'(S) — T'(.S), with kernel
ker(fg) ~ Zb, generated by Dehn twists about curves isotopic to boundary
components of S. Let R be the set of punctures of S which comes from the
boundary components of S. Then 05(I'(S)) = I'(S, R) which is the subgroup
of I'(S) that fixes pointwise the set R.

Let f,g € T'(S), suppose that 05(f) and 0s(g) commute, then gfg=1f~!
is in ker g, but gfg~' f~! has no Dehn twists about boundary components,

so gfg ' f~! = Id. Therefore
0
(23) 12— G (f) = Crig (0(F) — 1.

Observe that elements in I'(S) leave invariant a regular neighborhood of the
boundary 9S. Then, if f has a non-zero power of a Dehn twist Tj,, for any
g €T'(S), gfg~! has the same power of Tp,, then

(24) Nres)(f) = Crs)(f)-
Moreover, if f has no Dehn twist about curves (i, ..., 8p, then
gfg "t =1F it 0s(9)0s(f)0s(9)" = Os(f)*".

Then

(25)  1——=Z"— Nigs)(f) — = Nyg ) (05(F) —= 1.

5. Geometric dimension for the family VCY

In Section 5.1 we prove that gdI'(S) < oo, and in Section 5.2, we will give

bounds for gdI',(S) and gdI'(S).
Let S be an orientable compact surface with finitely many punctures
and x(S5) < 0. It is well-known that the Teichmiiller space 7(S) is a finite



282 Daniel Juan-Pineda and Alejandra Trujillo-Negrete

dimensional space which is contractible, on which I'(S) acts properly and
it is a model for ET'(S) by results of Kerckhoff given in [11]. On the other
hand, J. Aramayona and C. Martinez proved in [1] the following:

Theorem 5.1. [1, Cor. 1.3] Let S be an orientable compact surface with
finitely many punctures. Then there exist a cocompact model for ET'(S) of
dimension equal to the virtual cohomological dimension ved(I'(S)).

And Harer computed ved(I'(S)) in [8].

Theorem 5.2. [8, Thm. 4.1] Let S be an orientable surface surface with
genus g, b boundary components and n punctures. If 2g + b +n > 2, then

4g+2b+n—4 ifg>0,b+n>0,
ved(T(9)) = 49 — 5 if n,b=0,
% +n—3 if g = 0.

5.1. Geometric dimension for I'(S)

We will use the same notation of Section 2.1. We will prove that there exist
finite dimensional models for ENp(5)[C] and Egc)Nr(5)[C] and a uniform
bound on gdgc)Nr[C] for any [C] € [Cﬁ‘gs)}, with these results, Theorem 2.4
and the fact that gdI'(S) is finite, we have:

Theorem 5.3. Let S be an orientable compact surface with finitely many
punctures and x(S) < 0. Then gdI'(S) < oo, that is, the mapping class group
[(S) admits a finite dimensional model for ET'(S).

For the proof of Theorem 5.3 we need the following results.

Proposition 5.4. [10, Prop. 4] Let G be an infinite virtually cyclic group,
then there is model for EG with finitely many orbits of cells which is home-
omorphic to the real line.

Theorem 5.5. [13, Thm. 5.16] Let 1 = H - G — K — 1 be an ezact
sequence of groups. Suppose that H has the property that for any group
H which contains H as subgroup of finite index, gdH < n. If gdK < k, then
gdG <n+k. o -

In [13, Ex. 5.26] Liick shows that virtually poly-cyclic groups satisfies the
condition about H in Theorem 5.5, in particular Z" satisfies such condition.
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Theorem 5.6. [16, Thm. 2.4] Suppose H C G is a subgroup of finite index
n, then gdG < gdH -n and gdG < gdH -n.

Proposition 5.7. [12, Lem. 4.3/ Let 1 - Z" — G — F be an exact
sequence of groups with F' finite. Then G admits an n-dimensional cocom-
pact EG homeomorphic to R™, with G acting by affine maps.

Remark 5.8. Let [C] € [le‘(’s)]. From Proposition 4.8, we could assume
that C' is a cyclic maximal subgroup in Cfi‘;(s) and Np(s)[C] = Nps)(C).
Let Wp(g)(C) = Nr()(C)/C and p: N (C) — Wrg)(C), the projection.
From Theorem 2.3, a model for EWpg)(C') with the Np(g[C]-action induced
from the projection p is a model for Egjc)Np(g)[C].

Then it is sufficient to consider models for ENp(g)(C) and EWpg)(C), of
maximal infinite cyclic subgroups C' in Cl‘if’n (5)"

Proof of Theorem 5.3: Suppose that the surface .S has genus g, b bound-
ary components and n punctures.
Part 1. For any [C] € [Cfi‘(s)], gdNp(s)[C] is finite. We may assume that
C € CleiL(S)’ it follows that NF(S)[C] = NF(S)(C) Since NF(S)(C) S F(S)
from the properties given in (2) and Theorem 5.1, we conclude that
gdNp()[C] < gdI'(S) = vedl'(S), which is finite.
Part 2. We will prove that there exist z € Z, such that for any [C] € [C%(’S)],
gdgio)Nr(s)[C] < 2.
(I) The surface S has empty boundary. Let [C] € C%(’S), with C' = (f). By
the Nielsen-Thurston classification Theorem, f is either, a pseudo-Anosov
class or a reducible element.
(a) If f is pseudo-Anosov, then Np(g)[C] = Np(g)(f) is virtually cyclic and
G[C] is the family of all subgroups of Np(s)(f), hence a point is a model for
EQ[C]NF(S) [C], therefore gdg[C]NF(S) [C] =0.
(b) If f is reducible and f = II}_ T}, with n; € Z — {0}, where a1, ..., o,
are the vertices of 0 = o(f). By Corollary 4.9 , Np(s)[C] = Np(g)(f) and we
can suppose that gde{nq,...,ng} = 1.
Following the same idea as in Remark 5.8, a model for EWpg)(f) with
the induced action of the projection Np(g)(f) — Wr(s)(f) is a model for
Egic1Nr(s)[C]. We will prove that gdWp(g)(f) is finite.
Note that any element g € I'(S)? commutes with f, because g fixes each class
a;, then T'(S)) € Np(s)(f). On the other hand, we have Npg)(f) € I'(S)o,
therefore I'(5)Y is a finite index subgroup of Ny (g)(f) and it is normal, then

1——1(8)) — Np(s)(f) — B —1,
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where B is finite, we will obtain a uniform bound for the order of B. Since
fer(9)?, we have

1——=T(8)g/{f) —= Nr(s)(f)/(f) —=B——1.
Since the index [['(S), : T'(9)%] < (27)!, then |B| < (2r!). By Theorem 5.6,

gdWrs)(f) < gd(D(S)g/(f)) - B

<
(26) < gd(T(S)g/(f)) - (2r).

From (14), since f € ker(p,0) we have

1—— (T, oo, Ta, ) () —=T(8)3/(f) —= [T, T(Si, Q) — 1,

since (Tn,,....;To, ) ~Z" and f is identified with the point (ny,...,n,) € Z"
via that isomorphism, then the quotient Z"/((n,...,n,)) ~ Z"~!  because
gdc{ny,...,n,} = 1. Then

1 zr— L(9)5/(f) —= 11 T(Si, Q) — 1,

we apply Theorem 5.5, the properties given in (1) and (2), and Theorem 5.1
to conclude that

gd(T(S)9/(f) < (r—1)+ gd( I, T(S;, Q1))

> 7"*1 +ng Szsz

(27) <(r—1)+ Zvcd(F(§ )

Observe that each :9\@ has at least one puncture, no boundary components
and negative Euler characteristic, thus from Theorem 5.2 we can see that
ved(T(S;)) < —2x(S;), then

(28) < (r =1+ (=2x(9));

from inequalities (26) and (28), we conclude

(29) gdWr(s)(f) < (=2x(5) +r —1)- (2r).

gd(I(S)g/(f)) < (r—1) + Z(—2X(§ )
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By Remark 3.5 r < W, therefore

(30) gdWr(s)(f) < (=5x(S5) = n)(=3x(5) —n)!.

Note that the bound only depends on the surface.

(c) Now suppose that f is reducible, o = o(f) has vertices aj, ..., a,, and
p(f) is not trivial. Since Np(g)[C] = Np(g)(f"), for some n # 0 such that
fm e, (S), then we may assume that f € I',,(S) and C' = (f) is maximal
in Cp° (8)" We will apply Remark 5.8 again.

Note that CF(S)(f)O < Np(g)(f) is of finite index, then

1 — Cr(s)(f)? — Np(g)(f) —= F —1,

with |F| < 2F((2r)!), this follows by Proposition 4.11 and because the index
[0(9), : T(S)Y] < (2r)!. Since f € T, (S), then f € C’F(S)(f)o, and so,

1 —— Cr(s)(/)°/{f) —= Nrs)(f)/{f) —= F —1.
By Theorem 5.6
(31) gd(Wr(s)(C)) < gd(Crs) ())°/()) - 2"((2r)Y).

Let poo(f) = (f1,..., fr) and we rename the §Z such that f; = Idp(§)

ie{l,..,a}and f; € F(g;, Q;) is pseudo-Anosov for j € {a +1,..,k}, then
by Proposition 4.12,

for

l—— <Ta17 cevey Tar> - CF(S) (f)o ﬂ) H?:l F(S’\“ Q’L) H.l;:a+1 ‘/J - 17

where V; = C/
Denote the group [, r(S;, o) IT¥ Vj by A, then we have the following

j=a+1
homomorphism

@ Q,)( fj) is virtually cyclic for each j.

¥ Cresy(F)°/(f) = A/ {paolf))
9(f) = ps0(9)(Pao(f));

which is well-defined because py0((f)) = (ps0(f)), ¥ is a homomorphism
and since pg o is onto, then 1) is onto too. Thus

ker b = o (o0 (F))/ 1),
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is a free abelian subgroup isomorphic to Z". Moreover,

A _ 1F(SQOZ) j= —at1Vj
<p0,0(f)> <(Idr(§:)’"'aldr(sa)afaJrl,"'af/ﬁ)>
H?za—i—l‘/j

= 11%_,T'(S;, Qi) x (Fasts o fo))

Since (f;) < V; is of finite index, for all 7, if f = (fat1,. f&),

(32> 1*>H] a+1<f]>/<f>*> i=a+1 ]/( > z a—&—le*)la

with F finite for all j, thus from Proposition 5.7 and (32) we have that
gd(ITF_ a_HV/( f)) <k —a—1. Thus applying Theorem 5.5 to the exact
sequence given by 1, the properties given in (1) and (2), and Theorem 5.1,
we have:

£d(CRgy /1) < 7+ [gd (T T (S, Q) + (k —a — 1)]
<7+ [T () + (k== 1)

<r+ [Z@(F(@)) +(k—a—1)]
=1

1(S;,Q
I(S;

<r+ [Z vcd(F(gi)) +(k—a—1)]

a

<+ [D0(-2(8) + (k —a—1)]

=1
<+ [(-2(8) + (k —a 1)
(33) < BT o) -,

the last inequality (33) holds because & < —x(.5) (see Remark 3.5) and a >
0. From (31) and (33) we conclude that

(34) gd(Wr(s5)(C)) < (=6x(5) = n)((=3x(5) —n)!).

Note that the bound only depends on the surface. From (a) and the inequal-
ities (34) and (30), for any [C] € [CR{g)],

(35) gdgic)Nr(s) [C] < (=6x(S) = n)((=3x(5) —n)}).
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(IT) The surface S has non-empty boundary. Following in a similar way
as in Part (I), from (23),(24) and (25), we conclude that there exist z € Z,
such that for any [C] € [CRg)], gdgic)Nr(s)[C] < 2. O

5.2. Bounds for geometric dimension

We will prove that I',,(S) satisfies the following property, which we will use
to give a bound for gdI';,(5).

Definition 5.9. A group G satisfies Marycs if every subgroup H € VC¢
is contained in a unique H,,q, € VCZF which is maximal in VCZ .

We follow the same notation as in Section 3.1 and 3.4. The homomor-
phism p, is given in Section 3.4, and pom = polr,,(s)- By [9, Thm. 1.2], ele-
ments in I, (S), do not rearrange the components of S, and fix each curve of
o, then I',(S), C I'(S)Y. Note that if g € T,,(S), and pgim(9) = (g1, -, gk,
by definition of p,,,, and because g is pure, each g; is pure, then the image
Pom(I'm(S)s) is a pure subgroup of Hle F(S;-, Q,). Let T'; be the projection
of the image pgm(I'm(S)s) over F(g’i, Q;) for each i, then each I'; is torsion
free and we have

(36) Pom: Tm(8)e — TIE_ T,

where ker(ps.,) is a free abelian subgroup of ker(py) ~ Z", observe that
ker(pom) ~ Z" as I'y, (S) is of finite index and ker(pq.,,) is of finite index in
ker(ps) . As a reference, see [9, Sec. 7.5].

Lemma 5.10. [9, Lem. 8.7] Suppose that S has empty boundary. Let G
be a subgroup of I',(S), m > 3. Let 0 = 0(G), and suppose that p,(G) =
Hf::lGi, where G; denotes the projection of pg , (G) over F(g\i, Q;) for each
1. The group G is abelian if and only if each Gj is either trivial or an infinite
cyclic group.

Proposition 5.11. Let S be an orientable compact surface with finitely
many punctures and x(S) < 0. Let m > 3, then the group I',,(S) satisfies
property Maxvc;om(s>.
Proof. Case I: Suppose that S has empty boundary. Since I',,(S) is torsion
free for m > 3, then VCI‘?;L( s) = Cff(’s) is the set of infinite cyclic subgroups

m
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of I, (5).
It is well-known that for surfaces S with empty boundary, periodic elements
of I'(S) are of finite order. By the Nielsen-Thurston classification Theorem,
each element of I',,,(S) — {Id} is either reducible or pseudo-Anosov.
Let H = (f) € C{g), - Observe that if (k) = K € CRig) and H C K, then
[ =k for some n € Z — {0}. By Lemma 4.5, Cr_(s)(K) = Cr, (s)(H), thus
K C Cr, (s)(H). Actually, we will prove that K lies in a free abelian sub-
group of I';,(S) (which does not depends on K but only on H), then H
must be contained in an unique maximal subgroup of Cl‘an (8)" If f is pseudo-
Anosov, by Theorem 4.10, Cr, (5)(H) € C5°. ) and it is the unique maximal
subgroup of Cfifn (S) containing H.

On the other hand, suppose that f is reducible and let o = o(f) be its
canonical reduction system, by Lemma 3.8, Cr (s)(H) C I';,(S)s. Suppose
that o has vertices aq, ..., ., let Sp = S1 U -+ Si and pyrm, as in (36),

Pom: Tm(8)y — TIE_ T,

where I'; C F(§,~, Q;) is torsion free for each ¢ and ker(pym,m) ~ Z° is a free
abelian subgroup of (Ty,, ..., Ty, ) ~ Z". Note that each T,, commutes with

r

[ Af pom(f) = (f1, -, fi), then

1 ——=7° —Cp,(s)(f) 22215 Cr (i) — 1,

furthermore each f; is either the identity or pseudo-Anosov, see Remark
3.11. Let pyum (k) = (k1, ..., k), then we have that

(a) for all 4, kif; = fiki,

(b) for all 7, f; is an n-th root of k; because f is an n-th root of k,

(c) if fj = Id for some j, then k; = Id, because each I'; is torsion free.

Let L ={l1,...,lq} C{1,....,k}, such that [; € L if only if f;, is pseudo-
Anosov. By Theorem 4.10, Cr, (f;,) is an infinite cyclic subgroup for each
l; € L. We regard H}Llelj (f1,) as subgroup of II¥ , Cr, (f;), let

G= P;}n(H;‘lzlchj (/1,)) € Tim(S)s,

then we have

Po,m

1 Z° G H?:lcrzj(flj)ﬂl ;
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by Lemma 5.10, we conclude that G is a free abelian subgroup and by cons-
truction, we have that K C GG. Since K was taken arbitrarily, we conclude
that there exists a unique maximal subgroup H,,q: € Cﬁfn () containing H.
Case II. Suppose that S has non empty boundary components [, ..., 5.
Let 6g: I(S) — I'(S), be the corking homomorphism as in (10), with

ker(0s) = (Ts,, ..., Tp,) =~ Z".

By definition of fg we have that 0g(I',(S)) € Iy(S). Since each Tp, acts
trivially on H1(S,Z), ker(0s) C I';,(S), then ker(fs|p, (s)) = ker(fs). Then
we have the following,

(37) | 7P — T (S) 22T, (5).

It is well known that I'(S) is torsion free when S has non-empty boundary,
then Cl‘if’n 5) = VCYr.,.(s) — FIN r,.(s) is the set of infinite virtually cyclic
subgroups of I';,(.9).

Let A = (z) € CY° (S), if B=(y) eC® (8) is such that A C B, then we have
0s(A) = (0s(z)) C (0s(y)) = 0s(B). As in CASE I, we will prove that B lies
in a free abelian subgroup of T',,(S).

By CASE I, we have that there exists G C Fm(§ ), a free abelian subgroup,

such that if K € C;O ) and fg(A) C K, then K C G. Let us consider the

free abelian group G = g, (I (S)) NG, note B C 9;}%((?), because y €
050 (0(y))-

Let g1,92 € G, g1 € 0g Y(g1) and g, € 051(92), since g1 and go commute, by
definition of fg, it follows that §; and §; must commute, therefore 0~1(G)
is a free abelian subgroup. Since B was taken arbitrarily, we conclude that
A is contained in an unique maximal subgroup A4z € C°° ()

Note that the free abelian subgroup does not depend on B but only on
A. O

We will apply the following Theorem.

Theorem 5.12. [15, Thm. 5.8] Let G be a group satisfying Maxycs . Sup-
pose we know that gdG < oo, then

(38) gdG < gdG + 1.

Theorem 5.13. Let S be an orientable compact surface with finitely many
punctures and x(S) < 0. Let m > 3, then
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(1) gdl'n(S) < ved(T(S)) + 1;
(2) Let [I'(S) : T, (9)] be the index of T'y,(S) in I'(S), then

gdl'(S) < [I'(S) : T (S)] - gdl'm ()
[0(S) : T (S)] - (ved(T(S)) + 1).

IN

Where ved(I'(S)) is the virtual cohomological dimension of I'(S).

Proof. By Theorem 5.12, Proposition 5.11 and Theorem 5.3, we conclude
(1) and applying Theorem 5.6 we conclude (2). O
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