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Topological Characterization of an

Asymptotic Teichmüller Space Through

Measured Geodesic Laminations

Jinhua Fan ∗ and Jun Hu†

Abstract: Let D be the open unit disk in the complex plane
C and centered at the origin, and let MLb(D) be the collection
of Thurston bounded measured geodesic laminations on D. We
introduce an equivalence relation on MLb(D) such that the earth-
quake measure map induces a bijection between the asymptotic
Teichmüller space AT (D) and the quotient space AMLb(D) of
MLb(D) under the equivalence relation. Furthermore, we introduce
a topology on AMLb(D) under which the bijection is a homeomor-
phism between AT (D) and AMLb(D) with respect to the Teich-
müller metric on AT (D). Corresponding results are also developed
for a bijection and then a homeomorphism between the tangent
spaceAZ(S1) of AT (D) at a base point andAMLb(D) with respect
to the asymptotic cross-ratio norm topology on AZ(S1) and the
defined topology on AMLb(D).
Keywords: Earthquakes, Thurston bounded measured geodesic
laminations, Teichmüller spaces and asymptotic Teichmüller
spaces.

1. Introduction

Let D be the open unit disk in the complex plane and centered at the origin,
and let T (D) be the universal Teichmüller space and MLb(D) the collection
of Thurston bounded measured geodesic laminations on D. By Thurston’s
earthquake theory [22], for each quasisymmetric homeomorphism h of the
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unit circle S1, there is a unique Thurston bounded measured geodesic lami-
nation λ induced by any earthquake representation Eλ of h. This correspon-
dence introduces a bijection between T (D) and MLb(D), which is called the
earthquake measure map and denoted by

EM : T (D) → MLb(D) : [h] �→ λ. (1.1)

For background on earthquake representations of quasisymmetric maps,
Thurston bounded measured geodesic laminations, and their relationships,
and for further developments in Thurston’s earthquake theory, we refer to
[7], [10], [13], [16], [18], [20] and [21].

Furthermore, for any closed hyperbolic Riemann surface S, Kerckhoff
[16] showed that the earthquake measure map EM (1.1) induces a homeo-
morphism between the Teichmüller space T (S) of S and the space MLb(S)
of measured geodesic laminations on S with respect to the Teichmüller met-
ric on T (S) and a weak* topology on MLb(S).

Lately, by introducing a uniform weak* topology on MLb(D) (see Defi-
nition 3 in Section 2.5), Miyachi and Šarić [17] proved that the earthquake
measure map EM is a homeomorphism between T (D) and MLb(D) with
respect to the Teichmüller metric on T (D) and the uniform weak* topology
on MLb(D). They also pointed out that since the invariance of a quasisym-
metric map under a Fuchsian group implies the invariance of the corre-
sponding measured lamination under the group, the same result holds for
the restriction of EM between the Teichmüller space T (S) of any geometri-
cally infinite Riemann surface S and its representationMLb(S) by Thurston
bounded measured geodesic laminations on S.

Let Z(S1) be the quotient space of Zygmund bounded continuous tan-
gent vector fields on S1 modulo quadratic polynomials, which is the tangent
space of the universal Teichmüller T (D) space at the base point. Gardiner
proved in [6] that given any element V ∈ Z(S1), there is a unique element
λ ∈ MLb(D) such that any infinitesimal earthquake map Ėλ (see Section
7.1) satisfying V = Ėλ|S1 modulo a quadratic polynomial. Therefore, there
exists a bijection between Z(S1) and MLb(D), which is called the infinites-
imal earthquake measure map and denoted by

˙EM : Z(S1) → MLb(D) : V �→ λ. (1.2)

It is also proved in [17] that ˙EM is a homeomorphism with respect to the
cross-ratio norm topology on Z(S1) (see Section 7.1) and the uniform weak*
topology on MLb(D).
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Let T0(D) be the subspace of T (D) whose elements are represented
by asymptotically conformal homeomorphisms of D. The quotient space
T0(D)\T (D) is called the asymptotic Teichmüller space of quasiconformal
homeomorphisms of D, denoted by AT (D). This space was studied by Gar-
diner and Sullivan in [8] and the asymptotic Teichmüller spaces of Riemann
surfaces are studied in [2], [3], [5], [8] and etc.

The main work of this paper consists of the followings.
(1) Introduce an equivalence relation ∼ on MLb(D) such that the earth-

quake measure map EM (1.1) induces a bijection ÊM between the asymp-
totic Teichmüller space AT (D) and the quotient space MLb(D)/ ∼.

(2) Prove that the bijection ÊM in (1) is a homeomorphism between
AT (D) and MLb(D)/ ∼ with respect to the asymptotic Teichmüller metric
on AT (D) and a newly defined asymptotically uniform weak* topology on
MLb(D)/ ∼.

(3) Show that the infinitesimal earthquake measure map ˙EM (1.2)

induces a bijection and then a homeomorphism ̂̇EM between the tangent
space AZ(S1) (see Section 7.3) of AT (D) at a base point and MLb(D)/ ∼
with respect to the asymptotic cross-ratio norm topology on AZ(S1) and
the asymptotic uniform weak* topology on MLb(D)/ ∼.

Given a Thurston bounded measured geodesic lamination λ, we denote
by Eλ an earthquake map inducing λ (see Section 2.3 for background) and
by [λ] the equivalence class of λ (see Definition 4 in Section 3).

Theorem 1. Given two points [[h]] and [[h′]] in AT (D), assume that h =
Eλ|S1 and h′ = Eλ′ |S1 . Then [[h]] = [[h′]] if and only if [λ] = [λ′].

Now we let AMLb(D) be the quotient space of MLb(D) under the
equivalence relation. Theorem 1 implies that the earthquake measure map
EM between T (D) and MLb(D) induces a bijection between AT (D) and
AMLb(D), which is called the induced earthquake measure map and denoted
by

ÊM : AT (D) → AMLb(D) : [[h]] �→ [λ], (1.3)

where h = Eλ|S1 .
Two metrics are commonly introduced on the asymptotic Teichmüller

space AT (D). As a quotient space, AT (D) inherits a quotient metric from the
Teichmüller metric on T (D). Another metric is defined by using boundary
dilatations. From [3] and [8], it is known that these two metrics are equal
to each other. For this reason, they are simply called the asymptotic Teich-
müller metric on AT (D) and the topology induced by this metric is called
the asymptotic Teichmüller topology on AT (D).
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Following the previous pattern in thinking, AMLb(D) first inherits a
quotient topology from the uniform weak* topology on MLb(D) (see Def-
inition 5 in Section 4). With respect to the quotient topologies on AT (D)
and AMLb(D), one can easily see that Theorem 1 and the homeomorphic
property of EM between T (D) and MLb(D) [17] imply the following corol-
lary.

Corollary 1. The induced earthquake measure map ÊM (1.3) is a home-
omorphism with respect to the quotient topology on AT (D) from the Teich-
müller topology on T (D) and the quotient topology on AMLb(D) from the
uniform weak* topology on MLb(D).

Corresponding to the other boundary-dilatation definition of the asymp-
totic Teichmüller topology on AT (D), we introduce another topology,
namely the asymptotic uniform weak* topology, on AMLb(D) (see Defi-
nition 8 in Section 6) and prove the following theorem.

Theorem 2. The induced earthquake measure map ÊM (1.3) is a home-
omorphism with respect to the asymptotic Teichmüller topology on AT (D)
and the asymptotic uniform weak* topology on AMLb(D).

As a consequence of Theorem 2 and Corollary 1, we obtain the following.

Corollary 2. The quotient topology on AMLb(D) from the uniform weak*
topology on MLb(D)) is equivalent to the asymptotically uniform weak*
topology.

Let AZ(S1) be the tangent space of the asymptotic Teichmüller space
AT (D) at a base point (see Section 7.3).

Theorem 3. Given two points [V ] and [V ′] in AZ(S1), assume that V =
Ėλ|S1 and V ′ = Ėλ′ |S1. Then [V ] = [V ′] if and only if [λ] = [λ′].

It follows that the infinitesimal earthquake measure map ˙EM (1.2)
induces a bijection between AZ(S1) and AMLb(D), which is called the
induced infinitesimal earthquake measure map and denoted by

̂̇EM : AZ(S1) → AMLb(D) : [V ] �→ [λ], (1.4)

where V = Ėλ|S1 .
Under the asymptotic cross-ratio norm topology on AZ(S1) (see Section

7.6), we prove the following theorem.
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Theorem 4. The induced infinitesimal earthquake measure map ̂̇EM (1.4)
is a homeomorphism with respect to the asymptotic cross-ratio norm topology
on AZ(S1) and the asymptotic uniform weak* topology on AMLb(D).

In the course of developing a proof of Theorem 2, we introduce and study
the relationship between the asymptotic Thurston norm ||λ||

̂Th
(see Defini-

tion 7 in Section 5) of a Thurston bounded measured geodesic lamination λ
and the strong asymptotic cross-ratio distortion norm ||h||

̂ĉr
(see Definition

6 in Section 5) of a quasisymmetric circle homeomorphism h. We obtain the
following theorem.

Theorem 5. Let h be a quasisymmetric homeomorphism of S1 and λh the
measured geodesic lamination induced by an earthquake representation of h.
There exists a universal constant C > 0 such that

‖h‖
̂ĉr
≤ C‖λh‖̂Th

. (1.5)

In Section 6, the previous theorem is used to prove the continuity of the
inverse of the induced earthquake measure map ÊM in Theorem 2.

To prove Theorem 4, we apply the following relationship between the
asymptotic cross-ratio norm ||V ||ĉr (see Definition 11 in Section 7.5) of
a Zygmund bounded continuous tangent vector field V on S1 and the
asymptotic Thurston norm ||λV ||̂Th

of the measured geodesic lamination
λV induced by any infinitesimal earthquake representation of V (see Section
7.1).

Theorem 6. There exists a universal constant C > 0 such that

‖λV ‖̂Th
≤ C‖V ‖ĉr (1.6)

for each V ∈ Z(S1).

Remark 1. The Teichmüller space T (S) of any hyperbolic Riemann surface
S is embedded into the universal Teichmüller T (D) and MLb(S) is embed-
ded into MLb(D). Therefore, one can see that the homeomorphic property
of the earthquake measure map EM between T (D) and MLb(D) continues
to hold on the restriction of EM between T (S) and MLb(S). Unfortunately,
the asymptotic Teichmüller space AT (S) of a Riemann surface S of infinite
type can no longer be embedded as a subspace of the asymptotic Teichmül-
ler space AT (D). Therefore, one can not claim immediately that, after the
work of this paper, there is a similar topological characterization of AT (S) in
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terms of a quotient space of MLb(S). To obtain such a result for a Riemann
surface S of infinite type, different strategies and more techniques need to
be developed.

Remark 2. In this paper, the inequalities (1.5) and (1.6) are important
since we use them to prove our main Theorems 2 and 4, respectively. They
are also interesting quantitative results on their own. A natural problem
is to investigate whether or not their converses hold. Based on some work
in [10], it is unlikely that the converses are true. Relaxed problems are to
study on what quadruples the cross-ratio distortions under h control ||λh||̂Th
and on what quadruples the cross-ratio distortions under V are controlled
by ||λV ||̂Th

. We do have ideas to address these questions, which will be
presented in a forthcoming paper.

Remark 3. The asymptotic Teichmüller topology on AT (D) can also be
characterized by a metric defined by using the shear representations of the
points in AT (D) (see [4]).

The paper is arranged as follows. Some background and definitions are
given in Section 2. Then we prove Theorem 1 in Section 3, Corollary 1 in
Section 4, Theorem 5 in Section 5, and finally Theorem 2 in Section 6. In
the seventh and last section, we prove Theorems 3, 4 and 6.
Acknowledgement: The authors wish to thank Professors Frederick Gar-
diner and Dragomir Šarić for helpful discussions.

2. Preliminaries

2.1. Teichmüller space and asymptotic Teichmüller space

Let D be the open unit disk in the complex plane and centered at the
origin, S1 = ∂D, and let QS be the set of all quasisymmetric homeomor-
phisms of S1. The universal Teichmüller space T (D) is the quotient space
T (D) = Möb(D)\QS, where Möb(D) is the group of all Möbius transforma-
tion preserving D and it acts on QS through post-compositions. Given any
h ∈ QS, we denote by [h] the corresponding point in T (D). The Teichmüller
metric on T (D) is defined as

dT ([h1], [h2]) =
1

2
log inf

f |S1=h2◦h−1
1

K(f),
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where f is a quasiconformal homeomorphism of D and K(f) is the maximal
dilatation of f .

An orientation-preserving homeomorphism h of S1 is said to be symmet-
ric if

(1 + δ(x, t))−1 ≤ |h(e2π(x+t)i)− h(e2πxi)|
|h(e2πxi)− h(e2π(x−t)i)| ≤ 1 + δ(x, t),

where δ(x, t) → 0 uniformly for all x ∈ [0, 1) as t → 0. It is known that h is
symmetric if and only if h = f |S1 for some asymptotic conformal homeomor-
phism f of D. Let S0 be the collection of all symmetric homeomorphisms of
S1. Clearly, Möb(D) ⊂ S0. The quotient space S0\QS is called the asymp-
totic Teichmüller space on D, denoted by AT (D). By letting T0(D) be the
subspace of T (D) whose elements are represented by asymptotic conformal
mappings on D, the asymptotic Teichmüller space can also be expressed as

AT (D) = T0(D)\T (D).

Given any h ∈ QS, we denote by [[h]] the corresponding point in AT (D). As
a quotient space of T (D), the quotient metric on AT (D) is defined as

d̂AT ([[h1]], [[h2]]) = inf dT ([h̃1], [h̃2]), (2.1)

where the infimum is taken over all h̃1 ∈ [[h1]] and h̃2 ∈ [[h2]]. Using bound-
ary dilatations, one can define another metric on AT (D) by

dAT ([[h1]], [[h2]]) =
1

2
log inf

f |S1=h2◦h−1
1

inf
E

K(f |D\E), (2.2)

where f is a quasiconformal homeomorphism of D and the first acted infi-
mum is taken over all compact subsets E of D. It is known from [3] and [8]
that

dAT = d̂AT ,

which are called the asymptotic Teichmüller metric on AT (D).

2.2. Measured laminations on D

A complete oriented geodesic g on D is uniquely determined by an ordered
pair of two distinct endpoints, the initial and the terminal points of g. Thus
the space of all oriented geodesics on D is naturally identified with S1 ×
S1\diag, where diag is the diagonal set of the product space S1 × S1. Let
G be the set of all un-oriented complete hyperbolic geodesic on D, then
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G = (S1 × S1\diag)/ ∼, where the equivalence is defined by (a, b) ∼ (b, a).
We denote by 	a, b
 be the equivalence class of (a, b) ∈ S1 × S1\diag. Note
that the topology on G is the induced topology from S1 × S1\diag.

A geodesic lamination L is a collection of disjoint un-oriented complete
geodesics which foliates a closed subset of D. Equivalently, a geodesic lami-
nation L can be identified as a closed subset of G such that any two geodesics
presented by two different elements in L don’t intersect in D (they may share
one common endpoint). Each complete geodesic in L is called a leaf of L. A
stratum of L is either a geodesic of L or a component of the complement of
L in D.

By a measured geodesic lamination (L, λ) we mean a nonnegative, locally
finite, Borel measure on the space G with support equal to L. We often
briefly say that λ is a measured lamination with support |λ|. Each measured
lamination induces a transverse measure along the support |λ|. Given any
hyperbolic geodesic segment I of length ≤ 1, the measure λ(I) is equal to
λ(I ∩ |λ|).

2.3. Earthquakes and earthquake measures

Earthquake maps in the hyperbolic plane D (and on any hyperbolic Riemann
surface) were introduced by Thurston [22]. Let L be a geodesic lamination
on D. An earthquake E along a geodesic lamination L is an injective and
surjective map E : D → D satisfying

(1) the restriction of E on each stratum A of L is the restriction of a
Möbius transformation, which maps D onto D, on A, and,

(2) for any two strata A and B, the comparison isometry

cmp(A,B) = (E|A)−1 ◦ E|B : D → D

is a hyperbolic translation whose axis weakly separates A and B, and which
translates B to the left as viewed from A.

An earthquake E on D continuously extends to a homeomorphism of the
boundary S1 ([22]), and we denote by E|S1 the restriction of the extension to
S1. The converse statement is the so-called Thurston’s theorem [22], which
says that for any orientation-preserving homeomorphism h of S1, there is
an earthquake map Eλ such that h = Eλ|S1 . We call Eλ an earthquake
representation induces of h.

Each earthquake E along a lamination L induces a transverse measure to
L, which is called the earthquake measure λ induced by E. An earthquake
measure corresponds to a measured geodesic lamination. Therefore, each
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earthquake map (E,L) induced a measure geodesic lamination λ with |λ| =
L. It is also a fact that given a orientation-preserving homeomorphism h of
S1, although the earthquake representation of h is not necessarily unique,
the induced earthquake measure or measured lamination λh is unique. More
precisely, two homeomorphisms h1 and h2 determine the same measured
lamination λ if and only if h2 = γ ◦ h1 for some γ ∈ M öb(D). Therefore,
Thurston’s earthquake representation induces an injective map from the
space of the right cosets of M öb(D) in the group of orientation-preserving
homeomorphisms of S1 into the space of measured laminations on D by
associating each coset with the corresponding measured lamination.

For any measured lamination λ and γ ∈ Möb(D), we denote by γ∗λ a
measured lamination, called the pull-back of λ by γ, which is supported
on γ−1(|λ|) and with the transverse measure evaluated by λ ◦ γ. For an
orientation preserving homeomorphism h : S1 → S1 and the earthquake map
Eλ|S1 = h, we have that h ◦ γ = Eγ∗λ|S1 .

2.4. Earthquake measure map

A measured lamination λ is Thurston bounded if the Thurston’s norm

‖λ‖Th = sup
I

λ(I)

is finite, where the supremum is taken over all geodesic arcs I in D of unit
length. Let MLb(D) be the set of bounded measured laminations on D.
The following theorem of Thurston is well known, for which we refer to [7],
[10], and [18] for different proofs.

Theorem A. Let h be an orientation preserving homeomorphism of S1 and
let Eλ be an earthquake on D such that h = Eλ|S1 . Then the earthquake
measure λ is Thurston bounded if and only if h is quasisymmetric.

Because of Thurston’s earthquake presentation of orientation-preserving
homeomorphisms of S1 and Theorem A, a bijection between T (D) and
MLb(D), called the earthquake measure map in [17], is defined by

EM : T (D) 
 [h] → λ ∈ MLb(D),

where h = Eλ|S1 .
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2.5. Weak∗ topology and Uniform Weak∗ topology on MLb(D)

A box of geodesics B in G is the quotient under the equivalence ∼ of the
product [a, b]× [c, d] of two disjoint closed arcs in S1, where [a, b] (resp. [c, d])
is the arc in S1 from a (resp. c) to b (resp. d) in counterclockwise order on S1.
We will write somewhat incorrectly B = [a, b]× [c, d] instead of B = ([a, b]×
[c, d])/ ∼ . In the following of this paper, we call B∗ = [−i, 1]× [i,−1] the
standard box.

Definition 1. The Liouville measure L is a non-trivial Borel measure on
G defined by

L(B) = | log crL(B)|,
where B = [a, b]× [c, d] and crL(B) = crL({a, b, c, d}) = | (a−c)(b−d)

(a−d)(b−c) |.

One can easily see that this measure is invariant under the group
M öb(D).

Remark 4. The cross ratio crL(B) = crL({a, b, c, d}) of a box B = [a, b]×
[c, d] or a quadruple {a, b, c, d} of four points on S1 arranged in counterclock-
wise order is used in [17] and [19]. In [7] and [10], a different cross ratio of
B or {a, b, c, d} is used, that is

cr(B) = cr({a, b, c, d}) = (b− a)(d− c)

(c− b)(d− a)
.

Since we need to quote results from [17], [19], [7] and [10], we use both of
the cross ratios in this paper. Their relationship is

crL(B) = crL({a, b, c, d}) = 1 + cr({a, b, c, d}) = 1 + cr(B).

Definition 2. A sequence {λn}∞n=1 of Borel measures on G converges in
the weak∗ topology to a Borel measure λ if

lim
n→∞

∫
G
fdλn =

∫
G
fdλ

for any continuous function f on G with compact support.

For any box B ∈ G with L(B) = log 2, in the rest of this paper, we will
always use γB to stand for the element of Möb(D) such that γB(B

∗) = B.
Meanwhile, for any measured geodesic lamination λ on D, (γB)

∗λ stands for
the pullback of λ by γB.
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Definition 3. A sequence {λn}∞n=1 ⊂ MLb(D) converges to λ ∈ MLb(D)
in the uniform weak∗ topology if for any continuous function f on G with
compact support supp(f) ⊂ B∗,

lim
n→∞{sup

B

∫
B∗

fd[(γB)
∗λn − (γB)

∗λ]} = 0,

where the supremum is taken over all boxes B with L(B) = log 2.

Theorem B. [21] Let λ and λn, n = 1, 2, 3, · · · , be uniformly bounded
earthquake measures (i.e., ‖λ‖Th, ‖λn‖Th ≤ M < ∞ for all n) in MLb(D).
If λn converges to λ in the weak∗ topology, then Eλn |S1 converges to Eλ|S1

pointwise on S1 (i.e., for each x ∈ S1, Eλn |S1(x) → Eλn |S1(x) as n → ∞)
when the earthquakes Eλ|S1 and Eλn |S1 , n = 1, 2, 3, · · · , are properly
normalized.

3. Characterization of the asymptotic Teichmüller space
AT (D) through measured geodesic laminations

In this section, we prove Theorem 1.
For any box B = [a, b]× [c, d], we define the minimal scale s(B) of B as

s(B) = min{|a− b|, |b− c|, |c− d|, |d− a|}.

A sequence {Bn}∞n=1 ⊂ G of boxes is said to be degenerating if L(Bn) = log 2
for all n and

lim
n→∞ s(Bn) = 0.

Definition 4. Given two bounded measured laminations λ and λ′ in
MLb(D), we say that λ is equivalent to λ′ if

sup
{Bi}

lim sup
i→∞

∫
B∗

fd((γBi
)∗λ− (γBi

)∗λ′) = 0 (3.1)

for any continuous function f on G with compact support supp(f) ⊂ B∗,
where the supremum is taken over all degenerating sequences {Bi}∞i=1 of
boxes. Denote by [λ] the equivalence class of λ.

Proof of the necessity part of Theorem 1. Assume that [[h]] = [[h′]] and λ
and λ′ are the measured laminations determined by h and h′ respectively.
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We need to show [λ] = [λ′]. Suppose that this is not true. Then the condi-
tion (3.1) does not hold. Thus there exist a degenerating sequence {Bi}∞i=1 of
boxes and a continuous function f on G with compact support supp(f) ⊂ B∗

such that ∫
B∗

fd((γBi
)∗λ− (γBi

)∗λ′) > δ (3.2)

for some positive constant δ and all positive integers i. Let

λi = (γBi
)∗λ and λ′

i = (γBi
)∗λ′. (3.3)

Then {‖λi‖Th}∞i=1 and {‖λ′
i‖Th}∞i=1 are bounded because ‖λi‖Th = ‖λ‖Th

and ‖λ′
i‖Th = ‖λ′‖Th. It follows that there exist two subsequences {λij}∞j=1 ⊂

{λi}∞i=1 and {λ′
ij
}∞j=1 ⊂ {λ′

i}∞i=1 such that λij weakly converges to λ̂ and λ′
ij

weakly converges to λ̂′. Following (3.2), λ̂ �= λ̂′. For simplicity of notation,
we rename the subsequences to be {λi}∞i=1 and {λ′

i}∞i=1.
Let Ai, A

′
i ∈ Möb(D) such that hi = Ai ◦ Eλi |S1 and h′i = A′

i ◦ Eλ′
i |S1 are

normalized to fix 1, i and −1. Assume also that E
̂λ and E

̂λ′
are normalized

to fix 1, i and −1. Then by Theorem B,

hi = Ai ◦ Eλi |S1 → E
̂λ|S1 = ĥ and h′i = A′

i ◦ Eλ′
i |S1 → E

̂λ′ |S1 = ĥ′ (3.4)

pointwise on S1. Since λ̂ �= λ̂′, it follows that

ĥ ◦ (ĥ′)−1 /∈ Möb(D). (3.5)

Let ex(·) be the Douady-Earle extension operator. Then it follows from (3.5)
that

ex(ĥ) ◦ (ex(ĥ′))−1 /∈ Möb(D). (3.6)

Since [[h]] = [[h′]], using Theorem 4 in [5], ex(h) ◦ (ex(h′))−1 is asymptoti-
cally conformal. Thus given any ε > 0, there exists a compact subset K of
D such that

‖Belt(ex(h))|D−K)−Belt(ex(h′))|D−K)‖∞ ≤ ε. (3.7)

Since hi (resp. h′i) differs from h (resp. h′) only by precomposition and
postcomposition by Möbius transformations, the conformal naturality of
Douady-Earle extensions implies that ex(hi) and ex(h′i) are quasiconformal
mappings with maximal dilatations as the same as the extensions of h and h′

respectively. Because ex(hi) and ex(h′i) are normalized to fix three points 1,
i and −1 on S1, passing to subsequences we may further assume that ex(hi)
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and ex(h′i) converge to quasiconformal homeomorphisms of D uniformly on

the closure D. Since we have already known that hi and h′i converges to ĥ

and ĥ′ pointwise on S1, it follows that they converge to the limit functions
uniformly on S1. Using the properties of Douady-Earle extensions in [1], we
obtain

Belt(ex(hi)) → Belt(ex(ĥ)) and Belt(ex(h′i)) → Belt(ex(ĥ′)) (3.8)

uniformly on any compact subset of D. Again by the conformal naturality
of Douady-Earle extensions,

ex(hi) = Ai ◦ ex(h) ◦ γBi
, ex(h′i) = A′

i ◦ ex(h′) ◦ γBi
. (3.9)

By taking Beltrami coefficients of the left and of the right side of (3.9), we
get that

Belt(ex(hi)) = Belt(ex(h)) ◦ γBi

∂γBi
/∂z

∂γBi
/∂z

,

Belt(ex(h′i)) = Belt(ex(h′)) ◦ γBi

∂γBi
/∂z

∂γBi
/∂z

. (3.10)

Then

Belt(ex(hi))−Belt(ex(h′i))

= [Belt(ex(h)) ◦ γBi
−Belt(ex(h′)) ◦ γBi

]
∂γBi

/∂z

∂γBi
/∂z

. (3.11)

Recall that γBi
is the Möbius transformation mapping the standard box B∗

to Bi and s(Bi) converges to 0 as i → ∞. Then γBi
maps the origin to the

intersection point Oi of the diagonals of Bi and Oi approaches S
1 as i → ∞.

It follows that for any compact K of D, γBi
(K) converges to S1 as i → ∞.

Thus Belt(ex(hi))−Belt(ex(h′i)) converges to 0 as i → ∞ uniformly on any
compact subset of D. Combining this property with (3.8), we obtain

Belt(ex(ĥ))−Belt(ex(ĥ′)) = 0.

Hence

ex(ĥ) ◦ (ex(ĥ′))−1 ∈ Möb(D). (3.12)

This is a contradiction to (3.6). Therefore, [λ] = [λ′]. �
The following two lemmas are developed to prove the sufficiency of The-

orem 1.
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Lemma 1. Suppose that {γBi
}∞i=1 ⊂ Möb(D) and s(γBi

(B∗)) → 0 as i →
∞. Then given any box B = [a, b]× [c, d], s(γBi

(B)) → 0 as i → ∞.

Proof. Suppose on the contrary that there exists a box B = [a, b]× [c, d]
such that

s(γBi
(B)) � 0

as i → ∞. Then there is a subsequence {γBij
}∞j=1 of {γBi

}∞i=1 such that

γBij
(B) → [a′, b′]× [c′, d′] as j → ∞, where a′, b′, c′ and d′ are four dis-

tinct points on S1. For simplicity of notation, we rename the subsequence
{γBij

}∞j=1 to be {γBi
}∞i=1. Let γBi

(B∗) = [ai, bi]× [ci, di] and γBi
(B) =

[a′i, b
′
i]× [c′i, d

′
i]. Since s(γBi

(B∗)) → 0 as i → ∞, passing to a subsequence
we may assume that two of the four points {ai, bi, ci, di} converge to a point
x on S1. Since L(Bi) = log 2 for each i, it follows that there are at least
three of {ai, bi, ci, di} converging to x. Passing to a subsequence one more
time we may assume that ai, bi and ci converge to x as i → ∞. The fourth
point di may converge to another point y on S1. There are two points of
{a′, b′, c′, d′} different from x and y, namely, a′ and b′. Then the hyperbolic
distance δi between the geodesic connecting a′i and b′i and the geodesic con-
necting ai and bi converges to ∞ as i → ∞ since a′i and b′i converge to two
different points a′ and b′ and ai and bi converge to the same point x. On the
other hand, since the hyperbolic distance is preserved under Möbius trans-
formation, it follows that δi is equal to the hyperbolic distance between the
geodesic connecting a and b and the geodesic connecting −i and 1, which is
a constant. This is a contradiction. Therefore, the conclusion of the lemma
follows. �

Lemma 2. Let h1 and h2 be two quasisymmetric homeomorphisms of S1.
Then h1 ◦ (h2)−1 is symmetric provided that

sup
{Bn}

lim sup
n→∞

|L(h1(Bn))− L(h2(Bn))| = 0, (3.13)

where the supremum is taken over all degenerating sequences {Bn}∞n=1 of
boxes.

Proof. Suppose that (3.13) is satisfied but h1 ◦ (h2)−1 is not symmetric. Let
ex(h1) and ex(h2) be the Douady-Earle extensions of h1 and h2 respectively.
Then ex(h1) ◦ (ex(h2))−1 is not asymptotic conformal on D, which means
that there exist a constant ε > 0 and a sequence {Dn}∞n=1 of hyperbolic disks
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in D of diameter 1 with the Euclidean distance from Dn to S1 approaching
0 as n → ∞ such that

‖Belt(ex(h1)|Dn
)−Belt(ex(h2)|Dn

)‖L∞ ≥ ε (3.14)

for all n. Let D0 be the hyperbolic disk on D of diameter 1 and centered
in 0, and assume that γn ∈ Möb(D) and γn(D0) = Dn. Let A1,n and A2,n

∈ Möb(D) such that A1,n ◦ h1 ◦ γn and A2,n ◦ h2 ◦ γn fix 1,−1, i for all n.
Using the assumption (3.13) and applying Lemma 1 to γn, we obtain

lim
n→∞ |L(A1,n ◦ h1 ◦ γn(B))− L(A2,n ◦ h2 ◦ γn(B))| = 0 (3.15)

for any box B with L(B) = log 2. Let ex(A1,n ◦ h1 ◦ γn) and ex(A2,n ◦ h2 ◦
γn) be the Douady-Earle extensions of A1,n ◦ h1 ◦ γn and A2,n ◦ h2 ◦ γn
respectively. Since these quasiconformal mappings fix three common points
and have constant maximal dilatations, passing to subsequences we may
assume that A1,n ◦ h1 ◦ γn and A2,n ◦ h2 ◦ γn converge uniformly to qua-

sisymmetric mappings ĥ1 and ĥ2 respectively. Then it follows from (3.15)
that

L(ĥ1(B)) = L(ĥ2(B))

for any given box B with L(B) = log 2. By the normalized condition at
three points, we conclude that ĥ1 = ĥ2. By the convergence properties of
Douady-Earle extensions, Belt(ex(A1,n ◦ h1 ◦ γn)) and Belt(ex(A2,n ◦ h2 ◦
γn)) converge to Belt(ex(ĥ1)) and Belt(ex(ĥ2)) uniformly on D0; that is,

||Belt(ex(A1,n ◦ h1 ◦ γn)|D0
)−Belt(ex(A2,n ◦ h2 ◦ γn)|D0

)||L∞ → 0 (3.16)

as n → ∞. On the other hand, by the conformal naturality of Douady-Earle
extensions and (3.14),

||Belt(ex(A1,n ◦ h1 ◦ γn)|D0
)−Belt(ex(A2,n ◦ h2 ◦ γn)|D0

)||L∞

= ||Belt(ex(h1)|Dn
)−Belt(ex(h2)|Dn

)||L∞ ≥ ε > 0.

This is a contradiction to (3.16), so h1 ◦ (h2)−1 is symmetric. �

Proof of the sufficiency part of Theorem 1. We prove [[h]] = [[h′]] if [λ] =
[λ′]. Suppose on the contrary that [[h]] �= [[h′]], which means h′ ◦ h−1 is not
symmetric. Then the condition (3.13) in Lemma 2 does not hold. Thus there
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exists a degenerating sequence {Bi}∞i=1 of boxes such that

|L(h(Bi))− L(h′(Bi))| ≥ δ (3.17)

for some positive constant δ and all positive integers i.
Let λi = (γBi

)∗λ and λ′
i = (γBi

)∗λ′. We show that λi − λ′
i converges to 0

in the weak∗ topology as i → ∞. It suffices to show that for any box B with
L(B) = log 2 and any continuous function f on G with a compact support
supp(f) ⊂ B,

lim
i→∞

∫
B
fd(λi − λ′

i) = 0. (3.18)

Let γ ∈ Möb(D) such that B = γ(B∗). Then∫
B
fd(λi − λ′

i) =

∫
B∗

f ◦ γd(γ∗(λi)− γ∗(λ′
i))

=

∫
B∗

f ◦ γd((γBi
◦ γ)∗λ− (γBi

◦ γ)∗λ′).
(3.19)

By Lemma 1, we know s(γBi
◦ γ(B∗)) → 0 as i → ∞. Then the definition

of [λ] = [λ′] implies that the last integral in the previous expression (3.19)
converges to 0 as i → ∞, which means (3.18) holds.

Since {‖λi‖Th}∞i=1 and {‖λ′
i‖Th}∞i=1 are uniformly bounded, passing to

subsequences we may assume that they converge in the weak∗ topology. Then
the two weak∗ limits are equal to each other. Now by applying Theorem B,
there exist {Ai}∞i=1 and {A′

i}∞i=1 in Möb(D) such that the two sequences
{Eλi |S1 = Ai ◦ h ◦ γBi

}∞i=1 and {Eλ′
i |S1 = A′

i ◦ h′ ◦ γBi
}∞i=1 converge to the

same quasisymmetric map pointwise on S1. Thus

lim
i→∞

|L(Ai ◦ h ◦ γBi
(B∗))− L(A′

i ◦ h′ ◦ γBi
(B∗)| = 0. (3.20)

On the other hand,

|L(Ai ◦ h ◦ γBi
(B∗))− L(A′

i ◦ h′ ◦ γBi
(B∗))| = |L(h(Bi))− L(h′(Bi))|.

It follows that (3.20) is a contradiction to (3.17). Thus our assumption [[h]] �=
[[h′]] is false. Therefore, [[h]] = [[h′]] if [λ] = [λ′]. �

4. Quotient uniform weak∗ topology

In this section, we first give the definition of the quotient uniform weak∗

topology on AMLb(D); then we prove Corollary 1.
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Definition 5. A sequence {[λn]}∞n=1 ⊂ AMLb(D) converges to [λ] ∈
AMLb(D) in the quotient uniform weak∗ topology if for any continuous
function f on G with compact support supp(f) ⊂ B∗,

inf
̂λn∈[λn],̂λ∈[λ]

sup
B

|
∫
B∗

fd((γB)
∗λ̂n − (γB)

∗λ̂)| → 0 as n → ∞,

where the supremum is taken over all boxes B ∈ G with L(B) = log 2.

Proof of Corollary 1. We first show that the induced earthquake mea-
sure map ÊM is continuous. Let [λn] = ÊM([[hn]]) and [λ] = ÊM([[h]]).
If dAT ([[hn]], [[h]]) → 0 as n → ∞, then there exist h′n ∈ [[hn]] and h′ ∈
[[h]] such that dT ([h

′
n], [h

′]) → 0 as n → ∞. Let λ′
n = EM([h′n]) and λ′ =

EM([h′]). Theorem 1 implies that λ′ ∈ [λ] and λ′
n ∈ [λn]. Since EM is con-

tinuous (Theorem 1 in [17]), it follows that λ′
n → λ′ in the uniform weak∗

topology on MLb(D). Using Definition 5, we conclude that [λn] → [λ] in the
quotient uniform weak∗ topology on AMLb(D).

Now we show that ÊM−1
is continuous. Suppose [λn] = ÊM([[hn]]) →

[λ] = ÊM([[h]]) in the quotient uniform weak∗ topology as n → ∞. By def-
inition, there exist λ′

n ∈ [λn] and λ′ ∈ [λ] such that λ′
n → λ′ in the uni-

form weak∗ topology as n → ∞. Let [h′n] = EM−1(λ′
n) and [h′] = EM−1(λ′).

Theorem 1 implies that h′n ∈ [[hn]] and h′ ∈ [[h]]. Since EM−1 is continu-
ous (Theorem 1 in [17]), it follows that dT ([h

′
n], [h

′]) → 0 as n → ∞. Thus
dAT ([[hn]], [[h]]) → 0 as n → ∞. �

5. Asymptotic Thurston’s norm and strong asymptotic
cross-ratio distortion norm

Let Q be a quadruple consisting of four points a, b, c, d on the unit circle
arranged in the counter-clockwise direction, denoted by Q = {a, b, c, d}. We
use cr(Q) to denote the following cross ratio:

cr(Q) =
(b− a)(d− c)

(c− b)(d− a)
.

For a quasisymmetric homeomorphism h of S1, cr(h(Q)) denotes

cr(h(Q)) =
(h(b)− h(a))(h(d)− h(c))

(h(c)− h(b))(h(d)− h(a))
.
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In [7] and [10], the cross-ratio distortion norm ||h||cr is defined to be

||h||cr = sup
cr(Q)=1

| log cr(h(Q))|,

where the supremum is taken over all quadruples Q with cr(Q) = 1.
Let λh be the measured lamination induced by an earthquake represen-

tation of h. It is shown in [7] that there is a universal positive constant C
such that

||λh||Th ≤ C||h||cr
for any quasisymmetric homeomorphism h of S1. Then the converse is proved
in [10]; that is

||h||cr ≤ C||λh||Th (5.1)

for a universal positive constant C. Therefore, the cross-ratio distortion norm
and the Thurston norm are comparable. In this section, we also briefly denote
λh by λ.

Definition 6. The strong asymptotic cross-ratio distortion norm of a qua-
sisymmetric homeomorphism h of S1 is defined as

‖h‖
̂ĉr
= sup

{Qi}
lim sup
i→∞

| log cr(h(Qi))|,

where the supremum is taken over all sequences {Qi}∞i=1 of quadruples such
that cr(Qi) = 1 for all i and Smax(Qi) → 0 as i → ∞, and where Smax(Q)
is the maximum scale of Q; that is,

Smax(Q) = max{|a− b|, |b− c|, |c− d|, |d− a|}.

Remark 5. Note first that in the previous definition of ||h||
̂ĉr
, we require

the maximal scale Smax(Q) of Q to approach 0. Note secondly that ‖h‖
̂ĉr
≤

M if and only if for any arbitrary small positive ε, there exists δ > 0 such
that for any quadruple Q with Smax(Q) < δ,

| log cr(h(Q))| < M + ε.

The proof for the “if” part is trivial; the “only if” part can be easily shown
by proof by contradiction.
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Definition 7. The asymptotic Thurston norm ‖λ‖
̂Th

of a bounded mea-
sured geodesic lamination λ is defined as

‖λ‖
̂Th

= sup
{In}

lim sup
n→∞

λ(In),

where the supremum is taken over all sequences {In}∞n=1 of closed geodesic
segments in D of hyperbolic length 1 such that the Euclidean distance from
In to S1 goes to 0 as n → ∞.

Similarly, one can see that ‖λ‖
̂Th

≤ M if and only if for any arbitrary
small positive ε, there exists δ > 0 such that for any geodesic segment I of
hyperbolic length 1, if the Euclidean distance from I to S1 is less than δ,
then λ(I) < M + ε.

In this section, we prove Theorem 5. The strategy of the proof is as
the same as the one used in [10] to prove the inequality ||h||cr ≤ C||λh||Th,
but all considerations have to be arranged near the boundary of the open
unit disk. For the completeness of the paper, we sketch the proof. In order
to do so, we first recall a few technical results developed in [7] and [10].
The following two lemmas are enumerated as Corollaries 1 and 2 in [7] with
proofs.

Lemma 3 ([7]). Let Q = {a, b, c, d} be a quadruple on the real line with
−∞ ≤ a < b < c < d, c ≤ s ≤ d and d < t. Suppose that A(s,t) is the hyper-
bolic Möbius transformation with repelling fixed point at s and attracting
fixed point at t and derivative at the repelling fixed point equal to λ > 1.
Suppose f(s,t) : R → R is defined to be equal to A(s,t) on the interval [s, t]
and equal to the identity on the complement of [s, t]. Then the cross-ratio
of the image quadruple f(s,t)(Q) considered as a function of two variables
s ∈ [c, d] and t ∈ (d,+∞) decreases in s for each fixed t and increases in t
for each fixed s.

Lemma 4 ([7]). With the same notation as in the previous lemma, suppose
b ≤ s ≤ c and d ≤ t. Then the cross-ratio of the image quadruple f(s,t)(Q) is
increasing in s for each fixed t and also increasing in t for each fixed s.

By using Lemma 3 and 4, the proof of the inequality (5.1) given in [10] is
reduced to deriving similar inequalities in three cases, which are summarized
into Propositions 3, 4 and 5 there. In order to sketch a proof for our Theorem
5, we recall them too.

Let h denote an orientation-preserving circle homeomorphism, (E,L) an
earthquake representation of h, and λ the induced earthquake measure by
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(E,L). There are three universal positive constants C0, C1 and C2, indepen-
dent of f , λ and Q, such that the following three propositions hold.

Proposition 1 ([10]). If cr(Q) = 1 and a, b, c belong to the same stratum
of the earthquake representation (E,L) of h, then

0 ≤ log cr(h(Q)) ≤ C1C2||λ||Th.

Proposition 2 ([10]). If cr(Q) = 1 and a, c belong to the same stratum of
the earthquake representation (E,L) of h, then

0 ≤ log cr(h(Q)) ≤ 2C1C2||λ||Th.

Proposition 3 ([10]). If cr(Q) = 1 and assume that there exists at least
one geodesic line in the lamination L which separates a, b from c, d, then

| log(cr(Q))| ≤ (C0 + 2C1C2)||λ||Th.

For a quadruple Q = {a, b, c, d} of four points a, b, c, d on S1 arranged in
the counter-clockwise direction, we notice that cr(Q) = 1 if and only if the
geodesic ac between a and c is perpendicular to the one bd between b and d.
Denote by e the intersection point between ac and bd, and by ea (resp. eb,
ec, ed) the geodesic ray from e to a (resp. b, c, d).

Given two points x and y on the unit circle, we use [x, y] (resp. (x, y),
[x, y), (x, y]) to denote the closed (resp. open, half open and half closed) arc
on S1 from x to y in the counter-clockwise direction. Careful examinations
of the proofs of the previous propositions in [10] enable us to state them in
more elaborated ways as follows.

Corollary 3. If cr(Q) = 1 and a, b, c belong to the same stratum of the
earthquake representation (E,L) of h, then

0 ≤ log cr(h(Q)) ≤ C1C2 sup
l(I)=1,I⊂ed

λ|ed(I),

where λ|ed is the restriction of λ on the collection of leaves of L connecting
points in [c, d) to points in (d, a].
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Corollary 4. If cr(Q) = 1 and a, c belong to the same stratum of the earth-
quake representation (E,L) of h, then

0 ≤ log cr(h(Q)) ≤ 2C1C2 sup
l(I)=1,I⊂bd

λ|bd(I),

where λ|bd is the restriction of λ on the collection of the leaves of L connect-
ing points in [a, c) to points in [c, a).

Corollary 5. If cr(Q) = 1 and assume that there exists at least one
geodesic line in the lamination L which separates a, b from c, d, then

−Cmax{ sup
l(I)=1,I⊂β

λ|LI
(I), sup

l(I)=1,I⊂ea
λ|LII

(I), sup
l(I)=1,I⊂ec

λ|LIV
(I)}

≤ log(cr(Q)) ≤

Cmax{ sup
l(I)=1,I⊂β

λ|LI
(I), sup

l(I)=1,I⊂eb

λ|LIII
(I), sup

l(I)=1,I⊂ed

λ|LV
(I)},

where C = C0 + 2C1C2, β is the common perpendicular segment between
the geodesics ab and cd, LI is the collection of the geodesic lines in L that
connect points of the arc [d, a] to points of the arc [b, c], LII is the collection
of the lines in L that connect points of the arc (d, a) to points of the arc
(a, b), LIII is the collection of the lines in L that connect points of the arc
(a, b) to points of the arc (b, c), LIV is the collection of the lines in L that
connect points of the arc (b, c) to points of the arc (c, d), and finally LV is
the collection of the lines in L that connect points of the arc (c, d) to points
of the arc (d, a).

Now we prove our Theorem 5.

Proof. Let M = ||λ||
̂Th
. Given any ε > 0, there exists 0 < r < 1 such that

for any geodesic segment I contained in the annulus Wr = {z : r < |z| < 1}
with hyperbolic length 1, λ(I) ≤ M + ε. Then there exists δ > 0 such that
for any quadruple Q = {a, b, c, d} with Smax(Q) < δ, the geodesic connecting
any two points in Q is contained in the annulus Wr and both the common
perpendicular geodesic segment between the geodesics ab and cd and the
one between bc and da are also contained in Wr.

Let C = C0 + 2C1C2. We show that for any quadruple Q with cr(Q) = 1
and Smax(Q) < δ,

| log cr(h(Q))| ≤ C(M + ε). (5.1)

We divide the proof into three cases.
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Figure 1: Five subcollections of the leaves of L described in Corollary 5.

Case 1: The quadrupleQ has three points belonging to the same stratum.
There are four subcases: either a, b, c or b, c, d or c, d, a or d, a, b belong to
the same stratum.

Corollary 3 implies in these four subcases respectively that either

0 ≤ log cr(h(Q)) ≤ C1C2 sup
l(I)=1,I⊂ed

λ|ed(I)

or

0 ≤ log cr(h({b, c, d, a})) ≤ C1C2 sup
l(I)=1,I⊂ea

λ|ea(I),

0 ≤ log cr(h({c, d, a, b})) ≤ C1C2 sup
l(I)=1,I⊂eb

λ|eb(I),

0 ≤ log cr(h({d, a, b, c})) ≤ C1C2 sup
l(I)=1,I⊂ec

λ|ec(I).

Since the values of the previous four suprema are less than or equal to M + ε
and since

cr(h({b, c, d, a})) = 1

cr(h(Q))
, cr(h({c, d, a, b})) = cr(h(Q)) and
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cr(h({d, a, b, c})) = 1

cr(h(Q))
,

it follows that

| log cr(h(Q))| ≤ C1C2(M + ε) < C(M + ε).

Case 2: The quadruple Q has two opposite points belonging to the same
stratum. Then either a and c or b and d belong to the same stratum. By
Corollary 4 and a similar fashion in reasoning as in Case 1, we obtain

| log cr(h(Q))| ≤ 2C1C2(M + ε) < C(M + ε).

Case 3: The quadruple Q has no opposite points belonging to the same
stratum. Then either there exists a geodesic line in L that separates a and b
from c and d or there exists a geodesic line in L that separates b and c from
d and a. By Corollary 5 and a similar fashion in reasoning as in Case 1, we
obtain

| log cr(h(Q))| ≤ (C0 + 2C1C2)(M + ε) = (M + ε).

Therefore no matter which case happens, we obtain that, for any
sequence {Qi}∞i=1 of quadruples with cr(Qi) = 1 for all i and Smax(Qi) → 0
as i → ∞,

lim sup
i→∞

| log cr(h(Qi))| ≤ C(M + ε).

Thus

||h||
̂ĉr
≤ C(M + ε).

Since ε is an arbitrarily small positive, it follows that

||h||
̂ĉr
≤ CM = C||λ||

̂Th
.

�

6. Homeomorphic property of the induced earthquake
measure map

In this section, after giving the definition of asymptotically uniform weak∗

topology on AMLb(D) and some lemmas, we prove Theorem 2.
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Definition 8. A sequence {[λn]}∞n=1 ⊂ AMLb(D) converges to [λ] ∈
AMLb(D) in the asymptotically uniform weak∗ topology if for any continu-
ous function f on G with compact support supp(f) ⊂ B∗,

sup
{Bi}

lim sup
i→∞

|
∫
B∗

fd((γBi
)∗(λn)− (γBi

)∗(λ))| → 0 as n → ∞, (6.1)

where the supremum is taken over all degenerating sequences {Bi}∞i=1 of
boxes.

Remark 6. Theorem 1 implies that for each n, the value defined by the
supremum of the lim sup’s in (6.1) is independent of the choices of represen-
tatives for [λn] and [λ].

Theorem C. [15] Let h be an orientation-preserving homeomorphism of
S1 and ex(h) be the Douady-Earle extension of h to the closed unit disk
D. Let p ∈ S1 and Ip be an open arc on S1 containing p and symmet-
ric with respect to p. If ‖h|Ip‖cr < ∞, then there exists an open hyper-
bolic half plane Up with p at the middle of its boundary on S1 such that
logK(ex(h)|Up) ≤ C1‖h|Ip‖cr + C2 for two universal positive constants C1

and C2, where K(ex(h)|Up) is the maximal dilatation of ex(h) on Up.

Remark 7. It is shown in [14] that there exists a universal constant C > 0
such that

logK(ex(h)) ≤ C‖h‖cr
for any orientation-preserving homeomorphism h of S1. As a corollary to
this result or the previous Theorem C, ex(h) is quasiconformal if ‖h‖cr is
finite.

Lemma 5. There is a universal constant C0 > 0 such that for any measured
lamination λ ∈ MLb(D),

1

C0
‖λ‖

̂Th
≤ sup

{Bi}
lim sup
i→∞

λ(Bi) ≤ ‖λ‖
̂Th
, (6.2)

where the supremum is taken over all degenerating sequences {Bi}∞i=1 of
boxes.

Proof. This lemma is the asymptotic version of Lemma 2.1 in [17] and the
proof is similar. Let B = [a, b]× [c, d] be a box in G. The measure λ(B) is
obtained as follows. Without loss of generality, we assume that a, b, c and d
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lie on S1 in the counterclockwise order. Let I be the common perpendicular
geodesic segment between the hyperbolic geodesics ad and bc. Then any
geodesic contained in B intersects I. By definition, λ(B) is equal to λ(I ∩
|λ|B), where |λ|B denote the collection of all the geodesics of |λ| contained in
B. If L(B) = log 2, then I is contained in a geodesic segment I0 of hyperbolic
length 1. Furthermore, s(B) goes to 0 if and only if Euclidean distance
between I0 and S1 goes to 0. Thus, by definition,

sup
{Bi}

lim sup
i→∞

λ(Bi) ≤ ‖λ‖
̂Th
.

Now we show the other half of the double inequality. We recall a fact
used in the proof of Lemma 2.1 in [17]; that is, there is a universal con-
stant L0 > 0 such that for any geodesic segment I of hyperbolic length 1
transversely intersecting a leaf l of λ, if J is the geodesic segment of length
L0 orthogonally intersecting l at I ∩ l with the intersecting point at the
midpoint of J , then any leaf of λ intersecting I must intersect J . A more
general version of this fact can be stated as follows. For any positive number
α, there exists a positive number L0(α) such that for any geodesic segment
I of hyperbolic length α transversely intersecting a leaf l of λ, if J is the
geodesic segment of length L0(α) that orthogonally intersects l at the point
I ∩ l and has I ∩ l at its midpoint, then any leaf of λ intersecting I must
intersect J ; furthermore, L0(α) approaches 0 as α goes to 0.

Let γ be a Möbius transformation from H onto D such that γ−1(J) =
[1, eL0(α)]i and γ−1(l) = {z : |z| = eL0(α)/2} ∩H. Consider the box

B0 = [−e3L0(α)/2,−e−L0(α)/2]× [e−L0(α)/2, e3L0(α)/2].

Through an elementary calculation, we can see that if a leaf of the pullback
γ∗(λ) of λ under γ intersects γ−1(J), then it is contained in the box B0.
Let B(I) = γ(B0). Then any leaf of λ intersecting J is contained in B(I). It
follows that for any geodesic segment I of hyperbolic length α,

λ(I) ≤ λ(J) ≤ λ(B(I)). (6.3)

One can also see that the Euclidean distance from I to ∂D goes to 0 if and
only if the Euclidean distance from J to ∂D goes to 0. Furthermore, from
the constructions of J and B(I), it is also true that the Euclidean distance
from J to ∂D goes to 0 if and only if s(B(I)) goes to 0. Now we set α at a
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value α0 such that

L(B0) = 2 log cosh(L0(α0)/2) = log 2.

Following (6.3), we conclude that for generating sequences {Bi}∞i=1 of boxes,

‖λ‖
̂Th

≤ ([
1

α0
] + 1) sup

{Bi}
lim sup
i→∞

λ(Bi),

where [ 1
α0
] stands for the integral part of 1

α0
. We complete the proof. �

Lemma 6. If a sequence {[λn]}∞n=1 ⊂ AMLb(D) converges to [λ] ∈
AMLb(D) in the asymptotically uniform weak∗ topology, then there
is a sequence {λ′

n}∞n=1 ⊂ MLb(D) such that [λ′
n] = [λn] for all n and

{‖λ′
n‖Th}∞n=1 is bounded.

Proof. We show first that if {[λn]}∞n=1 ⊂ AMLb(D) converges to [λ] ∈
AMLb(D) in the asymptotically uniform weak∗ topology, then {‖λn‖̂Th

}∞n=1

is bounded. Let us follow the same notation and reasoning given in the last
two paragraphs of the proof of the previous lemma. Now we set α at a value
α′
0 such that

L(B0) = 2 log cosh(L0(α
′
0)/2) =

1

3
log 2.

Then for any measured lamination λ and any geodesic segment I of hyper-
bolic length α′

0, there is a box B(I) of Liouville measure 1
3 log 2 such

that every leaf of λ intersecting I is contained in B(I). It follows that
λ(B(I)) ≥ λ(I).

Now suppose that {‖λn‖̂Th
}∞n=1 is not bounded. Then there exists a

sequence {In}∞n=1 of geodesic segments of hyperbolic length α′
0 approaching

∂D such that {λn(In)}∞n=1 is not bounded. Passing to a subsequence, we may
assume that

λn(In) → ∞ as n → ∞.

For each n, L(B(In)) =
1
3 log 2. Then B(In) sits in the interior of a larger

box of Liouville measure log 2, denote it by Bn.
Let γBn

be the Möbius transformation mapping the standard box B∗ to
Bn. Then B∗

m = γ−1
Bn

(B(In)) sits in the interior of B∗ with Liouville mea-

sure 1
3 log 2. Now let f be a continuous real function between 0 and 1 with
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supp(f) ⊂ B∗ and taking value 1 on B∗
m. Then∫

B∗
fd((γBn

)∗λn) ≥ ((γBn
)∗λn)(B

∗
m) = λn(γBn

(B∗
m)) = λn(B(In)) ≥ λn(In).

Thus,
∫
B∗ fd((γBn

)∗λn) → ∞ as n → ∞. On the other hand,∫
B∗

fd((γBn
)∗λ) ≤ λ(Bn).

Using Lemma 2.1 of [17], we know λ(Bn) ≤ ||λ||Th; or using the previous
lemma, we know

lim sup
n→∞

λ(Bn) ≤ ||λ||
̂Th
.

Therefore, λ(Bn) has to be bounded. The above two estimates make a con-
tradiction to the assumption that [λn] converges to [λ] in the asymptotically
uniform weak∗ topology. Therefore, {‖λn‖̂Th

}∞n=1 is bounded.

Let hn = Eλn |S1 and ex(hn) be the Douady-Earle extension. Since
{‖λn‖̂Th

}∞n=1 is bounded, Theorem 5 and Theorem C together imply that the
boundary dilatation H(ex(hn)) = infE K(ex(hn)|D\E) is bounded by a posi-
tive constant independent of n, where the infimum is taken over all compact
subsets E of D. Then there existsM ′ > 0 such that dAT ([[hn]], [[0]]) < M ′ for
all n. Thus for each n, there exists h′n ∈ [[hn]] such that dT ([h

′
n], [0]) < M ′.

Let λ′
n = EM([h′n]). Then λ′

n ∈ [λn]. It follows that [λ′
n] = [λn] for each n

and {||λ′
n||Th}∞n=1 is a bounded sequence. We complete the proof. �

Similar to the proof of Lemma 2, one can show the following lemma.

Lemma 7. Let [[h]] ∈ AT (D) and {[[hn]]}∞n=1 be a sequence of points in
AT (D). Then [[hn]] converges to [[h]] in the asymptotic Teichmüller topology
on AT (D) provided that

sup
{Bi}

lim sup
i→∞

|L(hn(Bi))− L(h(Bi))| → 0 as n → ∞, (6.4)

where the supremum is taken over all degenerating sequences {Bi}∞i=1 of
boxes.

Proof. Suppose that [[hn]] does not converge to [[h]] in the asymptotic Teich-
müller topology on AT (D). Let ex(hn) and ex(h) be the Douady-Earle exten-
sions of hn and h respectively, where n ∈ N. From the definition given by
(2.2), it follows that the boundary dilatation of ex(hn) ◦ (ex(h))−1 does not
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converge to 0 as n → ∞. Passing to a subsequence, we may assume that the
boundary dilatation of ex(hn) ◦ (ex(h))−1 is greater than a positive number
ε for all n. Thus there exists a sequence of hyperbolic disks {Dn}∞n=1 in D

of diameter 1 with the Euclidean distance from Dn to S1 approaching 0 as
n → ∞ such that

‖Belt(ex(hn)|Dn
)−Belt(ex(h)|Dn

)‖L∞ ≥ ε, (6.5)

for all n. Let D0 be the hyperbolic disk on D of diameter 1 and centered
in 0, and assume that γn ∈ Möb(D) and γn(D0) = Dn. Let A1,n and A2,n

∈ Möb(D) such that A1,n ◦ hn ◦ γn and A2,n ◦ h ◦ γn fix 1,−1, i for all n.
Using the assumption (6.4) and applying Lemma 1 to γn, for any box B
with L(B) = log 2, we obtain

lim
n→∞ |L(A1,n ◦ hn ◦ γn(B))− L(A2,n ◦ h ◦ γn(B))| = 0. (6.6)

Using Remark 4, one can show that the condition (6.4) implies that there
exists a constant M > 1 such that for each n,

1

M
≤ sup

{Bi}
lim sup
i→∞

cr(hn(Bi)) ≤ M,

where the supremum is taken over all degenerating sequences {Bi}∞i=1 of
boxes. Using the definition of ‖h‖

̂ĉr
, we obtain for each n,

‖hn‖ ̂ĉr
≤ sup

{Bi}
lim sup
i→∞

| log cr(hn(Bi))| ≤ logM,

where the supremum is taken over all degenerating sequences {Bi}∞i=1 of
boxes. Theorem C implies that the sequence {H(ex(hn))}∞n=1 of the bound-
ary dilatation of ex(hn) is bounded, which means that H(ex(hn)) < M ′ for
each n and some constant M ′ > 1. For each n, there exists 0 < rn < 1 such
that the maximal dilatation K(ex(hn))(z) < M ′ for any z with rn < |z| < 1.
Let μn be defined as

μn(z) =

{
Belt(ex(hn))(z) if rn ≤ |z| < 1,
0 if |z| < rn.

For each n, let fn be the normalized (i.e., 1, −1 and i are fixed) quasi-
conformal homeomorphism of D with the Beltrami coefficient μn, and let
h̃n = fn|S1 . By definiion, h̃n ∈ [[hn]] and K(fn) < M ′ for each n. Using The-
orem 2 and Remark (1) after that theorem or Proposition 7 in [1], we
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know that {K(ex(h̃n))}∞n=1 is bounded. Therefore, we conclude that one can
replace the representatives of [[hn]]’s such that {K(ex(hn))}∞n=1 is bounded.
For simplicity of notation, we continue to denote these representatives by
hn’s.

Let ex(A1,n ◦ hn ◦ γn) and ex(A2,n ◦ h ◦ γn) be the Douady-Earle exten-
sions of A1,n ◦ hn ◦ γn and A2,n ◦ h ◦ γn respectively. These quasiconfor-
mal mappings fix three common points. Using the conformal natural-
ity of Douady-Earle extensions, their maximal dilatations are uniformly
bounded. Passing to subsequences, we may assume that A1,n ◦ hn ◦ γn and

A2,n ◦ h ◦ γn converge uniformly to quasisymmetric homeomorphisms
̂̂
h and

ĥ on S1 respectively. Using (6.4) and the convergence, we obtain

L(
̂̂
h(B)) = L(ĥ(B))

for any box B with L(B) = log 2. Thus,
̂̂
h = ĥ. Again using the conver-

gence properties of Douady-Earle extensions, Belt(ex(A1,n ◦ hn ◦ γn)) and

Belt(ex(A2,n ◦ h ◦ γn)) converge to Belt(ex(
̂̂
h)) and Belt(ex(ĥ)) uniformly

on D0; that is,

||Belt(ex(A1,n ◦ hn ◦ γn)|D0
)−Belt(ex(A2,n ◦ h ◦ γn)|D0

)||L∞ → 0 (6.7)

as n → ∞. On the other hand, by the conformal naturality of Douady-Earle
extensions,

||Belt(ex(A1,n ◦ hn ◦ γn)|D0
)−Belt(ex(A2,n ◦ h ◦ γn)|D0

)||L∞

= ||Belt(ex(hn)|Dn
)−Belt(ex(h)|Dn

)||L∞ ≥ ε.

This is a contradiction to (6.7). Therefore, the conclusion of the lemma has
to hold. �

Now we prove Theorem 2.

Proof of Theorem 2. We first show that the induced earthquake measure
map ÊM is continuous. Assume that dAT ([[hn]], [[h]]) → 0 as n → ∞. Let

[λn] = ÊM([hn]) and [λ] = ÊM([h]). We need to prove [λn] converges to [λ]
in the asymptotically uniform weak∗ topology. Since dAT ([[hn]], [[h]]) → 0,
there exist h′n ∈ [[hn]] and h′ ∈ [[h]] such that dT ([h

′
n], [h

′]) → 0 as n → ∞.
Let λ′

n = EM([h′n]) and λ′ = EM([h′]). By Theorem 1, λ′
n ∈ [λn] and λ′ =

[λ]. Using the continuity of EM, we know that λ′
n converges to λ′ in the

uniform weak∗ topology. Then for any continuous function f on G with
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compact support supp(f) ⊂ B∗ and any box B with the Liouville measure
L(B) = log 2,

lim
n→∞[sup

B
|
∫
B∗

fd((γB)
∗λ′

n − (γB)
∗λ′)|] = 0.

Clearly, for any degenerating sequences {Bi}∞i=1 of boxes,

sup
{Bi}

lim sup
i→∞

|
∫
B∗

fd((γ
i
)∗(λn)− (γBi

)∗(λ))| ≤ sup
B

|
∫
B∗

fd((γB)
∗λ′

n − (γB)
∗λ′)|.

Therefore

sup
{Bi}

lim sup
i→∞

|
∫
B∗

fd((γBi
)∗(λn)− (γBi

)∗(λ))| → 0 (n → ∞).

By Definition 8, [λn] converges to [λ] in the asymptotically uniform weak∗

topology. Therefore ÊM is continuous.

Next we show that the inverse ÊM−1
is continuous. Suppose not, then

there exists a sequence {[λn]}∞n=1 of points in AMLb(D) such that [λn]
converges to a point [λ] of AMLb(D) in the asymptotic uniform weak∗

topology but [[hn]] = ÊM−1
([λn]) does not converge to [[h]] = ÊM−1

([λ])
in the asymptotic Teichmüller topology on AT (D).

Using Lemma 6 to replace representatives if necessary, we may assume
that {‖λn‖Th}∞n=1 is bounded.

Since [[hn]] does not converge to [[h]] in the asymptotic Teichmüller
topology, applying Lemma 7 and passing to a subsequence, we may assume
that there exist ε > 0 and a degenerating sequences {Bn}∞n=1 of boxes such
that

lim
n→∞ |L(h(Bn))− L(hn(Bn))| ≥ ε. (6.8)

Now we show that if [λn] converges to [λ] in the asymptotically uniform
weak∗ topology, then {(γBn

)∗λn − (γBn
)∗λ}∞n=1 converges to 0 in the weak∗

topology. It suffices to show that for any box B with L(B) = log 2 and any
continuous function f on G with a compact support supp(f) ⊂ B,

lim
n→∞

∫
B
fd((γBn

)∗λn − (γBn
)∗λ) = 0.
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Let γ ∈ Möb(D) such that B = γ(B∗). Then∫
B
fd((γBn

)∗λn − (γBn
)∗λ) =

∫
B∗

f ◦ γd(γ∗((γBn
)∗λn − (γBn

)∗λ))

=

∫
B∗

f ◦ γd((γBn
◦ γ)∗λn − (γBn

◦ γ)∗λ)).

By Lemma 1, we know s(γBn
◦ γ(B∗)) → 0 as n → ∞. Then the definition

of [λn] converging to [λ] in the asymptotically uniform weak∗ implies that
the last integral in the previous expression converges to 0 as n → ∞. Thus,
(γBn

)∗λn − (γBn
)∗λ converges to 0 in the weak∗ topology as n → ∞.

Since {(γBn
)∗λn}∞n=1 and {(γBn

)∗λ}∞n=1 are uniformly Thurston
bounded, it follows that {(γBn

)∗λn}∞n=1 and {(γBn
)∗λ}∞n=1 contain a pair

of converging subsequences in the weak∗ topology. Then the weak∗ limits
of the converging subsequences are the same. For simplicity of notation, we
continue to denote such subsequences by {(γBn

)∗λn}∞n=1 and {(γBn
)∗λ}∞n=1.

Furthermore, using Theorem B, we know there exist {An}∞n=1 and {Cn}∞n=1

in Möb(D) such that the two sequences {E(γBn )
∗λn |S1 = An ◦ hn ◦ γBn

}∞n=1

and {E(γBn )
∗λ|S1 = Cn ◦ h ◦ γBn

}∞n=1 converge to the same quasisymmetric
map pointwise on S1. Thus

lim
n→∞ |L(h(Bn))− L(hn(Bn))|

= lim
n→∞ |L(An ◦ h ◦ γBn

(B∗))− L(Cn ◦ hn ◦ γBn
(B∗))| = 0,

which is a contradiction to (6.8). Therefore [[hn]] converges to [[h]] in the

asymptotic Teichmüller topology. Thus, ÊM−1
is continuous. �

7. Induced infinitesimal earthquake measure map and
asymptotic cross-ratio norm topology

In this section, we consider the infinitesimal version of the induced earth-
quake measure map. As pointed out in Section 2.1, the universal Teichmüller
space T (D) is the quotient space Möb(D)\QS, where QS is the collection of
quasisymmetric homeomorphisms of S1. The tangent space of T (D) at a base
point is characterized by the space Z(S1) (or Z(D)) of Zygmund bounded
continuous tangent vector fields on S1 (resp. D). By developing infinitesimal
versions of Beurling-Ahlfors extensions, Gardiner and Sullivan showed in [9]
that the tangent space of T0(D) at a base point is characterized by a sub-
space Z0(S

1) (or Z0(D)) of Z(S1) (resp. Z(D)). It follows that the tangent
space of AT (D) is the quotient space Z(S1)/Z0(S

1) (resp. Z(D)/Z0(D)),
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denoted by AZ(S1) (resp. AZ(D)). The work of this section is to introduce
a topology on AZ(S1) under which the infinitesimal earthquake measure
map is a homeomorphism between AZ(S1) and AMLb(D) with respect to
the asymptotic uniform weak* topology on AMLb(D).

7.1. Zygmund space and infinitesimal earthquake measure map

A continuous tangent vector field V on S1 can be viewed as a continuous
function from S1 to the complex plane C. It is said to be Zygmund bounded
if

|V (e2πi(x+t)) + V (e2πi(x−t))− 2V (e2πix)| ≤ M |t|, (7.1)

for all x ∈ [0, 1), 0 < t < 1
2 and some M > 0.

Let Q be a quadruple consisting of four points a, b, c, d on the unit circle
arranged in the counter-clockwise direction, denoted by Q = {a, b, c, d}. It
is defined in [8] that

V [Q] =
V (b)− V (a)

b− a
+

V (d)− V (c)

d− c
− V (c)− V (b)

c− b
− V (d)− V (a)

d− a

and

‖V ‖cr = sup
Q

|V [Q]|,

where the supremum is taken over all quadruples Q with cr(Q) = 1.
One can show that ‖V ‖cr = 0 if and only if V is a quadratic polynomial.

Furthermore, it is true that V is Zygmund bounded if and only if ‖V ‖cr is
finite. We let Z(S1) be the space of Zygmund bounded tangent vector fields
on S1 modulo quadratic polynomials.

Let λ ∈ MLb(D). For each t ≥ 0, let ht be a quasisymmetric homeomor-
phism of S1 defined by an earthquake map on D inducing tλ. Suppose that
ht fixes three common points for all t ≥ 0, which is called an earthquake
curve determined by tλ, t ≥ 0. It is shown in [7] that ht(z) is differentiable
on t at each point z ∈ S1 and furthermore

d

dt
ht(z)|t=0 =

∫
G
Eab(z)dλ(a, b) modulo a quadratic polynomial,

where

Eab(z) =

{
0 for z outside of [a, b],
(z−a)(z−b)

a−b for z ∈ [a, b].
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Here we have an agreement that for each geodesic line connecting a, b in
L, [a, b] denotes the short arc on S1 between a and b and in the counter-
clockwise direction.

We denote by

Vλ = Ėλ|S1 =

∫
G
Eab(z)dλ(a, b).

Then the integral introduces an injective map Ė from MLb(D) into Z(S1)
[6], and Ėλ is called an infinitesimal earthquake map determined by λ.
Conversely, Gardiner [6] showed that for any V ∈ Z(S1), there exists a
λV ∈ MLb(D) such that

V (z) =

∫
G
Eab(z)dλV (a, b) modulo a quadratic polynomial.

Furthermore, if two V ’s differ by a quadratic polynomial, then the corre-
sponding λ,s are the same. Therefore, Ė is a bijection between MLb and
Z(S1). The inverse of Ė is often called the infinitesimal earthquake measure
map, and it is denoted as

˙EM : Z(S1) → MLb(D) : V �→ λV .

7.2. Pointwise Convergence of infinitesimal earthquake maps

The infinitesimal version of Theorem B is also proved in [17], which can be
improved by the following proposition.

Proposition 4. Let λ ∈ MLb(D) and let {λn}∞n=1 be a sequence in
MLb(D) with uniformly bounded Thurston norms. Then λn converges to
λ in the weak∗ topology if and only if Ėλn |S1 converges to Ėλ|S1 pointwise
on S1 when all Ėλn |S1 and Ėλ|S1 are properly normalized.

Proof. It is proved in [17] that if {λn}∞n=1 converges to λ in the weak∗ topol-
ogy, then Ėλn |S1 converges to Ėλ|S1 pointwise on S1 when all Ėλn |S1 and
Ėλ|S1 are properly normalized. We only need to prove the other direction.

We normalize Ėλn |S1 and Ėλ|S1 , by subtracting quadratic polynomials,
such that Ėλn |S1 and Ėλ|S1 vanish at three common points of S1. Assume
on the contrary that λn does not converge to λ in the weak∗ topology. By
the same argument in [20], there exists a subsequence {λnj

}∞j=1 of {λn}∞n=1

weakly converging to κ ∈ MLb(D). For simplicity, we rename {λnj
}∞j=1 to be
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{λn}∞n=1. The assumption that λn does not converge to λ in the weak∗ topol-
ogy implies κ �= λ. Normalizing Ėκ|S1 as the same as Ėλn |S1 , it follows that
Ėλn |S1 → Ėκ|S1 pointwise as n → ∞. By the assmption that Ėλn |S1 point-
wise converges to Ėλ|S1 , we know that Ėκ|S1 = Ėλ|S1 . Thus κ = λ, which is
a contradiction. �

7.3. Asymptotic cross-ratio vanishing equivalence on Z(S1)

The tangent space of AT (D) at a base point is the quotient space
Z(S1)/Z0(S

1), where an element V of Z(S1) belongs to Z0(S
1) provided

that the constant M in (7.1) converges to 0 independent of x as |t| → 0. In
this subsection, we first introduce an alternative definition of the elements
in Z0(S

1) by using V [Q].
In the previous sections, we have used two cross ratios. One is used to

define the Liouville measure of a box B = [a, b]× [c, d] and the other is used
to define the cross-ratio distortion norm. They are used in different situations
based on different purposes and the quantitative results are different. In
the following, one can see that their infinitesimal versions only differ up to
multiplication by 2.

Definition 9. Let B = [a, b]× [c, d] be a box of geodesics, where a, b, c, d lie
on S1 in the counter-clockwise direction. For any V ∈ Z(S1), we set

VL[B] =
V (a)− V (c)

a− c
+

V (b)− V (d)

b− d
− V (a)− V (d)

a− d
− V (b)− V (c)

b− c
,

and the cross-ratio norm ‖V ‖crL of V is defined by

‖V ‖crL = sup
B

|VL[B]|,

where the supremum is taken over all B with Liouville measure L(B) = log 2.

Proposition 5. For any Q = {a, b, c, d} with crL(Q) = 2,

V [Q] = 2VL[Q].

Proof. Let V ∈ Z(S1). Given any Q = {a, b, c, d} with crL(Q) = 2, we con-
sider that a, b, c and d are temporarily fixed. Let ft(z) = z + tV . Then ft(Q)
is a quadruple of four distinct points when |t| is sufficiently small.
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Clearly, crL(Q) = 2 if and only if cr(Q) = 1. By the definitions of V [Q]
and VL[Q], we obtain

VL[Q] =
d

dt
ln crL(ft(Q))|t=0 =

d

dt
ln(1 + cr(ft(Q)))|t=0

=
d
dtcr(ft(Q))

1 + cr(ft(Q))
|t=0 =

1

2

d

dt
cr(ft(Q))|t=0

=
1

2

d

dt
eln cr(ft(Q))|t=0 =

1

2
eln cr(ft(Q)) d

dt
ln cr(ft(Q))|t=0

=
1

2
V [Q].

Therefore, V [Q] = 2VL[Q]. �

Now we introduce an alternative characterization of the elements in
Z0(D).

Lemma 8 ([12]). If two tangent vector fields V and Ṽ satisfy Ṽ (x) =
V (γ(x))
γ′(x) for an element γ ∈ Möb(D), then for any quadruple Q of four points

a, b, c, d on the unit circle in the counter-clockwise order,

Ṽ [Q] = V [γ(Q)] (or V [Q] = Ṽ [γ−1(Q)]).

Similar to the definition of a degenerating sequence of boxes in G, we
define a degenerating sequence of quadruples to be a sequence {Qn}∞n=1 of
quadruples Qn such that cr(Qn) = 1 for all n and s(Qn) → 0 as n → ∞,
where s(Q) is the minimum scale of Q = {a, b, c, d}; that is,

s(Q) = min{|a− b|, |b− c|, |c− d|, |d− a|}.

Proposition 6. A continuous tangent vector field V on S1 belongs to
Z0(S

1) if and only if

sup
{Bn}

lim sup
n→∞

VL[Bn] = 0 or sup
{Qn}

lim sup
n→∞

V [Qn] = 0, (7.2)

where the supremum is taken over all degenerating sequences {Bi}∞i=1 of
boxes or all degenerating sequences {Qi}∞i=1 of quadruples.

Proof. Let V be a continuous tangent vector field on S1 and p ∈ S1, and let γp
be an orientation-preserving Möbius transformation from H onto D mapping
i to the origin, 0 to p and∞ to −p. Assume that Vp(z) = V (γp(z))/γ

′
p(z). We
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note that V ∈ Z0(S
1) if and only if Vp ∈ Z0(R) for any p ∈ S1, where Z0(R)

denotes the space of all continuous functions Vp defined on R satisfying

Vp(x+ t) + Vp(x− t)− 2Vp(x)

t
= δ(x, t)

for any points x and t on R, and δ(x, t) converges to 0 uniformly on x as
t → 0.

In the following, we first show that if V satisfies the condition (7.2) then
V ∈ Z0(S

1). By the above note, it suffices to show that Vp ∈ Z0(R) for any
p ∈ S1.

Let p be a point on S1. Using a lemma in [12] (see Lemma 10 in
Subsection 7.5), we see that Vp[Q] = V [γp(Q)]. Given any quadruple Q =
{x− t, x, x+ t,∞},

Vp(x+ t) + Vp(x− t)− 2Vp(x)

t
= Vp[Q] = V [γp(Q)].

Applying the condition (7.2) to V on the quadruples γp(Q) and using proof
by contradiction, we can show that Vp ∈ Z0(R).

Conversely, assuming that V ∈ Z0(S
1), we want to show it satisfies con-

dition (7.2). Suppose not, it follows that there exist ε > 0 and a degenerating
sequence {Qn}∞n=1 of quadruples such that

|V [Qn]| > ε

for each n.
Passing to a subsequence, we may assume that an, bn, cn and dn converge

to a, b, c and d on S1 respectively. Using the conditions that cr(Qn) = 1
for each n and s(Qn) → 0 as n → ∞, we conclude that the set {a, b, c, d}
contains at most two distinct points, namely a and d. Now let p be a point
on S1 such that −p is different from a and d. Then Vp(z) = V (γp(z))/γ

′
p(z) ∈

Z0(R). Now we apply the infinitesimal Beurling-Ahlfors extension of Vp to
the upper half planeH introduced by Gardiner and Sullivan in [9]. It is shown
there that if Vp ∈ Z0(R), then μ = ∂̄Vp is a Beltrami coefficient vanishing
when approaching the boundary R. Note that if n is big enough,Qn is outside
a neighborhood of −p on S1, and hence γ−1

p (Qn) is contained in a compact
subset K of R. Denote by Q′

n = γ−1
p (Qn) = {a′n, b′n, c′n, d′n}. Now applying

the measurable Riemann mapping theorem to tμ, the approximation

f tμ(z) = z + tVp(z) + o(|t|)
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is uniform on every compact subset of R, where |t| < 1 and f tμ is normalized
to fix 0, 1 and ∞ for all t. Furthermore,

Vp(z) = −z(z − 1)

π

∫ ∫
μ(ξ)dζdη

ξ(ξ − 1)(ξ − z)

=
1

π

∫ ∫
μ(ξ)(

z

ξ − 1
− z − 1

ξ
− 1

ξ − z
)dζdη,

where ξ = ζ + iη. Then

V [Qn] = Vp[Q
′
n]

= − 1

π

∫ ∫
(c′n − a′n)(d′n − b′n)

(ξ − a′n)(ξ − b′n)(ξ − c′n)(ξ − d′n)
μ(ξ)dζdη.

By arranging −p at a point on the open circular arc on S1 from d to a
in the counterclockwise direction and using the corresponding γp, we may
assume that a′n < b′n < c′n < d′n for each sufficiently large n. Passing to a
subsequence and without loss of generality, we assume further that s(Q′

n) =
c′n − b′n for all sufficiently large n. For each sufficiently large n, substituting
ξ by ξ = (c′n − b′n)w + b′n we obtain

Vp[Q
′
n] = − 1

π

∫ ∫ c′n−a′
n

c′n−b′n

d′
n−b′n

c′n−b′n

(w − a′′n)w(w − 1)(w − d′′n)
μ((c′n − b′n)w + b′n)dudv,

where w = u+ iv and a′′n = − b′n−a′
n

c′n−b′n
and d′′n = d′

n−b′n
c′n−b′n

.

Since c′n − b′n approaches 0 as n → ∞ and μ vanishes near the real line R,
it follows that μ((c′n − b′n)w + b′n) converges to 0 pointwise at almost every
w as n → ∞. According to the relation between the maximal and minimal
scales of Q′

n, we consider the following two cases. In one case, the ratios
of the maximal scales over the minimal ones of Q′

n’s are bounded, and in
the other, the ratios converge to ∞ as n → ∞ (by passing to a subsequence
if necessary). Using the condition cr(Q′

n) = 1 for each n, we obtain in the

first case, a′′n’s,
c′n−a′

n

c′n−b′n
’s and d′

n−b′n
c′n−b′n

’s are all bounded; in the other case, either

a′n converges to −1, c′n−a′
n

c′n−b′n
converges to 2 and d′

n−b′n
c′n−b′n

converges to ∞ as

n → ∞ or a′n converges to −∞, c′n−a′
n

c′n−b′n
converges to ∞ and d′

n−b′n
c′n−b′n

converges
to 2 as n → ∞. Applying Lebesgue’s dominating convergence theorem, we
conclude that in either case, V [Qn] = Vp[Q

′
n] converges to 0 as n → ∞. This

is a contradiction to the assumption that V [Qn] > ε > 0 for each n. �
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Definition 10. Given two elements V, V ′ ∈ Z(S1), we say that V is equiv-
alent to V ′, denoted by V ∼ V ′, if

sup
{Bn}

lim sup
n→∞

|VL[Bn]− V ′
L[Bn]| = 0 or sup

{Qn}
lim sup
n→∞

|V [Qn]− V ′[Qn]| = 0

where the supremum is taken over all degenerating sequences {Bn}∞n=1 of
boxes or all degenerating sequences {Qn}∞n=1 of quadruples.

For each V ∈ Z(S1), we denote by [V ] the equivalence class of V in
Z(S1). Define

AZ(S1) = Z(S1)/ ∼ .

Using Proposition 6, the following corollary is obvious.

Corollary 6. AZ(S1) = Z(S1)/Z0(S
1).

7.4. Proof of Theorem 3

Proof. We first show that if [λ] = [λ′], then [V ] = [V ′]. Suppose that [V ] �=
[V ′]. Then there exist ε > 0 and a degenerating sequence of {Bn}∞n=1 boxes
such that, for all n

|Ėλ|S1 [Bn]− Ėλ′ |S1 [Bn]| ≥ ε > 0.

Then for all n,

|Ė(γBn )
∗λ|S1 [B∗]− Ė(γBn )

∗λ′ |S1 [B∗]| = |V [Bn]− V ′[Bn]| ≥ ε > 0. (7.3)

Since ‖(γBn
)∗λ‖Th = ‖λ‖Th and ‖(γBn

)∗λ′‖Th = ‖λ′‖Th, {(γBn
)∗λ}∞n=1

and {(γBn
)∗λ′}∞n=1 are uniformly Thurston bounded. Therefore there exist

convergent subsequences of {(γBn
)∗λ}∞n=1 and {(γBn

)∗λ′}∞n=1 in the weak∗

topology. For simplicity, we denote them by the same notation. In the proof
of the sufficiency of Theorem 1, we have shown that the condition [λ] = [λ′]
implies that the limit of (γBn

)∗λ equals to the limit of (γBn
)∗λ′. We normalize

Ė(γBn )
∗λ|S1 and Ė(γBn )

∗λ′ |S1 , by adding quadratic polynomials, such that
Ė(γBn )

∗λ|S1 and Ė(γBn )
∗λ′ |S1 take value 0 at three fixed points on S1. By

Proposition 4, the (pointwise) limits of the two sequences Ė(γBn )
∗λ|S1 and

Ė(γBn )
∗λ′ |S1 are the same. This is a contradiction to (7.3).

Now we show that if [V ] = [V ′], then [λ] = [λ′]. Assume on the con-
trary that [λ] �= [λ′], then there exist a degenerating subsequence {Bn}∞n=1
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of boxes, and a continuous function f on G with compact support contained
in B∗ such that

lim
n→∞

∫
B∗

fd((γBn
)∗λ− (γBn

)∗λ′) ≥ ε > 0. (7.4)

Since they are uniformly Thurston bounded, there exist convergent
subsequences of {(γBn

)∗λ}∞n=1 and {(γBn
)∗λ′}∞n=1 in the weak∗ topology,

which we denote by the same notation for simplicity. Using the assump-
tion (7.4), we know that the weak∗ limit of (γBn

)∗λ does not equals to
the limit of (γBn

)∗λ′. By Proposition 4, the pointwise limits of the two
sequences Ė(γBn )

∗λ|S1 and Ė(γBn )
∗λ′ |S1 are not the same even though they

vanish at three common points on S1. Thus there exists a box B0 ∈ G with
L(B0) = log 2 such that

lim
n→∞ |Ė(γBn )

∗λ′ |S1 [B0]− Ė(γBn )
∗λ|S1 [B0]| ≥ δ > 0. (7.5)

On the other hand, using the assumption that V ∼ V ′ and limn→∞ s(Bn) =
0, we obtain

lim
n→∞ |Ė(γBn )

∗λ′ |S1 [B0]− Ė(γBn )
∗λ|S1 [B0]|

= lim
n→∞ |Ėλ′ |S1 [(γBn

)(B0)]− Ėλ|S1 [(γBn
)(B0)]| ≤ lim sup

s(B)→0
|V ′[B]− V [B]| = 0.

This is a contradiction to (7.5). It follows that [λ] = [λ′]. �

7.5. Asymptotic Thurston’s norm and asymptotic cross-ratio
norm

It is shown in [11] and [12] with two different methods that the cross-ratio
norm ||V ||cr of a vector field V ∈ Z(S1) and the Thurston’s norm ‖λV ‖Th

of λV are equivalent. Now we define the following.

Definition 11. Given a vector field V ∈ Z(S1), the asymptotic cross-ratio
norm ‖V ‖ĉr of V ∈ Z(S1) is defined to be

‖V ‖ĉr = sup
{Qn}

lim sup
n→∞

|V [Qn]|,

where the supremum is taken over all degenerating sequences {Qn}∞n=1 of
quadruples.
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In this subsection, we prove Theorem 6, which is viewed as an asymptotic
version of the result

‖λV ‖Th ≤ C‖V ‖cr
for a universal positive constant C in [12]. In the next subsection, we apply
this theorem to prove the continuity of the inverse of the induced infinitesi-

mal earthquake measure map ̂̇EM.
The strategy of the proof of Theorem 6 is similar to the one used to

prove the inequality ||λV ||Th ≤ C||V ||Th in [12], but extra effort has to be
made in order to have the scales s(Q) of selected quadruples Q approach 0
as disks D of hyperbolic diameter ≤ 1

2 approach the boundary S1 of D. We
first recall three technical lemmas developed in [12].

Let λ denote a Thurston bounded measured lamination and V = Vλ. Let
B be an orientation-preserving Möbius transformation from the upper half
plane H or the unit open disk D onto D, and λ̃ = (B∗λ) be the pullback of
λ by B (or the pushforward of λ by B−1). And define

Ṽ (x) = Vλ̃(x) = Ėλ̃(x) =

∫
G
Eab(x)dλ̃(a, b),

where Eab(x) is defined by the same formula given in Section 7.1.

Lemma 9 ([12]). The vector fields V and Ṽ satisfy

Ṽ (x) =
V (B(x))

B′(x)
modulo a quadratic polynomial.

Lemma 10 ([12]). Let B be a Möbius transformation from D or H onto
D or H. Assume that two continuous tangent vector fields Ṽ and V on S1

or R satisfy the condition in the previous lemma. Then for any quadruple Q
of four points,

Ṽ [Q] = V [B(Q)].

Lemma 11 ([12]). Assume ρ > 0, −∞ ≤ a < b < c < d, and c ≤ s ≤ d ≤
t. Let V (x) = ρEst(x) and Q = {a, b, c, d}. Consider V [Q] as a function of
s and t. Then V [Q] ≥ 0 and V [Q] is an increasing function on t for each
fixed s and a decreasing function on s for each fixed t.

Lemma 12 ([12]). Assume ρ > 0, −∞ ≤ a < b < c < d ≤ ∞, and b ≤ s ≤
c and t ≥ d. Let V (x) = ρEst(x) and Q = {a, b, c, d}. Consider V [Q] as a
function of s and t. Then V [Q] ≥ 0 and V [Q] is increasing on s for each
fixed t and also increasing on t for each fixed s.
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Figure 2: Illustration of the quadruples Q and Q′ in the proof of Theorem
6.

Now we prove Theorem 6.

Proof. Let r0 be a constant between 0 and 1, which will be selected later. Let
D denote a closed disk in D of hyperbolic diameter ≤ r0. It suffices to show
that there exists a universal positive constant C such that the measure of
the leaves of the lamination L intersecting D is less than or equal to C||V ||ĉr.

Suppose that D is near the boundary. Let l1 and l2 denote the lines in
the lamination L of λ which bound all the lines in L intersecting D. We
label the endpoints of l1 and l2 by a, s, c and t in the counter-clockwise
order such that a and t are the endpoints of one leaf and s and c are the
endpoints of the other, and furthermore the length of the arc between a and
s is less than or equal to the length of the arc between c and t. In the special
case that l1 and l2 share one endpoint, then a = s or c = t; in the one that
they share both endpoints, then a = s and c = t.

Let p be a point on the intersection of D with the geodesic connecting
a and c. Now we let B be an orientation-preserving Möbius transformation
from H onto D such that B−1(p) = i, B−1(a) = 0 and B−1(c) = ∞. It also
follows that t′ = B−1(t) < 0, s′ = B−1(s) ≥ 0, and B(D) is a disk containing
of i and with hyperbolic diameter ≤ r0. Now it is easy to see that if r0 is
small enough, then t′ < −2 and 0 ≤ s′ < 1. Furthermore, we can see that
as soon as r0 is small enough, the properties t′ < −2 and 0 ≤ s′ < 1 hold
universally in the sense that for any disk D of diameter r0 in the hyperbolic
metric and any geodesic lamination L, the two variables t′ and s′ resulting
from the previous process satisfy those two inequalities. We thereby choose
r0 to be such a positive constant.
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Let Q′ = {0, 1,∞,−1}, which is a quadruple on the extended line R ∪
{∞} with cr(Q′) = −1. Let Q = B(Q′). By using a similar idea to that in
the proof of Lemma 1, one can show that s(Q) goes to 0 if D approaches
the boundary S1.

Now assume that λ̃ and Ṽ are as the same as introduced in this subsec-
tion. Clearly, cr(Q) = cr(Q′) = −1. By Lemma 8,

Ṽ [Q′] = V [Q].

Let L̃ = B(L), where L is the lamination for λ. In order to estimate
Ṽ [Q′], we divide the lines in the lamination L̃ that affect the value of V [Q′]
into three groups. Let Lm denote the collection of the lines in L̃ intersecting
B(D), Lb denote the collection of the lines in L̃ \ Lm connecting points
in (s′, 1) to points in (1,∞), and Ld the collection of the lines in L̃ \ Lm

connecting points in (t′,−1) to points in (−1, 0). Denote by λk = λ̃|Lk
and

Vi = Ėλk for k = m, b, d. By the linearity of the operator Ė, we obtain

Ṽ [Q′] = Vm[Q′] + Vb[Q
′] + Vd[Q

′].

Note that the order required on the four points of a quadruple in the
assumptions of Lemmas 11 and 12 should be viewed as the counterclockwise
order on the extended line R ∪ {∞}; that is, the conclusions of Lemmas 11
and 12 hold as soon as the four points of the quadruple are arranged in
the counterclockwise order on R ∪ {∞}. Now we denote Q′ by {a′, b′, c′, d′}.
Using Lemma 11, we obtain

Vd[Q
′] = Vd[{a′, b′, c′, d′}] ≥ 0 and Vb[{c′, d′, a′, b′}] ≥ 0.

Then

Vb[Q
′] = Vb[{a′, b′, c′, d′}] = −Vb[{b′, c′, d′, a′}] = Vb[{c′, d′, a′, b′}] ≥ 0.

Therefore

Ṽ [Q′] ≥ Vm[Q′].

In the next, we use Lemma 12 to obtain an explicit lower bound for Vm[Q′],
which enables us to complete the proof. By Lemma 12, if we move the weights
of the geodesic lines in the lamination Lm to the geodesic line connecting t′

to s′, then the value of Vm[{b′, c′, d′, a′}] is possibly increased, and hence the
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value of Vm[Q′] = −Vm[{b′, c′, d′, a′}] is possibly decreased. Therefore

Vm[Q′] ≥ (ρEt′s′)[Q
′],

where ρ = λ̃(Lm). It is easy to check

Et′s′ [Q
′] =

2Et′,s′(d
′)− Et′,s′(a

′)
a′ − d′

=
2 + 2t′ + 2s′ + t′s′

t′ − s′
=

2[−(1 + t′)] + s′[−(2 + t′)]
s′ − t′

.

Since 0 ≤ s′ < 1 and t′ < −2, 2[−(1 + t′)] ≥ 2, s′[−(2 + t′)] > 0, and s′ −
t′ ≤ 1− t′. It follows that

2[−(1 + t′)] + s′[−(2 + t′)]
s′ − t′

≥ 2[−(1 + t′)]
1− t′

= 2
t′ + 1

t′ − 1
.

Clearly, 2 t′+1
t′−1 attains its minimal value 2

3 on the interval (−∞,−2]. Thus

Vm[Q′] ≥ 2

3
ρ.

In summary,

V [Q] = Ṽ [Q′] ≥ Vm[Q′] ≥ 2

3
ρ,

where ρ = λ̃(Lm), which is equal to the λ measure of the lines of L intersect-
ing D, D is a closed disk in D of hyperbolic diameter ≤ r0 and 0 < r0 < 1,
and cr(Q) = cr(Q′) = −1.

Now let Q′
1 = {−1, 0, 1,∞} and Q1 = B(Q′

1). Then cr(Q′
1) = cr(Q1) =

1, s(Q1) = s(Q), and furthermore

V [Q1] = −V [Q] ≤ −2

3
ρ.

Thus

|V [Q1]| ≥
2

3
ρ.

It follows that there exists a universal positive constant C such that

||λ||
̂Th

≤ C||V ||ĉr.

�
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7.6. Proof of Theorem 4

For any V ∈ Z(S1), define

‖V ‖ĉrL = sup
{Bn}

lim sup
n→∞

|V [Bn]|,

where the supremum is taken over all degenerating sequences {Bn}∞n=1 of
boxes.

By Proposition 5, the following corollary is obvious.

Corollary 7. For any V ∈ Z(S1), ‖V ‖ĉr = 2‖V ‖ĉrL .

Now we prove Theorem 4.

Proof. We first show that ̂̇EM−1

is continuous. Assume that [λn] → [λ] in

the asymptotically uniform weak∗ topology, we prove [Vn] =
̂̇EM−1

([λn])

goes to [V ] = ̂̇EM−1

([λ]) in the ‖ · ‖ĉrL norm. By Corollary 2, since [λn] →
[λ] in the asymptotically uniform weak∗ topology, there exist λ′

n ∈ [λn] con-

verging to λ′ ∈ [λ] in the uniform weak∗ topology. Let V ′
n = ˙EM−1

(λ′
n) and

V ′ = ˙EM−1
(λ′). By the homeomorphic property of ˙EM ([17]), V ′

n converges
to V ′ in the ‖ · ‖crL norm. Since ‖V ‖crL ≥ ‖V ‖ĉrL for any V ∈ Z(S1), it fol-
lows that [V ′

n] = [Vn] converges to [V ′] = [V ] in the ‖ · ‖ĉrL norm.

It remains to show that ̂̇EM is continuous. Assume that [Vn] → [V ]

in the asymptotically uniform weak∗ topology. Let [λn] =
̂̇EM([Vn]) and

[λ] = ̂̇EM([V ]). We prove [λn] converges to [λ] in the asymptotically uniform
weak∗ topology.

Since [Vn] → [V ] in the asymptotic cross-ratio norm ‖ · ‖ĉrL ,
{‖Vn‖ĉrL}∞n=1 is bounded. By Corollary 7, ‖Vn‖ĉr = 2‖Vn‖ĉrL . Hence
{‖Vn‖ĉr}∞n=1 is bounded. By Theorem 6, {‖λn‖̂Th

}∞n=1 is bounded. Using
Lemma 6 to replace the representatives, we may assume that {λn}∞n=1 is
uniformly Thurston bounded.

Suppose on the contrary that [λn] does not converges to [λ] in the asymp-
totically uniform weak∗ topology. Then there exist a degenerating sequence
{Bn}∞n=1 of boxes and a continuous function f on G with compact support
contained in B∗ such that

lim
n→∞

∫
B∗

fd((γBn
)∗λn − (γBn

)∗λ) > ε > 0. (7.6)
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Since ‖(γBn
)∗λn‖Th = ‖λn‖Th, ‖(γBn

)∗λ‖Th = ‖λ‖Th and {‖λn‖Th}∞n=1

is bounded, it follows that (γBn
)∗λn and (γBn

)∗λ are uniformly Thurston
bounded. Therefore there exist convergent subsequences of {(γBn

)∗λn}∞n=1

and {(γBn
)∗λ}∞n=1 in the weak∗ topology, which we denote by the same

notation for simplicity. By the assumption (7.6), we see that the weak∗ limit
of (γBn

)∗λn does not equal to the limit of (γBn
)∗λ. By Proposition 4, the

pointwise limits of the two sequences Ė(γBn )
∗λn |S1 and Ė(γBn )

∗λ|S1 are not
the same even they vanish at the three common points on S1. Thus there
exists a box B0 ∈ G with L(B0) = log 2 such that

lim
n→∞ |Ė(γBn )

∗λn |S1 [B0]− Ė(γBn )
∗λ|S1 [B0]| > ε′ > 0.

By Lemma 1, s(γBn
(B0)) → 0 as n → ∞. Using the assumption that [Vn] →

[V ] in the asymptotically uniform weak∗ topology, we obtain

lim
n→∞ |Ė(γBn )

∗λn |S1 [B0]− Ė(γBn )
∗λ|S1 [B0]|

= lim
n→∞ |Ėλn |S1 [(γBn

)(B0)]− Ėλ|S1 [(γBn
)(B0)]| ≤ lim sup

s(B)→0
|Vn[B]− V [B]| = 0.

This is a contradiction to (7.6). It follows that [λn] converges to [λ] in the
asymptotically uniform weak∗ topology. �
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[19] D. Šarić, ‘Geodesic currents and Teichmüller space’, Topology 44 (2005)
99-130.
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