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1. Introduction

Vanishing theorems are very useful and important in the study of both
algebraic and complex geometry. Among them, the Kodaira vanishing the-
orem is the most fundamental result. Besides, there are various generaliza-
tions, such as the Andreotti-Grauert vanishing theorem [1], the Grauert-
Riemenschneider vanishing theorem [16], the Kawamata-Viehweg vanishing
theorem [19, 28], and the Nadel vanishing theorem [21]. The cohomology
injectivity theorems which imply various vanishing theorems are also crucial
in both complex algebraic geometry and Hodge theory.

Inspired by a cohomology injectivity theorem of S. G. Tankeev [27], J.
Kollár [18] gives the following original injectivity theorem:

Theorem 1.1 ([18], Theorem 2.2). Let X be a smooth projective variety
defined over an algebraically closed field of characteristic zero and let L be
a semi-ample line bundle on X. Let s be a nonzero holomorphic section of
L⊗k for some k > 0. Then

×s : Hq(X,KX ⊗ L⊗m) → Hq(X,KX ⊗ L⊗(m+k))

is injective for every q ≥ 0 and every m ≥ 1, where KX is the canonical
line bundle of X. Note that ×s is the homomorphism induced by the tensor
product with s.

Later, I. Enoki [9] gives an analytic version of Kollár’s injectivity theorem
on compact Kähler manifolds:

Theorem 1.2 ([9], Theorem 0.2). Let X be a compact Kähler manifold
and let L be a semi-positive line bundle on X. Then, for any non-zero holo-
morphic section s of L⊗k with some positive integer k, the multiplication
homomorphism

×s : Hq(X,KX ⊗ L⊗m) → Hq(X,KX ⊗ L⊗(m+k))

is injective for every q ≥ 0 and every m ≥ 1.

Enoki’s proof only uses the standard results of the theory of harmonic
forms on compact Kähler manifolds. T. Ohsawa [23] investigates a curvature
condition in a generalized L2 extension theorem which implies a cohomol-
ogy injectivity theorem. After that, O. Fujino gives a curvature condition
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which implies Kollár-type cohomology injectivity theorems by the Ohsawa-
Takegoshi twisted version of Nakano’s identity in [12, 13].

Recent developments on the mixed Hodge structures on cohomology with
compact support lead to generalizations of Kollár’s injectivity theorem.

Inspired by these works, Fujino posts the following conjecture:

Conjecture 1.3 ([14], Conjecture 2.4). Let X be a compact Kähler
manifold and let D be a simple normal crossing divisor on X. Let L be a
semi-positive line bundle on X and let s be a nonzero holomorphic section
of L⊗k on X for some positive integer k. Assume that (s = 0) contains no
strata of D. Then the multiplication homomorphism

×s : H i(X,ωX ⊗OX(D)⊗ L⊗l) → H i(X,ωX ⊗OX(D)⊗ L⊗(l+k))

induced by ⊗s is injective for every positive integer l and every i.

Since the 1960s, the L2-theory for the ∂̄-operator has become one of the
essential tools in complex analysis on complex manifolds thanks to the fun-
damental work of Hörmander [17] on L2-estimates and existence theorems
for the ∂̄-operator and the related work of Andreotti and Vesentini [2]. The
L2-theory is a cohomology theory which extends the theory of the usual
de Rham complex on closed smooth Riemannian manifolds to non-compact
manifolds and spaces with singularities. One way of this extension is to
restrict to a subcomplex of the de Rham complex, i.e., that of the square
integrable differential forms. This leads to the L2-cohomology. In this paper,
we mainly focus on the L2-cohomology on complex manifolds instead of the
general open (possibly incomplete) Riemannian manifolds.

Let (X, g) be a Hermitian manifold of dimension n and let (E, h) be
a Hermitian vector bundle over X. Denote by Lp,q

2 (X,E) the space of L2-
integrable E-valued (p, q)-forms on X with measurable coefficients. Let

Cp,q
2 (X,E) = {u ∈ Lp,q

2 (X,E) | ∂̄wu ∈ Lp,q+1
2 (X,E)},

where ∂̄w is the maximal closed extension of the ∂̄-operator

∂̄cpt : Dom∂̄cpt = Ap,q
cpt(X,E) ⊂ Lp,q

2 (X,E) → Lp,q+1
2 (X,E).

Here Ap,q
cpt(X,E) is the set of all smooth sections with compact support. In

other words, ∂̄w is the extended ∂̄-operator in the sense of distribution.
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Then the corresponding L2-cohomology Hp,q
(2)(X,E) is defined to be the

cohomology of the complex

0 → Cp,0
2 (X,E)

∂̄w−→ Cp,1
2 (X,E)

∂̄w−→ · · · ∂̄w−→ Cp,n
2 (X,E) → 0.

The ∂̄cpt-operator has various closed extensions, among which there is
another important extension, namely, the minimal extension ∂̄s, that is the
closure of ∂̄cpt with respect to the graph norm in Lp,q

2 (X,E)× Lp,q+1
2 (X,E).

When g is a complete metric, the domains of ∂̄w and ∂̄s coincide.
By the abstract Hodge theory in [20], we obtain that

Hp,q
(2)(X,E)

∼=−→ Hp,q
(2)(X,E)

when Hp,q
(2)(X,E) is finite dimensional (See Proposition 3.2). Here

Hp,q
(2)(X,E) := Ker∂̄w ∩Ker∂̄∗

w.

Following the method in Enoki [9], we obtain our main theorem:

Theorem 1.4. Let (X, g) be a complete Kähler manifold and L be a semi-
positive line bundle on X. Let s be a nonzero holomorphic section of L⊗k on
X for some positive integer k which is bounded in the L∞-norm. Suppose
that for some q, the L2-cohomologies Hq

(2)(X,L⊗l) and Hq
(2)(X,L⊗(l+k)) are

finite dimensional for some l > 0. Then the multiplication homomorphism

×s : Hq
(2)(X,ωX ⊗ L⊗l) → Hq

(2)(X,ωX ⊗ L⊗(l+k))

induced by ⊗s is injective.

Then we give the proof of Fujino’s conjecture 1.3 under the assumption
that L is semi-positive over X and positive on D (which means that for any
point x ∈ D, the curvature at x is positive). In order to obtain the injectivity
theorem, we need to establish the corresponding L2 Dolbeault lemma, i.e.,
the corresponding L2 Dolbeault complex on X is a resolution of a certain
sheaf complex.

Such an L2 Dolbeault lemma was first established by S. Zucker in [29]
when X is one dimensional. Then a generalization to arbitrary dimensions
is given by A. Fujiki [11].

By the method in [11], choosing different metrics leads to different L2

Dolbeault lemmas, namely, the isomorphisms between certain kinds of geo-
metrically meaningful cohomology and the L2-cohomology. Thus we can get
the corresponding injectivity theorems which have applications in geometry.
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The main idea of the proof of our L2 Dolbeault lemma comes from the dis-
cussions in H. Luo’s thesis [26]. Let X be a compact Kähler manifold and
D =

∑r
i=1Di be a simple normal crossing divisor where Di are irreducible

components of D. Let si be the defining section of Di in O(Di). Let (L, h) be
a semi-positive line bundle on X which is positive on D. Fix a neighborhood
W of D such that W is compact and h is positive on W . We can choose for
each O(Di) a Hermitian metric ‖ · ‖Di

such that ‖si‖Di
= 1 on X \W . We

fix a Poincaré-type metric on X \D and perturb the Hermitian metric h to

hL =

r∏
i=1

‖si‖2δDi
(logε‖si‖2Di

)2αh

by small positive constants δ and ε. By choosing proper δ and ε, the new
metric hL is also semi-positive on X \D and positive on D, and leads to a
canonical isomorphism (Proposition 4.3):

Hq(X,KX ⊗ L⊗O(D)) 	 Hn,q
(2) (X \D,L).

Hence we prove Fujino’s conjecture 1.3 in the case that the line bundle L is
semi-positive on X and positive on D:

Theorem 1.5. Let X be a compact Kähler manifold and let D be a reduced
simple normal crossing divisor on X. Let (L, h) be a Hermitian line bundle
on X which is semi-positive on X and positive on D (which means the
curvature Θ(h)x ≥ 0 for x ∈ X and Θ(h)x > 0 for x ∈ D). Let s be a nonzero
holomorphic section of L⊗k on X for some positive integer k. Then the
multiplication homomorphism

×s : Hq(X,ωX ⊗OX(D)⊗ L⊗l) → Hq(X,ωX ⊗OX(D)⊗ L⊗(l+k))

which is induced by ⊗s is injective for every q ≥ 0 and l > 0. Here ωX is
the canonical line bundle of X and ×s is the homomorphism induced by the
tensor product with s.

This theorem gives a proof of Conjecture 1.3 under the assumption that
L is semi-positive on X and positive on D. When D = ∅, this theorem is
reduced to Theorem 1.2 of Enoki mentioned above.

When D �= ∅, the cohomology in fact vanishes:

Proposition 1.6. Let X be a compact Kähler manifold of dimension n and
D be a simple normal crossing divisor on X. Suppose that L is a line bundle
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on X and h is a semi-positive Hermitian metric on L which is positive on
D. Then

Hq(X,ωX ⊗OX(D)⊗ L) = 0

for every q > 0.

When p = n, it is a generalization of Norimatsu’s vanishing theorem [22]:

Theorem 1.7 ([22], Theorem 1). Let (X,D) be a compact Kähler man-
ifold and L be an ample invertible sheaf on X. Then

Hq(X,Ωp(logD)⊗ L) = 0, for p+ q ≥ n+ 1.

Here n = dimX and Ωp(logD) denotes the sheaf of logarithmic p-forms of
X.

In the sequel, we summarize the contents of this paper. In Section 2,
we briefly review some basic knowledge of Kähler geometry. Section 3 is
devoted to the L2 Hodge theory and the L2-injectivity theorem. In Section
4, we give the proof of Theorem 1.5.

Acknowledgements. The author would like to thank Prof. Kefeng
Liu for his encouragement, patience, valuable discussions, and bringing this
problem to the author’s interest. The author also appreciates Haisheng Liu,
Sheng Rao, Xueyuan Wan and Quanting Zhao for their careful reading, help-
ful discussions and suggestions. The author also thank Yifei Chen, Xiankui
Meng, Chunle Huang for their helpful discussions and the anonymous ref-
erees for their detailed and helpful comments on the improvement of this
paper. In particular, the author would like to point out that Remark 4.7 is
due to the anonymous referee.

2. Preliminary

Definition 2.1 (Chern connection and its curvature form). LetX be
a complex manifold and let (E, h) be a holomorphic Hermitian vector bundle
on X. Then there exists the Chern connection D = D(E,h), which can be
split in a unique way as a sum of a (1, 0)-connection and a (0, 1)-connection,
D = D′

(E,h) +D′′
(E,h) with D′′ = D′′

(E,h) = ∂̄. We obtain the curvature form

Θh(E) := D2
(E,h). The subscripts might be suppressed if there is no danger

of confusion.



L2 Injectivity Theorem 375

Definition 2.2 (Inner product). Let (X, g) be an n-dimensional Hermi-
tian manifold. We denote by ω the fundamental form of g. Let (E, h) be
a holomorphic Hermitian vector bundle on X, and u, v are E-valued (p, q)-
forms with measurable coefficients. We set

‖u‖2 =
∫
X
|u|2dVω, 〈〈u, v〉〉 =

∫
X
〈u, v〉dVω,

where |u| (resp. 〈u, v〉) is the pointwise norm (resp. inner product) induced
by g and h on

∧p,q T ∗
X ⊗ E, and dVω = 1

n!ω
n.

Let Lp,q
(2)(X,E) be the space of square integrable E-valued (p, q)-forms on

X . One can view D′ and D′′ as closed and densely defined operators on the
Hilbert space Lp,q

(2)(X,E). The formal adjoints D′∗ and D′′∗ also have closed
extensions in the sense of distributions, which do not necessarily coincide
with the Hilbert space adjoints in the sense of Von Neumann, since the latter
ones may have strictly smaller domains. It is well known that the domains
coincide if the Hermitian metric of X is complete.

Definition 2.3 (Nakano positivity and semi-positivity). Let (E, h)
be a Hermitian vector bundle on a complex manifold X. Let Ξ be a
Hom(E,E)-valued (1, 1)-form such that t ¯(tΞh) =t Ξh. The form Ξ is said
to be Nakano positive (resp.Nakano semi-positive) if the Hermitian form on
TX ⊗ E associated to tΞh is positive definite (resp. semi-positive definite). A
holomorphic vector bundle (E, h) is said to be Nakano positive (resp.Nakano
semi-positive) if

√−1Θ(E) is Nakano positive (resp.Nakano semi-positive).

In particular, a Hermitian line bundle (L, h) over X is said to be positive
if √−1Θ(L) = −√−1∂∂̄ log h > 0.

Assume that X has a Kähler metric ω.
Consider the curvature form

√−1Θ(L) ∈ Λ1,1T ∗
X . There exists an ω-

orthogonal basis (ζ1, ζ2, ..., ζn) in TX which diagonalizes both forms ω and√−1Θ(L):

ω =
√−1

∑
1≤j≤n

ζ∗j ∧ ζ̄∗j ,
√−1Θ(L)x =

√−1
∑

1≤j≤n

γj(x)ζ
∗
j ∧ ζ̄∗j , ζ∗j ∈ T ∗

xX.

Here γ1(x) ≤ · · · ≤ γn(x) are the eigenvalues of
√−1Θ(L)x with respect to

ωx at each point x ∈ X. Then

〈[√−1Θ(L),Λω]u, u〉 ≥ (γ1 + · · ·+ γq − γp+1 − · · · − γn)|u|2(2.1)
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for any form u ∈ Ωp,q(L) ([5], VII §3).
Here we introduce two L2 estimates which will be used while proving

the L2 Dolbeault lemma (Proposition 4.3).

Theorem 2.4 ([5], VIII, Theorem 6.9). Let Ω ⊂ Cn be a weakly pseudo-
convex open subset and ϕ an upper semi-continuous plurisubharmonic func-
tion on Ω. For every ε ∈ (0, 1] and every g ∈ Lp,q

2 (Ω, loc) such that ∂̄g = 0
and ∫

Ω
(1 + |z|2)|g|2e−ϕdV < +∞,(2.2)

we can find a L2
loc form f of type (p, q − 1) such that ∂̄f = g and

∫
Ω
(1 + |z|2)−ε|f |2e−ϕdV ≤ 4

qε2

∫
Ω
(1 + |z|2)|g|2e−ϕdV < +∞.

Moreover, f can be chosen smooth if g and ϕ are smooth.

Remark 2.5. In particular, when Ω = Δn is the product of n polydisks
and ϕ = 0, then for any g ∈ Lp,q

2 (Ω, loc) such that ∂̄g = 0, there exists f ∈
Lp,q−1
2 (Ω, loc) such that ∂̄f = g.

The following famous L2-estimate is essentially due to Hörmander [17]
and Andreotti-Vesentini [2].

Theorem 2.6 ([2],[17]). Let (X,ω) be a complete Kähler manifold of
dimension n. Let E be a holomorphic Hermitian vector bundle of rank r
over X. Assume the curvature operator AE,ω = [

√−1Θ(E),Λω] is positive
definite everywhere on Ωp,q(X,E), q ≥ 1. Then for any form g ∈ Lp,q

2 (X,E)
satisfying

∂̄g = 0 and

∫
X
〈A−1

E,ωg, g〉ωn < +∞,

there exists f ∈ Lp,q−1
2 (X,E) such that

∂̄f = g and

∫
X
|f |2ωn ≤

∫
X
〈A−1

E,ωg, g〉ωn.

To finish this section, let’s recall the Bochner-Kodaira-Nakano identity
[7, Theorem 4.5], which is useful in the proof of our main theorem.
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Proposition 2.7 (Bochner-Kodaira-Nakano identity). Let (X,ω) be
a Kähler manifold and (E, h) be a Hermitian vector bundle on X. The com-
plex Laplace operators Δ′ and Δ′′ acting on E-valued forms satisfy the iden-
tity

Δ′′ = Δ′ + [
√−1Θ(E),Λ],

where Δ′ = D′D′∗ +D′∗D′ and Δ′′ = D′′D′′∗ +D′′∗D′′.

3. L2 Hodge theory and injectivity theorem

In this section we review the the L2-Hodge theory and prove an L2-
cohomology injectivity theorem.

Let (X, g) be a Hermitian manifold of dimension n and let (E, h) be
a Hermitian vector bundle over X. Denote by Lp,q

2 (X,E) the space of L2-
integrable E-valued (p, q)-forms on X with measurable coefficients. Let

Cp,q
2 (X,E) = {u ∈ Lp,q

2 (X,E) | ∂̄wu ∈ Lp,q+1
2 (X,E)},(3.1)

where ∂̄w is the maximal closed extension of the ∂̄-operator

∂̄cpt : Dom∂̄cpt = Ap,q
cpt(X,E) ⊂ Lp,q

2 (X,E) → Lp,q+1
2 (X,E).

Here Ap,q
cpt(X,E) is the set of all smooth sections with compact support. In

other words, ∂̄w is the extended ∂̄-operator in the sense of distribution.
Then the corresponding L2-cohomology Hp,q

(2)(X,E) is defined to be the
cohomology of the complex

0 → Cp,0
2 (X,E)

∂̄w−→ Cp,1
2 (X,E)

∂̄w−→ · · · ∂̄w−→ Cp,n
2 (X,E) → 0.

The ∂̄cpt-operator has various closed extensions, among which there is
another important extension, the minimal extension ∂̄s, i.e., the closure of
the graph of ∂̄cpt in Lp,q

2 (X,E)× Lp,q+1
2 (X,E). When g is a complete metric,

the domains of ∂̄w and ∂̄s coincide. In such case, we simply write ∂̄ since
there is no danger of confusion.

Let Cp,q
2,E be the sheaf defined by

Cp,q
2,E(U) = {ω ∈ Lp,q

2,loc(U,E) | ∂̄ω ∈ Lp,q+1
2,loc (U,E)},

for any open subset U of X.
If X is compact, then Cp,q

2,E(X) = Cp,q
2 (X,E).
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Here we would like to introduce an abstract Hodge decomposition the-
orem in [20]. Let H1, H2 and H3 be three Hilbert spaces. Let T : H1 → H2

and S : H2 → H3 be densely defined closed operators. We assume

Im(T ) ⊂ Dom(S)

and

STx = 0 for x ∈ Dom(T ).

Then their Hilbert space adjoint operators S∗ : H3 → H2 and T ∗ : H2 → H1

satisfy the same conditions, namely,

Im(S∗) ⊂ Dom(T ∗),

and

T ∗S∗x = 0 for x ∈ Dom(S∗).

If we define Δ : H2 → H2 by

Dom(Δ) = {x ∈ Dom(S) ∩Dom(T ∗);T ∗x ∈ Dom(T ), Sx ∈ Dom(S∗)},

Δx = S∗Sx+ TT ∗x for x ∈ Dom(Δ).

Then we have the following existence theorem for the Green operator for
the operator Δ, which is Theorem A.2.2 in [20]. We summarize it here for
the readers’ convenience.

Theorem 3.1. Let S, T and Δ be as above, and suppose that both Im(S)
and Im(T ) are closed. Denoting Ker(Δ) by H, we find the following:

1. Δ is self-adjoint, that is, Δ = Δ∗ holds.
2. H = Ker(Δ) = Ker(T ∗) ∩Ker(S) and H⊥ = Im(Δ).
3. Denoting by PH the projection operator : H2 → H, the operator

(Δ|H⊥)−1(I − PH) is well-defined and bounded.

By the above abstract Hodge theory, we have the following L2 Hodge
decomposition theorem:

Proposition 3.2. Let (X, g) be a complete Hermitian manifold of dimen-
sion n and let (E, h) be a Hermitian vector bundle over X. Fix 0 ≤ p ≤ n.
Suppose that Hp,q

(2)(X,E) are finite dimensional for all q. Then
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1. (Hodge theorem) The (unbounded) operator ∂̄ : Lp,q
2 (X,E) →

Lp,q+1
2 (X,E) and its Hilbert adjoint ∂̄∗ have closed images, and there is

an orthogonal decomposition for each q,

Lp,q
2 (X,E) = Im∂̄ ⊕ Im∂̄∗ ⊕Hp,q

(2)(X,E),

where Hp,q
(2)(X,E) := Ker∂̄ ∩Ker∂̄∗.

There is consequently an isomorphism

Hp,q
(2)(X,E)

∼=−→ Hp,q
(2)(X,E)

induced in the usual way.
2. (Green operator) Denoting H be the projection opera-

tor H : Lp,q
(2)(X,E) → Hp,q

(2)(X,E), then the Green operator G =

(Δ∂̄ |Hp,q
(2) (X,E)⊥)

−1(I −H) is well-defined and bounded. Then, we have

the following identity

Δ∂̄G = GΔ∂̄ = Id−H,HG = GH = 0.

Proof. See Appendix in [20]. �

Before we prove our L2 injectivity theorem, we need the following lemma:

Lemma 3.3. If the manifold (M, g) is complete. Let E be a Hermitian vec-
tor bundle on M . Let Δ′

E = D′
ED

′∗
E +D′∗

ED
′
E and Δ′′

E = D′′
ED

′′∗
E +D′′∗

E D′′
E

be the complex Laplacians acting on E-valued forms calculated in the
sense of distributions. For any L2-integrable smooth E-valued form u ∈
C∞(M,Λ•T ∗

M ⊗ E) ∩ L2(M,Λ•T ∗
M ⊗ E), one has

〈〈u,Δ′
Eu〉〉 ≥ ‖D′

Eu‖2 + ‖D′∗
Eu‖2

and

〈〈u,Δ′′
Eu〉〉 ≥ ‖D′′

Eu‖2 + ‖D′′∗
E u‖2,

where every term is allowed to be infinity.

Proof. Since u ∈ C∞(M,Λ•T ∗
M ⊗ E), Δ′u, D′

Eu, D
′∗
Eu ∈ L2

loc.
By the Hopf-Rinow lemma of complete manifolds in ([8], Part I, 12.1),

there exists an exhaustive sequence (Kν) of compact sets and functions
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θν ∈ C∞(M,R) such that

θν = 1 on a neighbourhood of Kν , Supp θν ⊂ K◦
ν+1,

0 ≤ θν ≤ 1 and |dθν |g ≤ 2−ν .

We can apply integration by parts as needed, after multiplying the
respective forms by C∞ functions θν with compact support. some calcu-
lations then give

‖θνD′
Eu‖2 + ‖θνD′∗

Eu‖2
=〈〈θ2νD′

Eu,D
′
Eu〉〉+ 〈〈u,D′

E(θ
2
νD

′∗
Eu)〉〉

=〈〈D′
E(θ

2
νu), D

′
Eu〉〉+ 〈〈u, θ2νD′

ED
′∗
Eu〉〉 − 2〈〈θν∂θν ∧ u,D′

Eu〉〉
+ 2〈〈u, θν∂θν ∧D′∗

Eu〉〉
=〈〈θ2νu,Δ′

Eu〉〉 − 2〈〈∂θν ∧ u, θνD
′
Eu〉〉+ 2〈〈u, ∂θν ∧ (θνD

′∗
Eu)〉〉

≤〈〈θ2νu,Δ′
Eu〉〉+ 2−ν(2‖θνD′

Eu‖‖u‖+ 2‖θνD′∗
Eu‖‖u‖)

≤〈〈θ2νu,Δ′
Eu〉〉+ 2−ν(‖θνD′

Eu‖2 + ‖θνD′∗
Eu‖2 + 2‖u‖2).

Consequently,

‖θνD′
Eu‖2 + ‖θνD′∗

Eu‖2 ≤
1

1− 2−ν
(〈〈θ2νu,Δ′

Eu〉〉+ 21−ν‖u‖2).

Letting ν tend to +∞, one obtains that 〈〈u,Δ′
Eu〉〉 ≥ ‖D′

Eu‖2 + ‖D′∗
Eu‖2.

The same argument applies to the second inequality. �

Now we turn to the proof of the L2 injectivity theorem.

Theorem 3.4. Let (X, g) be a complete Kähler manifold and L be a semi-
positive line bundle on X. Let s be a nonzero holomorphic section of L⊗k on
X for some positive integer k which is bounded in the L∞-norm. Suppose
that for some q, the L2-cohomologies Hq

(2)(X,L⊗l) and Hq
(2)(X,L⊗(l+k)) are

finite dimensional for some l > 0. Then the multiplication homomorphism

×s : Hq
(2)(X,ωX ⊗ L⊗l) → Hq

(2)(X,ωX ⊗ L⊗(l+k))

induced by ⊗s is injective.
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Proof. By Proposition 3.2, because Hq
(2)(X,L⊗l) and Hq

(2)(X,L⊗(l+k)) are
finite dimensional, we have the isomorphisms

Hn,q
(2) (X,L⊗l) 	 Hn,q

(2) (X,L⊗l)

and

Hn,q
(2) (X,L⊗(l+k)) 	 Hn,q

(2) (X,L⊗(l+k)).

We claim that the multiplication map

×s : Hn,q
(2) (X,L⊗l) −→ Hn,q

(2) (X,L⊗(l+k))

is well-defined.
If the claim is true, then the theorem is obvious. In fact, assume su = 0 in

Hn,q
(2) (X,L⊗(l+k)). Since s is holomorphic over X, the codimension of {s = 0}

is at least one, thus the locus {s �= 0} is dense in X. Hence u = 0 for u ∈
Hn,q

(2) (X,L⊗l) since u is smooth over X. This implies the desired injectivity.
Thus, it is sufficient to prove the above claim.

Take an arbitrary L⊗l-valued (n, q)-form u ∈ Hn,q
(2) (X,L⊗l), u and ∂̄u are

both L2-integrable over X, i.e., ‖u‖L2 < ∞ and ‖∂̄u‖L2 < ∞. Since ‖s‖L∞ <
∞,

‖su‖L2 ≤ ‖s‖L∞‖u‖L2 < ∞, ‖∂̄(su)‖L2 = ‖s∂̄u‖L2 ≤ ‖s‖L∞‖∂̄u‖L2 < ∞.

Therefore, su and ∂̄(su) are L2-integrable, i.e., su ∈ Ln,q
2 (X,L⊗(l+k)).

By the Bochner-Kodaria-Nakano identity (2.7),

Δ′′u = Δ′u+ [
√−1Θhl(L⊗l),Λ]u,(3.2)

where Λ is the adjoint of ω ∧ · and ω is the fundamental form of g.
Because u ∈ Hn,q

(2) (X,L⊗l), we have

Δ′′u = 0 and Δ′u+ [
√−1Θhl(L⊗l),Λ]u = 0.

Since
√−1Θhl(L⊗l) =

√−1lΘh(L) is a smooth semi-positive (1, 1)-form
on X, we get

〈〈[√−1Θhl(L⊗l),Λ]u, u〉〉 ≥ 0.

By Lemma 3.3, we have

〈〈u,Δ′u〉〉 ≥ ‖D′u‖2 + ‖D′∗u‖2 ≥ 0.
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Hence

〈〈Δ′u, u〉〉+ 〈〈[√−1Θhl(L⊗l),Λ]u, u〉〉 = 〈〈Δ′′u, u〉〉 = 0.

Applying Lemma 3.3 again, we get

0 = 〈〈Δ′u, u〉〉+ 〈〈[√−1Θhl(L⊗l),Λ]u, u〉〉
≥ ‖D′∗u‖2 + 〈〈[√−1Θhl(L⊗l),Λ]u, u〉〉.

Thus we obtain that

‖D′∗u‖2 = 〈〈√−1Θhl(L⊗l)Λu, u〉〉 = 0.

Therefore,

D′∗u = 0 and 〈√−1Θhl(L⊗l)Λu, u〉hl = 0,

where 〈, 〉hl is the pointwise inner product with respect to hl and g.
Since u ∈ Hn,q

(2) (X,L⊗l) and s is holomorphic over X,

D′′(su) = ∂̄(su) = 0

by the Leibnitz rule. We know that

D′∗(su) = − ∗ ∂̄ ∗ (su) = sD′∗u = 0

since s is a holomorphic L⊗k-valued (0, 0)-form and D′∗u = 0, where ∗ is
the Hodge star operator with respect to g. Combined with the fact that
D′(su) = 0, we obtain that Δ′(su) = 0.

Applying the Bochner-Kodaria-Nakano identity to su and by the same
discussions as above, we have

〈〈√−1Θh(l+k)(L⊗(l+k))Λsu, su〉〉 = 〈〈Δ′′su, su〉〉 ≥ ‖D′′∗
(L⊗(l+k),h(l+k))su‖2.

Note that

〈√−1Θhl+k(L⊗(l+k))Λsu, su〉hl+k =
l + k

k
|s|2hk〈

√−1Θhl(L⊗l)Λu, u〉hl = 0,

where 〈, 〉hl+k (resp. |s|hk) is the pointwise inner product (resp. the pointwise
norm of s) with respect to hl+k and g.
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Thus we obtain that D′′∗
(L⊗(l+k),hl+k)su = 0 and consequently

Δ′′
(L⊗(l+k),hl+k)(su) = 0. It implies that su ∈ Hn,q

(2) (X,L⊗(l+k)). We fin-
ish the proof of the claim. This implies the desired injectivity.

�
This proof is parallel to the proof in Enoki [9].

4. Application

In this section we study the case of spaces with the Poincaré-type metric and
prove a weak version of Fujino’s conjecture using our L2 injectivity theorem.

4.1. Poincaré-type Metric

Let X be a compact complex manifold with dimCX = n and D ⊂ X be a
divisor with simple normal crossings. Then we can define the Poincaré-type
metric ωP over X −D as follows:

Definition 4.1 (Poincaré-type metric). A Kähler metric ωP on X −D
is said to have Poincaré-type growth near the divisor D if for every point
p ∈ D, there is a coordinate neighborhood Up ⊂ X of p with Up ∩ (X −
D) ∼= (Δ∗)kr ×Δn−k

r , 1 ≤ k ≤ n, such that in these coordinates, ωP is quasi-
isometric to a product of k copies of the Poincaré metric on Δ∗

r and n− k
copies of the Euclidean metric on Δr, i.e., near D,

ωP ∼ √−1
∑

1≤j≤k

2dzj ∧ dz̄j

|zj |2log2|zj |2
+

√−1
∑

k+1≤j≤n

dzj ∧ dz̄j .

Here Δr = {z ∈ C | |z| < r},Δ∗
r = Δr \ {0}. We say two metrics γ1, γ2 are

quasi-isometric, i.e., γ1 ∼ γ2 if there exists a constant C > 0 such that
C−1γ1 ≤ γ2 ≤ Cγ1.

The Poincaré-type metric always exists when X is compact Kähler. It
has the following properties:

Theorem 4.2. Let X be a compact Kähler manifold, D be a union of
smooth divisors on X with only normal crossings. Then there exists a Kähler
metric ωP in X −D which has the Poincaré-type growth near the divisor D.
Furthermore, this metric has the following properties:

1. it is a complete Kähler metric,
2. it has finite volume,
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3. the curvature tensor and its covariant derivatives have bounded
lengths.

For more details, refer to [3] or [29].

4.2. L2 Dolbeault lemma for Poincaré-type metric

Let X be a compact Kähler manifold of complex dimension n, Y be the
complement of an effective normal crossing divisor D. We fix a Poincaré-
type metric ωP on Y . Let (L, h) be a Hermitian line bundle on X. Let
D =

∑r
i=1Di where each Di is an irreducible component of D and let si

be the defining section of Di in O(Di). We can choose for each O(Di) a
Hermitian metric ‖ · ‖Di

such that ‖si‖Di
= 1 on X \W . We give L a new

Hermitian metric hL over X defined by

hL =

r∏
i=1

‖si‖2δDi
(log(ε‖si‖2Di

))2αh,

where δ > 0, ε > 0 and α > 0 are constants to be determined later. We will
choose α to be very large, while we will choose δ and ε to be small.

Using the metrics ωP and hL, we can define the L2-integrable L-valued
(p, q)-forms and the corresponding L2-cohomology.

Theorem 4.3. Let X be a compact Kähler manifold of dimension n and
D be a simple normal crossing divisor on X. Choose the metrics as above,
then there is a canonical isomorphism

Hq(X,KX ⊗ L⊗O(D)) 	 Hn,q
(2) (X \D,L),

where Hn,q
(2) (X \D,L) is the L2-cohomology with respect to ωP and hL.

Proof. It suffices to establish the following L2 Dolbeault lemma:
There is a resolution of KX ⊗ L⊗O(D) by fine sheaves on X given by

0 → KX ⊗ L⊗O(D) → Cn,∗
2,L.(4.1)

Recall that Cn,∗
2,L are fine sheaves defined by

Cn,q
2,L(U) = {ω ∈ Ln,q

2,loc(U,L) | ∂̄ω ∈ Ln,q+1
2,loc (U,L)},

for any open subset U of X.
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On X −D, the Poincaré metric ωP is locally quasi-isometric to the
Euclidean metric, therefore the exactness of (4.1) on X \D is due to Remark
2.5. It suffices to verify the exactness at D.

Step 1: (Exactness at Cn,0
2,L)

Let (U ; z1, · · ·, zn) be the local coordinate chart of X such that U =
Δk

1

2

×Δl
1

2

and U∗ = U ∩ Y = Δ∗k
1

2

×Δl
1

2

, and let e be a trivializing section

of L on U . Denote ξi to be

ξi =

⎧⎨
⎩

1

zi
dzi, 1 ≤ i ≤ k,

dzi, k + 1 ≤ i ≤ n.

Let s ∈ Ωn,0(U∗, L). If ∂̄(s) = 0, then s is holomorphic. Hence

s = λ(z)(ξ1 ∧ ξ2 ∧ · · · ∧ ξn)⊗ e,

where λ(z) is a holomorphic function on U∗.
Restricted on the chart U , hL is quasi-isometric to

h̃ =

k∏
i=1

|zi|2δ(log|zi|2)2αh.

Here h is a smooth Hermitian metric of L and we may assume ‖e(z)‖h ≡
1. Now s is L2-integrable with respect to ωP and hL if and only if it is L2-
integrable with respect to ωP and h̃. So we will replace hL by h̃ when we
talk about L2-integrability. By direct calculation,

‖s‖2L2(U∗) =

∫
U∗

|λ(z)|2
k∏

j=1

|zj |2δ(log|zj |2)2α+2ωn
P .(4.2)

Assume the Laurent series representation of λ(z) on U∗ is given by

λ(z) =

∞∑
β=−∞

cβ(zk+1, · · ·, zn)zβ1

1 · · · zβk

k .

Here cβ(zk+1,···,zn) is a holomorphic function on Δl
1

2

. Taking 0 < δ < 1, the

integral (4.2) is finite if and only if s has at most log poles on the divisor D.
Hence we obtain the exactness at Cn,0

2,L.

Step 2: (Exactness at Cn,q
2,L, q > 0)
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Fix 0 < r < 1
2 , pick a point p0 on D with multiple k. We need to show

that for any g ∈ Ln,q
2 (U∗

r , L) with respect to ωP and h̃ if ∂̄g = 0 then on
some U∗

ε = Δ∗k
ε ×Δn−k

ε (0 < ε ≤ r) we can find f such that

∂̄f = g|U∗
ε
, and f ∈ Ln,q−1

2 (U∗
ε , L).(4.3)

The strategy is to deform the metric ωP to be a complete Kähler metric on
U∗
r = Δ∗k

r ×Δn−k
r and then apply L2 estimate (2.6) to solve (4.3).

We deform ωP to be a new Kähler metric ω̃P on U∗
r = Δ∗k

r ×Δn−k
r given

by

ω̃P = ωP +
√−1∂∂̄(ψ1 + · · ·ψn),(4.4)

where ψi is a function given by ψi(z) =
1

r2−|zi|2 .
Then

ω̃P =
√−1

k∑
i=1

(
1

|zi|2(log|zi|2)2 +
r2 + |zi|2

(r2 − |zi|2)3
)
dzi ∧ dz̄i(4.5)

+
√−1

n∑
i=k+1

(
1 +

r2 + |zi|2
(r2 − |zi|2)3

)
dzi ∧ dz̄i.

Define a new Hermitian metric h̃L on L by

h̃L = exp(−
n∑

i=1

(α|zi|2 + αψi))h̃,(4.6)

explicitly,

h̃L =

k∏
i=1

|zi|2δ(log|zi|2)2
n∏

i=1

exp(−α|zi|2 − αψi)h.

Notice that h̃L decays to zero exponentially when |zi| goes to r. Since
g ∈ Ln,q

2 (U∗
r , L) with respect to ωP and h̃, from (4.4) and (4.6) we get

g ∈ Ln,q
2 (U∗

r , L) with respect to ω̃P and h̃L.
Denote the curvature of h̃L to be Θ(h̃L). Recall that ‖e(z)‖h ≡ 1 for the

generating holomorphic section e of L on Ur. By an easy calculation, we
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have

Θ(h̃L) =

k∑
i=1

2α

|zi|2(log|zi|2)2dzi ∧ dz̄i

+

n∑
i=1

α

(
1 +

r2 + |zi|2
(r2 − |zi|2)3

)
dzi ∧ dz̄i +Θ(h).

Compared with (4.5),

√−1Θ(h̃L) ≥ α · ω̃P

where α > 1 is chosen very large.
Let λ1(x) ≤ · · · ≤ λn(x) be the eigenvalues of

√−1Θ(h̃L) with respect to
ω̃P at each point x ∈ X, then λi(x) ≥ 1, ∀i = 1, ..., n. By the estimate (2.1),

〈[√−1Θ(h̃L),Λ]u, u〉 ≥ (λ1 + · · ·+ λq)|u|2

for any form u ∈ Ωn,q(L). As a consequence, all eigenvalues of A =
[
√−1Θ(h̃L),Λ] are ≥ 1. Let λ(x) the smallest eigenvalue of A, then

∫
U∗

r

〈A−1g, g〉ω̃n
P ≤

∫
U∗

r

λ(x)−1〈g, g〉ω̃n
P ≤

∫
U∗

r

〈g, g〉ω̃n
P ≤ +∞.

Hence by Theorem 2.6, there exists an L-valued (n, q − 1)-form f such
that ∂̄f = g and f is L2-integrable with respect to ω̃P and h̃L. By the con-
struction we see that ω̃P (resp. h̃L) is quasi-isometric to ωP (resp.hL) on
U∗

r

2

. Hence f is L2-integrable with respect to ωP and hL on U∗
r

2

. Hence (4.1)

is exact at Cn,p
2,L, ∀p > 0.

Therefore we conclude that

Hq(X,KX ⊗ L⊗O(D)) 	 Hn,q
(2) (X \D,L), ∀q ≥ 0.

�

4.3. A partial result on Fujino’s conjecture and a vanishing
theorem

Theorem 4.4. Let X be a compact Kähler manifold and let D be a reduced
simple normal crossing divisor on X. Let (L, h) be a Hermitian line bundle
on X which is semi-positive on X and positive on D. Let s be a nonzero
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holomorphic section of L⊗k on X for some positive integer k. Then the
multiplication homomorphism

×s : Hq(X,ωX ⊗OX(D)⊗ L⊗l) → Hq(X,ωX ⊗OX(D)⊗ L⊗(l+k))

which is induced by ⊗s is injective for every q ≥ 0 and l > 0. Here ωX is
the canonical line bundle of X and ×s is the homomorphism induced by the
tensor product with s.

Proof. We put n = dimCX. Fix a Poincaré-type metric ωP on the comple-
ment Y := X \D. Since h is a semi-positive Hermitian metric on L which
is positive on D (it means that for an arbitrary point x ∈ D, the curvature
at x is positive). Fix a neighborhood W of D such that W is compact and
h is positive on W .

Let D =
∑r

i=1Di where each Di is an irreducible component of D and
let si be the defining section of Di in O(Di). We can choose for each O(Di)
a Hermitian metric ‖ · ‖Di

such that ‖si‖Di
= 1 on X \W . We give L a new

Hermitian metric hL over X defined by

hL =

r∏
i=1

‖si‖2δDi
(logε‖si‖2Di

)2αh,

where δ > 0, ε > 0 and α > 0 are constants to be determined later. We will
choose α to be very large, while we will choose δ and ε to be small.

Notice that this metric coincides with (logε)2αh onX \W . The curvature
of hL is

Θ(hL) = Θ(h)−
r∑

i=1

δ · ∂∂̄log‖si‖2Di
−

r∑
i=1

α · ∂∂̄log‖si‖2Di

log(ε‖si‖2Di
)

+

r∑
i=1

α · ∂(log‖si‖2Di
) ∧ ∂̄(log‖si‖2Di

)

(log(ε‖si‖2Di
))2

.

Given an arbitrary α > 0, since W is compact and h is positive on W , Θ(hL)
is positive on W if ε and δ are small positive constants.

Using the metrics ωP and hL, we can define the L2-integrable L-valued
(p, q)-forms and the corresponding L2-cohomology.

By Theorem 4.3, there are canonical isomorphisms:
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Hq(X,ωX ⊗OX(D)⊗ L⊗l) 	 Hn,q
(2) (X \D,L⊗l)

and

Hq(X,ωX ⊗OX(D)⊗ L⊗(l+k)) 	 Hn,q
(2) (X \D,L⊗(l+k)).

Notice that the sheaf cohomology of coherent sheaves on a compact complex
manifold is finite dimensional. Let s ∈ H0(X,L⊗k) be a holomorphic section,
then ‖s‖L∞ is bounded since it is defined on the compact space X. Hence
by the same discussions in Theorem 3.4, we obtain the desired injectivity
theorem:

×s : Hq(X,ωX ⊗OX(D)⊗ L⊗l) → Hq(X,ωX ⊗OX(D)⊗ L⊗(l+k)).

�
When D = ∅, this theorem is reduced to Theorem 1.2 of Enoki mentioned
in the introduction.

However, when D �= ∅, it is a pity that the cohomology in fact vanishes,
which may be a key point for the further research.

Proposition 4.5. Let X be a compact Kähler manifold of dimension n and
D be a simple normal crossing divisor on X. Suppose that L is a line bundle
on X and h is a semi-positive Hermitian metric on L which is positive on
D. Then

Hq(X,ωX ⊗OX(D)⊗ L) = 0

for every q > 0.

Proof. Choose the same Poincaré-type metric ωP on X and the Hermitian
metric hL on L as in Theorem 4.4. By the discussions in Theorem 4.4, hL is
semi-positive on X and positive on D. Then we can define the corresponding
L2-cohomology Hn,q

(2) (X,L) with respect to ωP and hL.

There is the canonical isomorphism (Theorem 4.3):

Hq(X,ωX ⊗OX(D)⊗ L) 	 Hn,q
(2) (X \D,L), ∀q ≥ 0.

Notice that the sheaf cohomology of coherent sheaves on a compact
complex manifold is finite dimensional. Proposition 3.2 leads to

Hn,q
(2) (X,L) 	 Hn,q

(2) (X,L),

where Hn,q
(2) (X,L) is the space of L2-integrable harmonic (n, q)-forms on

X \D.



390 Chen Zhao

Taking any element u ∈ Hn,q
(2) (X,L), by the same arguments in Theorem

3.4, we have

〈√−1ΘhL
(L)Λu, u〉 = 0,

where Λ is the adjoint of ω ∧ · and ω is the fundamental form of ωP .
Since (L, hL) is strictly positive in a neighborhood U of D, u = 0 on U ,

which implies that u = 0 onX \D ([5], VII, Lemma 2.4). ThusHn,q
(2) (X,L) =

0. Combined with the two isomorphisms above, we obtain the proposition.
�

The above vanishing theorem is a generalization of Norimatsu’s vanishing
theorem 1.7 when p = n.

Remark 4.6. When L|D is ample, the vanishing theorem may fail even if L
is generated by global sections on X. For example, let’s consider S = P1 × E
where E is an elliptic curve. Denote by p : S → P1 the projection and ωS the
canonical bundle of S, then ωS = p∗OP1(−2). We put L = p∗OP1(2), then

H1(S, ωS ⊗ L) = H1(S,OS) = C.

Let π : S′ → S be the blowup at a point on S and denote by D the excep-
tional divisor. We define L′ = π∗L⊗ OS′(−D). Then L′ is generated by
global sections and L′|D is ample since L′ ·D = 1. Because R1π∗ωS′ = 0,

H1(S′, ωS′ ⊗ OS′(D)⊗ L′) = H1(S, ωS ⊗ L) = C.

Remark 4.7. The assumption that L is semi-positive on X and positive
on D impies that L is big. Because of the existence of the big line bundle, X
is Moishezon which is Kähler and hence is projective. The divisor L+ εD is
nef and big where ε is a small positive rational number. Hence Proposition
4.5 follows directly from the Kawamata-Viehweg vanishing theorem.
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