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A Note on the Heat Flow of Harmonic

Maps Whose Gradients Belong to Lq
tL

p
x

Junfei Dai, Wei Luo and Meng Wang∗

Abstract: For any compact n−dimensional Riemannian manifold
(M, g) without boundary, a compact Riemannian manifoldN ⊂ Rk

without boundary, and 0 < T ≤ ∞, we prove that for n ≥ 3, if
u : M × (0, T ]→ N is a weak solution to the heat flow of har-
monic maps such that ∇u ∈ Lp

xL
q
t (M × (0, T ]) (n/p+ 2/q = 1 for

some p > n), then u ∈ C∞(M × (0, T ), N). For p = n, we proved
the regularity for the suitable weak solution defined in [1].
Keywords: Heat flow; Suitable solution; Lorentz space; Blow up.

1. Introduction

We adopt the notation and some definitions as in [1] and [2]. For n ≥ 1,
let (M, g) be a smooth, compact n−dimensioanl Riemannian manifold
without boundary, and N ⊂ Rk(k ≥ 2), be a smooth , closed, oriented
m−dimensional submanifold without boundary. For 0 < T ≤ ∞, a map
u ∈ C2(M × (0, T ), N) is a solution to the heat flow of harmonic maps, if

∂u

∂t
= Δgu+

n∑
α,β=1

gαβA(u)

(
∂u

∂xα
,
∂u

∂xβ

)
in M × (0, T ),(1.1)

where Δg is the Laplace-Beltrami operator of (M, g), A(·)(·, ·) is the second
fundamental form of N ⊂ IRk, and (gαβ) = (gαβ)

−1 is the inverse of g =
(gα,β). Let us recall the notation of weak solutions of (1.1).

Definition 1.1. A map u : M × [0, T ]→ N is a weak solution of (1.1), if
(1) ut ∈ L2

xL
2
t (M × [0, T ]), ∇u ∈ L2

xL
∞
t (M × [0, T ]),
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(2) u satisfies (1.1) in the distribution sense:∫ T

0

∫
M

ut · φ+∇u · ∇φ =

∫ T

0

∫
M

A(u)(∇u,∇u) · φ,

for all φ ∈ C∞0 (M × (0, T ), Rk).

Our goal in this note is to get

Theorem 1.1. For n ≥ 3, let u : M × [0, T ]→ N be a weak solution of
(1.1), with ∇u ∈ Lp

xL
q
t (M × [0, T ]) for some n < p ≤ ∞ satisfying n

p + 2
q =

1. Then u ∈ C∞(M × (0, T ], N). Moreover, if ∇u ∈ Ln
xL
∞
t , then there exists

a small number ε, such that ‖∇u‖Ln
xL

∞
t (M×(0,T ]) ≤ ε which implies that u ∈

C∞(M × (0, T ], N).

By standard parabolic estimate, Theorem 1.1 can be generalized by The-
orem 1.3.

Theorem 1.2. For n = 3, let u : M × [0, T ]→ N be a weak solution of
(1.1) which satisfies the monotonicity inequalities (1.5) and energy inequality
(1.6), and ∇u ∈ Ln

xL
∞
t (IRn × [0, T ]). Then for any open subset ω and for any

moment of time t0 ∈ (0, T ), we have

N(t0, ω) ≤ ε−30 lim sup
r→0

1

r2

∫ t0

t0−r2

∫
ω
|∇u|3(y, s)dyds.

Here, N(t0, ω) = card{Σ(t0) ∩ ω}; i.e. N(t0, ω) is the number of points in
the set Σ(t0) ∩ ω.

Note that the scaling invariant norm for ∇u is ∇u ∈ Lp
xL

q
t (M × [0, T ])

for some p ∈ [n,∞) and q ∈ [2,∞) satisfying

n

p
+

2

q
= 1.(1.2)

The scaling invariant space Lp
xL

q
t with (p, q) satisfying (1.2) has played

an important role in the regularity issue of Navier-Stokes equation for
the Leray-Hopf weak solution. It is well known that both uniqueness and
smoothness for the class of weak solutions v of the Navier-Stokes Equation in
which v ∈ Lp

xL
q
t (IR3 × (0,∞)) for some p ∈ (3,∞] and q ∈ [2,∞) satisfying

Serrin’s condition (1.2), have been established through works by Prodi [3],
Serrin [4], and Ladyzhenskaya [5] in 1960s. On the other hand, for the end
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point case p = 3, q =∞, only until recently Escauriaza et al. [5,6] proved
the smoothness for weak solutions v ∈ L3

xL
∞
t , 0 < T <∞.

Motivated by these results for the Navier-Stokes equation, Wang [2]
considered the class of weak solutions u : M × [0, T ]→ N of (1.1) with
∇u ∈ Lp

xL
q
t (M × [0, T ]) for some p ∈ [n,+∞] and q ∈ [2,+∞] satisfying Ser-

rin’s condition (1.2). it is stated in [2] that
(i) if n ≥ 4, and u is a weak solution of (1.1) with ∇u ∈ Ln

xL
∞
t , then

u ∈ C∞(M × (0, T ], N).
(ii) If n = 3, they get the blow up criteria.
(iii) Either n ≥ 4 or 2 ≤ n < 4 and p ≥ 4, Theorem 1.1 is true with ∇u ∈
Lp
xL

q
t .

for some p > n, q ≥ 2 satisfying n/p+ 2/q = 1.
Our Theorem 1.1 extends their result (iii) to all p, q with p > n, q ≥ 2

satisfying (1.2).
Since the regularity is a local property, for the sake of simplicity, we will

present our proofs in the case where M = IRn. The general case is essentially
the same, but technically a little more complicated. Here we shall consider
the weak solutions of

∂u

∂t
−Δu = A(u)(∇u,∇u), in Q(1.3)

where Q = Ω× (0, T ), Ω is a domain in IRn(n ≥ 3) with smooth boundary,
0 < T <∞. For any weak solution u : IRn × (0, T ]→ N of (1.3), define

Σ = {z0 = (x0, t0) ∈ IRn × (0, T ]; u is not continuous at z0},

and

Σ(t0) = Σ ∩ {t0}, for t0 ∈ (0, T ].

The proof in [2] depends on the fact that for n ≥ 4, u satisfies the mono-
tonicity inequalities ([2, (2.4)]) (which is stronger then (1.5)) and the energy
inequality (1.6) under the assumption of∇u ∈ Ln

xL
∞
t (see [2, Lemma 2.4 and

Lemma 2.2]). So the case n = 3, q =∞ and the case 4 > p > n = 3 are not
considered in their paper. Note that in [7], the author consider the interior
regularity for the distribution solution of one kind parabolic system. It help
us to deal with the case n = 3, q =∞ and the case 4 > p > n = 3. In Navier-
Stokes equation, It is shown in [9], from the assumption v ∈ L3,∞ one can
define the associated pressure p̃ such that (v, p̃) is a suitable weak solution
of Navier-Stokes Equation. So the regularity for the weak solution v ∈ L3,∞

is just the regularity for the suitable weak solution in some sense.
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In fact, if we denote Qr = Qr(x0, t0) is a parabolic ball centered at
(x0, t0) ∈ Q:

Qr(x0, t0) = {(x, t) ∈ IRn × IR; |x− x0| < r,−r2 < t− t0 < 0}

such thatQr ⊂ Q and Br(x0) = {x ∈ IRn; |x− x0| < r}. where Ω is a domain
in IRn with smooth boundary and 0 < T <∞. Using the results of [7], we
have the ε−regularity for all p, q with p ≥ n, q ≥ 2 satisfying (1.2).

Theorem 1.3. If u is a weak solution of (1.1) in Q with ut ∈
L2
xL

2
t (Q), ∇u ∈ L2

xL
∞
t (Q), then there is a positive constant ε < 1 such that

‖∇u‖Lp,q(Qr) < ε which implies

(a) ∇u ∈ L∞x Lβ
t (Qr/2) for all 2 ≤ β <∞ when p > n.

(b) ∇u ∈ Lα
xL

β
t (Qr/2) for all 2 ≤ α, β <∞ when p = n.

Here ε = ε(n,m, p, β) if p > n and ε = ε(n,m, α, β) if p = n.

We recall the weak − L(q) space for 1 < q <∞:

L(q)(0, T ) =
{
f ∈ L1(0, T ); [f ]Lq(0,T ) <∞

}
,

where

[f ]Lq(0,T ) = sup
s>0

s (μ{t ∈ (0, T ) : |f(t)| > s})1/q .

By Theorem 1.3, we also can get

Theorem 1.4. Let u be a weak solution of (1.1) in Q with ut ∈ L2
xL

2
t (Q),

∇u ∈ L2
xL
∞
t (Q). Suppose that 1 ≤ p, q ≤ ∞ satisfies n/p+ 2/q = 1 and p >

n. Then there exists a positive constant ε = ε(n,m, p, β) < 1 such that

‖∇u‖Lp,(q)(Qr) ≤ ε(1.4)

which implies ∇u ∈ L∞x Lβ
t (Qr/2) for all β > 2.

Remark 1.5. The condition (1.4) is fulfilled if , for example,

‖∇u(t)‖Lp(Br(x0)) ≤
ε

(t0 − t)1/q
for t ∈ (−r2 + t0, t0).

Definition 1.2. We call a map u : M × (0, T ]→ N is a suitable weak solu-
tion of (1.1), if it is a weak solution of (1.1), and satisfy the following mono-
tonicity inequalities (1.5) and the energy inequality (1.6).
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We adopt the notation as in [1] and [2]. Denote by z = (x, t) a point in
M × IR. For a distinguished point z0 = (x0, t0), r > 0, let

Pr(z0) = {z = (x, t) ∈ IRn × IR : |x− x0| < r, |t− t0| < r2}

and

Tr(z0) = {z = (x, t) ∈ IRn × IR : t0 − 4r2 < t < t0 − r2}.
Denote the fundamental solution to the (backward) heat equation ( ∂

∂t +
Δ)f(x, t) = 0 on IRm × IR by

Gz0(z) =
1

(4π(t− t0))m/2
exp

(
−(x− x0)

2

4(t0 − t)

)
, t < t0.

We also denote by δ the parabolic distance function

δ((x, t), (y, s)) = max{|x− y|,
√
|t− s|}.

Let β > 0 be any fixed constant. For any z1 ∈ IRn × IR+, define, for R ∈
(0,
√
t1/2β),

Ψβ(R, u, z1) =
1

2

∫
TβR(z1)

|∇u|2Gz1φ
2
βdxdt,

where φβ(x) = φ((x− x1)/β) and φ ∈ C∞0 (B1/2(0)) is a cut-off function such
that 0 ≤ φ ≤ 1 and φ ≡ 1 on B1/4(0). It is proved in [6] that the regular
solution of (1.1) satisfy:

Monotonicity inequalities: There exists a constant C > 0, depend-
ing only on m, such that for any z1 ∈ IRn × IR+ and any 0 < R1 < R2 ≤
min(1/2,

√
t

2β ),

Ψβ(R1, u, z1) ≤ eC(R2−R1)Ψβ(R2, u, z1) + C(R2 −R1)β
−n

∫
Pβ/2(z1)

|∇u|2dxdt.(1.5)

Energy inequality: For any φ ∈ C∞0 (IRn) and a.e. 0 ≤ t1 ≤ t2 <∞, it
is true that

2
∫
IRn

∫ t2
t1
|ut|2φ2 +

∫
IRn φ

2|∇u|2(x, t2)
≤ ∫

IRn φ
2|∇u|2(x, t1) + c(n)

∫
IRn

∫ t2
t1
|∇u|2|∇2φ2|.(1.6)

2. Proof of Theorem 1.3

Proof of Theorem 1.3: Assume that N ⊂ IRk has an orthonormal frame
field νl, 1 ≤ l ≤ k −m, for the normal bundle to N . By [8], the equation
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(1.3) may equivalently be written as

uit −Δui = Ωi,j · ∇uj ,(2.1)

where Ω ∈ L2(Q; so(k)× Λ1IRk), with components locally given by

Ωi,j =

k−m∑
l=1

ωi
ldω

j
l − ωj

l dω
i
l ,(2.2)

for 1 ≤ i, j ≤ k and ωl = νl ◦ u. If u is a weak solution of (1.3), then v =

∇u = (vi,α)α=1,n

i=1,k
∈ L2

xL
2
t (Q; IRk+n) satisfying the following parabolic system

vt −Δv = ∇(Ωv)(2.3)

in Q in the distribution sense:∫ ∫
Q
(∂tφ+Δφ− divφΩ)vdxdt = 0

for any φ = (φi,α)α=1,n

i=1,k
∈ C∞0 (Q; IRk+n). Here

divφΩ =

(
n∑

α=1

∂

∂xα
φ1,α, ...

n∑
α=1

∂

∂xα
φk,α

)⎛⎜⎜⎝
Ω1,1 ... Ω1,k

Ω2,1 ... Ω2,k

... ... ...
Ωk,1 ... Ωk,k

⎞⎟⎟⎠ .

Then by [7, Theorem 2.1 and Theorem 2.2 ], we can get Theorem 1.3 and
Theorem 1.4.

3. Proof of Theorem 1.2

First, we have the following lemma,

Lemma 3.1. [2, Lemma 2.1] For n ≥ 2 and 0 < T ≤ +∞, suppose that
u : M × [0, T ]→ N is a weak solution of (1.1) with ∇u ∈ Ln

xL
∞
t (M × [0, T ]).

Then u ∈ C([0, T ], Ln(M)), and

(3.1) ‖∇u(t)‖Ln(M) ≤ ‖∇u(t)‖Ln
xL

∞
t (M×[0,T ]), ∀t ∈ [0, T ].
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For z ∈ IRn × IR+ and 0 < r <
√
t define

E(r, u, z) = r−n
∫
Pr(z)

|∇u|2dyds.

In fact, if we let ω ⊂ IRn be an open domain, we have the following Lemma
which is given in [10] for stability solution of (1.3).

Lemma 3.2. Let u ∈ H1
loc (ω × (0,∞), N) be a weak solution of (1.3)

satisfying the (1.5) and (1.6). Then for any parabolic cylinder Pr0(z0) ⊂
ω × (0,∞) and for any z1 = (x1, t1) ∈ Par0(z0) and 0 < r < br0, where a
and b are two positive constants satisfying a+ 2b ≤ 1/2, we have

r2−n
(∫

Pr(z1)
|∂tu|2dz +

∫
Br(x1)×{t1} |∇u|2dx

)
≤ Cr−n0

∫
Pr0

(z0)
|∇u|2dz.

Proof: As the argument in [1, Lemma 2.2, Lemma 2.3](Although only
the case N = Sk is considered there, these two lemmas are true without this
restriction), we can show there exists K > 0, such that

E(r, u, z1) ≤ KE(r0, u, z0)

for any z1 = (x1, t1) ∈ Par0(z0) and 0 < r < br0, where a and b are two pos-
itive constants satisfying a+ 2b ≤ 1/2. By Fubini’s theorem we may choose
α ∈ (1/2, 7/8) such that∫

Br(x1)
|∇u|2(y, t1 − α2r2)dy ≤ Cr−2

∫
Pr(z1)

|∇u|2dyds.(3.2)

Choose a smooth function φ ∈ C∞0 (IRn) such that φ = 1 in Bαr(x), φ = 0
outside Br(x0), 0 ≤ φ ≤ 1 and |∇φ| ≤ C/r. It follows from (1.6) and (3.2)
that

r2−n
∫
Pr/2(z1)

|∂tu|2dyds ≤ CE(r0, u, z0)

for any z1 = (x1, t1) ∈ Par0(z0) and 0 < r < br0. On the other hand, use (1.6)
with t2 = t1 and t1 = t0 − αr20, we can also have

r2−n
∫
Br(x1)×{t1}

|∇u|2dx ≤ CE(r0, u, z0).

By Lemma 3.2, [10, Theorem 2], and the argument in [10], we can get
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Lemma 3.3. Let n = 3 or n = 4, and let u ∈ H1(Pr(z0), N) be a weak
solution of (1.3) satisfying (1.5) and (1.6). If

r−n
∫
Pr(z0)

|∇u|2 ≤ ε20

for a sufficiently small number ε0 > 0, then u is smooth in Pr/2(z0).

Proof of Theorem 1.2: For simplicity, we can assume that M = IR3.
Suppose that Σ(t0) �= ∅. We can follow the blow up argument in [2] to get
a map v : IRn+1

− → N is a weak solution of (1.1), with ∇v ∈ L3
xL
∞
t (IRn+1

− ),
and

(3.3) R−3
∫
PR

|∇v|2 ≥ ε20, ∀R > 0.

For the completeness of our theorem, we show it here. By Lemma 3.3, we
have that x0 ∈ Σ(t0) implies that

r−3
∫
Pr(x0,t0)

|∇u|2 ≥ ε20, ∀r > 0.(3.4)

For ri ↓ 0, define vi(x, t) = u(x0 + rix, t0 + r2i t) : IR
3 × (−r2i , 0]→ N . Then

we can show vi(x, t) is a weak solution of (1.3), and vi satisfies

(3.5) ‖∇vi‖L3
xL

∞
t (IR3×[−r−2

i t0,0])
= ‖∇u‖L3

xL
∞
t (IR3×[0,t0]) <∞,

and

(3.6) R−n
∫
PR

|∇vi|2 = (Rri)
−3

∫
PRri

(x0,t0)
|∇u|2 ≥ ε20, ∀R > 0.

Moreover, by (3.5), we have

(3.7)

supi
∫
PR
|∇vi|2 ≤ supiR

5/3
[∫

PR
|∇vi|3(x, t)dxdt

]2/3
≤ supiR

3‖∇vi‖L3
xL

∞
t (PR)

≤ supiR
3 supt0−(Rri)2<s<t0

∫
BR(x0)

|∇u|3(y, s)dy
≤ CR3, ∀R > 0.

From Lemma 3.2, we have

(3.8) sup
i

∫
PR

|(vi)|2t ≤ CR−2 sup
i

∫
P2R

|∇vi|2 ≤ CR, ∀R > 0.
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It follows from (3.7) and (3.8) that {vi} ⊂ H1
loc(IR

n+1
− ) is a bounded

sequence. Thus there exists a map v : IRn+1
− → N such that ∇vi → ∇v

weakly in L2
loc(IR

n+1
− ), and vi → v strongly in L2

loc(IR
n+1
− ). Note that

(3.9) (vi)t −Δvi = A(vi)(∇vi,∇vi) in IRn × (−r−2i t0, 0],

and

(3.10) |A(vi)(∇vi,∇vi)| ≤ C|∇vi|2 is bounded in L1
loc(IR

n+1
− )

Thus

r−2
∫
Pr(x0,t0)

|∇v|3 ≥ ε30, ∀r > 0.(3.11)

For any finite subset {x1, ..., xl} ⊂ Σ(t0) ∩ ω, let r0 > 0 be small enough so
that {Br(xj)}lj=1 are mutually disjoint for any 0 < r ≤ r0 and Br(xj) ⊂ ω
for all j = 1, ..., l. By (3.11), for any 0 < r ≤ r0, we have

lε30 ≤ r−2
l∑

i=1

∫
Pr(xi,t0)

|∇v|3 ≤ r−2
∫ t0

t0−r2

∫
ω
|∇u|3.

Then the proof is over.
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