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Abstract: We show that the motivic vanishing cycles introduced
by J. Denef and F. Loeser give rise to a motivic measure on the
Grothendieck ring of varieties over the affine line. We discuss
the relation of this motivic measure to the motivic measure we
constructed earlier using categories of matrix factorizations.
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1. Introduction

The motivic nearby fiber and the motivic vanishing cycles were introduced
by J. Denef and F. Loeser (see [DL98, DL99, DLO01, Loo02]). Let V: X — Al
be a morphism of k-varieties where k is an algebraically closed field of char-
acteristic zero and X is smooth over k and connected. The motivic nearby
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34 Valery A. Lunts and Olaf M. Schniirer

fiber 1y, and the motivic vanishing cycles ¢y, of V at a point a € k = Aﬁ(k)

[

are elements of a localization M of the equivariant Grothendieck ring

1Xal

Ko(VarEXa') of varieties over the reduced fiber | X,| of V' over a. We refer the

reader to the main body of this article for precise definitions. We will often
view 9y, and ¢y, as elements of /\/lliL in this introduction.

The motivic nearby fiber is additive on the Grothendieck group

Ko(Vary;) of varieties over A}, as shown by F. Bittner [Bit05] and by

G. Guibert, F. Loeser and M. Merle [GLMO06, Thm. 3.9]. Namely, for any

a € k, there is a map
K()(V&I‘A&) — ME

of Ko(Vary)-modules which maps the class of a proper morphism V: X — Al
with X as above to the motivic nearby fiber 1y ,.

The motivic Thom-Sebastiani theorem [GLMO06] is a local multiplicativ-
ity result for motivic vanishing cycles. Given another morphism W: Y — Al
as above define V@ W: X xY — Al by (V& W)(z,y) =V (z)+ W(y).
Then the motivic Thom-Sebastiani theorem states that a certain convo-
lution of the motivic vanishing cycles ¢y, and ¢w; determines some part
of the motivic vanishing cycles ¢y gw,q4p (see Theorem 4.1).

Our main result states that after small adjustments - the motivic van-
ishing cycles ¢y, we use differ by a factor (—1)4mX from the usual motivic
vanishing cycles (see Remark 3.2) - the motivic vanishing cycles are both
additive and multiplicative.

Theorem 1.1 (see Theorem 5.9). There is a morphism
(1.1) (Ko(Vary:), ) — (M %)

of Ko(Varg)-algebras - called motivic vanishing cycles measure - which
s uniquely determined by the following property: it maps the class of each
proper morphism V: X — Aﬁ from a smooth and connected k-variety X to
the sum Y o\ dv.a of its motivic vanishing cycles.

The motivic vanishing cycles measure is a motivic measure in the sense
that it is a ring morphism from some Grothendieck ring of varieties to an-
other ring. The multiplication * on the target of our measure is a convo-
lution product whose definition is due to Looijenga and involves Fermat
varieties. The multiplication x on the source is given by [X Y, AllxY v,

All=[XxY Yew, Al]. Apart from the additivity and local multiplica-
tivity results mentioned above, the main ingredient in the proof of Theo-
rem 1.1 is a compactification construction described in [LS16a]. In fact, we
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prove a slightly stronger statement in Theorem 5.9: the motivic vanishing
cycles measure (1.1) comes from a morphism (Ko(Vary:),*) — <MX&’*) of
Ky(Vary)-algebras. Let us mention that our sign adjustments are already
necessary for additivity (see Remark 5.5).

In the last part of this article we compare the motivic vanishing cycles
measure with a motivic measure of a completely different categorical nature
(in case k = C). Mapping a projective morphism W: X — Al from a smooth
complex variety X to its category of matrix factorizations gives rise to a

“matrix factorization” motivic measure

p: (Ko(Varyy),+) — Ko(sat??)
as we explained in [LS16b, LS16a]. The target of this ring morphism is the
Grothendieck ring of saturated differential Zo-graded categories. Here is our

comparison result.

Theorem 1.2 (see Theorem 6.3). We have the following commutative
diagram of ring homomorphisms

(Ko(Vargy), *) e Kg(sat((zf)

\L XHP

(ME, %) — 7

where the left vertical arrow is the motivic vanishing cycles measure (1.1)
from Theorem 1.1, the lower horizontal arrow is induced by forgetting the
group action and taking the Fuler characteristic with compact support, and
the right vertical arrow is induced by taking the Euler characteristic of peri-
odic cyclic homology.

The main ingredients in the proof of this theorem are the comparison
between the periodic cyclic homology of the dg category of matrix factor-
izations of a given potential V' with the vanishing cohomology of V' due to
A. Efimov [Efil12], and the comparison between the motivic and geometric
vanishing cycles due to G. Guibert, F. Loeser and M. Merle [GLMO06].

1.1. Structure of the article

§2 We remind the reader of various (equivariant) Grothendieck abelian
groups of varieties and multiplications (or “convolutions”) on them.
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We recall Looijenga’s convolution product * in section 2.3 and include a
direct proof of associativity (see Proposition 2.12); this reproves results
of [GLMO06, 5.1-5.5]. We also define a variant of Looijenga’s convolution
product for varieties over A& in section 2.4.

63 We recall the definition of the motivic nearby fiber 1y, and the mo-
tivic vanishing cycles ¢y, and show that ¢y, lies in Mréing(‘/)ﬁ X,
(see Proposition 3.4). We also show an invariance property of ¢y, in
Corollary 3.6.

§4 We state the motivic Thom-Sebastiani theorem [GLMO06, Thm. 5.18]
as Theorem 4.1 and give some corollaries. In particular, we globalize
the Thom-Sebastiani theorem to Corollary 4.2.

§5 A corollary of [GLMO06, Thm. 3.9] is given as Theorem 5.2. We obtain
additivity of the motivic vanishing cycles in Theorem 5.3. Then we
deduce our main Theorem 5.9 using the previous Thom-Sebastiani
results and the compactification result stated as Proposition 5.12.

§6 We remind the reader of the categorical motivic measure in [BLLO04]
and its relation to the matrix factorization measure. Then we prove
Theorem 6.3. We finish by giving two examples and by drawing a
diagram relating the motivic measures considered in this article.

1.2. Acknowledgements

We thank Daniel Bergh, Alexander Efimov, Annabelle Hartmann, Francois
Loeser, and Anatoly Preygel for useful discussions, and the referee for careful
reading.

The first author was supported by NSA grant 43.294.03. The second au-
thor was supported by a postdoctoral fellowship of the DFG and by SFB/TR
45 of the DFG.

1.3. Conventions

We fix an algebraically closed field k of characteristic zero. By a k-variety
we mean a separated reduced scheme of finite type over k. A morphism of k-
varieties is a morphism of k-schemes. Let Vary be the category of k-varieties.
We write X instead of Xgpeck. By our assumptions on k, the product of two
k-varieties is again reduced and hence a k-variety. If X is a scheme we denote
by |X| the corresponding reduced closed subscheme.
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2. Grothendieck rings of varieties
2.1. Grothendieck rings of varieties over a base variety

Fix a k-variety S. By an S-variety we mean a morphism X — S of k-varieties.
Let Varg be the category of S-varieties. The Grothendieck group Ky(Varg) of
S-varieties is the quotient of the free abelian group on isomorphism classes
(X — S) of S-varieties X — S by the subgroup generated by the scissor
expressions (X — S) — (X —=Y) = S5) — (Y — 5) where Y C X is a closed
reduced subscheme. Any S-variety X — S defines an element [X — S| of
Ky(Varg).

Given S-varieties X — S and Y — S, the composition |X xgY|—
X xgY — Sisan S-variety; this operation turns Ky(Varg) into a commuta-
tive associative ring with identity element [S i, S] (use [GW10, Prop. 4.34]
for associativity).

Let Mg := Ko(VarS)[LEI] be the ring obtained from Kjy(Varg) by in-
verting Lg = [A§ — S].

We usually write Ko(Vary) instead of Ko(Vargpeck), L = Ly instead of
Lspeck, and My instead of Mgpeck-

Remark 2.1. Note that the Grothendieck ring Ko(Varg) defined here is
canonically isomorphic to the Grothendieck ring defined in [NS11, 3.1], by
[NS11, 3.2.2].

2.1.1. Pullback. Let f: T — S be a morphism of k-varieties. Then the
functor Varg — Varp, (X — S) — ([T xg X| =T xg X — T'), induces a
morphism

(2.1) [ Ko(Varg) — Ko(Vary)

of commutative unital rings which satisfies f*(ILg) = Ly and hence induces
a morphism

(2.2) [ Mg — My

of rings. If g: U — T is another morphism of k-varieties, we have ¢* f* =
(fg)*, by [GW10, Prop. 4.34].

In particular, Ky(Varg) (resp. Mg) becomes a Ky(Vary)-algebra (resp.
M-algebra), and (2.1) (resp. (2.2)) is a morphism of Ky(Vary)-algebras
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(resp of My-algebras). Note that the obvious map defines a canonical iso-
morphism

My gy (var,) Ko(Varg) = Mg
of My-algebras.

2.1.2. Pushforward. Let f: T — S be a morphism of k-varieties. The
functor Vary — Varg, (Y % T) — (Y EENJS ), induces a morphism

fi: Ko(Vary) — Ko(Varg)
of Ky(Vary)-modules. Tensoring with My yields a morphism
Ji: Mp — Mg
of My-modules which sends [V % T L' to [V EEN S]-Lg"

Remark 2.2. The canonical isomorphisms from Remark 2.1 are compatible

with pullback and pushforward, by [GW10, Prop. 4.34].

2.2. Grothendieck rings of equivariant varieties over a base
variety

For n € Nyg let w, = Spec(k[z]/(z™ — 1)) be the group k-variety of n-th
roots of unity. Note that actions of w, on a k-variety X correspond bijectively
to group morphisms (k) = Autyay, (X).

Fix a k-variety S and let n € Ns5q. Recall that a good p,-action on a k-
variety is a pw,-action such that each w, (k)-orbit is contained in an affine open
subset of X. An S-variety with a good w,-action is an S-variety p: X — S
together with a good w,-action on X. So p is w,-equivariant if we equip S
with the trivial p,-action. We obtain the category Vark" of S-varieties with
good p,-action.

The definition of the Grothendieck ring Ko(Varg") of S-varieties with
good y,-action is evident from [GLMO6, 2.2-2.5]; apart from the usual scissor
relations there is another family of relations, cf. [GLMO06, (2.2.1)]. Any S-
variety X — S with good p,-action gives rise to an element [X — S] = [X]
of Ky(Varg"). The product of [X — S| and [Y — S] is the element ob-
tained from |X xgY|— S with the obvious diagonal p,-action. Define
Ls = Lg,., = [AL — S] € Ko(Varl") where p, acts trivially on A}. Let
M = Ko(Varg™)[Lg'].

We write Ko(Vary") and M{™ instead of Ko(Varg) ) and Mg .
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If f: T"— S is a morphism of k-varieties we obtain as above a pull-
back morphism f*: Ko(Vark") — Ko(Vary") of Ko(Varf™)-algebras satis-
fying f*(Lg) = Ly and an induced pullback morphism f*: Mg" — MA»
of M'"-algebras. We also have a pushforward morphism fi: Ko(Vark") —
K (Vars") of Ko(Var,™)-modules, and a pushforward morphism fi: My" —
MG of M} "-modules. For n = 1 we recover the notions from 2.1.

Whenever n' is a multiple of n there is a morphism , — Wy, A — A" "/
of k-group varieties inducing morphisms

(2.3) Ko(Varg™) — Ko(Varl™'),
(2.4) ME = ME,

of rings. These morphism are compatible with pullback and pushforward
morphisms.

In particular, Ko(Varg™) (resp. MY5") becomes a Ko(Vary)-algebra (resp.
M-algebra) and the morphisms (2.3) and (2.4) are morphisms of algebras.
We have a canonical isomorphism

(2.5) My QKo (Vary) Ko(VarS") = M;”

of M-algebras given by (G ) ®ar— %

Let {i be the (inverse) limit of the (Hn(k))neN>o with respect to the
morphisms (k) — wn(k), A= X/ whenever n’ is a multiple of n.

An S-variety with good [i-action is by definition an S-variety X — S
together with a group morphism {t — Auty,y, (X) that comes from a good
Hp-action on X, for some n € Nyo. As in [GLMO6, 2.2] we obtain the cate-
gory Vars of S-varieties with good [i-action. We define Kj (Vars) and /\/l*L
in the obvious way so that we have

Kg(Varg) = colim,, Ko(Varg"),
Mg = colim,, Mg".

The Grothendieck ring Ko (Varg) is an Ko(Vary)-algebra (even a K()(Vau“f;L )-
algebra), and MY is a My-algebra (even a M -algebra). We have

My ® iy (var) Ko(Var) = M

canonically as rings. If f: T'— S is a morphism of k-varieties, we obtain
a pullback morphism f*: Ko(Varg) — Ko(Vary) of Ko(Vary)-algebras and
a pushforward morphism fi: Ko(Varl) — Ko(Vark) of Ko(Vary)-modules.
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The base changes of these morphisms along the ring morphism Ky(Vary) —
My are denoted by the same symbols.
Instead of working with w,, we could work more generally with p,, x
..Uy, (for r € N and nq,...,n, € Nyg), and instead of [t we could work
with 1" (for r € N). We extend our notation accordingly.

Remark 2.3. There is an alternative description of Ko(VargT) and Mgr,
see the dictionary in [GLMO06, 2.3-2.6]. When referring to results of
[GLMO06] we will usually translate them using this dictionary.

Lemma 2.4. Let S be a k-variety and F' C S a closed reduced subscheme
with open complement U. Leti: F'— S and j: U — S denote the inclusions.
Then

(5%,i%): Ko(Varg) = Ko(Varl'}) X KO(Var%),
A (57(A4),7(4)),

is an isomorphism of Ko(Vary)-algebras, with inverse given by (B,C) —
J1(B) +4(C). Similarly,

(G*,7): ME S M x MB
is an isomorphism of My-algebras.
Proof. This is obvious from the definitions. O

Remark 2.5. Recall that Ko(Varg), Ko(Varg") and Kg(Varg) are
Ko(Varg)-algebras whose multiplications are induced from the fiber product
over S. In the rest of this article mainly the underlying Ko(Vary)-module
structure on Ko(Varg), Ko(Vark") and Ko(Var) will be important. Given
(T — Speck) in Vary and (Z — S) in Varg or Varg" or VargL it is given by

[T — Speck|.[Z — S]=[T x Z — S].

In fact, we will introduce other multiplications on the Ko(Vary)-modules
Ko(Varg™) and Ko(Var) turning them into Ko(Varg)-algebras.

2.3. Convolution

After some preparations we define the convolution product * on Ko(Varg")
(Definition 2.10) and show that it turns Ko(Varg") into a Ko(Vary)-algebra
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(Proposition 2.12). This is not a new result: see [GLMO06, 5.1-5.5] and use the
dictionary from Remark 2.3. Nevertheless we liked the exercise of showing
associativity without using this dictionary.

Let S be a k-variety and n € Nyg. Let p: Z — S be an object of
Varl" ", We assume that p, x p, acts on Z from the right. The
group H, X W, acts on the k-variety Z x Gy X Gy, via (z,2,y).(s,t) :=
(2.(s,t),s tx,t~1y). The quotient with respect to this action is the bal-
anced product Z xH*»*Hn Gy, x Gy, which is again a k-variety (use [SGA-1,
Exp. V.1]). We equip it with the diagonal w,-action given by [z,z,y|.t =
[z,tx, ty] = [2.(t,1), z,y]. With the obvious morphism to S induced by
p it is an object of Varg". Similarly, starting from the two closed S-
subvarieties of Z x Gy X Gy, defined by the equations z"™ 4+ y"” =1 and
" +y" = 0, we obtain the two objects (Z x**H» G, X Gy)|pnyyn=1 and
(Z xHnXHn Gy X Gy ) |gnyyn=0 of Varg™.

Given (Z % §) € Varly"**" as above define

U(Z B 8) 1= —[(Z x4 Gy X G lan yrmy 22, ]
x Yy

+ [(Z xH* XM Gy X Gyy)| g yn=0 i Viac I S] € Ko(Var™).
x y

Here the symbols z and y below Gy, X Gy, indicate that (z,y) forms a system
of coordinates on G,, x Gp,. Similar notation will be used below without
further explanations.

Example 2.6. Let p: Z — S be as above and assume that [, X W,
acts trivially on Z. Then Z x"***r Gy X G — Z X Gy X Gy, [z, 2,9] —
(z,2™,y™), is an isomorphism which is Ww,-equivariant if we equip Z X
Gum X Gy, with the trivial w,-action. This implies W(Z 2 ) = [Z 2 8] in
Ko(Varg") where Z is considered as a W,-variety over S with trivial action.

In particular, we obtain ¥ (S u, S)y=1[S u, S].

Example 2.7. Assume that p=p1 X pa: Z =71 X Ly — S =51 x5
where S1 and So are k-varieties and p;: Z; — S; is an object of
Vargl", for i=1,2. Moreover assume that the action of W, on Zs
is trivial. Then Z1 X Zy xMn*XHn Gy X Gy, = (Z1 xM* Gy X (Z2 x Gp),
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[21, 22, x, y] = ([z1, 2], 22,y™), is an isomorphism over S, and we can sim-
plify (2.6) to

\I/(Zl X ZQ % Sl X Sg) = — [(Zl x M Gm)‘x";ﬁl X ZQ — Sl X SQ]
+ [(Zl x Hn Gm) X Loy —> Sl X SQ]

xT

:[(Zl s M) X Aoy — 51 X SQ]
:[Zl X Lo —> S1 X SQ]

This example will be useful later on.

In fact, ¥ induces a morphism
(2.7) U: Ko(Var ") — Ko(Varg")

of Ko(Vark)-modules.

Our next aim is to prove Proposition 2.9 which will later on imply asso-
ciativity of the convolution product.

Let p: Z — S be an object of Varg” " *¥* Similarly as above we define

(28) @123(2 £> S) =

[Z7m ?z ,I‘]Hp(z)
— [(Z xMnXHnXbn Goox Gy X Gm)‘x?ﬂ%xg:l iR EC SN S|
T

T2 Z3

([val»m2’z3])*_>p(z)\ S]

-+ [(Z x Hn X Hn X Han Gm X Gm X Gm)|x{"+x§+x§’:0

1 To T3

€ Ko(Varg")

where the closed subvarieties of Z xH»*HnXHn G x Gy, X Gy, are equipped
1 To

T3
with the p,-action [z, 1, z9, x3].t = [z, tx1, teg, teg] = [2.(¢, 1, 1), 21, T2, 23].
Again we obtain a morphism

Wio3: Ky (Varg" XHn X u") — Ky (Varg")

of Ky(Varg)-modules.
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Similarly we associate to (p: Z — S) € Varl™ """ the element

(29) \1113(Z) =
—[(Z P X Gy x {1} X G [agsag—1
1 x3

[z,21,1,23]—p(2)
— e T

S]

+ [(Z XHn,X{l}XU—n Gm % {1} % Gm)|x;’+x;’:0 ([zvxlvlvm?»])’_)p(z) S]
€ Ko(Varl ).

Here the w, x w,-action is given by the two commuting p,-actions
[z,x1,1,23].8 = [z, 521, 1, sx3] = [2.(s,1,8),21,1,23] and [z,21,1,23].t =
[2.(1,¢,1), 21,1, 3], i.e. we have [z, x1, 1, x3].(s,t) = [2.(s, 1, 5), 21, 1, 23]. As
above we obtain a morphism

Wi3: Ko(Varg ") — Ko(Varg ")
of Ky(Vary)-modules. Similarly we define W19 and Was.

Remark 2.8. If f: S— S is a morphism of k-varieties, all maps
U, Wios, Wio, i3, Wo3z are compatible with fi and f*, for example

U(fi(2)) = fi(¥(Z)) for Z € Ko(Vark™ ") and V(f*(2)) = f*(¥(Z)) for
Z € Ko(VargZZX”"). For fy this is obvious. For f* one uses the fact that
Z X Gy X Gy, = Z xHnXMn Gy X Gy 35 a (W X Wy)-torsor and hence its
pullback under the base change morphism f is again such a torsor.

Proposition 2.9 ([GLMO06, Prop. 5.5]). We have
Wig3 =VoWg=VoWp=WVoWy
as morphisms Ko(Varly™ " ¥y — Kq(Varl") of Ko(Varg)-modules.

Proof. Let p: Z — S be an object of Vark”” """ Tt is enough to show that
\11123(2) = \I/(\Iflg(Z)) = \I/(\Illg(Z)> = \IJ(\IJQ3<Z>) n Ko(varg"). We only
prove Wi93(Z) = ¥(¥13(Z)) and leave the remaining cases to the reader.
From (2.6) and (2.9) we obtain
(

(2.10) U(V3(Z)) = — U([(Z xHnx1Thxun @ x {1} x G m)e

ap+ay=1 = S5])
+W([(Z xHe i Gm x {1} x Gm)‘x?-i—a:é“:(] — 9]

= D> (F)*[Dse = 8]

6,€{0,1}
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where

Hn Xty
pbap=s X Gm X Gm)lyp +yz=2

Ds. := ((Z xH> e G {1} X G)
T T3 Y1 Y2

= (Z X Hn X Hon Gm X Gm X Hn XM Gm X Gm)|m?+m§:5,

1 T3 Y1 Y2 yp tyy=e
(Z X Gm X Gm X Gm X Gm) e el =5,
1 T3 Y1 Y2 vitug=e

Mn X Hp X Hp X iy
Here, by the definitions of the quotients in (2.6) and (2.9), the quotient is
formed with respect to the (i, )**-action
(Zv T1,x3,Y1, y2)'(87 tv u, U) = (Z.(S'U,, v, tu)v S_lxb t_1x37 u_1y17 U_1y2>'

and Ds. is a w,-variety with action

[z, @1, 23, Y1, Y2 m = [2, 21, 23, my1, myz| = [z.(m, m,m), x1, 23, Y1, Y2).

The coordinate changes a; = 2191, az = 23y1, b = y1, a3 = yo in (G, )**

and s’ = su, ¥ = tu, u = u, v = v in (i, )** show that
(Z x Gm X G X Gy X Gyy)| ap+ag=son,
ay as b as b tall=e

Dé,z—: =
Han X Hpn Xty Xy

where the quotient is formed with respect to the (w,)**-action

(Zv ay, az, ba a3)'(8,7 tla u, U) = (Z'(Slﬂ v, t,)v Sl_lalv t,_l

ag,utb, v tas)
and the w,-action on this quotient is given by

[Zaa17a27b7 a3]'m = [Zamalama%mb’ ma3] = [Z'(m>m7m),al7a27ba a3]‘

The quotient of Gy, X Gy, X Gy, X Gy,

ap+ap=son, under the obvious action of
b”«l»agza

a1 as b as
{1} x {1} x uy, x {1} on the factor Gy, with coordinate b is clearly isomor-
phic to

Q(;,E = (Gm x Gy, X Gm)’a?{»a%:é(aftx:’;),

ay az as al #e
So we obtain
D6,E ~ 7 XHnXP—nXMn Q6,£

where the quotient is formed with respect to the (w,)*3-action

(27 ai, az, a3)'(sla t/7 U) = (Z‘(S/> v, t/)7 S/_lab t/_1a2> U_1a3)
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and the p,-action on this quotient is given by
[z,a1,a2,a3].m = [z.(m,m,m), a1, az, as] = [z, may, may, mag).
Continuing the computation (2.10) we obtain

U(Wr5(Z)) =+ [Z X" (G % G X G

az

(CL

—[Z MR (G X Gy X Gm
(
(

al+al+af=1 — S]

n
1¢a3

at+ab+al=0 — S]

asz
— [Z Xunxunxun, G

asz 1#05'

m)
)

X G X Gnl)|a?+a£’:0 — S]
m)

+[Z XXt (G

X G ><<G

a2

|ag+az=0 = 5]
The last two summands simplify to

F[Z 3 H XX (G X G X G )| e sag—o — S].

ay as as 1=a§"

45

The two conditions af 4+ aj = 0 and 1 = a% are equivalent to the two con-
ditions a + a3 +ay =1 and 1 = a%. Hence we can further simplify and

obtain

U(V13(Z)) =+ [Z xMrX¥eXbn (G x Gy X Gum)lap+az+az=1 — 5]

ai ao as
[Z X K X Hp X Ky (G X GHI X G )’a"—‘,—a 'tan -0 — S]
aj as

:\Iflgg(Z).

where the last equality holds by definition (2.8).

O

Definition 2.10 (Convolution product). The convolution product * on

Ko(Varg") is defined as the Ko(Vary)-linear composition
(2.11)

w1 Ko(Vark™) ® g, (var,) Ko(Vark™) =5 Ko(Vark ™ H") 2 Ko(Varg™)

where the first map xg is the Ko(Vary)-linear map induced by mapping a
pair (A, B) of S-varieties with good w,-action to the class of the S-variety

|A x g B| with good (W, X W,)-action.
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More explicitly, if A — .S and B — S are S-varieties with good w,-
action, then

(2.12)
[A— 8] % [B = ] = = [(|14 x5 Bl x**** Gy x Gl 421 = ]
z Yy

+ [(|A xs B x Xt Gy x Gm)|x"+y":0 — 5]
@ y

=—[|[(A xg B x" " Gy x Gm)|zn4yr=1| = S]
T Y

+ [[(A x5 B X" ¥ Gy X Gy ) |gm4yn—0| — S].
x Yy

The second equality comes from the fact that taking the reduced subscheme
structure commutes with fiber products ([GW10, Prop. 4.34]) and with quo-
tients under the action of a finite group.

Remark 2.11. Let A — S and B — S be S-varieties with good [, -action,
and assume that the w,-action on B is trivial. Similar as in Fxample 2.7
we deduce from (2.12) that

A} [B] = —{I(A x*" Gm) x5 (B x %n))lxww':ll]
(A X Gm) x5 (B % %n))!x"+y'=0|]

= (A X" Gm) x5 B)lowzal] + [I(A x5 Gm) x5 B]
= [[(A ¥ wn) x5 Bl] = [|[A x5 B|| = [A][B].

Proposition 2.12 ([GLMO06, Prop. 5.2]). Let S be a k-variety and
n > 1. The convolution product * turns Ko(Varg") into an associative
commutative unital Ko(Vary)-algebra. The identity element is the class

of (idg: S — S) where w, acts trivially on S. We denote this ring as
(Ko(Varg"),*).

Proof. Clearly, the convolution product is commutative. Remark 2.11 shows
that [idg: S — S] is the identity with respect to the convolution product.
Associativity follows from Proposition 2.9:

(4] # [B)) * [C] = W(W1a([|A x5 B x5 C)
— W(Was([|A x5 B x5 C]) = [A] * ([B] * [C).
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Here we again use that passing to the reduced subscheme structure com-
mutes with fiber products and taking quotients under the action of a finite
group. ]

Remark 2.13. Forn =1 the convolution product x on Ko(Varg') coincides
with the product on Ko(Varg) = Ko(Varg'), so Ko(Varg) = (Ko(Vark'), )
as Ko(Vary)-algebras. This follows immediately from Remark 2.11.

Let (Z — S) € Var""" and assume that n’ = dn is a multiple of n.
Then the morphism Z x Gy, X Gy, — Z x Gy X Gy, (2, 2,9) = (2,29, y?)
defines an isomorphism

(2.13) Z xMo X Goox Gy = Z x M Gy x Gy

in Varg”/. This implies that ¥ is compatible with the morphisms
Ko(Varg" ") — Ko(Var™ ") and Ko(Varl") — Ko(Varg™), cf. (2.3),
and so is the first map in (2.11). We deduce that the obvious morphism

(Ko(Varg™),*) — (Ko(Varg™), )

is a map of Koy(Vary)-algebras. Hence convolution turns Ko(Varg) into an
associative commutative unital Ko(Vary)-algebra; we denote this algebra by
(Ko(Vary), ).

If f:T—S is a morphism of k-varieties, the pullback maps
[ (Ko(Varg®),*) — (Ko(Varf"), ) and f* (Ko(Var),*) —
(Ko(Vark), =) are maps of Ko(Varg)-algebras (use Remark 2.8 and
that the first map in (2.11) is compatible with pullbacks). )

We also want to define a convolution product on Mg and M.

Consider the localization of (Ko(Varg"),*) at the multiplicative set
{1,Lg,Lg*Lg,...}. The n-fold convolution product of Lg = [A}g] with it-
self is [A%] and we have [A] x [AG] = [A][A%] for [A] € Ko(Varg™), by Re-
mark 2.11. Hence the underlying abelian group of this localization is canon-
ically identified with the underlying abelian group of MY%". We can therefore
denote the above localization by (ME", ).

Because the structure morphism Ko(Vark) — (Ko(Varg"), *) sends Ly
to Lg we obtain a canonical isomorphism

(214) Mk ®KU(Vark) (KO(Varun)7 *) 1> (Mgnv *)

of My-algebras which we will often treat as an equality in the following. Its
underlying morphism of My-modules coincides with (2.5).
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Similarly, we define the convolution product * on ./\/lgL and obtain the
Mi-algebra My @, (var,) (Ko(Vary), ) = (MY, *). The map ¥ from (2.7)

gives in the obvious way rise to a morphism
. A fxf i
U M™% — Mg
of My-modules; the convolution product * on Mg is then given as the
composition
w1 MY @, ME 25 MEXH S MY
Given f: T — S as above, we obtain pullback maps f*: (M5", %) —
(ME %) and f*: (MY, %) — (MK %) of My-algebras. Under the isomor-

phisms (2.14) they are just obtained by scalar extension along Kj(Vary) —
My from the previous pullback maps.

2.4. Convolution of varieties over A&

We now use that Aﬁ is a commutative group k-variety. Let add: A& X Ai —
Al, (z,y) = x +y, be the addition morphism. Let n > 1.

Definition 2.14 (Convolution over Al). The convolution product x on
Ko(VarK{L) is defined as the Ky(Varg)-linear composition
k

(2.15) *: Ko(Vary) @, (var,) Ko(Varki) e Ko(Varyy 7))

2dd, KO(VarKé”X”") N Ko(VarKk?)

where the first map X is the Ko(Vary)-linear map induced by mapping a pair
(A, B) of Aﬁ—vam‘eti@s with good W,-action to the S-variety A x B with good
(n X Wy)-action.
By Remark 2.8 we have
Ax B =V(add|(A x B)) = add)(¥(A x B))

for A, B € Ko(Varfr).

Remark 2.15. Let A5 Al and B LN Al be Al-varieties with good u,-
action, and assume that the Ww,-action on B 1is trivial. Then Example 2.7
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implies that
A% Al [B 2 Al =[Ax B 225 al]

where (a ® B)(a,b) = a(a) + B(b); the wp-action on A X B is the obvious
diagonal action (a,b).t = (a.t,b.t) = (a.t,b).

Remark 2.16. In the casen = 1 the convolution product x on Ko(Varll) =
k
Ko(Vary) satisfies

A% A<[B D Al =[4x B 2% Al

where A % Al and B LN Al are Al-varieties. This is a special case of Re-
mark 2.15.

Proposition 2.17. The convolution product x turns Ko(Varkl) into an
k

associative commutative Ko(Vary)-algebra with identity element [Speck N
Al]. We denote this ring by (Ko(Variy),*).
k

Proof. Commutativity follows from commutativity of Al. That [Speck A
A}] is the identity element with respect to x follows from Remark 2.15. De-
note the morphism (A})*® — Al (z,y,2) — 2 + y + 2 by addd. Remark 2.8
and Proposition 2.9 show that

(Ax B)x C = add,(¥(add, (¥ (A x B)) x C))
= add;((add x id);(¥(¥(A x B) x C)))
= addd, \If(‘:[flg(A X B X C)))

!
= addd!(\I/123(A X B x C))

A similar computation shows that the last term equals A % (B x C). This
proves associativity. U

Mapping a k-variety (A — Speck) to (A 2N A}) induces a morphism of
unital rings

(2.16) Ko(Vark) — (Ko(vargéb),*)

as follows immediately from Remark 2.15. This map is the structure map
of the Ko(Vary)-algebra (Ko(Vark), ). Denote the image of Ly under this
k
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map by
0
(2.17) Lia0) = [Ap = Ay € Ko(Varjy).

Let us denote the localization of (KO(Var”") *) with respect to the mul-
tiplicative set {1,141 0), Leaz 0y * Lat0)s--- } by (Mgf,*). Then there is a
canonical isomorphism

My ®K0(Vark) (Ko(VaI“XE') ) (MAM )

of My-algebras given by (L o ®ar m If we compare with the iso-

morphism (2.5) we see that (JLA\&)" — Ty o) defines an isomorphism

(2.18) MT RS M““

of My-modules.
Similarly as above (cf. the reasoning around (2.13)), the various
Ko(Vary)-algebras (Ko(Varht),«) for n > 1 are compatible. Hence we ob-
k

tain the Ko(Vary)-algebras (Kg(Vargl),*) and
Mic @, (var,) (Ko(Varly ), ) = (M1, %)
and an isomorphism
(2.19) M = M,
of My-modules.

Lemma 2.18. Let e: Al — Speck be the structure morphism. Then map-
ping an object (A % Al) € Var“" to (A =% Speck) € Var{™ induces a mor-
phism

(2.20) e (M1, %) = (M}, %)
of My-algebras.

Proof. Certainly we have a morphism

(2.21) e KO(VarKE) — Ko(Var.™)

of Ko(Varg)-modules. If Z is a k-variety we denote its structure morphism
Z — Speck by 7. Let A, B € Ko(Varl}). Since €/(A) and &/(B) are in
k



Motivic Vanishing Cycles as a Motivic Measure 51

Ko(Var,"), e1(A) xe1(B) is defined using the fiber product over k. Using
Remark 2.8 we obtain

(A x B) = &1(add)(¥(A x B))) = ep ™ (W(A x B)) = (e} (A x B))
=U(g(A) x e1(B)) = &1(A) xe1(B).

Clearly, (2.21) maps [Speck 5 Al] to [Speck — Speck]. Therefore it is a
morphism of Ky(Vary)-algebras e: (Ko(VarKél),*) — (Ko(Vary™),*). We
can pass to ft. Then base change along Kjy(Vark) — My (or noting that
La1,0) goes to Lgpeck) yields a morphism e : (MK€7*) — (M %) of M-
algebras. The lemma follows. U

3. Motivic vanishing cycles

Let X be a smooth connected (nonempty) k-variety and let V': X — Ai be a
morphism. Given a € k = Al (k) we denote by X, the scheme theoretic fiber
of V over a.

We quickly review the definition of the motivic vanishing cycles. For de-
tails we refer to [GLMO6, Sect. 3]; note however that we use slightly different
signs, see Remark 3.2 below. Following Denef and Loeser, the motivic zeta
function of V at a is a certain power series

Zya(T) € M [[T)

whose coefficients are defined using arc spaces, see [GLMO06, (3.2.2)]. It is
possible to evaluate Zy, at T' = oo. This is clear if V' is constant because
then Zy, = 0. If V is not equal to a there is a formula expressing Zy,, in
terms of an embedded resolution of |X,| C X which makes it evident that
the evaluation at 7' = oo exists.

The motivic nearby fiber vy, of V' at a is defined to be the negative
of this value at infinity, i. e.

wV,a = —Zvya(OO) S ME'XJ

See (3.3) below for a formula for 9y, in terms of an embedded resolution.
The motivic vanishing cycles of V at a are defined by

(3.1) va = [1Xal 5 | Xall = tva € My .

Here | X,| is endowed with the trivial {i-action.
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Remark 3.1. IfV is constant we have ¥y, = 0. If V is constant # a we
have ¢y = 0. If V is constant = a we have X = |X,| and ¢y, = [X =N X].

Remark 3.2. Denef and Loeser choose different signs in the definition of
the motivic vanishing cycles. In [GLMO06], the motivic nearby fiber (resp.
motivic vanishing cycles) of V' at 0 is denoted Sy (resp. S‘Qj) They are
related to our definitions by

wV,a = SVfav
Sva = (1) XSP_ .

Our sign choice for the motivic vanishing cycles is justified in Remark 5.5.

Let Sing(V') C X be the closed subscheme defined by the vanishing of
the section dV € I'( X, Q}(/k) of the cotangent bundle. The closed points of
Sing(V') are the critical points of V. Let Crit(V') = V(Sing(V)(k)) € Al(k) =
k be the set of critical values of W it is finite by generic smoothness on the
target. Trivially we have Sing(V) N X, = ) if a is not a critical value.

If Z is a scheme locally of finite type over k we denote its open subscheme
consisting of regular points by Z*°&. The closed subset Z%"8 C Z of singular
points has a unique structure of a reduced closed subscheme of Z, denoted
by ‘Zsing|‘

Remark 3.3. If V =a then Sing(V)N X, = X and (X,)*"8 = (). Other-
wise the singular points of X, are precisely the elements of the scheme-
theoretic intersection Sing(V') N X, i. e. we have the equality

(3.2) [Sing(V) N Xa| = [(Xa)*™¢|

of k-varieties. This is trivial if V' is constant # a, and otherwise it follows
by considering Jacobian matrices.

Let us prove that the motivic vanishing cycles ¢y, live over [Sing(V) N
Xl

Proposition 3.4. We have ¢y, € M‘%mg(v) canonically.

X, |

Therefore we will often view the motivic vanishing cycles ¢y, as an

element of M"

((Sing(V)NX. | in the following.
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Proof. If V' is constant this follows directly from Remarks 3.1 and 3.3

So let us assume that V' is not constant. As in [DLO1, 3.3] let h: R — X
be an embedded resolution of |X,| so that the ideal sheaf of h=1(|X,]|) is
the ideal sheaf of a simple normal crossing divisor (cf. [Kol07, Thm. 3.26]
or [Vil05, Thm. 2.2] for existence). Let E = h~!(X,) be the divisor on R
defined by V' o h. Let (E;);cnn(g)) denote the irreducible components of | E].
Then E =}y miki for unique m; € Ny. Let I C Irr(|E]) be given.
Define Et := NjerE; and EY := Ep \ Ujelrr(\ED\I E;. Let m; be the greatest
common divisor of theNmi for ¢ € I. Then Denef and Loeser define an un-
ramified Galois cover E7 — E7 with Galois group W,,,. They establish the
formula

(3.3) Pa=Sv—a= Y. (1-L)UE = [ X,
0AICIrr(|E])

see [DLO1, Sect. 3.3 and Def. 3.5.3].

Note that h induces an isomorphism h~}(U) = U where U := X —
| X,|58, by part (i) of [Vil05, Thm. 2.2]. We can also deduce this from
principalization [Kol07, Thm. 3.26] as follows. Since |X,| has codimension
one and A is a composition of blow-ups in smooth centers of codimension two
and higher, h is an isomorphism over an open neighborhood of some regular
point of | X,| if |X,| is non-empty. Since principalization is functorial with
respect to étale morphisms, A is an isomorphism over all regular points of
Xal.

We obviously have open embeddings (X,)™ = |(X,)"8| C | X,[*® C
|X,| and hence a closed embedding || X,[5"8| C |(X,)%8|. Let U’ := X —
(X,)¥"8 C U, so h~1(U") = U’ is an isomorphism. Over X, N U’ = (X,)"8
we obtain the isomorphism

(3.4) h: ENh~HU") 5 (X,)™8,

so ENh~YU’) is regular.

If |I| > 2, then every element e € Ey lies in |E|¥"8 C E5"8 so e ¢ EN
h=Y(U") and hence h(e) € (X,)*"8. Therefore E‘I’ — | X,| factors as E‘}’ —
(X)) C | X,

If r: (X,)™8 = [(Xa)"8] — | X,| is the inclusion we hence obtain

v = Y, (B

i€lrr(|El)

Eerh-r(ur) = (Xa)™8].
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If B2 Nh~(U’) is nonempty then m; = 1 because ENh~(U’) is reduced,
so E? — E? is an isomorphism. Moreover, E N h~1(U’) is the disjoint union
of the EZ N h~Y(U"), for i € Trr(]E|). These facts and the isomorphism (3.4)
imply that
* id
($va) = [(Xa)™*® = (Xa)"8].

Hence 7*(¢v,,) = 0 by definition (3.1). The decomposition (X,)" C X, D
|(X4)%"8| of X, into an open and a closed reduced subscheme gives rise to a
similar decomposition (X,)"& = |(X4)™8| C [X4| D [(X4)¥"¢| of | X,|. Hence
Lemma 2.4 shows that ¢y, € M . Since V' is not constant, (3.2) holds

[(Xa)sine|
true. 0

Corollary 3.5. IfV is not constant and X, is smooth then ¢y, = 0.

Proof. In this case we have |Sing(V) N X,| = [(X,)%"8| = () by (3.2). More
directly, we can take h =id as an embedded resolution in the above proof
and obtain ¢y, = [| X, d, | Xo|] from (3.3) and hence ¢y, = 0. O

Corollary 3.6. Assume that X is a dense open subset of a smooth k-variety
X" and that V: X — A} extends to a morphism V': X' — Al such that all
critical points of V' are contained in X, i.e. Sing(V’') = Sing(V/)NX =
Slng(V) Then ¢V,a e ¢V’,a-

Proof. 1f V is constant then V' is constant and X = Sing(V) = Sing(V’) =
X', so the claim is trivial.

Assume that V' is not constant. Then we can assume that the embed-
ded resolution h: R — X of |X,| from the proof of Proposition 3.4 is the
restriction to X of a similar embedded resolution h’': R" — X' of | X/|. Let
51 |(Xa)SM8| — | X,| and s: |(X!)*8| — | X! | denote the closed embeddings.
Then ¢y, = 515" (¢v,q) by (the proof of) Proposition 3.4 and

s v = [|(Xa)™™| = [(Xa)"8|] — 5™ (dv,0)
by definition (3.1). Similarly, we have ¢y o = s{s™*(¢v,4) and
" dva = [[(X5)"8] = [(X0)™"8[] = 8™ (va)-

By assumption and Remark 3.3 we have |(X,)%"8| = |Sing(V) N X,| =
ISing(V’) N X/| = |(X])¥"8|. Therefore it is enough to show that s*(1y,,) =
s (1y 4). But both expressions have explicit formulas obtained from equa-
tion (3.3); these expressions coincide since the Galois coverings E}’ — E7
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and E}? — E constructed for h: R — X and h': R — X' are compat-

ible and give rise to isomorphic varieties with fi-action over |(X,)""8| =
|(X5)™el. m

4. Motivic Thom-Sebastiani theorem

LetV: X — Aﬁ be as in the previous section 3. Let Y be a smooth connected
(nonempty) k-variety with a morphism W:Y — A&. We define V &® W to
be the composition

Vew: X xY LW ALy Al &5 al

Theorem 4.1 (Motivic Thom-Sebastiani theorem, [GLMO6,
Thm. 5.18]). Consider morphisms V: X — A and W:Y — Al as above
and let a,b € k. Let iqy be the inclusion | X,| X [Yy| = [(X X Y)q1s|. Then

(4.1) Tab(PVew.ars) = Y(dva X dwp)

. fL . . X
n M|Xa|x|Yb\ where ¢y, X pwy, is the obvious element OfM\Xa\lebl'

Proof. Using Remark 3.2 this is precisely [GLMO06, Thm. 5.18].

We would like to emphasize that (4.1) also holds if V' or W is constant.
Assume first that both V and W are constant; if V' =a and W =0 then
both sides of (4.1) are equal to [X x Y N &% Y] (use Remark 3.1 and
Example 2.7); otherwise both sides are zero.

Now assume that V' is not constant but W is. If W # b then again both
sides of (4.1) are zero. If W = b choose an embedded resolution of | X,| C X
as in the proof of Proposition 3.4 and obtain an explicit expression for ¢y ,.
If we take the product of this embedded resolution with Y = Y}, we obtain an
embedded resolution of |[(X X Y),4s| = [Xa| XY € X XY and an explicit
expression for ¢y ew e4+s. Now use again Remark 3.1 and Example 2.7. [J

We want to globalize this theorem. Since the set Crit(V) C k of critical
values of V' is finite, we have

(4.2) Sing(V)| = J[ [Sing(V) N Xal.
a€eCrit(V)
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Proposition 3.4 shows that we can view ¢y, as an element of Mréing(V)r
Define
¢V = Z QSV,a € Mréing(V)r
a€eCrit(V)
Of course we could have equivalently taken the sum over all a € k, by Corol-
lary 3.5 and Remark 3.1.
We obviously have

(4.3) Sing(V ® W) = Sing(V') x Sing(W)

and hence Crit(W V) = Crit(W) 4 Crit(V) :={a+ b | a € Crit(W),b €
Crit(V)}.

Corollary 4.2 (Global motivic Thom-Sebastiani). Let V: X — A}
and W:Y — Al be as above. Then

(4.4) dvew = U(dy x ow)

m M‘% (V)| [Sing(W)| where av X $W is the obvious element of
Mﬁtxﬁ

|Sing(V)| x|Sing(W)|"

Proof. Let s,: |Sing(V)) N X,| — [Sing(V')| be the closed embedding. Then
obviously s%(¢) = ¢v4. Define s and s similarly for W and V @ W.
From (4.2) and (4.3) we see that |Sing(V ® W)| is the disjoint finite union
of its closed subvarieties |Sing(V) N X,| x [Sing(W) NY;| where (a,b) €
Crit(V) x Crit(W). By Lemma 2.4 it is therefore enough to show that both

sides of (4.4) coincide when restricted to each of these subvarieties. Consider
the following commutative diagram

[Sing(V) N X,| x [Sing(W) N Yy| =~ [Sing(V & W) N (X x ¥)qrs|

’ "
lsaxsb \Lsa+b

|Sing(V)| x [Sing(W)| = |Sing(V ® W)|.
If we apply (sq % s;)* to both sides of (4.4) we obtain on the left

LZ,b<(3Z+b)*($V®W)) =ty p(Pvew,ats)

and on the right

U((sa X s3)*(Sv % dw)) = U(sh(v) X ()" (dw)) = U(dv,a X dw,p)
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where we use Remark 2.8. But ¢} ,(¢vew,ats) = ¥(Pv,a X dwp) is just a
reformulation of Theorem 4.1 using Proposition 3.4 and Remark 2.8. ]

Definition 4.3. For V: X — All( as above we define

(45) (¢V)Ak1 = ‘/'(&EV) = Z ‘/!((ﬁ\/,a) S Mﬁt&

ack

where we use the isomorphism (2.19) in order to change the target of
Ve MR MY, o MY,

Sing(V)]
Recall the convolution product (2.15).
Corollary 4.4. LetV: X — Aﬁ and W:Y — Ai be as above. Then
(Pvew)ar = (dv)ar * (Pw)a;
n (./\;lg&,*).

Proof. Just apply (V @ W), = add(V x W), to (4.4) and note that

addy((V x WH(T (v x ¢w))) = addi(T((V x W)i(dy x w)))
= addi (T (Vi(ov) x Wi(ow))) = (dv)ar * (dw)a;-

using Remark 2.8. O

Define ¢y as the image of (¢y ), under the morphism e of rings from
Lemma 2.18, i.e.

(4.6) dv i=a((év)a) = »_(ea)(dvia) € MY

ack

where £, |Sing(V) N X,| — Speck denotes the structure morphism.
Corollary 4.5. We have ¢ygw = Qv * ¢w in ./\/lltL

Proof. This is obvious from Lemma 2.18 and Corollary 4.4. O
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5. Motivic vanishing cycles measure
5.1. Some reminders

We recall some facts from [GLMO6, 3.7-3.9]. Let X be a smooth connected k-
variety and V: X — Ai a morphism. Let U C X be a dense open subvariety.
Then Guibert, Loeser and Merle define in [GLMO06, Prop. 3.8] an element

SV,U,X S M&()'
(they denote this element just by Sy,r/).

Remark 5.1. The remarks at the end of [GLMO06, 3.8] (and Remarks 3.2
and 3.1) imply: if U = X we have

(5.1) Sv.x,x = Sv = Yv;

if V=0 we have

Svux =0=1¢yo =Sy

Theorem 5.2 ((GLMO06, Thm. 3.9]). Let a: A — Al be an Al-variety.
Then there exists a unique My-linear map

Syt Ma = MPy

such that for every proper morphism V': Z — A where Z is a smooth and
connected k-variety, and every dense open subvariety U of Z we have

SMA([U — A)) = V(Saovr,u.x)-

Note that given any morphism V: U — A where U is a smooth con-
nected k-variety, there is a smooth connected k-variety Z containing U as a
dense open subscheme and a proper morphism V': Z — A extending V' (use
Nagata compactification and resolve the singularities).

In particular, if V' is a proper morphism, then by definition of Séwf‘ and
using (5.1) we have

(52)  SMA(U Y A)) = Vi(Saovit)) = Vi(Saor) = Vi(thaovo)-

id

In particular, if A is smooth and connected we obtain SM4([A = A]) =

Sa = a0 which justifies the notation S,
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We will apply Theorem 5.2 only in the case that a is a translation
A&—H&&,xn—hx—a, for some a € k.

5.2. Additivity of the motivic vanishing cycles
Theorem 5.2 has the following consequence.

Theorem 5.3. There exists a unique My-linear map
(b,: MAI — Mgl
k K

such that
(X 5 Al = (¢v)as

for all proper morphisms V: X — Aﬁ of k-varieties where X is smooth over
k and connected (for the definition of (¢v )1 see Definition 4.3).

Proof. Uniqueness is clear since Ko(Vary:) is generated by the classes
of proper morphisms V: X —>A& of k-varieties with X connected and
smooth over k (and relations given by the blowing-up relations), see [Bit04,
Thm. 5.1].

Let a € k and let 7,: | X, = {a} = Speck be the obvious morphism.
Apply Theorem 5.2 to the morphism «a: A& — A&, x +— = — a. We obtain an
M-linear map My — M?a} that maps [V: X — Al] to —(v.)1(¢vq) (use
(5.2); we add a global minus sign) whenever V: X — Al is proper with X
connected and smooth over k. A

Obviously there is a unique My-linear map My — M?a} map-
ping [V: X — Al] to [|Xa| = {a}] = (va)i1([|Xa] — |Xal) for any morphism
V: X — Al of k-varieties.

Let &) : My — ./\/l?a} be the sum of these two maps. If V: X — Al is
proper with X connected and smooth over k we have @/ ([V: X — A}]) =
(Ya)1(év,q) by the definition of the motivic vanishing cycles (3.1).

For any a € k, let i,: {a} — Al be the inclusion. Observe that

> (ia)i(®G): My = M,

aek

is well defined since for any given m € My only finitely many @ (m) are
nonzero. The composition of this morphism with the isomorphism (2.19) has
the required properties. This proves existence. ]
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Remark 5.4. If Z is a smooth k-variety we have ®'([Z BN Al)=[z N
A&] If Z is proper over k this follows from Remark 3.1. Otherwise we can
compactify Z to a smooth proper k-variety Z such that Z — Z is a simple
normal crossing divisor and then express the class of Z in terms of Z and
the various smooth intersections of the involved smooth prime divisors.

In particular we have ®'([Speck N Al]) = [Speck N Al] and ®'([A] N
A) = (A 2 Al

Remark 5.5. We keep our promise from Remark 3.2 to justify our sign
choice. We do this by showing that Theorem 5.3 does not hold if the right
hand side of (4.5) is replaced by ), Vg(S{ﬁia). Assume that there is mor-
phism Z: My — ./\/lg1 = /\;lgl of abelian groups such that Z([X Y, Al]) =
k k k
Y ack V!(Séé_a) for all proper morphisms V: X — A& of k-varieties where
X is smooth over k and connected. Remark 3.1 implies that Z([Z N Al]) =
(—1)dimZ[7 N Al] for all smooth proper connected k-varieties Z. N
Let X be a smooth proper connected 2-dimensional k-variety and X its
blowup in a closed point Y = {z} C X. Let E be the exceptional divisor. We
view X, X, Y, E as A&—wm’eties via the zero morphism to A&. In K(](V&TA&)
we obviously have [X] — [Y] = [X] — [E]. So if we apply = we obtain [X] —
[Y] = [X]+ [E] since E has odd dimension. We obtain 2[E] =0 in M},.
Let us explain why this is a contradiction. Note that E = IP’&. Pulling back

via the inclusion Speck 5 Ai and forgetting the group action shows that
2[]13’&] =0 in M. Taking the topological Euler characteristic with compact
support (see [NS11, Example 4.3]) yields the contradiction 4 =0 in Z.

Remark 5.6. If V: X—>A|1 is a smooth and proper morphism then

([ X Y, Al]) = 0. This follows from Corollary 3.5; note that X is smooth
over k and V is not constant (if X is nonempty).

Remark 5.7. We claim that ®'(Ly1) = 0. Indeed, we have
L = [Afa] = [Ag x A = Ay = [Ag x P = A] — [Ay x Speck — Ay

m Ko(VarA&). Now apply Remark 5.6. In fact, this argument together with
the compactification argument from Remark 5.4 shows: if Z is any smooth
k-variety, then ® maps the class of the projection A& X Z — Aﬁ to zero.

Remark 5.8. Remark 5.7 shows that the morphism ® from Theorem 5.3
is not a morphism of rings if we consider the usual multiplication on My :
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it maps the invertible element Ly, to zero and hence would be the zero mor-
phism (which it is not, by Remark 5.4). Therefore it seems presently more
appropriate to restrict ® to Ko(VarA&). See however Remark 5.11 below.

5.3. The motivic vanishing cycles measure

We define ® to be the Ky(Varg)-linear composition
(5.3) : Ko(Vary:) — My = M,

where the second map is the morphism @’ from Theorem 5.3.

Now we can state our main theorem which says that ® is a ring mor-
phism if we equip source Ko(Vary:) = (Var'“) and target ./\;l”1 with the
convolution product * from section 2.4, see in partlcular Remark 2.16 and
Proposition 2.17.

Theorem 5.9. The map (5.3) from Theorem 5.3 is a morphism

: (Ko(Vary ), *) = (Mi:, %)
of Ko(Vary)-algebras. By composing with (2.20) we obtain a morphism
(5.4) e10®: (Ko(Vary), ) — (M%)

of Ko(Vary)-algebras. We call these two morphisms motivic vanishing
cycles measures.

Proof. The second claim is obvious from Lemma 2.18, so let us prove the first
claim. Remark 5.4 shows that ® maps the identity element to the identity
element. Remark 5.4 shows that ® is compatible with the algebra structure
maps, cf. (2.16).

We use that Ko(VarAi) is generated by the classes of projective mor-
phisms V: X — Aﬁ with X a connected quasi-projective k-variety that is
smooth over k (and relations given by the blowing-up relations), see [Bit04,
Thm. 5.1].

So let X and Y be connected quasi-projective k-varieties that are smooth
over k and let V: X — Al and W:Y — Al be projective morphisms. Then
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we know by Theorem 5.3 and Corollary 4.4 that

(X L A+ B([Y 5 AL = (¢v)as * (0w )ar = (dvew)a:-

Our aim is to show that

(vew)a: = (X x Y Y25 Al)).

This is not obvious since V@® W: X x Y — Ali is not proper in general.
We apply Proposition 5.12 below and use notation from there. We obtain
the equality
Vew h hi hij
(X xV 255 Al = (2 5 Al = D [Di =5 AL+ Y [Dij =5 AY]
i i<j
h12
— o (21)°[Digs — AY

in Kg(VarA;). On the right-hand side, Z and all D;, ;, are smooth quasi-
projective k-varieties, h is a projective morphism, and all h;,. ;, are projec-
tive and smooth morphisms, by part (iv) of Proposition 5.12. Hence we can

compute ¢([X x Y vew, Al] now. Remark 5.6 shows that ® vanishes on

hi,
all [D;, .., ey A&] We obtain

o(x x v Y Al = @(12 2 AL) = (1)

and are left to show that

(Dn)ar = (Bvew)ar-

But this holds true by Corollary 3.6 which we can apply by parts (i), (ii),
(iii) of Proposition 5.12. O

Remark 5.10. If X and Y are smooth connected k-varieties and V: X —
A& and W:Y — A& are proper morphisms then Theorems 5.9 and 4.1 show
that

o(X x Y Y Al =o(x 5 Al o)y 5 Al])

= (¢v)ar * (Pv)ar = (Pvew )a:-

So even though V ® W might not be proper, the motivic vanishing cycles
measure ® sends it to (pyvew )a:-
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Remark 5.11. Recall the element L o) = [Ag N All e Ko(VarKé‘) de-
fined in (2.17). For n=1 it is an element of Ko(Vary:) and we have
(Ko(Vargy ), x)[(La1 )1 = (MAi’*)‘ Remark 5.4 shows that ®(La; o)) =
Laz,0) where we view L1 o) in the obvious way as an element of Ko(VarK&).
Therefore, ® factors as the composition

P: (KO(V&I‘A&),*) - (MAI%*) - (Mgﬁa*)

The second map is a morphism of My-algebras. It is, up to the isomorphism
My = My from (2.18) (for n = 1), the morphism @' from Theorem 5.3.
This makes up for Remark 5.8. As observed in Remarks 5.6 and 5.7, ®

. id
vanishes on many other elements, for example on [A} = Al] or on Ly

5.4. Compactification

For the convenience of the reader we recall our compactification result from
[LS16a).

Proposition 5.12 ([LS16a, Prop. 6.1]). Let k be an algebraically closed
field of characteristic zero. Let X and Y be smooth k-varieties and let
VX — Ai and W:Y — Al be projective morphisms (hence X and Y are
quasi-projective k-varieties). Consider the convolution

VeWw: X xv W Al al 55 AL

Then there exists a smooth quasi-projective k-variety Z with an open em-
bedding X XY — Z and a projective morphism h: Z — A& such that the
following conditions are satisfied.

(i) The diagram

XxY——7
lV@W lh
Al - Al

commutes.

(i1) All critical points of h are contained in X x Y, i.e. Sing(V&® W) =
Sing(h).
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(iii) We have Z\ X xY =J;_; D; where the D; are pairwise distinct
smooth prime divisors. More precisely, Z \ X xY is the support of
a stmple normal crossing divisor.

() For every p-tuple (i1,...,1p) of indices (with p > 1) the morphism
hil..,ip: Dil...i,, = Di1 NN Dip — A&

induced by h is projective and smooth. In particular, all Dy, ;, are
smooth quasi-projective k-varieties.

6. Comparison with the matrix factorization motivic
measure

We would like to place Theorem 5.9 in a certain context and compare the
motivic measure ® or rather ¢ o ® with another motivic measure of a dif-
ferent nature.

6.1. Categorical motivic measures

First let us recall the categorical measure
v: Ko(Vary) — Ko(sat?)

constructed in [BLLO4]. Here Ko(sat?) is the free abelian group generated
by quasi-equivalence classes of saturated differential Z-graded k-categories
with relations coming from semiorthogonal decompositions into admissible
subcategories on the level of homotopy categories. The map v sends the
class [X] of a smooth projective k-variety X to the class [DP(Coh(X))]
of (a suitable differential Z-graded k-enhancement of) its derived category
DP(Coh(X)). The tensor product of differential Z-graded k-categories in-
duces a ring structure on Ko(sat?) and v is a ring homomorphism. In recent
papers [LS16b, LS16a] we have constructed a motivic measure

p: (Ko(Varg:), x) — Ko(sat,?)

which is a relative analogue of the measure v. Here Ko(satfz) is defined in
exactly the same way as Ko(sat?) except that this time we consider satu-

rated differential Zo-graded k-categories. If [X W, AY] € Ko(Vary;) where
X is smooth over k and W is proper, then u([X W, Al]) is defined as the
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class [MF(W)] of (a suitable differential Zg-graded k-enhancement of) the
category

MF(W) := [[ MF(X, W — a)*
ack

Here MF(X, W — a)? is the Karoubi envelope of the category MF (X, W —
a) of matrix factorizations of the potential W — a.

The measures v and p are related by the commutative diagram of ring
homomorphisms (as announced in the introduction of [LS16b])

(6.1) Ko(Vary) —— Ko(sat})

| |

(KO(VarAi), *) L Ko(satfz)

where Ko(Vary) — Ko(Vary:) is the ring homomorphism (2.16) (for n =
1) and Ko(sat?) — Ko(sat.?) is induced from the folding (see [Sch]) which
assigns to a differential Z-graded k-category the corresponding differential
Zo-graded k-category.

6.2. Comparing vanishing cycles and matrix factorization
measures

To each saturated differential Zs-graded k-category A one assigns the finite
dimensional Zs-graded vector space

HP(A) = HPo(A) @ HP;(A)

over the Laurent power series field k((u)) - the periodic cyclic homology of
A (see [Kel98]).

Put xgp(4) := dlmk((u)) HPy(A) — dimk((u)) HP;(A). Since HP is ad-
ditive on semiorthogonal decompositions of triangulated categories (see
[Kel99]) this assignment descends to a group homomorphism

XHP : Ko(Sat%Q) — 7

Because of the Kiinneth property for HP (see [Shk12] and references therein)
the map ypp is in fact a ring homomorphism.
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On the other hand, if k = C we have the usual ring homomorphism (see
[Loo02])

(6.2) Xe = (1) dimH : Mc — Z

Notice that x.(IL) = 1, hence x. is indeed well-defined as a homomorphism
from Mc.
Forgetting the action of [t obviously defines a map

(6.3) ME = Me

of Mc-modules. Clearly, this map is a ring homomorphism if we equip its
source with the usual multiplication. However, this is not true if we equip
its source with the convolution product * as we will explain in Lemma 6.2
below. Nevertheless we have the following result.

Proposition 6.1. The composition of x. (see (6.2)) with the map “forget
the {t-action” (6.3) defines a ring homomorphism

(6.4) Xe: (ME %) = Z
which we denote again by Xc.

Proof. Let A and B be complex varieties with a good ,-action for some
n > 1. We need to show that A x B and

[A] + [B] = [((A ¥ Gm) x (B x* %m))\xwy":o}

x

x

— [((A X" G) x (B x* %m))lxn+yn:1]

(see (2.12)) have the same Euler characteristic with compact support. Since
G — G, x +— 2™, is a py,-torsor (in the étale topology) we have a pullback
square

A x Gm (@) Grn
\L lx}—)x"
A xHn G —277 G

Its lower horizontal morphism is an étale-locally trivial fibration with fiber A.
Therefore it is a locally trivial fibration if we pass to the analytic topologies.
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In this way we obtain a locally trivial fibration

f: (Aan ><un((C) (CX) « (Ban Xun((C) Cx) ([a,z],[b,y])— (2™ ,y™) C* x CX

with fiber A" x B*". Consider the subsets N := {2/ +y =0} 2 C* and
E:={2' 4y =1} =2 C* — {1} of the base of this fibration where 2’ and y/
are the obvious coordinates. Then

Xe([A] * [B]) = xe(f T (V) = xe(f T (E))
= Xe(A™ X B™)(Xc(N) = Xc(E)) = Xxc(A™ x B™).

This proves what we need. O

Although not strictly needed for our purposes we would like to include
the following result (which is also true for k instead of C).

Lemma 6.2. The map “forget the {i-action” f: ./\/lfc1 — Mc (see (6.3))
does not define a ring homomorphisms (M, x) — Mc.

Proof. Let M = pg € Varl® with obvious action of ps. We claim that
J([M] =« [M]) # f([M])f([M]).

We clearly have f([M])f([M]) = 4[Spec C] = 4. On the other hand mul-
tiplication defines an isomorphism M x"2 G, — Gy, and therefore (2.12)
yields

[M] 5 [M] = [(Gm X Gm)a2+y2=0] = [(Cm X Gm)|o24y2=1]
T Yy z Yy

The pe-action on Gy, X Gy, is the diagonal action. Instead of using the co-
ordinates (z,y) on AZ let us use the coordinates (a,b) where a = z + iy
and b = 2 — iy. Then 2% + y? = ab and the conditions x # 0 and y # 0 are
equivalent to a + b # 0 and a — b # 0. Hence

[M] % [M] = [A% |ab=0, aztd) — [AZ |ab=1, azsp]
(a,b) (a,b)

The po-action on A% is again the diagonal action. The first summand is
the coordinate cross without the origin and equal to 2[G,,] with obvious
ug-action. To treat the second summand note that the map (Gp, — pa) —
A%|ab:17a¢ib, a+ (a,a”") defines a po-equivariant isomorphism. Hence

(6.5) [M] + [M] = 2[Gm] = [Gw] + [1a] = [Gu] + 2[u2]

and f([M]x [M]) = [Gm] + 4.
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But the element [Gy,| = f([M] * [M]) — f([M])f([M]) is certainly not
zero in Mc: taking the Hodge-Deligne polynomial defines a ring homo-
morphism Mc — Z[u,v,u~", v~ which sends [Gy,] to uv — 1, cf. [NS11,
Example 4.6]. O

Theorem 6.3. We have the following commutative diagram of ring homo-
morphisms

(Ko(Varyy ), «) —— Ko(sat?)
e;o@i lXHP
(ME, ) ————7

where the left vertical arrow is the map (5.4) from Theorem 5.9 and the
lower horizontal map is the ring homomorphism (6.4).

Proof. The abelian group Ko(Varyy) is generated by classes [X LR Al
where X is smooth over C and the map W is projective (see [Bit04]). So it
suffices to prove commutativity on such generators.

Fix a projective map W: X — A(%: of a smooth C-variety X. Then by
definition

w(W) = Z[MF(X, W—a)f e Ko(sat(lzf)
acC
and
o ®(W) = Z(8a)!¢w,a € Mc
acC

with notation as in (4.6). So it suffices to prove that

xup(MF (X, W — a)?) = xc((ca)1dm20)

for any given a € C. We may and will assume that a = 0.
Let X®" denote the space X with the analytic topology. Recall the clas-
sical functors of nearby and vanishing cycles

PEE™, G DR(X) = DE(X3)

between the corresponding derived categories of constructible sheaves with
complex coefficients. For F' € DP(X?") we have a distinguished triangle

(6.6) Flxan — Y5 F — o3 F — F|xan[1]

in D2(X3™) (see [SGA-TII, Exp. XIIT)).



Motivic Vanishing Cycles as a Motivic Measure 69

In particular for the constant sheaf Cxa.n we have the com-
plex ¢F "Cxm of sheaves on X@". Consider its hypercohomology
with compact supports H(':(Xgn,@g/som(CXan) and its Euler characteristic
> (1) dim HE (XE™, 5" Cxan ). (Note that in our case we may as well
consider the hypercohomology H® instead of H?, since X§" is compact.) It
follows from [Efi12, Thm. 1.1] that

Vit (MF(X, W) = — 37 (= 1) dim HL (X3, 65 Cxn ).
By the localization theorem in cyclic homology it follows that the Karoubi

closure MF(X,W)% has the same cyclic homology as MF(X,W), i.e.
xup (MF(X, W)) = xgp(MF (X, W)?). Hence it remains to prove the equal-

ity
(6.7)  Xel(o)dwo) = = 3 (~1)' dim HL(X5", S5 C o).
i
Lemma 6.4. (a) For every variety Y there exists a unique group homo-

morphism
SHy : Ko(Vary) — Ko(DP(Y"))

such that SHy ([Z ER Y]) = [RfiCgan].

(b) Given a morphism of varieties g: Y — T the diagram

SHy an
Ko(Vary) —> Ko(D2(Y™)
gzl iKo(RQI)
SHr b (pan
Ko(Vary) —— Ko(DJ(T%"))

commutes.

(¢) IfY = SpecC, then Ko(D2((SpecC)*)) = Z (by taking the alternating
sum of the cohomologies) and SHgpecc([Z — SpecC]) = x([Z]).

Proof. (a) For a variety S and an open embedding j: U — S with com-
plementary closed embedding i: Z =5 — U — S recall the short exact se-
quence of sheaves

O — j!CUan — Csan — i!(CZan — O

This implies that the map SHy ([Z EN Y]) = [RfiCzan] indeed descends to a
homomorphism SHy : Ko(Vary) — Ko(D2(Y?")). Uniqueness is obvious.
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(b) Given a morphism f: Z — Y we have by definition
Ko(Rg) - SHy(1Z 5 Y]) = Ko(Rg)[RfiCz-] = [R(gf)Cz]

and

SHr - (7 L Y1) = SH2((Z L T) = [R(9.):Cz0]

(c) This is clear. O
Now [GLMO6, Prop. 3.17] implies the following equality in Ko(D2(X§")):

SHx, (Yw,o) = [U5" (Cxan)].

Applying part (b) of Lemma 6.4 to the map €p: Xo — Spec C and using part
(c) we conclude that

el (e0)two) = S (=1)" dim HY (X", 0™ (Coxe).

Notice that on one hand by definition of ¢wn we have

Xe((20)16w0) = Xe((0)1[ X0 2 Xo]) — xe((€0)1tbwi0)

and on the other hand by the distinguished triangle (6.6) we have

D) dm L 6™ (Cxe)) = D1 dim BECHE?, ™ (Cxe)

— Z )" dim H (X§", C )

It remains to notice that
id P ; n
Xe((0)1[Xo == Xo]) = Y (—1)" dim H(X§", Cxzn)
i
This proves equality (6.7) and finishes the proof of the theorem. O
We give two simple examples in which the equality (6.7) can be verified

directly.

Example 6.5. Let X =AlL and W(a)=a" for some n>1. Then
5" Cxan = (C?%Sl_l. Hence the right-hand side of equation (6.7) is equal
to —(n—1).
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On the other hand, in the notation of the proof of Proposition 3.4 (with
the identity as embedded resolution) the divisor E is n-(0) and hence its
W -Galois covering E is isomorphic to w,. From (3.3) we obtain

ow,o = [|Xol] = Ywo = [(0)] — b

Thus xc((e0)1dw0) is also equal to —(n —1).

Example 6.6. Let X = AZ and W: X — AL, W(a,b) = ab. (This is not
proper, but should make no difference since the complex Qﬁ%;om(cxan has com-
pact support.) Then ¢f"Cxan = Cio,0)[—1]. Hence the right-hand side of
(6.7) is equal to 1.

On the other hand, in the notation of the proof of Proposition 3.4 the
divisor E is the coordinate cross (with components of multiplicity one) and
so (3.3) yields

¢VV,O = [XO] - wW,O - (Gm + Gm +pt) - (Gm + Gm - Gm) =L

Hence xc((e0)19w,0) = 1.

Here is another way to compute this example. Using coordinates (s,t)
on A% so that a=s+it and b= s —it we have W (a,b) = ab = s* + t* =
s> @ t2. Ezample 6.5 shows that ¢z 0= [(0)] — po and xc((g0)1s20) = —1.
We have e1®(s%) = (0)1¢52 0 and

Xe((£0)10w0) = Xe(1@(ab)) = xo(212(5)))xc(a1@(t7)) = (-1)* = 1

using multiplicativity of our motivic measures. We can also use the mo-
tiwic Thom-Sebastiani Theorem 4.1 and compute (use Remark 2.11 and (the
computation leading to) equation (6.5))

dw,o = Y(ds20 X dp20)
= U([(0)] x [(0)]) = 2¥([(0)] x [ma]) + ¥([pa] x [u2])
= [(0)] = 2[u2] + ([Gm] + 2[p2])) = L.

Here the uo-action on Gy, is a priori the obvious one but can then also be
assumed to be trivial by the defining relations of the equivariant Grothendieck
group.
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6.3. Summarizing diagram

We collect the motivic measures considered in this paper in the following
commutative diagram (in case k = C; see (6.1) and Theorem 6.3).

Ko(Varg) —— K(satZ)

| |

(KO(VarAé), *) _H Ko(sat%f)

Ezocbi LXHP

(ME, ) X -7

The upper left vertical arrow and the vertical composition on the left are
the algebra structure maps. The composition from the top left corner to the
bottom right corner is induced by mapping a complex variety to its Euler
characteristic with compact support.
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