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1. Introduction

We work over an algebraically closed field k£ of characteristic 2. The main
purpose of this paper is to give a 1-dimensional family of Enriques surfaces in
characteristic 2 covered by the supersingular K3 surface with Artin invariant
1. In the paper [4], Bombieri and Mumford classified Enriques surfaces into
three classes, namely, singular, classical and supersingular Enriques surfaces.
As in the case of characteristic 0, an Enriques surface X in characteristic
2 has a canonical double cover 7 :Y — X. The covering 7 is a separable
double cover, a purely inseparable ps- or as-cover according to X being
singular, classical or supersingular. The surface Y might have singularities,
but it is K3-like in the sense that its dualizing sheaf is trivial. Bombieri
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and Mumford gave an explicit example of each type of Enriques surface as a
quotient of the intersection of three quadrics in P®°. In particular, they gave
an ag-covering Y — X such that Y is a supersingular K3 surface with 12
rational double points of type A;. Recently Liedtke [17] showed that every
Enriques surface can be realized in the form of the example by Bombieri
and Mumford [4], that is, its canonical cover is a complete intersection of
three quadrics in P?. Moreover he showed that the moduli space of Enriques
surfaces with a polarization of degree 4 has two 10-dimensional irreducible
components. A general member of one component (resp. the other compo-
nent) consists of singular (resp. classical) Enriques surfaces. The intersection
of the two components parametrizes supersingular Enriques surfaces. On the
other hand, Ekedahl, Hyland and Shepherd-Barron [9] studied classical or
supersingular Enriques surfaces whose canonical covers are supersingular
K3 surfaces with 12 rational double points of type A;. They showed that
the moduli space of such Enriques surfaces is an open piece of a P'-bundle
over the moduli space of supersingular K3 surfaces. Recall that the moduli
space of supersingular K3 surfaces is 9-dimensional and is stratified by the
Artin invariant o, 1 < ¢ < 10. Each stratum has dimension ¢ — 1 (Artin [1],
Corollary 7.8, and Rudakov-Shafarevich [22], p.1522, Theorem 2).

In this paper, stimulated by Ekedahl, Hyland and Shepherd-Barron’s
work, we present a 1-dimensional family of Enriques surfaces whose canon-
ical covers are the (unique) supersingular K3 surface with Artin invariant
1. These Enriques surfaces are parametrized by a,b € k, a + b = ab, a® # 1.
If a = b =0, then the Enriques surface is supersingular, and otherwise it is
classical (Theorem 4.8). We remark that this 1-dimensional family is non-
isotrivial (see Remark 4.9). This family gives an explicit example of the
description of the moduli space of classical and supersingular Enriques sur-
faces by Ekedahl, Hyland and Shepherd-Barron.

To construct these Enriques surfaces, we consider an elliptic surface
defined by

VHy+a®+sa(y’+y+1)=0

which has four singular fibers of type I3 over s = 1, w,w? 00 (w3 = 1,w # 1).
By taking the Frobenius base change s = t2, we have an elliptic surface

v +y+a®+ e +y+1)=0.

which has 12 rational double points of type A; at the singular points of
each singular fiber. By taking the minimal nonsingular model, we have an
elliptic K3 surface f:Y — P! which is supersingular because f has four
singular fibers of type I and hence its Picard number should be 22. The
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Artin invariant of Y is equal to 1 (cf. Dolgachev-Kondo [8], Theorem 1.1
(vi)). The Enriques surface X = X, is obtained as the quotient surface of
Y by a rational vector field

1 0 9 0
D= o ((t—l)(t—a)(t—b)at—k(l—kt x>8x> .
The construction is based on a theory of inseparable double covering due to
Rudakov-Shafarevich [20], Section 2 (see also Katsura-Takeda [13], Section
2).

The supersingular K3 surface Y was studied by Dolgachev and the sec-
ond author [8] (see also Katsura-Kondo [14]). It contains 42 nonsingular
rational curves forming a (21)s-configuration. These 42 curves are noth-
ing but the 24 components of four singular fibers of type Ig and the 18
sections of the fibration f. The automorphism group Aut(Y) is generated
by a subgroup PGL(3,F4) x Z/2Z and the 168 involutions associated with
some (—4)-divisors on Y. From this description, we see that there exist
thirty nonsingular rational curves and ten non-effective (—2)-divisors on the
Enriques surface X (see Sections 5, 6). The dual graph I' of these forty divi-
sors can be described in terms of Sylvester’s duads, Sylvester’s synthemes
and totals related to the symmetric group Sg of degree six (see Baker [2],
p.220). Moreover, these forty divisors have the following remarkable prop-
erty. Let Num(X) = NS(X)/{torsion} be the Néron-Severi group of X mod-
ulo torsion. Then, together with the intersection pairing, it has a structure
of an even unimodular lattice of signature (1,9). Let O(Num(X)) be the
orthogonal group of the lattice Num(X) and let W(I') be the subgroup of
O(Num(X)) generated by reflections associated with the forty (—2)-divisors.
Then W (I') is of finite index in O(Num(X)) (Theorem 7.5). This property
will be helpful for determining the automorphism group Aut(X) (Corollary
7.6).

Acknowledgement. The authors thank Shigeru Mukai for valuable con-
versations.

2. Preliminaries

Let k be an algebraically closed field of characteristic p > 0, and let S be a
nonsingular complete algebraic surface defined over k. We denote by Kg a
canonical divisor of S. A rational vector field D on S is said to be p-closed
if there exists a rational function f on S such that DP = fD. Let {U; =
SpecA;} be an affine open covering of S. We set AP = {D(a) =0 |« € A4;}.
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The affine varieties {UP = SpecAP} glue together to define a normal quo-
tient surface S.

Now, we assume D is p-closed. Then, the natural morphism 7 : S — SP
is a purely inseparable morphism of degree p. If the affine open covering {U; }
of S is fine enough, then taking local coordinates x;,y; on U;, we see that
there exist g;, h; € A; and a rational function f; such that the divisors defined
by g; = 0 and by h; = 0 have no common divisor, and such that

0 0
D= (gzal’z + hlayl) on Uj;.

By Rudakov-Shafarevich [20], Section 1, the divisors (f;) on U; give a global
divisor (D) on S, and zero-cycles defined by the ideal (g;, h;) on U; give a
global zero cycle (D) on S. A point contained in the support of (D) is called
an isolated singular point of D. If D has no isolated singular point, D is said
to be divisorial. Rudakov and Shafarevich showed that S is nonsingular if
(D) =0, i.e., D is divisorial (cf. [20], Theorem 1, Corollary). When S? is
nonsingular, they also showed a canonical divisor formula

(2.1) Kg ~ 7" Kgo + (p—1)(D),

where 7 : S — SP is the quotient map and ~ means linear equivalence. As
for the Euler number ¢3(S) of S, we have a formula

(2.2) c2(8) = deg(D) — (Ks, (D)) — (D)?

(cf. Katsura-Takeda [13], Proposition 2.1). This is the dual version of Igusa’s
formula (cf. Igusa [11], p.724).

Now we consider an irreducible curve C' on S and we set C' = 7(C).
Take an affine open set U; above such that C N U; is non—empty The Curve
C is said to be integral with respect to the vector field D if (g; -2 70, T hiz )
tangent to C' at a general point of C' N U;. Then, Rudakov- Shafarewch [20]
(Proposition 1) showed the following proposition:

Proposition 2.1. (i) If C is integral, then C = 7~1(C") and C? = pC".
(i) If C is not integral, then pC = 7= 1(C") and pC? = C".

In Section 4, we will use these results to construct Enriques surfaces in
characteristic 2.

A lattice is a free abelian group L of finite rank equipped with a non-
degenerate symmetric integral bilinear form (.,.) : L x L — Z. For a lattice
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L and an integer m, we denote by L(m) the free Z-module L with the
bilinear form obtained from the bilinear form of L by multiplication by m.
The signature of a lattice is the signature of the real vector space L @ R
equipped with the symmetric bilinear form extended from the one on L
by linearity. A lattice is called even if (x,z) € 2Z for all € L. We denote
by U the even unimodular lattice of signature (1,1), and by A,,, D, or
FE) the even negative definite lattice defined by the Cartan matrix of type
Ap, Dy or FEj respectively. We denote by L & M the orthogonal direct sum
of lattices L and M, and by L%™ the orthogonal direct sum of m-copies of L.
Let O(L) be the orthogonal group of L, that is, the group of isomorphisms
of L preserving the bilinear form.

3. An elliptic pencil

From here on, throughout this paper, we assume that k is an algebraically
closed field of characteristic 2. On the projective plane P? over k, we consider
the supersingular elliptic curve F defined by

2 2 3
T1T2 + X125 = Ty,

where (xg,21,22) is a homogeneous coordinate of P2. This is, up to iso-
morphism, the unique supersingular elliptic curve in characteristic 2. The
3-torsion points of E are given by

Qo =1(0,1,0),Q1 =(0,0,1),Q2 = (0,1,1),Q3 = (1,w,1), Qs = (w,w, 1)
Q5 = ((JJ27W7 1)’@6 = (1,&)2, 1)7@7 = (w7w27 1)aQ8 = (w27w27 1)

The point Q) is the zero point of E. There exist 21 Fy-rational points on
P2, and among them 9 points @; (i =0,1,...,8) lie on E. On the other
hand, there exist 21 lines defined over F4 on P2, and among them 9 lines
are triple tangents at @; (i =0,1,...,8) of E. The tangent lines intersect £
only at the tangent points, and the other lines intersect transversely with F
at three 3-torsion points.

Now we consider the pencil of curves of degree 3 passing through the
nine 3-torsion points. Then the pencil is given by the equation

(3.1) Tire + x1205 + 2 4+ swo(a? + x120 +23) =0

with a parameter s. Note that this pencil is isomorphic to the famous pencil
defined by x3 + 23 + 23 + sxoz122 = 0 by considering the way of construc-
tion. By blowing up at the nine 3-torsion points we obtain an elliptic surface
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Y : R — P1. On the elliptic surface there exist 4 singular fibers of type I3.
Five lines defined over F4 pass through the point @); on E. They consist
of one triple tangent and four lines which intersect E at @); transversely.
Under the blowing-up, the triple tangent line goes to the purely inseparable
double-section of the elliptic surface, and the 4 lines go to components of
four singular fibers respectively. The 9 double sections pass through singu-
lar points of singular fibers three-by-three. The exceptional curves become
nine sections of the elliptic surface which pass through the regular points of
singular fibers. Each component of singular fibers intersects three sections
among nine exceptional curves (see Figure 1). In Figure 1, the triangle is
any singular fiber of the elliptic surface ¢ of type I3, the dotted lines are
nine sections and the remaining nine lines are double sections.

7 N

Figure 1: 9 sections and 9 double sections

4. Construction of Enriques surfaces

In characteristic 2, a minimal algebraic surface with numerically trivial
canonical divisor is called an Enriques surface if the second Betti number is
equal to 10. Such surfaces S are divided into three classes (for details, see
Bombieri-Mumford [4], Section 3):

(i) Kg is not linearly equivalent to zero and 2Kg ~ 0. Such an Enriques
surface is called a classical Enriques surface.

(i) Kg ~ 0, HY(S,05) = k and the Frobenius map acts on H'(S,Og)
bijectively. Such an Enriques surface is called a singular Enriques sur-
face.
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(iii) Kg ~ 0, H'(S,0g) = k and the Frobenius map is the zero map on
H'(S, Og). Such an Enriques surface is called a supersingular Enriques
surface.

Any elliptic fibration on a classical Enriques surface has exactly two mul-
tiple fibers. On the other hand, in case of singular or supersingular Enriques
surfaces, any elliptic fibration has exactly one multiple fiber (cf. Cossec-
Dolgachev [5], Theorem 5.7.2 ).

Lemma 4.1. Let S be an Enriques surface. If there is a generically surjec-
tive rational map from a supersingular K3 surface S to S, then S is not a
singular Enriques surface.

Proof. By Rudakov-Shafarevich [21], p.151, Corollary, S is unirational.
Therefore, S is also unirational. However, a singular Enriques surface is
not unirational by Crew [6], Theorem 2.5 (see also Katsura [12], Theorem
5). O

In this section, we construct supersingular and classical Enriques sur-
faces, using the rational elliptic surface ¢ : R — P! constructed in Section
3 (see the equation (3.1)). We consider the base change of 1/ : R — P! by
s = t2. Then we get an elliptic surface with 12 rational double points of type
Aq defined by

(4.1) rire + x12d + a4 t2ro(@? + rywe +23) = 0.
We consider the relatively minimal model of this elliptic surface (4.1):
(4.2) f:Y —PL

For the readers’ convenience, we give here a proof that Y is supersingu-
lar. The canonical map 6 : Y — R is surjective and purely inseparable. We
consider the relative Frobenius morphism F : R() — R. Since R is bira-
tionally isomorphic to P2, so is R(%), and the Frobenius morphism factors
through the canonical map 6. Therefore, we have a generically surjective
rational map from RG) to Y and we see that Y is unirational. Hence, Y
is supersingular, i.e. the Picard number p(Y') is equal to the second Betti
number bo(Y') (cf. Shioda [23], p235, Corollary 1).

As we saw in Section 3, there exist nine purely inseparable double-
sections and nine sections for the elliptic surface ¢ : R — P!. These make
18 sections of the elliptic surface f : Y — P1.
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Now, we take an affine open set defined by x2 # 0. Then, on the affine
open set this surface is defined by

v +y+a® + Py +y+1)=0.
Considering the change of coordinates

v=(1+){(1+ )y + ta?}/t°
u=(1+t3)x/t!
T =1/t

we get a surface defined by
v+ uw + THTH + T+ u® + (T2 + D + THT + t)u =0

The discriminant of this elliptic surface is given by A(T) = T5(T3 + 1)° (cf.
Tate [25], Section 1). Therefore, we have c3(Y) = > pcpi ord(A(T)) = 24,
and we conclude that Y is a supersingular K3 surface. We see there exist 4
singular fibers of type Ig. These singular fibers exist over the points given
by T =1,w,w? 0. If we denote by my,mg, my2,mo (TeSp. i1, fe, fw?, o)
the number of irreducible components (resp. simple components) of these
singular fibers respectively, we have

mlzmw:mwz:m(]:G (resp_ulz‘uwzﬂwzzﬂozfs).

The Picard number p(Y') of Y is expressed as
4
22=p(Y)=r+2+» (my—1)=r+22,
v=1

where r is the rank of the group of sections of f:Y — P!. Therefore,
we have r = 0. Then, denoting by n the order of the group of sections of
f:Y — P!, we have

4
et NS(V)| = [ uu/n®
v=1

where det NS(Y) is the discriminant of the Néron-Severi group of Y (Shioda
[24], Corollary 1.7). Since in our case, we have |det NS(Y)|n? = 6* and n >
18, we conclude |det NS(Y)| = 22 and n = 18. Therefore, the Artin invariant
of Y is equal to 1 (see also Dolgachev-Kondo [8], Theorem 1.1 (vi)).



Enriques Surfaces 691

From here on, we use ¢t as a local coordinate of the base curve P!
For f:Y — P!, there exist 4 singular fibers over the points defined by
t = 1,w,w?, 00, respectively. On each singular fiber there exist three excep-
tional curves derived from the resolution of the surface (4.1). We denote them
by Ei(i =1,w,w? 0055 =1,3,5). We denote by E;j(i=1,w,w? 00;j=
2,4,6) the rest of components of singular fibers of f:Y — P!. Here,
FEi1, B, Eis, By, Bis, Eijg are components of the singular fiber over ¢t =1

(i =1,w,w?, 00). We have Efj = —2. Curves F;; and E;j intersect each other
transeversely if and only if | j — 5’ (mod 6) |= 1, and for other j, j we have

Now, we consider a rational vector field

D' =@{t—-1)(t—a)(t— b)% +(1 +t2:v)8g with a +b = ab and a® # 1.
x

Lemma 4.2. Assume a + b= ab, a® # 1. Then,
(i) D = 2D, namely, D' is 2-closed.
(ii) On the surface Y, the divisorial part of D' is given by
(D') =FEn+Ei3+Ei5—En—Eg— Eus
—FEy21 — B2 — Eyzs — Eso2 — By — Foo — Fom
where Fiu is the fiber over the point given by t = cc.

(iii) The integral curves with respect to D' in the fibers of f : Y — P! are
the following:
the smooth fibers over t = a,b (in case a =b =0, the smooth fiber
over t =0) and

Ehg, B, Ehe, B, Ews, Eos, Bz, B2z, Eues, Eoooy Eood, Eoos-

Proof. These results follow from direct calculation. For example, to prove
(ii) and (iii), we consider a local chart of the blowing-up at the point (¢, z,y)
= (1,1,0):

t+1=TU, x+1=U, y=VU
with the new coordinates T',U, V. Then, the exceptional curve C' is defined
by U =0 and an irreducible component C’ of the fiber is given by T' =0

on the local chart. We can show that the surface is nonsingular along C'. It
is easy to see that T, U give local coordinates on a neiborhood of C' in Y.
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Since

9_19 9 _06 T9
ot UoT’ ox 0oU UIT’
on the local chart we have

0 0
D' =U{(T? b)T?)— + (T?°U? + T?U +1) =~}
(T + (@ +0)T?) o + (T2 £ T2 + 1)
Therefore, on the local chart we have the divisorial part (D") = C and we see
that C is not integral and C’ is integral with respect to the vector field D’.
On the other local charts for the blowing-ups, the calculation is similar. [J

We set D = ﬁD’ . Then, D? = abD, that is, D is also 2-closed and D is
of additive type if a = b = 0 and of multiplicative type otherwise. Moreover
we have

(D) = —(Ei2+ E1a+ Ei6+ Eu1 + Eus + Eus

4.3
(43) +E,21 + Eueg + Epes + Eso2 + Foos + Excs).

Lemma 4.3. The surface Y is nonsingular.

Proof. We have

(D)? = E%Q;' E%, ‘g Efg +2E31 + ]2533 + 1555 ,
+ES + Bl + ESos + ES o+ ES 4+ ES g
—(—2)x12=_-24

Since Y is a K3 surface, we have c3(Y) = 24. Therefore, by the equation
(2.2), we have

24 = ¢3(Y) = deg(D) — (Ky, (D)) — (D)* = deg(D) + 24.

Therefore, we have deg(D) = 0 and D is divisorial. Hence, Y'” is nonsingular.
U

By the result on the canonical divisor formula of Rudakov and Shafare-
vich (see the equation (2.1)), we have

Ky = 1" Kyp + (D),
where 7 : Y — YP is the quotient map.

Lemma 4.4. Let C be an irreducible curve contained in the support of the
divisor (D), and set C' = w(C). Then, C' is an exceptional curve of the first
kind.
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Proof. Since C' is integral with respect to D (Lemma 4.2), we have C =
71(C") (Proposition 2.1). Since —2 = C? = (77 1(C"))? = 2C"%, we have
C"? = —1. Since Y is a K3 surface, Ky is linearly equivalent to zero. There-
fore, we have

2Kyn, ') = {x Ky, 7 (C)
= (Ky = (D).C) = €* = =2,

Hence we have (Kyp,C’) = —1. Therefore, the arithmetic genus of C’ is
equal to ((Kyn,C’) + C"?)/2+ 1 = 0. Hence, C’ is an exceptional curve of
the first kind. O

We denote the 12 exceptional curves on Y by E! (i=1,2,...,12):
These are the images of the irreducible components of —(D) by w. Now we
have the following commutative diagram:

vl Lf
X P!
gl 'F

Pl

Here, ¢ is the contraction of the 12 exceptional curves and go ¢ : YP — P!
is the fiber space constructed as the quotient of f : Y — P! by D. F is the
Frobenius morphism. Since the exceptional curves E! (i =1,2,...,12) are
contained in fibers of g o ¢, we blow down them and we get the fiber space
g: X — P! Then, we have

12
Kyo =¢*(Kx)+ Y _Ej.
=1

Lemma 4.5. The canonical divisor Kx of X is numerically equivalent to
0.

Proof. By Lemma 4.2, all irreducible curves which appear in the divisor (D)
are integral with respect to the vector field D. For an irreducible component
C of (D), we set C'" = 7(C). Then, we have C' = 7~ (C") (Proposition 2.1).
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Therefore, we have
12
(D) = —7*(>_ Ej).
i=1
Since Y is a K3 surface,

0~ Ky =1"Kyo+ (D)
= (" (Kx) + Y121 E}) + (D) = 7 (" (Kx))

Therefore, Ky is numerically equivalent to zero. ]

Lemma 4.6. The morphism g : X — P! makes X into an elliptic surface.

Proof. Take a general fiber G of g : X — P'. Then, there exists a purely
inseparable morphism from a fiber G’ of f: Y — P! to G. Since G’ is an
elliptic curve, the nonsingular model of G is also an elliptic curve. On the
other hand, by G? = 0 and Lemma 4.5 the arithmetic genus of G is equal to
(G* + (G, Kx))/2+ 1 = 1. Therefore, we conclude that G is a nonsingular
elliptic curve. O

Lemma 4.7. The surface X has ba(X) = 10 and co(X) = 12.

Proof. Since 7 : Y — Y'P is finite and purely inseparable, the étale coho-
mology of Y is isomorphic to the étale cohomology of Y. Therefore, we
have by (YP) =b1(Y) =0, b3(YP) =b3(Y) =0 and ba(YP) = ba(Y) = 22.
Since ¢ is blowing-downs of 12 exceptional curves of the first kind, we see
bo(X) =bs(X) =1, b1(X) = b3(X) = 0 and by(X) = 10. Therefore, we have

c2(X) = bo(X) — b1 (X) + b2(X) — b3(X) + ba(X) = 12.
]

Theorem 4.8. Under the notation above, the following statements hold.
(i) X is a supersingular Enriques surface if a =b = 0.
(il) X s a classical Enriques surface if a +b = ab and a ¢ Fy.
Proof. We give here a proof without using the classification theory of alge-
braic surfaces.

(i) Assume a =0b=0. Then, the only fiber of the elliptic fibration
f:Y — P! that is integral for D is the one over the point Py defined



Enriques Surfaces 695

by t =0 (Lemma 4.2). Since f~!(P) is a supersingular elliptic curve, the
reduced part of the fiber g~ 1(F(P,)) is also a supersingular elliptic curve,
and we have only one multiple fiber on the elliptic surface g : X — P1.
Let ¢ ' (F(PRy)) = 2Ey be the multiple fiber. Then, since Ey is a super-
singular elliptic curve, it has no 2-torsion points. Therefore, Pic’(Ey) has
also no 2-torsion points. Since the normal bundle O(FEy)|g, € Pic’(FEy) and
(O(Eo)|g,)*? is a trivial invertible sheaf, O(Ep)| g, itself is trivial. Therefore,
2E) is a wild fiber (See Bombieri-Mumford [3], and Katsura-Ueno [15]). The
canonical divisor formula is given by

Kx = g*(Kp: — L)+ mEy with an integer m (0 <m < 1),
—deg L = x(X,0x) +t.

Here, L = ng*(’)x/T with 7 the torsion of ng*(’)x, and t is the rank
of the torsion part of ng*(’)X. There exist wild fibers if and only if ¢ > 1
(cf. Bombieri-Mumford [3]). Since 2Ey is wild, we see t > 1. Since Kx is
numerically trivial and deg Kp1 = —2, considering the intersection of Ky
with a hyperplane section, we have

0=(-2+1+1)+—

Sincet > 1 and m > 0, we conclude that t = 1 and m = 0. Therefore, we have
Kx ~ 0. Since the second Betti number by(X) = 10, X is either singular
Enriques surface or supersingular Enriques surface. On the other hand, since
Y is a supersingular K3 surface, X is not a singular Enriques surface by
Lemma 4.1. Hence, we conclude that X is a supersingular Enriques surface.

(ii) We assume a + b = ab and a ¢ F4. Then, the only fibers of the elliptic
fibration f : Y — P! that are integral for D are the ones over the point P,
defined by ¢t = a and over the point P, defined by ¢t = b (Lemma 4.2). Let
g Y(F(Py)) =2E, and g~} (F(P,)) = 2E, be two multiple fibers. Then, the
canonical divisor formula is given by

Kx = g*(Kpl — L) + moFEg + mpkEy
with integers m, and my, (0 < mg, mp < 1)
—deg L = x(X,0x) + t.

Here, L = R'g,Ox /T with T the torsion of R'g,Ox, and t is the rank of
the torsion part of R'¢,Ox. Suppose both E, and Ej, are wild. Then we
have ¢t > 2. Therefore, we have deg(Kpr — L) > —2+ 1+ 2 = 1. Hence, Kx
is not numerically equivalent to zero, a contradiction.
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Now, suppose only one of F, and Ej, say Ejp, is wild. Then, Kx =
g"(Kpr — L)+ E, + myE, with an integer my (0 <mp <1) and ¢ > 1.
Then, we have deg(Kp: — L) > =2+ 1+ 1 = 0. Therefore, we have Kx >
F, and Kx is not numerically equivalent to zero, a contradiction.

Therefore, both E, and Ej are tame, and the canonical divisor is given
by

Kx =¢"(Kpr — L)+ E,+ Ep, with x(X,0x) =1,t=0.

Therefore, K x is not linearly equivalent to zero and 2K x ~ 0. Since ba(X) =
10, we conclude that X is a classical Enriques surface. ]

Remark 4.9. According to Namikawa [18], Theorem (6.7), there are only
a finite number of ellitptic fibrations on an Enriques surface up to auto-
morphism in characteristic 0. We don’t know whether the number is finite
or not in positive characteristic. However, by a similar result to Namikawa
[18], Proposition (6.6), we see that the number is at most countably infi-
nite up to automorphism in positive charcacteristic. The j-invariant of the
elliptic curve which appears as the fiber E, defined by t = a of f : Y — P!
is equal to a®*/(1 + a®). Consider the multiple fiber 2E’, on the Enriques
surface X which is the image of F,. Since we have a purely inseparable mor-
phism of degree 2 from E, to E!,, we see that the j-invariant of E! is equal
to a®® /(14 a®)'?. We take an algebraically closed field K such that K O k
and such that the cardinality of K is uncountably infinite. We consider
f:Y — P! with parameter a as a family defined over K. Then, the num-
ber of different elliptic curves which appear as multiple fibers of Enriques
surfaces in our family is uncountably infinite. Therefore, by taking account
of Namikawa’s result, in our family of Enriques surfaces there are infinitely
many non-isomorphic ones over K and so the family is not isotrivial. There-
fore, we conclude that our family of Enriques surfaces defined over k is not
isotrivial, either.

5. Thirty nodal curves

We use the same notation in the previous sections. We call a nonsingular
rational curve on a K3 or an Enriques surface a nodal curve. In this section
and the next we will show that there exist thirty nodal curves and 10 non-
effective (—2)-divisors on X.

First we recall some results for the supersingular K3 surface Y with
Artin invariant 1 in Dolgachev-Kondo [8]. The Néron-Severi lattice NS(Y)
is an even lattice of signature (1, 21) isomorphic to U & Dyg. The K3 surface
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Y is obtained as the minimal resolution of a purely inseparable double cover
of the projective plane P2. We denote by

p:Y — P?

the morphism obtained by the composition of the purely inseparable double
cover of P2 and the minimal resolution. The purely inseparable double cover
of P? has 21 ordinary nodes over 21 Fy-rational points P?(F). Thus we have
a set A consisting of 21 disjoint nodal curves on Y as exceptional divisors. On
the other hand the pullbacks of 21 lines in P?(Fy) form a set B consisting of
21 disjoint nodal curves on Y. Therefore Y contains 42 nodal curves. These
curves form a (21)s-configuration, that is, they are divided into two families
A and B each of which consists of 21 disjoint curves, and each curve in one
family meets exactly 5 curves in another family at one point transversely.
Recall that Y has a structure of an elliptic fibration

f:Y - P!

with four singular fibers of type I and 18 sections (see (4.2)). The above 42
nodal curves coincide with the set of 24 irreducible components of singular
fibers and 18 sections of the fibration f.

The action of the projective transformation group PGL(3,F4) on the
plane can be lifted to an action by automorphisms of Y. Also there exists
an involution o of Y, called a switch, changing two families A and B. The
semi-direct product PGL(3, F4) x Z/2Z preserves the 42 nodal curves. Here
Z /27 is generated by o. Moreover there exist 168 involutions of Y~ as follows.
A set of six points in P?(Fy) is called general if any three points in the set are
not collinear. There are 168 general sets of six points. For each general set
of six points, we associate the Cremona transformation of the plane which
can be lifted to an involution of Y. We call this involution the Cremona
transformation associated with a general set I of six points and denote it
by Crr. The action of Cr; on NS(Y) is the reflection associated with a
(—4)-vector

(5.1) 20— (Cy + -+ Cg)

in NS(Y). Here /¢ is the class of the pullback of a line in the projective
plane by p and C1,...,Cg are exceptional curves over the six points in [.
It is known that the group Aut(Y) is generated by PGL(3,Fy), o and 168
Cremona transformations (Dolgachev-Kondo [8], Main theorem 1.1).
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Let X be the Enriques surface given in Theorem 4.8. It is known that the
Néron-Severi lattice modulo torsions, denoted by Num(X), is isomorphic to
U @ Eg which is an even unimodular lattice of signature (1,9) (see Cossec-
Dolgachev [5], Theorem 2.5.1). Consider the map

T=pom:Y - X

where 7:Y —YP and ¢:YP” = X are given in Section 4. Then
7*(Num(X)) is a primitive sublattice in NS(Y') isomorphic to U(2) & Eg(2)
because (7*D, 7*D’) = 2(D, D'). Denote by Ej, ..., E12 the 12 disjoint inte-
gral nodal curves on Y which are contracted under the map 7 (In the equa-
tion (43) in Section 4, we denote them by E12, E14, E16, Ewh Ewg, Ew5,
E.21, Eu23, E25, Faoa, Eood, Exg). Note that these 12 curves consist of 6
curves in A and 6 curves in B. Let Aieu be the sublattice in NS(Y') generated
by Fi, ..., F12. Obviously AP'? is orthogonal to 7*(Num(X)).

As mentioned above, there are 42 nodal curves on Y. Among them, 12
curves Fjy, ..., o are integral and contracted by 7. In the following we dis-
cuss the remaining thirty non-integral curves. Let F' be a remaining non inte-
gral nodal curve. Note that F' meets exactly two curves among F1, ..., F12
and the image 7 (F') has the self-intersection number —4 by Proposition 2.1.
Therefore, the image 7(F) is a nodal curve. Let F’ be another remaining
curve. If (F, F') = 1, then 7(F) meets 7(F’) at one point with multiplicity
2. Assume that F' belongs to the family A. Recall that F' meets 5 curves
in B. Denote by E,E’, Fy, Fy, F3 the curves meeting with /' where E, E’
are integral, that is, they belong to {E1,..., EF12}. Assume that E meets
F,Gy,...,Gqand E' meets F,G,...,G). Obviously Gy,...,G4, G}, ..., G}
belong to A. Then the image 7(F) meets three curves 7(F;) (i = 1,2,3) with
multiplicity 2 and meets 4 curves 7(G;),1 < i <4, (resp. 7(G}),1 <1i < 4)
at the point 7(E) (resp. 7(E’)). We now get the following lemma (see also
Figure 2).

Lemma 5.1. There exist thirty nodal curves on X which are the images
of the 30 nodal curves not belonging to {Ex, ..., E12}. Let A and B be the
families of nodal curves which are the images of curves in A and B respec-
tively. Each nodal curve in one family is tangent to three nodal curves in
another family. Each nodal curve C in one family meets eight nodal curves
in the same family transversely. Moreover, four of these eight nodal curves
meet at one point on C, and the remaining four meet at a different point on

C.
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Remark 5.2. Recall that there exists an elliptic fibration ¢g: X — P!
which is induced from the elliptic fibration f:Y — P'. The fibration f
has four singular fibers of type Ig and 18 sections. Since 12 disjoint nodal
curves in the singular fibers of f are contracted to points in X, g has four
singular fibers of type I3 and eighteen 2-sections. The thirty nodal curves in
Lemma 5.1 are the twelve components of singular fibers of g and the eigh-
teen 2-sections. Let C' be a nodal curve in AU B. If C' is a component of a
singular fiber F' of g, then C meets two componets of F' and six 2-sections
transversely at singular points of F', and is tangent to three 2-sections. If C'
is a 2-section of g, then C' passes through a singular point of two singular
fibers and is tangent to a component of the remaining two singular fibers.
And C is tangent to one more nodal curve C’ which is a 2-section. Two
nodal curves C and C’ meet with multiplicity 2 at a point on the unique
fiber of ¢ which is the supersingular elliptic curve.

In the following we show that the incidence relation between nodal curves
in A and B is the same as that of Sylvester’s duads and synthemes. First
we recall Sylvester’s duads and synthemes (see Baker [2], p.220). We denote
by ij the transposition of ¢ and j (1 < i # j < 6) which is classically called
Sylvester’s duad. Six letters 1,2,3,4,5,6 can be arranged in three pairs of
duads, for example, (12, 34, 56), called Sylvester’s syntheme. (We under-
stand that (12, 34, 56) is the same as (12, 56, 34) or (34, 12, 56)). Duads
and Synthemes are in (3, 3) correspondence, that is, each syntheme consists
of three duads and each duad belongs to three synthemes. It is possible to
choose a set of five synthemes which together contain all the fifteen duads.
Such a family is called a total. The number of possible totals is six. And each
pair of totals has exactly one syntheme in common. The following table gives

the six totals A, B, ..., F in its rows, and also in its columns (see Baker [Bal,
p.221) :
A B C D E F

A 14,2536 16,24,35 13,2645 12,3456 15,2346

B 14,25,36 15,26,34 12,35,46 16,23,45 13,24,56

C 162435 15,2634 14,2356 13,2546 12,36,45

D 13,26,45 12,3546 14,23,56 15,24,36  16,25,34

E 12,3456 16,2345 13,2546 15,24,36 14,26,35

F 152346 13,2456 12,3645 16,2534 14,26,35

Now we consider the six numbers 1,...,6 as the six points on X which are
the images of curves in A contracted by 7, and the six totals A,..., F as
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the six points on X which are the images of curves in B contracted by 7.
Also consider fifteen duads as fifteen nodal curves in A. The transposition
ij corresponds to the nodal curve through the two points ¢ and j. On the
other hand, consider fifteen synthemes as fifteen nodal curves in B. A syn-
theme corresponds to the nodal curve through the two points corresponding
to two totals containg the syntheme. Then two curves in A meet if the cor-
responding two duads have a common letter, and two curves in B meet if the
corresponding two synthemes have no common duads. And the (3, 3) corre-
spondence between duads and synthemes describes the intersection relation
between fifteen curves in A and fifteen curves in B. For example, the nodal
curve (12,34, 56) is tangent to nodal curves 12,34, 56 and meets eight nodal
curves in B belonging to the totals A or E at the points A and F (see Figure
2).

SLVa VAVAVAV.

A E

Figure 2: Eleven nodal curves meeting a nodal curve

The nodal curve 12 is tangent to the nodal curves (12,34,56), (12,35, 46)
and (12, 36,45). It also meets eight nodal curves in A containing the letter 1
or 2 at the points 1 and 2. Thus fifteen duads, fifteen synthemes, six letters
and six totals are realized on the Enriques surface X geometrically.

6. Ten (—2)-divisors

We keep the same notation as in the previous section. Recall that the K3
surface Y has the 168 divisors given in (5.1). In this section, we will see that
exactly ten divisors among these 168 divisors descend to (—2)-divisors on
the Enriques surface X, and will study the dual graph of thirty nodal curves
given in Lemma 5.1 and these ten divisors.

Recall that FEq, ..., E1o are the 12 disjoint integral curves on Y which
are contracted to points on X under the map 7. For simplicity, we assume
that F1,..., Eg are the pullbacks of six lines /1,...,¢s in P?(Fy4). For each
partition of {{1,...,ls} into two sets {;, €;, ¢}, {€1,¢m,ln} of three lines,
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we have six points ¢1, ..., gs which are the intersection points of three lines
l;, 4,0y, and those of {1, 4,,,¢,. Let C1,...,Cs be the exceptional curves on
Y over qi,...,qs. Thus we have ten divisors

(6.1) 20— (C1+ -+ Cs)
according to the ten partitions of {¢1,...,4s}.

Lemma 6.1. The ten divisors given in (6.1) are the divisors among
168 divisors which are orthogonal to the root lattice A?u generated by
El, ey Elg.

Proof. As above, we assume that E1,..., Eg are the pullbacks of six lines
l1,...,0gin P%(Fy) and Er, ..., E1s are exceptional curves over Fy-rational
points p1,...,ps of P2. Obviously pi,...,ps do not lie on ¢;, 1 <1i <6.
Moreover the set {p1,...,ps} of six points is general by construction. Let
7=20— (Cy+---+ Cg) be a divisor such that C1,...,Cs are exceptional
curves over general six points ¢y, ..., g on P2(F4). Assume that (7, E;)=0
for j =1,...,12. Since (¢, C;) = 0, we see (7, C;) = 2. Hence we have E; # C;
(t=1,...,6;5=7,...,12). The condition (7, E;) = 0 implies that each Ej
(j =1,...,6) meets exactly two curves in {C1,...,Cs}. This means that
the six points ¢1,...,¢g are intersection points of six lines /1, ..., 5. Thus
the divisors 7 satisfying (7, Ej) =0 (j =1,...,12) correspond to the set
of general six points ¢i,...,qs which are intersections between f1, ..., /lg.
We will show that six lines ¢1,...,¢s are divided into two sets {¢;, ¢}, ¢}
and {¢;, ¢, ¢, } such that six points qi, ..., g coincide with the intersection
points of three lines ¢;, £;, ¢}, and those of ¢;, {,,, £,,. Denote by ¢j the intersec-
tion point of ¢; and ¢;. If six points are given by ij, jk, ki, mn, nl, lm, then we
have the desired one. Otherwise six points are given by 7, jk, ki, lm, mn, ni
because each letter appears twice. In this case, the line ¢ through ij
and kl does not appear in {{1,...,0s}. Since the set {p1,...,ps} of six
points is general, ¢ passes exactly two points in {pi,...,ps}. Since £ con-
tains five Fy-rational points, it should pass one more point not lying on
0; Ul UL UL because LN {4; UL UL, UL} = {ij, kl}. This implies that ¢
passes the remaining point mn. This contradicts the generality of the six
points 7, jk, kl, Im, mn,ni. Thus we have the assertion. O

Let 7q,7p,...,7; be the ten divisors in NS(Y') indexed by ten letters

a,b,...,j which are given in Lemma 6.1. Let r4,7p,...,7; € Num(X) be
the images of 74, 7p,...,7;. Since F2 == 77]2. = —4, we have 12 =... =
7“]2- = —2. Consider two distinct divisors 7 and 7/. Assume that 7 (resp.
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7') corresponds to six points ¢i,...,qs (resp. qi,...,q;) which are the union
of intersection points of ¢;,¢;, ¢ and those of ¢, 0,,,¢, (resp. the union
of intersections of ¢y, ¢, ¢, and those of ¢, 0y, ¢y). Note that either
i, g, ky 0 {d 7K'} =2 or |{i,j,k} n{l'ym',n'}| = 2. This implies that

Hav-- a6} N {dhs - a6t = 2.

Therefore we have (7,7') = 4, and hence (r,7’) = 2. Thus we have the fol-
lowing Lemma.

Lemma 6.2. The dual graph of {rq,rp,...,7r;} is a complete graph whose
edges are double lines.

Now, we discuss the incidence relation between the ten (—2)-vectors
Tas...,7; and the fifteen duads, the fifteen synthemes.

Lemma 6.3. Fach vector in {rq,...,r;} meets exactly siz duads and sic
synthemes with intersection multiplicity two.

Proof. We use the same notation as in the proof of Lemma 6.1. Let C
be the nodal curve on Y corresponding to a duad. Then C meets exactly
two nodal curves F, E' in {Fy,....Fg}. Then 2C + F + FE’ is perpendicu-
lar to AT, that is, 2C + E 4+ E' € #*(Num(X)) = U(2) @ Eg(2). Let 7 =
20— (C1+ -+ Cg) be adivisor in {7q,...,7;}. Then (E,Cy + -+ Cg) =
(E',C1+ -+ Cg) = 2. If C appears in {C4,...,Cs}, then

(7,20 + E+ E') = 4,
and if C does not appear in {C1,...,Cs}, then
(7,2C+ E+E') =0.

The proof for which C' corresponds to a syntheme is similar. Thus we have
the assertion. U

We can identify the ten divisors rg,...,r; with the ten symbols

(123,456), (124, 356), (125, 346), (126, 345), (134, 256),

(135, 246), (136, 245), (145, 236), (146, 235), (156, 234).
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For example, (123,456) meets six duads 12,13,23,45,46,56 and six syn-
themes

(14,25,36), (14,26, 35), (15,24, 36), (15, 26, 34), (16, 24, 35), (16, 25, 34).

We denote by I' the dual graph of the thirty nodal curves and the ten
(—2)-divisors.

Remark 6.4. The graph I' appears in other places. For example, con-
sider the moduli space of principally polarized abelian surfaces with level
2-structure over the field C of complex numbers. It has fifteen 0-dimensional
and fifteen 1-dimensional boundary components and contains ten divisors
parametrizing abelian surfaces of product type (e.g. see [10], Proposition
1.1). The incidence relation between these boundary components and the
ten divisors is given by the graph I'. On the other hand, S. Mukai found the
existence of the above configuration of 30 nodal curves and ten (—2)-vectors
on an Enriques surface defined over C (unpublished).

Proposition 6.5. The automorphism group of the graph I' is isomorphic
to the automorphism group Aut(Sg) of the symmetric group Sg of degree 6.

Proof. Recall that Aut(Gg) is generated by &g and an outer automorphism.
An outer automophism interchanges duads with synthemes, and six letters
1,...,6 with six totals A,..., F respectively. Obviously Aut(&g) preserves
the graph I'. Let g be an automorphism of I'. If necessary, by composing with
an outer automorphism, we assume g preserves six letters. If g fixes each of
six letters, then g acts on I' identically. Thus g is contained in Gg. O

Remark 6.6. The Néron-Severi lattice NS(Y") is isomorphic to the orthog-
onal complement of the root lattice Dy in the even unimodular lattice II; 25
of signature (1,25). If we embed NS(Y') into II; 95 as the orthogonal com-
plement, then 42 nodal curves and 168 (—4)-divisors on Y are the projec-
tions of Leech roots into NS(Y') (see [8], §3.3). The lattice 7*(Num(X))
(= U(2) @ Fs(2)) is the orthogonal complement of Dy @& AP'? in 11 o5, and
the above thirty nodal curves and 10 (—2)-divisors on X correspond to the
projections of some Leech roots.

7. Automorphisms

Let S be an Enriques surface. Let Num(.S) be the Néron-Severi lattice mod-
ulo torsions. Then Num(S) is an even unimodular lattice of signature (1,9)
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(Cossec-Dolgachev [5]). We denote by O(Num(S)) the orthogonal group of
Num(S). The set

{z € Num(S)® R : (x,z) >0}

has two connected components. Denote by P(S) the connected component
containing an ample class of S. For § € Num(S) with 6% = —2, we define an
isometry ss of Num(S) by

ss(z) =z + (x,0)0, = €& Num(S).

The sg is called the reflection associated with 6.

Let W(S) be the subgroup of O(Num(S)) generated by reflections asso-
ciated with all nodal curves on S. Then P(S) is divided into chambers each
of which is a fundamental domain with respect to the action of W(S) on
P(S). There exists a unique chamber containing an ample class which is
nothing but the closure of the ample cone D(S) of S. It is known that the
natural map Consider the natural map

(7.1) p : Aut(S) = O(Num(9)).

has a finite kernel (Dolgachev [7], Theorem 4). Denote by Aut(S)* the image
of the map (7.1). Define

Aut(D(S)) = {¢ € O(Num(S)) : p(D(S)) = D(S)}.

Since Aut(S) preserves D(S), we see Aut(S)* C Aut(D(S)) and Aut(S)* N
W(S) = {1}. On the other hand, Aut(S)* and W(S) generate a subgroup
of O(Num(S)). In particular Aut(S) is finite if W(.S) is of finite index in
O(Num(.5)). Over the field of complex numbers, Enriques surfaces with finite
group of automorphisms were classified by Nikulin [19] and the second author
[16]. In general it is difficult to describe the group Aut(D(5)).

Now, we recall Vinberg’s criterion which guarantees that a group gener-
ated by finite number of reflections is of finite index in O(Num(J5)).

Let A be a finite set of (—2)-vectors in Num(S). Let I" be the graph of
A, that is, A is the set of vertices of I' and two vertices § and ¢ are joined
by m-tuple lines if (d,¢’) = m. We assume that the cone

KI) ={xeNum(S)®R : (z,0;) >0, 6; € A}

Is a strictly convex cone. Such I' is called non-degenerate. A connected
parabolic subdiagram I"” in T' is a Dynkin diagram of type A,,, D, or Ej
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(see [26], p. 345, Table 2). If the number of vertices of I is r + 1, then r is
called the rank of I. A disjoint union of connected parabolic subdiagrams is
called a parabolic subdiagram of I". We denote by K, @ K, a parabolic sub-
diagram which is a disjoint union of two connected parabolic subdiagrams
of type K, and Ko, where K; is A,,, D, or Ej. The rank of a parabolic
subdiagram is the sum of the rank of its connected components. Note that
the dual graph of singular fibers of an elliptic fibration on S gives a parabolic
subdiagram. For example, a singular fiber of type III, IV or L4 defines a
parabolic subdiagram of type A;, Ay or A, respectively. We denote by wW(T)
the subgroup of O(Num(.S)) generated by reflections associated with 6 € T'.

Proposition 7.1. (Vinberg [26], Theorem 2.3) Let A be a set of (—2)-
vectors in Num(S) and let T be the graph of A. Assume that A is a finite
set, I' is non-degenerate and I" contains no m-tuple lines with m > 3. Then
W (L) is of finite index in O(Num(S)) if and only if every connected parabolic
subdiagram of I' is a conmected component of some parabolic subdiagram in
I of rank 8 (= the mazximal one).

For the proof of Proposition 7.1, see Vinberg [26] (also see [16], Theorem
1.9).

Let X be the Enriques surface given in Theorem 4.8. In the following, as
A we take forty (—2)-vectors in Num(X) corresponding to the fifteen duads,
the fifteen synthemes and the ten (—2)-vectors given in the previous section.
Let T" be the graph of these forty vectors. We directly see the following
Lemma.

Lemma 7.2. The mazimal parabolic subdiagrams of I' are
A @A ® A ® Ay, Ai® Ay, As® Ay Ay, A3 A3 Ay Ay
each of which has the mazximal rank 8.

In the following we give an example of each maximal parabolic subdia-
grams.

(i) The diagram Ay ® Ay ® Ay ® Ay corresponds to an elliptic fibration on
X with four singular fibers of type I3. For example, four sets

{12, 23,13}, {45,46,56}, {(14, 25, 36), (15,26, 34), (16,24, 35)},

{(14,26,35), (15,24, 36), (16, 25,34)}
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are components of singular fibers of an elliptic fibration of this type. The
syntheme (12, 35,46) is a 2-section of this fibration.

(ii) The diagram A, @ A4 corresponds to an elliptic fibration on X with
two singular fibers of type I5. For example, two sets {12,23,34,45,15} and
{(13,25,46), (14, 26, 35), (13, 24, 56), (14, 25, 36), (16,24,35)} are compo-
nents of singular fibers of an elliptic fibration and the duad 46 is a 2-section
of this fibration.

(iii) The diagram A5 ® Ay ® Ay corresponds to an elliptic fibration on X
with singular fibers of type Ig, IV and I,. For example, six synthemes

(14,25,36), (15,26, 34), (14, 23,56), (15, 24, 36), (14, 26, 35), (15, 23, 46)

are components of a singular fiber of type Ig, three duads 12,13,16 are
components of a singular fiber of type IV. The pair of the duad 45 and
(—2)-vector (145,236) forms the subdiagram of type A;. The duad 56 is a
2-section of this fibration.

Remark 7.3. Note that there exists a nodal curve C' such that C and the
duad 45 form the singular fiber of type I5. If we denote by 2f the class of a
multiple fiber of this fibration, then

(145,236) = C — f.

The 2-section 56 meets C', but not (145,236). Note that C' does not appear
in forty (—2)-vectors.

(iv) The diagram A @ A3 ® Ay @ A corresponds to an elliptic fibration on
X with two singular fibers of type 14 and one singular fiber of type III. For
example, four duads 24,25, 34,35 and four synthemes

(12,36,45), (14,23,56), (13,26, 45), (15, 23, 46)

define two singular fibers of type I4 respectively, and the pair of the duad
16 and the syntheme (16,23,45) defines a singular fiber of type III. The

remaining subdiagram of type A; consists of two (—2)-vectors (123,456)
and (145,236). The duad 13 is a 2-section of this fibration.

Remark 7.4. The pullback of an elliptic fibration given in (i), (ii), (iii)
or (iv) to the covering K3 surface Y gives an elliptic fibration on Y with
reducible singular fibers of type (I, Is, Ig, Is), of type (I10, 10, I2,I2), of type
(I12,IV*,1y), or of type (Is,Is,I7), respectively.
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Denote by D(T") the finite polyhedron defined by forty (—2)-vectors in I
Combining Proposition 7.1 and Lemma 7.2, we have the following theorem.

Theorem 7.5. The group W(T') is of finite index in O(Num(X)). The
symmetry group of the graph T coincides with Aut(D(T")) which is isomorphic
to the semi-direct product Sg x Z /27 where Sg is the symmetric group of
the siz letters {1,...,6} and Z/2Z is generated by an outer automorphism

Of 66.

Recall that Aut(Y') is generated by PGL(3,F4), a switch and 168 Cre-
mona transformations, where Y is the covering K3 surface of X. Among
these automorphisms, the subgroup Gg x Z/2Z and the ten Cremona trans-
formations associated with the ten divisors given in (6.1) preserve the 12
nodal curves Fjy, ..., E1o contracted under the map 7.

Conjecture. The subgroup &g x Z/2Z and the ten Cremona transforma-
tions descend to automorphisms of X.

Let G be the subgroup of O(Num(X)) generated by the reflections associated
with the ten non-effective (—2)-divisors in I'. If the conjecture is true, then
the ten Cremona transformations descend to the ten generators of G. Next
we show that p is injective (see (7.1)). Let ¢ € Ker(p). Then ¢ preserves each
nodal curve in A. Since each nodal curve in A meets eleven nodal curves at
five points, ¢ fixes all 30 nodal curves in A pointwisely. Consider the elliptic
fibration g : X — P! discussed in Remark 5.2 which has eighteen 2-sections
contained in A. Then ¢ fixes a general fiber of g, and hence ¢ is identity.

Now, by an argument in Vinberg [27], 1.6, we have the following Corol-
lary.

Corollary 7.6. Assume the conjecture holds. Then Aut(X) is generated by
Aut(D(I')) (=2 66 X Z/2Z) and G.
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