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Bounding Betti Numbers of Monomial

Ideals in the Exterior Algebra

Marilena Crupi and Carmela Ferrò

Abstract: Let K be a field, V a K-vector space with basis e1, . . . ,
en, and E the exterior algebra of V . To a given monomial ideal
I � E we associate a special monomial ideal J with generators in
the same degrees as those of I and such that the number of the
minimal monomial generators in each degree of I and J coincide.
We call J the colexsegment ideal associated to I. We prove that
the class of strongly stable ideals in E generated in one degree
satisfies the colex lower bound, that is, the total Betti numbers of
the colexsegment ideal associated to a strongly stable ideal I � E
generated in one degree are smaller than or equal to those of I.
Keywords: Exterior algebra, monomial ideals, Betti numbers.

1. Introduction

Let K be a field. Finding bounds on Betti numbers of classes of graded
modules on graded K-algebras is one of the main problems in combinatorial
algebra. There are many techniques for finding upper bounds on Betti num-
bers [1, 3, 5, 13, 14, 23–25, 27, 29]. On the contrary, the study of lower bounds
for Betti numbers is overall harder. The Buchsbaum-Eisenbud-Horrocks rank
conjecture proposes lower bounds for the Betti numbers of a graded mod-
ule M based on the codimension of M . The conjecture was formulated by
Buchsbaum and Eisenbud [9]; independently, the conjecture is implicit in a
question by Horrocks [22]. The literature on special cases of this conjecture
is extensive (for example, see [8, 10–12, 18, 19, 28]) and many recent results
have been obtained in the framework of Boij-Söderberg theory [6].

In this paper, we are interested in establishing lower bounds for Betti
numbers of classes of graded ideals. An important contribution in under-
standing how to obtain lower bounds for Betti numbers of monomial ideals
in a polynomial ring K[x1, . . . , xn] has been done by Nagel and Reiner [26].
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In fact, in [26], the authors associate to a given monomial ideal I gener-
ated in one degree a squarefree ideal J generated in the same degree as I
by a revlex segment set of squarefree monomials whose length is equal to
the number of generators as I. J is called the colexsegment-generated ideal.
Nagel and Reiner asked the following question.

Question 1.1. Let I be a monomial ideal in K[x1, . . . , xn] generated in
degree d, and J the colexsegment-generated ideal. When does βi(J) ≤ βi(I),
for all i ≥ 0, occur?

If the inequality holds, one says that I obeys the colex lower bound.
Their idea [26] was to give lower bounds for Betti numbers of a monomial
ideal not fixing the Hilbert function [15, 17], but only fixing the number of
minimal monomial generators and their degrees. They proved, among other
things, that a strongly stable ideal generated in one degree obeys the colex
lower bound. Other classes of monomial ideals in a polynomial ring satisfy-
ing such a bound where found in [20].
The construction in [26] was generalized in [4]. The author considered a
monomial ideal I � K[x1, . . . , xn], not necessarily generated in one degree,
and an associated suitable monomial ideal J , called the revlex ideal associ-
ated to I. More precisely, if pt is the number of minimal generators of I in
degree t, the minimal generators of J in degree t are the pt largest monomials
in the revlex order not in {x1, . . . , xn}Mon(Jt−1), where Mon(Jt−1) is the
set of all monomials of degree (t− 1) belonging to J . Since it is possible that
the ring K[x1, . . . , xn] has not enough monomials in some degree, in order
to choose the minimal monomial generators for J , the author got around
this difficulty by adding extra variables. Thus, he compared the total Betti
numbers of a strongly stable ideal with the total Betti numbers of its revlex
ideal associated.

We extend such results in the exterior algebra E of a finitely generated
K-vector space. Our main result states that a strongly stable ideal in E
generated in one degree satisfies the colex lower bound.

The plan of the paper is the following.
Section 2 contains preliminary notions and results.
In Section 3, if I � E is a monomial ideal with generators in several

degrees we associate to I a special strongly stable ideal in the exterior algebra
Ẽ = K 〈e1, . . . , em〉, with m sufficiently large, with generators in the same
degrees as those of I: the colexsegment ideal associated to I (Construction
3.2).
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In Section 4, we prove some properties satisfied by a strongly stable set
in E. Therefore, we state an analogue, for the exterior algebra, of Theorem
1.5 in [4].

In Section 5, we prove that a strongly stable ideal in E generated in one
degree obeys the colex lower bound (Theorem 5.2). Moreover, we discuss
the case when a strongly stable ideal in E is generated in several degrees:
the colexsegment ideal associated does not give in general a lower bound
(Example 5.1).

In Section 6, we point out that the colexsegment ideal associated to a
monomial ideal is not in general a revlex ideal in the sense of [15]; then,
we determine the conditions allowing the colexsegment ideal associated to a
monomial ideal to be a revlex ideal (Proposition 6.5).

2. Preliminaries and notations

Let K be a field. We denote by E = K 〈e1, . . . , en〉 the exterior algebra of
a K-vector space V with basis e1, . . . , en. For any subset σ = {i1, . . . , id} of
{1, . . . , n} with i1 < i2 < · · · < id we write eσ = ei1 ∧ . . . ∧ eid , and call eσ a
monomial of degree d. We set eσ = 1, if σ = ∅. The set of monomials in E
forms a K-basis of E of cardinality 2n.

In order to simplify the notation, we put fg = f ∧ g for any two ele-
ments f and g in E. An element f ∈ E is called homogeneous of degree j
if f ∈ Ej , where Ej =

∧j V . An ideal I is called graded if I is generated
by homogeneous elements. If I is graded, then I = ⊕j≥0Ij , where Ij is the
K-vector space of all homogeneous elements f ∈ I of degree j. We denote
by indeg(I) the initial degree of I, that is, the minimum s such that Is 
= 0.

If I is a graded ideal in E, then E/I has a minimal graded free resolution
over E:

F : . . .→ F2
d2→ F1

d1→ F0 → E/I → 0,

where Fi = ⊕jE(−j)βi,j(E/I). The integers βi,j(E/I) = dimK TorEi (E/I,K)j
are called the graded Betti numbers of E/I, whereas the numbers βi(E/I) =∑

j βi,j(E/I) are called the total Betti numbers of E/I.
Let u 
= 1 be a monomial in E. We define

supp(u) = {i : ei divides u},

and we write

m(u) = max{i : i ∈ supp(u)}, min(u) = min{i : i ∈ supp(u)}.
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For any subset S of E, we denote by Mon(S) the set of all monomials
in S, by Mond(S) the set of all monomials of degree d ≥ 1 in S, and by |S|
its cardinality.

Definition 2.1. A nonempty set M ⊆ Mond(E) is called stable if for each
monomial eσ ∈M and each j < m(eσ) one has (−1)α(σ,j)ejeσ\{m(eσ)} ∈M ,
where α(σ, j) = |{r ∈ σ : r < j}|. M is called strongly stable if for all eσ ∈M
and all j ∈ σ one has (−1)α(σ,i)eieσ\{j} ∈M , for all i < j, where α(σ, i) =
|{r ∈ σ : r < i}|.
Definition 2.2. Let I be a monomial ideal of E. I is called stable if for
each monomial eσ ∈ I and each j < m(eσ) one has ejeσ\{m(eσ)} ∈ I.
I is called strongly stable if for each monomial eσ ∈ I and each j ∈ σ one
has eieσ\{j} ∈ I, for all i < j.

Remark 2.3. Note that a monomial ideal I of E is a (strongly) stable ideal
in E if and only if Mon(Id) is a (strongly) stable set in E for all d.

Definition 2.4. Let M be a set of monomials of E. Set ei = {e1, . . . , ei}.
We define the set

eiM = {(−1)α(σ,j)ejeσ : eσ ∈M , j /∈ supp(eσ), j = 1, . . . , i},

α(σ, j) = |{r ∈ σ : r < j}|.
Note that eiM = ∅ if, for every monomial u ∈M and for every j =

1, . . . , i, one has j ∈ supp(u).
If M is a set of monomials of degree d < n of E, enM is called the

shadow of M and is denoted by Shad(M):

Shad(M) = {(−1)α(σ,j)ejeσ : eσ ∈M, j /∈ supp(eσ), j = 1, . . . , n},

α(σ, j) = |{r ∈ σ : r < j}|. Moreover, we denote by E1M the K-vector space
generated by Shad(M); if I = ⊕j≥0Ij is a monomial ideal of E, we denote
by E1Id the K-vector space generated by Shad(Mon(Id)).

Remark 2.5. Usually, the shadow of a set M of monomials of degree d of
E, d < n, is defined as follows:

Shad(M) = {ejeσ : eσ ∈M, j /∈ supp(eσ), j = 1, . . . , n}.

We observe that this definition is a little bit imprecise.
In fact, if j < min(eσ), then ejeσ ∈ Mond+1(E). Suppose j > min(eσ) and
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eσ = ei1ei2 · · · eid. Since ehei = −eieh, i, h ∈ {1, . . . , n}, then

ejeσ = (−1)tei1ei2 · · · eitejeit+1
· · · eid ,

where t is the largest integer such that it < j. Note that if t is odd, then
ejeσ /∈ Mond+1(E).

Finally, if I is a monomial ideal of E, we denote by G(I) the unique
minimal set of monomial generators of I, and define the following sets:

G(I)d = {u ∈ G(I) : deg(u) = d}, G(I; i) = {u ∈ G(I) : m(u) = i},

mi(I) = |G(I; i)| , m≤i(I) =
∑
j≤i

mj(I),

for d > 0 and 1 ≤ i ≤ n.

3. Colexsegment ideal associated to a monomial ideal

In this Section, to a given monomial ideal I � E we associate a special
monomial ideal J with generators in the same degrees as those of I and
such that the number of the minimal monomial generators in each degree of
I and J coincide.
Let us denote by >revlex the reverse lexicographic order (revlex order, for
short) on Mond(E), that is, if eσ = ei1ei2 · · · eid and eτ = ej1ej2 · · · ejd are
monomials belonging to Mond(E) with 1 ≤ i1 < i2 < · · · < id ≤ n and 1 ≤
j1 < j2 < · · · < jd ≤ n, then eσ >revlex eτ if id = jd, id−1 = jd−1, . . . , is+1 =
js+1 and is < js for some 1 ≤ s ≤ d.

Definition 3.1. A nonempty set M ⊆ Mond(E) is called a reverse lexico-
graphic segment of degree d (revlex segment of degree d, for short) if for all
v ∈M and all u ∈ Mond(E) such that u >revlex v, we have that u ∈M .

If M is a revlex segment of degree d and |M | = �, � is called the length
of M .

Following [26] and [4], we give the following construction.

Construction 3.2. Let I be a monomial ideal of E = K 〈e1, . . . , en〉 gener-
ated in degrees 1 ≤ d1 < d2 < . . . < dt ≤ n. Let pj be the number of minimal
generators of I in degree dj. We construct a monomial ideal J in the exterior

algebra Ẽ = K 〈e1, . . . , em〉 by choosing the minimal generators as follows:
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for each dj the degree dj minimal generators of J are the largest pj mono-

mials in the revlex order not in Ẽ1Jdj−1
.

The integer m is the smallest integer such that there exists an exterior alge-
bra Ẽ = K 〈e1, . . . , em〉 with enough monomials such that the construction
can be completed.

J is called the colexsegment ideal associated to I.

Remark 3.3. Set [n] = {1, . . . , n}. Let d ∈ [n] and let
([n]
d

)
be the set of all

d-subsets Sd = {i1, i2, . . . , id : 1 ≤ i1 < i2 < · · · < id ≤ n} of [n].

Using the revlex order on Mond(E), we can arrange the set
([n]
d

)
by the

colexicographic order [26] as follows.
If Sd = {i1, i2, . . . , id : 1 ≤ i1 < i2 < · · · < id ≤ n} and Td = {j1, j2, . . . , jd :

1 ≤ j1 < j2 < · · · < jd ≤ n} are two elements of
([n]
d

)
, then

Sd <colex Td if ei1ei2 · · · eid >revlex ej1ej2 · · · ejd .

Hence, if the ideal I in Construction 3.2 is generated in degree d, then J is
the analogous of the colexsegment-generated ideal of [26].

Remark 3.4. If M is a revlex segment of degree d and length � in the
exterior algebra E = K 〈e1, . . . , en〉, then M is also a revlex segment of degree
d and length � in the exterior algebra Ẽ = K 〈e1, . . . , em〉, for m ≥ n.
Moreover, if I is a monomial ideal of E generated in degree d, then the
colexsegment ideal J associated to I is an ideal of E, too. Note that if I
is a monomial ideal of E, then the generators of the colexsegment ideals
associated to I are the same for every construction done with some m̃ ≥ m,
where m is the integer defined in Construction 3.2.

Below we give two examples to show that, given a monomial ideal I �

E = K 〈e1, . . . , en〉, it is not always verified that E has enough monomials
in some degree, in order to choose the minimal monomial generators for the
colexsegment ideal J associated to I.

Example 3.5. Let I = (e1e2, e1e3e4, e1e3e5) � E = K 〈e1, e2, e3, e4, e5〉 be
a monomial ideal generated in degrees 2 and 3. Following Construction 3.2,
the colexsegment ideal associated to I is J = (e1e2, e1e3e4, e2e3e4) � E.

Example 3.6. Let I = (e1e2, e1e3, e1e4, e1e5, e2e3e4, e2e3e5, e2e4e5) be
a monomial ideal of E = K 〈e1, e2, e3, e4, e5〉 generated in degrees 2 and 3.
The colexsegment ideal associated to I is the ideal J = (e1e2, e1e3, e2e3, e1e4,
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e2e4e5, e3e4e5, e2e4e6) in the exterior algebra Ẽ = K 〈e1, e2, e3, e4, e5, e6〉.
We do not have enough monomials of degree 3 in E to get Construction 3.2.

For the remainder of this paper we will assume that the dimension of the
K-vector space V on which we construct the exterior algebra E is sufficiently
large to construct the colexsegment ideal.

4. Green’s Theorem for colexsegment ideals in the exterior
algebra

In this Section, we extend Theorem 1.5 in [4] to the case of the exterior
algebra. Biermann’s Theorem is an analogue of Green’s Theorem [21] for
colexsegment ideals in polynomial rings.
For any subset M ⊆ Mond(E) we denote by min(M) the smallest monomial
belonging to M with respect to the revlex order on E.
From now on, in order to shorten the notations, we will write > instead of
>revlex .
Let M be a set of monomials in E = K 〈e1, . . . , en〉. For 1 ≤ p ≤ n, define

M≤p = {u ∈M : m(u) ≤ p}, m≤p(M) = |M≤p|.

Lemma 4.1. Let M be a strongly stable set in E. Set eσ := min(M). Then
eieσ ∈ Shad(M \ {eσ}) if and only if for i /∈ supp(eσ) one has i < m(eσ).

Proof. If eieσ ∈ Shad(M \ {eσ}), i /∈ supp(eσ), then eieσ = ejeτ , where eτ ∈
M \ {eσ}. By the meaning of eσ, it follows that eτ > eσ and i < j. On the
other hand, ej divides eσ and so j ≤ m(eσ). Hence, i < m(eσ).
Conversely, let i < m(eσ), i /∈ supp(eσ). SinceM is a strongly stable set, then
eτ = (−1)α(σ,i)eieσ\{m(eσ)} ∈M \ {eσ}. Therefore, (−1)α(σ,i)eieσ = eτem(eσ) ∈
Shad(M \ {eσ}) follows. �

Proposition 4.2. Let M be a strongly stable set in E. Then

Shad(M) =
⋃

eσ∈M
{eσem(eσ)+1, . . . , eσen},

where
⋃

eσ∈M is a disjoint union.
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Proof. We proceed by induction on |M |. Let |M | = 1. SinceM = {e1e2 · · · ed},
then

Shad(M) = {e1e2 · · · eder : r = d+ 1, . . . , n}
and the assertion follows.
Let |M | > 1, and assume the assertion to be true if the cardinality is smaller
than |M |. Set eτ := min(M).
Therefore, Shad(M) = Shad({eτ})

⋃
Shad(M \ {eτ}). From Lemma 4.1, we

have that eieτ ∈ Shad(M \ {eτ}) for every i < m(eτ ), i /∈ supp(eτ ). Hence,

Shad(M) = {eτem(eτ )+1, . . . , eτen}
⋃

Shad(M \ {eτ}).

Since Shad(M \ {eτ}) is a strongly stable set [23], by the inductive hypoth-
esis, we have that

Shad(M \ {eτ}) =
⋃

eσ∈M\{eτ}
{eσem(eσ)+1, . . . , eσen},

and, as a consequence, Shad(M) =
⋃

eσ∈M{eσem(eσ)+1, . . . , eσen}.
Now we prove that the union above is disjoint. From Lemma 4.1, we have
that, if i > m(eτ ), then eieτ /∈ Shad(M \ {eτ}), whereupon

{eτem(eτ )+1, . . . , eτen}
⋂

Shad(M \ {eτ}) = ∅.

It follows that, for every eσ > eτ , we have

{eτem(eτ )+1, . . . , eτen}
⋂
{eσem(eσ)+1, . . . , eσen} = ∅.

�
As a consequence, the following corollary is obtained.

Corollary 4.3. Let I be a strongly stable ideal in E. Then for all integers
p such that t+ 1 ≤ p ≤ n with t ≥ indeg(I), we have

epMon(It)≤p =
p⋃

i=t+1

eiMon(It)≤i.

Proof. It is sufficient to observe that epMon(It)≤p = ∅, for p ≤ t. �

Remark 4.4. The previous results are the generalization in the exterior
algebra of results due to Bigatti [5] in the polynomial case (see also [2]).
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Theorem 4.5. Let I be a strongly stable ideal in E and J the colexsegment
associated to I. Then for all integers p such that t ≤ p ≤ n with t ≥ indeg(I),
we have

m≤p(Mon(It)) ≤ m≤p(Mon(Jt)).

Proof. We proceed by induction on t ≥ indeg(I).
Let d = indeg(I) = indeg(J). The sets Mon(Id)≤p and Mon(Jd)≤p consist
only of minimal generators of I and J . If u and v are monomials of the same
degree and m(u) < m(v), then u > v in the revlex order. By construction, the
minimal generators of J in degree d form a revlex segment of degree d. Hence,
since |G(I)d| = |G(J)d|, for all p ∈ {d, . . . , n}, we have the inequalities

m≤p(Mon(Id)) ≤ m≤p(Mon(Jd)).

Now suppose that m≤p(Mon(It−1)) ≤ m≤p(Mon(Jt−1)), for all p ∈ {t− 1,
. . . , n}. Let p ∈ {t, . . . , n}. The set of Mon(It)≤p contains two kinds of mono-
mials: minimal generators of I in degree t and monomials belonging to
epMon(It−1)≤p. From Corollary 4.3 and by the inductive hypothesis, we
have

|epMon(It−1)≤p| = |
p⋃

i=t

eiMon(It−1)≤i| =
p∑

i=t

m≤i(Mon(It−1)) ≤(1)

≤
p∑

i=t

m≤i(Mon(Jt−1)) = |
p⋃

i=t

eiMon(Jt−1)≤i| = |epMon(Jt−1)≤p|.

Now we focus our attention on G(I)t and G(J)t. We distinguish two cases.
(Case 1.) Let Mon(Jt)≤p = Mont(E)≤p. In this situation, it is easy to verify
that m≤p(Mon(It)) ≤ m≤p(Mon(Jt)), for all p ∈ {t, . . . , n}.
(Case 2.) Let Mon(Jt)≤p � Mont(E)≤p. From the behaviour of the revlex
order it follows that all the degree t generators of J are in the set Mon(Jt)≤p.
On the other hand, |G(I)t| = |G(J)t| and by (1), we get the desired inequal-
ities. �

Remark 4.6. The previous results point out that if R is a revlex segment
of degree d in an exterior algebra E and X is a strongly stable set of degree
d in E with the same cardinality as R, then |Shad(R)| ≥ |Shad(X)|.
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5. The colex lower bound in the exterior algebra

Let I � E be a monomial ideal generated in degree d, and J the colexsegment
ideal associated to I. We say that I satisfies the colex lower bound if βi(J) ≤
βi(I), for all i ≥ 0. In this Section we prove that the class of strongly stable
ideals generated in one degree obeys the colex lower bound.
If I � E is a strongly stable ideal generated in several degrees, then the
colexsegment ideal does not give in general a lower bound, as the following
example shows.

Example 5.1. Let E = K 〈e1, e2, e3, e4, e5〉. Denote by I a strongly stable
ideal in E generated in several degrees and by J the colexsegment ideal asso-
ciated to I.

Let I and J be the ideals described in the following table:

Strongly stable ideal Colexsegment ideal associated

I = (e1e2, e1e3e4, e1e3e5) J = (e1e2, e1e3e4, e2e3e4)
I = (e1e2, e1e3e4, e1e3e5, e1e4e5) J = (e1e2, e1e3e4, e2e3e4, e1e3e5)
I = (e1e2, e1e3, e1e4e5) J = (e1e2, e1e3, e2e3e4)
I = (e1e2, e1e3, e1e4, e1e5, e2e3e4) J = (e1e2, e1e3, e2e3, e1e4, e2e4e5)
I = (e1e2, e1e3, e1e4, e1e5, e2e3e4, e2e3e5) J = (e1e2, e1e3, e2e3, e1e4, e2e4e5, e3e4e5)
I = (e1e2, e1e3, e1e4, e1e5, e2e3, e2e4e5) J = (e1e2, e1e3, e2e3, e1e4, e2e4, e3e4e5)
I = (e1e2, e1e3, e1e4, e1e5, e2e3e4, e2e3e5) J = (e1e2, e1e3, e2e3, e1e4, e2e4e5, e3e4e5)
I = (e1e2e3, e1e2e4, e1e2e5, e1e3e4e5) J = (e1e2e3, e1e2e4, e1e3e4, e2e3e4e5)

then, βi(J) ≤ βi(I), for all i ≥ 0 [1, Corollary 3.3]. In all these cases the
colexsegment ideal J gives a lower bound for the total Betti numbers of I.

On the contrary, let I and J be the ideals described in the following table:

Strongly stable ideal Colexsegment ideal associated

I = (e1e2, e1e3, e1e4, e2e3e4) J = (e1e2, e1e3, e2e3, e1e4e5)
I = (e1e2, e1e3, e1e4, e2e3e4, e2e3e5) J = (e1e2, e1e3, e2e3, e1e4e5, e2e4e5)
I = (e1e2, e1e3, e1e4, e2e3e4, e2e3e5, e2e4e5) J = (e1e2, e1e3, e2e3, e1e4e5, e2e4e5, e3e4e5)

then, βi(J) > βi(I), for all i ≥ 0 [1, Corollary 3.3]. In all these cases J gives
an upper bound for the total Betti numbers of I.

In all other cases not included in the above tables it is βi(J) = βi(I), for
all i ≥ 0.

For a strongly stable ideal generated in one degree we state the following
result.
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Theorem 5.2. Let I � E be a strongly stable ideal generated in degree d
and J the colexsegment ideal associated to I. Then I satisfies the colex lower
bound.

Proof. Let {u1, . . . , ur} and {v1, . . . , vr} be the minimal systems of monomial
generators of I and J , respectively. We may assume that these generators
are ordered so that m(ui) ≤ m(uj) and m(vi) ≤ m(vj), for all i < j.
From [1, Corollary 3.3], since I and J are strongly stable ideals generated
in degree d, for every i ≥ 0, we get:

βi(I) = βi,i+d(I) =
∑

u∈G(I)

(
m(u) + i− 1

m(u)− 1

)

=

n∑
t=d

(
t+ i− 1

t− 1

)
|u ∈ G(I) : m(u) = t|

=

n∑
t=d

(
t+ i− 1

t− 1

)
mt(I),

and, similarly,

βi(J) = βi,i+d(J) =

n∑
t=d

(
t+ i− 1

t− 1

)
mt(J), for all i ≥ 0.

We will prove that, for all 1 ≤ j ≤ r, it is m(vj) ≤ m(uj).
Set m(ur) = k. From Theorem 4.5, m≤k(Mon(It)) ≤ m≤k(Mon(Jt)) holds
true, and the assertion follows. �

6. Colexsegment ideals which are revlex ideals

In this Section we analyze when a colexsegment ideal is a revlex ideal.
In [15], the following definition is given.

Definition 6.1. Let I = ⊕j≥0Ij be a monomial ideal in E. We say that I
is a reverse lexicographic ideal (revlex ideal, for short) if, for every j, Ij is
spanned (as K-vector space) by a revlex segment.

If I � E is a monomial ideal and J is the colexsegment ideal associated
to I, then Construction 3.2 does not guarantee that J is a revlex ideal. One
can only say that J is a strongly stable ideal in E. The reason is that the
shadow of a revlex segment of degree d needs not to be a revlex segment of
degree d+ 1 [15].
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Examples 6.2. (1). Let I = (e1e2, e1e3, e1e4e5) a monomial ideal of the
exterior algebra E = K 〈e1, e2, e3, e4, e5, e6〉 . The colexsegment ideal associ-
ated to I is J = (e1e2, e1e3, e2e3e4) � E which is not a revlex ideal. Indeed,
J3 is not generated as a K-vector space by a revlex segment of degree 3.
In fact, the monomial e1e2e6 belongs to Mon(J3), but the monomial e3e4e5,
that is greater than e1e2e6, does not belong to Mon(J3).
(2). Let I = (e1e2, e1e3, e1e4, e2e3e4) � E = K 〈e1, e2, e3, e4, e5〉. The colexseg-
ment ideal associated to I is J = (e1e2, e1e3, e2e3, e1e4e5) � E, which is a
revlex ideal.

We quote the next results from [15, 16].

Proposition 6.3. [15, Corollary 3.9] Let M = {eσ1
, . . . , eσt

} be a set of
monomials in E. Set d1 = min{deg(eσi

) : i = 1, . . . , t}, d2 = max{deg(eσi
) :

i = 1, . . . , t}, with d2 < n− 2. Then I = (M) is a revlex ideal if and only if

(1) Ij is a revlex segment for d1 ≤ j ≤ d2;

(2) en−(d2+1) · · · en−3en−2 ∈M .

Proposition 6.4. [16, Proposition 2.1] Let M be a revlex segment of degree
d < n− 2 in E. Then the following conditions are equivalent:

(a) Shad(M) is a revlex segment of degree d+ 1;

(b) |M | ≥ (
n−2
d

)
;

(c) en−(d+1) · · · en−2 ∈M .

In [16, Proposition 3.1], we have proved that a revlex ideal in an exterior
algebra is minimally generated in at most two consecutive degrees. This
fact, together with the conditions forced by Construction 3.2, justifies our
assumptions in the next result.

Proposition 6.5. Let I � E be a monomial ideal generated in degrees d1 <
d2 < n− 2, and J the colexsegment ideal associated to I. J is a revlex ideal in
E generated in degrees d1 < d2 if and only if one of the following conditions
holds true:

(i) dimK Id1
≥ (

n−2
d1

)
;

(ii) d2 = d1 + 1 and dimK Id2
≥∑n−2

r=d1

(
r
d1

)
+ c, where

c =
∣∣{v ∈Md2

: en−(d1+1) · · · en−2en−1 > v ≥ min(Shad(Mon(Id1
)))}∣∣ .
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Proof. Let J be the colexsegment ideal associated to I. Suppose J is a revlex
ideal.
(Case 1.) Let en−(d1+1) · · · en−2 ∈ G(J)d1

. Then |G(J)d1
| ≥ (

n−2
d1

)
(Propo-

sition 6.4). Since by definition dimK Id1
= |G(I)d1

| = |G(J)d1
| = dimK Jd1

,
condition (i) follows.
(Case 2.) Let en−(d1+1) · · · en−2 /∈ G(J)d1

. Since J is a revlex ideal of E and,
consequently, Jd1+1 is a revlex segment of degree d1 + 1, it follows that
en−(d1+1) · · · en−2en−1 ∈ Mon(Jd1+1). In fact, e1e2 · · · ed1

en ∈ E1Jd1
⊆ Jd1+1

and en−(d1+1) · · · en−2en−1 > e1e2 · · · ed1
en implies en−(d1+1) · · · en−2en−1 ∈

Mon(Jd1+1). Setting

w := min(Shad(Mon(Jd1
))), z := en−(d1+1) · · · en−2en−1,

consider the following sets:

A = {u ∈Md2
: u ≥ z}, B = {v ∈Md2

: z > v ≥ w}.

From Construction 3.2, dimK Id2
≥ |A|+ |B|. Since |A| = ∑n−2

r=d1

(
r
d1

)
, then

condition (ii) follows.
Conversely, suppose condition (i) holds. Since dimK Id1

= dimK Jd1
, then

the assertion follows from Proposition 6.3. In fact, from Proposition 6.4,
Shad(Mon(Jd1

)) is a revlex segment of degree d1 + 1. Hence, Mon(Jd1+1) is
a revlex segment of degree d1 + 1, too.
Suppose condition (ii) holds. Since by construction |G(I)d1+1| = |G(J)d1+1|,
therefore en−(d1+2) · · · en−2 ∈ Mon(Jd1+1). On the other hand, by construc-
tion Mon(Jd1

) is a revlex segment. Hence, J is a revlex ideal by Proposition
6.3. �

Corollary 6.6. Let I � E be a monomial ideal generated in degree d <
n− 2. Then the colexsegment ideal J � E associated to I is a revlex ideal if
and only if |G(I)| ≥ (

n−2
d

)
.
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[6] M. Boij, J. Söderberg, Betti numbers of graded modules and the Multi-
plicity Conjecture in the non-Cohen-Macaulay case, J. Algebra Number
Theory 6(3) (2009), 437–454.

[7] H. Brenner, J. Herzog, O. Villamayor. Three lectures on Commutative
algebra, University Lecture Series 42, AMS-RSME, 2008.
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