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Calculating Colored Homflypt Invariants
with Image Processing and a New Form
of Gauss Code

XIN ZHOU

Abstract: We propose a new form of signed Gauss Code consist-
ing of a list of matrices, named as intrinsic matrices (IMAT). We
use IMAT to calculate colored homflypt invariants in three steps.
Firstly, given a link diagram, we obtain its IMAT by image pro-
cessing. Secondly, if the link is decorated by the idempotent basis,
we acquire an IMAT expression for the decorated link by using the
IMAT obtained in the first step. This expression is a linear com-
bination of a few IMATSs. Finally, we improve the skein template
algorithm and apply it to each IMAT in the expression got in the
second step, which leads to the colored homflypt invariant of the
given idempotent decorated link. The procedure is illustrated with
several examples. The first two steps are the main new ingredients
in the scheme and it is by using them that we are able to acquire the
IMAT expression for the decorated link and compute the colored
homflypt invariants for arbitrary link with more intuitive inputs.
Keywords: homflypt invariant; Gauss Code; intrinsic matrices
(IMAT); image processing; skein template algorithm; decorated
link.

1. introduction

The features of knots and links are useful in many fields, such as theoretical physics, fluid
mechanics and biology [3, 15, 22, 23]. A basic problem in the knot theory is to find out
whether two link diagrams represent two topological equivalent links or not, which can be
used to distinguish protein structure and periodic orbits.

The homflypt polynomial was discovered by Freyd-Yetter, Lickorish-Millet, Ocneanu,
Hoste and Przytychi-Traczyk and until now, it is still one of the most useful link invariants.
The colored homflypt invariant, which is more accurate when it is used to identify different
link diagrams, can be obtained through the quantum group invariants of U, (sln) [19, 21].
The colored homflypt invariant can also be called decorated link invariant since it has an
equivalent definition through the satellite invariants in homflypt skein theory [1, 6, 17].
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Let £ be a link with L components labeled by the corresponding partitions pt, pi2, ..., u*,
and from the view of homflypt skein theory, the colored homflypt invariant of £ can be
identified through the homflypt polynomial of a decorated link derived from £ whose

decoration is a list of the idempotent basis elements Q,,1,...,Q, . Let fi = (ut,... ol e
PL | and the colored homflypt invariant of the link £ is defined by
(1) Wi(L;s,0) =s~ SE o wKa)me v SE o w(ka) e (L * ®§:1Q#a>’

where w(Kq) is the writhe number of the a-th component K, of £ and the bracket
(L * ®L_, Que) denotes the framing dependent homflypt polynomial of the decorated link
Lx®5_1Que [14]. An idempotent basis element Qy is in fact an element in the homflypt
skein of the annulus C and an explicitly skein-based version of Q)5 was developed by A. K.
Aiston [1, 17]. We will introduce more details about the homflypt skein theory, decorated
link and colored homflypt invariant in section 2.

Lots of efforts have been made to calculate the colored homflypt polynomials [2, 11,
13, 24]. For instance, in [13] Lin X S and Zheng H. gave the formula for the full colored
homflypt invariant for the torus link 773" and in [11] Jie Gu and Hans Jockers introduced
a way to calculate two-bridge hyperbolic knots.

However, in calculating the colored homflypt invariant, each study above only focused
on a certain kind of knots or links. Furthermore, the inputs of the algorithm in previous
studies were not quite intuitive. We aim to find a way to calculate the colored homflypt
invariant with more intuitive inputs, specifically the image of the link diagram, the ori-
entation and the partition that represents the decoration. Theoretically, our algorithm is
universal for all link diagrams with easily accessible inputs, which make massive computing
possible.

By analyzing equation 1, we can see that in order to calculate the invariant Wz (L; s, v),
we need to compute (£ + ®%_;Q,a), which can be done in two steps: calculating (£) for
any given £ and getting £ x ®%_,Q e from L.

Given an image of the link diagram for £, we would like to acquire (£). First, we
obtain a new form of the signed Gauss Code of the link by image processing in section 3.
This new form of the Gauss Code is a list of matrices named as intrinsic matrices (IMAT),
denoted by M. Then, in section 5, following [5, 7, 12], we make use of the skein template
algorithm (STA) and M to calculate the framing dependence homflypt invariant (£) and
have (L) = (M,). We also use IMAT to recognize RI and RII moves to improve STA in
this section. Thus, with IMAT we are able to calculate the homflypt polynomials.

In addition, in section 4, we introduce a way to get Mﬁ*®(Ly=1QHa from M based on
two facts. The first is that the idempotent basis Qo can be represented by the single row
idempotent h,, [1, 10, 17]. The second is that row idempotent h,, can be represented by
the Turaev’s basis Ay [16]. Therefore, we can use the Turaev’s basis { Ay} to represent the
idempotent basis, which means @, = ZAH#I CrAy, where each C) lies in the coefficient
ring T' = Z[s*'] with the elements s* — s~* admitted as denominators for & > 1. Thus, we
have

(2) M£*®{;:1Q“a = Z (H Cha) ML*®§:1AW»

Kl o=t

where X b |fi| refers to A% |u®| for all @ =1,...,L and |u®| refers to the weight of
the partition p® [8]. Hence, it is sufficient to have M £+@L_ Aya if we intend to get
M£*®L71Q“Q. To calculate My, gL 4., we first propose a method called TVO (travel

order method) to name the elements in the Turaev decorated link. Then we obtain the
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corresponding positive-negative information and up-down information for all the cross
points in £ * ®L_; Axe. Finally, we get the IMAT MC*®§71AW for the Turaev decorated
link by combing the information together.

In conclusion, given an image of the link diagram for £, its orientation and a decoration
represented by p', ..., u”, we can first acquire the IMAT for £, then the IMAT for £ %
®L_;Axe, and finally a I-linear combination of IMATS for £ * ®£=1Qua. We use skein
template algorithm to compute each IMAT M£*®£:1AW in equation 2. Setting Pg =
(MrigL_ aya ) We have

L
I -
(3) (Lx@hoiQua) = 3 (T Cao) PE.
X| | o=t
Here P is an element in the ring A = Z[s!, v™!] with the elements s* — s7* admitted as

denominators, where k is an integer and k > 1. If we plug equation 3 into equation 1, we
obtain the colored homflypt invariant W;(L;s,v) of the link £. All the above processes
can be done automatically by computer.

Acknowledgments The author is greatly indebted to Professor Kefeng Liu and Mr.
Shengmao Zhu for their numerous suggestions which helped to improve the paper. The
author also thanks the Center of Mathematical Sciences at Zhejiang University for its
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2. preliminaries
2.1. Calculating the homflypt polynomial by skein relation

Define the coefficient ring A = Z[s**, v*!] with the elements s* — s~* admitted as denom-
inators, where k is an integer and k > 1. The homflypt polynomial, which is an element in
A, is a two-variable isotopic invariant of the oriented links. Given an oriented link diagram
D/, we can use Reidemeister move and skein relation shown in figure 1 to simplify the link
diagram and obtain a scalar (D) € A, which is the framed homflypt invariant of the link
L. For simplicity, (£) denotes (D,). In particular, i denotes the simplest unknot with no

XX

Figure 1: The skein relation.

v—v !
s—s—1

self cross point and its framed homflypt invariant is () = shown in figure 2.
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— v—p !
s—s—1

Figure 2: Removal of an unknot.

Definition 2.1. The classical (framing-independence) homflypt polynomial is defined
by

v w(E) (L)
)y -’

where w(L) reffers to the writhe number of the link. Particularly, Py(s,v) = 1.

(4) Pr(s,v) =

2.2. Skein C

The homflypt skein of the annulus C = S(S* ® I) is the A-linear combination of the ori-
ented tangles in S* ® I modulo local skein relation. The product of the commutative
algebra C is induced by placing one annulus outside another.

Let T € H,, be a n-tangle and T be its closure in the annulus illustrated in figure 3
and here H, refers to the Hecke algebra [4, 18]. The closure map is a A-linear map and
C, denotes its image. Thus, each diagram in the annulus presents an element in some
Cn. The union Cy = J,,»( Cm is a submodule of C. C; is isomorphic to the algebra of the

~>
Il

Figure 3: The closure map.

symmetric functions [16].

2.2.1. Turaev’s basis for C;y. The element A, € C, is the closure of braid
On—1---0201 € Hy,

shown in figure 4. A partition A F n with length [ is denoted by A = (A1,..., \;) [8]. Given
such a partition, we define the monomial Ay by Ay = Ay, --- Ay,. Then the monomials
{A\}x-n constitute a basis for C, and the monomials {Ax}rrn,n>1 form the Turaev’s
geometric basis for C4 [20].



Calculating Colored Homflypt Invariants 507

On—1-'°"0201 =

A

—_—
n strings

Figure 4: Braid ,-1---0201.

2.2.2. Idempotent basis for C;. H. R. Morton and A. K. Aiston established the
skein-based version of the idempotent basis Qx with the single row idempotent elements
{hm} for the homflypt skein of the annulus C in [1, 10].

Definition 2.2. The idempotent basis @ for Cy is represented as follows

hx, hxi41 o ha+i—1
hxy—1 hx, co hagqie
(5) Q/\ = det .
ha—i41 ha—t42 - hax,

Here {hi}rez are the single row idempotent elements. If £ = 0, then hi=1 and if k < 0,
then hy = 0.

The idempotent basis{@x} is quite abstract. In proposition 4.2, we will prove that
{Qx} can be represented by Turaev’s geometric basis which is more intuitive.

2.3. Decorated link and colored homflypt invariants

The decorated link is a link with a decoration of certain structure [24].
Definition 2.3. Given a framed link £ with L components and diagrams D1, ..., Dy, in
the skein model of annulus in C, we define the decorated link as

L * ®§:1 D..

This decorated link is derived from £ by replacing the annulus of the components in £
with the corresponding annulus of the diagrams {Dq}a=1...,1 so that the orientation of
the cores matches.

Example 2.4. Figure 5 shows a decorated hopf link.
Definition 2.5. The framed colored homflypt invariant H(£; ®%_,D,) of £ is defined

as the (framing-dependence) homflypt polynomial of the decorated link £ x ®%_; Dq, i.e.
H(L; ®E_1Ds) = (Lx®5-1Da).
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hopf link @ D, = @ D; =

decorated link

Figure 5: The hopf link decorated by D; and Ds.

Definition 2.6. The (framing-independence) colored homflypt invariant of £ is defined
as follows:

L L o
(6) Wi, o (L) =5~ YamrwKa)rra =351 w(Ka)lA |<[,* ®§:1Q)\a>7

,,,,,

where Qo is the idempotent basis for C+ defined in definition 2.2.

3. Extraction of the intrinsic matrices

In this section, we extract the Gauss Code for the oriented link diagram from its image.
We will use some basic tricks in image processing and get a list of matrices, which is in
fact a new form of signed Gauss Code named as intrinsic matrices, abbreviated to IMAT.
Each matrix in the IMAT represents a component of the link.

Given an image of a link diagram, we intend to acquire the relative position, up-
down information and the positive-negative information for all the cross points. In order
to do this, it is sufficient to get the parameterized curves. Then, by dealing with the
parameterized curves, we can extract the information we need. We fulfill our goal in three
steps: preprocessing, obtaining the parameterized curve and extraction of information.

3.1. Preprocessing of the image

Firstly, we are on purpose to get two standard images: a 3D-binary image and a 2D-
skeleton image. We preprocess the image and use Otsu’s method [25] to obtain a binary
image called the 3D-binary image. Then we apply some basic morphological methods
[26, 27] to the 3D-binary image. To be specific, we use dilation to discard the up-down
information and then use shrink to obtain the 2D-skeleton image. The results in a local
area are shown in figure 6.
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(a) input image (b)  3D-binary (¢) 2D-skeleton
image image

Figure 6: The results in a local area of the input image, 3D-binary image and the 2D-
skeleton image.

3.2. Obtaining the parameterized curve

Secondly, we take the orientation into consideration and use 2D-skeleton image to acquire
the parameterized curve for each component. Here we employ a natural coordinate system
shown in figure 7. In the following description, we call the pixels belonging to the link
useful pixels.

Y

Figure 7: The natural coordinate for the image of a link diagram.

Since the cross points are of great importance in our later calculation, we need to
obtain the coordinates of all the cross points before getting parameterized curve. According
to the fact shown in figure 8, we introduce a time domain mask with step hi, similar to
the one in figure 9, to identify the cross points.

We attach two initial points which indicate the orientation to each component. Given
the coordinates of all the cross points and the initial points, we can successively get all
the linear interpolation points with step hs. These interpolation points include all the
cross points and they form the parameterized curve for the image. The main idea of this
procedure is demonstrated in figure 10. An experimental result of the hopf link is shown in
figure 11 and the coordinate values for all its interpolation points are shown in figure 12,
where ho = 60.

3.3. Extraction of the intrinsic matrices

Finally, we extract the up-down information, positive-negative information for the cross
points and store the information in a list of matrices named intrinsic matrices. Using the
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Figure 8: Using the number of local branches of useful pixels to find the cross points.
Each cross point has four branches around it while any other useful pixel only has two.
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Figure 9: The mask is used to extract useful pixels on the edge of the neighborhood of
the center pixel. Here the step of the neighborhood is hy = 3.
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f———— .
/- Z&dge-polnt 2

interpolation point n ~

derivative of edge point 2

interpolation point n — 1 —_| the dekivative at

integpolgtion point n derivafive of edge point 1
/ /\edge point 1
T

Figure 10: Since the derivative of the edge point 2 has stronger consistency with the
derivative at interpolation point n than that of the edge point 1, we choose edge point 2
as the n + 1 interpolation point.

parameterized curve, we can acquire the orientation of the link in each cross point. We use
the orientation and the 3D-binary image to get the up-dwon information. And then we
use the orientation and up-down information to obtain the positive-negative information.
The key point is shown in figure 13. Since the coordinates of these cross points are not
important in topological sense, we use names rather than coordinates to represent the
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Figure 11: The interpolation points of the hopf link when hy = 60. The red points are
the cross points while the pink and the green points are the given initial points.

y coordinate | x coordinate | cross mark - -
y coordinate | x coordinate | cross mark

128 161 0

103 519 0
125 166 0

101 515 0
95 226 0

91 455 0
93 286 0

106 395 0
118 346 0

129 361 1
129 361 1

189 319 0
189 402 0

249 309 0
249 412 0

309 324 0
309 396 0

355 362 1
355 362 1

389 422 0
388 302 0

392 482 0
393 242 0

369 542 0
371 182 0

309 596 0
311 126 0

249 611 0
251 110 0

189 602 0
191 119 0

129 560 0
131 159 0 103 519 0
128 161 0

Figure 12: The interpolation points of the hopf link when ho = 60.

cross points. Each name is a positive integer. In the end, we gain a new form of Gauss
Code which is a list of matrices named intrinsic matrices.

Definition 3.1 (Intrinsic matrices). A list of ordered matrices
M={Mi, Ma,... . Mr}

is called intrinsic matrices if each matrix in it represents the Gauss Code for the corre-
sponding component in a link diagram, i.e. if 1 <4 < L, then each matrix M; = M(K;)
satisfies:

e The first column contains integers that represent the names of the cross points
ordered by the orientation on the component, denoted by «.
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larger step hs,
larger neighbour,
4 edge points

\ ‘ the upper /
string
orientation
\ Tup /
smaller step hg, orientation
smaller neighbour, ‘\s of string 2
2 edge points / \ To

(a) Changing the step of the mask and comparing the orientation to get
the up-down information.

string 1 string 2

orientation
of string 1

1

) )
_ Bown _ Y%own

positive cross negative cross

(b) Comparing the shift angle with 7 to get the postive-negative infor-
mation.

Figure 13: Acquisition of the up-down and the positive-negative information.

e The second column contains the corresponding up-down information for the cross
points, +1 for the upper ones and —1 for the nether ones, denoted by ud.

e The third column contains the corresponding positive-negative information for the
cross points, +1 for positive ones and —1 for negative ones, denoted by pn.

We abbreviate the intrinsic matrices to IMAT. In an IMAT, a cross point is in position
(i,7) if the j-th row of the i-th matrix represents the cross point.

A cross point in a link diagram appears twice in different positions in its IMAT and
we call the two positions pair positions. The cross points in pair positions are called pair
cross points and they share the same name, the same positive-negative information and
different up-down information. Therefore, for a cross point (o, uda, pnea) in position (,7),
we can find its pair cross point in the pair position (cn;, cn,) by searching through the first
columns in IMAT for «. It follows that the total number of the rows in IMAT is an even
number. In fact the number of rows in each matrix of IMAT is an even number, which is
a direct conclusion of the in-out information introduced in section 3.4.
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Proposition 3.2. Let M be the IMAT of a link diagram L. The writhe number of L is
equal to

L n,;
w(L) = %Z 3 Mi(ri,3).

i=1r;=1

Here n; denotes the row number of the M; and L has L components.

The proof is evident by definition 3.1.

In the intrinsic matrices, only one column represents the name of the cross point. But
in some cases, we need to use more than one column to distinguish the cross points. For
instance, in section 4, we will use 3 columns to identify the cross points. We call this kind
of intrinsic matrices the pseudo intrinsic matrices, defined as follows.

Definition 3.3 (Pseudo IMAT). A list of ordered matrices M= Ml, Mz, cee My is
called pseudo intrinsic matrices if it is a generalized IMAT in which we use two or more
integers to name each cross point. We abbreviate Pseudo IMAT to P-IMAT.

Obviously, P-IMAT can easily be transformed to IMAT by renaming the cross points.

Example 3.4. The IMAT for the hopf link:

1 -1 +1 1 +1 +1
Ml:(z +1 41 )’MQ:( 2 -1 +1 )
The integers in the first column deposit the names of the cross points while those in
the second column store the up-down information and those in the third column con-
tain the positive-negative information. The cross point in position (1,2) has Gauss Code
(2,+1,+41), which means the cross point is a positive upper cross point named 2. Its pair
cross point also named 2 is in position (2,2). The Gauss Code for this pair cross point is
(2,—1,+1), indicating it is a positive nether cross point. The writhe number of the link is

w= $(Mi(1,3) + M1(2,3) + M2(1,3) + M2(2,3)) = 2.

Different ways of choosing initial points result in different IMATSs, which represent
the same link diagram owing to the fact that each component of a link is a closed curve.
This phenomenon is called the cyclic structure of IMAT illustrated in equation 7. We will
take the cyclic structure into consideration in the following description.

[e31 udy pny o uds pna
e % uds pna :
~ . ~
: On;  Udp, PN,
T On;  Udp,  Phin, ay udy  pny
Qn,;—1 Udni—l Pnn,;—1 Qn,; Udni Pl
Otn; U, PN, (e %1 udy pny
~ ~
Qn,;—2 Udni72 Phin;—2 An;—1 U/dnifl Phin,;—1

Example 3.5. We can get two IMATSs representing the same trefoil diagram shown in
figure 14. One is obtained with initial point named 10 and the other is obtained with
initial point 20.
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the initial point named 10

cross 1 cross 3

the initial point nanted 20

cross 2

Figure 14: Different initial points for the trefoil knot.

1 -1 +1 2 +1 +1
2 +1 +1 3 -1 +1

3 -1 11 P IS RS R |
M=t o g |~M=| 4
2 —1 +1 3 41 +1

3 41 +1 1 -1 +1

The IMAT is in fact a new format of signed Gauss Code. The matrix format makes
the IMAT more convenient and practical in calculation. We can get lots of interesting
properties for the link diagram by using IMAT.

3.4. Getting the in-out information by IMAT

The definition for the in-out information of a component is important since it is the basis
for TVO (travel order method) proposed in section 4, which will be used to get the IMAT
for decorated links. We introduce the left-right information of a component before defining
the in-out information.

A cross point is an intersection of two strings. Choosing one of the two strings and
following its direction, we can see that when it encounters the other string, it goes through
the second string either from its right to left or from left to right. We can get this infor-
mation by IMAT. There are four cases shown in figure 15, which lead to the following
proposition.

Proposition 3.6. If string i1 goes through string is:

o from left to right if and only if uda,, X pna,, = +1 or uda,, X pna,, = —1.
e from right to left if and only if uda,, X pna,, = —1 or uda,, X pna,, = +1.

Each component of an oriented link is a closed curve. If it has no self intersection,
we can define both its inside and outside by common sense illustrated in figure 16. For a
clockwise component, its inside equals to its right side and its outside equals to the left
side while for an anti-clockwise component, its inside is equal to the left and its outside is
equal to the right. The definitions above for outside and inside do not work for components
with self intersections. However, as is shown in figure 17, we can decompose this kind of
components into several sub closed curves with no self intersections. For each sub closed
curve of such kind, the inside and outside are defined as above. Therefore, the in-out of a
component is well defined in definition 3.7.
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left of the \ right of the left of the /right of the

thinner string thinner string thinner string thinner string
(+1,+1) (=1,+1) (=1, -1) (+1,-1)
(a) From left to right. Blue: pn x ud = +1, black: pn x ud =
—1.
left of the ’\ right of the left of the /right of the
thinner string thinner string thinner string thinner string
(+1,+1) (=1,+1) (=1, -1) (+1,-1)
(b) From right to left. Blue: pn x ud = —1, black: pn x ud =
+1.

Figure 15: The blue string goes through the black string from one side to another. Here
(£1,£1) denote the up-down information and positive-negative information.

outside outside

an anti-clockwise
closed curve

a clockwise

inside inside
closed curve

Figure 16: Each component of a link without self intersection is a closed curve with
clockwise/anti-clockwise orientation. The inside and outside is well defined.

Definition 3.7 (In-out of the component). Each component of an oriented link can
be decomposed into several closed curves by its own intersections. Each closed curve has
either clockwise or anticlockwise orientation. The in-out of the component is defined as
follows.

e For clockwise part, the right side is the inside and the left side is the outside.
e For the anti-clockwise part, the left side is the inside and the right side is the
outside.

If a string encounters a closed curve, the string goes through the closed curve either
from the outside to the inside or from its inside to the outside. There are eight situations
shown in figure 18. Consequently, we have lemma 3.8.

Lemma 3.8. Given an oriented link diagram, we decompose all the components into sub
closed curves with no intersections.
String i goes from the outside to the inside of closed curve j if and only if:
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sub closed curve 1
clockwise

sub closed curve 3
clockwise

|
/ N

sub closed curve 1 sub closed curve 2 sub closed curve 3
anti-clockwise anti-clockwise clockwise

sub closed curve 2
anti-clockwise

sub closed curve 4
clockwise

Figure 17: A component with self intersections can be decomposed into several sub
closed curves.

(+1,+1)\ (*11*1)\ (+1771)\ (*1,+1)y\
(1,+1>Q (+1,-1) (-1.-1) (+1,+1)
<+1‘—1>\ (=141 (+1,+1>\ (-1 -1

1)@ (+1. +1) (—1.+1) (+1, —1)

Figure 18: Eight situations when a string encountering a component. Here (41, +1)
denote the up-down and positive-negative information for the cross point.

(+1,

o [f the closed curve is clockwise, then ud; x pn; = +1 and ud; x pn; = —1.
o [f the closed curve is anti-clockwise, then ud; X pn; = —1 and ud; X pn; = +1.

String i goes from the inside to the outside of closed curve j if and only if:

o [f the closed curve is clockwise, then ud; X pn; = —1 and ud; X pnj; = +1.
e [f the closed curve is anti-clockwise, then ud; x pn; = +1 and ud; x pn; = —1.

4. Intrinsic matrices expression of the decorated link

The framing-independent colored homflypt invariant is defined in definition 2.6 using
the idempotent basis {@x}. To compute this invariant, we need to calculate the framed
homflypt invariant for idempotent decorated link (£ ®%_1Qxa). In this section, our
purpose is to get an IMAT expression for £x ®%_;Qxa. In section 5, we compute (L)
with IMAT by means of skein template algorithm.
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We achieve our goal in two steps. Firstly, following [16], we use a linear combi-
nation of the Turaev’s basis to present the idempotent basis, i.e. Q, = Z)\HM CrAjx.
It follows that an idempotent decorated link is a linear combination of Turaev deco-
rated link, i.e. £+ ®%5_1Q o0 = ZXHM (Hizl Cha) Lx®@E_; Aya. Secondly, we present a
method to obtain IMAT M Lx®E_, Aya for each Turaev decorated link in the expression
got in the first step and we acquire what we want by using equation /\/lﬁ*@g:lQW =

ZXH/?\ (H§:1 Cxe) ML*@(L,:lAN :

4.1. Intuitive expression for idempotent decorated link

In section 2.2, we have introduced two kinds of basis for skein C4. In fact, the idempotent
basis is equal to a I'-linear combination of Turaev’s basis. Here ring I' is a sub-ring of
A introduced in section 2.1. Ring T' is defined as I' = Z[s'] with the elements s* — s~ *
admitted as denominators, where k is an integer and k > 1.

In [16], H. R. Morton and P. M. G. Manchén have proved that h,, is equal to a
I'-linear combination of Turaev’s basis.

Theorem 4.1. The single row idempotent {hn} can be written as

(8) h = 0xAy,

AFEm

where A = (A1, ..., \i) s a partition of m with length l. Let S; be the symmetric group of
order | and a be a permutation in it, then A\, denotes the finite sequence

)\a = ()\a(l)y ceey )‘a(l))
When X = (0), we have 0y = 1 while when X # (0), we have

1
1 1
(9) 9)\ = 78"1 E H by ALy
| Aut )| ke [)\a(l) Lt /\a<i)]5 a(1) (i)
Here (0) denotes the empty partition and [k] denotes the quantum integer S:__Ss:lk‘

According to theorem 4.1, definition 2.2 and definition of determinant, some tedious
combinational computation leads to proposition 4.2. Then, by definition 2.3, we have
proposition 4.3.

Proposition 4.2. The idempotent basis is a I'-linear combination of Turaev’s basis, i.e.
Qu = EM—I;LI C\Ay, where C €T.

Proposition 4.3. Let L be the link with L components and {Que }a=1,...,1. be the idem-
potent basis elements. The idempotent decorated link is a I'-linear combination of Turaev
decorated link as follows

L
Lx@o1Qua = > (J] Cre) Lx@crAra.
Xi| | o=t

Here X b |fi| means A* b |u®| for a =1,2,...,L and Axa refers to the Turaev’s basis
represented by the partition \“.
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Each Ajo has a specific link diagram representation introduced in section 2.2.1, so
L+ ®E_Axa on the right side of the equation in proposition 4.3 is a more intuitive
decorated link.

4.2. IMAT expression for idempotent decorated link

We rewrite proposition 4.3 in IMAT form, illustrated in equation 10.

L
(10) Mﬁ*®§=1Qua = Z (H Cxe) Mﬁ*®§=1AW-

Xk o=t
Therefore, it is sufficient to compute IMAT for each Turaev decorated link M, o1

. 1 Axa
in order to get Mﬁ*®5=1Qw' In fact, we have

(11) <MC*®§=1Qua> = Z (H CW) <M£*®§=1A>\a>'

X @=1

By substituting equation 11 into equation 6, we obtain

L
(12) Wa, (L) =s" ShoiwKa)k e v ShowKa) A Z (H Che) <M£*®5=1A>\a ).
Xrla o=t
In section 5, we will acquire the framed homflypt invariant of the decorated link with
IMAT. Then we compute the (framing-independent) colored homflypt invariant using
equation 12.

We call a Turaev decorated link whose decoration is ((A1)*!, (A1)*2,---, (A1)*%) the
duplicated link. Here ki, k2 ..., kr are non-negative integers. To begin with, we propose
a method to get the IMAT for a duplicated link in section 4.2.1. And then, for any other
Turaev decorated link, we gain its IMAT in section 4.2.2. A Turaev decorated link has
two kinds of points: the induced points and the structure points. The induced points are
those in the duplicated link while the structure points are those that appear in Turaev
structure A;. And we get the IMAT of a Turaev decorated link by combining the induced
points and the structure points.

Example 4.4. The hopf link decorated by Turaev’s basis (A2, A2) is shown in figure 19.
Cross points {1,2,3,4,6,7,8,9} are induced points and cross points {5, 10} are structure
points.

Figure 19: The hopf link decorated by Turaev’s basis (A2, A2). Here cross points
{1,2,3,4,6,7,8,9} are induced points and cross points {5,10} are structure points.
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4.2.1. Duplicated link and induced points.

Definition 4.5 (duplicated link). A decoration of form ((A1)"t, (A1)"2 .-, (A1)*E) is
called a duplication. A duplicated link L‘(Al)kl (AD)E2 (AL is a decorated link whose
decoration is a duplication. Here £ is a link with L. components, and k; is a non-negative
integer for ¢ =1,2,---, L. Two components in the duplicated link are called duplicated
components if they are induced by the same component in the original link £.

Here are some obvious observations about duplicated links. The total number of
components of the duplicated link L4 ki .. (4 )kr 18 Zle ki. The i-th component of
the original link £ has k; duplicated components in its duplicated link. We call them the
i-th duplicated family. Our purpose is to develop a method to name the components in
the ¢-th duplicated family for each 1 <7 < L. In section 3.4, we have already introduced
that each link can be decomposed into several closed curves with clockwise/anti-clockwise
orientation. We use the orientation of the closed curve to number the components in the
duplicated link.

Given a duplicated link E(A1>k1 """ (Ap)kL, We can decompose it into several closed
curves. If a closed curve is induced by a closed curve belonging to the i-th component in
the original link, we can find all its k; duplicated closed curves (closed curves induced by
the same closed curve) are of the same orientation. Then we name each of these k; closed
curves with two integers. The first one is ¢ and the second is numbered from outside to
the inside as follows:

e Clockwise: increasing order 1,2,...,k;,
e Anti-clockwise: decreasing order k;, ki—1,..., 1.

We call this the travel order method.
It is illustrated in figure 20 that the travel order is compatible with the self cross
point. On account of this compatibility, we can use travel order to name the components

11
clockwise closed curve, 12 anti-clockwise closed curve,
increasing order ~ —— < e decreasing order
from outside to inside 11 from outside to inside

12

Figure 20: The travel order is compatible with the self cross point and it can be used
to name the components of the duplicated link.

of the duplicated link as in proposition 4.6.

Proposition 4.6 (travel number of the component). Let £ be a link with L com-
ponents, and the duplicated link for £ with decoration ((A1)¥*,---, (A1)*E) has Zle k;
components named by the travel order

{11,---,1k1,21,---,2ko,---,L1,---  Lkr}.
For a component named {7} in the duplicated link, ¢ means that the component is

induced by the i-th component in the original link while j means that the travel number
for the component {ij} is j. The i-th duplicated family consists of k; components named
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{i1,42,---,ik; }. As a matter of fact, naming the components by travel order means that
the travel numbers of the duplicated components always increase from left-to-right along
the orientation of the link. We abbreviate travel order method to TVO.

Example 4.7. The hopf link decorated by Turaev’s basis (A%, A?) is shown in figure 21.
Since k1 = 2, there are two components in the 1-th duplicated family. The two components
are induced by the same clockwise component named 1 in the original link so we number
them in increasing order from the outside to the inside {11, 12}. Similarly, we number the
2-th duplicated family.

component 12 component 21
cross 1

duplicate the link
B —

with (A7, A?)

component 1 cross 2 component 2
clockwise anti-clockwise component 11 component 22

Figure 21: The component 1 (2) is clockwise (anti-clockwise) and we number the dupli-
cated family from the outside to the inside in increasing (decreasing) order {11,12}

({22,21}).

A string encounters the i-th component in the original link diagram if and only if
this string encounters i-th duplicated family. We would like to figure out if the string goes
through {41,42,---,ik;} in increasing order or decreasing order. Recall the proposition 3.8
and we can acquire figure 22 illustrating the eight conditions when a string encounters the
i-th duplicated family. This leads to proposition 4.8.

i1

(+1,-1)\}3

il

(+1,+1\;3

i3

(+1,+13\,:1

i3

(+17'1\,:1

Figure 22: The eight conditions when a string encounters the i-th duplicated family.
Here k; = 3.
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Proposition 4.8. If string k encounters the i-th component at the cross point represented
by (o, udk, pnk) in the original link, the string will encounter the i-th duplicated family
in the duplicated link in the following order:

e Ifudy x pni = +1: the string goes through these k; components {i1,i2,--- ik;} in
increasing order.

e Ifudy x pni = —1: the string goes through these k; components {il,i2,--- ik;} in
decreasing order.

Now, we are in the position to differentiate the cross points in the duplicated link.

Definition 4.9 (induced points and source points). Let £ be a link with L compo-
nents and E(Al)kl e (ADEL be its duplicated link. If a cross point « is formed by component
i1 and component i2 in £, then a cross point formed by component ¢1j; and component 2 j2
in the duplicated link is an induced point of & and « is its source point. Here 0 < ji1 < k;,,
0 <j2 < ki,.

All the points in the duplicated link are induced points. The total number of induced
points of a source point o formed by component ¢; and component is is k;; X ki,. We
intend to distinguish these induced points. If an induced cross point is formed by upper
string belonging to component 4;j;, and nether string belonging to component i2j;,, we
name it with three integers («, ji;, ji,). The first part « is the name of the source point.
The second part j;; is the travel number of the upper string. The third part j;, is the
travel number of the nether string. Here 1 < j;; < ki, 1 < ji, < ki,. We call this naming
method travel order method of induced points, also abbreviated to TVO.

Example 4.10. Given a duplicated hopf link £ A2 43, We use different names to distin-
guish the cross points in duplicated hopf link shown in figure 23. Here L =2, k1 = 2,
ko = 3. Taking the cross point named 121 as an example, the first part 1 means that the
source point for 121 is 1, the second part 2 represents the travel number for the upper
string in the duplicated link and the third part 1 represents the travel number for the
nether string in the duplicated link.

cross 1

duphcate the link

with (Af,A3)

component 1 cross 2 component 2
clockwise anti-clockwise

Figure 23: Naming the induced cross points in the duplicated hopf link by travel order.
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Since an induced cross point obviously share the same up-down and positive-negative
information with its corresponding source point, we have the unique name and the corre-
sponding information for each cross point in the duplicated link. Therefore, it remains to
get the relative position of all the induced points in order to acquire the P-IMAT of the
duplicated link if we are given the IMAT of the original link and a duplication.

As we have mentioned before, each component £; in the original link £ has k; dupli-
cated components named i1,42,...,ik; in the duplicated link and the duplicated link has
Zle k; components. We would like to get P-IMAT of ij; component for each ¢ and j;. It is
obvious that the cross points in the duplicated component ij; are all induced points whose
source points belong to the i-th component in the original link. Besides, the induced points
with the same source point are successive in certain order on account of proposition 4.8.
This leads to a way to get the P-IMAT of the duplicated link.

Let M be the IMAT of a link and ((A1)*' ---, (4;)"L) be its duplicated decoration.
The matrix shown in equation 13 represents the i-th component.

a1 Ud1 pni
o uds pna

(13) o ud, PRy

Qn,

i

udni Piin;

As we have mentioned in section 3.3, for each cross point in position (¢, 7), we can get the

pair position (cn,, cry) by searching the names in IMAT. Component ij; in the duplicated
link has 2?7:1 ken,. induced cross points. All these induced cross points belong to n; kinds,
and each of the induced cross points has the same source point in its kind. The r-th kind
has kcp,. induced cross points whose source point is «,. These kcp, induced points are
successive in the ij;-th component following the order illustrated in proposition 4.8. We
use TVO to name all the cross points. Therefore, we have proposition 4.11.

Proposition 4.11. Let £ be a link with L components, M be the IMAT of L, and
(AR, (A)FE) be its duplication. A cross point (o, ud,, pn.) in position (i,r) has
ken,. induced cross points. The sub-matriz is as follows, representing these kep, induced
cross points in the ij;-th P-IMAT of the duplicated link.

o ifud >0 and pn >0

—

ar  Ji ud,  pn.
ar  Ji 2 ud,  pn,
MI(Za jia T) = . .

(678 ]1 kcnr ud, Py
o if ud >0 and pn <0
ar  Ji ken, ud,  pn,
Qp ]1 kcnr -1 UdT yuzs
MI(i, ji, 8i) = . . .

ar  Ji 1 ud,  pn,
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e ifud <0 and pn >0
Q. ken, ji  udr pn,
ar  ken, —1 7i ud, pn,
o 1 ji  udy  pn,
o ifud <0 and pn <0
o 1 Ji  udy  png
o o 2 ji  udy  pn,
MI(Za]iaSi) = . . .

Qo kcnr Jz Ud’r pnyr

We apply proposition 4.11 to each cross point (., ud,,pn,) in the i-th component,
where 1 < r < n,;. This brings about the P-IMAT of the ij;-th component in the duplicated
link. Hence, we have proposition 4.12.

Proposition 4.12. The P-IMAT (