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Traveling Wave-Front Solutions with

Small Oscillations at Infinity for a KdV6

Equation under a Small Perturbation

Shengfu Deng and Yuzhen Mi

Abstract: This paper studies the traveling wave solutions of a
KdV6 equation under a small perturbation. Applying the dynam-
ical system approach, we rigorously prove that this equation has
a new wave solution—wave-front solution with small non-decaying
oscillations at infinity (called thereafter generalized wave-front solu-
tion).
Keywords: KdV6 equation, wave-front solution, homoclinic solu-
tion, periodic solution.

1. Introduction

This paper concerns with the travelling wave solutions of a sixth-order non-
linear wave equation (KdV6 equation)

φξξξξξξ + aφξφξξξξ + bφξξφξξξ + cφ2
ξφξξ + dφtt + eφξξξt

+ fφξφξt + gφtφξξ = 0,(1)

where a, b, c, d, e, f and g are arbitrary parameters. This equation was first
introduced by Karasu-Kalkanli et al. [7]. With a Painlevé analysis, they
derived from (1) four distinct equations under the differential parameters:
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the bidirectional version of the Sawada-Kotera-Caudrey-Dodd-Gibbon equa-
tion [1, 17], the Kaup-Kupershmidt equation [4, 8], the Drinfeld-Sokolov-
Hirota-Satsuma equation [3, 16], and a new KdV equation with a self-
consistent source. The equation (1) has been studied mathematically and
numerically and a lot of interesting results have been discovered. The Lax
pair and the Bäcklund self-transformation were given in [7]. The Hamilto-
nian structures and conservation laws were studied in [9] and [22]. A much
nicer form was discussed in [5] and [14]. The complete integrability was
examined in [11]. The connection between HH3 system and the new KdV
equatoin was given in [24]. The bilinear forms and soliton interactions were
investigated in [18]. Multiple solitons and multiple singular soliton solutions
were presented in [20] and [23]. The exact solutions and in particular soli-
tary wave solutions and quasi-periodic wave solutions were obtained with
different methods such as the aid of two first integrals, the Bäcklund trans-
formation, the Darboux transformation, the Cole-Hopf transformation and
the tanh-coth method [5, 7, 12, 13, 15, 21]. It is worthy to point out that
all the obtained solitary wave solutions with explicit expressions exponen-
tially approach to a constant at infinity. However, the existence of other
forms of solutions of (1) is an interesting open problem. In this paper, we
shall rigorously prove the existence of a new wave-front solution with some
small non-decaying oscillations at infinity (called a generalized wave-front
solution) using a dynamical system method.

Suppose that the travelling solution φ of (1) has a form

φ(t, ξ) = φ(ξ − vt) = φ(x),

where v is the wave speed, and let

y = −(φx − ev

a
).(2)

Integrating (1) with respect to x once, we have (see [13])

yxxxx = ayyxx +
b− a

2
y2x −

c

3
y3 − γy2 + αy + β,(3)

where

γ = −cev

a
+

v(f + g)

2
, α = −

(
ce2v2

a2
− ev2(f + g)

a
+ dv2

)
,

β =
cv3e3

3a3
− e2v3(f + g)

2a2
+

dev3

a
+ β0,(4)
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and β0 is an integral constant. Note that the natural world always has some
very small noises or disturbances and so on. Here, we are specially interested
in the solutions of the equation (3) under small perturbations, that is, we
will focus on the following equation

yxxxx =ayyxx +
b− a

2
y2x −

c

3
y3 − γy2 + αy + β

+ εh(ε, y, yx, yxx, yxxx),(5)

where ε is a small parameter and the condition for the smooth function h
is given in (6). If the parameters satisfy some conditions (see (7) or Section
2), some equilibrium of the equation (5) is a saddle-center equilibrium, i.e.,
the linear operator around the equilibrium has a positive eigenvalue, a neg-
ative eigenvalue and a pair of purely imaginary eigenvalues. The stable and
unstable manifolds are both one dimensional so that it is not obvious that
these stable and unstable manifolds will intersect to form a homoclinic solu-
tion (After integrating, it often corresponds to a wave-front solution of (1)
under small perturbations) that approaches to this equilibrium as x→ ±∞.
In this paper, we shall theoretically prove the existence of a homoclinic solu-
tion with small non-decaying oscillations at infinity of (5) (or a generalized
homoclinic solution) by applying a dynamical system approach, which corre-
sponds to a generalized wave-front solution of (1) under small perturbations.
The main theorem for (5) can be stated as follows.

Theorem 1.1. Suppose that the smooth function h satisfies

h(ε, 1, 0, 0, 0) = 0, h(ε, y,−yx, yxx,−yxxx) = h(ε, y, yx, yxx, yxxx),(6)

and

a = −a20, c = c1μ, α = 2γ + (c1 + 1)μ, β = −γ − (
2

3
c1 + 1)μ,

γ �= 0, ε = O(μk)(7)

for a fixed integer k ≥ 2 where a0 > 0 and c1 are constants, and μ > 0 is
chosen as a small parameter. Let ς(x) be a smooth even cut-off function
with ς(x) = 0 for |x| ≤ 1 and ς(x) = 1 for |x| ≥ 2. For any given constant
I0 > 0 with I = I0μ

2, there exists μ0 > 0 such that for 0 < μ ≤ μ0, there are
constants r1 and θ satisfying

|r1| ≤Mμ, |θ| ≤M
√
μ,
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and the equation (5) has an even generalized homoclinic solution y(x) defined
by

y(x) =
3μ

2γ
sech2

(√
μ

2a0
x

)
+ 1− 2a30Iς(x) cos((a0 + r1)(x+ θ))

+K1(x) +K2(x),(8)

where the function K2(x) is periodic in x with periodic 2π
a0+r1

and the func-
tions K1(x) and K2(x) satisfy uniformly that

|K1(x)| ≤Mμ2e−ν|x|, |K2(x)| ≤MμI

for x ∈ R and any fixed constant ν ∈ (
√
μ

2a0
,
√
μ

a0
) and M is a generic positive

constant.

The paper is organized as follows. In Section 2, the equation (5) is trans-
formed into a four dimensional system. Under the assumptions (6) and (7), a
saddle-center equilibrium is obtained. Then a normal form analysis is applied
so that a homoclinic solutionH(x) of its dominant system can be easily com-
puted. Section 3 regards the first Fourier coefficient I > 0 as a very small
parameter and gives the existence of periodic solutions Xp(x) for the full
system. Section 4 changes the problem of the existence of the generalized
homoclinic solutions near H(x) into the one for an integral equation with
respect to the small perturbation term Z(x). Then some estimates are pre-
sented. The fixed point theorem shows the existence of Z(x) for x ∈ [0,∞).
Activating the phase shift θ of the periodic solution Xp(x) and using the
reversibility, we extend Z(x) to (−∞,∞) in Section 5, which yields a smooth
generalized homoclinic solution exponentially tending to Xp(x). Thus, the
main theorem is proved. Integrating this solution gives the existence of a
generalized wave-front solution of (1) under small perturbations.

Throughout this paper, M stands for a generic positive constant and
B = O(C) means that |B| ≤M |C|.

2. Formulation of the problem

In order to have a saddle-center equilibrium of (5), we adjust the constants
and assume that (7) is valid. Since ε is arbitrary, for the sake of simplicity,
we consider ε as a function of μ and then suppose that ε = μk for any
integer k ≥ 2 (see the assumption (7)). It is easy to check that y = 1 is an
equilibrium of the equation (5) for μ = 0. In order to move this equilibrium
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y = 1 to the origin, let u = y − 1, u1 = ux, u2 = uxx and u3 = uxxx, which
changes the equation (5) into a system

U̇ = LU + LμU +N2(U) + μN1(U) + μkN3(μ,U),(9)

where U = (u, u1, u2, u3)
T , the dot stands for the derivative with respect to

x and

LU =

⎛
⎜⎜⎝

u1
u2
u3

−a20u2

⎞
⎟⎟⎠ , LμU =

⎛
⎜⎜⎝

0
0
0
μu

⎞
⎟⎟⎠ , N1(U) =

⎛
⎜⎜⎝

0
0
0

− c1
3 u

3 − c1u
2

⎞
⎟⎟⎠ ,

N2(U) =

⎛
⎜⎜⎝

0
0
0

−γu2 − a20uu2 +
b+a2

0

2 u21

⎞
⎟⎟⎠ , N3(μ,U) =

⎛
⎜⎜⎝

0
0
0

h0(μ,U)

⎞
⎟⎟⎠ ,

h0(μ,U) = h(μk, u+ 1, u1, u2, u3).(10)

The assumption (6) for the function h shows that the function h0 satisfies

h0(μ, 0, 0, 0, 0) = 0, h0(μ, u,−u1, u2,−u3) = h0(μ, u, u1, u2, u3).(11)

Hence, the system (9) is reversible with a reverser S defined by

S(u, u1, u2, u3) = (u,−u1, u2,−u3),(12)

that is, SU(−x) is also a solution whenever U(x) is. A solution U(x) is
reversible if SU(−x) = U(x). This implies that u(x) and u2(x) are even
functions and u1(x) and u3(x) are odd functions.

The linear operator L has a double eigenvalue 0 and a pair of purely
imaginary eigenvalues ±ia0, which corresponding eigenvectors and general-
ized eigenvectors are respectively given by

U1 = (1, 0, 0, 0)T , U2 = (0, 1, 0, 0)T ,

U3 = a30
(−1,−ia0, a20, ia30)T , U4 = Ū3 = a30

(−1, ia0, a20,−ia30)T .(13)

Moreover,

SU1 = U1, SU2 = −U2, SU3 = Ū3, SU4 = U3.(14)
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Remark 2.1. If add the perturbation operator Lμ to the operator L, one
easily obtains that the linear operator L+ Lμ has a positive eigenvalue, a
negative eigenvalue and a pair of purely imaginary eigenvalues, which is
what we need.

Since the system (9) is real, we assume that U = AU1 +BU2 + CU3 +
C̄Ū3 where A,B are real and C is complex. Then the system (9) is equivalent
to the following system

Ȧ = B,

Ḃ =
μ

a50
(a30A− C − C̄) + h1 +

μk

a20
f(μ,A,B,C, C̄),

Ċ = ia0C − iμ

2a30
(a30A− C − C̄)− ia20

2
h1 − iμk

2
f(μ,A,B,C, C̄),

˙̄C = −ia0C̄ +
iμ

2a30
(a30A− C − C̄) +

ia20
2

h1 +
iμk

2
f(μ,A,B,C, C̄),(15)

where the real function f(μ,A,B,C, C̄) = h0(μ,U) and the real function h1
is defined by

h1(μ,A,B,C, C̄) =
1

a02

[b+ a20
2

(
B − i(C − C̄)

a02

)2

+
c1μ

(−a03A+ C + C̄
)3

3a09
− (c1μ+ γ)

(−a03A+ C + C̄
)2

a06

− (C + C̄)
(
a0

3A− C − C̄
)

a02

]
.(16)

In this case, the reverser S is given by

S(A,B,C, C̄) = (A,−B, C̄, C).(17)

Now we use the norm form theory to determine the terms in (15) that
are essential in the dynamical and bifurcation behaviors. The normal form
theorem (see Exercise I.22 on page 60 in [6]) yields that there exists a change
of variables from (A,B,C, C̄)T to Y which is close to identity, and transforms
the system (15) into

Ẏ = LY + P(μ, Y ) +O(|Y | |(μ, Y )|n),(18)
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where P is a polynomial with degree ≤ n, P(0, 0) = 0 and DP(0, 0) = 0.
Here n is an arbitrary positive integer but fixed. Moreover, P satisfies

SP(Y ) = −P(SY ).(19)

For the notation simplicity, we still use (A,B,C, C̄)T to denote Y . Thus, if
set n ≥ 2, (18) can be written as

Ȧ = B +R1(μ,A,B,C, C̄),

Ḃ = P (μ,A, |C|2) +R2(μ,A,B,C, C̄),

Ċ = ia0C + iCQ(μ,A, |C|2) +R3(μ,A,B,C, C̄),

˙̄C = −ia0C̄ − iC̄Q(μ,A, |C|2) +R3(μ,A,B,C, C̄),(20)

where P and Q are real polynomials of their arguments with degree n and
n− 1, and

Rk = O
(|(A,B,C, C̄)||(μ,A,B,C, C̄)|n), k = 1, 2, 3, 4.(21)

Note that R1 can be always chosen equal to 0. This can be done by a change
of coordinates of the type B̃ = B +R1(μ,A,B,C, C̄). Thus, (20) can be
written as

Ȧ = B,

Ḃ = P (μ,A, |C|2) +R2(μ,A,B,C, C̄),

Ċ = ia0C + iCQ(μ,A, |C|2) +R3(μ,A,B,C, C̄),

˙̄C = −ia0C̄ − iC̄Q(μ,A, |C|2) +R3(μ,A,B,C, C̄).(22)

In order to find the homoclinic solutions of the system (22), we need the
coefficients of some important terms in P . Suppose that

P (μ,A, |C|2) = μp1A+ p2A
2 + p3|C|2 + P1(μ,A, |C|2),(23)

where

P1(μ,A, |C|2) = O
(
(μ+ |A|)|C|2 + |C|4 + |(A, |C|2)| |(μ,A, |C|2)|2) .(24)

A direct calculation shows that (More details can be found in [6])

p1 =
1

a20
, p2 = − γ

a20
, p3 =

3

a40
+

b

a60
− 2γ

a80
.(25)
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Let v1 =
1
2(C + C̄) and v2 =

i
2(C − C̄), which changes the complex sys-

tem (22) into a real system

Ẋ = F (μ,X) + F1(μ,X) + R̃(μ,X),(26)

where X = (A,B, v1, v2)
T , and

F (μ,X) =

⎛
⎜⎜⎝

B
μ
a2
0
A− γ

a2
0
A2

a0v2
−a0v1

⎞
⎟⎟⎠ ,

F1(μ,X) =

⎛
⎜⎜⎝

0
p3(v

2
1 + v22) + P1(μ,A, v21 + v22)
v2Q(μ,A, v21 + v22)
−v1Q(μ,A, v21 + v22)

⎞
⎟⎟⎠ ,

R̃(μ,X) �

⎛
⎜⎜⎝

0

R̃2(μ,X)

R̃3(μ,X)

R̃4(μ,X)

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

0
R2(μ,A,B, v1 − iv2, v1 + iv2)

Re(R3 (μ,A,B, v1 − iv2, v1 + iv2))
−Im (R3(μ,A,B, v1 − iv2, v1 + iv2))

⎞
⎟⎟⎠

= O
(|(A,B, v1, v2)||(μ,A,B, v1, v2)|n

)
.

(27)

The reverser S is given by

S(A,B, v1, v2) = S(A,−B, v1,−v2).(28)

The dominant system of (26)

Ẋ = F (μ,X)(29)

has a homoclinic solution

H(x) � (HA(x), HB(x), 0, 0)
T ,

=

(
3μ

2γ
sech2

(√μ

2a0
x

)
,−3μ3/2

2a0γ
sech2

(√
μ

2a0
x

)
tanh

(√
μ

2a0
x

)
,

0, 0
)T

,(30)

which satisfies

SH(−x) = H(x), |H(x)| ≤Mμe
−

√
μ

a0
|x|

for x ∈ R.(31)
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Since the equation (5) is equivalent to the system (26), in what fol-
lows, we only study the solutions of (26). More precisely, we will show that
(26) has a solution near the homoclinic solution H(x), which exponentially
approaches to a periodic solution given in the next section. If this can be
done, Theorem 1.1 will be proved.

3. Periodic solutions

In this section, we use the Fourier series to find the periodic solutions of
(26). Their estimates will play an important role for the proof of existence
of generalized homoclinic solutions of (26).

Let x̃ = (a0 + r1)x where r1 is a small real constant to be determined
later. The system (26) is transformed to

A′ =
1

a0 + r1
B,

B′ =
1

a0 + r1

( μ

a20
A− γ

a20
A2 + p3(v

2
1 + v22) + P1(μ,A, v21 + v22)

+ R̃2(μ,X)
)
,

v′1 =
1

a0 + r1

(
a0v2 + v2Q(μ,A, v21 + v22) + R̃3(μ,X)

)
,

v′2 =
1

a0 + r1

(
− a0v1 − v1Q(μ,A, v21 + v22) + R̃4(μ,X)

)
,(32)

where the prime denotes the derivative with respect to x̃. To solve the above
equations for a periodic solution with period 2π, we define some spaces. Use
Hm

p (0, 2π) to denote the space of periodic functions of x̃ with period 2π
whose derivatives up to order m are in L2(0, 2π) with the norm given by

‖f‖2m =
∑
n∈Z

(1 + n2m)|fn|2,

and f =
∑

n fne
inx̃ ∈ Hm

p (0, 2π). Define

H̃m
1 (0, 2π) =

{
f(x̃) =

∑
n

fne
inx̃ ∈ Hm

p (0, 2π)

∣∣∣∣ f1 = 0

}

and

Hm
p (0, 2π) = Hm

p (0, 2π)×Hm
p (0, 2π)× H̃m

1 (0, 2π)×Hm
p (0, 2π).
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In order to find the reversible periodic solutions of (32) (see the definition
(28) of the reverser S), we assume that

A(x̃) =

∞∑
n=0

An cos(nx̃), B(x̃) =

∞∑
n=1

Bn sin(nx̃),

v1(x̃) = I cos(x̃) + v01(x̃), v01(x̃) =

∞∑
n=0,n �=1

v1,n cos(nx̃),

v2(x̃) =

∞∑
n=1

v2,n sin(nx̃),(33)

where I > 0 is a small constant. For simplicity, we consider I as a smooth
function of μ and assume that

I = O(μ2).(34)

Inserting (33) into (32) and making each Fourier coefficient in the equation
equal zero, we obtain

An =
a20

−n2a20(a0 + r1)2 − μ

[
− γ

a20
A2 + p3(v

2
1 + v22)

+ P1(μ,A, v21 + v22) + R̃2(μ,X)
]
n
, n ≥ 0,

Bn =
na20(a0 + r1)

n2a20(a0 + r1)2 + μ

[
− γ

a20
A2 + p3(v

2
1 + v22)

+ P1(μ,A, v21 + v22) + R̃2(μ,X)
]
n
, n ≥ 1,

v1n =
a0

a20 − n2(a0 + r1)2

[n(a0 + r1)

a0

(
v2Q(μ,A, v21 + v22) + R̃3(μ,X)

)
− v1Q(μ,A, v21 + v22) + R̃4(μ,X)

]
n
, n �= 1,

v2n =
n(a0 + r1)

n2(a0 + r1)2 − a20

[n(a0 + r1)

a0

(
v2Q(μ,A, v21 + v22) + R̃3(μ,X)

)
− v1Q(μ,A, v21 + v22) + R̃4(μ,X)

]
n

− 1

a0

[
v2Q(μ,A, v21 + v22) + R̃3(μ,X)

]
n
, n �= 1,

v21 = −(a0 + r1)

a0
I − 1

a0

[
v2Q(μ,A, v21 + v22) + R̃3(μ,X)

]
1
,

r1 = − r21
2a0

− 1

2I

[a0 + r

a0

(
v2Q(μ,A, v21 + v22) + R̃3(μ,X)

)
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− v1Q(μ,A, v21 + v22) + R̃4(μ,X)
]
1
,(35)

where f [k] denotes the k-th component of f . Using (24), (27), (34) and (35),
together with the fixed point theorem, one can solve for A(x̃), B(x̃), v01(x̃),
v2(x̃) ∈ Hm

p (0, 2π) and the real constant r1 as smooth functions in terms of
small (μ, I) (More details can be found in [2] or [10]), i.e.,

(A,B, v01, v2)(x̃) = (A,B, v01, v2)(x̃;μ, I), r1 = r1(μ, I),

and

(A,B, v01, v2)(x̃;μ, 0) = 0 for all x̃ ∈ [0, 2π], |r1(μ, I)| ≤Mμ,

‖A‖m + ‖B‖m ≤MμI, ‖v01‖m + ‖v2‖m ≤MI(36)

for μ ∈ (0, μ1] and I ∈ (0, I1] where μ1 and I1 are small positive constants.
Using the relationship x̃ = (λ0 + r1)x, we define

Xp(x) =
(
Ap(x), Bp(x), v1p(x), v2p(x)

)T

=
(
A
(
(a0 + r1)x;μ, I

)
, B

(
(a0 + r1)x;μ, I

)
,

I cos
(
(a0 + r1)x

)
+ v01

(
(a0 + r1)x;μ, I

)
, v2

(
(a0 + r1)x;μ, I

))T
.

It is clear that Xp(x) is a periodic solution of (26) and satisfies, by (36),
that

‖Ap(x)‖m + ‖Bp(x)‖m ≤MμI, ‖v1p(x)‖m + ‖v2p(x)‖m ≤MI.(37)

The Sobolev embedding theorem implies that (37) is also valid under the
Cm
B (R)-norm, where Cm

B (R) is the space of continuously differentiable func-
tions up to order m with a supremum norm. We will need the dominant
terms of v1p(x) and v2p(x) later. A direct calculation gives

v1p(x) = I cos((a0 + r1)x) +O(μI),

v2p(x) = −I sin((a0 + r1)x) +O(μI).(38)

4. Existence of solutions on [0,∞)

This section proves the existence of the homoclinic solutions of the system
(26) near the obtained solution H(x), which exponentially tends to the peri-
odic solution Xp(x).
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Since the system (26) is reversible, we will first focus on the existence
of its solutions for x ∈ [0,∞) and then use the reversibility to extend the
solutions to x ∈ (−∞,∞). Assume that the system (26) has a solution X (x)
with the form

X (x) = H(x) + Z(x) + ς(x)Xp(x+ θ)(39)

for x ∈ [0,∞) where the constant θ ∈ S1 = [−π, π] is a phase shift, Z(x) is a
small perturbation term to be determined later and exponentially approaches
to 0 as x→∞, and the smooth even cut-off function ς(x) satisfies 0 ≤ ς(x) ≤
1 and

ς(x) =

{
1, |x| ≥ 2,
0, |x| ≤ 1.

Substituting (39) into (26) yields

Ż = L(x)Z + F(x, μ, Z),(40)

where L(x) = dF (μ,H), d means taking the Fréchet derivative and

F(x, μ, Z) = F (μ,H(x) + Z(x) + ς(x)Xp(x+ θ))− F (μ,H(x))

− dF [μ,H(x)]Z(x)− ς(x)F (μ,Xp(x+ θ))

+ F1(μ,H(x) + Z(x) + ς(x)Xp(x+ θ))− ς(x)F1(μ,Xp(x+ θ))

+ R̃(μ,H(x) + Z(x) + ς(x)Xp(x+ θ))− ς(x)R̃(μ,Xp(x+ θ))

− ς ′(x)Xp(x+ θ).(41)

Lemma 4.1. Under the assumption (34), if |Z|+ |Z1|+ |Z2| ≤M0 with
some positive constant M0, then the function F(x, μ, Z) satisfies for x ≥ 0
and small μ > 0, I > 0

|F [j](x, μ, Z)| ≤M
(|1− ς(x)|μI + (μ3 + μI)e

−
√

μ

a0
x

+ (μ2 + I)|Z|+ |Z|2), j = 1, 2,

|F [k](x, μ, Z)| ≤M
(|1− ς(x)|I + (μ3 + μI)e

−
√

μ

a0
x

+ (μ+ I)|Z|+ |Z|2), k = 3, 4,

|F(x, μ, Z1)−F(x, μ, Z2)| ≤M (μ+ I + |Z1|+ |Z2|) |Z1 − Z2|,(42)

where f [j] denotes the j-th component of f .
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Proof. It is easy to get that from (31) and (37) the the terms including the
function F is bounded by

M(|1− ς(x)|I2 + μIe
−

√
μ

a0
x
+ I|Z|+ |Z|2).

Note that the second component of F1 is dominated by

v21 + v22 +A(μ2 +A2)

and the third and the fourth components of F1 are respectively governed by

v2(μ+A+ v21 + v22), v1(μ+A+ v21 + v22)

(ignoring the uniform constant M). Thus, we have

|F1[2](μ,H(x) + Z(x) + ς(x)Xp(x+ θ))− ς(x)F1[2](μ,Xp(x+ θ))|
≤M

(
|1− ς(x)|I2 + μ3e

−
√

μ

a0
x
+ (μ2 + I)|Z|+ |Z|2

)
,(43)

|F1[k](μ,H(x) + Z(x) + ς(x)Xp(x+ θ))− ς(x)F1[k](μ,Xp(x+ θ))|
≤M

(
|1− ς(x)|I2 + μIe

−
√

μ

a0
x
+ (μ+ I)|Z|+ |Z|2

)
, k = 3, 4.(44)

The function R̃(μ,X) is dominated by

(A+B + v1 + v2)(μ+A+B + v1 + v2)
2

(again ignoring the uniform constant M). This implies that

|R̃(μ,H(x) + Z(x) + ς(x)Xp(x+ θ))− ς(x)R̃(μ,Xp(x+ θ))|
≤M

(
|1− ς(x)|I2 + (μ3 + μ2I)e

−
√

μ

a0
x
+ (μ2 + I)|Z|+ |Z|2

)
.(45)

The above estimates, together with

|ς ′(x)Ap(x+ θ)|+ |ς ′(x)Bp(x+ θ)| ≤M |1− ς(x)|μI,
|ς ′(x)v1p(x+ θ)|+ |ς ′(x)v2p(x+ θ)| ≤M |1− ς(x)|I,

yield the first two inequalities in (42). Similarly, the rest inequality in (42)
can be obtained. The proof is completed. �

In order to prove the existence of the solution Z(x) on [0,∞) by the fixed
point theorem, we change this problem into one of an integral equation.
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Note that the linear system of (40)

Ż = L(x)Z(46)

has four linearly independent solutions

s1(x) = −
6μ3/24a0

2γ
(
a0 tanh(

√
μ

2a0
x)sech2(

√
μ

2a0
x)

,

− 6
√
μ tanh2(

√
μ

2a0
x)sech2(

√
μ

2a0
x) + 3μ2sech4(

√
μ

2a0
x), 0, 0

)T
,

s2(x) =
1

96μ2

(
8a0γ(−2a0 cosh(

√
μ

a0
x)

+ 15(2a0 −√μx tanh(

√
μ

2a0
x))sech2(

√
μ

2a0
x))− 96a0

2γ,

−√μγsech4(

√
μ

2a0
x)
(
185a0 sinh(

√
μ

a0
x) + 4a0 sinh(

2
√
μ

a0
x)

+ a0 sinh(
3
√
μ

a0
x)− 60

√
μx cosh(

√
μ

a0
x) + 120

√
μx

)
, 0, 0

)T
,

s3(x) =
(
0, 0, cos(a0x),− sin(a0x)

)T
,

s4(x) =
(
0, 0, sin(a0x), cos(a0x)

)T
,(47)

which satisfy

|s1(x)| ≤Mμ3/2e
−

√
μ

a0
x
, |s2(x)| ≤Mμ−2e

√
μ

a0
x
, |s3(x)|+ |s4(x)| ≤M,

s1(0) =
(
0,− 3μ2

4a20γ
, 0, 0

)T
, s2(0) =

(4a20γ
3μ2

, 0, 0, 0
)T

,

s3(0) =
(
0, 0, 1, 0

)T
, s4(0) =

(
0, 0, 0, 1

)T
.(48)

The adjoint equation of (46) has four linearly independent solutions given
by

s∗1(x) =
1

96μ2

(
−√μγsech4(

√
μ

2a0
x)(185a0 sinh(

√
μ

a0
x)

+ 4a0 sinh(
2
√
μ

a0
x) + a0 sinh(

3
√
μ

a0
x)− 60

√
μx cosh(

√
μ

a0
x)

+ 120
√
μx), 8a0γ(2a0 cosh(

√
μ

a0
x)



Traveling Wave-Front Solutions with Small Oscillations... 307

+ 15(
√
μx tanh(

√
μ

2a0
x)− 2a0)sech

2(

√
μ

2a0
x) + 12a0), 0, 0

)T
,

s∗2(x) =
μ3/2

4a02γ

(
6
√
μsech4(

√
μ

2a0
x)− 3μ2 cosh(

√
μ

2a0
x)sech4(

√
μ

2a0
x),

− 6a0 tanh(

√
μ

2a0
x)sech2(

√
μ

2a0
x), 0, 0

)T
,

s∗3(x) =
(
0, 0, cos(a0x),− sin(a0x)

)T
,

s∗4(x) =
(
0, 0, sin(a0x), cos(a0x)

)T
,(49)

which satisfy

|s∗1(x)| ≤Mμ−2e
√

μ

a0
x
, |s∗2(x)| ≤Mμ3/2e

−
√

μ

a0
x
, |s∗3(x)|+ |s∗4(x)| ≤M,(50)

and for all x ∈ R

〈sj(x), s∗k(x)〉 =
{

1, for j = k,
0, for j �= k,

j, k = 1, 2, 3, 4,(51)

where 〈 · 〉 denotes the Euclidean inner product on R4.
Thus, the solution of (40) that approaches to zero at infinity can be

found as

Z(x) =

∫ x

0
〈F(t, μ, Z), s∗1(t)〉dts1(x)−

4∑
k=2

∫ ∞

x
〈F(t, μ, Z), s∗k(t)〉dtsk(x)

� P(μ,Z)(x).(52)

In order to apply the fixed point theorem to the above equation, we choose
a Banach space

B =
{
Z ∈ C

(
[0,∞)× S1

) | sup
x∈[0,∞)

{|Z(x, θ)|eνx} <∞}
(53)

for a fixed constant ν ∈ (
√
μ

2a0
,
√
μ

a0
) with the norm

‖Z‖ = sup
{|Z(x, θ)| eνx | x ∈ [0,∞), θ ∈ S1

}
.(54)

From this definition, it is obvious that Z(x) exponentially tends to 0 as
x→∞.
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Lemma 4.2. Under the assumption (34), if ‖Z‖+ ‖Z1‖+ ‖Z2‖ ≤M0 with
some positive constant M0, then the map P satisfies for x ≥ 0 and small
μ > 0, I > 0

‖P(μ,Z)‖ ≤M
(
μ2 + I + (

√
μ+ μ−1I)‖Z‖+ μ−1‖Z‖2) ,

‖P(μ,Z1)− P(μ,Z2)‖ ≤Mμ−1
(
μ3/2 + I + ‖Z1‖+ ‖Z2‖

)
‖Z1 − Z2‖.

(55)

Proof. Using (48), (50) and Lemma 4.1, we have

∣∣∣ ∫ x

0
〈F(t, μ, Z), s∗1(t)〉dts1(x)

∣∣∣eνx
≤ M√

μ

∫ x

0

(
|1− ς(t)|μI + (μ3 + μI)e

−
√

μ

a0
t

+ (μ2 + I)|Z|+ |Z|2
)
e

√
μ

a0
t
dte

−(
√

μ

a0
−ν)x

≤M
√
μI +

M√
μ

∫ x

0

(
μ3 + μI + (μ2 + I)‖Z‖

+ ‖Z‖2
)
e
(
√

μ

a0
−ν)t

dte
−(

√
μ

a0
−ν)x

≤ M

μ

(
μ3 + μI + (μ2 + I)‖Z‖+ ‖Z‖2) ,∣∣∣ ∫ ∞

x
〈F(t, μ, Z), s∗2(t)〉dts2(x)

∣∣∣eνx
≤ M√

μ

∫ ∞

x

(
|1− ς(t)|μI + (μ3 + μI)e

−
√

μ

a0
t

+ (μ2 + I)|Z|+ |Z|2
)
e
−

√
μ

a0
t
dte

(
√

μ

a0
+ν)x

≤M
√
μI +

M√
μ

∫ ∞

x

(
μ3 + μI + (μ2 + I)‖Z‖

+ ‖Z‖2
)
e
−(

√
μ

a0
+ν)t

dte
(
√

μ

a0
+ν)x

≤ M

μ

(
μ3 + μI + (μ2 + I)‖Z‖+ ‖Z‖2) ,∣∣∣ ∫ ∞

x
〈F(t, μ, Z), s∗k(t)〉dtsk(x)

∣∣∣eνx
≤M

∫ ∞

x

(
|1− ς(t)|I + (μ3 + μI)e

−
√

μ

a0
t
+ (μ+ I)|Z|+ |Z|2

)
dteνx
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≤MI +M

∫ ∞

x

(
μ3 + μI + (μ+ I)‖Z‖+ ‖Z‖2) e−νtdteνx

≤MI +
M√
μ

(
μ3 + (μ+ I)‖Z‖+ ‖Z‖2) , k = 3, 4,

which yield the first inequality of (55). Similarly, the second one can be
obtained. �

Suppose

I = I0μ
2(56)

for any fixed positive constant I0 and take a closed ball B̄(0) in the space B
with a radius

r = O(μ3/2).(57)

Clearly, the assumption (34) holds. Lemma 4.2 shows that P is a contraction
map on B̄(0) for small μ > 0. Thus, the equation (52) has a unique solution
Z(x;μ, θ, I) satisfying with a subtle estimate

‖Z‖ ≤Mμ2.(58)

Note that the smoothness of Z(x;μ, θ, I) in its arguments can also be obtained
by using an extension of a contraction mapping principle [19]. Hence, (26)
has a smooth solution X (x;μ, θ, I) for x ∈ [0,∞).

5. Existence of generalized homoclinic solution

In the previous section, we proved the existence of the solution X (x;μ, θ, I)
of (26) for x ∈ [0,∞). The reversibility yields that SX (−x;μ, θ, I) is also a
solution of (26). To obtain a reversible solution of (26) for x ∈ (−∞,∞), we
need to solve the following equation

(I − S)X (0;μ, θ, I) = 0,(59)

where I is an identity map. If the above equation holds, we can define

X1(x) =

{
X (x;μ, θ, I) for x ≥ 0,

SX (−x;μ, θ, I) for x ≤ 0.
(60)

The uniqueness of the solution for an initial value problem implies that
X1(x) is a smooth solution of (26) for x ∈ (−∞,∞), which exponentially
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tends to the periodic solution Xp(x+ θ) as x→∞ and the periodic solution
SXp(−x+ θ) as x→ −∞. Moreover, SX1(−x) = X1(x), which gives that
X1(x) is a reversible generalized homoclinic solution of (26).

In what follows, we pay our attention on the equation (59). The definition
of the reverser S shows that the equation (59) is equivalent to

B(0) = 0,(61)

v2(0) = 0.(62)

(48) and (52) imply that the equation (61) automatically holds. In order to
make the equation (62) valid, we need to find an unknown constant. Here
we choose the phase shift θ.

Lemma 5.1. If (56) is valid, then the equation (62) is equivalent to

θ =
√
μΞ(μ, θ),(63)

where Ξ(μ, θ) is differentiable with respect to its arguments, and Ξ and its
derivative with respect to θ are uniformly bounded for small μ > 0.

Proof. Let x = 0 in (52) which shows that (62) is changed into∫ ∞

0
〈F(t, μ, Z), s∗4(t)〉dt = 0.(64)

Note that the first two components of s∗4(x) in (49) are zero. Obviously,
by (44) and (45),

F [3](x, μ, Z) = −ς ′(x)v1p(x+ θ) + Φ3(x, μ, Z),

F [4](x, μ, Z) = −ς ′(x)v2p(x+ θ) + Φ4(x, μ, Z),

where Φ3(μ, θ) and Φ4(μ, θ) uniformly satisfy

|Φ3(x, μ, Z)|+ |Φ4(x, μ, Z)| ≤M
(
|1− ς(x)|I2 + (μ3 + μI)e

−
√

μ

a0
x

+ (μ+ I)|Z|+ |Z|2
)
.

Using (38), (49) and (58), we can transform the equation (64) into

− I

∫ 2

1
ς ′(t)

(
cos((a0 + r1)(t+ θ)) sin(a0t)
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− sin((a0 + r1)(t+ θ)) cos(a0t)
)
dt = Φ5(μ, θ),

or

I

∫ 2

1
ς ′(t) sin(a0θ + r1(t+ θ))dt = Φ5(μ, θ),(65)

where Φ5(μ, θ) uniformly satisfies

|Φ5(μ, θ)| ≤M
(
μ5/2 +

√
μI + μ−1/2((μ+ I)‖Z‖+ ‖Z‖2)

)
≤Mμ5/2.

(36) and (56) imply that the equation (65) is equivalent to

I0 sin(a0θ) = Φ6(μ, θ),(66)

where Φ6(μ, θ) uniformly satisfies

|Φ6(μ, θ)| ≤M
√
μ.

It is consequently obtained that

θ =
√
μΞ(μ, θ),(67)

where Ξ(μ, θ) = 1
a0
√
μ arcsin(Φ6(μ, θ)/I0). It is easy to check that Ξ(μ, θ) is

differentiable with respect to its arguments, and Ξ and its derivative with
respect to θ are uniformly bounded for small μ > 0. Hence the proof is
completed. �

By this lemma, we can choose a closed interval [−θ0, θ0] where θ0 > 0
and θ0 = O(μ1/4). It is then straightforward to show that θ is a contraction
mapping on [−θ0, θ0] for small μ > 0. Therefore, (63) has a unique solution
θ satisfying |θ| ≤M

√
μ. This implies that (59) holds by choosing θ that

has been derived. Hence, X1(x) defined by (60) is a reversible generalized
homoclinic solution of (26).

Recall the relationships among (5), (9) and (26), and focus on only the
first component. Then, we have

y(x) = HA(x) +A(x) + ς(x)Ap(x+ θ)− 2a30(v1(x) + ς(x)v1p(x+ θ)) + 1,

which yield the expression of y(x) given in (8). Thus, Theorem 1.1 in the
Introduction is proved.
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Remark 5.1. From (2) we have

φ(x) =

∫ (
−y(t) + ev

a

)
dt.(68)

Note that y(x) in Theorem 1.1 has a constant y0 = 1 + [K2(x)]0 = 1 +O(μI)
where [K2(x)]0 stands for the constant term in the Fourier series of the
periodic function K2(x). We can always choose appropriate constants in (1)
satisfying

ev

a
= y0

so that the constant in the integrand −y(x) + ev
a vanishes and (7) holds.

Thus, if we integrate −y(x) + ev
a , there is no any polynomial in x appearing.

Then we set

φ(x) =

∫ x

0

(
−y(x) + ev

a

)
dx

=
3
√
μa0

γ
tanh

(√
μ

2a0
x

)
+K1(x) +K2(x),(69)

where the function K2(x) is periodic in x with periodic 2π
a0+r1

and the func-
tions K1(x) and K2(x) satisfy uniformly that

|K1(x)| ≤Mμ3/2e−ν|x|, |K2(x)| ≤MI

for x ∈ R. Therefore, φ(x) given in (69) is an odd generalized wave-front
solution of (1) under a small perturbation.
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