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On Structure of Cluster Algebras of

Geometric Type, II: Green’s Equivalences

and Paunched Surfaces

Min Huang and Fang Li∗

Abstract: Following our previous work [18], we introduce the
notions of partial seed homomorphisms and partial ideal rooted
cluster morphisms. Related to the theory of Green’s equivalences,
the isomorphism classes of sub-rooted cluster algebras of a rooted
cluster algebra are corresponded one-by-one to the regular D-
classes of the semigroup consisting of partial seed endomorphisms
of the initial seed. Moreover, for a rooted cluster algebra from a Rie-
mannian surface, they are also corresponded to the isomorphism
classes of the so-called paunched surfaces.
Keywords: seed homomorphism, rooted cluster morphism, sub-
rooted cluster algebra, Green’s equivalence, paunched surface.

1. Introduction

Cluster algebras are commutative algebras that were introduced by Fomin
and Zelevinsky [10] in order to give a combinatorial characterization of total
positivity and canonical bases in algebraic groups. The theory of cluster alge-
bras is related to numerous other fields. Since its introduction, the study on
cluster algebras mainly involves intersection with Lie theory, representation
theory of algebras, its combinatorial method (e.g. the periodicity issue) and
categorification, Riemannian surfaces and its topological setting, including
the Teichmüller theory.

The algebraic structure and properties of cluster algebras were originally
studied in a series of articles [2, 10–12] involving bases and the positivity
conjecture.
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In our previous work [18], we focus to characterize the internal struc-
ture of rooted cluster algebras, including all sub-rooted cluster algebras and
rooted cluster quotient algebras, via sub-seeds and seed homomorphisms.

In this work, as a subsequent of [18], we introduce the semigroup of
partial seed endomorphisms of the initial seed for a rooted cluster algebra
and partial ideal rooted cluster endomorphisms and find the connection of
the internal structure of a cluster algebra with the semigroup of partial seed
endomorphisms of the initial seed via the method of Green’s equivalences in
semigroup theory. We build the correspondence between the isomorphism
classes of sub-rooted cluster algebras and the regular D-classes of the semi-
group of partial seed endomorphisms of the initial seed for a rooted cluster
algebra. This result supplies a window for one to understand the internal
structure of a rooted cluster algebra through some algebraic properties in
semigroup theory.

One of the main results is Theorem 1.3, for which we combine the method
of mixing-type sub-seeds (Definition 3.2) and the Green’s equivalences in the
algebraic theory of semigroups as an original idea.

Another main result, Theorem 1.4, in fact, gives a new algebraic invari-
ant of the internal structure of a Riemannian surface. As preparation, we
introduce the so-called paunched surfaces of a Riemannian surface (Defini-
tion 6.3) which are shown to correspond to sub-rooted cluster algebras of
the rooted cluster algebra from the Riemannian surface, using of the theory
from [18], and then using Theorem 1.3, to correspond to regular D-classes
of the semigroup consisting of partial seed homomorphisms (Definition 3.6).

The organization of this article is the following. In Section 2, we recall the
definition of cluster algebras of geometric type. In Section 3, some required
concepts and results are given from [18][1], and then introduce the semi-
groups of partial seed homomorphisms of the initial seed for a rooted cluster
algebra and partial ideal rooted cluster endomorphisms (Definition 3.20).

In Section 4, we introduce the theory of Green’s equivalences in semi-
group theory and then give some preliminaries on the semigroup of partial
seed homomorphisms.

In Section 5, we give the proofs of the main conclusions, Theorem 1.1,
Theorem 1.2 and Theorem 1.3, including three parts, i.e. the characteri-
zation of Green’s equivalences in Endpar(Σ), the continuation of Green’s
equivalences from Endpar(Σ) to Endpar(A(Σ)) and characterizing iso-classes
of sub-rooted cluster algebras via regular D-classes.

In Section 6, we firstly characterize sub-rooted cluster algebras of rooted
cluster algebras from Riemannian surfaces via paunched surfaces. Then, the
proof of the main result, Theorem 1.4, is given.
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Here we give the four main conclusions in this paper.

Theorem 1.1. Let f : ΣI0,I1 → Σ and f ′ : ΣI′
0,I

′
1
→ Σ be two regular partial

seed homomorphisms in Endpar(Σ), then
(1) fRf ′ if and only if (a) f(ΣI0,I1) = f ′(ΣI′

0,I
′
1
).

(2) fLf ′ if and only if (b) ΣI0,I1 = ΣI′
0,I

′
1
, and (c) there exists an

isomorphism g : f(ΣI0,I1) → f ′(ΣI′
0,I

′
1
) such that f ′ = (idI′′

0 ,I
′′
1
g) ◦ f , where

f ′(ΣI′
0,I

′
1
)

= ΣI′′
0 ,I

′′
1
.

(3) fHf ′ if and only if the above statements (a), (b) and (c) hold.
(4) fDf ′ if and only if f(ΣI0,I1)

∼= f ′(ΣI′
0,I

′
1
).

Theorem 1.2. Let f : A(ΣI0,I1) → A(Σ) and f ′ : A(ΣI′
0,I

′
1
) → A(Σ) be

noncontractible ideal partial rooted cluster morphisms in Endpar(A(Σ)) with
restricted partial seed homomorphisms fS , f ′S ∈ Endpar(Σ), respectively.
Assume that fS and f ′S are regular. Then, fSFf ′S in Endpar(Σ) if and only
if fFf ′ in Endpar(A(Σ)) with F one of the Green’s equivalences R,L,H, or
D.

Theorem 1.3. For a rooted cluster algebra A(Σ), let A(Σ′) denote any of
its sub-rooted cluster algebra and [A(Σ′)] the iso-class of A(Σ′) in Clus.
There exists a one-to-one correspondence between the iso-classes of sub-
rooted cluster algebras of A(Σ) and the regular D-classes in Endpar(Σ)
through the bijection ϕ : [A(Σ′)] −→ DidI0,I1

with Σ′ ∼= ΣI0,I1 for some I0 ⊆
X and I1 ⊆ X̃.

Theorem 1.4. For a Riemannian surface (S,M) with triangulation T
without punctures,

(a) there is a one-to-one correspondence between the iso-classes of
(I0, I1)-paunched surfaces of (S,M, T,L) and the iso-classes of sub-rooted
cluster algebras of A(Σ(S,M, T,L));

(b) there is a one-to-one correspondence between the iso-classes of
(I0, I1)-paunched surfaces of (S,M, T,L) and the set of regular D-classes
of the semigroup Endpar(Σ(S,M,T,L)).
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2. On the definition of cluster algebras of geometric type

The original definition of cluster algebra given in [10] is in terms of exchange
pattern. We recall the equivalent definition in terms of seed mutation in [11];
for more details, refer to [10, 11, 14].

Let (P,⊕, ·) be a semi-field, i.e., an abelian multiplicative group, sup-
plied with an auxiliary addition ⊕, which is commutative, associative, and
distributive with respect to the multiplication in P. In particular, let P be
a free abelian multiplicative group with a finite set of generators pj(j ∈ J),
and with an addition ⊕ given by

(1)
∏
j∈J

p
aj

j ⊕
∏
j∈J

p
bj
j =

∏
j∈J

p
min{aj ,bj}
j

for any aj , bj ∈ Z. In this case, the semi-field P is called as tropical semi-
field, denoted by Trop(pj , j ∈ J), which is related to tropical geometry
(refer to [11] and [3]).

For a semi-field P, it was proved in [10] that the group ring ZP is a
domain. Let F (the ambient field of cluster algebra) be the fraction field
of the polynomial ZP[u1, · · · , un] in n independent variables {u1, · · · , un}
(n is the rank of cluster algebra). In particular, when P = Trop(pj , j ∈ J),
we have F ∼= Q(ui, pj) (i = 1, · · · , n, j ∈ J).

An n× n integer matrix A = (aij) is called sign-skew-symmetric if
either aij = aji = 0 or aijaji < 0 for any 1 ≤ i, j ≤ n.

An n× n integer matrix A = (aij) is called skew-symmetric if aij =
−aji for all 1 ≤ i, j ≤ n.

An n× n integer matrix A = (aij) is called D-skew-symmetrizable if
diaij = −djaji for all 1 ≤ i, j ≤ n, where D=diag(di) is a diagonal matrix
with all di ∈ Z≥1.

Let Ã be an n× (n+m) integer matrix whose principal part, denoted
as A, is the n× n submatrix formed by the first n rows and the first n
columns. The entries of Ã are written by axy, x ∈ X and y ∈ X̃. We say

Ã to be sign-skew-symmetric (respectively, skew-symmetric, D-skew-
symmetrizable) whenever A possesses this property.

For two n× (n+m) integer matrices A = (aij) and A′ = (a′ij), we say
that A′ is obtained from A by a matrix mutation μi in direction i, 1 ≤
i ≤ n, represented as A′ = μi(A), if

(2) a′jk =

{ −ajk, if j = i or k = i;

ajk +
|aji|aik+aji|aik|

2 , otherwise.
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It is easy to verify that μi(μi(A)) = A. The skew-
symmetric/symmetrizable property of matrices is invariant under mutations.
However, the sign-skew-symmetric property is not so. For this reason, a
sign-skew-symmetric matrix A is called totally sign-skew-symmetric if
any matrix, that is mutation equivalent to A, is sign-skew-symmetric.

A seed in F is a triple Σ = (X,P,B), where
(a) X = {x1, · · ·xn} is a transcendence basis of F over the fraction field of
ZP, which is called a cluster, whose each x ∈ X is called a cluster variable
(see [11]);
(b) P = (p±x )x∈X is a 2n-tuple of elements of P satisfying the normalization
condition p+x ⊕ p−x = 1 for all x ∈ X, which is called the coefficient tuple
(see [12]);
(c) B = (bxy)x,y∈X is an n× n integer matrix with rows and columns indexed
by X, which is totally sign-skew-symmetric.

Let Σ = (X,P,B) be a seed in F with x ∈ X, the mutation μx of Σ at
x is defined satisfying μx(Σ) = (μx(X), P̄ , μx(B)) such that

(a) The adjacent cluster μx(X) = {μx(y) | y ∈ X}, where μx(y) is
given by the exchange relation

(3) μx(y) =

{
p+
x

∏
t∈X,bxt>0

tbxt+p−
x

∏
t∈X,bxt<0

t−bxt

x , if y = x;
y, if y 	= x.

This new variable μx(x) is also called as new cluster variable.
(b) the 2n-tuple P̄ = {p̄±y }y∈μx(X) is uniquely determined by the nor-

malization conditions p̄+y ⊕ p̄−y = 1 together with

(4) p̄+y /p̄
−
y =

⎧⎨⎩
p−x /p+x , if y = μx(x);
(p+x )

bxyp+y /p
−
y , if bxy ≥ 0;

(p−x )bxyp+y /p
−
y , if bxy ≤ 0.

(c) μx(B) is obtained from B by applying the matrix mutation in direc-
tion x and then relabeling one row and one column by replacing x with
μx(x).

It is easy to see that the mutation μx is an involution, i.e.,
μμx(x)(μx(Σ)) = Σ.

Two seeds Σ′ and Σ′′ in F are called mutation equivalent if there
exists a series of mutations μy1

, · · · , μys
such that Σ′′ = μys

· · ·μy1
(Σ′).

Trivially, mutation equivalence of seeds gives an equivalent relation on
the set of seeds in F.
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Let Σ be a seed in F. Denote by S the set of all seeds mutation equiv-
alent to Σ. In particular, Σ ∈ S. For any Σ̄ ∈ S, we have Σ̄ = (X̄, P̄ , B̄).
Denote P = ∪Σ̄∈S P̄ ⊆ P and X = ∪Σ̄∈SX̄. Z[P ] represents the sub-ring of
ZP generated by P .

Definition 2.1. [10][11] Let Σ be a seed in F.
(i) The cluster algebra, denoted by A = A(Σ), associated with Σ is
defined to be the Z[P]-subalgebra of F generated by X . Σ is called the
initial seed of A.
(ii) In particular, if the semi-field P is tropical, i.e. P =
Trop(xn+1, · · · , xn+m) for some nonnegative integer m, the cluster
algebra A is said to be of geometric type.

In case P = Trop(xn+1, · · · , xn+m), for any seed Σ = (X,P,B) in F,
P = (p±x )x∈X is a 2n-tuple of elements of P satisfying the normalization con-
dition p+x ⊕ p−x = 1 for all x ∈ X. Since P is a free abelian group generated
by xn+1, · · · , xn+m satisfying the relation (1), we can denote p+xi

= Y ai and

p−xi
= Y bi , where Y ai =

m∏
j=1

x
aj

n+j for a i = (ai1, · · · , aim) and Y bi =
m∏
j=1

x
bj
n+j

for bi = (bi1, · · · , bim) with aij , bij ∈ Z≥0, j = 1, · · · ,m, by (1) and the nor-
malization condition. It is easy to see that a i and bi can be determined

uniquely by a i − b i. Precisely, if a i − bi
Δ
= ci = (cij), then aij = max{cij , 0}

and bij = max{−cij , 0} for 1 ≤ j ≤ m.
Following the above discussion, for a given P from the seed Σ =

(X,P,B), we give uniquely an n×m integer matrix B1 =

⎛⎝ c1

· · ·
cn

⎞⎠; con-

versely, for a given n×m integer matrix B1 =

⎛⎝ c1

· · ·
cn

⎞⎠ with ci ∈ Zm

for any i, we can construct a 2n-tuple P = (p±xi
)xi∈X with p+xi

= Y ai and
p+xi

= Y bi , where a i and bi are decided uniquely by ci (see [10]).
Hence, we can replace P by B1, and then denote the seed Σ = (X,P,B)

as Σ = (X, B̃) equivalently, where B̃ = (B B1).
For this cluster algebra A(Σ) of geometric type, we can write about its

seed and mutation equivalence, briefly described as follows. For more details,
refer to [10][14], etc.

Give a field F as an extension of the rational number field Q, assume
that x1, · · · , xn, xn+1, · · · , xn+m ∈ F are n+m algebraically independent
over Q for a non-negative integer n and a non-negative integer m such
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that F = Q(x1, · · · , xn, xn+1, · · · , xn+m), the field of rational functions in
the set X̃ = {x1, · · · , xn, xn+1, · · · , xn+m} with coefficients in Q. We call
X̃ an extended cluster, the subset X = {x1, · · · , xn} the cluster and
the subset Xfr = {xn+1, · · · , xn+m} the frozen cluster or, say, the frozen

part of X̃ in F, where x1, · · · , xn is said to be (original) exchangeable
cluster variables and xn+1, · · · , xn+m the stable (cluster) variables or
say frozen (cluster) variables and 1, · · · , n the exchangeable vertices
and n+ 1, · · · , n+m the frozen vertices of X̃. In particular, when n = 0,
let X = ∅ and then X̃ = Xfr.

The seed Σ in F is a pair Σ = (X, B̃), where B̃ = (B B1) is a totally
sign-skew-symmetric n× (n+m) matrix over Z. With this, we also denote
F = F(Σ). The n× n matrix B is called the exchange matrix and B̃ the
extended exchange matrix corresponding to the seed Σ.

In the seed Σ = (X, B̃), if X = ∅, that is, X̃ = Xfr, we call the seed a
trivial seed.

Given the seed Σ = (X, B̃) and x, y ∈ X̃, we say (x, y) is a connected
pair in case (i) x = y or; (ii) x 	= y but b2xy + b2yx 	= 0 with {x, y} ∩X 	= ∅. A
seed Σ is defined to be connected if for any x, y ∈ X̃, there exists a sequence
of variables (x = z0, z1, · · · , zs = y) ⊆ X̃ such that (zi, zi+1) are connected
pairs for all 0 ≤ i ≤ s− 1.

Note that in the case of geometric type, the exchange relation in direction
x ∈ X is given as:

(5) μx(y) =

⎧⎨⎩
∏

t∈ ˜X,bxt>0

tbxt+
∏

t∈ ˜X,bxt<0

t−bxt

x , if y = x;
y, if y 	= x.

Given a seed Σ = (X, B̃), another seed Σ′ = (X ′, B̃′) is said to be adja-
cent to Σ (in direction x ∈ X) if X ′ = μx(X) and B̃′ = μx(B̃). Moreover,
we denote Σ′ = μx(Σ) = (μx(X), μx(B̃)).

In this paper, beginning from Section 3, cluster algebras will always be
cluster algebras of geometric type defined above.

3. Partial seed homomorphisms and partial ideal rooted
cluster morphisms

Seed homomorphisms are originally introduced in [18] for studying the
interne structure of (rooted) cluster algebras. Here, we recall those useful
definitions and results.
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For the initial seed Σ = (X, B̃) of a cluster algebra A and two pairs
(x, y) and (z, w) with x, z ∈ X and y, w ∈ X̃, we say that (x, y) and (z, w)
are adjacent pairs if bxz 	= 0 or x = z.

Definition 3.1. ([18]) Let Σ = (X, B̃) and Σ′ = (X ′, B̃′) be two seeds. A

map f from X̃ to X̃ ′ is called a seed homomorphism from the seed Σ to
the seed Σ′ if it satisfies that
(a) f(X) ⊆ X ′ and;
(b) for any adjacent pairs (x, y) and (z, w) with x, z ∈ X and y, w ∈ X̃,

(6) (b′f(x)f(y)bxy)(b
′
f(z)f(w)bzw) ≥ 0 and |b′f(x)f(y)| ≥ |bxy|.

For seed homomorphisms f : Σ → Σ′ and g : Σ′ → Σ′′, define their com-
position gf : Σ → Σ′′ satisfying that gf(x) = g(f(x)) for all x ∈ X̃. Then we
can define the seed category, denoted as Seed, to be the category whose
objects are all seeds and whose morphisms are all seed homomorphisms with
composition defined as above.

Definition 3.2. Let Σ = (X, B̃) be a seed with B̃ an n× (n+m) totally
sign-skew-symmetric integer matrix. Assume I0 is a subset of X, I1 a subset
of X̃ with I0 ∩ I1 = ∅ and I1 = I ′1 ∪ I ′′1 for I ′1 = X ∩ I1 and I ′′1 = Xfr ∩ I1.

Denoting X ′ = X\(I0 ∪ I ′1), X̃ ′ = X̃\I1 and B̃′ as a �X ′ × �X̃ ′-matrix with

b′xy = bxy for any x ∈ X ′ and y ∈ X̃ ′, one can define the new seed ΣI0,I1 =

(X ′, B̃′), which is called a mixing-type sub-seed or, say, (I0, I1)-type
sub-seed, of the seed Σ = (X, B̃).

Definition 3.3. Let Σ and Σ′ be two seeds and f : Σ → Σ′ be a seed homo-
morphism. f is called a seed isomorphism if f induces bijections X → X ′

and X̃ → X̃ ′ and |bxy| = |b′f(x)f(y)| for all x ∈ X and y ∈ X̃.

Trivially, we have the following lemmas by the definitions of seed homo-
morphisms and seed isomorphisms.

Lemma 3.4. A seed homomorphism f : Σ → Σ′ is a seed isomorphism if
and only if there exists a unique seed homomorphism f−1 : Σ′ → Σ such that
f−1f = idΣ and ff−1 = idΣ′.

Similar as the definition for rooted cluster morphism, we define the image
seed of a seed homomorphism.
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Definition 3.5. Let f : Σ → Σ′ be a seed homomorphism. The image seed
of Σ under f is defined to be f(Σ) = (f(X), B′′), where B′′ is a #(f(X))×
#(f(X̃))-matrix with b′′xy = b′xy for any x ∈ f(X) and y ∈ f(X̃).

Recall that a seed homomorphism f : Σ → Σ′ is called injective if f(Σ)
is a mixing-type sub-seed of Σ′, see [18].

Definition 3.6. Define a partial seed homomorphism f from Σ to Σ′

to be a seed homomorphism f from an (I0, I1)-type sub-seed ΣI0,I1 of Σ to
Σ′, which is denoted as (f,ΣI0,I1 ,Σ

′) or briefly as f . Denote Σf = ΣI0,I1 and
Hompar(Σ,Σ

′) be the set of all partial seed homomorphisms from Σ to Σ′.

Denote X̃Σf
= Dom(f) = X̃ \ I1 as the domain of f and (X̃Σf

)ex =

Dom(f)ex = X \ (I0 ∪ I1) as the exchangeable part and (X̃Σf
)fr =

Dom(f)fr = (Xfr ∪ I0) \ I1 as the frozen part of Dom(f) such that
Dom(f) = Dom(f)ex ∪Dom(f)fr.

For an (I0, I1)-type sub-seed ΣI0,I1 = (X \ I0, B̃′) of a seed Σ = (X, B̃),
we define a special seed homomorphism idI0,I1 : ΣI0,I1 → Σ as follows.

idI0,I1 |X̃\I1 is just the natural inclusion from X̃ \ I1 to X̃. Then, Defini-

tion 3.1 (a) holds for idI0,I1 .

We have b′xy = bxy for all x ∈ X \ I0 and y ∈ X̃ \ I1 by the definition
of ΣI0,I1 . Then for any adjacent pairs (x, y) and (z, w) with x, z ∈ X \ I0,
y, w ∈ X̃ \ I1 , trivially

b′xybxyb
′
zwbzw ≥ 0 and |b′xy| = |bxy|.

But idI0,I1(u) = u for u = x, y, z, w. Hence, Definition 3.1 (b) holds.
By Definition 3.5, we have (idI0,I1)(ΣI0,I1) = ΣI0,I1 , which means that

idI0,I1 is an injective seed homomorphism.
Of course, as a partial seed homomorphism, idI0,I1 ∈ Endpar(Σ).
For two partial seed homomorphisms (f,ΣI0,I1 ,Σ

′) ∈ Hompar(Σ,Σ
′)

and (g,Σ′
J ′
0,J

′
1
,Σ′′) ∈ Hompar(Σ

′,Σ′′), their composition of partial seed
homomorphisms, denoted as

(g,Σ′
J ′
0,J

′
1
,Σ′′) ◦ (f,ΣI0,I1 ,Σ

′) or briefly as g ◦ f ,
is defined as (g ◦ f)(x) = g(f(x)) for all x ∈ Dom(g ◦ f) if it satisfies:

Dom(g ◦ f) = Dom(g ◦ f)ex ∪Dom(g ◦ f)fr,

where

(7) Dom(g ◦ f)ex = {x ∈ Dom(f)ex|f(x) ∈ Dom(g)ex},
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and

(8) Dom(g ◦ f)fr = {x ∈ Dom(f)fr|f(x) ∈ Dom(g)fr}.

We claim that g ◦ f is a partial seed homomorphism from Σ to Σ′′, that
is, the set of partial seed homomorphisms is closed under this composition.

In fact, for g ◦ f , the condition (a) of Definition 3.1 is clear. For (b),
(x, y) and (z, w) are adjacent pairs in Σ with x, z ∈ X ∩Dom(g ◦ f) and
y, w ∈ Dom(g ◦ f). Since f is partial seed homomorphism, therefore, we have
f(x), f(z) ∈ X ′ and

(9) (b′f(x)f(y)bxy)(b
′
f(z)f(w)bzw) ≥ 0 and |b′f(x)f(y)| ≥ |bxy|.

Thus, (f(x), f(y)) and (f(z), f(w)) are adjacent pairs in Σ′ with f(x), f(z) ∈
X ′ ∩Dom(g) and f(y), f(w) ∈ Dom(g). As g is a partial seed homomor-
phism, we have
(10)
(b′′g◦f(x)g◦f(y)b

′
f(x)f(y))(b

′′
g◦f(z)g◦f(w)b

′
f(z)f(w)) ≥ 0 and |b′′g◦f(x)g◦f(y)| ≥ |b′f(x)f(y)|.

By (9) and (10), we have

(11) (b′′g◦f(x)g◦f(y)bxy)(b
′′
g◦f(z)g◦f(w)bzw) ≥ 0 and |b′′g◦f(x)g◦f(y)| ≥ |bxy|.

Therefore, g ◦ f satisfies the condition (b) of Definition 3.1.
Hence, for Σ = Σ′, Endpar(Σ) is closed under this composition, which is

considered as the multiplication. Below, we will prove that the associative
law holds for this multiplication in Endpar(Σ).

Remark 3.7. In Definition 3.6, we allow the mixing-type sub-seed ΣI0,I1 to
be the empty seed ∅. In this case, we say f to be the empty homomorphism
too, denoted as ∅. Thus, if f−1(X̃ ′ \ I ′1) ⊆ I1, then g ◦ f = ∅.

Fact 3.8. If f ∈ Endpar(Σ,Σ
′) and g ∈ Endpar(Σ

′,Σ′′), then
(a) Σg◦f is a mixing-type sub-seed of Σf . In general, we can denote

Σg◦f = (Σf )∅,I1 , where

I1 = {x ∈ Dom(f)ex | f(x) 	∈ Dom(g)ex} ∪ {x ∈ Dom(f)f | f(x) 	∈ Dom(g)f}

and
(b) the image seed (g ◦ f)(Σg◦f ) is a mixing-type sub-seed of g(Σg).
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Remark 3.9. For any seed homomorphism f1 : ΣI0,I1 → Σ′
I′
0,I

′
1
, we asso-

ciate a partial seed homomorphism in Hompar(Σ,Σ
′), that is, f = idI′

0,I
′
1
f1 :

ΣI0,I1 → Σ′.
Conversely, for any partial seed homomorphism f : ΣI0,I1 → Σ′, denoted

by f(ΣI0,I1) = Σ′
I′
0,I

′
1
, we can define a seed homomorphism f1 : ΣI0,I1 → Σ′

I′
0,I

′
1

via f1(x) = f(x) for all x ∈ X̃ \ I1, and thus, f = idI′
0,I

′
1
f1. It is easy to see

that such f1 is unique for f .

Unfortunately, f 	= f ◦ idI0,I1 since usually Dom(f) 	= Dom(f ◦ idI0,I1).
It is similar for id = id∅,∅, so there does not exist identity in Endpar(Σ).

Proposition 3.10. The associative law of the composition of partial seed
homomorphisms in Endpar(Σ) holds. Then, with the composition as multi-
plication, Endpar(Σ) is a semigroup with zero ∅ := (∅, ∅,Σ), including some
zero-divisors.

Proof. Let f, g, h ∈ Endpar(Σ) with Σf = ΣI0,I1 , Σg = ΣI′
0,I

′
1

and Σh =
ΣI′′

0 ,I
′′
1
, respectively. By the definition of composition, we have that x ∈

Dom((h ◦ g) ◦ f)ex is equivalent to x ∈ Dom(f)ex, f(x) ∈ Dom(g)ex and
g ◦ f(x) ∈ Dom(h)ex, which is also equivalent to x ∈ Dom(h ◦ (g ◦ f))ex.
Hence, Dom((h ◦ g) ◦ f)ex = Dom(h ◦ (g ◦ f))ex. It can be proved simi-
larly that Dom((h ◦ g) ◦ f)fr = Dom(h ◦ (g ◦ f))fr. Therefore, Dom((h ◦
g) ◦ f) = Dom(h ◦ (g ◦ f)) and then (h ◦ g) ◦ f = h ◦ (g ◦ f).

Assume that x ∈ X, and let I = X̃ \ {x}. Hence, we have id{x},I ◦ id∅,I =
∅, that is, id{x},I and id∅,I are zero-divisors in Endpar(Σ). �

Denote by E(Endpar(Σ)) the set of all idempotents in the semigroup
Endpar(Σ). In particular, idI0,I1 = idI0,I1 ◦ idI0,I1 , so idI0,I1 is an idempotent,
i.e. idI0,I1 ∈ E(Endpar(Σ)).

However, in Endpar(Σ), in general, an idempotent may not be in the form
idI0,I1 . For example, for a quiver Q : x1 �� x2 x3�� , let f : Σ(Q) →
Σ(Q)∅,{x3} be the partial seed homomorphism such that f(x1) = f(x3) = x1
and f(x2) = x2. It is clear that f is an idempotent, but is not in the form
idI0,I1 .

Now recall some elementary definitions and properties on rooted cluster
morphisms, refer to [1].

Definition 3.11. ([1]) A rooted cluster morphism f from A(Σ) to
A(Σ′) is a ring morphism which sends 1 to 1 satisfying:

CM1. f(X̃) ⊆ X̃ ′ � Z;
CM2. f(X) ⊆ X ′ � Z;
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CM3. For every (f,Σ,Σ′)-biadmissible sequence (y1, y2, · · · , ys) and any y
in X̃, we have

f(μys
· · ·μy1

(y)) = μf(ys) · · ·μf(y1)(f(y)).

In [1], the authors defined a categoryClus with objects are rooted cluster
algebras and morphisms are rooted cluster morphisms.

Definition 3.12. ([18]) Let f : A(Σ) → A(Σ′) be a rooted cluster mor-
phism and

(12) I1 = {x ∈ X̃|f(x) ∈ Z}.

From f , define a new seed Σ(f) = (X(f), B̃(f)) satisfying that:
(I). X(f) = X \ I1 = {x ∈ X|f(x) /∈ Z};
(II). X̃(f) = X̃ \ I1 = {x ∈ X̃|f(x) /∈ Z};
(III). B̃(f) = (b

(f)
xy ) is a #(X(f))×#(X̃(f)) matrix with

b(f)xy =

{
bxy, if f(z) 	= 0 ∀z ∈ I1 adjacent to x or y;
0, otherwise.

We call Σ(f) = (X(f), B̃(f)) the contraction of Σ under f .

Definition 3.13. [18] We say a rooted cluster morphism f : A(Σ) → A(Σ′)
is noncontractible if f(x) 	= 0 for all x ∈ X̃.

Proposition 3.14. ([18], Proposition 3.4) A rooted cluster morphism
f : A(Σ) → A(Σ′) determines uniquely a seed homomorphism (fS ,Σ(f),Σ′)
from Σ(f) to Σ′ via fS(x) = f(x) for x ∈ X̃(f).

Lemma 3.15. ([18], Lemma 3.5) Let f, g : A(Σ) → A(Σ′) be rooted cluster
morphisms. If f(x) = g(x) 	= 0 for all x ∈ X̃ of Σ, then f = g.

We have the following connection between rooted cluster isomorphism
and seed isomorphism.

Proposition 3.16. ([18], Proposition 3.8) A(Σ) ∼= A(Σ′) in Clus if and
only if Σ ∼= Σ′ in Seed.

Recall that a rooted cluster morphism f : A(Σ) → A(Σ′) is called ideal
if A(fS(Σ(f))) = f(A(Σ)). See Definition 2.11, [1].
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Lemma 3.17. (1)(Theorem 2.25(2), [6]) Let f : A(Σ) → A(Σ′) be an ideal
rooted cluster morphism. Then f = τf1 with a surjective rooted cluster mor-
phism f1 and an injective rooted cluster morphism τ , that is,

f : A(Σ)
f1� A(fS(Σ(f)))

τ
↪→ A(Σ′).

(2) f1 is an ideal rooted cluster morphism.

Proof. (2) Note that fS
1 (Σ

(f1)) = fS(Σ(f)) and f1 is surjective, thus we have

A(fS
1 (Σ

(f1))) = A(fS(Σ(f))) = f1(A(Σ)).

Therefore, f1 is an ideal rooted cluster morphism. �

We can determinate all rooted cluster subalgebras of a given rooted
cluster algebras by the theorem below.

Theorem 3.18. ([18], Theorem 4.4) A(Σ′) is a rooted cluster subalgebra
of A(Σ) if and only if there exists a mixing-type sub-seed ΣI0,I1 of Σ such
that Σ′ ∼= ΣI0,I1 satisfies bxy = 0 for any x ∈ X \ (I0 ∪ I1) and y ∈ I1.

Lemma 3.19. ([18], Lemma 6.18) For y1 	= y2 ∈ X̃, if f(y1) = f(y2) ∈ X̃ ′
for a rooted cluster morphism f : A(Σ) → A(Σ′), then y1, y2 ∈ Xfr.

Analog to Hompar(Σ,Σ
′), we now consider the set of some partial rooted

cluster morphisms, Hompar(A(Σ),A(Σ′)).

Definition 3.20. (i) Define a partial ideal rooted cluster mor-
phism f from A(Σ) to A(Σ′) to be an ideal rooted cluster morphism f :
A(ΣI0,I1) → A(Σ′) for a mixing-type sub-seed ΣI0,I1 of Σ, which is denoted
as (f,ΣI0,I1 ,Σ

′) or briefly as f . Denote Hompar(A(Σ),A(Σ′)) as the set of
all partial ideal rooted cluster morphism from A(Σ) to A(Σ′).

(ii) For a seed Σ′, fix a family of ideal rooted cluster morphisms

Λ = {hI0,I1I′
0,I

′
1
: A(Σ′

I0,I1) → A(Σ′
I′
0,I

′
1
)}

I0,I′
0∈X′,I1,I′

1∈X̃′

such that hJ0,J1

J0,J1
= idA(Σ′

J0,J1
) for all J0, J1 and hJ0,J1

I′
0,I

′
1
τ = hI0,I1I′

0,I
′
1
if Σ′

I0,I1
is

a mixing-type sub-seed of Σ′
J0,J1

and the natural injective seed homomor-
phism Σ′

J0,J1
→ Σ′

J0,J1
induces an injective rooted cluster morphism τ . For
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two partial ideal rooted cluster morphisms

(f,ΣI0,I1 ,Σ
′) ∈ Hompar(A(Σ),A(Σ′)), (g,Σ′

I′0,I
′
1
,Σ′′) ∈ Hompar(A(Σ′),A(Σ′′)),

we define the composition g ◦Λ f = ghJ0,J1

I′
0,I

′
1
f ′, where Σ′

J0,J1
= fS(ΣI0,I1) by

Proposition 3.14 and f is decomposed into f : A(Σ)
f ′

� A(Σ′
J0,J1

)
τ
↪→ A(Σ′)

by Lemma 3.17.

Remark 3.21. For any mixing-type sub-seed Σ′
J0,J1

, let hJ0,J1

J0,J1
= idA(Σ′

J0,J1
).

For mixing-type sub-seeds Σ′
I0,I1

and Σ′
J0,J1

, if A(Σ′
I0,I1

) is a rooted cluster

subalgebra of A(Σ′
J0,J1

), then let hI0,I1J0,J1
be the natural inclusion; otherwise, let

hI0,I1J0,J1
be the trivial ideal rooted cluster morphism satisfying hI0,I1J0,J1

(x) = 1 for

any x ∈ A(Σ′
I0,I1

). It is easy to see that Λ = {hI0,I1J0,J1
} satisfies the conditions

in Definition 3.20 (ii).

In this definition, note that g ◦Λ f is ideal since the composition of ideal
rooted cluster morphisms is ideal and g, hJ0,J1

I′
0,I

′
1
are ideal rooted cluster mor-

phisms, f ′ is also ideal by Lemma 3.17 (2). Hence, (g ◦Λ f,ΣI0,I1 ,Σ
′′) is a

partial ideal rooted cluster morphism in Hompar(A(Σ),A(Σ′′)).
For j = 1, 2, 3, let fj : A(ΣIj

0 ,I
j
1
) → A(Σ) be ideal rooted cluster mor-

phisms. Denote ΣIj
0

′
,Ij

1

′ = (fj)
S(Σ

(fj)

Ij
0 ,I

j
1

) and then fj(A(ΣIj
0 ,I

j
1
)) = A(ΣIj

0

′
,Ij

1

′).

Also denote ΣJ0,J1
= (f2 ◦Λ f1)

S(Σ
(f2◦Λf1)
I′
0,I

′
1

) and then we have

A(ΣJ0,J1
) = (f2 ◦Λ f1)(A(ΣI′

0,I
′
1
)) = (f2h

I1
0
′,I1

1
′

I2
0 ,I

2
1
)(A(ΣI1

0
′,I1

1
′)).

According to Lemma 3.17, fi is decomposed into fj : A(ΣIj
0 ,I

j
1
)

f ′
j�

A(ΣI′j
0 ,I′j

1
)

τj
↪→ A(Σ). Hence, we have the following commutative diagram:

A(ΣI1
0 ,I

1
1
)

f ′
1−−−−→ A(ΣI1

0
′,I1

1
′)

π−−−−→ A(ΣJ0,J1
)

id

⏐⏐� h
I10

′
,I11

′

I2
0
,I2

1

⏐⏐� τ

⏐⏐�
A(ΣI1

0 ,I
1
1
)

h
I10

′
,I11

′

I2
0
,I2

1
f ′
1−−−−−−→ A(ΣI2

0 ,I
2
1
)

f ′
2−−−−→ A(ΣI2

0
′,I2

1
′),

where there are an inclusion τ : A(ΣJ0,J1
) → A(ΣI2

0
′,I2

1
′) and a surjective

morphism π : A(ΣI1
0
′,I1

1
′) → A(ΣJ0,J1

) by Lemma 3.17 since f ′
2h

I1
0
′,I1

1
′

I2
0 ,I

2
1

is ideal.
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By definition of composition, we have

(f3 ◦Λ f2) ◦Λ f1 = f3h
I2
0
′,I2

1
′

I3
0 ,I

3
1
f ′
2h

I1
0
′,I1

1
′

I2
0 ,I

2
1
f ′
1,

f3 ◦Λ (f2 ◦Λ f1) = f3h
J0,J1

I3
0 ,I

3
1
πf ′

1.

By Definition 3.20, hJ0,J1

I3
0 ,I

3
1
= h

I2
0
′,I2

1
′

I3
0 ,I

3
1
τ ; hence, we have

f3 ◦Λ (f2 ◦Λ f1) = f3h
J0,J1

I3
0 ,I

3
1
πf ′

1 = f3h
I2
0
′,I2

1
′

I3
0 ,I

3
1
τπf ′

1 = f3h
I2
0
′,I2

1
′

I3
0 ,I

3
1
f ′
2h

I1
0
′,I1

1
′

I2
0 ,I

2
1
f ′
1

= (f3 ◦Λ f2) ◦Λ f1,

where the second equality is due to Definition 3.20 (ii). This means the
associative law holds for the composition ◦Λ.

Analog to Proposition 3.10, we have the similar result on the following.

Proposition 3.22. The associative law of the composition ◦Λ of partial
ideal rooted cluster morphisms in Endpar(A(Σ)) holds. Then, with ◦Λ as
multiplication, Endpar(A(Σ)) is a semigroup with zero the zero-morphism,
including some zero-divisors.

In the sequel, we will use the theory of seed homomorphisms to discuss
on the Green’s equivalences of Endpar(A(Σ)) with Endpar(Σ).

4. Green’s equivalences in semigroup of partial seed
homomorphisms

It is well known that the theory of Green’s equivalences plays a signifi-
cant role in the algebraic theory of semigroups. They are concerned with
mutual divisibility of various kinds, and all of them reduce to the universal
equivalence in a group. For the use in this part, we need to introduce a
fundamental knowledge of the theory of Green’s equivalences and regular
semigroups referring to [17].

Given a semigroup S with a multiplication ·, there are five equivalent
relations, L,R,H,D and J , called Green’s equivalences on S. More pre-
cisely,

L on S is defined by the rule that for x, y ∈ S, xLy if Sx ∪ {x} = Sy ∪
{y} (left ideals).

R on S is defined by the rule that for x, y ∈ S, xRy if xS ∪ {x} = yS ∪
{y} (right ideals).
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H = L ∧R, the intersection of L and R, that is, for x, y ∈ S, xHy if xLy
and xRy.

D = L ∨R, the join of L and R. It is known that D = L ◦ R = R ◦ L.
Then for x, y ∈ S, xDy if and only if ∃ z ∈ S such that xLz and zRy and if
and only if ∃ w ∈ S such that xRw and wLy.

J on S is defined by the rule that for x, y ∈ S, xJ y if SxS ∪ xS ∪ Sx ∪
{x} = SyS ∪ yS ∪ Sy ∪ {y} as two-side ideals.

The equivalent classes of L,R,H,D and J are called L-classes, R-
classes, H-classes, D-classes and J -classes. For x ∈ S, the equivalent
class, including x, is written as Lx, Rx, Hx, Dx and Jx respectively.

From the definition, we have the relations among these equivalent classes
as that: H ⊆ L ⊆ D, H ⊆ R ⊆ D and D ⊆ J .

The following results are well-known.

Proposition 4.1. ([17]) If H is a H-class in a semigroup S, then either
H2 ∩H = ∅ or H2 = H and H is a subgroup of S.

Proposition 4.2. ([17]) Let x and y be two idempotents in a semigroup
S. Then xDy if and only if there exists an element a ∈ S and an inverse a′

of a such that aa′ = x and a′a = y.

An element x of a semigroup S is called regular if there exists another
element y ∈ S such that xyx = x. The semigroup S is called a regular
semigroup if all of its elements are regular. We have the following propo-
sitions.

Proposition 4.3. ([17]) If x is a regular element in a semigroup S, then
every element of Dx is regular. In this case, the D-class Dx is called regular.

Proposition 4.4. ([17]) In a regular D-class of a semigroup S, each L-
class and each R-class contain at least one idempotent.

By Proposition 3.10, Endpar(Σ) is a semigroup with zero element ∅. We
will characterize the classification of mixing-type sub-seeds of a seed under
isomorphisms and then give the classification of sub-rooted cluster algebras
in a rooted cluster algebra using the method of Green’s equivalences of
semigroups as mentioned above.

In general, the semigroup Endpar(Σ) is not regular. For example, if Σ is
the seed associate with the quiver Q : x1 �� x2 x3�� , then the partial
seed homomorphism f on Σ, satisfying f( x1 �� x2 ) = x2 x3�� and
f(x1) = x3 and f(x2) = x2, is not regular. Indeed, if f is regular, there exists
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g ∈ Endpar(Σ) such that f ◦ g ◦ f = f . From this, it follows that g(x2) = x2
and g(x3) = x1, and then |b23| = 2 > 1 = |bg(2)g(3)| = |b21|, which contradicts
the fact that g is a partial seed homomorphism.

By Proposition 4.1, the H-class HidI0,I1
is a group with identity idI0,I1

under the multiplication of Endpar(Σ). According to Proposition 4.3, the
D-class DidI0,I1

is regular since idI0,I1 is regular.
Denote by Aut(ΣI0,I1) the group of automorphisms of the mixing-type

sub-seed ΣI0,I1 in Seed.

Lemma 4.5. For f, g ∈ Endpar(Σ), (a) if fLg, then Σf = Σg; (b) if fRg,
then f(Σf ) = g(Σg).

Proof. (a) If fLg, then h ◦ f = g and h′ ◦ g = f for some h, h′ ∈ Endpar(Σ).
By Fact 3.8 (a), Σg is a mixing-type sub-seed of Σf since h ◦ f = g. Similarly,
Σf is a mixing-type sub-seed of Σg. Thus, Σf = Σg.

(b) If fRg, then f ◦ h = g and g ◦ h′ = f for some h, h′ ∈ Endpar(Σ).
By Fact 3.8 (b), g(Σg) is a mixing-type sub-seed of f(Σf ) since f ◦ h = g.
Similarly, f(Σf ) is a mixing-type sub-seed of g(Σg). Thus, f(Σf ) = g(Σg).

�

Lemma 4.6. In the semigroup Endpar(Σ), for I0, I
′
0 ⊆ X and I1, I

′
1 ⊆ X̃,

the following statements hold:

(1) If ΣI0,I1

ϕ∼= ΣI′
0,I

′
1
in Seed and f := idI′

0,I
′
1
ϕ and f−1 := idI0,I1ϕ

−1 ∈
Endpar(Σ), then fLidI0,I1 , f−1RidI0,I1 and fRidI′

0,I
′
1
, f−1LidI′

0,I
′
1
.

(2) ΣI0,I1
∼= ΣI′

0,I
′
1
in Seed if and only if idI0,I1DidI′

0,I
′
1
.

(3) HidI0,I1

∼= Aut(ΣI0,I1).

Proof. (1) As f ◦ idI0,I1 = f and f−1 ◦ f = idI0,I1 , we have fLidI0,I1 . Simi-
larly, f−1RidI0,I1 .

Dually, we can get fRidI′
0,I

′
1
and f−1LidI′

0,I
′
1
.

(2) “Only if”: Assume that ΣI0,I1

ϕ∼= ΣI′
0,I

′
1
, by (1), fLidI0,I1 and

idI′
0,I

′
1
Rf . Then, idI0,I1DidI′

0,I
′
1
.

“If”: If idI0,I1DidI′
0,I

′
1
, by Proposition 4.2, there exist f, g ∈ Endpar(Σ)

such that g ◦ f = idI0,I1 and f ◦ g = idI′
0,I

′
1
. By Lemma 4.5, f(ΣI0,I1) = ΣI′

0,I
′
1

and f1 : ΣI0,I1 → ΣI′
0,I

′
1
is an isomorphism, where f1(x) = f(x) for all x ∈

X̃ \ I1.
(3) We have HidI0,I1

as a group with identity idI0,I1 . According to (1),
for I0 = I ′0 and I1 = I ′1 and ϕ ∈ Aut(ΣI0,I1), we have idI0,I1ϕHidI0,I1 and
then idI0,I1ϕ ∈ HidI0,I1

. So, Aut(ΣI0,I1) → HidI0,I1
: ϕ �−→ idI0,I1ϕ is an injec-

tive group homomorphism.
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Conversely, assume f ∈ HidI0,I1
. Then fLidI0,I1 and fRidI0,I1 . It follows

that there exists g, g′ ∈ HidI0,I1
such that f ◦ g = idI0,I1 and g′ ◦ f = idI0,I1 ,

and then, by Lemma 4.5 (b), we have f(ΣI0,I1) = ΣI0,I1 . Since g ∈ HidI0,I1
,

then gLidI0,I1 . By Lemma 4.5 (a), Σg = ΣI0,I1 . Similarly, Σg′ = ΣI0,I1 . Then,
we have g(ΣI0,I1) = ΣI0,I1 and g′(ΣI0,I1) = ΣI0,I1 .

Owing to f ◦ g = idI0,I1 and g′ ◦ f = idI0,I1 , we have, respectively, the
maps of sets:

(f ◦ g)|X̃\I1 = idX̃\I1 and (f ◦ g)|X\(I0∪I1) = idX\(I0∪I1),

(g′ ◦ f)|X̃\I1 = idX̃\I1 and (g′ ◦ f)|X\(I0∪I1) = idX\(I0∪I1).

It follows that g|X̃\I1 = g′|X̃\I1 and g|X\(I0∪I1) = g′|X\(I0∪I1). Hence, by

the definition of seed homomorphisms, we have g = g′ : ΣI0,I1 → Σ, which
means f1 : ΣI0,I1 → f(ΣI0,I1) = ΣI0,I1 ∈ Aut(ΣI0,I1) and then, Aut(ΣI0,I1) →
HidI0,I1

: ϕ �−→ idI0,I1ϕ is a surjective group homomorphism. So, (1)
holds. �

Lemma 4.7. Let R be an R-class of Endpar(Σ). Then R is regular if and
only if there is an (I0, I1)-type sub-seed of Σ such that idI0,I1 ∈ R.

Proof. Assume that idI0,I1 ∈ R for some I0, I1. Since idI0,I1 is idempotent,
it is regular, and also, R is regular by Proposition 4.3.

Conversely, assume R is regular. By Proposition 4.4, there exists
an idempotent partial seed homomorphism (f,ΣI′

0,I
′
1
,Σ) in R. Denote

f(ΣI′
0,I

′
1
) = ΣI0,I1 . Hence, as a map of sets, f : X̃ \ I ′1 → X̃ \ I1 is surjective

and f = f |(X̃\I′
1)∩(X̃\I1) ◦ f . It follows that

#((X̃ \ I ′1) ∩ (X̃ \ I1)) ≥ #(Im(f2)) = #(Im(f)) = #(X̃ \ I1).

Thus, (X̃ \ I ′1) ∩ (X̃ \ I1) = X̃ \ I1, which means X̃ \ I1 ⊆ X̃ \ I ′1.
For any y ∈ X̃ \ I1, there exists x ∈ X̃ \ I ′1 such that f(x) = y.

So, f(y) = f(f(x)) = f(x) = y; thus, we have f |X̃\I1 = idX̃\I1 . Therefore,

f |ΣI0,I1
= idI0,I1 . Then, f ◦ idI0,I1 = idI0,I1 .

Now we show idI0,I1 ◦ f = f . Indeed, it suffices to prove that
Dom(idI0,I1 ◦ f) = Dom(f). It is easy to see that Dom(idI0,I1 ◦ f)ex = {x ∈
Dom(f)ex | f(x) ∈ Dom(idI0,I1)ex} = Dom(f)ex, If Dom(idI0,I1 ◦ f)fr ⊆
Dom(f)fr, then there exists a x ∈ Dom(f)fr such that f(x) ∈
Dom(idI0,I1)ex. According to the definition of image seed, it means
there exists a y ∈ Dom(f)ex such that f(y) = f(x). Since f ◦ f = f ,
if f(x) = f(y), then x, y ∈ Dom(f)ex or x, y ∈ Dom(f)fr. It contradicts
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to x ∈ Dom(f)fr, y ∈ Dom(f)ex. Therefore, we have Dom(idI0,I1 ◦ f)fr =
Dom(f)fr.

Thus, we have fRidI0,I1 . Hence, idI0,I1 ∈ R. �

Corollary 4.8. For a rooted cluster algebra A(Σ), a D-class D in the semi-
group Endpar(Σ) is regular if and only if there exists an (I0, I1)-type sub-seed
of Σ such that idI0,I1 ∈ D.

A seed homomorphism f : Σ1 → Σ2 is called a retraction if there exists
a seed homomorphism g : Σ2 → Σ1 such that fg = idΣ2

.

Lemma 4.9. Let f ∈ Endpar(Σ) from ΣI′
0,I

′
1
. Then, for a mixing-type sub-

seed ΣI0,I1 of Σ, fRidI0,I1 if and only if the following statements hold:
(a) f(ΣI′

0,I
′
1
) = ΣI0,I1;

(b) f1 : ΣI′
0,I

′
1
→ ΣI0,I1 is a retraction from ΣI′

0,I
′
1
to ΣI0,I1, where f1 is

defined from f by Remark 3.9;
(c) For x, y ∈ Dom(f), if f(x) = f(y), then either x, y ∈ Dom(f)ex or

x, y ∈ Dom(f)fr.

Proof. By Remark 3.9, f1 is defined to satisfy f1(x) = f(x) for all x ∈ X̃ \ I ′1.
“If”: Since f1 is a retraction, there exists g1 : ΣI0,I1 → ΣI′

0,I
′
1

such
that idΣI0,I1

= f1g1. If g = idI′
0,I

′
1
g1, then f ◦ g = idI0,I1f1 ◦ idI′

0,I
′
1
g1 =

idI0,I1f1g1 = idI0,I1 , where the second equality is due to the definition of
composition of f and g.

Since

Dom(idI0,I1 ◦ f)ex = {x ∈ Dom(f)ex | f(x) ∈ Dom(idI0,I1)ex}
by (a)
= Dom(f)ex,

Dom(idI0,I1 ◦ f)fr = {x ∈ Dom(f)fr | f(x) ∈ Dom(idI0,I1)fr}
by (c)
= Dom(f)fr

and (idI0,I1 ◦ f)(x) = idI0,I1(f1(x)) = f(x) for all x ∈ Dom(f). Hence, we
have f = idI0,I1 ◦ f . Thus, fRidI0,I1 .

“Only If” If fRidI0,I1 , then f ◦ g = idI0,I1 and idI0,I1 ◦ h = f for some
g, h ∈ Endpar(Σ). By Lemma 4.5 (b), we have f(ΣI′

0,I
′
1
) = (idI0,I1)(ΣI0,I1) =

ΣI0,I1 , i.e. (a) holds. As we have idI0,I1 = f ◦ g = idI0,I1f1g1, hence,
idI0,I1idΣI0,I1

= idI0,I1f1g1. Then by Remark 3.9 (b), it follows that f1g1 = idΣI0,I1
, i.e. (b)

holds.
For x, y ∈ X̃ \ I ′1 = Dom(f), let f(x) = f(y). Assume that x ∈

Dom(f)fr and y ∈ Dom(f)ex. Since idI0,I1 ◦ h = f , by Fact 3.8 (a), we have
x ∈ Dom(h)fr and y ∈ Dom(h)ex. Moreover, h(x) = idI0,I1(h(x)) = f(x) =
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f(y) = idI0,I1(h(y))
= h(y). Owing to the above assumption, we have x ∈ Dom(idI0,I1 ◦ h)fr
and y ∈ Dom(idI0,I1 ◦ h)ex. Then by (7) and (8), h(x) ∈ Dom(idI0,I1)fr and
h(y) ∈ Dom(idI0,I1)ex. But, it contradicts with h(x) = h(y). Therefore, the
above assumption is not true. Similarly, x ∈ Dom(f)ex and y ∈ Dom(f)fr
are also impossible. Hence, (c) follows. �

Lemma 4.10. For any mixing-type sub-seeds ΣI0,I1 and ΣI′
0,I

′
1
of Σ, it holds

that
(1) idI0,I1LidI′

0,I
′
1
if and only if ΣI0,I1 = ΣI′

0,I
′
1
;

(2) idI0,I1RidI′
0,I

′
1
if and only if ΣI0,I1 = ΣI′

0,I
′
1
.

Proof. It follows immediately by Lemma 4.5. �

Let f, f ′ ∈ Endpar(A(Σ)) be two noncontractible partial rooted cluster
morphisms. Now assume that the restricted partial seed homomorphisms
fS and f ′S in Endpar(Σ) via Proposition 3.14 are regular. Then we have the
following.

Lemma 4.11. Let (f,ΣI0,I1 ,Σ) ∈ Endpar(A(Σ)) be a noncontractible ideal
partial rooted cluster morphism with fS the restricted partial seed homo-
morphism by Proposition 3.14. Denote fS(ΣI0,I1) = ΣJ0,J1

. If fSRidJ0,J1

in Endpar(Σ), then there exists an ideal rooted cluster homomorphism g :
A(ΣJ0,J1

) → A(ΣI0,I1) such that f ◦Λ g = idA(ΣJ0,J1 )
and thus, fRidA(ΣJ0,J1 )

in Endpar(A(Σ)).

Proof. Since f is ideal, we have A(ΣJ0,J1
) = A(fS(ΣI0,I1)) = f(A(ΣI0,I1)).

Owing to fSRidJ0,J1
, by Lemma 4.9, fS

1 : ΣI0,I1 → ΣJ0,J1
is a retraction,

where f1(x) = f(x) for all x ∈ X̃ \ I ′1. Hence, there exists a seed homomor-
phism gS

′
: ΣJ0,J1

→ ΣI0,I1 such that fS
1 g

S′
= idΣJ0,J1

, which means that

gS
′
gives a bijection between the set of variables of ΣJ0,J1

and that of its
image seed. Owing to gS

′
((Xfr ∪ J0) \ J1) ⊆ (Xfr ∪ I0) \ I1, gS′

(ΣJ0,J1
) is a

mixing-type sub-seed of ΣI0,I1 of (∅, I ′1) type for

I ′1 = {x ∈ X̃ \ I1 | x 	∈ gS
′
(X̃ \ J1)}.

For any x, y ∈ X̃ \ J1, we have |bxy| ≤ |bgS′ (x)gS′ (y)| ≤ |bfS
1 gS′ (x)fS

1 gS′ (y)| =
|bxy|. Thus, |bxy| = |bgS′ (x)gS′ (y)|. Therefore, by definition of seed isomor-
phisms, we have

(13) ΣJ0,J1
∼= (ΣI0,I1)∅,I′

1
= gS

′
(ΣJ0,J1

),
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so gS
′
is injective.

Now we will use gS
′
to induce an injective rooted cluster morphism g.

Claim: A((ΣI0,I1)∅,I′
1
) is a rooted cluster subalgebra A(ΣI0,I1).

In fact, for any x ∈ I ′1, we have gS
′
fS
1 (x) 	= x since gS

′
fS
1 (x) ∈

gS
′
(X̃ \ J1), whereas x 	∈ gS

′
(X̃ \ J1). For any y ∈ X \ (I0 ∪ I1 ∪ I ′1), by

CM3, we have f(μy(y)) = μf(y)(f(y)). Moreover, since f(gS
′
fS
1 (x)) =

(fS
1 g

S′
)(fS

1 (x)) = fS
1 (x), comparing the exponents of f(y) in both sides of

f(μy(y)) = μf(y)(f(y)), we get

(14) |by(gS′fS
1 )(x)|+ |byx| ≤

∑
z∈X̃\I1,f(z)=f(x)

|byz| = |bfS(y)fS(x)|.

As f(gS
′
fS
1 (y)) = f(y), we have gS

′
fS(y) = y since two exchangeable vari-

ables can not have the same image for a rooted cluster morphism according
to CM3. Furthermore, since fS

1 (y) and fS
1 (x) ∈ X̃ \ J1, we obtain

(15) |bfS
1 (y)fS

1 (x)| = |b(gS′fS
1 )(y)(gS′fS

1 )(x)| = |by(gS′fS
1 )(x)|.

Combining (14) and (15), we obtain that byx = 0. By Theorem 3.18,
A((ΣI0,I1)∅,I′

1
) is a rooted cluster subalgebra of A(ΣI0,I1).

Following this claim, we have an injective rooted cluster morphism ι :
A((ΣI0,I1)∅,I′

1
) → A(ΣI0,I1).

Let A(ΣJ0,J1
)

g′
∼= A((ΣI0,I1)∅,I′

1
) be the rooted cluster isomorphism

obtained from the seed isomorphism (13).
We then obtain an injective rooted cluster morphism g = ιg′ :

A(ΣJ0,J1
) → A(ΣI0,I1).

Since fS
1 g

S′
= idΣJ0,J1

, we get f1ιg
′|X̃\J1

= idX̃\J1
; thus, it follows

f1ιg
′ = idA(ΣJ0,J1 )

.
Denote (ΣI0,I1)∅,I′

1
= ΣK0,K1

for K0 = I0 \ I ′1 and K1 = I1 ∪ I ′1.
Since ι : A(ΣK0,K1

) → A(ΣI0,I1) is injective, hK0,K1

I0,I1
= hI0,I1I0,I1

ι =

idA(ΣI0,I1 )
ι by Definition 3.20 (ii). Thus, we have f ◦Λ g = fhK0,K1

I0,I1
g′ =

fιg′ = idA(ΣJ0,J1 )
.

By Lemma 3.17, f : A(ΣI0,I1)
f1� A(ΣJ0,J1

)
τ
↪→ A(Σ) with f1 and τ ,

respectively, the surjective and injective rooted cluster morphisms. Then,
it holds idA(ΣJ0,J1 )

◦Λ f = idA(ΣJ0,J1 )
hJ0,J1

J0,J1
f1 = idA(ΣJ0,J1 )

idA(ΣJ0,J1 )
gf1 =

τidA(ΣJ0,J1 )
f1

= τf1 = f . Hence, fRidA(ΣJ0,J1 )
in Endpar(A(Σ)). �
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5. Proofs of Theorem 1.1, Theorem 1.2 and Theorem 1.3

5.1. Green’s equivalences in Endpar(Σ)

Now we can obtain the characterization of Green’s equivalences in
Endpar(Σ), as follows as given in Theorem 1.1 except of the J -relation.

Proof of Theorem 1.1.

Proof. Denote the image seeds as ΣJ0,J1
= f(ΣI0,I1) and ΣJ ′

0,J
′
1
= f ′(ΣI′

0,I
′
1
).

(1) “If”: According to Lemma 4.7 and Lemma 4.9, since f, f ′ are regular,
we have fRidJ0,J1

and f ′RidJ0,J1
; thus, fRf ′.

“Only If”: By Lemma 4.7, there exists idI′′
0 ,I

′′
1
such that fRidI′′

0 ,I
′′
1
and

f ′RidI′′
0 ,I

′′
1
hold. By Lemma 4.9, (a) holds.

(2) “If”: We have ΣJ0,J1

g∼= ΣJ ′
0,J

′
1
and f ′ = (idJ ′

0,J
′
1
g) ◦ f . Thus,

(idJ0,J1
g−1) ◦ f ′ = (idJ0,J1

g−1) ◦ ((idJ ′
0,J

′
1
g) ◦ f) = f.

Therefore, fLf ′.
“Only If”: Owing to fLf ′, by Lemma 4.5, (c) follows.
From f ′ = g ◦ f and f = g′ ◦ f ′, we get f = g′ ◦ g ◦ f and f ′ = g ◦ g′ ◦

f ′. Denote Σg = ΣK0,K1
and Σg′ = ΣK′

0,K
′
1
. Let g = idK0,K1

g1 and g′ =
idK′

0,K
′
1
g′1. By the definition of composition of partial seed homomor-

phisms, for any y ∈ X̃ \K1, there exists x ∈ X̃ \ I1 such that y = f(x); thus,
g′1g1(y) = g′g(y) = g′g(f(x)) = f(x) = y. Hence, we have g′1g1 = idX̃\K1

.

Similarly, g1g
′
1 = idX̃\K′

1
. It means g′1g1 = idΣK0,K1

and g1g
′
1 = idΣK′

0
,K′

1
. By

Lemma 3.4, g1 : ΣJ0,J1
→ ΣJ ′

0,J
′
1
is a seed isomorphism, that is, (e) follows.

(3) It follows directly from the definition of H-relation and by (1) and
(2).

(4) According to Lemma 4.7 and Lemma 4.9, since f, f ′ are regular, we
have fRidJ0,J1

and f ′RidJ0,J1
.

“Only If”: Since fDf ′, we get idJ0,J1
DidJ ′

0,J
′
1
. Therefore, by Lemma 4.6

(2), ΣJ0,J1
∼= ΣJ ′

0,J
′
1
.

“If”: Since ΣJ0,J1
∼= ΣJ ′

0,J
′
1
, we have idJ0,J1

DidJ ′
0,J

′
1
by Lemma 4.6 (2).

Thus, we have fDf ′. �
As a remaining question, it needs to be considered in further work how

to characterize the J -relation in Endpar(Σ).
As a simple application of Green’s equivalences, we now give an fact of

regular elements in Endpar(Σ(Q)) for a linear quiver Q of type An, where
Σ = Σ(Q) means the seed determined in by Q, whose cluster variables are
correspondent to the vertices of Q including frozen variables corresponding
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to the frozen vertices of Q and whose exchange matrix is the skew-symmetric
matrix determined by the number of arrows between vertices.

Two subsets S1, S2 ⊆ of X̃ are said to be linked if there are s1 ∈ S1, s2 ∈
S2 such that bs1s2 	= 0.

Each (I0, I1)-type seed ΣI0,I1 of Σ can be decomposed as
⊔

Σi, where
the mixing-type sub-seed Σi is determined by a connected component of
the corresponding quiver of ΣI0,I1 . All such Σi are called the connected

components of ΣI0,I1 . Write Σi = (Xi, B̃i). Let f : ΣI0,I1 → Σ be a partial
seed homomorphism, denote fi = f |Σi

.

Lemma 5.1. Let Σ = Σ(Q), with a partial seed homomorphism f : ΣI0,I1 →
Σ in Endpar(Σ). Give two statements:

(a) For i, j, if f(X̃i) and f(X̃j) are linked, then there is k ∈ Q0 such

that f(X̃i ∪ X̃j) ⊆ f(X̃k).

(b) For x, y ∈ X̃ \ I1, if f(x) = f(y), then x, y ∈ X \ (I0 ∪ I1) or x, y ∈
(Xfr \ I1) ∪ I0.
Then,

(1) If f is regular, then (a) and (b) hold.
(2) Conversely, assume Q is a linear quiver of type An, then if (a) and

(b) hold, we have f : ΣI0,I1 → Σ is regular in Endpar(Σ).

Proof. Assume that f(ΣI0,I1) is decomposed as
⊔

Σ′
i′ (see [18]) for a finite

index I ′. Denote Σ′
i′ = (X ′

i′ , B̃
′
i′), where the mixing-type sub-seed Σ′

i′ is
determined by a connected component of the corresponding quiver of
f(ΣI0,I1).

(1) We have g ∈ Endpar(Σ) such that f ◦ g ◦ f = f . Without loss of gen-
erality, assume Dom(g) = f(ΣI0,I1). The condition (b) holds. Otherwise,
there exist x ∈ X \ (I0 ∪ I1) and y ∈ (Xfr \ I1) ∪ I0 with f(x) = f(y), then
x and y can not both in the domain of f ◦ g ◦ f according to the definition.
It is a contradiction.

For (a), if f(X̃i) and f(X̃j) are linked, then there exists x ∈ f(X̃i), y ∈
f(X̃j) such that bxy 	= 0, that is, f(X̃i) and f(X̃j) are in the same connected

component Σ′
k′ of f(ΣI0,I1). Thus, f(X̃i ∪ X̃j) = f(X̃i) ∪ f(X̃j) ⊆ X̃ ′

k′ .

As f ◦ g ◦ f = f , so g(X̃ ′
k′) ⊆ X̃k for some k. Since f(x′) = x and

f ◦ g ◦ f = f , we have x = fgf(x′) ∈ f(g(X̃ ′
k′)) ⊆ f(X̃k). Therefore, x ∈

f(X̃k) ∩ X̃ ′
k′ . As Σ′

k′ is a connect component and f(Σk) is connected,

we have f(X̃k) ⊆ X̃ ′
k′ . For any z ∈ X̃ ′

k′ , there exists w ∈ X̃ \ I1 such that
f(w) = z. By f ◦ g ◦ f = f , we have fgf(w) = fg(z) = f(w) = z. Moreover,

since z ∈ X̃ ′
k′ and g(X̃ ′

k′) ⊆ X̃k, we have z = fg(z) ∈ f(X̃k), it means that
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X̃ ′
k′ ⊆ f(X̃k). Thus, we obtain that X̃ ′

k′ = f(X̃k). Therefore, f(X̃i ∪ X̃j) =

f(X̃i) ∪ f(X̃j) ⊆ X̃ ′
k′ = f(X̃k) which means the result.

(2) The condition (a) means that there exists an i ∈ I such that f(X̃i) =

X̃ ′
i′ for each i′ ∈ I ′. Otherwise, we may assume that X̃ ′

i′ = f(X̃1) ∪ f(X̃2).

As Σi′ is connected, so f(X̃1) and f(X̃2) are linked. Hence by (a) there exists

i such that X̃ ′
i′ = f(X̃1 ∪ X̃2) ⊆ f(X̃i). As Σi′ is a connected component of

f(ΣI0,I1), so we have X̃ ′
i′ = f(X̃i).

The condition (b) ensures that f(x) ∈ Σ′
i′ is frozen if x ∈ Σi is frozen.

In fact, note that x is in the image seed f(ΣI0,I1), if f(x) is exchangeable in
Σ′
i′ , then there is an exchangeable variable y such that f(y) = f(x) by the

definition of image seed. It contradicts to (b).
Since Q is a linear quiver of type An, it is easy to see that f |Σi

: Σi →
Σ′
i′ is an isomorphism for each i. Thus, for the seed homomorphism f1 :

ΣI0,I1 → f(ΣI0,I1) satisfying f1(x) = f(x) for all x ∈ X̃ \ I1, we have a seed
homomorphism g : f(ΣI0,I1) → ΣI0,I1 such that f1g = idf(ΣI0,I1 )

. Therefore,
fRidf(ΣI0,I1 )

by Lemma 4.9, and then f is regular by Proposition 4.3. �

By Lemma 5.1, we have the following byproduct.

Corollary 5.2. Let Q be a linear quiver of type An and Σ = Σ(Q). If a
partial seed homomorphism f : ΣI0,I1 → Σ in Endpar(Σ) is regular, then its
f1 : ΣI0,I1 → f(ΣI0,I1) is a retraction.

Proof. By Lemma 5.1 (1), the conditions (a) and (b) hold. Then from the
proof of Lemma 5.1 (2), we have a seed homomorphism g : f(ΣI0,I1) → ΣI0,I1

such that f1g = idf(ΣI0,I1 )
. �

5.2. Continuation of Green’s equivalences

Here, we characterize in Theorem 1.2 the Green’s equivalences in
Endpar(A(Σ)) via the corresponding relations in Endpar(Σ).

Proof of Theorem 1.2.

Proof. Denote fS(ΣI0,I1) = ΣJ0,J1
and f ′S(ΣI′

0,I
′
1
) = ΣJ ′

0,J
′
1
.

First, we prove in the case for F = R. “If”: By Lemma 4.7 and Theorem
1.1 (1), we have fSRidJ0,J1

and f ′SRidJ ′
0,J

′
1
. According to Lemma 4.11, we

have fRidA(ΣJ0,J1 )
and f ′RidA(ΣJ0,J1 )

. Therefore, we have fRf ′.
“Only If”: Since fRf ′, there exist g, g′ ∈ Endpar(A(Σ)) such that f =

f ′ ◦Λ g′ and f ′ = f ◦Λ g. By Lemma 3.17, we have g = τg1 and g′ = τ ′g′1 for
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some surjective rooted cluster morphisms g1, g
′
1 and injective rooted clus-

ter morphisms τ, τ ′. Thus, f ◦Λ g = fhg1 = f ′ and f ′ ◦Λ g′ = f ′h′g′1 = f for
some ideal rooted cluster morphisms h and h′. It follows that

(16) fhg1 = f ′ and f ′h′g′1 = f.

Since f is noncontractible, we have f(x) 	∈ Z for all x ∈ X̃ \ I1. Then, using
(16), h′g′1 is noncontractible. Similarly, hg1 is noncontractible. Hence, the
partial seed homomorphisms (hg1)

S and (h′g′1)S determined by hg1 and h′g′1,
respectively, due to Proposition 3.14 are in Endpar(Σ). From (16) , Lemma
3.19 and by definition, we have fS ◦ (hg1)S = f ′S and f ′S ◦ (h′g′1)S = fS .
Therefore, fSRf ′S .

Second, we prove in the case F = L. By Lemma 3.17, we have

f : A(ΣI0,I1)
f1� A(ΣJ0,J1

)
τ
↪→ A(Σ) and f ′ : A(ΣI′

0,I
′
1
)

f ′
1� A(ΣJ ′

0,J
′
1
)

τ ′
↪→ A(Σ).

“Only if”: By Theorem 1.1 (2), we have ΣI0,I1 = ΣI′
0,I

′
1
and there exists

a seed isomorphism φ : ΣJ0,J1
→ ΣJ ′

0,J
′
1
such that f ′S = φfS . By Proposition

3.16, there is a rooted cluster isomorphism φ̃ : A(ΣJ0,J1
) → A(ΣJ ′

0,J
′
1
). Since

f ′S = φfS , we have φ̃f1(x) = φfS(x) = f ′S(x) = f ′
1(x) for any x ∈ X̃ \ I1,

that is, f ′
1|X̃\I′

1
= φ̃f1|X̃\I′

1
. Moreover, since f ′

1 and φ̃f1 are noncontractible,

by Lemma 3.15, it follows that f ′
1 = φf1.

Let g = τ ′φ and g′ = τφ−1. Therefore,

g ◦Λ f = τ ′φhJ0,J1

J0,J1
f1 = τ ′φidA(ΣJ0,J1 )

f1 = τ ′f ′
1 = f ′.

Similarly, f = g′ ◦Λ f ′. Thus, we have fLf ′.
“If”: Since fLf ′, there exist g, g′ ∈ Endpar(A(Σ)) such that g ◦Λ f =

ghf1 = f ′ and g′ ◦Λ f ′ = g′h′f ′
1 = f for some h, h′ ∈ Λ. It is clear that

ΣI0,I1 = ΣI′
0,I

′
1
. Now we show f ′S = (idJ ′

0,J
′
1
ϕ′S) ◦ fS with a seed isomorphism

ϕ′S : ΣJ0,J1
∼= ΣJ ′

0,J
′
1
.

From f(A(ΣI0,I1)) = A(ΣJ0,J1
) and f ′

1(A(ΣI0,I1)) = A(ΣJ ′
0,J

′
1
), we have

g′h′(A(ΣJ ′
0,J

′
1
)) = A(ΣJ0,J1

). By Lemma 3.17, there exists a surjective rooted
cluster morphism ϕ : A(ΣJ ′

0,J
′
1
) → A(ΣJ0,J1

) such that g′h′ = τϕ. Thus,
τϕf ′

1 = g′h′f ′
1 = f = τf1.

But, since τ is injective, we get ϕf ′
1 = f1. Similarly, there exists a

surjective rooted cluster morphism ϕ′ : A(ΣJ0,J1
) → A(ΣJ ′

0,J
′
1
) such that

ϕ′f1 = f ′
1. Hence, ϕϕ

′f1 = f1 and ϕ′ϕf ′
1 = f ′

1.
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Moreover, since Imf1 = A(ΣJ0,J1
) and Imf ′

1 = A(ΣJ ′
0,J

′
1
), we obtain

ϕϕ′ = idA(ΣJ0,J1 )
and ϕ′ϕ = idA(ΣJ′

0
,J′

1
). Thus, the restricted seed homomor-

phisms ϕS and ϕ′S of ϕ and ϕ′, respectively, are isomorphisms:

ΣJ ′
0,J

′
1

ϕS

∼= ΣJ0,J1
and ΣJ0,J1

ϕ′S
∼= ΣJ ′

0,J
′
1
.

Owing to f ′
1 = ϕ′f1, analyzing on each initial cluster variables, we have

f ′S = (idJ ′
0,J

′
1
ϕ′S) ◦ fS .

In summary, by Theorem 1.1 (2), the result holds for the case F = L.
Since H = L ∧R and H = L ∨R, the cases F = H and F = D follow

immediately. �

We call the connection given in this theorem and its proof the contin-
uation of Green’s equivalences from Endpar(Σ) to Endpar(A(Σ))

5.3. Iso-classes of sub-rooted cluster algebras via regular
D-classes

As the embody of the meaning of Green’s equivalences in cluster algebras, we
now give in Theorem 1.3 a one-to-one correspondence between the isomor-
phic classes of sub-rooted cluster algebras of A(Σ) and the regular D-classes
in Endpar(Σ).

An isomorphism of two sub-rooted cluster algebras of a rooted cluster
algebra is under the meaning of rooted cluster isomorphism, replying on the
fact from Proposition 3.16.

Proof of Theorem 1.3.

Proof. By the definition of sub-rooted cluster algebra, A(Σ′) ∼= A(ΣI0,I1) for

some I0 ⊆ X and I1 ⊆ X̃, then [A(Σ′)] = [A(ΣI0,I1)]. By Proposition 3.16,
Σ′ ∼= ΣI0,I1 in Seed.

According to Lemma 4.6, ϕ is well-defined. By Corollary 4.8, for any reg-
ular D-classD, there exist I0 and I1 such that idI0,I1 ∈ D, which is equivalent
to DidI0,I1

= D. Therefore, ϕ([A(ΣI0,I1)]) = D, that is, ϕ is surjective.
If D = DidI0,I1

= DidI′
0
,I′

1
, then idI0,I1DidI′

0,I
′
1
. By Lemma 4.6, if we have

ΣI0,I1
∼= ΣI′

0,I
′
1
, then [A(ΣI0,I1)] = [A(ΣI′

0,I
′
1
)]. It means that ϕ is injective.

�

By this theorem and Theorem 3.18, as an application, we obtain the
following.
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Corollary 5.3. For a rooted cluster algebra A(Σ) and its mixing-type sub-
rooted cluster algebra A(Σ′), the following hold:

(1) A(Σ′) is a pure cluster subalgebra of A(Σ) if and only if there exists
I0 ⊆ X such that idI0,∅ belongs to the corresponding regular D-class of A(Σ′).

(2) A(Σ′) is a pure sub-cluster algebra of A(Σ) if and only if there exists
I1 ⊆ X̃ such that id∅,I1 belongs to the corresponding regular D-class of A(Σ′).

(3) A(Σ′) is a rooted cluster subalgebra of A(Σ) if and only if there exist
I0 ⊆ X and I1 ⊆ X̃ such that idI0,I1 belongs to the corresponding regular

D-class of A(Σ′) and bxy = 0 for x ∈ X \ (I0 ∪ I1) and y ∈ I1 in B̃.

In summary of the above discussion, for a given rooted cluster algebra
A(Σ), we now obtain the following conclusions:

(1) In a regular D-class D, each R-class R contains just one idempotent
in the form idI0,I1 (by Lemma 4.7, Corollary 4.8 and Lemma 4.10(2)).

(2) In a regular D-class D, each L-class L contains at most one idempo-
tent in the form idI0,I1 (by Lemma 4.10(1)).

(3) The number of H-classes containing identity in the form idI0,I1 is
equal to that of the regular R-classes and is not larger than that of the
regular L-classes (by H = L ∧R, (1) and (2) and Proposition 4.1).

(4) The H-class HI0,I1 containing idI0,I1 is isomorphic to the automor-
phism group of ΣI0,I1 (by Lemma 4.6(3)).

(5) The number of isomorphism classes of sub-rooted cluster algebras of
type (I0, I1) in A(Σ) is equal to that of regular D-classes in Endpar(Σ) (by
Theorem 1.3).

6. Sub-rooted cluster algebras from Riemannian surfaces

In this part, we firstly characterize sub-rooted cluster algebras of rooted
cluster algebras from oriented Riemanian surfaces via paunched surfaces.
Moreover, we build the relation between sub-rooted cluster algebras from
Riemannian surfaces and the corresponding surfaces by cutting and paunch-
ing at arcs, which is called paunched surfaces from the original surfaces,
defined in the sequel, and then find the connection to regular D-classes of
the semigroup consisting of partial seed homomorphisms.

Cluster algebras arising form surfaces are introduced in [8][9]. Let (S,M)
be a Riemannian surface with M the set of marked points. A tagged arc
is an arc in which each end has been tagged in one of two ways, plain
or notched, which satisfies some conditions. A tagged triangulation T is a
maximal collection of pairwise compatible tagged arcs in (S,M). A lamina-
tion L on (S,M) is a finite collection of non-self-intersecting and pairwise
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non-intersecting curves in S, modulo isotopy relative to M , subject to some
restrictions. For details, refer to [9]. A multi-lamination L is a finite family
of laminations.

It is well known [9] that the seeds of a cluster algebra A(S,M) are
one-to-one correspondent to the tagged triangulations of (S,M), as well as
the exchangeable variables are one-to-one correspondent to the tagged arcs
in (S,M) and the frozen variables are one-to-one correspondent to multi-
laminations.

In [9], τ is defined as the map from the untagged arcs to the tagged
arcs. More precisely, if γ does not cut out a once-punctured monogon (i.e.
a loop with a puncture point inside), then τ(γ) is γ with both ends tagged
plain. Otherwise, let γ be a loop, based at a marked point a, cutting out a
punctured monogon with the sole puncture b inside it. Let β be the unique
arc connecting a and b and compatible with γ. Then τ(γ) is obtained by
tagging β plain at a and notched at b.

Theorem 6.1. ([8],Theorem 7.11) Assume that (S,M) is not a closed sur-
face with one or two punctures. Let A be a cluster algebra with B(A) =
B(S,M). Then the cluster complex of A is isomorphic to the tagged arc
complex.

Theorem 6.2. ([9],Theorem 13.6) For a fixed tagged triangulation T , the
map L → (bγ,L(T ))γ∈T is a bijection between integral unbounded measured
laminations and Zn.

In Theorem 6.2, bγ,L(T ) = bγ(T, L) is the Shear coordinate of L with
respect to the triangulation T , which is defined as a sum of contributions
from all intersections of curves in L with the arc γ. For details, see [9].

This theorem means that the laminations on a surface (S,M) are one-by-
one correspondence to the frozen variables in the cluster algebras associate
with (S,M). So, we also use x to denote the Lamination on (S,M) in case
x is a frozen variable.

Definition 6.3. Assume that T is a tagged triangulation of (S,M), x is
an exchangeable cluster variables in the seed Σ(T ) from T . Without loss of
confusion, we also write x as the corresponding tagged arc in T . Let (Sx,M)
be the new Riemaninan surface which is constructed from (S,M) through
cutting along the arc x. More precisely, there are five cases respectively, see
Figure 1 corresponding to (1) x is not a loop with the two end points are
on the boundary, (2) x is a loop with the endpoint on the boundary, (3) x
connects one marked point on the boundary and one puncture, (4) x is not a
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loop with the end points are two punctures, (5) x is a loop with the endpoint
is a puncture. For details, see [23], [25]. In order to use such surface in the
five cases conveniently, we call it the x-paunched surface from (S,M).
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Denote by Tx the corresponding tagged triangulation of (Sx,M). More
precisely, assume that T o is the ideal triangulation associated with T and xo

is the arc in T o corresponding to x. If xo is not in a self-fold triangle, then
Tx is obtained by delete x and making all arcs are tagged plain at the end
points of x. See Figure 2 (1); if xo in a self-fold triangle in T o, assume that
yo is the another arc of the self-fold triangle and y is the tagged arc in T
corresponding to yo, then Tx = (T \ {x, y}) ∪ {z}, where z is the unfolded
arc in the self-fold triangle, see Figure 2 (2).

Now we give the corresponding lamination Lx when we freeze an
exchangeable cluster variable x.
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In case (1), when x is not a loop with the two end points are on the
boundary. Choose an unmarked point a+ (a− respectively) on the boundary
of S which lying on the counterclockwise (clockwise respectively) orientation
of a. Similarly, we can pick up b+and b− on the boundary. Let L+

x be the
curve (up to isotopy relative to M) in Sx connecting a+ and b− such that

the arcs â′a+L+
x b̂

−b′ and x′ are isotopy relative to M , where â′a+ means the
arc on the boundary of Sx which from a′ to a+. Dually, we can define curve
L−
x . In this case, setting Lx = {L+

x , L
−
x }. See Figure 3 (1).

In case (2), when x is a loop with the endpoint on the boundary. Choose
an unmarked point a+ (a− respectively) on the boundary of S which lying
on the clockwise (counterclockwise respectively) orientation of a′ (a′′ respec-
tively). Let L+

x be the curve (up to isotopy relative to M) in Sx connecting

a+ and a− such that the arcs â′a+L+
x â

−a′′ and x′ are isotopy relative to M ,

where â′a+ means the arc on the boundary of Sx which from a′ to a+. Let
L−
x be a loop (up to isotopy relative to M) in the area enclosed by x′′ such

that there are no marked points between L−
x and x′′ excepting a. In this

case, setting Lx = {L+
x , L

−
x }. See Figure 3 (2).

In case (3), when x connects one marked point on the boundary and one
puncture. Choose an unmarked point a+ (a− respectively) on the boundary
of S which lying on the counterclockwise (clockwise respectively) orientation
of a′ (a′′ respectively). Let L+

x be the curve (up to isotopy relative to M) in

Sx connecting a+ and a− such that the arcs â′a+L+
x â

−a′′ and x′ are isotopy
relative to M , where â′a+ means the arc on the boundary of Sx which from
a′ to a+. See Figure 3 (3).

In case (4), when x is not a loop with the end points are two punctures.
Let Lx be a loop (up to isotopy relative to M) surroundings x′ and x′′ such
that there are no marked points between Lx and the loop formed by x′ and
x′′ excepting a and b. See Figure 3 (4).

In case (5), when x is a loop with the endpoint is a puncture. Let L+
x be

a loop (up to isotopy relative to M) surroundings x′ such that there are no
marked points between L+

x and x+ and x′ excepting a′. Let L−
x be a loop

(up to isotopy relative to M) in the area enclosed by x′′ such that there
are no marked points between L−

x and x′′ excepting a′′. In this case, setting
Lx = {L+

x , L
−
x }. See Figure 3 (5).

In case xo is not contained in a self-folded triangle and x has just one
endpoint tagged notch (we regard a loop x with the endpoints are tagged
notch to this case). Let γ be a curve in L for some L ∈ L. If γ does not spiral
into the endpoints of x, assume that x divides γ into γ1, · · · , γk for some k,
define γx to be subset of {γi | i = 1, · · · , k} obtained by deleting the curves
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which are not allowed in a lamination. If γ spirals into an endpoint of x,
let γ′ be the curve spirals into the same point as γ with opposite direction,
assume that x divides γ′ into · · · , γ′1, · · · , γ′k, · · · , define γx to be the subset
of {γ′i | i = · · · , 1, · · · , k, · · · } obtained by deleting the curves which are not
allowed in a lamination. Note that since γ spirals into an endpoint of x,
there are only finite curves in γx. Denote L(x) =

⋃
γ∈L

γx.

In case xo is not contained in a self-folded triangle and both endpoints
of x tagged notch or tagged plain. Let γ be a curve in L for some L ∈ L.
If γ does not spiral into the endpoints of x, assume that x divides γ into
γ1, · · · , γk for some k, define γx to be subset of {γi | i = 1, · · · , k} obtained
by deleting the curves which are not allowed in a lamination. If γ spirals
into an endpoint of x, assume that x divides γ into · · · , γ1, · · · , γk, · · · , define
γx to be the subset of {γi | i = · · · , 1, · · · , k, · · · } obtained by deleting the
curves which are not allowed in a lamination. Note that since γ spirals into
an endpoint of x, there are only finite curves in γx. Denote L(x) =

⋃
γ∈L

γx.

In case xo is contained in a self-folded triangle and xo is folded. Let γ
be a curve in L for some L ∈ L. If γ does not spiral into the endpoints of x,
assume that z divides γ into γ1, · · · , γk for some k, define γx to be subset of
{γi | i = 1, · · · , k} obtained by deleting the curves which are not allowed in a
lamination. If γ spirals into an endpoint of x, let γ′ be the curve spirals into
the same point as γ with opposite direction, assume that x divides γ′ into
· · · , γ′1, · · · , γ′k, · · · , define γx to be the subset of {γ′i | i = · · · , 1, · · · , k, · · · }
obtained by deleting the curves which are not allowed in a lamination. Note
that since γ spirals into an endpoint of x, there are only finite curves in γx.
Denote L(x) =

⋃
γ∈L

γx.
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In case xo is contained in a self-folded triangle and xo is unfolded. Let γ
be a curve in L for some L ∈ L. If γ does not spiral into the endpoints of x,
assume that x divides γ into γ1, · · · , γk for some k, define γx to be subset of
{γi | i = 1, · · · , k} obtained by deleting the curves which are not allowed in
a lamination. If γ spirals into an endpoint of x, assume that x divides γ into
· · · , γ1, · · · , γk, · · · , define γx to be the subset of {γi | i = · · · , 1, · · · , k, · · · }
obtained by deleting the curves which are not allowed in a lamination. Note
that since γ spirals into an endpoint of x, there are only finite curves in γx.
Denote L(x) =

⋃
γ∈L

γx.

In both cases, let L(x) = {L(x)| L ∈ L}.
Figure 4 illustrates the case that xo is contained in a self-folded triangle

and xo is unfolded and γ spirals into the endpoints of x.

x

y

r r
x

z

x
0

x
00

S Sx

Figure 4

We have the following observations,

Lemma 6.4. With the assumptions as above, let (S,M) be a marked sur-
face, T be a tagged triangulation and L be a multi-lamination of (S,M).
Denote by Σ(S,M,L, T ) the seed determined by L and T . Let x be a cluster
variable of Σ(S,M,L, T ). Then
(1) A(Σ(S,M,L, T )∅,{x}) is a cluster algebra arising from certain surface,
more explicitly,

(a) If x is a frozen variable, then A(Σ(S,M,L, T )∅,{x}) = A(Σ(S,M,L \
{x}, T ));

(b) If x ∈ T is a tagged arc, then A(Σ(S,M,L, T )∅,{x}) =
A(Σ(Sx,M,Lx, Tx));
(2) A(Σ(S,M,L, T ){x},∅) is a cluster algebra arising from the surface
(Sx,M), more explicitly,

A(Σ(S,M,L, T ){x},∅) = A(Σ(Sx,M,Lx ∪ {Lx}, Tx)).
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Proof. (1) (a) It is clear since the frozen variable x correspondence to the
lamination x.

(b) Assume B̃(T ) =

(
B(T )

(byL)y∈T,L∈L

)
, B̃(Tx) =(

B(Tx)
(b′yL(x))y∈Tx,L(x)∈L(x)

)
.

Let T o be the ideal triangulation associate to T . By the definition, the
exchange matrix B(T ) is constructed by T o. Let T o

x be the ideal trian-
gulation associate to Tx. If xo is not in a self-folded triangle, then T o

x is
obtained from T 0 by deleting xo. Thus, for any two arcs w,w′ 	= xo in T o,
we have bww′(T o) = bww′(T o

x ). If xo is in a self-folded triangle, assume z′

is the folded arc in the self-folded triangle. According to our construction,
we have T o

x = T o \ {z′}. Thus, for any two arcs w,w′ 	= z′ in T o, we have
bww′(T o) = bww′(T o

x ). Therefore, in both cases, we have B(T )∅,{x} = B(Tx).
Let L be a lamination in L, γ ∈ L and y( 	= x) be an arc in (S,M) which

does not intersect with x.
In case x, y share a puncture P as their common endpoints and

γ spirals into P . Assume that x divides γ into · · · , γ1, · · · , γk, · · · . If
τ−1(x) and τ−1(y) are not in a self-folded triangle, since the arcs in
{· · · , γ1, · · · , γk, · · · } \ γx do not contribute to Shear coordinate. Thus, the
intersections of γx and y are locally the same as the intersections of γ and
y. If τ−1(x) and τ−1(y) are in a self-folded triangle, assume that z is the
unfolded arc in the self-folded triangle, since byL is defined via the arc z. By
the construction of γx, the intersections of γx and z are locally the same as
the intersections of γ and z.

Otherwise, x, y share a puncture P as their common endpoints but γ does
not spiral into P or x, y do not share a puncture as their common endpoints.
Note that for any curve γ ∈ L which does not spirals into the endpoints of
x and arc y which does not share a puncture as there common endpoints,
according to our definition of γx, it can been seen that the intersections of
γx and y are locally the same as the intersections of γ and y.

Thus, we have byL = b′yL(x) . It follows (B̃(T ))∅,x = B̃(Tx). Therefore, the
result holds.

(2) Assume B̃(T ) =

(
B(T )

(byL)y∈T,L∈L

)
, B̃(Tx) =⎛⎝ B(Tx)

(b′yL(x))y∈Tx,L(x)∈L(x)

(b′yLx
)y∈Tx

⎞⎠.

By discussion on the corresponding lamination Lx while freezing an
exchangeable variable x, analysis case by case (See Figure 3), we can see that
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the Shear coordinate by(T, Lx) contributes +1 (−1 respectively) if and only
if there exists a triangle Δ such that byx = 1 (byx = −1 respectively). If the
Shear coordinate by(T, Lx) contributes 0, then there exists no triangle such
that byx = 1 or byx = −1. For example, in the case (1), we have illustrated
Figure 5 for explanation. In fact, by(T, Lx) = byx = 0, bz(T, Lx) = bzx = 1
and bz′(T, Lx) = bz′x = −1.

Thus, byx = b′yLx
for all y ∈ T due to the definition of byx and b′yLx

.

Combining the proof of (b), thus, we have (B̃(T ))x,∅ = B̃(Tx). Therefore,
the result follows. �

Figure 5

For a set I of some arcs in T (or say, I ⊂ X), denote by (SI ,M) the new
Riemaninan surface which is constructed from (S,M) through cutting all
arcs x ∈ I, equivalently which is obtained recursively through constructing
x-paunched surfaces at |I|-times. We call (SI ,M) the I-paunched surface
from (S,M).

Denote by TI the tagged triangulation of (SI ,M) constructed from
Tx for all x ∈ I step by step. For each arc γ in S, let I divide γ into
· · · , γ1, · · · , γk, · · · (An example is given in Figure 6). Let γI be the subset
of {· · · , γ1, · · · , γk, · · · } obtained by deleting the arcs which are not allowed
in a lamination. If I do not intersect with γ, then set γI = {γ}. Denote
LI =

⋃
γ∈L

γI , LI = {LI | L ∈ L}.
Using the above lemma step by step, we have the following characteri-

zation on A(Σ(S,M, T,L)I0,I1).

Theorem 6.5. With the assumptions as above, let (S,M) be a marked
surface, T be a tagged triangulation and L be a multi-lamination of (S,M).
Let I0,I1 be two subsets of initial cluster variables with I0 ∩ I1 = ∅, then
A(Σ(S,M,L, T )I0,I1) is a cluster algebra from the surface (S(I0∪I1)∩X ,M),
where X is the cluster in the seed Σ(S,M,L, T ). More explicitly, denote
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Figure 6

J = (I0 ∪ I1) ∩X, then

A(Σ(S,M,L, T )I0,I1) = A(Σ(SJ ,M, (L \ I1)J ∪ {Lx | x ∈ I0}), TJ).

Following this theorem, we calle (SJ ,M, (L \ I1)J ∪ {Lx|x ∈ J}, TJ) the
(I0, I1)-paunched surface from the surface (S,M,L, T ) for J = (I0 ∪ I1) ∩
X.

Using of the above results, we now discuss the correspondence between
sub-rooted cluster algebras and paunched surfaces.

For two surfaces (S,M) and (S′,M ′), a homeomorphism f from
(S,M) to (S′,M ′) is a homeomorphism (or say, a topological isomorphism)
f : S → S′ which induces a bijection from M to M ′. As a homeomorphism,
f maps boundary points to boundary points and punctures to punctures.
In this case we say (S,M) and (S′,M ′) to be homeomorphic under f .
If (S,M) and (S′,M ′) have respectively tagged triangulations T and T ′

and multi-laminations L and L′, we say (S,M, T,L) and (S′,M ′, T ′,L′)
to be isomorphic if there is a homeomorphic map f from (S,M) to
(S′,M ′) which maps T to T ′ and induces bijections from L to L′, denote as
(S,M, T,L) ∼= (S′,M ′, T ′,L′).

Note that every tagged triangulation is ideal triangulation if the surface
without punctures and using Theorem 6.2, we have:

Lemma 6.6. (Proposition 14.1, [8] ) Assume that (S1,M1,L1, T1) and
(S2,M2,L2, T2) are two surfaces without punctures and their correspond-
ing quivers Q(T1) and Q(T2) are connected. Assume there is a bijection
π : L1 → L2 such that bγL = b′ϕ(γ)π(L) (respectively, bγL = −b′ϕ(γ)π(L)) for

any arc γ in T and lamination L in L1. If Q(T1)
ϕ∼= Q(T2) (respectively,

Q(T1)
ϕ∼= Q(T2)

op), then (S1,M1,L1, T1) ∼= (S2,M2,L2, T2).
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This lemma tells us that corresponding quiver is a new algebraic invari-
ant of the oriented surface with tagged triangulation in the case without
punctures. However, it is negative in the case with punctures in general.

For example, we have two cluster algebras A1 = A(Σ(S1,M1,L1, T1))
and A2 = A(Σ(S2,M2,L2, T2)) where the surface (S1,M1) is the disk with 6
marked points on the boundary with L1 = ∅ and the surface (S2,M2) is the
disk with 3 marked points on the boundary and 1 puncture with L2 = ∅, see
Figure 7. The corresponding quivers, denoteQi = Q(Ti) for i = 1, 2, are both
of type A3. Thus, A1 = A(Q1) ∼= A2 = A(Q2) as rooted cluster algebras.
But, Q1 and Q2 are mutation equivalent. So, there is a triangulation T ′

2 of
(S2,M2) such that its corresponding quiver Q(T ′

2) equals to Q1, i.e. Q(T1) =
Q(T ′

2). However, (S1,M1, ∅, T1) 	∼= (S2,M2, ∅, T ′
2) as surfaces with punctures

due to |M1| 	= |M2|.

Figure 7

Remark 6.7. In the case of surfaces with punctures, we refer the readers
to [15] for the analogue discussion of Lemma 6.6.

From this lemma and combining Theorem 1.3 and 6.5, we can give the
proof of Theorem 1.4 as follows.

Proof of Theorem 1.4:
(a) It is enough to prove two (I0, I1)-paunched surfaces of (S,M, T,L)

are isomorphic if and only if their corresponding rooted (I0, I1) sub-cluster
algebras of A(Σ(S,M, T,L)) are isomorphic.

First, as (I0, I1)-paunched surfaces from (S,M, T,L), we may

assume (SJ ,M, TJ ,L1)
ϕ∼= (SJ ′ ,M, TJ ′ ,L2), where J = (I0 ∪ I1) ∩X, J ′ =

(I ′0 ∪ I ′1) ∩X and L1 = (L \ I1)J ∪ {Lx|x ∈ J}, L2 = (L \ I ′1)J
′ ∪ {Lx|x ∈

J ′}. Without loss of generality, assume that the surfaces SJ and SJ ′ are
connected respectively, then the quivers Q(TJ) and Q(TJ ′) are connected
respectively, too.



Structure of Cluster Algebras 487

Under the bijection ϕ|T1
: T1 → T2, when ϕ preserves the orientation

of the surfaces, we have Q(TJ) ∼= Q(TJ ′); when ϕ inverses the orientation
of the surfaces, we have Q(TJ) ∼= Q(TJ ′)op. And under the bijection ϕ|L1

:
L1 → L2, we obtain a one-by-one correspondence from the intersections of
laminations in L1 with arcs in T1 to the intersections of laminations in L2

with arcs in T2. Thus, according to the definition, we have bγL = b′ϕ(γ)ϕ(L)
if ϕ preserves the orientation, and bγL = −b′ϕ(γ)ϕ(L) if ϕ inverses the orien-

tation. In both cases of ϕ, we get Σ(SJ ,M, TJ ,L1)
ϕ∼= Σ(SJ ′ ,M, TJ ′ ,L2) by

Definition 17, it follows A(Σ(S,M, T,L))I0,I1 ∼= A(Σ(S,M, T,L))I′
0,I

′
1
.

Conversely, if A(Σ(S,M, T,L))I0,I1 ∼= A(Σ(S,M, T,L))I′
0,I

′
1
, then by

Proposition 3.16 and Theorem 6.5, we have

(17) Σ(SJ ,M, TJ ,L1) ∼= Σ(SJ ′ ,M, TJ ′ ,L2),

where J = (I0 ∪ I1) ∩X, J ′ = (I ′0 ∪ I ′1) ∩X and

L1 = (L \ I1)J ∪ {Lx|x ∈ J} and L2 = (L \ I ′1)J
′ ∪ {Lx|x ∈ J ′}.

We may assume that the seeds in (17) are connected. Then it is obtained
that Q(TJ) ∼= Q(TJ ′) or Q(TJ) ∼= Q(TJ ′)op, and the numbers of their frozen
variables are equal, which means a bijection between L1 and L2. Since
there is no puncture in (S,M), there are no punctures in (SJ ,M) and
(SJ ′ ,M). Hence we see that the conditions of Lemma 6.6 are satisfied for
the seeds Σ(SJ ,M, TJ ,L1) and Σ(SJ ′ ,M, TJ ′ ,L2). Thus, (SJ ,M, TJ ,L1) ∼=
(SJ ′ ,M, TJ ′ ,L2).

(b) It follows immediately from Theorem 1.3 and (a). �

With the assumption as in Theorem 1.4, but the number of punctures
in (S,M, T,L) is non-zero, one can discuss the analogue version of Theorem
1.4.
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