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Quasi-minuscule En Bundles and Level

One Ên Bundles over Rational Surfaces

and VOA Structures

Yunxia Chen

Abstract: In this paper, we consider a surface with only singu-
larities of type A whose smoothing is a P

2 blown up at 8 (resp.
9) points. we use lines on such smooth surface to construct all the
quasi-minuscule (resp. level one fundamental) representation bun-
dles of En (resp. affine En) over them. We also consider the vertex
operator algebra structures on these bundles.
Keywords: singularity, quasi-minuscule representation bundles,
level one fundamental representation bundles.

1. Introduction

Let Xn be a blow-up of P2 at n points and K be the canonical class. When
n ≤ 9, the sub-lattice 〈K〉⊥ of the Picard lattice is a root lattice of En (E9 =
Ê8 is the affine E8 Lie algebra). Hence we can construct the correspond-
ing En-Lie algebra bundle over Xn. Furthermore, using (possibly reducible)
(−1)-curves on Xn (those l ∈ H2(Xn,Z) satisfying l2 = l ·K = −1), we can
construct a natural representation bundle of En overXn [3][6][11][12][13][16].

Let X̃n,d be Xn together with an Ad-chain of (−2)-curves given by
γ1, · · · , γd on Xn, after contract the Ad-chain, we get a new surface
Xn,d which has a simple singularity of type Ad. When n ≤ 8, the sub-
lattice 〈γ1, · · · , γd,K〉⊥ is a root lattice of some simply-laced Lie algebra
from the magic triangle [8][9]. When n = 9 and 0 ≤ d ≤ 5, the sub-lattice
〈γ1, · · · , γd,K〉⊥ is a root lattice of Êk-type (k = 8− d), here

Ê5 = D̂5, Ê4 = Â4, Ê3 = Â1 ×A2.

Hence we can construct the corresponding (affine) Lie algebra bundle over
X̃n,d [11]. Since all the divisors corresponding to the line bundle summands
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of this Lie algebra bundle do not intersect with the Ad-chain, this Lie algebra
bundle can descend to Xn,d.

The purpose of this paper is to construct representation bundles from
the (possibly reducible) (−1)-curves on X̃n,d which have certain intersection
patterns with the Ad-chain.

In section 2, we consider n = 8 and 0 ≤ d ≤ 5, then on X̃8,d, the sub-
lattice 〈γ1, · · · , γd,K〉⊥ is a root lattice of Ek-type (k = 8− d), here

E5 = D5, E4 = A4, E3 = A1 ×A2.

Let Wk and Λk be the weight lattice and root lattice of Ek respectively, then
Wk/Λk

∼= {[w0 = 0], [w1], · · · , [wd]}, where {w1, · · · , wd} is the set of minus-
cule weights of Ek [15]. From different intersection patterns of the (−1)-
curves on X8 with the Ad-chain, we can construct all the quasi-minuscule
representation bundles of Ek over X̃8,d. The representation structures are
induced from the line configurations.

Theorem 1. (Theorem 9 and Theorem 11) Over X̃8,d with 0 ≤ d ≤ 5 and
k = 8− d, we have

(1) I(w0) := {l ∈ H2(X̃8,d,Z)|l2 = l ·K = −1, l · γ1 = · · · = l · γd = 0} is
the root system of Ek and

Lk
(w0)

:= O(−K)⊕k ⊕
⊕

l∈I(w0)

O(l)

is the adjoint representation bundle over X̃8,d.

(2) I(wi) := {l ∈ H2(X̃8,d,Z)|l2 = l ·K = −1, l · γj = δi,j for 1 ≤ j ≤ d}
for 1 ≤ i ≤ d give all the minuscule representations of Ek and

Lk
(wi)

=
⊕

l∈I(wi)

O(l)

for 1 ≤ i ≤ d are the all minuscule representation bundles of Ek over X̃8,d.

Note all these bundles described above can descend to X8,d after tensor-
ing with some line bundle, as all the divisors corresponding to the line bundle
summands of each bundle have the same intersection pattern with the Ad-
chain. In more detail, Lk

(w0)
itself can descend to X8,d, and Lk

(wi)
⊗O(−lwi

)
for any lwi

∈ I(wi) can descend to X8,d.
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In section 3, we consider n = 9 and 0 ≤ d ≤ 5, then on X̃9,d, the sub-

lattice 〈γ1, · · · , γd,K〉⊥ is a root lattice of Êk-type (k = 8− d). Similar to
n = 8 cases, we have

Theorem 2. (Theorem 16, Lemma 19 and Theorem 21) Over X̃9,d with
0 ≤ d ≤ 5 and k = 8− d, we have

(1) J(w0) := {l ∈ H2(X̃9,d,Z)|l2 = l ·K = −1, l · γ1 = · · · = l · γd = 0} is
the root lattice of Ek and

L̂k
(w0)

:= S·(
⊕
m<0

O(mK)⊕k)⊗ (
⊕

l∈J(w0)

O(l))

is the basic representation bundle of Êk over X̃9,d.

(2) J(wi) := {l ∈ H2(X̃9,d,Z)|l2 = l ·K = −1, l · γj = δi,j for 1 ≤ j ≤ d}
for 0 ≤ i ≤ d give all the level one fundamental representations of Êk and

L̂k
(wi)

:= S·(
⊕
m<0

O(mK)⊕k)⊗ (
⊕

l∈J(wi)

O(l))

for 0 ≤ i ≤ d are the all level one fundamental representation bundles of Êk

over X̃9,d.

Similar to the n = 8 cases, all above bundles can descend to X9,d after
tensor with some line bundle.

In section 4, we show that the L̂k
(w0)

has vertex operator algebra struc-

tures such that L̂k
(wi)

for 1 ≤ i ≤ d have VOA-module structures.

Theorem 3. (Theorem 24 and Theorem 25) Over X̃9,d with 0 ≤ d ≤ 5 and
k = 8− d, we have

(1) for any (−1)-curve l0 ∈ J(w0), L̂k
(w0)

(−l0) is a VOA bundle over X̃9,d.

(2) for 1 ≤ i ≤ d, L̂k
(wi)

is a representation bundle of Lk
(w0)

(−l0) over

X̃9,d.
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2. Quasi-minuscule Ek bundles over X8,d

2.1. Quasi-minuscule representations

Definition 4. A minuscule (resp. quasi-minuscule) representation of a
semi-simple Lie algebra is an irreducible representation such that the Weyl
group acts transitively on all the weights (resp. non-zero weights).

Minuscule representations are always fundamental representations and
quasi-minuscule representations are either minuscule or adjoint representa-
tions. For the simply-laced Lie algebras, their minuscule representations are
listed below:

g Miniscule representations

An = sl (n+ 1) ∧kCn+1 for k = 1, 2, · · · , n
Dn = o (2n) C2n, S+, S−

E6 C27, C27

E7 C56

Note there is no minuscule representation for E8.
The dual representation of a minuscule representation is still minuscule.

For example, for E7, the only minuscule representation C56 is self-dual; for
E6, the two minuscule representations C27 and C27 are dual to each other;
for D5, C

10 is self-dual and S+ is dual to S−; for A4, C
5 is dual to ∧4C5

and ∧2C5 is dual to ∧3C5.
Now we want to construct minuscule representations from (−1)-curves

on some particular surfaces.

Definition 5. A (−1)-curve in a surface X is a genus zero (possibly
reducible) curve l in X with l · l = −1.

Note the genus zero condition can be replaced by l ·K = −1 by the genus
formula, where K is the canonical class of X.

Let X be a surface which has divisors C1, C2, · · ·Cn whose dual graph
is an ADE Dynkin diagram of type g, i.e. the intersection matrix of these
Ci’s is a Cartan matrix of type g. Suppose Ck is one of the divisors whose
corresponding fundamental representation Vk is a minuscule representation
and we can find a (−1)-curve Ck

0 in X such that C0 · Ci = δi,k, then we

consider ICk
0
= {l = Ck

0 +
∑i=n

i=1 aiCi|l · l = −1, ai ∈ Z}.

Lemma 6. VCk
0
:= C〈ICk

0
〉 is a representation of g which is dual to Vk .
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Proof. See Proposition 21 of [2].

2.2. Quasi-minuscule E8 bundle over X8

Let X8 be the blow-up of P2 at 8 points x1, ..., x8. The Picard group
Pic(X8) ∼= H2(X8,Z) is a rank 9 lattice with generators h, l1, · · · , l8, where
h is the class of lines in P2 and li is the exceptional class of the blow-up
at xi. So h2 = 1 = −l2i and h · li = 0 = li · lj , i 
= j. Thus H2(X8,Z) ∼= Z

1,8.
The canonical class is K = −3h+ l1 + · · ·+ l8.

Denote

Λ8 = {α ∈ H2(X8,Z)|α ·K = 0}.

R8 = {α ∈ H2(X8,Z)|α ·K = 0, α2 = −2}.
It is well-known that Λ8 is a root lattice of type E8 and R8 is a root

system of type E8 with a system of simple roots α1 = l1 − l2, α2 = l2 − l3,....,
α5 = l5 − l6, α6 = h− l8 − l7 − l6, α7 = l6 − l7, α8 = l7 − l8 (see Mannin’s
book [14]). The corresponding Dynkin diagram is as follows:

� � � � � �

�

� � �

α1 α2 α4 α5 α7 α8

α6

Figure 1. The Dynkin diagram of E8

Since we have a root system of type E8 attached to X8, inspired by the
Cartan decomposition of a complex simple Lie algebra, we can construct a
Lie algebra bundle over X8 as follows:

E8 := O⊕8 ⊕
⊕
α∈R8

O(α).

We can define a fiberwise Lie algebra structure on E8 which is compatible
with any trivialization (see [2]), i.e. E8 is an E8-Lie algebra bundle over X8.

Denote

I8 = {l ∈ H2(X8,Z)|l · l = −1 = l ·K},
then all the divisors in I8 are effective (See Lemma 4 of [11]), i.e. they are
(−1)-curves in X8.
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Inspired by the bijection I8 → R8 given by l �→ l +K, we construct the
vector bundle L8 using the (−1)-curves on X8 as follows:

L8 =
⊕
l∈I8

O(l)⊕O(−K)⊕8 = E8 ⊗O(−K),

then L8 is the adjoint representation bundle, i.e. we have a globally defined
action:

E8 ⊗ L8 → L8.

Note the above action is related to the line configurations.

2.3. Quasi-minuscule Ek bundles over X8,d

In this subsection, we consider X̃8,d with 0 ≤ d ≤ 5, i.e. X8 together with an
Ad-chain given by γ1, · · · , γd ∈ R8, which means that the intersection matrix
of the γi, i = 1, · · · , d, is the negative of Cartan matrix of Ad-type. Namely,
γi · γj = −2 if |i− j| = 0; γi · γj = 1 if |i− j| = 1; γi · γj = 0 if |i− j| ≥ 2.
Let k = 8− d.

Lemma 7. The sub-lattice 〈γ1, · · · , γd,K〉⊥ is a root lattice of Ek-type and
〈K〉⊥/〈γ1, · · · , γd〉 is a weight lattice of Ek-type.

Proof. See Lemma 17 of [11].

Let Wk and Λk be the weight lattice and root lattice of Ek, then
Wk/Λk

∼= {[w0 = 0], [w1], · · · , [wd]}, where {w1, · · · , wd} is the set of minus-
cule weights of Ek. Denote I(r1,···,rd) = {l ∈ I8|l · γj = rj for j = 1, · · · , d} and
I(wi) = I(0,···,1,···0) = {l ∈ I8|l · γj = δi,j for j = 1, · · · , d}, then

Lemma 8. I(w0) +K is a root system of Ek-type.

Proof. It is directly from the bijection I8 → R8 : l �→ l +K and Lemma 7.

From the above lemma, we can construct the adjoint representation of
Ek using I(w0):

Theorem 9. V(w0) := Ck ⊕ C〈I(w0)〉 is the adjoint representation of Ek.

Now we consider other I(wi)’s.

Lemma 10. (i) For d = 1, |I(w1)| = 56;
(ii) For d = 2, |I(w1)| = |I(w2)| = 27;
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(iii) For d = 3, |I(w1)| = |I(w3)| = 16, |I(w2)| = 10;
(iv) For d = 4, |I(w1)| = |I(w4)| = 10, |I(w2)| = |I(w3)| = 5.
(v) For d = 5, |I(w1)| = |I(w5)| = 6, |I(w2)| = |I(w4)| = 3, |I(w3)| = 2.

Proof. Direct computations.

From Lemma 6, 8 and Lemma 10, we have the following result:

Theorem 11. V(wi) := C〈I(wi)〉 for 1 ≤ i ≤ d are the all minuscule repre-
sentations of Ek.

Proof. For d = 1, without loss of generality, we can assume γ1 = l7 − l8, then
〈γ1〉⊥ is the root lattice of E7, we can take {β1 = h− l1 − l7 − l8, β2 = l1 −
l2, β3 = l2 − l3, β4 = l3 − l4, β5 = h− l1 − l2 − l3, β6 = l4 − l5, β7 = l5 − l6}
as its basis. For E7, there is one minuscule representation, i.e. C56.
In the above basis {β1, · · · , β7}, the fundamental representation corre-
sponding to β1 is the minuscule representation C56. If we can find a
(−1)-curve C1

0 such that C1
0 · βj = δ1,j and C1

0 · γ1 = 1, then we have
IC1

0
= {l = C1

0 +
∑i=7

i=1 aiβi|l · l = −1, ai ∈ Z} is a subset of I(w1). More-
over, from Lemma 6 and Lemma 10, we have |IC1

0
| = |I(w1)| = 56, hence

IC1
0
= I(w1) and V(w1) = VC1

0
is the minuscule representation C56. By direct

computations, such a C1
0 exists and hence unique, C1

0 = l8. And we have
I(w1) = −2K − γ1 − I(w1), that is the representation V(w1) is self-dual.

For d = 2, 3, 4, 5, the proofs are similar. Note here for d = 5, E3 = A1 ×
A2, since A1 has one minuscule representation U and A2 has two minuscule
representations V1 and V2, we say the five representations U , V1, V2, U ⊗ V1

and U ⊗ V2 are minuscule representations of E3.

We can also use branching rules to prove the above theorem: For E8,
V := C8 ⊕ C〈l +K : l ∈ I8〉 is the E8 Lie algebra, V acts on itself by the
adjoint action. Suppose we have an Ad-chain given by {γ1, · · · , γd} for 0 ≤
d ≤ 5 , then V(w0) := Ck ⊕ C〈l +K : l ∈ I(w0)〉 is the Ek Lie algebra, where
k = 8− d. Since V(w0) is a Lie sub-algebra of V , V(w0) also acts on V and
we can decompose V as sum of irreducible representations of V(w0). From
the adjoint action of V on V itself, we know V(w0) maps V(wi) to V(wi) for
any i ∈ [1, d], i.e. V(wi) is a representation of V(w0). From the branching rule
of E8 to Ek and Lemma 10, we know V(wi) for any i ∈ [1, d] is a minuscule
representation of V(w0). For these minuscule representations, if two of them
have the same dimension, then we can show that they are dual to each other.
Hence, V(wi) for 1 ≤ i ≤ d are the all minuscule representations of Ek.
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Over X̃8,d with 0 ≤ d ≤ 5 and k = 8− d, we have

Ek := O⊕k ⊕
⊕

l∈I(w0)

O(l +K)

is the Ek-Lie algebra bundle and

Lk
(wi)

=
⊕

l∈I(wi)

O(l)

for 1 ≤ i ≤ d are the all minuscule representation bundles of Ek, i.e. we have
a globally defined action:

Ek ⊗ Lk
(wi)

→ Lk
(wi)

.

The reason is that all these bundles are sub-bundles of E8 or L8, and all the
actions are induced from E8 ⊗ L8 → L8.

Note that the Ad singularity is a rational singularity, hence a vector
bundle over X̃8,d can descend to X8,d if and only if its restriction to the
Ad-chain is trivial [6]. In our cases, all these bundles described above can
descend to X8,d after tensoring with some line bundle, as all the divisors
corresponding to the line bundle summands of each bundle have the same
intersection pattern with the Ad-chain.

3. Level one Êk bundles over X9,d

3.1. Level one fundamental representations

In this subsection, we give a brief review of level one fundamental represen-
tations of affine ADE Lie algebras. For more details, please refer to Frenkel
and Kac’s paper [4][5] and Tsukada’s book [15].

Let’s first recall the definition of the affine Lie algebra ĝ associated with
a complex finite dimensional simple Lie algebra g. Let h be the Cartan sub-
algebra of g, Λ be the root lattice in h∗. Let 〈, 〉 denote the killing form on
g, normalized in such a way that the square length of a long root is 2. We
identify h∗ and h by the form 〈, 〉. The affine Lie algebra ĝ is the complex
vector space:

ĝ = g⊗C[t, t−1]⊕ C〈c〉
provided with the bracket

[xtn + λc, ytm + μc] := [x, y]0t
n+m + nδn+m,0〈x, y〉c,
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where x, y ∈ g, [, ]0 denotes the Lie bracket induced from g, λ, μ ∈ C [10].
We will give the explicit construction of all the level one fundamental rep-
resentations of affine ADE Lie algebra without proof.

We define

VΛ = S·(s−)⊗C(Λ),

VW = S·(s−)⊗C(W ),

V(w) = S·(s−)⊗C(Λ + w),

where s− = t−1C[t−1]⊗ h, S·(s−) is the symmetric algebra of the space s−,
C(Λ) is the group algebra of the lattice Λ, W is the dual lattice of Λ, i.e. the
weight lattice, and w ∈W/Λ. If we fix representing elements w0, · · ·wk of
W/Λ (we set w0 = 0 and take {w1, · · ·wk} as the set of minuscule weights),
then

VW
∼= V(w0) ⊕ · · · ⊕ V(wk).

We define a grading on VW with the degree defined as:

deg(h−n1

1 h−n2

2 · · ·h−nN

N eα) := n1 + n2 + · · ·+ nN +
〈α, α〉

2
.

In particular, the subspace VΛ is graded by Z and we have

VΛ =

n=∞∑
n=0

Vn, Vn = {v ∈ VΛ| deg(v) = n}.

For every element v ∈ VΛ and z ∈ C− {0}, we can define the vertex
operator

Y (v, z) : VW → V ∗
W ,

where V ∗
W is the algebraic dual of VW . However, developing this operator by

power of z we obtain:

Y (v, z) =
∑
n∈Z

v(n)z−n,

where each v(n) maps VW into itself.
Define a product [u, v] = u(0) · v on the degree=1 subspace V1, then V1

is the Lie algebra g. The affine Lie algebra ĝ = g⊗C[t, t−1]⊕ C〈c〉 acts on
VW via the vertex operators: π(u⊗ tn) = u(n) and π(c) = Id. Each V(w) is
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irreducible under this action. Since we have

{minuscule weights} ∪ {0} ∼= W/Λ,

it follows that {V(w)|w ∈W/Λ} is the set of all level one fundamental rep-
resentations of ĝ. In particular, V(w0) = VΛ is the basic representation of
ĝ.

Remark 12. Level k representation means the center c acts as kId. Note
c =

∑i=r
i=0 nihi for some integers ni’s, where ni = 1 if and only if the cor-

responding base root Ci can be treated as the extended root, if and only if
the fundamental representation of the corresponding finite Lie algebra cor-
responding to Ci is minuscule. Hence, we have the correspondence between
the minuscule weights and the level one fundamental representations.

3.2. Basic representation bundle over X9

Let X9 be the blow-up of P2 at 9 points x1, ..., x9. The Picard group
Pic(X9) ∼= H2(X9,Z) is a rank 10 lattice with generators h, l1, · · · , l9, where
h is the class of lines in P2 and li is the exceptional class of the blowup at xi.
So h2 = 1 = −l2i and h · li = 0 = li · lj , i 
= j. Thus H2(Xn,Z) ∼= Z

1,9. The
canonical class is K = −3h+ l1 + · · ·+ l9.

Denote R9 as before, i.e.

R9 = {α ∈ H2(X9,Z)|α ·K = 0, α2 = −2}.

It is well-known that the set R9 ∪ {m(−K)|m 
= 0,m ∈ Z} forms a root
system of (untwisted) affine E8-type (that is, Ê8 type), with real roots
Δre = R9 and imaginary roots Δim = {m(−K)|m 
= 0,m ∈ Z} [7][10][11].
Here the system of simple roots of R9 is {α1 = l1 − l2, α2 = l2 − l3, ...., α6 =
l6 − l7, α7 = h− l9 − l8 − l7, α8 = l7 − l8, α9 = l8 − l9}.

Inspired by this, we can construct the Ê8-bundle E9 over X9 as follows:

E9 := (O⊕8 ⊕O)⊕
⊕

α∈Δre

O(α)⊕
⊕

β∈Δim

O(β)⊕8.

We can define a fiberwise affine Lie algebra structure on E9 which is com-
patible with any trivialization (see [11]), i.e. E9 is an Ê8-bundle over X9.
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Denote

I9 = {l ∈ H2(X9,Z)|l · l = −1 = l ·K},
then I9 is an infinite set and all the divisors in I9 are effective (See Lemma
5 of [11]), i.e. they are (−1)-curves in X9.

From the above subsection, to construct the basic representation of Ê8,
we need to find the E8 root lattice Λ8.

Lemma 13. Fixing any l0 ∈ I9, Λ8
∼= 〈K, l0〉⊥ ⊂ H2(X9,Z).

Proof. Fix any l0 ∈ I9, if we contract this l0, then we will get X8. Over this
X8, we know 〈K〉⊥ is a root lattice of E8 type. But now 〈K〉⊥ is the same
with 〈K, l0〉⊥, hence Λ8

∼= 〈K, l0〉⊥.

The relationship between I9 and Λ8 is given by the following lemma.

Lemma 14. Fixing any l0 ∈ I9, there is a bijection between I9 and Λ8.

Proof. Define f : I9 → Λ8 by l �→ l − l0 + (1 + l · l0)K. It is obvious that f
is injective. For any α ∈ Λ8, we have (α+ l0 +

α2

2 K) ∈ I9 and f(α+ l0 +
α2

2 K) = α. Hence f is also surjective.

Linearly extending this f in the above lemma to C〈I9〉 → C〈Λ8〉, then
we have a bijection between C〈I9〉 and C〈Λ8〉. Inspired by the above lemmas,
we construct a bundle L9 over X9 as follows:

L9 := S·(
⊕
m<0

O(mK)⊕8)⊗ (
⊕
l∈I9

O(l)).

Compare the definition of the basic representation and the vector bundle
L9, we know each fiber L9 of L9 is a basic representation of Ê8 under the
following action:

ρ : Ê8 × L9 → L9,

ρ(x, v) := (id⊗ f−1) ◦ π(x, (id⊗ f) · v).
Note that we will sometimes write ρ(x, v) as ρ(x) · v, and similarly for π.

Take a trivialization open subset U for both E9 and L9,then we have the
action

ρU : E9|U × L9|U → L9|U
induced from ρ : Ê8 × L9 → L9.
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Lemma 15. ρU : E9|U × L9|U → L9|U satisfies OU (x)×OU (v)→⊕OU (x+ v) for any direct summand O(x) of E9 and O(v) of L9.

Proof. See Lemma 7 of [1].

From the above lemma and the relationship between the transition func-
tions of these direct summand line bundles, we know that the fiberwise action
ρ is compatible with any trivialization of E9 and L9, i.e.

Theorem 16. L9 is the basic representation bundle of Ê8 over X9.

Remark 17. Note that if we use the root lattice Λ8 instead of I9 to con-
struct the bundle, i.e.

V := S·(
⊕
m<0

O(mK)⊕8)⊗ (
⊕
α∈Λ8

O(α)),

though each fiber of V is a basic representation of Ê8, the fiberwise action is
not compatible with different trivializations of E9 and V.

3.3. Level one Êk bundles over X9,d

In this subsection, we consider X̃9,d with 0 ≤ d ≤ 5, i.e. X9 together with
an Ad-chain given by γ1, · · · , γd ∈ R8. Let k = 8− d.

Lemma 18. The sub-lattice Λ(Êk) := 〈γ1, · · · , γd,K〉⊥ is a root lattice of
Êk-type (k = 8− d) with the real root system Δre

k = {α ∈ Λ(Êk)|α2 = −2}
and the imaginary roots Δim

k = {m(−K)|m 
= 0,m ∈ Z}.
Proof. See Theorem 20 of [11].

Since Λ8
∼= 〈K, l0〉⊥ ∼= W8 for any fixed l0 ∈ I9, we have the root lat-

tice of Ek is Λk
∼= 〈K, l0, γ1, · · · , γd〉⊥ and the weight lattice of Ek is Wk

∼=
〈K, l0〉⊥ /〈γ1, · · · , γd〉. Then Wk/Λk

∼= {[w0 = 0], [w1], · · · , [wd]}, where we
can take {w1, · · · , wd} as the set of minuscule weights of Ek. Denote
J(r1,···,rd) = {l ∈ I9|l · γj = rj for j = 1, · · · , d} and J(wi) = J(0,···,1,···0) = {l ∈
I9|l · γj = δi,j for j = 1, · · · , d}, then

Lemma 19. J(w0)
∼= Λk.

Proof. It is directly obtained from Lemma 14.
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From the above lemma, we can construct the basic representation of Ek

using I(w0). Now we consider the other I(wi)’s. Under the same map from
J(w0) to Λk, we have an isomorphism between J(w) = {l ∈ I9|l · γj = w · γj
for j = 1, · · · , d} and Λk + w for any w ∈ 〈K, l0〉⊥.

Lemma 20. (i)d = 1, [w] = [w′] ∈W7/Λ7 ⇔ w · γ1 ≡ w′ · γ1 mod 2;
(ii)d = 2, [w] = [w′] ∈W6/Λ6 ⇔ w · (γ1 + 2γ2) ≡ w′ · (γ1 + 2γ2) mod 3;
(iii)d = 3, [w] = [w′] ∈W5/Λ5 ⇔ w · (γ1 + 2γ2 + 3γ3) ≡ w′ · (γ1 +

2γ2 + 3γ3) mod 4;
(iv)d = 4, [w] = [w′] ∈W4/Λ4 ⇔ w · (γ1 + 2γ2 + 3γ3 + 4γ4) ≡ w′ · (γ1 +

2γ2 + 3γ3 + 4γ4) mod 5.
(v)d = 5, [w] = [w′] ∈W3/Λ3 ⇔ w · (γ1 + 2γ2 + 3γ3 + 4γ4 + 5γ5) ≡ w′ ·

(γ1 + 2γ2 + 3γ3 + 4γ4 + 5γ5) mod 6.

Proof. (i) Since γ21 = −2, we have for any [w], [w′] ∈W7 with w,w′ ∈
〈K, l0〉⊥, if [w] = [w′] in W7, then w · γ1 ≡ w′ · γ1 mod 2. Consider W7/Λ7,
for any [w], [w′] ∈W7/Λ7, if [w] = [w′] inW7/Λ7, then [w] = [w′ +

∑i=7
i=1 aiβi]

in W7, where {β1, · · · , β7} is a basis of Λ7 and ai’s are some integers.
Hence w · γ1 ≡ (w′ +

∑i=7
i=1 aiβi) · γ1 mod 2, that is w · γ1 ≡ w′ · γ1 mod

2. Conversely, for any w,w′ ∈ 〈K, l0〉⊥, if w · γ1 ≡ w′ · γ1 mod 2, then
(w − w′ + aγ1) · γ1 = 0 for some integer a, that means w − w′ + aγ1 ∈ Λ7,
hence [w] = [w′] in W7/Λ7.

The proofs of (ii), (iii), (iv) and (v) are similar to (i).

From the above lemma, we have the following result.

Theorem 21. We can take [w0 = 0], [w1], · · · , [wd] ∈Wk/Λk such that
Wk/Λk

∼= {[w0], [w1], · · · , [wd]} and wi · γj = δi,j for every 0 ≤ i ≤ d.

Proof. For any (r1, · · · , rd) ∈ Zd, we can find w ∈ 〈K, l0〉⊥ such that w · γi =
ri. Together with Lemma 20, we have the results.

For the computation of {[0], [w1], · · · , [wd]}, we can first take wi’s as the
minuscule weights of Ek, then adjust them using

∑j=d
j=1 ajγj to get wi · γj =

δi,j .

Over X̃9,d with 0 ≤ d ≤ 5 and k = 8− d, we have

Êk := (O⊕k ⊕O)⊕
⊕

α∈Δre
k

O(α)⊕
⊕

β∈Δim
k

O(β)⊕k.
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is the Êk-Lie algebra bundle and

L̂k
(wi)

:= S·(
⊕
m<0

O(mK)⊕k)⊗ (
⊕

l∈J(wi)

O(l))

for 0 ≤ i ≤ d are the all level one fundamental representation bundles of Êk,
i.e. we have a globally defined action:

Êk ⊗ L̂k
(wi)

→ L̂k
(wi)

.

The reason is that all these bundles are sub-bundles of E9 or L9, and all the
actions are induced from E9 ⊗ L9 → L9. In particular, L̂k

(w0)
is the basic rep-

resentation bundle of Êk over X̃9,d. Note that all these bundles can descend
to X9,d.

4. Vertex operator algebra structures

It is well-known that the basic representations of affine Lie algebras admit
vertex operator algebra structures [15][17], i.e. the basic representation V of
Êk together with the vertex operators Y (v, z) is a VOA.

Fix any l0 ∈ I9, we define a vector bundle L9(−l0) over X9 as follows:

L9(−l0) := S·(
⊕
m<0

O(mK)⊕8)⊗ (
⊕
l∈I9

O(l − l0)),

i.e. L9(−l0)= L9⊗O(−l0). We know that each fiber of L9(−l0) admits a
VOA structure (through the map f : I9 → Λ8) [1].

For any trivialization open subset U of L9(−l0), we have a linear map

L9(−l0)|U × L9(−l0)|U →
⊕
n

L9(−l0)|U ⊗OU (nK)

(here we view zn as a section of OU (nK)) induced from the vertex operator
Y : V ⊗ V → V ((z)).

Lemma 22. ([1]) L9(−l0)|U × L9(−l0)|U →
⊕

n L9(−l0)|U ⊗OU (nK) sat-
isfies OU (x)×OU (y)→

⊕OU (x+ y) for any two direct summands O(x)
and O(y) of L9(−l0).

From the above lemma and the relationship between the transition func-
tions of these direct summand line bundles, we know that the fiberwise VOA
structure on L9(−l0) is compatible with any trivialization of L9(−l0), i.e.
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Theorem 23. ([1]) L9(−l0) is a vertex operator algebra bundle over X9.

When X9 admits an Ad-chain with 0 ≤ d ≤ 5, i.e. X9 = X̃9,d, fixing any

l0 ∈ J(w0), L̂k
(w0)

(−l0) ⊂ L9(−l0) is a VOA sub-bundle where k = 8− d, i.e.

Theorem 24. L̂k
(w0)

(−l0) is a vertex operator algebra bundle over X̃9,d.

For all the other level one fundamental representations, they are irre-
ducible representations of the corresponding vertex operator algebra. Since
we have a globally defined action

L̂k
(w0)

(−l0)⊗ L̂k
(wi)

→
⊕
n

L̂k
(wi)

⊗O(nK)

induced from

L9(−l0)× L9(−l0)→
⊕
n

L9(−l0)⊗O(nK),

we have

Theorem 25. L̂k
(wi)

for 1 ≤ i ≤ d are the VOA representation bundles over

X̃9,d.

Note that all above bundles can descend to X9,d.
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