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Finiteness of Rational Curves of Degree 12

on a General Quintic Threefold

Edoardo Ballico and Claudio Fontanari

Abstract: We prove the following statement, predicted by
Clemens’ conjecture: A generic quintic threefold contains only
finitely many smooth rational curves of degree 12.
Keywords: quintic threefold, rational curve, Clemens’ conjecture.

1. Introduction

The present paper is entirely devoted to the proof of the following instance
of Clemens’ conjecture ([4]):

Theorem 1. A generic quintic threefold contains only finitely many smooth
rational curves of degree 12.

We point out that the cases d ≤ 11 have been previously addressed in
[14] (d ≤ 7), [17] and [13] (d = 8, 9), [5] (d = 10), [6] and [7] (d = 11), and
we recall the general set-up.

LetMd be the set of smooth rational curves of degree d in P4. It is smooth
and irreducible of dimension 5d+ 1. Let P125 denote the projective space of
all quintic hypersurfaces of P4 and consider the incidence correspondence
Id = {(C,W ) : C ⊂W} ⊂Md × P125. Let π1 : Id →Md and π2 : Id → P125

denote the restrictions to Id of the two projections.
The map π2 turns out to be finite if for every irreducible family Γ ⊆Md

with general element C we have:

(1) dimΓ + (h0(IC(5))− 1) ≤ 125.

From the standard exact sequence

0→ H0(IC(5))→ H0(OP4(5))→ H0(OC(5))→ H1(IC(5))→ 0
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it follows that

(2) h0(IC(5))− 1 = 125− (5d+ 1) + h1(IC(5))

and by [2] the general curve C in Md satisfies h
1(IC(5)) = 0, so in order to

prove Clemens’ conjecture one needs to control curves C with h1(IC(5)) > 0.
In the case d = 12, we show that if an irreducible family Γ ⊆M12 of

non-degenerate curves is a potential exception to Clemens’ conjecture, then
its general element C satisfies h1(IC(2)) ≥ 13. It follows that h0(IC(2)) ≥ 3
and this provides a contradiction (see Lemma 1).

The key point in our reduction is to obtain h1(IC(2)) ≥ 13 from
h1(IC(5)) > 0. Indeed, Lemma 2 implies that h1(IC(t− 1)) ≥ 4 + h1(IC(t))
except in two special cases, which are identified by Lemma 3 and then
excluded in Lemmas 7, 8, 9, 13. Finally, a careful analysis of the degen-
erate case is provided (see Section 3).

We remark that the strong form of Clemens’ conjecture (as proved by
Cotterill in [5] and [6] for d = 10, 11, characterizing also singular irreducible
rational curves on the general quintic threefold) cannot be achieved by our
methods.

We work over the complex field C.
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helpful conversations. We are also grateful to the anonymous referee and to
Carlo Madonna for useful comments.
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2. Non-degenerate case

Lemma 1. If C ∈M12, C is non-degenerate and h0(IC(2)) ≥ 3, then there
is no smooth quintic 3-fold containing C.

Proof. Assume by contradiction h0(IC(2)) ≥ 3 and the existence of a smooth
quintic 3-fold W ⊂ P4 with W ⊃ C and let E ⊂ P4 be the intersection of 3
general element of |IC(2)|. Since deg(C) = 12 > 8, Bezout theorem gives
the existence of an integral surface F such that C ⊂ F ⊆ E. Since C is
non-degenerate, F is non-degenerate and so deg(F ) ≥ 3. Assume E = F ,
i.e. deg(F ) = 4. Since the complete intersection of 2 quadric hypersurfaces
is contained in exactly two linearly independent quadrics and deg(C) > 8,
we get h0(IC(2)) = 2, a contradiction. Thus deg(F ) = 3. The classification
of minimal degree non-degenerate surfaces in P4 gives h0(IF (2)) = 3. By
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assumption there is W with C ⊂W . Since Pic(W ) is freely generated by
OW (1), F � W . HenceW ∩ F links C to a degree 3 locally Cohen-Macaulay
curve T ⊂W ∩ F . By the classification of minimal degree surfaces in P4,
either F is a cone with vertex o over a rational normal curve D ⊂ P3 or F
is isomorphic to the the Hirzebruch surface F1 embedded by the complete
linear system |h+ 2f |, where h is a section of the ruling of F1 and f is a
fiber of the ruling of F1.

First assume that F is a cone. Since C is smooth, it has multiplicity
at most 1 at o. Hence o /∈ C and the linear projection from o induces a
degree 4 map � : C → D. Let π : G→ F be the blowing up of o and C ′ the
strict transform of C in G. G is isomorphic to the Hirzebruch surface F3

and the map π is induced by the complete linear system |h+ 3f |. Since o /∈
C and deg(�) = 4, π induces an isomorphism C ′ → C and C ′ ∈ |4h+ 12f |.
We have ωG

∼= OG(−2h− 5f). The adjunction formula gives ωC′ ∼= OG(2h+
7f). Hence h0(ωC′) > 0, contradicting the rationality and smoothness of C ′.

Now assume F ∼= F1. Take a, b ∈ N such that C ∈ |ah+ bf |. Since C is
irreducible and not a line, we have b ≥ a > 0. Since OC(1) ∼= OC(h+ 2f),
h2 = −1, h · f = 1, f2 = 0 and deg(C) = d, we have 12 = a+ b. Since
ωF1

∼= OF1
(−2h− 3f), the adjunction formula gives ωC

∼= OC((a− 2)h+
(b− 3)f). Since deg(ωC) = −2, we get (ah+ bf) · ((a− 2)h+ (b− 3)f) =
−2, i.e. −a(a− 2) + a(b− 3) + b(a− 2) = −2, i.e (b− a)(a− 2) + a(b−
3) = −2. Since b ≥ a > 0 and b = 12− a, we get a = 1 and b = 11. Since
OF1

(5) ∼= OF1
(5h+ 10f) and b = 11, we have h0(F1, IC,F1

(5)) = 0. Hence
W ⊃ F1, a contradiction. �

The following fact is one of key ingredients in the proof of [7, Theorem
4.1].

Lemma 2. Fix integer t ≥ 2, r ≥ 3 and an integral and non-degenerate
curve T ⊂ Pr such that h1(IT (t)) > 0. Assume that h1(M, IM∩T,M (t)) = 0
for every hyperplane M ⊂ Pr. Then h1(IT (t− 1)) ≥ r + h1(IT (t)).

Proof. For any hyperplane M ⊂ Pr we have an exact sequence

(3) 0→ IT (t− 1)→ IT (t)→ IT∩M,M (t)→ 0

Since h1(M, IT,M (t)) = 0, the mapH1(IT (t− 1))→ H1(IT (t)) is surjective,
hence its dual eM : H1(IT (t))∨ → H1(IT (t− 1))∨ is injective. Taking the
equations of all hyperplanes we get a bilinear map map u : H1(IT (t))∨ ×
H0(OP4(1))→ H1(IT (t− 1))∨, which is injective with respect to the second
variables, i.e. for every non-zero linear form � u|H1(IT (t))∨×{�} is injective
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(it is eM with M := {� = 0}). Hence if (a, �) ∈ H1(IT (t))∨ ×H0(OP4(1))
with a �= 0 and � �= 0, then u(a, �) = eM (a) �= 0. Therefore the bilinear map
u is non-degenerate in each variable. Hence h1(IT (t− 1)) ≥ h1(IT (t)) +
h0(OPr(1))− 1 by the bilinear lemma. �

The next Lemma 3 is perhaps the technical heart of this work. It relies
on a particular case of a very strong result on 0-dimensional schemes in the
plane, namely, [9, Corollaire 2] (see also [9, Remarque (i)]). We recall the
statement in [9] for reader’s convenience. Let E ⊂ P2 be a zero-dimensional
scheme of degree d. Let τ := max{n : h1(IE(n) > 0}. Let s be an integer
such that s ≤ d/s and τ ≥ s− 3 + d/s. Then either E is the complete inter-
section of a curve of degree s and a curve of degree d/s and τ = s− 3 + d/s,
or there exists s′ with 0 < s′ < s and a subscheme E′ ⊂ E contained in a
curve of degree s′ such that s′(τ + (5− s′)/2) ≥ deg(E′) ≥ s′(τ − s′ + 3). In
particular, if τ > d/3, then either we have τ + 2 points on a line (counted
with multiplicity), or we have 2τ + 2 or 2τ + 3 points on a conic (counted
with multiplicity).

For the proof of Lemma 3 we also need to introduce the notion of residual
scheme. Let M be a projective scheme, A a closed subscheme and D ⊂M
an effective Cartier divisor of M . The residual scheme ResD(A) of A with
respect to D is the closed subscheme of M with IA : ID as its ideal sheaf.
We always have ResD(A) ⊆ A. If A is a reduced scheme, then ResD(A) is
the union of the irreducible components of A not contained in D. If A is
a zero-dimensional scheme, then deg(A) = deg(A ∩D) + deg(ResD(A)). For
any line bundle L on M we have an exact sequence

0→ IResD(A) ⊗ L(−D)→ IA ⊗ L → IA∩D,D ⊗ (L|D)→ 0.

Lemma 3. Fix an integer t ≥ 2. Set M := P3 and let Z ⊂M a
zero-dimensional scheme spanning M and with deg(Z) ≤ 3t. We have
h1(M, IZ,M (t)) �= 0 if and only if either there is a line R ⊂M with deg(R ∩
Z) ≥ t+ 2 or there is a conic D ⊂M such that deg(D ∩ Z) ≥ 2t+ 2 or there
is a line L ⊂M such that deg(Z ∩ L) = t+ 1 and the union of the connected
components of Z whose reduction is contained in L has degree ≥ 2t+ 2.

Proof. Set Z0 := Z. Let N1 ⊂M be a plane such that e1 := deg(Z ∩N1) is
maximal. Set Z1 := ResN1

(Z0). For each integer i ≥ 2 define recursively the
plane Ni, the integer ei and the zero-dimensional scheme Zi in the follow-
ing way. Let Ni ⊂M be any hyperplane such that ei := deg(Zi−1 ∩Ni) is
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maximal. Set Zi := ResNi
(Zi−1). For each i ≥ 1 we have an exact sequence

(4) 0→ IZi
(t− i)→ IZi−1

(t+ 1− i)→ IZi−1∩Ni,Ni
(t+ 1− i)→ 0

We have ei ≥ ei−1 for all i. Since any degree 3 subscheme of M is con-
tained in a plane, if ei ≤ 2, then Zi−1 ⊂ Ni and Zi = ∅. Since deg(Z) ≤ 3t,
there is an integer i such that 1 ≤ i ≤ t and Zi = ∅. From (4) we get an
integer i ∈ {1, . . . , t} such that h1(Ni, IZi−1∩Ni,Ni

(t+ 1− i)) > 0. Indeed,
the fact that Zi is empty for some index 1 ≤ i ≤ t forces the cohomol-
ogy of the ideal sheaf of Zi to be that of the ambient projective plane
Ni. We call c the minimal integer i. Since h1(Nc, IZi−1∩Nc,Nc

(t+ 1− c)) >
0, either deg(Zi−1 ∩Nc, Nc)) ≥ 2(t+ 1− c) + 2 or there is a line L with
deg(Lc ∩ Zi−1 ∩Nc) ≥ t+ 3− c ([3, Lemma 34]). In particular, since c ≤ t,
we have ec ≥ t+ 3− c. Since the sequence {ei}i≥1 is non-increasing, we have
cec ≥ c(t+ 3− c). Since

∑
i≥1 ei = deg(Z) ≤ 3t, we get c(t+ 3− c) ≤ 3t.

Set ψ(x) = x(t+ 3− x). The function ψ is strictly increasing if 1 ≤ x ≤ (t+
3)/2 and strictly decreasing if x > (t+ 3)/2. Since ψ(t) = 3t and ψ(3) = 3t,
we get that either 1 ≤ c ≤ 3 or c = t.

(a) Assume c = 1. Since Z spans M , we have e1 ≤ deg(Z)− 1. Since
e1 ≤ deg(Z)− 1, we have e1 < 3t. By [9, Corollaire 2] (see also [9, Remarque
(i)]) either there is a line R ⊂ N1 with deg(R ∩ Z) ≥ t+ 2 or there is a conic
D ⊂ N1 such that deg(D ∩ Z) ≥ 2t+ 2.

(b) Assume c = 2. Since e1 ≥ e2, we have e2 ≤ deg(Z)/2 ≤ 3t/2. Since
c = 2 and h1(N2, IZ1∩N2,N2

(t− 1)) > 0, by [3, Lemma 34] either e2 ≥ 2t,
which is a contradiction, or there is a line R ⊂ N2 such that deg(R ∩ Z1) ≥
t+ 1. If deg(R ∩ Z) ≥ t+ 2, then we are done. Hence we may assume
deg(Z ∩R) = t+ 1. Set W0 := Z. Let M1 ⊂M be a plane containing R
and for which f1 := deg(M1 ∩ Z) is maximal. Since Z spans M we have
f1 ≥ t+ 2. Set W1 := ResM1

(Z). For each integer i ≥ 2 define recursively
the plane Mi, the integer fi and the zero-dimensional scheme Wi in the fol-
lowing way. Let Mi ⊂M be any hyperplane such that fi := deg(Wi−1 ∩Mi)
is maximal. Set Wi := ResNi

(Wi−1). We have fi ≥ fi+1 for all i ≥ 2, but
we do not claim that f1 ≥ f2 (indeed, M1 is required to contain R, while
the Mi with i ≥ 2 are not). Since any degree 3 subscheme of M is con-
tained in a plane, if fi ≤ 2, then Wi−1 ⊂M1 and Wi = ∅. Since

∑
i≥i fi =

deg(Z) and f1 ≥ t+ 2, we have fi = 0 for some i < t. Using the residual
exact sequences of the planes Mi we get the existence of a minimal inte-
ger s ∈ {1, . . . , t− 1} such that h1(Ms, IWs−1∩Ms,Ms

(t+ 1− s)) > 0. We get
fs ≥ t+ 3− s. Since f1 ≥ t+ 2, we get 1 ≤ s ≤ 2. If s = 1, then we use step
(a) with M1 instead of N1. Now assume s = 2. Since f2 ≤ deg(Z)− f1 ≤
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2t− 2 and h1(M2, IZ1∩M2,M2
(t− 1)) = 0, there is a line L ⊂M2 such that

deg(L ∩ Z1) ≥ t+ 1. If deg(L ∩ Z) ≥ t+ 2, then the lemma is true. Hence
we may assume that deg(Z ∩ L) = t+ 1.

First assume R ∩ L = ∅. Let Q ⊂M be a general quadric surface con-
taining L ∪R. Call |OQ(1, 0)| the ruling of Q containing R and L. The resid-
ual scheme ResQ(Z) of Z has degree deg(Z)− deg(Z ∩Q) ≤ 3t− (2t+ 2) =
t− 2 and in particular h1(M, IResQ(Z),M (t− 2)) = 0. The residual exact
sequence of Q gives h1(Q, IZ∩Q,Q(t)) ≥ h1(M, IZ,M (t)) > 0.

Claim: We have h1(M, IR∪L(t)) = 0 for every t ≥ 1.
Proof of the Claim: Take p ∈ L. Since R ∩ L = ∅, {p} ∪R

spans a plane, H. We have (L ∪R) ∩H = R ∪ {p} and hence
h1(H, I(L∪R)∩H,H(t)) = 0 for all t ≥ 1. The residual ResH(L ∪R) of
L ∪R with respect to H is the line L, because L ∪R is reduced and
L � H. Therefore the residual sequence of H in P3 gives the following exact
sequence:

0→ IL(t− 1)→ IL∪R(t)→ I(L∪R)∩H,H(t)→ 0.

Since h1(IL(t− 1)) = 0 for all t > 0, we get the Claim.
Since deg(Z ∩ L) = deg(Z ∩R) = t+ 1 and R ∩ L = ∅, we have h1(R ∪

L, I(R∪L)∩Z(t)) = h1(R, IR∩Z(t)) + h1(L, IL∩Z(t)) = 0.
The Claim gives h1(M, IZ∩(R∪L(t)) = 0. Hence h1(Q, IZ∩(R∪L),Q(t)) =

0. The residual sequence

0→ IResR∪L(Z∩Q)(t− 2, t))→ IZ∩Q,Q(t, t)→ I(R∪L)∩Z,R∪L(t, t)→ 0

gives h1(Q, IResR∪L(Z∩Q)(t− 2, t)) > 0. Since deg(ResR∪L(Z ∩Q)) =
deg(Z ∩Q)− 2t− 2 ≤ t− 2, we get a contradiction.

Now assume R ∩ L �= ∅. If R �= L, then we may take the reducible conic
R ∪ L, because R ⊂M1 and deg(L ∩ ResM1

(Z)) = t+ 1.
Now assume R = L. This is the last case of the statement of the lemma.
(c) Assume c = 3. Since ψ(3) = 3t, we get e1 = e2 = e3 = t. Since e3 =

t and h1(N3, IZ2∩N3,N3
(t− 2)) > 0, there is a line R ⊂ N3 such that deg(Z2 ∩

R) = t. Since Z spans M , there is a plane N ′ such that R ⊂ N ′ ⊂M and
N ′ ∩ Z � Z ∩R. Hence e1 ≥ deg(N ′ ∩ Z) > t, a contradiction.

(d) Assume c = t. We get deg(Z) = 3t and ei = 3 for all i. In partic-
ular e1 = 3, i.e. Z is in linearly general position. Since deg(Z) ≤ 3t+ 1, the
contradiction comes from [8, Theorem 3.2]. �

Lemma 4. Fix an integer t > 0. Set M := P3 and let Z ⊂M a zero-
dimensional and curvilinear scheme spanning M and with deg(Z) ≤ 3t.
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We have h1(M, IZ,M (t)) �= 0 if and only if either there is a line R ⊂M
with deg(R ∩ Z) ≥ t+ 2 or there is a conic D ⊂M such that deg(D ∩ Z) ≥
2t+ 2.

Proof. The “ if ” part is trivial. To prove the other implication it is sufficient
to exclude the last case of the statement of Lemma 3. By [9, Corollaire 2]
(see also [9, Remarque (i)]) we may assume that h1(N, IZ∩N,N (t)) = 0 for
every plane N .

Assume that we are in the last case of Lemma 3 and call L the associ-
ated line. We may take Z minimal with the property that h1(M, IZ,M (t)) >
0. Let Q be a quadric surface containing L in its singular locus.
Since deg(ResQ(Z)) ≤ 3t− 2t− 2 ≤ t− 2, we have h1(M, IResQ(Z)(t− 2)) =
0. Therefore the residual exact sequence of Q gives h1(Q, IZ∩Q,Q(t)) > 0
and h1(M, IZ∩Q,M (t)) > 0. The minimality of Z gives Z ⊂ Q. Taking Q =
N1 +N2 in step (b) of the proof of Lemma 3 we also get that only the
connected components of Z whose reduction are contained in L arise (for a
minimal Z), hence we reduce to the case deg(Z) = 2t+ 2.

Let W ⊂ Z be any degree 2t+ 1 subscheme. Since deg(W ∩D) ≤
deg(Z ∩D) ≤ t+ 1 for each line D, Lemma 3 gives h1(M, IW,M (t)) = 0.
Hence h1(M, IZ,M (t)) = 1. Since h1(N, IZ∩N,N (t)) = 0 for every plane N ,
as in [7] we get h1(M, IZ,M (t− 1)) ≥ 3 + h1(M, IZ,M (t)) = 4. Let N be any
plane containing L. We have h1(N, IZ∩N (t− 1)) = 1, because deg(Z ∩ L) =
t+ 1 and deg(Z ∩N) ≤ 2(t− 1) + 1 (use the residual exact sequence of L in
N). Since deg(ResN (Z)) ≤ t+ 1, we have h1(M, IResN (Z)(t− 2)) ≤ 2. Hence
the residual exact sequence of N gives h1(M, IResN (Z)(t− 1)) ≤ 2 + 1, a con-
tradiction. �

Lemma 5. Let H ⊂ P4 be a hyperplane. Let S ⊂ H be a set of 12 points
in uniform position and spanning H.

(a) h1(H, IS,H(3)) ≥ 2 if and only if S is contained in a rational nor-
mal curve of H and in this case we have h1(H, IS,H(3)) = 2;

(b) h1(H, IS,H(3)) = 1 if and only if S is contained in an integral
curve T ⊂ H, which is the complete intersection of two quadric surfaces.

Proof. If S is contained in a rational normal curve (resp. an integral
complete intersection of two quadric surfaces), then h1(H, IS,H(3)) = 2
(resp. h1(H, IS,H(3)) = 1). Since S is in linearly general position, we have
h1(H, IS′(3)) = 0 for each S′ ⊂ S with �(S′) = 10. Hence h1(H, IS,H(3)) ≤
2. If h0(H, IS,H(2)) ≥ 2, since S is in uniform position we get that S is con-
tained in a integral curve with either degree 3 or the intersection of 2 quadric
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surfaces. Hence we may assume h0(H, IS,H(2)) ≤ 1. There is A ⊂ S with
�(A) = 8 and h0(H, IA,H(2)) = 2, i.e. h1(H, IA,H(2)) = 0. Take an ordering
o1, o2, o3, o4 of S \A. Set A0 := A. For i = 1, 2, 3, 4 set Ai := A ∪ {o1, . . . , i}.
It is sufficient to prove that h0(H, IAi,H(3)) < h0(H, IAi−1,H(3)) for i =
1, 2, 3, 4. Let Q be a general quadric surface containing A. Since S is
in uniform position, we have Q ∩ S = A. Let Ni be any plane not con-
taining oi but containing oj for all j < i. The cubic surface Q ∪Ai gives
h0(H, IAi,H(3)) < h0(H, IAi−1,H(3)). �

Lemma 6. Let C ⊂ Pr, r ≥ 2, be a smooth rational curve. Let M(d, r)
denote the set of all smooth rational curves of degree d in Pr. M(d, r)
is smooth and irreducible of dimension (r + 1)d+ r − 3. Set d := deg(C)
and take a zero-dimensional scheme Z ⊂ Pn such that a := deg(Z) ≤ d+ 1.
Then h1(NC(−Z)) = 0 and the set of all X ∈M(d, r) containing Z has
dimension (r + 1)d+ r − 3− (r − 1)a.

Proof. Fix any Y ∈M(d, r). Since TPr is a quotient of OPr(1) by the Euler
sequence and X is smooth NX is a quotient of OX(1)

(r+1). Since X is a
smooth rational curve, we get h1(NX(−W )) = 0 for every zero-dimensional
scheme W ⊂ X with deg(Z) ≤ d+ 1. The Hilbert scheme of all curves con-
taining W has H0(NX(−W )) as its tangent space and H1(NX(−W )) as an
obstruction space ([18, Theorem 1.5]). Taking W = ∅ we get the smooth-
ness and dimension of M(d, r). The irreducibility of M(d, r) is well-known.
Taking W = Z we get the other statements of the lemma. �

Let W denote the set of all quintic hypersurfaces of Cotterill, i.e. sat-
isfying all properties proved in [6]. In particular each W ∈ W is a smooth
quintic hypersurface containing finitely many rational curves of degree ≤ 11.

For any integer b ≥ 5 let Δb denote the set of all non-degenerate C ∈M12

such that there is a line L ⊂ P4 with deg(L ∩ C) = b. Set Δ′
7 := ∪b≥7Δb.

Remark 1. For any line L ⊂ P4 let A(L, b) denote the set of all non-
degenerate C ∈M12 such that deg(L ∩ C) = b. Since Δb = ∅ if b > 12, we
have dim(A(L, b)) = 61− 2b by Lemma 6. Now, if W is any quintic three-
fold and C ⊂W , then by Bezout also L ⊂W as soon as b ≥ 6. Since on
each W ∈ W there are finitely many lines, if W contains only finitely many
C ∈ A(L, b) for any fixed line L ⊂ P4, then W contains only finitely many
C ∈ Δb as well. Hence to prove that a general W ∈ W contains only finitely
many elements of Δb, by (1) and (2) it is sufficient to test the element C ∈ Δb

with h1(IC(5)) ≥ 2b+ 1.
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Lemma 7. A general W ∈ W contains only finitely many C ∈ Δ′
7.

Proof. By Remark 1 it is sufficient to test the non-degenerate curves C ∈
M12 such that h1(IC(5)) ≥ 15. Take a general hyperplane H ∈ P4. Since
C ∩H is in uniform position, Lemma 4 gives h1(H, IC∩H,H(t)) = 0 for t =
4, 5. The exact sequence

(5) 0→ IC(t− 1)→ IC(t)→ IC∩H,H(t)→ 0

gives h1(IC(3)) ≥ h1(IC(4)) ≥ h1(IC(5)). By Lemma 5 we have h1(IC(2)) ≥
h1(IC(3))− 2 ≥ 13. Hence h0(IC(2)) ≥ 3, contradicting Lemma 1. �

Lemma 8. A general W ∈ W contains only finitely many C ∈ Δ6.

Proof. By Remark 1 it is sufficient to test the non-degenerate curves C ∈
M12 such that h

1(IC(5)) ≥ 13. By Lemma 7 we may assume that C /∈ Δ′
7.

By Lemmas 2 and 3 we have h1(IC(4)) ≥ 4 + h1(IC(5)) ≥ 17. Take a general
hyperplane H ∈ P4. By Lemma 4 we have h1(H, IC∩H,H(4)) = 0. The exact
sequence (5) gives h1(IC(3)) ≥ h1(IC(4)). By Lemma 5 we have h1(IC(2)) ≥
h1(IC(3))− 2 ≥ 15. Hence h0(IC(2)) ≥ 5, contradicting Lemma 1. �

Lemma 9. A general W ∈ W contains only finitely many non-degenerate
C ∈M12 such that there is a conic D ⊂ P4 with deg(D ∩ C) ≥ 10 and if the
conic is singular C ∩D contains a curvilinear scheme of at least degree 10.

Proof. A conic is either smooth or reducible or a double line. Lemmas 7 and
8 handle the case in which D is not a smooth conic and deg(D ∩ C) ≥ 11.
Assume the existence of a conic D such that b := deg(D ∩ C) ≥ 10. Fix
any p ∈ C \ C ∩N , where N is the plane spanned by D, and let M be the
hyperplane spanned by N ∪ {p}. Since deg(C ∩M) ≥ b+ 1, we have b ≤ 11.
P4 contains ∞6 planes and each plane contains ∞5 smooth conics and ∞4

singular conic. Fix b ∈ {10, 11} and a conic D. Let B(D, b) be the set of
all non-degenerate C ∈M12 such that deg(D ∩ C) = b; if b = 10 and D is
singular assume that D ∩ C is curvilinear. Since each conic contains ∞b

curvilinear subschemes of degree b, Lemma 6 gives dim(B(D, b)) ≤ 61− 2b.
Varying D we get that the set of all C has codimension at least 9 in M12.
Hence it is sufficient to test the curves C with h1(IC(5)) ≥ 10. Since C /∈ Δ′

7,
we have h1(IC(4)) ≥ 14. Moreover, if h1(IC(4)) = 14, then deg(D ∩ C) ≥ 10
for finitely many conics D1, . . . , Ds. Let Ni be the plane spanned by Di.
Fix a line L ⊂ P4 such that L ∩Ni = ∅ for all i. Set V := H0(IL(1)) and
take any M ∈ |IL(1)|. We have Ni � M . Since M ∩ C contains no line
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R with deg(R ∩ C) ≥ 6 and no conic D with deg(D ∩ C) ≥ 10, we have
h1(M, IC∩M,M (4)) = 0 (Lemma 4). Hence the bilinear map H1(IC(4))∨ ×
V → H1(IC(3))∨ is non-degenerate in the second variable. By the bilin-
ear lemma we have h1(IC(3)) ≥ h1(IC(4)) + dim(V )− 1 = 16. Hence in all
cases we have h1(IC(3)) ≥ 15. By Lemma 5 we have h1(IC(2)) ≥ 13, con-
tradicting Lemma 1. �

Let Δ1 (resp. Δ2, Δ3) be the set of all non-degenerate C ∈M12 such that
for a general hyperplane H ⊂ P4 the set C ∩H is contained in a rational
normal curve of H (resp., the smooth complete intersection of 2 quadric sur-
faces of H, resp., a singular integral curve which is the complete intersection
of 2 quadric surfaces of H).

We have the following estimates:

Lemma 10. Every irreducible component of Δ1 has dimension ≤ 49.

Proof. Fix a hyperplane H, a rational normal curve D ⊂ H and S ⊂ D such
that �(S) = 12. By Lemma 6 the set of all C ∈M12 containing S has dimen-
sion ≤ 61− 36. Since the set of all S ⊂ D with �(S) = 12 has dimension 12
and H contains ∞12 rational normal curves, we get the lemma. �

Lemma 11. Every irreducible component of Δ2 has dimension ≤ 53.

Proof. Fix a hyperplane H. The set of all degree 4 smooth elliptic curves of
H has dimension 16 and we may conclude as in the proof of Lemma 10. �

Lemma 12. Every irreducible component of Δ3 has dimension ≤ 52.

Proof. Fix a hyperplaneH. The set of all singular, integral and non-degenere
curvesD ⊂ H with deg(D ∩H) = 4, i.e. the set of all singular integral curves
which are the complete intersection of 2 quadric surfaces ofH, has dimension
15. Now we argue as in the proof of Lemma 10. �

Lemma 13. A general C ∈M12 contains only finitely many elements of
Δ1 ∪Δ2 ∪Δ3.

Proof. By Lemmas 10, 11 and 12, we may assume that h1(IC(5)) ≥ 9. By
Lemmas 7, 8 and 9 we may assume deg(C ∩ L) ≤ 5 for all lines and deg(D ∩
C) ≤ 9 for all conics. By Lemmas 2 and 3 for t = 4, 5 we get h1(IC(3)) ≥
4 + h1(IC(4)) ≥ 8 + h1(IC(5)) ≥ 17. Lemma 5 gives h1(IC(2)) ≥ 15, i.e.
h0(IC(2)) ≥ 5, contradicting Lemma 1. �
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By Lemmas 7, 8 and 9 to prove Theorem 1 for non-degenerate C ∈M12

it is sufficient to test the ones such that deg(C ∩D) ≤ 9 for any conic D
and deg(L ∩ C) ≤ 5 for any line L. By the cases t = 4, 5 of Lemmas 2 and 3
we have h1(IC(3)) ≥ 4 + h1(IC(4)) ≥ 8 + h1(IC(5)).

By Lemmas 5 and 13 we may assume h1(H, IC∩H,H(3)) = 0. Now the
case t = 3 of the exact sequence (5) gives

(6) h1(IC(2)) ≥ h1(IC(3)) ≥ 4 + h1(IC(4)) ≥ 8 + h1(IC(5)).

Since the stratum in M12 corresponding to curves with h1(IC(5)) >
0 has codimension 2 (as in [7, pp. 901–902]), by (1) and (2) we may
assume h1(IC(5)) ≥ 3, hence h1(IC(2)) ≥ 11. Since h0(OP4(2)) = 15 and
h0(OC(2)) = 25, we get h0(IC(2)) ≥ 1.

Now, if h1(IC(5)) ≤ 5 (hence h0(IC(5)) ≤ 70) we conclude by the fol-
lowing Lemma 14.

Lemma 14. Let Γ be any irreducible family of non-degenerate curves of
Md, d > 1, contained in some quadric hypersurface. Then dimΓ ≤ 14 + 3d.

Proof. Since dim |OP4(2)| = 14 and singular quadrics occur in codimension
1, it is sufficient to prove that for every smooth (resp., integral but singular)
quadric Q the set Γ′ of all C ∈Md contained in Q has dimension ≤ 3d (resp.,
≤ 3d+ 1).

First assume that either Q is smooth or C does not intersect the singular
locus V of Q. In this case the normal sheaf NC,Q is a rank 2 spanned vector
bundle on C, hence h1(NC,Q) = 0. Since det(NC,Q) has degree 3d− 2 and
NC has rank 2, Riemann-Roch gives h0(NC,Q) = 3d, proving the lemma in
this case.

Now assume C ∩ V �= ∅ and set x := deg(C ∩ V ). Since C is smooth,
x = 1 if dim(V ) = 0. Let τQ denote the tangent sheaf of Q. The vector
space H0(τQ) is the tangent space at the identity map of the automorphism
group Aut(Q). Since Q \ V is homogeneous, τQ|(Q \ V ) is a spanned vector
bundle. Since C is not a line and dimV ≤ 1, the set V ∩ C is finite. Dualizing
the natural map from the conormal sheaf of C in Q to Ω1

Q we get a map
u : τQ|C → NC,Q which is surjective outside the finite set C \ C ∩ V . Since
C is smooth and rational and τQ is spanned at each point of Q \ V , we get
h1(NC,Q) = 0. Since we need to prove that dimΓ′ ≤ 3d+ 1, it is sufficient
to check this inequality when C is a general element of Γ′. In particular we
may assume that deg(C ′ ∩ V ) = x for a general C ′ ∈ Γ′ and use induction
on the integer x, the case x = 0 being true by the case C ∩ V = ∅ proved
before. Set Γ′′ := {C ′ ∈ Γ′ : deg(V ∩ C) = x}. It is sufficient to prove that
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dimΓ′′ ≤ 3d+ 1. Let v : Q̃→ Q be the blowing up of V , E := v−1(V ) the
exceptional divisor, and C̃ ⊂ Q̃ the strict transform of C. Since C is smooth,
v maps isomorphically C̃ onto C and the numerical class of C̃ with respect to
Pic(Q̃) only depends on dim(V ), d and x. Let Ψ be closure in Hilb(Q̃) of the
strict transforms of all C ′ ∈ Γ′′. It is sufficient to prove that dimΨ ≤ 3d+ 1.
Take a general D ∈ Ψ. Since Aut(Q̃) acts transitively of Q̃ \ E, the first
part of the proof gives h1(ND, ˜Q) = 0. Hence it is sufficient to prove that

deg(ND, ˜Q) ≤ 3d− 1, i.e. deg(τ
˜Q|D) ≤ 3d+ 1, i.e. deg(ω

˜Q|D) ≥ −3d− 1. The

group Pic(Q̃) is freely generated by E and the pull-back H of OQ(1). We
have D ·H = d and D · E = x. We have ω

˜Q
∼= O

˜Q(−3H + cE) with c = −1
if dim(V ) = 0 (see for instance [12], Example 8.5 (2)) and c = 0 if dim(V ) =
1 (see for instance [12], Example 8.5 (3)). Hence deg(ω

˜Q|D) = −3d+ cx ≥
−3d− 1 and the proof is complete. �

If instead h1(IC(5)) ≥ 6, then by (6) we have h1(IC(2)) ≥ 14, i.e.
h0(IC(2)) ≥ 4, contradicting Lemma 1.

3. Degenerate case

The degenerate case occurs in codimension 10 of M12. Indeed, the general
curve of degree d = 12 in P3 has maximal rank ([1]), in particular it does
not sit on any quintic. It follows that our codimension is dim(Md)− (4d−
1 + 4) = 61− 51 = 10. Hence we may assume h1(IC(5)) ≥ 11.

We consider degenerate curves C ∈M12 with h1(IC(5)) ≥ 11 contained
in a hyperplane M and in a general quintic W with W ′ :=M ∩W .

Lemma 15. Let W ⊂ P4 be a general quintic hypersurface. Then W con-
tains finitely many integral curves T of degree 4 which are the complete
intersection of a hyperplane and 2 quadric hypersurfaces and all of them are
smooth.

Proof. Since W contains no singular rational curves ([6]), it is sufficient
to consider the smooth ones, i.e. the degree 4 elliptic curves of P4. Let
Γ′ be the set of all degree 4 elliptic curves of P4. Fix T ∈ Γ′. Since NT

∼=
OT (2)

⊕2 ⊕OT (1), we have h
1(NT ) = 0, hence Γ′ is smooth and of dimension

χ(NT ) = 16. Since T is a complete intersection, we have h1(IT (5)) = 0 and
h0(IT (5)) =

(
9
4

)− 20. Hence a dimension count gives the lemma. �

Lemma 16. W ′ contains only finitely many non-degenerate curves of
degree 5 and 6.
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Proof. Fix a degree t ∈ {5, 6} integral and non-degenerate curveD ⊂W ′ and
set q := pa(D). By [10] we have h

1(M, ID,M (5)) = 0, hence h0(P4, ID(5)) =
126− 5t− 1 + q.

First assume t = 5. By the genus bound for space curves we have q ≤ 2.
Since q ≤ 2, we have h1(OD(1)) = 0 and in particular h1(OD(5)) = 0, i.e.
h0(OD(5)) = 5t+ 1− q. Since q ≤ 2, all the irreducible components of the
Hilbert scheme of M containing D have dimension 20. Since P4 has ∞4

hyperplanes, it is sufficient to use that 4t+ 4 ≤ 5t+ 1− q.
Now assume t = 6. By the genus bound for space curves ([11, Theorems

3.7 and 3.13]), q ≤ 3 and q = 3 if and only if D is contained in a quadric
surface Q. Assume q = 3. In this case D is the complete intersection of Q
and a cubic surface ([11, Corollary 3.14]) and so D is a locally complete
intersection, ωD

∼= OD(1) and ND,M
∼= OD(2)⊕OD(3). Since h1(ND) = 0

the Hilbert scheme of M at D is smooth and of dimension 4t. We conclude
as in the case t = 5. The case q ≤ 2 is done as in the case t = 5. �

A theorem of Zak (see for instance [22]) states that the Gauss map of any
smooth projective variety is finite, hence W ′ has only finitely many singular
points, all of them being hypersurface singularities. By [15, p. 733] W ′ has
only rational double points of type Ai, i ≤ 4, and D4 as singularities.

We may improve the lower bound h1(IC(5)) ≥ 11 if we restrict the set of
hyperplanes or rather if we restrict the pairs (W,M) ∈ |OP4(5)| × |OP4(1)|.

Remark 2. IfM is tangent toW , i.e. ifW ′ is singular, then we may assume
h1(IC(5)) ≥ 12. Since the Gauss map is birational, if W ′ has at least two
singular points, then we may assume h1(IC(5)) ≥ 13.

Remark 3. For any line L ⊂ P4 we have h0(IL(1)) = 3. A general W con-
tains only finitely many lines ([6]). Hence if W ′ contains a line, then we may
assume h1(IC(5)) ≥ 13. Since any two lines of W are disjoint ([6]), any two
lines of W span a hyperplane. Hence if W ′ contains two different lines, then
we may assume h1(IC(5)) ≥ 15. Fix a line L ⊂W . For any p ∈ L, the hyper-
plane TpW is the only hyperplane singular at p. Since dim(L) = 1, we get
that ifW ′ is singular at one point of L, then we may assume h1(IC(5)) ≥ 14.

Remark 4. For any smooth conic D ⊂ P4 we have h0(ID(1)) = 2. A gen-
eral W contains only finitely many conics ([6]). Hence if W ′ contains a
smooth conic, then we may assume h1(IC(5)) ≥ 14.

Remark 5. For any integer x with 3 ≤ x ≤ 11, W contains only finitely
many smooth rational curve of degree x, none of them contained in a plane.
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Hence if W ′ contains a smooth rational curve of degree x, then we may
assume h1(IC(5)) ≥ 15. The same is true if W ′ contains a line and a conic
or 2 conics.

For any hyperplane U letM12(U) denote the set of all C ∈M12 contained
in U . The locus M12(U) is smooth and irreducible and dim(M12(U)) = 48.

Remark 6. Fix an integer e > 0 and assume the existence of a line L ⊂W ′

such that deg(L ∩ C) = e. Let J (e) be the set of all quadruples (W,H,L,C)
with W ∈ W, H a hyperplane, L ⊂W ∩ U a line, C ∈M12(U) and deg(L ∩
C) = e. Fix any (W,H,L,C) ∈ J (e). We have J (e) = ∅ if e ≥ 12. Now
assume e ≤ 11. Fix a line L ⊂M and a degree e zero-dimensional scheme
Z ⊂ U with deg(Z) = e and take any C ∈M12(U) such that Z ⊂ C. As in
Lemma 6 we see that h1(NC,M (−Z)) = 0, hence the set of all C ∈M12(U)
with Z ⊂ C has dimension 48− 2e. Varying Z in L we see that the set of all
C ∈M12(U) the set of all C ∈M12(U) such that deg(C ∩ L) = e has dimen-
sion ≤ 48− e. Since each W ∈ W contains only finitely many lines, to show
that for all (W,M,L,C) ∈ J (e) we have C � W it is sufficient to exclude
the ones with h1(IC(5)) ≥ 13 + e.

Since the Gauss map of the smooth projective variety W is finite, W ′

has only finitely many singular points. Since W ′ is locally a complete inter-
section,W ′ is normal. By [6]W has only finitely many lines and only finitely
many conics and no singular rational curve of degree ≤ 11. By Lemma 15
W has only finitely many smooth elliptic curves of degree 4.

Remark 7. Let W ⊂ P4 be a general quintic. Let Di, i ≥ 1, be the set of
all irreducible plane curves of degree i contained in W . Since W contains
no plane, we have Di = ∅ for all i ≥ 6, and the set D5 is formed by the
irreducible degree 5 curves of the form W ∩N with N ⊂ P4 a plane. Hence
D5 is irreducible and of dimension 8. By [6], D1 ∪ D2 is finite and any two
elements of it are disjoint. Fix D ∈ D3 and let N ⊂ P4 be the plane spanned
by D. The plane curve W ∩N is the union of some D ∈ D3 together with
a smooth conic, a reducible conic, or a double line. Since D2 is finite, the
first case may occur only for finitely many planes and these are exactly the
planes N such thatW ∩N = T2 ∪ T3 with T2 ∈ D2 and T3 ∈ D3. The second
case does not occur, because the lines of W are disjoint. Now assume that
W ∩N = D ∪ 2L with L a line. By Zak’s tangency theorem the restriction
to L of the Gauss map ofW is finite. Therefore the third case occurs only for
at most one plane N ⊃ L Now take T ∈ D4 and let N be the plane spanned
by T . We have N ∩W = T ∪R with R ∈ D1, hence all elements of D4 are
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obtained in the following way. Since the set of all planes of P4 containing a
line is a 2-dimensional projective space, each irreducible component of D4

has dimension 2. Fix any L ∈ D1 and take the intersection with W of the
element of the net of all planes of P4 containing L. For a fixed hyperplane
M ⊂ L the set of all planes containing L and contained in M has dimension
1.

Let α be the minimal degree of a surface of M containing C. Since C is
irreducible, every degree α surface containing C is irreducible.

Lemma 17. We have α > 3.

Proof. Since C spans M , we have α > 1. Assume α = 2 and take Q ∈
|IC,M (2)|. SinceW ′ is irreducible,W ′ ∩Q is a degree 10 curve containing C,
a contradiction. Now assume α = 3. Since deg(C) > 9, C is contained in a
unique cubic surface S. Let J ⊂ S ∩W ′ be the locally Cohen-Macaulay curve
linked to C by the complete intersection S ∩W ′. We have deg(J) = 3 and
pa(J) = −18 ([19, Proposition 3.1]). Since deg(J) < −pa(J), J has a multi-
ple component. Since deg(J) = 3, the multiple component is a line, L. Since
|IC,M (5)| contains all quintic surfaces S ∪Q with Q ∈ |OM (2)| and W ′ is
irreducible, we have h0(M, IC,M (5)) ≥ 11, i.e. h1(M, IC,M (5)) ≥ 16. Assume
for the moment the non-existence of a line R ⊂M with deg(R ∩ C) ≥ 7. By
Lemmas 2 and 3 we get h1(M, IC,M (4)) ≥ 19. Fix a general plane N ⊂M .
We have an exact sequence

(7) 0→ IC,M (t− 1)→ IC,M (t)→ IC∩N,N (t)→ 0

Since N is general, the plane cubic C ∩N is irreducible and C ∩N is formed
by 12 points of the smooth locus of C ∩N . Hence h1(N, IC∩N,N (4)) ≤ 1
with equality if and only if C ∩N is the complete intersection of S ∩N
with a plane quartic. Since h0(M, IC,M (2)) = 0 and (by the genus formula)
C is not a complete intersection of two surfaces, [21, Theorem 6] gives
h1(N, IC∩N,N (4)) = 0. The case t = 4 of (7) gives h1(M, IC,M (3)) ≥ 19,
i.e. h0(M, IC,M (3)) ≥ 2, a contradiction. Now assume the existence of a
line R ⊂M such that e := deg(R ∩ C) ≥ 7. There are at most finitely
many such R, because they cannot be all the lines of a ruling of S. Take
a line L ⊂M disjoint from all R. Set V := H0(M, IL,M (1)). Take any
plane U ⊂M containing L. Since deg(K ∩ C) ≤ 6 for each line K ⊂ U , we
have h1(U, IC∩U,U (5)) = 0. Hence the bilinear mapH1(M, IC,M (5))

∨ × V →
H1(IC,M (4))

∨ is non-degenerate. Since dim(V ) = 2, the bilinear lemma
gives h1(M, IC,M (4)) ≥ h1(M, IC,M (5)) + 2− 1. Since e > 5, Bezout gives
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R ⊂W ′. By Remark 6 we may assume h1(M, IC,M (5)) ≥ 20. Since we just
proved that h1(N, IC∩N,N (4)) = 0, we get h1(M, IC,M (3)) ≥ 21, hence the
contradiction h0(M, IC,M (3)) ≥ 3. �

Lemma 18. W ′ contains no C ∈M12(M) such that h0(M, IC,M (4)) ≥ 3
and no C ∈M12(M) with a line L ⊂M with deg(L ∩ C) ≥ 7.

Proof. The statement is made of two parts.
(a) Take general S1, S2 ∈ |IC,M (4)| and take a general (S1, S2) ∈

|IC,M (4)|2. Since α > 3, Si is irreducible. The complete intersection S1 ∩ S2

links C to a degree 4 curve J with pa(J) = −16 ([19, Proposition 3.1]), hence
J has at least one multiple component, say B with multiplicity c ≥ 2. Since
h0(M, IC,M (4)) ≥ 3, J has also a movable component A. Hence B is a line
and either A is a line or it is a smooth conic.

First assume that A is a smooth conic, c = 2, and J has no other
component. We have pa(C ∪B) = deg(C ∩B)− 1 ≤ 10 and pa(A ∪B) =
deg(A ∩B)− 1 ≥ −1. Since A ∪B is linked to C ∪A by the complete inter-
section S1 ∩ S2, we have pa(A ∪B) = pa(C ∪B)− 20 ≤ −10, a contradic-
tion.

Now assume deg(A) = 1. Moving S2 we get that S1 is ruled by lines.
Since deg(S1) > 2, S1 has a unique ruling. This case cannot occur if
h0(M, IC,M (4)) ≥ 4, because the plane is the only surface with ∞2 lines.

First assume that c = 2. In this case J contains a line R /∈ {B,A}. We
have pa(C ∪B) ≤ 10, pa(B ∪A ∪R) ≥ −2, while [19, Proposition 3.1] gives
pa(B ∪A ∪R) = pa(C ∪B)− 20, a contradiction. Now assume c = 3. C, A
and B are the unique components of S1 ∩ S2. Si and S2 do not contain B
in their singular locus, because S1 ∩ S2 would contain B with multiplicity
2. Since the line B is not a line of the ruling of S1, S1 is not a cone, it
is rational and it is a linear projection from a minimal degree surface S ⊂
P5 (neither the Veronese surface not a cone). S is a Hirzebruch surface,
either F0

∼= P1 × P1 embedded by the complete linear system |OF0
(h+ 2f)|

or F2 embedded by the complete linear system |h+ 3f |. S1 is not a linear
projection of F0, because it has a line, B, not in the ruling and not in the
singular locus (i.e. the image of a conic of F0). Hence S1 is a linear projection
of F0. Any smooth rational curve C1 ⊂ F0 with C1 not a line is an element of
|h+ xf | for some x ≥ 3. We have deg(C1) = (h+ xf) · (h+ 3f) = x, hence
if C1 has C as its projection, then x = 12. B is the image of h. We have
deg(h ∩ C1) = 10 and so deg(C ∩B) ≥ 7. Hence to prove the lemma it is
sufficient to prove the second assertion.
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(b) Take C ∈M12(M) with a line L ⊂M with deg(L ∩ C) ≥ 7. By
part (a) to get a contradiction it is sufficient to prove that h0(M, IC,M (4)) ≥
4. Bezout gives R ⊂W ′. By Remark 6 we may assume h1(M, IC,M (5)) ≥
19. As in the proof of Lemma 17 we get h1(M, IC,M (4)) ≥ 20, i.e.
h0(M, IC,M (4)) ≥ 6. �

Remark 8. Take C ∈M12(M) without lines L with deg(L ∩ C) ≥ 7. By
Lemma 2 to prove that h0(M, IC,M (4)) ≥ 3 (hence to prove that C � W ′

by Lemma 18) it is sufficient to prove that h1(IC(5)) ≥ 14. By Remarks 3,
4 and 5 this is always the case if W ′ contains a smooth rational curve of
degree ≥ 2 or if it contains two lines. So from now on we assume that W ′

has no such curves, hence no smooth elliptic curve of degree 3 by Remark 7.
We also assume that W ′ has no smooth elliptic curve of degree 4 by Lemma
15.

Now we are going to apply all of the dimension-counting remarks and
lemmas above and to use liaison in order to show that degenerate rational
curves which are sufficiently generic (with respect to the properties described
in the remarks and lemmas) must in fact have h1(IC(5)) < 11, contradiction.
Our argument hinges on a careful case-by-case analysis involving the types
of divisors that that arise as components of certain residuals CT to C inside
of complete intersections of type (5, 5).

Since h1(IC(5)) ≥ 11 we have h0(M, IC(5)) ≥ 6. Hence
h0(W ′, IC,W ′(5)) ≥ 5. For any T ∈ |IC,M (5))| with T �=W ′ let CT ⊂ T ∩W ′

denote the curve linked to C by the complete intersection T ∩W ′.
We have deg(CT ) = 13, χ(OCT

) = −2 ([19, Proposition 3.1]) and
h1(ICT

(1)) = h1(IC(5)) ([16, Theorem 1.1 (a)], [20]). Since deg(CT ) =
13, χ(OCT

) = −2, CT is not a plane curve (i.e. h0(M, ICT
(1)) = 0),

hence h0(OCT
(1)) = h1(ICT

(1)) + 4 = h1(IC(5)) + 4 ≥ 15. Since deg(CT ) >
2pa(CT )− 2, we see that CT is not integral.

Varying T we find inside W ′ a positive dimensional family of effective
divisors CT , all of them linked to C and with the same arithmetic genus,
hence a flat family of effective divisors ofW ′. Therefore some of the effective
divisors whose sum gives CT moves in W ′.

Let D1, . . . , Dk be all all movable divisors of CT and let R1, . . . , Ru the
fixed divisors with multiplicities e1, . . . , eu. Hence for a general T we have
CT = D1 + · · ·+ dk + e1R1 + · · · euRu as effective Weil divisors of W ′.

Let m(Di), 1 ≤ i ≤ k, be the dimension of Di in the family |IC,W ′(5))|.
We have m(D1) + · · ·+m(Dk) ≥ 4. We also proved that m(D1) + · · ·+
m(Dk) ≥ h1(IC(5))− 7. We saw that if deg(Di) = 4, then W ′ contains a
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line L and m(Di) = 1, because the moving family is induced by the family
of planes of M containing L. We saw that if deg(Di) = 5, then Di is a plane
section of W ′, hence m(Di) = 3.

Let R1, . . . , Ru, u ≥ 0, be the fixed divisors of |IW ′,C(5)| and call bi the
multiplicity of Ri in CT (for a general T ).

(a) Assume the existence of i ∈ {1, . . . , k} such that Di is a plane
curve of degree 5. With no loss of generality we may assume i = 1. Let
N be the plane containing D1. Since m(D1) = 3, we have k ≥ 2 and
h0(W ′, IC∪D1,W ′(5)) ≥ 2. Since h0(W ′, IC∪D1,W ′(5)) = h0(W ′, IC,W ′(4)).
Since h1(M, IW ′,M (4)) = h1(OM (−1)) = 0, we get h0(M, IC(4)) ≥ 2. Since
α > 3 (Lemma 17), there are integral quartic surfaces Ti ∈ |IC,M (4)|, i =
1, 2, with T1 �= T2. The complete intersection T1 ∩ T2 links C to a locally
Cohen-Macaulay curve G such that deg(G) = 4. and pa(G) = −16 ([19,
Proposition 3.1]). Since pa(G) ≤ −4 and deg(G) = 4, G has at least one
multiple component, J , with multiplicity e ≥ 2. Our proof of the existence
of T1 and T2 shows that we may take T1, T2 such that D2 is a subcurve of
G. Since deg(D2) ≥ 4 = deg(G) and G has a multiple component, we get a
contradiction.

(b) Assume the existence of i ∈ {1, . . . , k} such thatDi is a plane curve
of degree 4. Just to fix the notation we assume i = 1. Let N be the plane
spanned by D1. We have W ′ ∩N = D1 ∪ L with L a line. Remark 3 gives
h0(IC(5)) ≥ 7, hence m(D1) + · · ·+m(Dk) ≥ 6. We saw that m(D1) = 1.
Since m(D2) + · · ·+m(Dk) ≥ 5, we have h0(W ′, IC∪D1,W ′(5)) ≥ 6. Since
deg(L ∩D1) = 4, we get h0(W ′, IC∪D1∪L(5)) ≥ 4. Hence we may find a mov-
able divisor E in |IC∪L∪D1

(5)|. We saw that deg(E) ≥ 4. As in step (a) we
get h0(M, IC,M (4)) ≥ 4, contradicting Lemma 18.

(c) From now on we assume that eachDi is non-degenerate. By Lemma
16 we may assume deg(Di) ≥ 7 for all i. By Remark 8 we cannot have
2 ≤ deg(Ri) ≤ 4 and we have deg(Ri) = 1 at most one index i.

Recall that 13 =
∑k

i=1 deg(Di) +
∑u

i=1 biRu and we proved that k + u >
1. Since deg(Di) ≥ 7 for all i, we have k = 1.

Assume that CT has no multiple component. We have
h0(OD1

(1)) + h0(OR1
(1)) + · · ·+ h0(ORu

(1)) ≥ 2 + h1(IC(5)). Since D1

moves, we have pa(D1) > 0 ([6]), hence h0(OD1
(1)) ≤ deg(D1). Since

h0(ORi
(1)) = deg(Ri) + 1 for at most one index i, we get a contradiction.

Hence CT has at least one multiple component, say R1. Since deg(D1) ≥
6, we get b1 deg(R1) ≤ 13− deg(D1) ≤ 7 and in particular deg(R1) ≤ 3.
Since W ′ has no curve of degree 2 or 3 (Remark 8), R1 is a line, hence
we may assume h1(IC(5)) ≥ 13. Set b := b1, R := R1 and e := deg(C ∩R).
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We have deg(D1) = 13− b. By Remarks 6 and 8 we may assume e = 0, i.e.
R ∩ C = ∅ and that R is contained in the smooth locus of W ′.

(d) Recall that h1(M, IC,M (5)) ≥ 13. By Lemma 18 we may assume
that L has no line T with deg(T ∩ C) ≥ 7. By Lemma 2 we have
h1(M, IC,M (4)) ≥ 16, i.e. h0(M, IC,M (4)) ≥ 2. Since α > 3 (Lemma 17),
each S ∈ |IC,M (4)| is irreducible. Let B denote the linear system on W ′

induced by |IC,M (4)| and fix a general S ∈ |IC,M (4)|. Write S ∩W ′ =
C + C ′ ∈ B. Since C ′ is linked to C by the complete intersection S ∩W ′,
we have deg(C ′) = 8 and pa(C

′) = −10 ([19, Proposition 3.1]). Hence C ′

has a multiple component. Since W ′ contains no curve of degree x ∈ {2, 3},
the multiple component is a line. SinceW ′ has a unique line, R, R is the mul-
tiple component. We saw that R ∩ C = ∅ and C ⊂Wreg. Since dim(B) > 0,
B has at least one movable component, A. By Lemma 16 A is a plane
curve of degree x ∈ {4, 5}. We have C ∪R ∪A ⊂ S. First assume x = 5.
Since A ∈ |OS(1)|, C ∪R is contained in an element of |OS(3)|. Since the
restriction map H0(M,OM (3))→ H0(S,OS(3)) we get α ≤ 3, contradict-
ing Lemma 17. Now assume x = 4. Since R is the only line of W ′ we get
A ∪R ∈ |OS(1)|. As above we get α ≤ 3, a contradiction.
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