Realizing Enveloping Algebras via Moduli Stacks

Liqian Bai and Fan Xu

Abstract: Let $CF(Dbi_A)$ denote the vector space of Q-valued constructible functions on a given stack $\mathfrak{Ob}j_{\mathcal{A}}$ for an abelian category A. In [12], Joyce proved that $CF(D\mathfrak{bi}_{\mathcal{A}})$ is an associative Q-algebra via the convolution multiplication and the subspace $CF^{ind}(\mathfrak{Ob}j_{\mathcal{A}})$ of constructible functions supported on indecomposables is a Lie subalgebra of $CF(Dbi_A)$. In this paper, we extend Joyce's result to an exact category A and show that there is a subalgebra $CF^{KS}(\mathfrak{Ob}_{\mathfrak{Z},A})$ of $CF(\mathfrak{Ob}_{\mathfrak{Z},A})$ isomorphic to the universal enveloping algebra of $CF^{ind}(\mathfrak{Ob}^i_A)$. Moreover we construct a comultiplication on $CF^{KS}(\mathfrak{Ob}j_{\mathcal{A}})$ and a degenerate form of Green's theorem. This refines Joyce's result, as well as results of [4]. **Keywords:** Hall algebra; stack; constructible set; universal enveloping algebra.

1. Introduction

Let Λ be a finite dimensional $\mathbb C$ -algebra such that it is a representation-finite algebra, i.e., there are finitely many finite dimensional indecomposable Λmodules up to isomorphism. Let $\mathcal{I}(\Lambda) = \{X_1, \ldots, X_n\}$ be a set of representatives. Let $\mathcal{P}(\Lambda)$ be a set of representatives for all isomorphism classes of Λ -modules. There is a free Z-module $R(\Lambda)$ with a basis $\{u_X \mid X \in \mathcal{P}(\Lambda)\}.$ Using the Euler characteristic, $\mathcal{P}(\Lambda)$ can be endowed with a multiplicative structure (see [24] and [15]). The multiplication is defined by

$$
u_X \cdot u_Y = \sum_{A \in \mathcal{P}(\Lambda)} \chi(V(X, Y; A)) u_A,
$$

where $V(X, Y; A) = \{0 \subseteq A_1 \subseteq A \mid A_1 \cong X, A/A_1 \cong Y\}$ and $\chi(V(X, Y; A))$ is the Euler characteristic of $V(X, Y; A)$. Thus $(R(\Lambda), +, \cdot)$ is a Z-algebra with identity u_0 . Let $L(\Lambda)$ be the submodule of $R(\Lambda)$ which is spanned by

Received November 2, 2015.

The research was supported by NSF of China (No. 11471177).

 $\{u_X \mid X \in I(\Lambda)\}\.$ It follows that $L(\Lambda)$ is a Lie subalgebra of $R(\Lambda)$ with the Lie bracket $[u_X, u_Y] = u_X \cdot u_Y - u_Y \cdot u_X$. Riedtmann studied the universal enveloping algebra of $L(\Lambda)$. Let $R(\Lambda)'$ be the subalgebra of $R(\Lambda)$ generated by $\{u_X \mid X \in \mathcal{I}(\Lambda)\}\$. Riedtmann showed that $R(\Lambda)'$ is isomorphic to the universal enveloping algebra of $L(\Lambda)$. These results have been generalized in two ways.

Joyce generalized Riedtmann's work in the context of constructible functions (also stack functions) over moduli stacks. In [11], Joyce defined the Euler characteristics of constructible sets in K-stacks, pushforwards and pullbacks for constructible functions, where K is an algebraically closed field. Let A be an abelian category and $CF(Dbj_A)$ the vector space of Q-valued constructible functions on $\mathfrak{D}bj_{\mathcal{A}}(\mathbb{K})$, where $\mathfrak{D}bj_{\mathcal{A}}$ is the moduli stack of objects in A and $\mathfrak{Ob}(\mathfrak{g}_A(\mathbb{K}))$ the collection of isomorphism classes of objects in A. Joyce proved that $CF(Db_i)$ is an associative Q-algebra. The algebra $CF(\mathfrak{Ob}_{\mathfrak{Z}})$ can be viewed as a variant of the Ringel-Hall algebra. Let $CF^{ind}(\mathfrak{D}bj_{\mathcal{A}})$ be the subspace of $CF(\mathfrak{D}bj_{\mathcal{A}})$ satisfying the condition that $f([X]) \neq 0$ implies X is an indecomposable object in A for every $f \in CF^{\text{ind}}(\mathfrak{Ob}j_{\mathcal{A}})$. Then $CF^{\text{ind}}(\mathfrak{Ob}j_{\mathcal{A}})$ is shown to be a Lie subalgebra of $CF(\mathfrak{Ob}_{\mathfrak{J}\mathcal{A}})$ ([12, Theorem 4.9]). Let $CF_{fin}(\mathfrak{Ob}_{\mathfrak{J}\mathcal{A}})$ be the subspace of $CF(\mathfrak{Ob}(\mathfrak{z})$ such that

$$
supp(f) = \big\{ [X] \in \mathfrak{Obj}_{\mathcal{A}}(\mathbb{K}) \mid f([X]) \neq 0 \big\}
$$

is a finite set for every $f \in \mathrm{CF}_{fin}(\mathfrak{Ob}j_{\mathcal{A}})$. Let

$$
\operatorname{CF}_{\operatorname{fin}}^{\operatorname{ind}}(\mathfrak{Obj}_{\mathcal{A}})=\operatorname{CF}_{\operatorname{fin}}(\mathfrak{Obj}_{\mathcal{A}})\cap \operatorname{CF}^{\operatorname{ind}}(\mathfrak{Obj}_{\mathcal{A}}).
$$

Assume that a conflation $X \to Y \to Z$ in A implies that the number of isomorphism classes of Y is finite for all $X, Z \in Obj(A)$. With the assumption, Joyce proved that $CF_{fin}(\mathfrak{Ob}j_{\mathcal{A}})$ is an associative algebra and $CF_{fin}^{ind}(\mathfrak{Ob}j_{\mathcal{A}})$ a Lie subalgebra of $CF_{fin}(\mathfrak{Ob}j_{\mathcal{A}})$. It follows that $CF_{fin}(\mathfrak{Ob}j_{\mathcal{A}})$ is isomorphic to the universal enveloping algebra of $CF_{fin}^{ind}(\mathfrak{Ob}_{\mathfrak{Z},A})$. Joyce defined a comultiplication on $CF_{fin}(\mathfrak{Ob}j_{\mathcal{A}})$ and proved that $CF_{fin}(\mathfrak{Ob}j_{\mathcal{A}})$ is a bialgebra.

In [4], the authors extended Riedtmann's results to algebras of representation-infinite type, i.e., the cardinality of isomorphism classes of indecomposable finite dimensional Λ -modules is infinite. Let $R(\Lambda)$ be the \mathbb{Z} -module spanned by $1_{\mathcal{O}}$, where $1_{\mathcal{O}}$ is the characteristic function over a constructible set of stratified Krull-Schmidt \mathcal{O} (see [4, Section 3]). The subspace $L(\Lambda)$ of $R(\Lambda)$ is spanned by $1_{\mathcal{O}}$, where $\mathcal O$ are indecomposable constructible

sets. The multiplication is defined by

$$
1_{\mathcal{O}_1} \cdot 1_{\mathcal{O}_2}(X) = \chi(V(\mathcal{O}_1, \mathcal{O}_2; X)),
$$

where X is a Λ -module. Then $R(\Lambda)$ is an associative algebra with identity 1_0 and $L(\Lambda)$ a Lie subalgebra of $R(\Lambda)$ with Lie bracket. The algebra $R(\Lambda)$ ⊗ $\mathbb Q$ is the universal enveloping algebra of $L(\Lambda) \otimes \mathbb Q$. The authors gave the degenerate form of Green's theorem and established the comultiplication of $R(\Lambda)$ in [4].

The goal of this paper is to explicitly construct the enveloping algebra of $CF^{ind}(\mathfrak{Ob}j_{\mathcal{A}})$ by the methods in [4]. Let $\mathcal A$ be an exact category satisfying some properties. Let $X \xrightarrow{f} Y \xrightarrow{g} Z$ be a conflation in A and Aut $(X \xrightarrow{f} Y \xrightarrow{g} Z)$ Z) the automorphism group of $X \xrightarrow{f} Y \xrightarrow{g} Z$. The key idea in [4] is that $V(X, Y; L)$ has the same Euler characteristic as its fixed point set under the action of C∗. In this paper, we consider exact categories instead of categories of modules. Then as a substitute of the action of \mathbb{C}^* , we analyze the action of a maximal torus of $\text{Aut}(X \xrightarrow{f} Y \xrightarrow{g} Z)$ on $X \xrightarrow{f} Y \xrightarrow{g} Z$. The universal enveloping algebra of $CF^{\text{ind}}(\mathfrak{Ob}^{\dagger}_{A})$ can be endowed with a comultiplication structure (Definition 4.1). It is compatible with multiplication (Theorem 4.6). The compatibility can be viewed as the degenerate form of Green's theorem on Ringel-Hall algebras (see [5] or [22]).

The paper is organized as follows. In Section 2 we recall the basic concepts about stacks, constructible sets and constructible functions. In Section 3 we define the constructible sets of stratified Krull-Schmidt. We study the the subspace $CF^{KS}(\mathfrak{Ob}_{A})$ of $CF(\mathfrak{Ob}_{A})$ generated by characteristic functions supported on constructible sets of stratified Krull-Schmidt. Then $CF^{KS}(\mathfrak{Ob}^{\dagger}_{\mathcal{A}})$ provides a realization of the universal enveloping algebra of $CF^{ind}(\mathfrak{Ob}^i_A)$. In Section 4 we give the comultiplication Δ in $CF^{KS}(\mathfrak{Ob}^i_A)$ and prove that Δ is an algebra homomorphism.

2. Preliminaries

2.1. Constructible sets and constructible functions

From now on, let K be an algebraically closed field with characteristic zero. A good introduction to algebraic stacks and 2-categories is [6]. We recall the definitions of constructible sets and constructible functions on K-stacks. These definitions are taken from [11].

Definition 2.1. Let F be a K-stack. Let $\mathcal{F}(\mathbb{K})$ denote the set of 2isomorphism classes [x] where $x : \text{Spec } \mathbb{K} \to \mathcal{F}$ are 1-morphisms. Every element of $\mathcal{F}(\mathbb{K})$ is called a geometric point (or \mathbb{K} -point) of \mathcal{F} . For \mathbb{K} -stacks \mathcal{F} and G, let $\phi : \mathcal{F} \to \mathcal{G}$ be a 1-morphism of K-stacks. Then ϕ induces a map $\phi_* : \mathcal{F}(\mathbb{K}) \to \mathcal{G}(\mathbb{K})$ by $[x] \mapsto [\phi \circ x]$.

For any $[x] \in \mathcal{F}(\mathbb{K})$, let Iso $\mathbb{K}(x)$ denote the group of 2-isomorphisms $x \to$ x which is called a stabilizer group. For ease of notations, $\text{Iso}_{\mathbb{K}}(x)$ is used to denote the group instead of $\text{Iso}_{\mathbb{K}}([x])$. If $\text{Iso}_{\mathbb{K}}(x)$ is an affine algebraic Kgroup for each $[x] \in \mathcal{F}(\mathbb{K})$, then we say F with affine geometric stabilizers. A morphism of algebraic K-groups $\phi_x : \text{Iso}_{\mathbb{K}}(x) \to \text{Iso}_{\mathbb{K}}(\phi_*(x))$ is induced by $\phi : \mathcal{F} \to \mathcal{G}$ for each $[x] \in \mathcal{F}(\mathbb{K})$.

A subset $\mathcal{O} \subseteq \mathcal{F}(\mathbb{K})$ is called a constructible set if $\mathcal{O} = \amalg_{i=1}^n \mathcal{F}_i(\mathbb{K})$ for some $n \in \mathbb{N}^+$, where every \mathcal{F}_i is a finite type algebraic K-substack of \mathcal{F} . A subset $S \subseteq \mathcal{F}(\mathbb{K})$ is called a locally constructible set if $S \cap \mathcal{O}$ are constructible for all constructible subsets $\mathcal{O} \subseteq \mathcal{F}(\mathbb{K})$. If \mathcal{O}_1 and \mathcal{O}_2 are constructible sets, then $\mathcal{O}_1 \cup \mathcal{O}_2$, $\mathcal{O}_1 \cap \mathcal{O}_2$ and $\mathcal{O}_1 \setminus \mathcal{O}_2$ are constructible sets by [11, Lemma 2.4].

Let $\Phi : \mathcal{F}(\mathbb{K}) \to \mathcal{G}(\mathbb{K})$ be a map. The set $\Gamma_{\Phi} = \{(x, \Phi(x)) \mid x \in \mathcal{F}(\mathbb{K})\}$ is called the graph of Φ . Recall that Φ is a pseudomorphism if $\Gamma_{\Phi} \bigcap (\mathcal{O} \times \mathcal{G}(\mathbb{K}))$ are constructible for all constructible subsets $\mathcal{O} \subseteq \mathcal{F}(\mathbb{K})$. By [11, Proposition 4.6], if $\phi : \mathcal{F} \to \mathcal{G}$ is a 1-morphism then ϕ_* is a pseudomorphism, $\Phi(\mathcal{O})$ and $\Phi^{-1}(y) \cap \mathcal{O}$ are constructible sets for all constructible subset $\mathcal{O} \subseteq \mathcal{F}(\mathbb{K})$ and $y \in \mathcal{G}(\mathbb{K})$. If Φ is a bijection and Φ^{-1} is also a pseudomorphism, we call Φ a pseudoisomorphism.

Then we will recall the definition of the naïve Euler characteristic of a constructible subset of $\mathcal{F}(\mathbb{K})$ in [11].

There is a useful result due to Rosenlicht [23].

Theorem 2.2. Let G be an algebraic \mathbb{K} -group acting on a \mathbb{K} -variety X. There exist an open dense G-invariant subset $X_1 \subseteq X$ and a K-variety Y such that there is a morphism of varieties $\phi: X_1 \to Y$ which induces a bijection form $X_1(\mathbb{K})/G$ to $Y(\mathbb{K})$.

Let X be a separated K-scheme of finite type, the Euler characteristic $\chi(X)$ of X is defined by

$$
\chi(X) = \sum_{i=0}^{2 \dim X} (-1)^i \dim_{\mathbb{Q}_p} H_{\text{cs}}^i(X, \mathbb{Q}_p),
$$

where p is a prime number, $\mathbb{Z}_p = \lim \mathbb{Z}/p^r\mathbb{Z}$ is the ring of p-adic integers, \mathbb{Q}_p is its field of fractions and $H_{cs}^{i}(X,\mathbb{Q}_p)$ are the compactly-supported p-adic cohomology groups of X for $i \geq 0$.

The following properties of Euler characteristic follow [4] and [11].

Proposition 2.3. Let X, Y be separated, finite type \mathbb{K} -schemes and φ : $X \rightarrow Y$ a morphism of schemes. Then:

(1) If Z is a closed subscheme of X, then $\chi(X) = \chi(X \setminus Z) + \chi(Z)$.

(2) $\chi(X \times Y) = \chi(X) \times \chi(Y)$.

(3) Let X be a disjoint union of finitely many subschemes X_1, \ldots, X_n , we have

$$
\chi(X) = \sum_{i=1}^{n} \chi(X_i).
$$

(4) If φ is a locally trivial fibration with fibre F, then $\chi(X) = \chi(F)$. $\chi(Y)$.

 $(5) \chi(\mathbb{K}^n) = 1, \chi(\mathbb{K}\mathbb{P}^n) = n + 1$ for all $n \geq 0$.

An algebraic K-stack $\mathcal F$ is said to be stratified by global quotient stacks if $\mathcal{F}(\mathbb{K}) = \amalg_{i=1}^s \mathcal{F}_i(\mathbb{K})$ for finitely many locally closed substacks \mathcal{F}_i where each \mathcal{F}_i is 1-isomorphic to a quotient stack $[X_i/G_i]$, where X_i is an algebraic Kvariety and G_i a smooth connected linear algebraic K-group acting on X_i . By [14, Propostion 3.5.9], if $\mathcal F$ is a finite type algebraic K-stack with affine geometric stabilizers, then $\mathcal F$ is stratified by global quotient stacks.

Let $\mathcal{F} = \amalg_{i=1}^s \mathcal{F}_i(\mathbb{K})$ where each $\mathcal{F}_i \cong [X_i/G_i]$ as above. By Theorem 2.2, there exists an open dense G_i -invariant subvariety X_{i1} of X_i for each i such that there exists a morphism of varieties $\phi_{i1}: X_{i1} \to Y_{i1}$, which induces a bijection between $X_{i1}(\mathbb{K})/G_i$ and $Y_{i1}(\mathbb{K})$. Then ϕ_{i1} induces a 1-morphism θ_{i1} : $\mathcal{G}_{i1} \rightarrow Y_{i1}$, where \mathcal{G}_{i1} is 1-isomorphic to $[X_{i1}/G_i]$. Note that

$$
\dim(X_{i(j-1)} \setminus X_{ij}) < \dim X_{i(j-1)}
$$

for $j = 1, \ldots, k_i$. Using Theorem 2.2 again, we get a stratification

$$
\mathcal{F}(\mathbb{K}) = \amalg_{i=1}^s \amalg_{j=1}^{k_i} \mathcal{G}_{ij}(\mathbb{K})
$$

for $s, k_i \in \mathbb{N}^+$, where $\mathcal{G}_{ij} \cong [X_{ij}/G_i]$ such that $\phi_{ij} : X_{ij} \to Y_{ij}$ is a morphism of K-varieties and $\theta_{ij}: \mathcal{G}_{ij} \to Y_{ij}$ a 1-morphism induced by ϕ_{ij} . Let

$$
Y = \amalg_{i=1}^{s} \amalg_{j=1}^{k_i} Y_{ij}
$$
 and $\Theta = \amalg_{i=1}^{s} \amalg_{j=1}^{k_i} (\theta_{ij})_* : \mathcal{F}(\mathbb{K}) \to Y(\mathbb{K}).$

Then Y is a a separated K-scheme of finite type and Θ a pseudoisomorphism (see [11, Proposition 4.4 and Proposition 4.7]).

Definition 2.4. Let $\mathcal F$ be an algebraic K-stack with affine geometric stabilizers and $\mathcal{C} \subseteq \mathcal{F}(\mathbb{K})$ a constructible set. Then C is pseudoisomorphic to $Y(\mathbb{K})$, where Y is a separated K-scheme of finite type by [11, Proposition 4.7]. The naïve Euler characteristic of C is defined by $\chi^{\text{na}}(\mathcal{C}) = \chi(Y)$.

The following lemma is a generalization of Proposition 2.3 (4).

Lemma 2.5. Let F and G be algebraic K -stacks with affine geometric stabilizers. If $\mathcal{C}\subset\mathcal{F}(\mathbb{K})$, $\mathcal{D}\subset\mathcal{G}(\mathbb{K})$ are constructible sets, and $\Phi:\mathcal{C}\to\mathcal{D}$ is a surjective pseudomorphism such that all fibers have the same naïve Euler characteristic χ , then $\chi^{\text{na}}(\mathcal{C}) = \chi \cdot \chi^{\text{na}}(\mathcal{D})$.

Proof. Because \mathcal{C}, \mathcal{D} are constructible sets, there exist separated finite type K-schemes X, Y such that C, D are pseudoisomorphic to $X(\mathbb{K})$, $Y(\mathbb{K})$ respectively. Therefore $\chi^{\text{na}}(\mathcal{C}) = \chi(X)$, $\chi^{\text{na}}(\mathcal{D}) = \chi(Y)$. Then Φ induces a surjective pseudomorphism between $X(\mathbb{K})$ and $Y(\mathbb{K})$, say $\phi: X(\mathbb{K}) \to Y(\mathbb{K})$. There exist two projective morphisms $\pi_1 : \Gamma_{\phi} \to X(\mathbb{K})$ and $\pi_2 : \Gamma_{\phi} \to Y(\mathbb{K})$. Note that π_1 is also a pseudoisomorphism, that is $\chi^{\text{na}}(\Gamma_\phi) = \chi(X)$, and all fibres of π_2 have the same naïve Euler characteristic χ . Then $\chi^{\text{na}}(\Gamma_\phi)$ = $\chi \cdot \chi(Y)$. Hence $\chi(X) = \chi \cdot \chi(Y)$. We finish the proof.

Definition 2.6. A function $f : \mathcal{F}(\mathbb{K}) \to \mathbb{Q}$ is called a constructible function on $\mathcal{F}(\mathbb{K})$ if the codomain of f is a finite set and $f^{-1}(a)$ is a constructible subset of $\mathcal{F}(\mathbb{K})$ for each $a \in f(\mathcal{F}(\mathbb{K})) \setminus \{0\}$. Let $CF(\mathcal{F})$ denote the Q-vector space of all Q-valued constructible functions on $\mathcal{F}(\mathbb{K})$.

Let $S \subseteq \mathcal{F}(\mathbb{K})$ be a locally constructible set. The integral of f on S is

$$
\int_{x \in S} f(x) = \sum_{a \in f(S) \setminus \{0\}} a \chi^{\text{na}}(f^{-1}(a) \cap S)
$$

for each $f \in CF(\mathcal{F})$.

We recall the pushforwards and pullbacks of constructible functions due to Joyce [11].

Definition 2.7. Let $\mathcal F$ and $\mathcal G$ be algebraic K-stacks with affine geometric stabilizers and $\phi : \mathcal{F} \to \mathcal{G}$ a 1-morphism. For each $f \in \mathrm{CF}(\mathcal{F})$, the naïve

pushforward $\phi_l^{\text{na}}(f) : \mathcal{F}(\mathbb{K}) \to \mathbb{Q}$ of f is

$$
\phi_!^{\mathrm{na}}(f)(t) = \sum_{a \in f(\phi_*^{-1}(t)) \setminus \{0\}} a \chi^{\mathrm{na}}(f^{-1}(a) \cap \phi_*^{-1}(t))
$$

for each $t \in \mathcal{G}(\mathbb{K})$. Then $\phi_l^{\text{na}}(f)$ is a constructible function for each $f \in$ $CF(\mathcal{F})$ by [11, Theorem 4.9].

Similarly, if $\Phi : \mathcal{F}(\mathbb{K}) \to \mathcal{G}(\mathbb{K})$ is a pseudomorphism, the naïve pushforward $\Phi_!^{\text{na}}(f): \mathcal{F}(\mathbb{K}) \to \mathbb{Q}$ of $f \in \text{CF}(\mathcal{F})$ is defined by

$$
\Phi_!^{\mathrm{na}}(f)(t) = \sum_{a \in f(\Phi^{-1}(t)) \setminus \{0\}} a \chi^{\mathrm{na}}(f^{-1}(a) \cap \Phi^{-1}(t))
$$

for $t \in \mathcal{G}(\mathbb{K})$. Joyce proved that there is a linear map $\Phi_!^{na} : \text{CF}(\mathcal{F}) \to \text{CF}(\mathcal{G})$ and in particular, $\Phi_!^{\text{na}}(f) \in \text{CF}(\mathcal{G})$ [11, Theorem 4.9]. We often apply this result by studying the constructibility of the function $\Phi_l^{na}(1_{\mathcal{F}(\mathbb{K})})$. The constructibility of the function implies that the set $\{\chi(\Phi^{-1}(t)) \mid t \in \mathcal{G}(\mathbb{K})\}$ is a finite set.

If $\phi : \mathcal{F} \to \mathcal{G}$ is a 1-morphism, then we have a long exact sequence of groups

$$
1 \longrightarrow \text{Ker}(\phi_*) \longrightarrow \text{Iso}_{\mathbb{K}}(x) \xrightarrow{\phi_*} \text{Iso}_{\mathbb{K}}(\phi_*(x)) \longrightarrow \text{Coker}(\phi_*) \longrightarrow 1
$$

for each $x \in \mathcal{F}(\mathbb{K})$. Note that $\text{Ker}(\phi_*)$ is an affine algebraic K-group and Coker(ϕ_*) is a quasi-projective K-variety. Assume that $\chi(\text{Ker}(\phi_*)) \neq 0$, we can define a function $m_{\phi}: \mathcal{F}(\mathbb{K}) \to \mathbb{Q}$ by

$$
m_{\phi}(x) = \frac{\chi(\text{Coker}(\phi_*))}{\chi(\text{Ker}(\phi_*))}
$$

for each $x \in \mathcal{F}(\mathbb{K})$. In particular, if ϕ is representable, i.e., for $U \in \mathbf{Sch}_{\mathbb{K}}$, $X \in$ $Obj(\mathcal{F}(U))$, the map $\phi(U)$: End $_{\mathcal{F}(U)}(X) \to \text{End}_{\mathcal{G}(U)}(\phi(U)(X))$ is injective, then Ker(ϕ_*) = {1} and $m_\phi(x) = \chi(\text{Coker}(\phi_*))$. Here Sch_K is the 2-category of K-schemes (see Section 2.2 for more details).

For each $f \in CF(\mathcal{F})$, the pushforward $\phi_!(f) : \mathcal{G}(\mathbb{K}) \to \mathbb{Q}$ of f is defined by

$$
\phi_!(f) = \phi_!^{na}(f \cdot m_\phi),
$$

where $(f \cdot m_{\phi})(x) = f(x)m_{\phi}(x)$ for $x \in \mathcal{F}(\mathbb{K})$. Note that $\phi_!(f) \in \mathbb{CF}(\mathcal{G})$ (see $|11|$).

If ϕ is a 1-morphism of finite type, then $\phi_*^{-1}(\mathcal{D}) \subset \mathcal{F}(\mathbb{K})$ is a constructible set for each constructible subset D of $\mathcal{G}(\mathbb{K})$. Then $g \circ \phi_* \in \mathrm{CF}(\mathcal{F})$ for $g \in$ $CF(\mathcal{G})$. Recall that the pullback $\phi^*: CF(\mathcal{G}) \to CF(\mathcal{F})$ of ϕ is defined by $\phi^*(g) = g \circ \phi_*$ and it is linear.

2.2. Stacks of objects and conflations in *A*

From now on, let $(\mathcal{A}, \mathcal{S})$ be a Krull-Schmidt exact K-category (see A.1). For simplicity, we write A instead of (A, S) . Note that A is idempotent complete (see A.2).

The isomorphism classes of $X \in Obj(\mathcal{A})$ and conflations $X \stackrel{i}{\to} Y \stackrel{d}{\to} Z$ in A are denoted by [X] and $[X \stackrel{i}{\to} Y \stackrel{d}{\to} Z]$ (or $[(X, Y, Z, i, d)]$), respectively. Two conflations $X \stackrel{i}{\to} Y \stackrel{d}{\to} Z$ and $A \stackrel{f}{\to} B \stackrel{g}{\to} C$ are isomorphic if there exist isomorphisms $a: X \to A$, $b: Y \to B$ and $c: Z \to C$ in A such that the following diagram is communicative

(1)
$$
X \xrightarrow{i} Y \xrightarrow{d} Z
$$

$$
a \downarrow \qquad b \downarrow \qquad c
$$

$$
A \xrightarrow{f} B \xrightarrow{g} C
$$

The morphism (a, b, c) is called an isomorphism of conflations in \mathcal{A} .

Assumption 2.8. Assume that $\dim_{\mathbb{K}} \text{Hom}_{\mathcal{A}}(X, Y)$ and $\dim_{\mathbb{K}} \text{Ext}^1_{\mathcal{A}}(X, Y)$ are finite for all $X, Y \in Obj(\mathcal{A})$. Let $K(\mathcal{A})$ denote the quotient group of the Grothendieck group $K_0(A)$ such that $[X] = 0$ in $K(A)$ implies that X is a zero object in A , where $[X]$ denotes the image of X in $K(A)$.

The following 2-categories are defined in [10].

Let $Sch_{\mathbb{K}}$ be a 2-category of K-schemes such that objects are K-schemes, 1-morphisms morphisms of schemes and 2-morphisms only the natural transformations id_f for all 1-morphisms f. Let (exactcat) denote the 2-category of all exact categories with 1-morphisms exact functors of exact categories and 2-morphisms natural transformations between the exact functors. If all morphisms of a category are isomorphisms, then the category is called a groupoid. Let (groupoids) be the 2-category with objects groupoids, 1 morphisms functors of groupoids and 2-morphisms natural transformations (see also [10, Definition 2.8]).

In [10, Section 7.1], Joyce defined a stack $\mathcal{F}_{\mathcal{A}}: Sch_{\mathbb{K}}: \to$ (exactcat) associated to the exact category A (the original definition is for abelian category, it can be extended to exact categories directly), where $\mathcal{F}_{\mathcal{A}}$ is a contravariant 2-functor and satisfies the condition $\mathcal{F}_{\mathcal{A}}(\mathrm{Spec}(\mathbb{K})) = \mathcal{A}$. Applying $\mathcal{F}_{\mathcal{A}}$, he defined two moduli stacks

$$
\mathfrak{Obj}_{\mathcal{A}}, \mathfrak{Exact}_{\mathcal{A}} : \mathbf{Sch}_{\mathbb{K}} \to (\text{groupoids})
$$

which are contravatiant 2-functors ([10, Definition 7.2]). The 2-functor

$$
\mathfrak{Obj}_{\mathcal{A}} = F \circ \mathcal{F}_{\mathcal{A}},
$$

where $F : (exact) \rightarrow (groupoids)$ is a forgetful 2-functor as follows. For an exact category G, $F(G)$ is a groupoid such that $Obj(F(G)) = Obj(G)$ and morphisms are isomorphisms in G. For $U \in Sch_{\mathbb{K}}$, a category $\mathfrak{Exact}_{\mathfrak{A}}(U)$ is a groupoid whose objects are conflations in $\mathcal{F}_{\mathcal{A}}(U)$ and morphisms isomorphisms of conflations in $\mathcal{F}_{\mathcal{A}}(U)$.

Let $\eta: U \to V$ and $\theta: V \to W$ be morphisms of schemes in Sch_K. Obviously, the functors $\mathfrak{D} \mathfrak{bi}_{\mathcal{A}}(\eta) : \mathfrak{D} \mathfrak{bi}_{\mathcal{A}}(V) \to \mathfrak{D} \mathfrak{bi}_{\mathcal{A}}(U)$ and $\mathfrak{Exact}_{\mathcal{A}}(\eta)$: $\mathfrak{Exact}_{\mathcal{A}}(V) \to \mathfrak{Exact}_{\mathcal{A}}(U)$ are induced by $\mathcal{F}_{\mathcal{A}}(\eta) : \mathcal{F}_{\mathcal{A}}(V) \to \mathcal{F}_{\mathcal{A}}(U)$. The natural transformations $\epsilon_{\theta,\eta}$: $\mathfrak{D}\mathfrak{bi}_{\mathcal{A}}(\eta) \circ \mathfrak{D}\mathfrak{bi}_{\mathcal{A}}(\theta) \to \mathfrak{D}\mathfrak{bi}_{\mathcal{A}}(\theta \circ \eta)$ and $\epsilon_{\theta,\eta}$: Exact_A(η) \circ Exact_A(θ) \to Exact_A($\theta \circ \eta$) are also induced by $\epsilon_{\theta,\eta} : \mathcal{F}_{\mathcal{A}}(\eta) \circ$ $\mathcal{F}_{\mathcal{A}}(\theta) \rightarrow \mathcal{F}_{\mathcal{A}}(\theta \circ \eta).$

Let

$$
K'(\mathcal{A}) = \{ \widehat{[X]} \in K(\mathcal{A}) \mid X \in \text{Obj}(\mathcal{A}) \} \subset K(\mathcal{A}).
$$

For each $\alpha \in K'(\mathcal{A})$, Joyce defined $\mathfrak{Ob}^{\alpha}_{\mathcal{A}} : \text{Sch}_{\mathbb{K}} \to (\text{groupoids})$ which is a substack of $\mathfrak{Obj}_{\mathcal{A}}$ in [10, Definition 7.4]. For each $U \in \text{Sch}_{\mathbb{K}}$, $\mathfrak{Obj}_{\mathcal{A}}^{\alpha}(U)$ is a full subcategory of $\mathfrak{Ob}j_{\mathcal{A}}(U)$. For each object X in $\mathfrak{Ob}j_{\mathcal{A}}^{\alpha}(U)$, the image of $\mathfrak{Obj}_{\mathcal{A}}(f)(X)$ in $K(\mathcal{A})$ is α for each morphism $f : \text{Spec}(\mathbb{K}) \to U$.

Let $\eta: U \to V$ and $\theta: V \to W$ be morphisms in Sch_K. The functor

$$
\mathfrak{D} \mathfrak{b} {\mathfrak j}^\alpha_{\mathcal{A}}(\eta) : \mathfrak{D} \mathfrak{b} {\mathfrak j}^\alpha_{\mathcal{A}}(V) \rightarrow \mathfrak{D} \mathfrak{b} {\mathfrak j}^\alpha_{\mathcal{A}}(U)
$$

is defined by restriction from $\mathfrak{D}bj_{\mathcal{A}}(\eta) : \mathfrak{D}bj_{\mathcal{A}}(V) \to \mathfrak{D}bj_{\mathcal{A}}(U)$. The natural transformation $\epsilon_{\theta,\eta}$: $\mathfrak{D} \mathfrak{bi}^{\alpha}_{\mathcal{A}}(\eta) \circ \mathfrak{D} \mathfrak{bi}^{\alpha}_{\mathcal{A}}(\theta) \to \mathfrak{D} \mathfrak{bi}^{\alpha}_{\mathcal{A}}(\theta \circ \eta)$ is restricted from $\epsilon_{\theta,\eta} : \mathfrak{D}\mathfrak{bi}_{\mathcal{A}}(\eta) \circ \mathfrak{D}\mathfrak{bi}_{\mathcal{A}}(\theta) \to \mathfrak{D}\mathfrak{bi}_{\mathcal{A}}(\theta \circ \eta).$

For $\alpha, \beta, \gamma \in K'(\mathcal{A})$ and $\beta = \alpha + \gamma$, $\mathfrak{Exact}_{\mathcal{A}}^{\alpha, \beta, \gamma}$: Sch_K \rightarrow (groupoids) is defined as follows. For $U \in Sch_{\mathbb{K}}$, $\mathfrak{Exact}_{\mathcal{A}}^{\alpha,\beta,\gamma}(U)$ is a full subcategory of **Exact**_A(U). The objects of **Exact**^{α, β, γ}(U) are conflations

$$
X \xrightarrow{i} Y \xrightarrow{d} Z \in \text{Obj}(\mathfrak{Exact}_{\mathcal{A}}(U)),
$$

where $X \in \text{Obj}(\mathfrak{Obj}^{\alpha}_{\mathcal{A}}(U)),$ $Y \in \text{Obj}(\mathfrak{Obj}^{\beta}_{\mathcal{A}}(U))$ and $Z \in \text{Obj}(\mathfrak{Obj}^{\gamma}_{\mathcal{A}}(U)).$ Similarly, the morphism $\mathfrak{Exact}_{\mathcal{A}}^{\alpha,\beta,\gamma}(\eta)$ and natural transformation $\epsilon_{\theta,\eta}$ are defined by restriction.

Let TS be a substack of $\mathfrak{Exact}_A \times \mathfrak{Exact}_A$. For each $U \in \text{Sch}_{\mathbb{K}}$, $\mathcal{TS}(U)$ is a full subcategory of $\mathfrak{Exact}_{\mathcal{A}} \times \mathfrak{Exact}_{\mathcal{A}}(U)$ whose objects are $(X \xrightarrow{f} L \xrightarrow{g} X)$ $Y, L \stackrel{l}{\rightarrow} M \stackrel{m}{\rightarrow} Z),$

where $X \xrightarrow{f} L \xrightarrow{g} Y$ and $L \xrightarrow{l} M \xrightarrow{m} Z$ are objects in $\mathfrak{Exact}_{\mathcal{A}}(U)$. The morphisms of $\mathcal{TS}(U)$ are (x, a, y, b, z) , where $x : X \to X'$, $a : L \to L'$, $y : Y \to Y'$ $Y', b : M \to M'$ and $z : Z \to Z'$ are isomorphisms, such that the following diagrams are commutative

The morphism $\mathcal{TS}(\eta)$ and natural transformation $\epsilon_{\theta,\eta}$ are defined in a natural way.

The following theorem is taking from [10, Theorem 7.5].

Theorem 2.9. The 2-functors $\mathfrak{D}bj_A$, \mathfrak{Exact}_A are K-stacks, and $\mathfrak{D}bj_A^{\alpha}$, $\mathfrak{Exact}_{\mathcal{A}}^{\alpha,\beta,\gamma}$ are open and closed K-substacks of them respectively. There are disjoint unions

$$
\mathfrak{D} \mathfrak{bi}_{\mathcal{A}} = \amalg_{\alpha \in K'(\mathcal{A})} \mathfrak{D} \mathfrak{bi}_{\mathcal{A}}^{\alpha}, \mathfrak{Exact}_{\mathcal{A}} = \amalg_{\alpha, \beta, \gamma \in K'(\mathcal{A}) \atop \beta = \alpha + \gamma} \mathfrak{Exact}_{\mathcal{A}}^{\alpha, \beta, \gamma}.
$$

Assume that $\mathfrak{D} \mathfrak{b}^{\dagger}_{\mathcal{A}}$ and $\mathfrak{Exact}_{\mathcal{A}}$ are locally of finite type algebraic Kstacks with affine algebraic stabilizers. Recall that $\mathfrak{Obj}_{\mathcal{A}}(\mathbb{K})$ and $\mathfrak{Exact}_{\mathcal{A}}(\mathbb{K})$ are the collection of isomorphism classes of objects in A and the collection of isomorphism classes of conflations in A, respectively. For each $\alpha \in K'(\mathcal{A}),$ $\mathfrak{Ob}^{\alpha}_{\mathcal{A}}(\mathbb{K})$ is the collection of isomorphism classes of $X \in \mathrm{Obj}(\mathcal{A})$ such that $[X] = \alpha$ (see [12, Section 3.2]).

Example 2.10. Let $Q = (Q_0, Q_1, s, t)$ be a finite connected quiver, where $Q_0 = \{1, \ldots, n\}$ is the set of vertices, Q_1 is the set of arrows and $s: Q_1 \to Q_0$ (resp. $t: Q_1 \to Q_0$) is a map such that $s(\rho)$ (resp. $t(\rho)$) is the source (resp. target) of ρ for $\rho \in Q_1$. Let $A = \mathbb{C}Q$ be the path algebra of Q and mod-A denote the category of all finite dimensional right A-modules.

Let $\underline{d} = (d_i)_{i \in Q_0}$ for all $d_i \in \mathbb{N}$. There is an affine variety

$$
Rep(Q, \underline{d}) = \bigoplus_{\rho \in Q_1} Hom(\mathbb{C}^{d_{s(\rho)}}, \mathbb{C}^{d_{t(\rho)}}).
$$

For each $x = (x_{\rho})_{\rho \in Q_1} \in \text{Rep}(Q, \underline{d})$, there is a C-linear representation $M(x)=(\mathbb{C}^{d_j},x_{\rho})_{j\in Q_0,\rho\in Q_1}$ of Q. Let rep(Q) denote the category of finite dimensional C-linear representations of Q. Recall that rep(Q) \cong mod-A. We identify rep(Q) with mod- A . The linear algebraic group

$$
\operatorname{GL}(\underline{d})=\prod_{j\in Q_0}\operatorname{GL}(d_j,\mathbb{C})
$$

acts on Rep (Q, \underline{d}) by $g.x = (g_{t(\rho)} x_{\rho} g_{s(\rho)}^{-1})_{\rho \in Q_1}$ for $g = (g_j)_{j \in Q_0} \in GL(\underline{d})$.

A complex $M^{\bullet} = (M^{(i)}, \partial^i)$, where $M^{(i)} \in \text{Obj}(\text{mod-}A)$ and $\partial^{i+1}\partial^i = 0$, is bounded if there exist some positive integers n_0 and n_1 such that $M^{(i)} = 0$ for $i \leq -n_0$ or $i \geq n_1$. Let $\underline{\dim} M^{(i)} = \underline{d}^{(i)}$ be the dimension vector of $M^{(i)}$ for each $i \in \mathbb{Z}$. The vector sequence $(\underline{d}^{(\overline{i})})_{i\in\mathbb{Z}}$ of M^{\bullet} is denoted by $\underline{\mathbf{ds}}(M^{\bullet})$.

Let $\mathcal{C}(Q, \mathbf{d})$ denote the affine variety consisting of all complexes M^{\bullet} with $\underline{\mathbf{ds}}(M^{\bullet}) = \underline{\mathbf{d}}$. The group $G(\underline{\mathbf{d}}) = \prod$ i∈Z $GL(\underline{d}^{(i)})$ is a linear algebraic group acting on $\mathcal{C}^b(Q, \underline{\mathbf{d}})$. The action is induced by the actions of $GL(\underline{d}^{(i)})$ on $\text{Rep}(Q, \underline{d}^{(i)})$ for all $i \in \mathbb{Z}$, that is

$$
(g^{(i)})_i.(x^{(i)},\partial^i)_i=(g^{(i)}.x^{(i)},g^{(i+1)}\partial^i(g^{(i)})^{-1})_i.
$$

Let $\{P_1,\ldots,P_n\}$ be a set of representatives for all isomorphism classes of finite dimensional indecomposable projective A-modules. A complex P^{\bullet} =

$$
\ldots \to P^{(i-1)} \xrightarrow{\partial^{i-1}} P^{(i)} \xrightarrow{\partial^i} P^{(i+1)} \to \ldots
$$

is projective if $P^{(i)} \cong \bigoplus^n$ $j=1$ $m_j^{(i)}P_j$ for $m_j^{(i)} \in \mathbb{N}$ and $i \in \mathbb{Z}$. Let

$$
\underline{e}(P^{(i)}) = \underline{m}^{(i)} = (m_1^{(i)}, \dots, m_n^{(i)})
$$

be a vector corresponding to $P^{(i)}$. By the Krull-Schmidt Theorem, $\underline{e}(P^{(i)})$ is unique. The dimension vector of P^{\bullet} can be defined by

$$
\underline{\dim}(P^{\bullet}) = (\ldots, \underline{m}^{(i-1)}, \underline{m}^{(i)}, \underline{m}^{(i+1)}, \ldots).
$$

A dimension vector $\dim(P^{\bullet})$ is bounded if P^{\bullet} is bounded.

let $\underline{\mathbf{m}} = (\underline{m}^{(i)})_{i \in \mathbb{Z}}$ be a bounded dimension vector and $\underline{\mathbf{d}}(\underline{\mathbf{m}}) = (\underline{d}^{(i)})_{i \in \mathbb{Z}}$ be the vector sequence of a complex whose dimension vector is **m**. Let $\mathcal{P}^{b}(Q, \mathbf{m})$ be the set of all bounded project complexes P^{\bullet} with $\dim(P^{\bullet}) = \mathbf{m}$ and $\underline{\mathbf{ds}}(P^{\bullet}) = \underline{\mathbf{d}}(\underline{\mathbf{m}})$. Note that $\mathcal{P}^b(Q, \underline{\mathbf{m}})$ is a locally closed subset of $\mathcal{C}^b(Q, \mathbf{d(m)})$. An action of $G(\mathbf{d(m)})$ on the variety $\mathcal{P}^b(Q, \mathbf{m})$ is induced by the action of $G(\underline{\mathbf{d}}(\mathbf{m}))$ on $\mathcal{C}^b(Q, \underline{\mathbf{d}}(\mathbf{m}))$.

Let $\mathcal{P}^{b}(Q)$ denote the exact category with objects bounded project complexes and morphisms $\phi : P^{\bullet} \to Q^{\bullet}$ morphisms between bounded projective complexes. The Grothendieck group

$$
K_0(\mathcal{P}^b(Q)) \cong \bigoplus_{i \in \mathbb{Z}} \mathbb{Z}_{(i)}^n,
$$

where $\mathbb{Z}_{(i)}^n = \mathbb{Z}^n$. Note that $K(\mathcal{P}^b(Q)) = K_0(\mathcal{P}^b(Q))$ and

$$
K'(\mathcal{P}^b(Q)) \cong \bigoplus_{i \in \mathbb{Z}} \mathbb{N}^n_{(i)},
$$

where $\mathbb{N}_{(i)}^n = \mathbb{N}^n$.

Joyce defined $\mathcal{F}_{\text{mod}-\mathbb{K}Q}$ in [10, Example 10.5]. Similarly, for each $U \in$ Sch_K, we define $\mathcal{F}_{\mathcal{P}^b(Q)}(U)$ to be the category as follows.

The objects of $\mathcal{F}_{\mathcal{P}^b(Q)}(U)$ are complexes of sheaves $P^{\bullet} = (P^{(i)}, \partial^i)_{i \in \mathbb{Z}}$, where $P^{(i)} = (\bigoplus_{j \in Q_0} X_j^{(i)}, x^i)$ and $\partial^{i+1} \partial^i = 0$. The data $X_j^{(i)}$ are locally free sheaves of finite rank on U and $x^i = (x^i_\rho)_{\rho \in Q_1}$, where $x^i_\rho : X^{(i)}_{s(\rho)} \to X^{(i)}_{t(\rho)}$ are morphisms of sheaves, such that $P^{(i)} = (\bigoplus_{j \in Q_0} X_j^{(i)}, x^i)$ are projective $\mathbb{C}Q$ -modules for all $i \in \mathbb{Z}$. The morphisms of $\mathcal{F}_{\mathcal{P}^b(Q)}(U)$ are morphisms of complexes $\phi^{\bullet} : (P^{(i)}, \partial^i) \to (Q^{(i)}, d^i)$, where $Q^{(i)} = (\bigoplus_{j \in Q_0} Y_j^{(i)}, y^i)$ and ϕ^{\bullet}

is a sequence of morphisms

$$
(\phi^i:P^{(i)}\to Q^{(i)})_{i\in\mathbb{Z}}
$$

with $\phi^i = (\phi^i_j : X_j^{(i)} \to Y_j^{(i)})_{j \in Q_0}$ such that $\phi^{i+1} \partial^i = d^i \phi^i$ and $\phi^i_{t(\rho)} x^i_{\rho} =$ $y_{\rho}^{i}\phi_{s(\rho)}^{i}$ for all $i \in \mathbb{Z}$ and $\rho \in Q_1$. It is easy to see that $\mathcal{F}_{\mathcal{P}^b(Q)}(U)$ is an exact category.

Let $\eta: U \to V$ be a morphism in Sch_K. A functor

 $\mathcal{F}_{\mathcal{P}^b(Q)}(\eta) : \mathcal{F}_{\mathcal{P}^b(Q)}(V) \to \mathcal{F}_{\mathcal{P}^b(Q)}(U)$

is defined as follows. If $(P^{(i)}, \partial^i)_{i \in \mathbb{Z}} \in \mathrm{Obj}(\mathcal{F}_{\mathcal{P}^b(Q)}(V)),$

$$
\mathcal{F}_{\mathcal{P}^b(Q)}(\eta)(P^{(i)},\partial^i)_{i\in\mathbb{Z}}=(\eta^*(P^{(i)}),\eta^*(\partial^i))_{i\in\mathbb{Z}}
$$

for $\eta^*(P^{(i)}) = (\bigoplus_{j \in Q_0} \eta^*(X_j^{(i)}), (\eta^*(x_\rho^i))_{\rho \in Q_1}),$ where $\eta^*(X_j^{(i)})$ are the inverse images of $X_j^{(i)}$ by the morphism η , $\eta^*(\partial^i) : \eta^*(P^{(i)}) \to \eta^*(P^{(i+1)})$ with $\eta^*(\partial^{i+1})\eta^*(\partial^i) = 0$ for $i \in \mathbb{Z}$ and

$$
\eta^*(x^i_\rho): \eta^*(X^{(i)}_{s(\rho)}) \to \eta^*(X^{(i)}_{t(\rho)})
$$

for $\rho \in Q_1$ are pullbacks of morphisms between inverse images. For a morphism $\phi^{\bullet} : (P^{(i)}, \partial^i) \to (Q^{(i)}, d^i)$ in $\mathcal{F}_{\mathcal{P}^b(Q)}(V)$, the morphism

$$
\mathcal{F}_{\mathcal{P}^b(Q)}(\eta)(\phi^{\bullet}) : (\eta^*(P^{\bullet}), \eta^*(\partial^i)) \to (\eta^*(Q^{\bullet}), \eta^*(d^i))
$$

is a sequence of morphisms

$$
\left(\eta^*(\phi^i): \big(\bigoplus_{j\in Q_0}\eta^*(X_j^{(i)}), (\eta^*(x_\rho^i))_\rho\big)\to \big(\bigoplus_{j\in Q_0}\eta^*(Y_j^{(i)}), (\eta^*(y_\rho^i))_\rho\big)\right)_{i\in\mathbb{Z}},
$$

with $\eta^*(\phi^{i+1})\eta^*(\partial^i) = \eta^*(d^i)\eta^*(\phi^i)$, where $\eta^*(d^i)$ are pullbacks of morphisms between inverse images which satisfy $\eta^*(d^{i+1})\eta^*(d^i) = 0$, and

$$
\eta^*(Q^\bullet) = \Big(\bigoplus_{j\in Q_0}\eta^*(Y_j^{(i)}), (\eta^*(y_\rho^i))_{\rho\in Q_1}\Big)_{i\in\mathbb{Z}}
$$

such that the pullbacks

$$
\eta^*(\phi_j^i) : \eta^*(X_j^{(i)}) \to \eta^*(Y_j^{(i)})
$$

satisfy $\eta^*(\phi_{t(\rho)}^i)\eta^*(x_\rho^i) = \eta^*(y_\rho^i)\eta^*(\phi_{s(\rho)}^i)$. Because locally free sheaves are flat, $\mathcal{F}_{\mathcal{P}^b(Q)}(\eta)(\phi^{\bullet})$ is an exact functor.

Let $\eta: U \to V$ and $\theta: V \to W$ be morphisms in Sch_K. As in [10, Example 9.1], for each $P^{\bullet} \in \mathrm{Obj}(\mathcal{F}_{\mathcal{P}^b(Q)}(W))$, there is a canonical isomorphism $\epsilon_{\theta,\eta}(P^{\bullet}): \mathcal{F}_{\mathcal{P}^b(Q)}(\eta) \circ \mathcal{F}_{\mathcal{P}^b(Q)}(\theta)(P^{\bullet}) \to \mathcal{F}_{\mathcal{P}^b(Q)}(\theta \circ \eta)(P^{\bullet}).$ We get a 2-isomorphism of functors

$$
\epsilon_{\theta,\eta} : \mathcal{F}_{\mathcal{P}^b(Q)}(\eta) \circ \mathcal{F}_{\mathcal{P}^b(Q)}(\theta) \to \mathcal{F}_{\mathcal{P}^b(Q)}(\theta \circ \eta)
$$

by the canonical isomorphisms. Thus we have the 2-functor $\mathcal{F}_{\mathcal{P}^b(Q)}$.

The set $\mathfrak{Ob}_{\mathcal{P}^b(Q)}(\mathbb{C})$ consists of all isomorphism classes of complexes in $\mathcal{P}^b(Q)$.

As in [10, Definition 7.7] and [12, Section 3.2], we have the following 1-morphisms

$$
\pi_l: \mathfrak{Exact}_{\mathcal{A}} \to \mathfrak{D} \mathfrak{bi}_{\mathcal{A}}
$$

which induces a map $(\pi_l)_* : \mathfrak{Exact}_{\mathcal{A}}(\mathbb{K}) \to \mathfrak{Obj}_{\mathcal{A}}(\mathbb{K})$ defined by $[X \stackrel{i}{\to} Y \stackrel{d}{\to} \mathbb{K}]$ $Z \rightarrow [X];$

$$
\pi_m: \mathfrak{Exact}_{\mathcal{A}} \to \mathfrak{Obj}_{\mathcal{A}}
$$

such that the induced map $(\pi_m)_* : \mathfrak{Exact}_{\mathcal{A}}(\mathbb{K}) \to \mathfrak{Obj}_{\mathcal{A}}(\mathbb{K})$ maps $[X \xrightarrow{i} Y \xrightarrow{d} X]$ Z to $|Y|$;

$$
\pi_r: \mathfrak{Exact}_{\mathcal{A}} \to \mathfrak{Obj}_{\mathcal{A}}
$$

inducing the map $(\pi_r)_* : \mathfrak{Exact}_{\mathcal{A}}(\mathbb{K}) \to \mathfrak{Ob}_{\mathcal{A}}(\mathbb{K})$ by $[X \xrightarrow{i} Y \xrightarrow{d} Z] \mapsto [Z].$ The map $\pi_{l*} \times \pi_{r*}$: $\mathfrak{Exact}_{\mathcal{A}}(\mathbb{K}) \to \mathfrak{Obj}_{\mathcal{A}}(\mathbb{K}) \times \mathfrak{Obj}_{\mathcal{A}}(\mathbb{K})$ is defined by

$(\pi_{l*} \times \pi_{r*})([X \stackrel{i}{\to} Y \stackrel{d}{\to} Z]) = ([X], [Z])$. Note that $(\pi_l \times \pi_r)_* = \pi_{l*} \times \pi_{r*}$.

3. Hall Algebras

3.1. Constructible sets of stratified Krull-Schmidt

These definitions are related to [4].

Definition 3.1. Let \mathcal{O}_1 and \mathcal{O}_2 be two constructible subsets of $\mathfrak{D}bj_{\mathcal{A}}(\mathbb{K}),$ the direct sum of \mathcal{O}_1 and \mathcal{O}_2 is

$$
\mathcal{O}_1 \oplus \mathcal{O}_2 = \big\{ [X_1 \oplus X_2] \mid [X_1] \in \mathcal{O}_1, [X_2] \in \mathcal{O}_2 \text{ and } X_1, X_2 \in \text{Obj}(\mathcal{A}) \big\}.
$$

Let $n\mathcal{O}$ denote the direct sum of n copies of \mathcal{O} for $n \in \mathbb{N}^+$ and $0\mathcal{O} = \{0\}$. Similarly, let nX denote the direct sum of n copies of $X \in Obj(\mathcal{A})$. A constructible subset $\mathcal O$ of \mathfrak{D} bj_A(K) is called indecomposable if $X \in \mathrm{Obj}(\mathcal A)$ is indecomposable and $X \ncong 0$ for every $[X] \in \mathcal{O}$.

A constructible set $\mathcal O$ is called to be of Krull-Schmidt if

$$
\mathcal{O}=n_1\mathcal{O}_1\oplus n_2\mathcal{O}_2\oplus\ldots\oplus n_k\mathcal{O}_k,
$$

where \mathcal{O}_i are indecomposable constructible sets and $n_i \in \mathbb{N}$ for $i = 1, \ldots, k$. If a constructible set $\mathcal{Q} = \amalg_{i=1}^n \mathcal{Q}_i$, where \mathcal{Q}_i are constructible sets of Krull-Schmidt for $1 \leq i \leq n$, namely Q is a disjoint union of finitely many constructible sets of Krull-Schmidt, then Q is said to be a constructible set of stratified Krull-Schmidt.

Let \mathcal{O}_1 and \mathcal{O}_2 be two indecomposable constructible sets. If $\mathcal{O}_1 \cap \mathcal{O}_2 \neq \emptyset$ and $\mathcal{O}_1 \neq \mathcal{O}_2$, we have

$$
\mathcal{O}_1 \oplus \mathcal{O}_2 = 2(\mathcal{O}_1 \cap \mathcal{O}_2) \amalg \Big((\mathcal{O}_1 \setminus (\mathcal{O}_1 \cap \mathcal{O}_2)) \oplus (\mathcal{O}_2 \setminus (\mathcal{O}_1 \cap \mathcal{O}_2)) \Big)
$$

$$
\amalg \Big((\mathcal{O}_1 \cap \mathcal{O}_2) \oplus (\mathcal{O}_2 \setminus (\mathcal{O}_1 \cap \mathcal{O}_2)) \Big) \amalg \big((\mathcal{O}_1 \setminus (\mathcal{O}_1 \cap \mathcal{O}_2)) \oplus (\mathcal{O}_1 \cap \mathcal{O}_2) \big).
$$

If $\mathcal{Q} = m_1 \mathcal{O}_1 \oplus ... \oplus m_l \mathcal{O}_l$ is a constructible set of Krull-Schmidt, we can write $\mathcal{Q} = \prod_{i=1}^n \mathcal{Q}_i$ as a constructible set of stratified Krull-Schmidt, where

$$
Q_i = n_{i1} \mathcal{O}_{i1} \oplus n_{i2} \mathcal{O}_{i2} \oplus \ldots \oplus n_{ik_i} \mathcal{O}_{ik_i}
$$

for indecomposable constructible sets \mathcal{O}_{ij} which are disjoint each other. Hence we can assume that $\mathcal{O}_1,\ldots,\mathcal{O}_l$ are disjoint each other.

Let $CF^{KS}(\mathfrak{D}bj_{\mathcal{A}})$ be the subspace of $CF(\mathfrak{D}bj_{\mathcal{A}})$ which is spanned by characteristic functions 1_O for constructible sets of stratified Krull-Schmidt O, where each $1_{\mathcal{O}}$ satisfies that $1_{\mathcal{O}}([X]) = 1$ for $[X] \in \mathcal{O}$, and $1_{\mathcal{O}}([X]) = 0$ otherwise.

Example 3.2. Let \mathbb{P}^1 be the projective line over K and coh(\mathbb{P}^1) denote the category of coherent sheaves on \mathbb{P}^1 .

Let $O(n)$ denote an indecomposable locally free coherent sheaf whose rank and degree are equal to 1 and *n* respectively. Let $S_x^{[r]}$ be an indecomposable torsion sheaf such that $rk(S_x^{[r]}) = 0$, $deg(S_x^{[r]}) = r$ and the support of $S_x^{[r]}$ is $\{x\}$ for $x \in \mathbb{P}^1$. The Grothendieck group $K_0(\text{coh}(\mathbb{P}^1)) \cong \mathbb{Z}^2$. The data $K(\text{coh}(\mathbb{P}^1))$ and $\mathcal{F}_{\text{coh}(\mathbb{P}^1)}$ are defined in [10, Example 9.1]. The set of isomorphism classes of indecomposable objects in $\mathrm{coh}(\mathbb{P}^{\bar{1}})$ is

$$
\{[S_x^{[d]}] \mid x \in \mathbb{P}^1, d \in \mathbb{N}\} \cup \{[O(n)] \mid n \in \mathbb{Z}\}.
$$

Recall that a non-trivial subset $U \subset \mathbb{P}^1$ is closed (resp. open) if U is a finite (resp. cofinite) set. Let \mathcal{O}_d be a finite or cofinite subset of $\{[S_x^{[d]}] \mid x \in$ **P**} for each $d \in \mathbb{Z}^+$ and \mathcal{O}_0 a finite subset of $\{[O(n)] \mid n \in \mathbb{Z}\}\)$. Then \mathcal{O}_d and \mathcal{O}_0 are indecomposable constructible subsets of $\mathfrak{Ob}_{coh(\mathbb{P}^1)}(\mathbb{K})$. Note that every indecomposable constructible subset of $\mathfrak{D}\mathfrak{b}^i_{\text{coh}(\mathbb{P}^1)}(\mathbb{K})$ is of the form

$$
\mathcal{O}_0 \amalg \mathcal{O}_{i_1} \amalg \ldots \amalg \mathcal{O}_{i_n}
$$

for $1 \leq i_1 < \ldots < i_n$. Then the finite direct sum $\bigoplus \bigodot_0 \amalg \bigodot_{i_1} \amalg \ldots \amalg \bigodot_{i_n}$ is a constructible set of Krull-Schmidt. Every constructible set of Krull-Schmidt in $\mathfrak{Ob}_{coh(\mathbb{P}^1)}(\mathbb{K})$ is of the form. A constructible set of stratified Krull-Schmidt is a disjoint union of finitely many constructible sets of Krull-Schmidt.

Example 3.3. In Example 2.10, $\mathfrak{Ob}j^{\underline{m}}_{\mathcal{P}^b(Q)}(\mathbb{C})$ is the set of all isomorphism classes of project complexes in $\mathcal{P}^b(Q, \mathbf{m})$. Note that

$$
\mathfrak{D} \mathfrak{bi}_{\mathcal{P}^b(Q)}(\mathbb{C}) = \amalg_{\underline{\mathbf{m}} \in K'(\mathcal{P}^b(Q))} \mathfrak{D} \mathfrak{bi}^{\underline{\mathbf{m}}}_{\mathcal{P}^b(Q)}(\mathbb{C}).
$$

There is a canonical map

$$
p_{\underline{\mathbf{m}}}:\mathcal{P}^b(Q,\underline{\mathbf{m}})\rightarrow\mathfrak{Obj}^{\underline{\mathbf{m}}}_{\mathcal{P}^b(Q)}(\mathbb{C})
$$

which maps P^{\bullet} to $[P^{\bullet}]$. A subset $U \subseteq \mathfrak{D}\mathfrak{bi}_{\mathcal{P}^b(Q)}^{m}(\mathbb{C})$ is closed (resp. open) if $p_{\mathbf{m}}^{-1}(U)$ is closed (resp. open) in $\mathcal{P}^b(Q, \mathbf{m})$. A subset $V_{\mathbf{m}} \subseteq \mathfrak{Obj}_{\mathcal{P}^b(Q)}^{\mathbf{m}}(\mathbb{C})$ is locally closed if it is an intersection of a closed subset and an open subset of $\mathfrak{D}\mathfrak{b}$ $\overline{p}^b(Q)$ ^(C). A subset $\mathcal{O} \subseteq \mathfrak{D}\mathfrak{b}$ $\overline{p}^b(Q)$ ^(C) is constructible if it is a finite disjoint union of locally closed sets $V_{\mathbf{m}}$. Every indecomposable constructible set \mathcal{O} is of the form $\coprod_{\mathbf{m}\in S} V_{\mathbf{m}}$, where S is a finite set and each complex in $p_{\mathbf{m}}^{-1}(V_{\mathbf{m}})$ is an indecomposable complex.

3.2. Automorphism groups of conflations

For each $X \in \text{Obj}(\mathcal{A})$, suppose that $X = n_1X_1 \oplus n_2X_2 \oplus \ldots \oplus n_tX_t$, where X_i are indecomposable for $i = 1, \ldots, t$ and $X_i \not\cong X_j$ for $i \neq j$. Then we have

$$
Aut(X) \cong (1 + rad \operatorname{End}(X)) \rtimes \sum_{i=1}^{t} GL(n_i, \mathbb{K}).
$$

The rank of maximal torus of $Aut(X)$ is denoted by rk Aut (X) . Let $n =$ $n_1 + n_2 + \ldots + n_t$. Thus the number of indecomposable direct summands of X is n, which is denoted by $\gamma(X)$. Note that $\gamma(X) = \text{rk Aut}(X)$. Let

$$
\gamma(\mathcal{O}) = \max\{\gamma(X) \mid [X] \in \mathcal{O}\}
$$

for each constructible set $\mathcal O$ in $\mathfrak{D}\mathfrak{bi}_\mathcal{A}(\mathbb{K})$.

Let $X \xrightarrow{f} Y \xrightarrow{g} Z$ be a conflation in A and Aut $(X \xrightarrow{f} Y \xrightarrow{g} Z)$ denote the group of (a_1, a_2, a_3) for $a_1 \in Aut(X)$, $a_2 \in Aut(Y)$ and $a_3 \in Aut(Z)$ such that the following diagram is commutative

$$
X \xrightarrow{f} Y \xrightarrow{g} Z
$$

\n
$$
a_1 \downarrow \qquad a_2 \downarrow \qquad a_3
$$

\n
$$
X \xrightarrow{f} Y \xrightarrow{g} Z
$$

The homomorphism

$$
p_1: \operatorname{Aut}(X \xrightarrow{f} Y \xrightarrow{g} Z) \to \operatorname{Aut}(Y)
$$

is defined by $(a_1, a_2, a_3) \mapsto a_2$. If $p_1((a_1, a_2, a_3)) = p_1((a'_1, a_2, a'_3))$ then $f(a_1 - a'_1) = 0$ and $(a_3 - a'_3)g = 0$. We have $a_1 = a'_1$ and $a_3 = a'_3$ since f is an inflation and g a deflation. Hence p_1 is an injective homomorphism of affine algebraic K-groups and

(2)
$$
rk(\text{Aut}(X \xrightarrow{f} Y \xrightarrow{g} Z)) = rk \text{ Im} p_1 \leq rk \text{ Aut}(Y)
$$

Let

$$
p_2: \mathrm{Aut}(X \xrightarrow{f} Y \xrightarrow{g} Z) \to \mathrm{Aut}(X) \times \mathrm{Aut}(Z)
$$

be a homomorphism given by $(a_1, a_2, a_3) \mapsto (a_1, a_3)$. If $p_2((a_1, a_2, a_3))$ = $p_2((a_1, a'_2, a_3))$, then $(a_2 - a'_2)f = 0$ and $g(a_2 - a'_2)=0$, we have

$$
a_2 - a'_2 \in (\text{Hom}(Z, Y)g) \cap (f \text{Hom}(Y, X)).
$$

Observe that Kerp₂ is a linear space. It follows that $\chi(\text{Kerp}_2) = 1$ and

(3)
$$
\text{rk } \text{Im}(p_2) \leq \text{rk } \text{Aut}(X) + \text{rk } \text{Aut}(Z).
$$

Let $\mathcal{P}(\mathcal{A})$ be a complete set of representatives of all isomorphism classes of objects in A. Let $W(X, Z; Y) = \{(f, g) | X \stackrel{f}{\to} Y \stackrel{g}{\to} Z \in \mathcal{S}\}.$ Note that $W(X, Z; Y)$ is a subset of $Hom(X, Y) \times Hom(Y, Z)$. Let $W(\mathcal{O}_1, \mathcal{O}_2; Y)$ denote the set of $X \stackrel{f}{\to} Y \stackrel{g}{\to} Z \in \mathcal{S}$, where $X, Y, Z \in \mathcal{P}(\mathcal{A})$ and $[X] \in$ \mathcal{O}_1 , $[Y] \in \mathcal{O}_2$.

Lemma 3.4. For $X, Y, Z \in \mathcal{P}(\mathcal{A})$, the set $W(X, Z; Y)$ is a constructible subset of $\text{Hom}(X, Y) \times \text{Hom}(Y, Z)$.

Proof. Recall that $Hom(A, ?)$ and $Hom(?, A)$ are left exact functors for each $A \in Obj(\mathcal{A})$. The inflation f induces a monomorphism

$$
f^* : \text{Hom}(?, X) \to \text{Hom}(?, Y)
$$

in the functor category $Hom(A, Ab)$, where **Ab** denotes the category of abelian groups. Recall that $Hom(?, X)$ is a projective object. Because Ab is an abelian category, $Hom(A, Ab)$ is also an abelian category. Let $P(X)$ denote $Hom(?, X)$ and $inj(P(X), P(Y))$ denote the set of monomorphisms $f^*: P(X) \hookrightarrow P(Y)$. Using $inf(X, Y)$ to denote the set of inflations between X and Y. Note that $inf(X, Y)$ is isomorphic to $inj(P(X), P(Y))$. Because $inj(P(X), P(Y)) = Aut(P(X))f^*, inj(P(X), P(Y))$ is a locally closed subset. Therefore $inf(X, Y)$ is locally closed.

Let $P'(Z) = \text{Hom}(Z, ?)$. Similarly, the deflation g induces a monomorphism

$$
g^*: \text{Hom}(Z, ?) \to \text{Hom}(Y, ?),
$$

then the set $inj(P'(Z), P'(Y)) = Aut(Z)g^*$ is locally closed. Hence the set of deflations $g: Y \to Z$ is a locally closed set.

Fixed $X, Y, Z \in \mathcal{P}(\mathcal{A})$, using the facts that f is an inflation and g a deflation, we obtain that $gf = 0$ if and only if $X \xrightarrow{f} Y \xrightarrow{g} Z$ is a conflation. Clearly, $(f,g) \in \text{Hom}(X,Y) \times \text{Hom}(Y,Z)$ satisfying above conditions if and only if $(f,g) \in W(X,Z;Y)$. Hence $W(X,Z;Y)$ is constructible. \Box

Two conflations $X \xrightarrow{i} Y \xrightarrow{d} Z$ and $X' \xrightarrow{i'} Y \xrightarrow{d'} Z'$ in A are said to be equivalent if there exists a commutative diagram

$$
X \xrightarrow{i} Y \xrightarrow{d} Z
$$

$$
f \downarrow \qquad 1_Y \downarrow \qquad \qquad \downarrow g
$$

$$
X' \xrightarrow{i'} Y \xrightarrow{d'} Z'
$$

where both f and g are isomorphisms. If the two conflations are equivalent, we write $X \stackrel{i}{\to} Y \stackrel{d}{\to} Z \sim X' \stackrel{i'}{\to} Y \stackrel{d'}{\to} Z'$. The equivalence class of $X \stackrel{i}{\to} Y \stackrel{d}{\to} Y$ Z is denoted by $\langle X \stackrel{i}{\to} Y \stackrel{d}{\to} Z \rangle$. Define

$$
V(\mathcal{O}_1, \mathcal{O}_2; Y) = \left\{ \langle X \xrightarrow{i} Y \xrightarrow{d} Z \rangle \mid X \xrightarrow{i} Y \xrightarrow{d} Z \in \mathcal{S}, [X] \in \mathcal{O}_1, [Z] \in \mathcal{O}_2 \right\},
$$

where S is the collection of all conflations of A. Note that $V([X],[Z];Y)$ is isomorphic to the orbit space $W(X, Z; Y) / (\text{Aut } X \times \text{Aut } Z)$. Note that

$$
[W(X, Z; Y) / (\text{Aut } X \times \text{Aut } Z)] = W(X, Z; Y) / (\text{Aut } X \times \text{Aut } Z)
$$

since the action of Aut $X \times$ Aut Z on $W(X, Z; Y)$ is free. Hence $V([X],[Z];Y)$ is a quotient stack.

3.3. Associative algebras and Lie algebras

For $f,g \in CF(\mathfrak{Ob}_{\mathfrak{Z},A})$, define $f \cdot g$ by $(f \cdot g)([X],[Y]) = f([X])g([Y])$ for $([X], [Y]) \in \mathfrak{D} \mathfrak{bi}_{\mathcal{A}}(\mathbb{K}) \times \mathfrak{D} \mathfrak{bi}_{\mathcal{A}}(\mathbb{K})$. Thus $f \cdot g \in \mathrm{CF}(\mathfrak{D} \mathfrak{bi}_{\mathcal{A}} \times \mathfrak{D} \mathfrak{bi}_{\mathcal{A}})$.

By [10, Theorem 8.4], π_m is representable and $\pi_l \times \pi_r$ is of finite type. The pushforward of π_m is well-defined and p_1 is injective. The following definition of multiplication is taken from [12, Definition 4.1].

Definition 3.5. Using the following diagram

$$
\mathfrak{Obj}_{\mathcal{A}} \times \mathfrak{Obj}_{\mathcal{A}} \xleftarrow{\pi_1 \times \pi_r} \mathfrak{Exact}_{\mathcal{A}} \xrightarrow{\pi_m} \mathfrak{Obj}_{\mathcal{A}},
$$

we can define the convolution multiplication

$$
\operatorname{CF}(\mathfrak{Obj}_{\mathcal{A}} \times \mathfrak{Obj}_{\mathcal{A}}) \xrightarrow{(\pi_\iota \times \pi_r)^*} \operatorname{CF}(\mathfrak{Exact}_{\mathcal{A}}) \xrightarrow{(\pi_m)_!} \operatorname{CF}(\mathfrak{Obj}_{\mathcal{A}}).
$$

The multiplication $*: CF(\mathfrak{Ob}_{A}) \times CF(\mathfrak{Ob}_{A}) \rightarrow CF(\mathfrak{Ob}_{A})$ is a bilinear map defined by

$$
f * g = (\pi_m) \cdot [(\pi_l \times \pi_r)^* (f \cdot g)] = (\pi_m) \cdot [\pi_l^* (f) \cdot \pi_r^* (g)].
$$

Let \mathcal{O}_1 and \mathcal{O}_2 be constructible subsets of $\mathfrak{Ob}j_{\mathcal{A}}(\mathbb{K})$, the meaning of $1_{\mathcal{O}_1} * 1_{\mathcal{O}_2}$ can be understood as follows. The function $m_{\pi_m} : \mathfrak{Exact}_{\mathcal{A}}(\mathbb{K}) \to \mathbb{Q}$, which is defined by

$$
m_{\pi_m}([X \xrightarrow{f} Y \xrightarrow{g} Z]) = \chi \big[\operatorname{Aut}(Y)/p_1 \big(\operatorname{Aut}(X \xrightarrow{f} Y \xrightarrow{g} Z) \big) \big],
$$

is a locally constructible function on $\mathfrak{Exact}_{\mathcal{A}}(\mathbb{K})$ by [11, Proposition 4.16], namely $m_{\pi_m}|_{\mathcal{O}}$ is a constructible function on $\mathcal O$ for every constructible subset $\mathcal{O} \subseteq \mathfrak{Exact}_{\mathcal{A}}(\mathbb{K}).$

For each $[Y] \in \mathfrak{Obj}_{\mathcal{A}}(\mathbb{K}),$

(4)
$$
1_{\mathcal{O}_1} * 1_{\mathcal{O}_2}([Y]) = \sum_{c \in \Lambda(\mathcal{O}_1, \mathcal{O}_2; Y)} c \chi^{na}(Q_c(\mathcal{O}_1, \mathcal{O}_2, Y)),
$$

where

$$
\Lambda(\mathcal{O}_1, \mathcal{O}_2; Y) = \{c = m_{\pi_m}([A \xrightarrow{f} Y \xrightarrow{g} B]) \mid [A] \in \mathcal{O}_1, [B] \in \mathcal{O}_2\} \setminus \{0\}
$$

is a finite set, and

$$
Q_c(\mathcal{O}_1, \mathcal{O}_2, Y) =
$$

$$
\{[A \xrightarrow{f} Y \xrightarrow{g} B] | [A] \in \mathcal{O}_1, [B] \in \mathcal{O}_2, m_{\pi_m}([A \xrightarrow{f} Y \xrightarrow{g} B]) = c\}
$$

are constructible sets for $c \in \Lambda(\mathcal{O}_1, \mathcal{O}_2; Y)$. In fact, the 1-morphism $\pi_l \times \pi_r$ is of finite type by [10, Theorem 8.4]. Hence $(\pi_{l*} \times \pi_{r*})^{-1}(\mathcal{O}_1 \times \mathcal{O}_2)$ is a constructible subset of $\mathfrak{Exact}_{\mathcal{A}}$. Then

$$
\Lambda(\mathcal{O}_1, \mathcal{O}_2; Y) = m_{\pi_m} \left[\left((\pi_{l*} \times \pi_{r*})^{-1} (\mathcal{O}_1 \times \mathcal{O}_2) \right) \cap \left((\pi_{m*})^{-1} ([Y]) \right) \right] \setminus \{0\}
$$

is a finite set by [11, Proposition 4.6]. Therefore

$$
Q_c(\mathcal{O}_1, \mathcal{O}_2, Y) = m_{\pi_m}^{-1}(c) \cap [(\pi_{l*} \times \pi_{r*})^{-1}(\mathcal{O}_1 \times \mathcal{O}_2)] \cap ((\pi_{m*})^{-1}([Y]))
$$

are constructible for all $c \in \Lambda(\mathcal{O}_1, \mathcal{O}_2; Y)$.

For each $([X],[Z]) \in \mathcal{O}_1 \times \mathcal{O}_2$, let

$$
\Lambda(X, Z; Y) = \left\{ c = m_{\pi_m}([X \xrightarrow{f} Y \xrightarrow{g} Z]) \mid [X \xrightarrow{f} Y \xrightarrow{g} Z] \in \mathfrak{Exact}_A(\mathbb{K}) \right\}
$$

and

$$
Q_c(X, Z, Y) = \{ [X \xrightarrow{f} Y \xrightarrow{g} Z] \mid m_{\pi_m}([X \xrightarrow{f} Y \xrightarrow{g} Z]) = c \},
$$

where $\Lambda(X, Z; Y)$ is a finite set and $Q_c(X, Z, Y)$ are constructible sets for all $c \in \Lambda(X, Z; Y)$. Then

(5)
$$
(1_{[X]} * 1_{[Z]})([Y]) = \sum_{c \in \Lambda(X,Z;Y)} c \chi^{na}(Q_c(X,Z,Y)).
$$

The set consisting of $\chi\left(\text{Aut}(Y)/p_1\left(\text{Aut}(X \xrightarrow{f} Y \xrightarrow{g} Z)\right)\right)$, where

$$
[X \xrightarrow{f} Y \xrightarrow{g} Z] \in \bigcup_{c \in \Lambda(\mathcal{O}_1, \mathcal{O}_2; Y)} Q_c(\mathcal{O}_1, \mathcal{O}_2, Y),
$$

is finite since $\chi(\text{Aut}(Y)/\text{Im}p_1) = m_{\pi_m}([X \xrightarrow{f} Y \xrightarrow{g} Z]).$ Let

$$
\pi_1: V(\mathcal{O}_1, \mathcal{O}_2; Y) \to \bigcup_{c \in \Lambda(\mathcal{O}_1, \mathcal{O}_2; Y)} Q_c(\mathcal{O}_1, \mathcal{O}_2, Y)
$$

be a morphism given by $\langle X \stackrel{f}{\to} Y \stackrel{g}{\to} Z \rangle \mapsto ([X \stackrel{f}{\to} Y \stackrel{g}{\to} Z])$. For each fibre of π_1 , $\chi^{na}(\pi_1^{-1}([X \xrightarrow{f} Y \xrightarrow{g} Z])) = \chi\left(\text{Aut}(Y)/p_1(\text{Aut}(X \xrightarrow{f} Y \xrightarrow{g} Z))\right).$

The following result is due to [4, Proposition 6] and [12, Theorem 4.3].

Theorem 3.6. The Q-space $CF(Dbj_A)$ is an associative Q-algebra, with convolution multiplication $*$ and identity $1_{[0]}$, where $1_{[0]}$ is the characteristic function of [0] \in $\mathfrak{Ob}j_{\mathcal{A}}(\mathbb{K}).$

Proof. Let $\mathcal{O}_1, \mathcal{O}_2$ and \mathcal{O}_3 be constructible subsets of $\mathfrak{Ob}j_{\mathcal{A}}(\mathbb{K})$. It suffices to show that $(1_{\mathcal{O}_1} * 1_{\mathcal{O}_2}) * 1_{\mathcal{O}_3}([M]) = 1_{\mathcal{O}_1} * (1_{\mathcal{O}_2} * 1_{\mathcal{O}_3})([M])$ for $M \in \text{Obj}(\mathcal{A})$. Take $X, Y, Z \in \mathcal{P}(\mathcal{A})$ satisfying $[X] \in \mathcal{O}_1, [Y] \in \mathcal{O}_2$ and $[Z] \in \mathcal{O}_3$. Consider $(f, g, m, l) \in W(X, Y; L) \times W(L, Z; M)$. There is a pushout

$$
L \xrightarrow{g} Y
$$

\n
$$
\downarrow l \qquad \qquad \downarrow l'
$$

\n
$$
M - \frac{g'}{g} \geq L'
$$

where $L' \in \mathcal{P}(\mathcal{A})$. We obtain an inflation $l': Y \to L'$ and a deflation $g':$ $M \to L'$. Let $f' = lf$. Then f' is an inflation and $g'f' = 0$. Hence g' is a cokernel of f' and $X \xrightarrow{f'} M \xrightarrow{g'} L'$ is a conflation.

There is a morphism $m' : L' \to Z$ such that $m = m'g'$ and $m'l' = 0$. It is easy to see that l' is a kernel of m' and (l', m') is a conflation. The following diagram is commutative

Note that the rows and columns are conflations. For $L, L' \in \mathcal{P}(\mathcal{A})$, we claim that the morphism

$$
\cup_L V([X],[Y];L) \times V([L],[Z];M) \xrightarrow{F} \cup_{L'} V([X],[L'],M) \times V([Y],[Z];L'),
$$

which maps $(\langle X \stackrel{f}{\to} L \stackrel{g}{\to} Y \rangle, \langle L \stackrel{l}{\to} M \stackrel{m}{\to} Z \rangle)$ to $(\langle X \stackrel{f'}{\to} M \stackrel{g'}{\to} L' \rangle, \langle Y \stackrel{l'}{\to}$ $L' \stackrel{m'}{\longrightarrow} Z$), is a bijection. The proof of this claim is quite similar to the proof of $[8,$ Proposition 2 and so is omitted. The morphism F induces a morphism $T : \mathcal{TS}(\mathbb{K}) \to \mathcal{TS}(\mathbb{K})$ by

$$
([X \xrightarrow{f} L \xrightarrow{g} Y], [L \xrightarrow{l} M \xrightarrow{m} Z]) \mapsto ([X \xrightarrow{f'} M \xrightarrow{g'} L'], [Y \xrightarrow{l'} L' \xrightarrow{m'} Z]).
$$

The following diagram is commutative

$$
\cup_L V([X],[Y];L) \times V([L],[Z];M) \xrightarrow{F} \cup_{L'} V([X],[L'],M) \times V([Y],[Z];L')
$$

$$
\downarrow \qquad \qquad \downarrow
$$

$$
\mathcal{T}S(\mathbb{K}) \xrightarrow{T} \mathcal{T}S(\mathbb{K})
$$

Let $c \in \Lambda(X, Y; L)$, $d \in \Lambda(L, Z; M)$, $c' \in \Lambda(X, L'; M)$, $d' \in \Lambda(Y, Z; L')$. Assume that $m_{\pi_m}([X \xrightarrow{f} L \xrightarrow{g} Y]) = c, \qquad m_{\pi_m}([L \xrightarrow{l} M \xrightarrow{m} Z]) = d,$ $m_{\pi_m}([X \xrightarrow{f'} M \xrightarrow{g'} L']) = c'$ and $m_{\pi_m}([Y \xrightarrow{l'} L' \xrightarrow{m'} Z]) = d'.$ Then

$$
\chi^{na}\big(T^{-1}([X \xrightarrow{f'} M \xrightarrow{g'} L'], [Y \xrightarrow{l'} L' \xrightarrow{m'} Z])\big) = \frac{c'd'}{cd}.
$$

Let $Q_c(X, Y, L)$ be as in Section 3.3. By Lemma 2.5, we have

$$
cd\chi^{\text{na}}(Q_c(X,Y,L))\chi^{\text{na}}(Q_d(L,Z,M)) = c'd'\chi^{\text{na}}(Q'_c(X,L',M))\chi^{\text{na}}(Q'_d(Y,Z,L')).
$$

It follows that $(1_{[X]} * 1_{[Y]}) * 1_{[Z]}([M]) = 1_{[X]} * (1_{[Y]} * 1_{[Z]})([M])$. Recall that

$$
(1_{\mathcal{O}_1} \ast 1_{\mathcal{O}_2}) \ast 1_{\mathcal{O}_3}([M]) = \int_{[X] \in \mathcal{O}_1, [Y] \in \mathcal{O}_2, [Z] \in \mathcal{O}_3} (1_{[X]} \ast 1_{[Y]}) \ast 1_{[Z]}([M])
$$

and

$$
1_{\mathcal{O}_1}*(1_{\mathcal{O}_2}*1_{\mathcal{O}_3})([M])=\int_{[X]\in\mathcal{O}_1,[Y]\in\mathcal{O}_2,[Z]\in\mathcal{O}_3}1_{[X]}*(1_{[Y]}*1_{[Z]})([M]).
$$

This completes the proof of Theorem 3.6. \Box

Joyce defined $CF^{\text{ind}}(\mathfrak{Ob}_{\mathfrak{J},\mathcal{A}})$ to be the subspace of $CF(\mathfrak{Ob}_{\mathfrak{J},\mathcal{A}})$ such that if $f([X]) \neq 0$ then X is an indecomposable object in A for every $f \in$ $CF^{ind}(\mathfrak{Ob}j_{\mathcal{A}})$. There is a result of [4, Theorem 13] and [12, Theorem 4.9].

Theorem 3.7. The Q-space $CF^{\text{ind}}(\text{Obj}_A)$ is a Lie algebra under the Lie bracket $[f, g] = f * g - g * f$ for $f, g \in CF^{\text{ind}}(\mathfrak{Ob} j_A)$.

Proof. Let \mathcal{O}_1 and \mathcal{O}_2 be two indecomposable constructible sets. It suffices to show that $1_{\mathcal{O}_1} * 1_{\mathcal{O}_2} - 1_{\mathcal{O}_2} * 1_{\mathcal{O}_1} \in CF^{\text{ind}}(\mathfrak{Obj}_\mathcal{A})$. Without loss of generality, we can assume that $\mathcal{O}_1 \cap \mathcal{O}_2 = \emptyset$. By corollary 3.13, $1_{\mathcal{O}_1} * 1_{\mathcal{O}_2} - 1_{\mathcal{O}_2} * 1_{\mathcal{O}_1} \in$ $CF^{ind}(\mathfrak{Ob} j_{\mathcal{A}}).$

3.4. The algebra $CF^{KS}(\mathfrak{Ob}j_{\mathcal{A}})$

Lemma 3.8. Let \mathcal{O}_1 and \mathcal{O}_2 be two constructible subsets of $\mathfrak{Ob}j_{\mathcal{A}}(\mathbb{K})$. For any $Y \in \text{Obj}(\mathcal{A})$, if $1_{\mathcal{O}_1} * 1_{\mathcal{O}_2}([Y]) \neq 0$, then there exists a conflation $A \xrightarrow{f}$ $Y \stackrel{g}{\rightarrow} B$ in A satisfying that $[A] \in \mathcal{O}_1$, $[B] \in \mathcal{O}_2$ and $m_{\pi_m}([A \stackrel{f}{\rightarrow} Y \stackrel{g}{\rightarrow} B]) \neq$ 0. Moreover, there exist $X, Z \in Obj(\mathcal{A})$ such that $[X] \in \mathcal{O}_1$, $[Z] \in \mathcal{O}_2$ and $1_{[X]} * 1_{[Z]}([Y]) \neq 0.$

$$
\overline{}
$$

Proof. Let $Q_c(\mathcal{O}_1, \mathcal{O}_2, Y)$ and $\Lambda(\mathcal{O}_1, \mathcal{O}_2; Y)$ be as in Section 3.3. Let

$$
Q = \sqcup_{c \in \Lambda(\mathcal{O}_1, \mathcal{O}_2; Y)} Q_c(\mathcal{O}_1, \mathcal{O}_2, Y) \text{ and } Q_c = Q_c(\mathcal{O}_1, \mathcal{O}_2, Y)
$$

for simplicity. Since $\Lambda(\mathcal{O}_1, \mathcal{O}_2, Y)$ is a finite set, Q is constructible.

For each $c \in \Lambda(\mathcal{O}_1, \mathcal{O}_2; Y)$, there exists some conflations $A \stackrel{f}{\to} Y \stackrel{g}{\to} B$ in A such that $[A] \in \mathcal{O}_1$, $[B] \in \mathcal{O}_2$ and $m_{\pi_m}([A \xrightarrow{f} Y \xrightarrow{g} B]) = c$. By equation (4), we know that there exist some $c \neq 0$. This proves the first statement. Let

$$
\pi: Q \to (\pi_{l*} \times \pi_{r*})(Q)
$$

be a map which maps $[X \stackrel{i}{\to} Y \stackrel{d}{\to} Z]$ to $([X], [Z])$ and

$$
m_m = m_{\pi_m}|_Q.
$$

It follows that m_m is a constructible function over Q .

Because $\pi_l \times \pi_r$ is a 1-morphism, π is a pseudomorphism by [11, Proposition 4.6. Thus $\pi(Q)$ is constructible and the naïve pushforward $(\pi)_{1}^{\text{na}}(m_{m})$ of m_m to $\pi(Q)$ exists. Note that $(\pi)^{na}_1(m_m)$ is a constructible function on $\pi(Q)$. In fact

$$
(\pi)^{na} (m_m)([X], [Z]) = 1_{[X]} * 1_{[Z]}([Y])
$$

for all $([X],[Z]) \in \pi(Q)$. Therefore

$$
\left\{1_{[X]}*1_{[Z]}([Y])\ |\ ([X],[Z])\in \pi(Q)\right\}
$$

is a finite set. Note that

$$
\pi^{-1}([X],[Z]) = \{ [X \xrightarrow{f} Y \xrightarrow{g} Z] \in Q_c \} = Q_c(X, Z, Y)
$$

is constructible for $([X], [Z]) \in \pi(Q_c)$ since $\pi_l \times \pi_r$ is of finite type. The set

$$
\{1_{[X]} * 1_{[Z]}([Y]) \mid ([X], [Z]) \in \pi(Q)\}
$$

is a finite set since $1_{[X]} * 1_{[Z]}$ is a constructible function. Using the equation 5 and the fact that $\Lambda(\mathcal{O}_1, \mathcal{O}_2, Y)$ is a finite set, we know that

$$
\{\chi^{na}(Q_c(X, Z, Y)) \mid ([X], [Z]) \in \pi(Q)\}\
$$

is a finite set.

Suppose that

$$
S_c(X, Z) = \left\{ ([A], [B]) \in \pi(Q_c) \mid \chi^{na}(\pi^{-1}([A], [B])) = \chi^{na}(Q_c(X, Z, Y)) \right\}.
$$

Then we have

$$
\chi^{\mathrm{na}}(Q_c) = \sum_{([X],[Z])} \chi^{\mathrm{na}}(S_c(X,Z)) \chi^{\mathrm{na}}(Q_c(X,Z,Y))
$$

for finitely many $([X],[Z]) \in \pi(Q_c)$.

For $c \in \Lambda(\mathcal{O}_1, \mathcal{O}_2; Y)$, let $\{([X_1^{(c)}], [Z_1^{(c)}]), \ldots, ([X_{k_c}^{(c)}], [Z_{k_c}^{(c)}])\}$ be a complete set of representatives for $([X],[Z]) \in \pi(Q_c)$ such that

$$
\chi^{\text{na}}(Q_c(X_i^{(c)}, Z_i^{(c)}, Y) \neq \chi^{\text{na}}(Q_c(X_j^{(c)}, Z_j^{(c)}, Y))
$$

for $i \neq j$ and $i, j \in \{1, 2, \ldots, k_c\}$. It is easy to see that

$$
\pi(Q_c) = \sqcup_{i=1}^{k_c} S_c(X_i^{(c)}, Z_i^{(c)}) \text{ and } \pi(Q) = \bigcup_c \big(\sqcup_{i=1}^{k_c} S_c(X_i^{(c)}, Z_i^{(c)})\big).
$$

Assume that $m_m(Q) = \{c_1, c_2, ..., c_m\}$. Set

$$
S(i_1, i_2, \ldots, i_n) = S_{c_{i_1}}(X_{l_{i_1}}^{(c_{i_1})}, Z_{l_{i_1}}^{(c_{i_1})}) \cap \ldots \cap S_{c_{i_n}}(X_{l_{i_n}}^{(c_{i_n})}, Z_{l_{i_n}}^{(c_{i_n})})
$$

be a non-empty set for $1 \leq i_1 < i_2 < \ldots < i_n \leq m$ and $1 \leq l_{i_j} \leq k_{c_{i_j}}$, which satisfies the 'minimal' condition, namely $S(i_1, i_2, \ldots, i_n) \cap S_c(X_i^{(c)}, Z_i^{(c)}) = \emptyset$ for any $c \notin \{c_{i_1},\ldots,c_{i_n}\}$ or $i \notin \{l_{i_1},\ldots,l_{i_n}\}.$ The choice of $S(i_1, i_2,\ldots,i_n)$ are finite. By definition, $S(i_1, i_2, \ldots, i_n)$ are pairwise disjoint. For simplicity, we use S_1, S_2, \ldots, S_r to denote sets $S(i_1, i_2, \ldots, i_n)$. It follows that

$$
S_1 \sqcup \ldots \sqcup S_r = \pi(Q).
$$

By Lemma 2.5, we obtain that

$$
\sum_{c \in \Lambda(\mathcal{O}_1, \mathcal{O}_2, Y)} c \chi^{\text{na}}(Q_c) = \sum_{c \in \Lambda(\mathcal{O}_1, \mathcal{O}_2; Y)} c \sum_{i=1}^r \chi^{na}(S_i) \chi^{\text{na}}(Q_c(X_i, Z_i, Y)) \delta(i, c),
$$

where $([X_i], [Z_i]) \in S_i$, $\delta(i, c) = 1$ if $S_i \cap \pi(Q_c(X_i, Z_i, Y)) \neq \emptyset$ and $\delta(i, c) = 0$ otherwise. Then

$$
1_{\mathcal{O}_1} * 1_{\mathcal{O}_2}([Y]) = \sum_{i=1}^r \chi^{na}(S_i) \sum_{c \in \Lambda(\mathcal{O}_1, \mathcal{O}_2; Y)} c \chi^{na}(Q_c(X_i, Z_i, Y)) \delta(i, c)
$$

$$
= \sum_{i=1}^r \chi^{na}(S_i) \big(1_{[X_i]} * 1_{[Z_i]}([Y])\big).
$$

There exists $([X_i], [Z_i])$ for some $i \in \{1, \ldots, r\}$ such that $1_{[X_k]} * 1_{[Z_k]}([Y]) \neq$ 0 since $1_{\mathcal{O}_1} * 1_{\mathcal{O}_2}([Y]) \neq 0$.

Let $\mathbf{D}_n(\mathbb{K})$ denote the group of invertible diagonal matrices in $\mathbf{GL}(n,\mathbb{K})$. The following lemma is related to Riedtmann[20, Lemma 2.2].

Lemma 3.9. Let $X, Y, Z \in Obj(\mathcal{A})$ and $X \stackrel{f}{\to} Y \stackrel{g}{\to} Z$ be a conflation in A. If $m_{\pi_m}([X \xrightarrow{f} Y \xrightarrow{g} Z]) \neq 0$, then $\gamma(Y) \leq \gamma(X) + \gamma(Z)$. In particular, $\gamma(Y) = \gamma(X) + \gamma(Z)$ if and only if $Y \cong X \oplus Z$.

Proof. Recall that $m_{\pi_m}([X \xrightarrow{f} Y \xrightarrow{g} Z]) = \chi(\text{Aut } Y/\text{Im}(p_1)).$

If $rk \text{Aut}(Y) > rk \text{Im}(p_1)$, then the fibre of the action of a maximal torus of Aut(Y) on Aut $Y/\text{Im}(p_1)$ is $(\mathbb{K}^*)^k$ for some $k \geq 1$, it forces $\chi(\text{Aut } Y/\text{Im}(p_1)) = 0.$ Hence we have rk $\text{Aut}(Y) = \text{rk } \text{Im}(p_1) \leq \text{rk } \text{Aut}(X) +$ $rk \operatorname{Aut}(Z)$.

We prove the second assertion by induction on $rk \text{Aut}(Y)$. First of all, suppose that $X \not\cong 0$ and $Z \not\cong 0$. If $rk \operatorname{Aut}(Y) = 2$ and $Y = Y_1 \oplus Y_2$, then $rk \, Aut(X) = rk \, Aut(Z) = 1$ since X and Z are not isomorphic to 0. For $t \in \mathbb{K}^* \setminus \{1\}, \begin{pmatrix} t & 0 \\ 0 & t^2 \end{pmatrix}$ $0 \t t^2$ λ \in Aut (Y) and it is an element of a maximal torus $\mathbf{D}_2(\mathbb{K})$ of Aut(Y). A maximal torus of Im(p_1) is also a maximal torus of Aut(Y) since $rk \text{Aut}(Y) = rk \text{Im}(p_1)$. Because two maximal tori of a connected linear algebraic group are conjugate, there exists $\alpha \in Aut(Y)$ such that $\alpha \begin{pmatrix} t & 0 \\ 0 & t^2 \end{pmatrix}$ $0 \t t^2$ $\int \alpha^{-1}$ lies in a maximal torus of Im(p₁). Hence there exist $a \in \text{Aut}(X)$ and $b \in \text{Aut}(Z)$ satisfying $(a, \alpha \begin{pmatrix} t & 0 \\ 0 & t^2 \end{pmatrix}$ $\alpha^{-1}, b) \in \text{Aut}(X \xrightarrow{f}$ $Y \stackrel{g}{\rightarrow} Z$, namely

$$
(a,\begin{pmatrix} t & 0\\ 0 & t^2 \end{pmatrix},b) \in \text{Aut}(X \xrightarrow{\alpha^{-1}f} Y \xrightarrow{g\alpha} Z).
$$

Let $f' = \alpha^{-1} f$ and $g' = g\alpha$. Observe $(t, \begin{pmatrix} t & 0 \\ 0 & t \end{pmatrix})$ $\Big\}$, $t) \in \mathrm{Aut}(X \xrightarrow{f'} Y \xrightarrow{g'}$ Z). Hence $f'(a-t) = \begin{pmatrix} 0 & 0 \\ 0 & t^2 - t \end{pmatrix}$ $\overline{ }$ f' . Let $s = \frac{1}{t^2-t}(a-t) \in \text{End}(X)$ $(t \neq$

0,1). Then
$$
f's = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} f'
$$
. Because f' is an inflation and

$$
f's^2 = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} f's = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} f' = f's,
$$

 $s^2 = s$. The category A is idempotent completion, consequently s has a kernel and an image such that $X = \text{Ker } s \oplus \text{Im } s$. But X is indecomposable, without loss of generality we can assume $X = \text{Kers}$. Then $s = 0$. Let $f' =$ f_1 and $g' = (g_1, g_2)$. It follows that

$$
\left(\begin{array}{c}0\\0\end{array}\right)=f's=\left(\begin{array}{cc}0&0\\0&1\end{array}\right)\left(\begin{array}{c}f_1\\f_2\end{array}\right)=\left(\begin{array}{c}0\\f_2\end{array}\right).
$$

We have $f_2 = 0$ and $f' = \begin{pmatrix} f_1 \\ 0 \end{pmatrix}$ 0 $\overline{ }$. The morphism $Y_1 \oplus Y_2 \xrightarrow{(0,1)} Y_2$ is a deflation by [2, Lemma 2.7]. Because $(0,1)\binom{f_1}{0}=0$, there exits $h \in \text{Hom}(Z, Y_1)$ such that $(0, 1) = h(g_1, g_2)$. We have $hg_1 = 0$ and $hg_2 = 1_{Y_2}$. Observe $g_2h \in$ $\text{End}(Z)$ and $(g_2h)(g_2h) = g_2h$, so g_2h has a kernel $k: K \to Z$ and an image $i: I \to Z$. Moreover $Z \cong K \oplus I$. It follows that $Z \cong K$ or $Z \cong I$ since Z is indecomposable. If $Z \cong K$ then $g_2h = 0$. But $hg_2h = h$, $K = 0$. Thus h is an isomorphism and $g_1 = 0$. We have $Z \cong Y_2$. Similarly $X \cong Y_1$. Hence $X \oplus Z \cong Y_1 \oplus Y_2.$

Assume that the assertion is true for $rk \text{Aut}(Y) = n \lt N$. When $n =$ N, we can assume $rk \, Aut(X) = n_1$ where $0 < n_1 < N$, then $rk \, Aut(Z) =$ $N - n_1 = n_2$. Let $Y = Y' \oplus Y_N$ and $Y' = Y_1 \oplus \ldots \oplus Y_{N-1}$, where Y_i are indecomposable. Observe that $\begin{pmatrix} tI_{N-1} & 0 \\ 0 & t^2 \end{pmatrix}$ İ. lies in a maximal torus of Aut(Y) for $t \in \mathbb{K}^* \setminus \{1\}$. There exists $(a, c, b) \in \text{Aut}(X \xrightarrow{f} Y \xrightarrow{g} Z)$ such that c and $\begin{pmatrix} tI_{N-1} & 0 \\ 0 & t^2 \end{pmatrix}$ \bigwedge are conjugate in $Aut(Y)$. For simplicity we assume $c=\left(\begin{array}{cc} tI_{N-1} & 0 \ 0 & t^2 \end{array}\right)$ $0 \qquad t^2$ $\overline{ }$. So we have the following commutative diagram

$$
X \xrightarrow{f} Y' \oplus Y_N \xrightarrow{g} Z
$$

\n
$$
a \downarrow c \downarrow \qquad \downarrow b
$$

\n
$$
X \xrightarrow{f} Y' \oplus Y_N \xrightarrow{g} Z
$$

where $f = (f_1, f_2, \ldots, f_N)^t$ and $g = (g_1, g_2, \ldots, g_N)$.

There is another commutative diagram

$$
tI_{n_1}\left\vert\begin{matrix}f^*,f_N)^tY'\oplus Y_N\frac{(g^*,g_N)}{2}Z\cr tI_N\cr X\frac{(f^*,f_N)^t}{2}Y'\oplus Y_N\frac{(g^*,g_N)}{2}Z\end{matrix}\right\vert tI_{n_2}
$$

where $f^* = (f_1, f_2, \ldots, f_{N-1})^T$ and $g^* = (g_1, g_2, \ldots, g_{N-1})$. Then $f =$ $(f^*, f_N)^t$, $g = (g^*, g_N)$ and $f(a - tI_{n_1}) = \begin{pmatrix} 0 & 0 \\ 0 & t^2 - t \end{pmatrix}$ Δ $f.$ Let

$$
s_N = \frac{1}{t^2 - t}(a - tI_{n_1}).
$$

Then $fs_N = diag\{0,\ldots,0,1\}f$. It follows $f * s_N = 0$, $f_N s_N = f_N$ and $g_N f_N = g \begin{pmatrix} 0 & I_{N-1} & 0 \\ 0 & 1 & I \end{pmatrix} f = g f s_N = 0.$ Moreover s_N is an idempotent, we know that $\hat{X} = \text{Kers}_N \oplus \text{Im}s_N$. If $f_N \neq 0$ then $\text{Im}s_N$ is not isomorphic to 0. Similarly we can define $s_1, s_2, \ldots, s_{N-1} \in End(X)$ with the property that $fs_i = diag\{0, \ldots, 0, 1, 0, \ldots, 0\}$ $f = (0, \ldots, 0, f_i, 0, \ldots, 0)^t$. Hence s_i is idempotent and if $f_i \neq 0$ then $\text{Im} s_i$ is not isomorphic to 0 for each i. Note that $s_1 + s_2 + ... + s_N = 1_X \in Aut(X)$, it follows

$$
X=\mathrm{Im}s_1\oplus\ldots\oplus\mathrm{Im}s_N.
$$

Hence $f_i = 0$ for some i since rk $Aut(X) < N$. Without loss of generality, we assume $f_N = 0$. Let $(0, \ldots, 0, 1) : Y_1 \oplus \ldots \oplus Y_N \to Y_N$, then

$$
(0,\ldots,0,1)(f_1,\ldots,f_N)^t=0
$$

Hence there exists $h \in \text{Hom}(Z, Y_N)$ such that $h(g_1, \ldots, g_N) = (0, \ldots, 0, 1),$ namely $hg_1 = 0, \ldots, hg_{N-1} = 0$ and $hg_N = 1$. Therefore Y_N is isomorphic to a direct summand of Z. Assume that $Z = Z' \oplus Y_N$ where $\gamma(Z') = \gamma(Z) - 1$. The morphism $(1,0): Z' \oplus Y_N \to Z'$ is a deflation, so $g' = g^*(1,0): Y' \to Z'$ is a deflation by Definition A.1. Obviously, $(f_1, \ldots, f_{N-1})^t : X \to Y_1 \oplus \ldots \oplus Y_n$ Y_{N-1} is a kernel of g' . Thus

$$
X \xrightarrow{(f_1,\ldots,f_{N-1})^t} Y_1 \oplus \ldots \oplus Y_{N-1} \xrightarrow{g'} Z'
$$

is a conflation. By hypothesis, $Y_1 \oplus \ldots \oplus Y_{N-1} \cong X \oplus Z'$. Hence $Y = Y_1 \oplus \ldots \oplus Y_N$... ⊕ $Y_N \cong X \oplus Z$. The proof is completed. \Box

Remark 3.10. If $1_{[X]} * 1_{[Z]}([Y]) \neq 0$, then $\gamma(Y) \leq \gamma(X) + \gamma(Z)$, where the equality holds if and only if $Y \cong X \oplus Z$.

Lemma 3.11. Let $X, Y, Z \in Obj(\mathcal{A})$ and $X \stackrel{f}{\to} Y \stackrel{g}{\to} Z$ be a conflation in A. If $m_{\pi_m}([X \stackrel{f}{\to} Y \stackrel{g}{\to} Z]) \neq 0$, $\gamma(Y) < \gamma(X) + \gamma(Z)$ and $Y = Y_1 \oplus Y_2$, then there exist two conflations $X_1 \xrightarrow{f_1} Y_1 \xrightarrow{g_1} Z_1$ and $X_2 \xrightarrow{f_2} Y_2 \xrightarrow{g_2} Z_2$ in A such $that X \cong X_1 \oplus X_2, Z \cong Z_1 \oplus Z_2 \text{ and } f = diag\{f_1, f_2\}, g = diag\{g_1, g_2\}.$

Proof. Suppose that $rk \text{Aut}(X) = n_1$, $rk \text{Aut}(X) = N$ and $rk \text{Aut}(Z) =$ n_2 . Then $N < n_1 + n_2$. For simplicity, we use the notation as above. Let $Y = Y_1 \oplus ... \oplus Y_N$, $f = (f_1, f_2, ..., f_N)^t$, $g = (g_1, g_2, ..., g_N)$ and the isomorphisms $(a, c, b), (tI_{n_1}, tI_N, tI_{n_2}) \in \text{Aut}(X \xrightarrow{f} Y \xrightarrow{g} Z)$, where $c =$ $\int tI_{N-1}$ 0 $0 \qquad t^2$ $\overline{ }$. Recall that

$$
s_N = \frac{1}{t^2 - t}(a - tI_{n_1}) \in \text{End}(X)
$$

is an idempotent such that

$$
fs_N=(0,\ldots,0,f_N)^t
$$

and $X = \text{Kers}_N \oplus \text{Im}s_N$. Similarly, there exists an idempotent

$$
r_N = \frac{1}{t - t^2} (b - tI_{n_2})
$$

in End(Z) such that $r_N g = (0,\ldots,0,g_N)$ and $Z = \text{Kerr}_N \oplus \text{Im}r_N$. Without loss of generality, we assume that $f_N \neq 0$ and $g_N \neq 0$. Because $f_N s_N = f_N$ and $r_N g_N = g_N$,

$$
g_Nf_N=r_Ng_Nf_Ns_N=r_N(g_1,\ldots,g_N)(f_1,\ldots,f_N)^{t}s_N=0.
$$

It is clear that $i : \text{Kers}_N \hookrightarrow X$ is a kernel of $f_N : X \to Y_N$. There exists a morphism $f'_N: \text{Im}s_N \to Y_N$ which is an image of f_N since $X = \text{Ker}s_N \oplus$ $\text{Im}s_N$. Similarly we can find a morphism $g'_N: Y_N \to \text{Im}r_N$ which is a coimage of g_N such that $g_N = j g'_N$, where $j : \text{Im}(r_N) \hookrightarrow Z$ is an image of g_N . It is easy to check that f'_N is an inflation, g'_N a deflation and $g'_N f'_N = 0$. Let $h: Y_N \to A$ be a morphism in A such that $hf'_N = 0$. The morphism

$$
(0,\ldots,0,h):Y_1\oplus\ldots\oplus Y_N\to A
$$

satisfies $(0,\ldots,0,h)f=0$. There exists $k \in \text{Hom}_{\mathcal{A}}(Z,A)$ such that

$$
(0,\ldots,0,h)=kg
$$

since g is a cokernel of f. It follows that $h = k g_N = k j g'_N$. Hence g'_N is a cokernel of f'_N . Therefore $\text{Im}s_N \xrightarrow{f'_N} Y_N \xrightarrow{g'_N} \text{Im}r_N$ is a conflation. By induction, every indecomposable direct summand of Y is extended by the direct summands of X and Z. The proof is finished. \Box

Lemma 3.12. Let \mathcal{O}_1 and \mathcal{O}_2 be two indecomposable constructible subsets of $\mathfrak{D}^{b}(\mathfrak{A}(\mathbb{K}))$. Let $A \in \mathrm{Obj}(\mathcal{A})$ and $\gamma(A) \geq 2$. If $[A] \notin \mathcal{O}_1 \oplus \mathcal{O}_2$, then $1_{\mathcal{O}_1} *$ $1_{\mathcal{O}_2}([A]) = 0.$

Proof. If $1_{\mathcal{O}_1} * 1_{\mathcal{O}_2}([A]) \neq 0$, then there exist $X, Y \in Obj(\mathcal{A})$ such that $[X] \in$ \mathcal{O}_1 , $[Y] \in \mathcal{O}_2$ and $1_{[X]} * 1_{[Y]}(A) \neq 0$ by Lemma 3.8. It follows that $\gamma(A) = 2$ and $A \cong X \oplus Y$ by Lemma 3.9 (also see [12, Theorem 4.9]). This leads to a contradiction. \Box

Corollary 3.13. Let \mathcal{O}_1 and \mathcal{O}_2 be indecomposable constructible subsets of $\mathfrak{Obj}_{\mathcal{A}}(\mathbb{K})$. If $\mathcal{O}_1 \cap \mathcal{O}_2 = \emptyset$, then

$$
1_{\mathcal{O}_1} * 1_{\mathcal{O}_2} = 1_{\mathcal{O}_1 \oplus \mathcal{O}_2} + \sum_{i=1}^m a_i 1_{\mathcal{P}_i}
$$

where \mathcal{P}_i are indecomposable constructible subsets and $a_i = 1_{\mathcal{O}_1} * 1_{\mathcal{O}_2}([X])$ for $[X] \in \mathcal{P}_i$.

Proof. Let $[M] \in \mathcal{O}_1$ and $[N] \in \mathcal{O}_2$. Then M is not isomorphic to N since $\mathcal{O}_1 \cap \mathcal{O}_2 = \emptyset$. Using the fact that $m_{\pi_m}([M \xrightarrow{(1,0)^t} M \oplus N \xrightarrow{(0,1)} N]) = 1$, we obtain

$$
1_{\mathcal{O}_1} * 1_{\mathcal{O}_2}([M \oplus N])
$$

$$
= m_{\pi_m}([M \xrightarrow{(1,0)^t} M \oplus N \xrightarrow{(0,1)} N]) \cdot \chi^{\text{na}}([M \xrightarrow{(1,0)^t} M \oplus N \xrightarrow{(0,1)} N]) = 1.
$$

By Lemma 3.12, we know that if $1_{\mathcal{O}_1} * 1_{\mathcal{O}_2}([X]) \neq 0$ and $[X] \notin \mathcal{O}_1 \oplus \mathcal{O}_2$, then X is an indecomposable object. Note that

$$
(1_{\mathcal{O}_1} * 1_{\mathcal{O}_2}(\mathfrak{Obj}_{\mathcal{A}}(\mathbb{K}) \setminus \mathcal{O}_1 \oplus \mathcal{O}_2)) \setminus \{0\} = \{a_1, a_2, \ldots, a_m\}.
$$

Then $\mathcal{P}_i = (1_{\mathcal{O}_1} * 1_{\mathcal{O}_2})^{-1}(a_i) \setminus \mathcal{O}_1 \oplus \mathcal{O}_2$ for $1 \leq i \leq m$. We complete the proof. proof. \Box \Box

Using Lemma 3.9 and Lemma 3.11, one easily obtains the following corollary:

Corollary 3.14. Let \mathcal{O}_1 and \mathcal{O}_2 be two constructible sets. There exist finitely many constructible sets Q_1, Q_2, \ldots, Q_n such that

$$
1_{\mathcal{O}_1} * 1_{\mathcal{O}_2} = \sum_{i=1}^n a_i 1_{\mathcal{Q}_i}
$$

where $\gamma(\mathcal{Q}_i) \leq \gamma(\mathcal{O}_1) + \gamma(\mathcal{O}_2)$ and $a_i = (1_{\mathcal{O}_1} * 1_{\mathcal{O}_2})([X])$ for any $[X] \in \mathcal{Q}_i$.

For indecomposable constructible sets $\mathcal{O}_1,\ldots,\mathcal{O}_k$ and $X \in \mathrm{Obj}(\mathcal{A}),$ $1_{\mathcal{O}_1} * 1_{\mathcal{O}_2} * \ldots * 1_{\mathcal{O}_k}([X]) \neq 0$ implies that $\gamma(X) \leq k$. In particular, $\gamma(X) =$ k means $X = X_1 \oplus \ldots \oplus X_k$ with $|X_i| \in \mathcal{O}_i$ for $1 \leq i \leq k$.

Let $X_1, \ldots, X_m \in \mathrm{Obj}(\mathcal{A})$ and there be r isomorphic classes, we can assume that X_1, \ldots, X_{m_1} are isomorphic, $X_{m_1+1}, \ldots, X_{m_2}$ are isomorphic, \ldots , and $X_{m_{r-1}+1},\ldots,X_{m_r}$ are isomorphic, where $m_1+\ldots+m_r=m$. By [12], we have

(6)
\n
$$
\operatorname{Aut}(X_1 \oplus \ldots \oplus X_m) / \operatorname{Aut}(X_1) \times \ldots \times \operatorname{Aut}(X_m)
$$
\n
$$
\cong \mathbb{K}^l \times \prod_{i=1}^r (\operatorname{GL}(m_i, \mathbb{K}) / (\mathbb{K}^*)^{m_i}),
$$

(7)
$$
\chi(\text{Aut}(X_1 \oplus X_2 \oplus \ldots \oplus X_m)) / \text{Aut}(X_1) \times \ldots \times \text{Aut}(X_m)) = \prod_{i=1}^r m_i!
$$

Proposition 3.15. Let \mathcal{O} be an indecomposable constructible set. Then

$$
1_{\mathcal{O}}^{*k} = k!1_{k\mathcal{O}} + \sum_{i=1}^{t} m_i 1_{\mathcal{P}_i}
$$

where $\gamma(\mathcal{P}_i) < k$ for each i and $m_i = 1^*_{\mathcal{O}}([X])$ for $[X] \in \mathcal{P}_i$.

Proof. We prove the proposition by induction on k. When $k = 1$, it is easy to see that the formula is true. If $k = 2$, then

$$
1_{\mathcal{O}}^{*2}([X \oplus X]) = 1_{\mathcal{O}}([X]) \cdot 1_{\mathcal{O}}([X]) \cdot \chi(\mathrm{Aut}(X \oplus X)/\mathrm{Aut}(X) \times \mathrm{Aut}(X)) = 2
$$

for $[X] \in \mathcal{O}$ and

$$
1_\mathcal{O}^{*2}([X\oplus Y])=
$$

$$
(1_{\mathcal{O}}([X])1_{\mathcal{O}}([Y]) + 1_{\mathcal{O}}([Y])1_{\mathcal{O}}([X])) \cdot \chi\big(\operatorname{Aut}(X \oplus Y)/\operatorname{Aut}(X) \times \operatorname{Aut}(Y)\big)
$$

= 2,

where $[X], [Y] \in \mathcal{O}$ and $X \not\cong Y$. If $[X] \notin \mathcal{O} \oplus \mathcal{O}$ and $\gamma(X) \geq 2$ then $1^*_{\mathcal{O}}([X]) = 0$ by Lemma 3.12. Hence $1^*_{\mathcal{O}} = 2 \cdot 1_{\mathcal{O} \oplus \mathcal{O}} + \sum_i$ $m_i \mathcal{P}_i$ where \mathcal{P}_i are indecomposable constructible sets by Corollary 3.14.

Now we suppose that the formula is true for $k \leq n$. When $k = n + 1$, we have

$$
1_{\mathcal{O}}^{*(n+1)} = 1_{\mathcal{O}}^{*(n)} * 1_{\mathcal{O}} = (n!1_{n\mathcal{O}} + \sum c_{\mathcal{P}'} 1_{\mathcal{P}'}) * 1_{\mathcal{O}},
$$

where \mathcal{P}' are constructible sets with $\gamma(\mathcal{P}') < n$. If the formula is true for $k = n + 1$, then

$$
n!1_{n\mathcal{O}} * 1_{\mathcal{O}} = (n+1)!1_{(n+1)\mathcal{O}} + \sum c_{\mathcal{Q}} 1_{\mathcal{Q}},
$$

where Q are constructible sets with $\gamma(Q) < n+1$. Hence it suffices to show that the initial term of $1_{n\mathcal{O}} * 1_{\mathcal{O}}$ is $(n+1)1_{(n+1)\mathcal{O}}$, namely $(1_{n\mathcal{O}} * 1_{\mathcal{O}})([X]) =$ $n+1$ for all $[X] \in (n+1)\mathcal{O}$.

Assume that $X = m_1X_1 \oplus m_2X_2 \oplus \ldots \oplus m_rX_r$, where $X_1, \ldots, X_r \in$ Obj(A) which are not isomorphic to each other, $[X_i] \in \mathcal{O}$ for $1 \leq i \leq r$, m_1, \ldots, m_r are positive integers and $m_1 + m_2 + \ldots + m_r = n + 1$.

$$
(1_{n\mathcal{O}} * 1_{\mathcal{O}})([X]) = (1_{[(m_1-1)X_1 \oplus m_2 X_2 \oplus \dots \oplus m_r X_r]} * 1_{[X_1]})([X])
$$

+
$$
(1_{[m_1X_1 \oplus (m_2-1)X_2 \oplus \dots \oplus m_r X_r]} * 1_{[X_2]})([X])
$$

+ ...

 $+(1_{[m_1X_1\oplus...\oplus m_{r-1}X_{r-1}\oplus(m_r-1)X_r]}*1_{[X_r]})([X])$

Using Equation (7), it follows that

$$
1_{[X_1]}^{*(m_1-1)} * 1_{[X_2]}^{*m_2} * \ldots * 1_{[X_r]}^{*m_r}
$$

Realizing Enveloping Algebras via Moduli Stacks 207

$$
= (m_1 - 1)!m_2! \dots m_r!1_{[(m_1 - 1)X_1 \oplus m_2 X_2 \oplus \dots \oplus m_r X_r]} + \dots,
$$

$$
1_{[X_1]}^{*(m_1 - 1)} * 1_{[X_2]}^{*m_2} * \dots * 1_{[X_r]}^{*m_r} * 1_{[X_1]} = (\prod_{i=1}^r m_i!)1_{[m_1 X_1 \oplus m_2 X_2 \oplus \dots \oplus m_r X_r]} + \dots
$$

Compare the initial monomials of the two equations, it follows that

$$
1_{[(m_1-1)X_1\oplus m_2X_2\oplus...\oplus m_rX_r]}*1_{[X_1]}=m_11_{[m_1X_1\oplus m_2X_2\oplus...\oplus m_rX_r]}+\ldots
$$

Thus $1_{[(m_1-1)X_1\oplus m_2X_2\oplus...\oplus m_rX_r]}*1_{[X_1]}([X])=m_1.$

Similarly, we have $1_{[m_1X_1\oplus...\oplus(m_i-1)X_i\oplus...\oplus m_rX_r]}*1_{[X_i]}([X])=m_i$ for $i=$ 2,...,r. Hence $(1_{n\mathcal{O}} * 1_{\mathcal{O}})([X]) = \sum_{i=1}^{n}$ $m_i = n + 1$ which completes the proof. \Box

By induction, we have the following corollary.

Corollary 3.16. Let $\mathcal{O}_1, \mathcal{O}_2, \ldots, \mathcal{O}_k$ be indecomposable constructible sets which are pairwise disjoint. Then we have the following equations

$$
1_{\mathcal{O}_1}^{*n_1} * 1_{\mathcal{O}_2}^{*n_2} \dots * 1_{\mathcal{O}_k}^{*n_k} = n_1! n_2! \dots n_k! 1_{n_1 \mathcal{O}_1 \oplus \dots \oplus n_k \mathcal{O}_k} + \dots,
$$

$$
1_{m_1 \mathcal{O}_1 \oplus \dots \oplus m_k \mathcal{O}_k} * 1_{n_1 \mathcal{O}_1 \oplus \dots \oplus n_k \mathcal{O}_k}
$$

$$
= \prod_{i=1}^k \frac{(m_i + n_i)!}{m_i! n_i!} 1_{(m_1 + n_1) \mathcal{O}_1 \oplus \dots \oplus (m_k + n_k) \mathcal{O}_k} + \dots,
$$

where k is a positive integer and $m_1, \ldots, m_k, n_1, \ldots, n_k \in \mathbb{N}$.

Let $\text{Ind}(\alpha)$ be the subset of $\mathfrak{Ob}^{\alpha}_{\mathcal{A}}(\mathbb{K})$ such that X are indecomposable for all $[X] \in \text{Ind}(\alpha)$.

Lemma 3.17. For each $\alpha \in K'(\mathcal{A})$, Ind (α) is a locally constructible set.

Proof. Assume $\alpha, \beta, \gamma \in K'(\mathcal{A}) \setminus \{0\}$. The map

$$
f:\coprod_{\beta,\gamma;\atop \beta+\gamma=\alpha} \mathfrak{D} \mathfrak{bi}^{\beta}_{\mathcal{A}}(\mathbb{K}) \times \mathfrak{D} \mathfrak{bi}^{\gamma}_{\mathcal{A}}(\mathbb{K}) \rightarrow \mathfrak{D} \mathfrak{bi}^{\alpha}_{\mathcal{A}}(\mathbb{K})
$$

is defined by $([B], [C]) \mapsto [B \oplus C]$. It is clear that f is a pseudomorphism. Every $\mathfrak{Ob}^{\mathfrak{Z}}_{\mathcal{A}}(\mathbb{K}) \times \mathfrak{Ob}^{\mathfrak{Z}}_{\mathcal{A}}(\mathbb{K})$ is a locally constructible set. For any constructible set $\mathcal{C} \subseteq \mathfrak{Obj}_{\mathcal{A}}(\mathbb{K}) \times \mathfrak{Obj}_{\mathcal{A}}(\mathbb{K})$, there are finitely many $\mathfrak{Obj}_{\mathcal{A}}^{\beta}(\mathbb{K}) \times \mathfrak{Obj}_{\mathcal{A}}^{\gamma}(\mathbb{K})$ such that $\mathcal{C} \cap (\mathfrak{Obj}_{\mathcal{A}}^{\beta}(\mathbb{K}) \times \mathfrak{Obj}_{\mathcal{A}}^{\gamma}(\mathbb{K})) \neq \emptyset$. Hence

 $\amalg_{\beta,\gamma,\beta+\gamma=\alpha} \mathfrak{Obj}_{\mathcal{A}}^{\beta}(\mathbb{K}) \times \mathfrak{Obj}_{\mathcal{A}}^{\gamma}(\mathbb{K})$ is locally constructible. Then Imf is a locally constructible set. It follows that $\text{Ind}(\alpha) = \text{Obj}_{\mathcal{A}}^{\alpha}(\mathbb{K}) \setminus \text{Im}f$ is locally \Box constructible. \Box

The following proposition is due to [4, Proposition 11].

Proposition 3.18. Let \mathcal{O}_1 , \mathcal{O}_2 be two constructible sets of Krull-Schmidt. It follows that

$$
1_{\mathcal{O}_1} * 1_{\mathcal{O}_2} = \sum_{i=1}^c a_i 1_{\mathcal{Q}_i}
$$

for some $c \in \mathbb{N}^+$, where $a_i = 1_{\mathcal{O}_1} * 1_{\mathcal{O}_2}([X])$ for each $[X] \in \mathcal{Q}_i$ and \mathcal{Q}_i are constructible sets of stratified Krull-Schmidt such that $\gamma(Q_i) \leq \gamma(Q_1) +$ $\gamma(\mathcal{O}_2)$.

Proof. Because $\mathcal{O}_1, \mathcal{O}_2$ are constructible sets, the equation holds for some constructible sets Q_i with $\gamma(Q_i) \leq \gamma(\mathcal{O}_1) + \gamma(\mathcal{O}_2)$ by Corollary 3.14.

For every $[Y_i] \in \mathcal{Q}_i$, $1_{\mathcal{O}_1} * 1_{\mathcal{O}_2}([Y_i]) \neq 0$. By Lemma 3.8, there exist $X_i, Z_i \in \text{Obj}(\mathcal{A})$ such that $[X_i] \in \mathcal{O}_1$, $[Z_i] \in \mathcal{O}_2$ and $1_{[X_i]} * 1_{[Z_i]}([Y_i]) \neq 0$ since $1_{\mathcal{O}_1} * 1_{\mathcal{O}_2}([Y_i]) \neq 0$. Thanks to Lemma 3.9, we have that $\gamma(Y_i) \leq$ $\gamma(X_i) + \gamma(Z_i)$. According to Lemma 3.11, all indecomposable direct summands of Y_i are extended by the direct summands of X_i and Z_i since $1_{[X_i]} * 1_{[Z_i]}([Y_i]) \neq 0.$

By the discussion in Section 3.1, we can suppose that $\mathcal{O}_1 = \bigoplus^t$ $i=1$ $a_i\mathcal{C}_i$ and $\mathcal{O}_2=\bigoplus^t$ $j=1$ $b_j \mathcal{C}_j$, where $a_i, b_j \in \{0, 1\}$ for all i, j and \mathcal{C}_i are indecomposable

constructible sets such that $\mathcal{C}_i \cap \mathcal{C}_j = \emptyset$ or $\mathcal{C}_i = \mathcal{C}_j$ for all $i \neq j$. Let $1 \leq r \leq t$, the set

$$
\{A_1, A_2, \dots, A_r \mid \emptyset \neq A_i \subseteq \{1, \dots, n\} \text{ for } i = 1, \dots, r\}
$$

is called an *r*-partition of $\{1, 2, ..., t\}$ if $A_1 \cup A_2 \cup ... \cup A_r = \{1, 2, ..., t\}$ and $A_i \cap A_j = \emptyset$ for all $i \neq j$. Obviously, the cardinal number of all partitions of $\{1, 2, ..., t\}$ is finite. Let $\{A_1, A_2, ..., A_r\}$, $\{B_1, B_2, ..., B_r\}$ be two r-partitions of $\{1, 2, ..., t\}$ and $c_k \in \mathbb{Q} \setminus \{0\}$ for $k = 1, 2, ..., r$. Set $\mathcal{O}_{A_k} = \bigoplus$ $i \in A_k$ $a_i\mathcal{C}_i$ and $\mathcal{O}_{B_k} = \bigoplus$ $j \in B_k$ $b_j \mathcal{C}_j$ for $1 \leq k \leq r$. Then we have

$$
\mathcal{R}_{A_k,B_k,c_k} = \{ [X] \in \mathcal{O}_{A_k} \oplus \mathcal{O}_{B_k} \mid 1_{\mathcal{O}_{A_k}} * 1_{\mathcal{O}_{B_k}}([X]) = c_k \},
$$

 $\mathcal{I}_{A_k,B_k,c_k} = \{ [X] \mid X \text{ indecomposable}, 1_{\mathcal{O}_{A_k}} * 1_{\mathcal{O}_{B_k}}([X]) = c_k \}.$

This means that for each $[X] \in \mathcal{R}_{A_k,B_k,c_k}$, there exist $[A] \in \mathcal{O}_{A_k}$ and $[B] \in$ \mathcal{O}_{B_k} such that $X \cong A \oplus B$. For each $[Y] \in \mathcal{I}_{A_k,B_k,c_k}$, there exist $[C] \in \mathcal{O}_{A_k}$ and $[D] \in \mathcal{O}_{B_k}$ such that $C \to Y \to D$ is a non-split conflation in A. Note that

$$
\mathcal{R}_{A_k,B_k,c_k} = ((1_{\mathcal{O}_{A_k}} * 1_{\mathcal{O}_{B_k}})^{-1}(c_k)) \cap (\mathcal{O}_{A_k} \oplus \mathcal{O}_{B_k}).
$$

By Corollary 3.16, $\mathcal{R}_{A_k,B_k,c_k} = \emptyset$ or $\mathcal{O}_{A_k} \oplus \mathcal{O}_{B_k}$. Hence $\mathcal{R}_{A_k,B_k,c_k}$ is a constructible set of Krull-Schmidt. There exist $\alpha_1, \ldots, \alpha_s \in K'(\mathcal{A})$ such that $\mathcal{I}_{A_k,B_k,c_k} = (\amalg_{i=1}^s \text{Ind}(\alpha_i)) \cap ((1_{\mathcal{O}_{A_k}} * 1_{\mathcal{O}_{B_k}})^{-1}(c_k)).$ By Lemma 3.17, $\mathcal{I}_{A_k,B_k,c_k}$ is an indecomposable constructible set.

Finally, $1_{\mathcal{O}_1} * 1_{\mathcal{O}_2}$ is a Q-linear combination of finitely many $1_{\bigoplus_{k=1}^r \mathcal{O}_{A_k,B_k,c_k}}$, where $\mathcal{O}_{A_k,B_k,c_k}$ run through $\mathcal{R}_{A_k,B_k,c_k}$ and $\mathcal{I}_{A_k,B_k,c_k}$ for all r-partitions and $r = 1, 2, \ldots, t$. We finish the proof.

Thus we summarize what we have proved as the following theorem which is due to [4, Theorem 12].

Theorem 3.19. The Q-space $CF^{KS}(\mathfrak{Ob}^{\dagger}_{A})$ is an associative Q-algebra with convolution multiplication $*$ and identity $1_{[0]}$.

3.5. The universal enveloping algebra of $CF^{ind}(\mathfrak{Ob}j_{\mathcal{A}})$

From now on, let $U(\mathrm{CF}^{\mathrm{ind}}(\mathfrak{Ob}_{A}))$ denote the universal enveloping algebra of $CF^{ind}($\mathfrak{Ob} \mathfrak{i}_A$) over \mathbb{Q} . The multiplication in $U(CF^{ind}($\mathfrak{Ob} \mathfrak{i}_A$)) will be written$$ as $(x, y) \mapsto xy$. There is a Q-algebra homomorphism

$$
\Phi:U(\mathrm{CF}^{\mathrm{ind}}(\mathfrak{Obj}_{\mathcal{A}}))\rightarrow \mathrm{CF}^{\mathrm{KS}}(\mathfrak{Obj}_{\mathcal{A}})
$$

defined by $\Phi(1) = 1_{[0]}$ and $\Phi(f_1 f_2 ... f_n) = f_1 * f_2 * ... * f_n$, where f_1, f_2, \ldots, f_n belong to $CF^{ind}(\mathfrak{Ob}j_{\mathcal{A}})$.

The following theorem is related to [4, Theorem 15].

Theorem 3.20. $\Phi: U(\mathrm{CF}^{\mathrm{ind}}(\mathfrak{Ob}_{A})) \to \mathrm{CF}^{\mathrm{KS}}(\mathfrak{Ob}_{A})$ is an isomorphism.

Proof. For simplicity of presentation, let

$$
U = U(\mathrm{CF}^{\mathrm{ind}}(\mathfrak{Obj}_{\mathcal{A}})) \text{ and } \mathrm{CF} = \mathrm{CF}^{\mathrm{KS}}(\mathfrak{Obj}_{\mathcal{A}}).
$$

Assume that $\mathcal{O}_1, \mathcal{O}_2, \ldots, \mathcal{O}_{k-1}$ and \mathcal{O}_k are indecomposable constructible subsets of $\mathfrak{D}\mathfrak{b}$ $\mathfrak{z}_{\mathcal{A}}(\mathbb{K})$ which are pairwise disjoint. It follows that $1_{\mathcal{O}_1}, 1_{\mathcal{O}_2}, \ldots, 1_{\mathcal{O}_k}$ are linearly independent in $CF^{\text{ind}}(\mathfrak{Ob} j_\mathcal{A})$.

Let $U_{\mathcal{O}_1...\mathcal{O}_k}$ denote the subspace of U which is spanned by all $1_{\mathcal{O}_1}^{n_1} 1_{\mathcal{O}_2}^{n_2} \dots 1_{\mathcal{O}_k}^{n_k}$ for $n_i \in \mathbb{N}$ and $i = 1, \dots, k$.

Define $CF_{\mathcal{O}_1...\mathcal{O}_n}$ to be the subalgebra of CF which is generated by the elements $1_{n_1\mathcal{O}_1\oplus n_2\mathcal{O}_2\oplus...\oplus n_k\mathcal{O}_k}$ of CF, where $n_i \in \mathbb{N}$ for $i = 1, 2, ..., k$.

The homomorphism Φ induces a homomorphism

$$
\Phi_{\mathcal{O}_1...\mathcal{O}_k}:U_{\mathcal{O}_1...\mathcal{O}_k}\to \mathrm{CF}_{\mathcal{O}_1...\mathcal{O}_k}
$$

which maps $1_{\mathcal{O}_1}^{n_1} 1_{\mathcal{O}_2}^{n_2} \ldots 1_{\mathcal{O}_k}^{n_k}$ to $1_{\mathcal{O}_1}^{*n_1} * 1_{\mathcal{O}_2}^{*n_2} * \ldots * 1_{\mathcal{O}_k}^{*n_k}$.

First of all, we want to show that $\Phi_{\mathcal{O}_1...\mathcal{O}_k}$ is injective.

For $m \in \mathbb{N}$, let $U_{\mathcal{O}_1...\mathcal{O}_k}^{(m)}$ be the subspace of U which is spanned by

$$
\left\{1_{\mathcal{O}_{1}}^{n_{1}}1_{\mathcal{O}_{2}}^{n_{2}}\ldots1_{\mathcal{O}_{k}}^{n_{k}}\mid\sum_{i=1}^{k}n_{i}\leq m, n_{i}\geq 0 \text{ for } i=1,\ldots,k\right\}
$$

Using the PBW Theorem, we obtain that

$$
\left\{1_{\mathcal{O}_{1}}^{n_{1}}1_{\mathcal{O}_{2}}^{n_{2}}\ldots1_{\mathcal{O}_{k}}^{n_{k}}\mid\sum_{i=1}^{k}n_{i}=m,n_{i}\geq0\text{ for }i=1,\ldots,k\right\}
$$

is a basis of the Q-vector space $U^{(m)}_{\mathcal{O}_1...\mathcal{O}_k}/U^{(m-1)}_{\mathcal{O}_1...\mathcal{O}_k}$ for $m \geq 1$.

Similarly, we define $CF^{(m)}_{\mathcal{O}_1...\mathcal{O}_k}$ to be a subspace of $CF_{\mathcal{O}_1...\mathcal{O}_k}$ such that each $f \in CF^{(m)}_{\mathcal{O}_1...\mathcal{O}_k}$ is of the form $\sum_{i=1}^l$ $\sum_{i=1}^{k} c_i 1_{\mathcal{C}_i}$, where $l \in \mathbb{N}^+$, $c_i \in \mathbb{Q}$, $1_{\mathcal{C}_i} \in$ $CF_{\mathcal{O}_1...\mathcal{O}_k}$ and \mathcal{C}_i are constructible sets of Krull-Schmidt such that $\gamma(\mathcal{C}_i) \leq m$. In $CF^{(m)}/CF^{(m-1)}$, the set

$$
\{1_{n_1\mathcal{O}_1\oplus n_2\mathcal{O}_2\oplus\ldots\oplus n_k\mathcal{O}_k} \mid \sum_{i=1}^k n_i = m, n_i \geq 0 \text{ for } i = 1,\ldots,k\}
$$

is linearly independent by the Krull-Schmidt Theorem.

For each $m \geq 1$, $\Phi_{\mathcal{O}_1...\mathcal{O}_k}$ induce a map

$$
\Phi_{\mathcal{O}_1...\mathcal{O}_k}^{(m)}:U_{\mathcal{O}_1...\mathcal{O}_k}^{(m)}/U_{\mathcal{O}_1...\mathcal{O}_k}^{(m-1)}\to \mathrm{CF}_{\mathcal{O}_1...\mathcal{O}_k}^{(m)}/\,\mathrm{CF}_{\mathcal{O}_1...\mathcal{O}_k}^{(m-1)}
$$

which maps $1_{\mathcal{O}_1}^{n_1} 1_{\mathcal{O}_2}^{n_2} \ldots 1_{\mathcal{O}_k}^{n_k}$ to $n_1! n_2! \ldots n_k! 1_{n_1 \mathcal{O}_1 \oplus n_2 \mathcal{O}_2 \oplus \ldots \oplus n_k \mathcal{O}_k}$ (also see Corollary 3.16), where $\sum_{k=1}^{k}$ $\sum_{i=1}$ $n_i = m$ and $m_i \geq 0$. From this we know that $\Phi_{\mathcal{O}_1...\mathcal{O}_k}^{(m)}$ is injective for all $m \in \mathbb{N}$. Obviously, both $U_{\mathcal{O}_1\mathcal{O}_2...\mathcal{O}_n}$ and $\text{CF}_{\mathcal{O}_1...\mathcal{O}_n}$

are filtered. From the properties of filtered algebra, we know that $\Phi_{\mathcal{O}_1...\mathcal{O}_k}$ is injective. Hence $\Phi: U \to \mathbb{C}$ is injective.

Finally, we show that Φ is surjective by induction on m. When $m = 1$, the statement is trivial. Then we assume that every constructible function $f = \sum_{i=1}^{t}$ $\sum_{i=1} a_i 1_{Q_i}$ lies in Im(Φ), where $a_i \in \mathbb{Q}$ and Q_i are constructible sets of stratified Krull-Schmidt with $\gamma(\mathcal{Q}_i) < m$.

Let $n_1 + n_2 + \ldots + n_k = m$ and $n_i \in \mathbb{N}$ for $1 \leq i \leq k$. Then

$$
\Phi(1_{\mathcal{O}_1}^{n_1} 1_{\mathcal{O}_2}^{n_2} \dots 1_{\mathcal{O}_k}^{n_k}) = 1_{\mathcal{O}_1}^{*n_1} * 1_{\mathcal{O}_2}^{*n_2} * \dots * 1_{\mathcal{O}_k}^{*n_k}
$$

= $n_1! n_2! \dots n_n! 1_{n_1 \mathcal{O}_1 \oplus n_2 \mathcal{O}_2 \oplus \dots \oplus n_k \mathcal{O}_k} + \sum_{j=1}^s b_j 1_{\mathcal{P}_j},$

where $b_i \in \mathbb{Q}$ and \mathcal{P}_i are constructible sets of stratified Krull-Schmidt with $\gamma(\mathcal{P}_j) < m$. By the hypothesis, \sum^s $\sum_{j=1} b_j 1_{\mathcal{P}_j} \in \text{Im}(\Phi)$. Hence $1_{n_1\mathcal{O}_1 \oplus n_2 \mathcal{O}_2 \oplus ... \oplus n_k \mathcal{O}_k}$ lies in Im(Φ). The algebra CF is generated by all $1_{n_1\mathcal{O}_1\oplus...\oplus n_k\mathcal{O}_k}$, which proves that Φ is surjective, the proof is finished. \square

4. Comultiplication and Green's theorem

4.1. Comultiplication

We now turn to define a comultiplication on the algebra $CF^{KS}(\mathfrak{Ob} j_{\mathcal{A}})$. For $f,g \in \mathrm{CF}(\mathfrak{Ob}j_{\mathcal{A}}), f \otimes g$ is define by $f \otimes g([X],[Y]) = f([X])g([Y])$ for $([X], [Y]) \in (\mathfrak{D} \mathfrak{bi}_{\mathcal{A}} \times \mathfrak{D} \mathfrak{bi}_{\mathcal{A}}(\mathbb{K}) = \mathfrak{D} \mathfrak{bi}_{\mathcal{A}}(\mathbb{K}) \times \mathfrak{D} \mathfrak{bi}_{\mathcal{A}}(\mathbb{K})$ (see [12, Difinition 4.1]). Let $X \xrightarrow{f} Y \xrightarrow{g} Z$ be a conflation in A. Recall that the map p_2 : $Aut(X \xrightarrow{f} Y \xrightarrow{g} Z) \rightarrow Aut(X) \times Aut(Z)$ is defined by $(a_1, a_2, a_3) \mapsto (a_1, a_3)$ and $\chi(\text{Ker}p_2) = 1$.

The following definitions are related to [4, Section 6] and [12, Defintion 4.16].

Definition 4.1. From now on, assume that π_m : $\mathfrak{Exact}_{\mathcal{A}} \to \mathfrak{Ob}_{\mathcal{A}}$ is of finite type and $\pi_l \times \pi_r$ is representable. Then we have the following diagram

$$
\mathrm{CF}^{\mathrm{KS}}(\mathfrak{Obj}_{\mathcal{A}} \times \mathfrak{Obj}_{\mathcal{A}}) \xleftarrow{(\pi_l \times \pi_r)_!} \mathrm{CF}^{\mathrm{KS}}(\mathfrak{Exact}_{\mathcal{A}}) \xleftarrow{(\pi_m)^*} \mathrm{CF}^{\mathrm{KS}}(\mathfrak{Obj}_{\mathcal{A}}).
$$

The comultiplication

$$
\Delta:\mathrm{CF}^{\mathrm{KS}}(\mathfrak{Obj}_{\mathcal{A}})\rightarrow\mathrm{CF}^{\mathrm{KS}}(\mathfrak{Obj}_{\mathcal{A}}\times\mathfrak{Obj}_{\mathcal{A}})
$$

is defined by $\Delta = (\pi_l \times \pi_r)_! \circ (\pi_m)^*$, where $CF^{KS}(\mathfrak{Ob}j_A \times \mathfrak{Ob}j_A)$ is regarded as a topological completion of $CF^{KS}(\mathfrak{Ob}_{\mathcal{A}}) \otimes CF^{KS}(\mathfrak{Ob}_{\mathcal{A}})$.

The counit ε : $CF^{KS}(\mathfrak{Ob}j_{\mathcal{A}}) \to \mathbb{Q}$ maps f to $f([0])$.

Note that Δ is a Q-linear map since $(\pi_l \times \pi_r)$ and $(\pi_m)^*$ are Q-linear map.

Definition 4.2. Let $\alpha = [A], \beta = [B] \in \mathfrak{Ob}_{A}(\mathbb{K})$ and $\mathcal{O} \subseteq \mathfrak{Ob}_{A}(\mathbb{K})$ be a constructible set of stratified Krull-Schmidt, define

$$
h_{\mathcal{O}}^{\beta\alpha} = \Delta(1_{\mathcal{O}})([A], [B]).
$$

Let \mathcal{O}_1 and $\mathcal{O}_2 \subseteq \mathfrak{D}$ bj_A(K) be constructible sets, define

$$
g_{\mathcal{O}_2\mathcal{O}_1}^{\alpha} = 1_{\mathcal{O}_1} * 1_{\mathcal{O}_2}(\alpha).
$$

Because $\Delta(1_{\mathcal{O}})$ is a constructible function, $\Delta(1_{\mathcal{O}}) = \sum_{i=1}^{n}$ $h_{\mathcal{O}}^{\beta_i \alpha_i} 1_{\mathcal{O}_i}$ for some $\alpha_i, \beta_i \in \mathfrak{Obj}_{\mathcal{A}}(\mathbb{K})$ and $n \in \mathbb{N}$, where \mathcal{O}_i are constructible subsets of $\mathfrak{Obj}_{A}(\mathbb{K}) \times \mathfrak{Obj}_{A}(\mathbb{K}).$

Lemma 4.3. Let X, Y, Z \in Obj(A). If $X \oplus Z$ is not isomorphic to Y, then $\Delta(1_{[Y]})([X],[Z]) = 0.$

Proof. If $\Delta(1_{[Y]})([X],[Z]) \neq 0$, there exists a conflation $X \stackrel{f}{\to} Y \stackrel{g}{\to} Z$ in A such that $m_{\pi_l \times \pi_r}([X \xrightarrow{f} Y \xrightarrow{g} Z]) \neq 0$. Recall that

$$
m_{\pi_l \times \pi_r}([X \xrightarrow{f} Y \xrightarrow{g} Z]) = \chi((\mathrm{Aut}(X) \times \mathrm{Aut}(Z))/\mathrm{Imp}_2).
$$

If rk $\text{Im}p_2 < \text{rk}(\text{Aut}(X) \times \text{Aut}(Z))$, the fibre of the action of a maximal torus of Aut(X) \times Aut(Z) on (Aut(X) \times Aut(Z))/Imp₂ is (K^{*})^l for some l $>$ 0. Then $\chi((\text{Aut}(X) \times \text{Aut}(Z))/\text{Im}p_2) = 0$, which is a contradiction. Hence $\text{rk}(\text{Aut}(X) \times \text{Aut}(Z)) = \text{rk } \text{Im} p_2.$

Assume that $rk \, Aut(X) = n_1$, $rk \, Aut(Z) = n_2$ and $rk \, Aut(Y) = n$ for some positive integers n_1 , n_2 and n. Note that $\mathbf{D}_{n_1} \times \mathbf{D}_{n_2}$ is a maximal torus of $\text{Aut}(X) \times \text{Aut}(Z)$. Because rk $(\text{Aut}(X) \times \text{Aut}(Z)) = \text{rk Im}(p_2)$, each maximal torus of Imp₂ is also a maximal torus of $Aut(X) \times Aut(Z)$. Therefore every maximal torus of $\text{Im}p_2$ and $\textbf{D}_{n_1} \times \textbf{D}_{n_2}$ are conjugate. For simplicity, we can assume that $\mathbf{D}_{n_1} \times \mathbf{D}_{n_2}$ is a maximal torus of Imp₂. For $(t_1I_{n_1}, t_2I_{n_2}) \in \mathbf{D}_{n_1} \times \mathbf{D}_{n_2}$, where $t_1 \neq t_2$, there exists $\tau \in \mathrm{Aut}(Y)$ such that

 $(t_1I_{n_1}, \tau, t_2I_{n_2}) \in \text{Aut}(X \xrightarrow{f} Y \xrightarrow{g} Z)$. Then we have the commutative diagram

$$
X \xrightarrow{f} Y \xrightarrow{g} Z
$$

$$
t_1 I_{n_1} \downarrow \qquad \tau \downarrow \qquad \downarrow t_2 I_{n_2}
$$

$$
X \xrightarrow{f} Y \xrightarrow{g} Z
$$

The morphism $(t_2I_{n_1}, t_2I_{n}, t_2I_{n_2})$ is also in $\text{Aut}(X \xrightarrow{f} Y \xrightarrow{g} Z)$. The following diagram is commutative

$$
X \xrightarrow{f} Y \xrightarrow{g} Z
$$

$$
t_2 I_{n_1} \downarrow \qquad t_2 I_n \downarrow \qquad t_2 I_{n_2}
$$

$$
X \xrightarrow{f} Y \xrightarrow{g} Z
$$

Consequently $g(\tau - t_2I_n) = 0$. Because f is a kernel of g, there exists $h \in$ Hom(Y, X) such that $\tau - t_2I_n = fh$. Then $\tau = fh + t_2I_n$. We have

$$
f(t_1I_{n_1}) = \tau f = (fh + t_2I_n))f,
$$

it follows that

$$
fhf = f(t_1I_{n_1}) - (t_2I_n)f = f(t_1I_{n_1} - t_2I_{n_1}).
$$

Then $hf = (t_1 - t_2)I_{n_1}$ since f is an inflation. Let $f' = \frac{1}{t_1 - t_2}h$, then $f'f =$ 1_X . Hence X is isomorphic to a direct summand of Y. The proof is com p pleted.

For an indecomposable object $X \in Obj(\mathcal{A})$, direct summands of X are only X and 0. Thus $\Delta(1_{[X]})=1_{[X]}\otimes 1_{[0]} + 1_{[0]}\otimes 1_{[X]}$. It follows that $\Delta(f)$ = $f \otimes 1_{[0]} + 1_{[0]} \otimes f$ for $f \in CF^{\text{ind}}(\mathcal{D}\mathfrak{bi}_{\mathcal{A}})$.

By Lemma 4.3, $h_{\mathcal{O}}^{\beta \alpha} = 1$ if $\alpha \oplus \beta \in \mathcal{O}$, and $h_{\mathcal{O}}^{\beta \alpha} = 0$ otherwise. Let $\mathcal{O} =$ $n_1\mathcal{O}_1\oplus\ldots\oplus n_m\mathcal{O}_m$ be a constructible set of Krull-Schmidt, where \mathcal{O}_i are indecomposable constructible sets for all $1 \leq i \leq m$. By Lemma 4.3, the formula $\Delta(1_{\mathcal{O}}) = \sum_{i=1}^{n}$ $h^{\beta_i \alpha_i}_{\mathcal{O}} 1_{\mathcal{O}_i}$ can be written as

$$
\Delta(1_{\mathcal{O}}) = \sum_{1 \leq i \leq m; 0 \leq k_i \leq n_i} 1_{k_1 \mathcal{O}_1 \oplus \ldots \oplus k_m \mathcal{O}_m} \otimes 1_{(n_1 - k_1) \mathcal{O}_1 \oplus \ldots \oplus (n_m - k_m) \mathcal{O}_m}.
$$

Hence we have the following proposition.

Proposition 4.4. Let \mathcal{O} be a constructible set of stratified Krull-Schmidt, then $\Delta(1_{\mathcal{O}}) \in \mathrm{CF}^{\mathrm{KS}}(\mathfrak{Ob}_{\mathcal{A}}) \otimes \mathrm{CF}^{\mathrm{KS}}(\mathfrak{Ob}_{\mathcal{A}})$, i.e., the map

$$
\Delta:\mathrm{CF}^{\mathrm{KS}}(\mathfrak{Obj}_{\mathcal{A}})\rightarrow\mathrm{CF}^{\mathrm{KS}}(\mathfrak{Obj}_{\mathcal{A}})\otimes\mathrm{CF}^{\mathrm{KS}}(\mathfrak{Obj}_{\mathcal{A}}))
$$

is well-defined.

4.2. Green's theorem on stacks

Recall that

$$
\int_{x \in S} f(x) = \sum_{a \in f(S) \setminus \{0\}} a \chi^{\text{na}}(f^{-1}(a) \cap S),
$$

where f is a constructible function and S a locally constructible set.

Let $\mathcal{O}_1, \mathcal{O}_2, \mathcal{O}_9, \mathcal{O}_6, \mathcal{O}_7, \mathcal{O}_\lambda$ be constructible sets and $\alpha \in \mathcal{O}_1, \beta \in$ $\mathcal{O}_2, \rho \in \mathcal{O}_\rho, \sigma \in \mathcal{O}_\sigma, \epsilon \in \mathcal{O}_\epsilon, \tau \in \mathcal{O}_\tau, \lambda \in \mathcal{O}_\lambda$ such that $\mathcal{O}_\rho \oplus \mathcal{O}_\sigma = \mathcal{O}_1$ and $\mathcal{O}_{\epsilon} \oplus \mathcal{O}_{\tau} = \mathcal{O}_{2}.$

The following theorem is the degenerate form of Green's theorem which is related to [4, Theorem 22].

Theorem 4.5. Let $\mathcal{O}_1, \mathcal{O}_2$ be constructible subsets of $\mathfrak{Obj}_\mathcal{A}(\mathbb{K})$ and $\alpha', \beta' \in$ \mathfrak{D} bj_A(K), then we have

$$
g_{\mathcal{O}_2\mathcal{O}_1}^{\alpha'\oplus\beta'}=\int_{\rho,\sigma,\epsilon,\tau\in\mathfrak{Obj}_{\mathcal{A}}(\mathbb{K});\rho\oplus\sigma\in\mathcal{O}_1,\epsilon\oplus\tau\in\mathcal{O}_2}g_{\epsilon\rho}^{\alpha'}g_{\tau\sigma}^{\beta'}.
$$

Proof. By the proof of Lemma 3.8, $g_{\mathcal{O}_2 \mathcal{O}_1}^{\alpha' \oplus \beta'} = \int_{\alpha \in \mathcal{O}_1, \beta \in \mathcal{O}_2} g_{\beta \alpha}^{\alpha' \oplus \beta'}$. It suffices to prove the following formula

$$
g_{\beta\alpha}^{\alpha'\oplus\beta'}=\int_{\rho,\sigma,\epsilon,\tau\in\mathfrak{Obj}_{\mathcal{A}}(\mathbb{K});\rho\oplus\sigma=\alpha,\epsilon\oplus\tau=\beta}g_{\epsilon\rho}^{\alpha'}g_{\tau\sigma}^{\beta'}.
$$

Suppose that $[A] = \alpha$, $[B] = \beta$, $[A'] = \alpha'$, $[B'] = \beta'$, $[C] = \rho$, $[D] = \sigma$, $[E] = \epsilon$ and $[F] = \tau$ for $A, B, C, D, E, F \in Obj(\mathcal{A})$. There are finitely many (ρ, σ) and (ϵ, τ) such that $\rho \oplus \sigma = \alpha$ and $\epsilon \oplus \tau = \beta$. Take

$$
V = \bigcup_{[C], [D], [E], [F]; \atop [C \oplus D] = [A], [E \oplus F] = [B]} V([C], [E]; A') \times V([D], [F]; B').
$$

The map

$$
i: V \to V([A], [B]; A' \oplus B')
$$

is defined by

$$
(\langle C \xrightarrow{f_1} A' \xrightarrow{g_1} E \rangle, \langle D \xrightarrow{f_2} B' \xrightarrow{g_2} F \rangle) \mapsto \langle C \oplus D \xrightarrow{f} A' \oplus B' \xrightarrow{g} E \oplus F \rangle,
$$

where $f = \begin{pmatrix} f_1 & 0 \\ 0 & f \end{pmatrix}$ $0 \t f_2$ $\overline{ }$ and $g = \begin{pmatrix} g_1 & 0 \\ 0 & g_2 \end{pmatrix}$ $0 \t g_2$). Because both $C \xrightarrow{f_1} A' \xrightarrow{g_1} E$ and $D \xrightarrow{f_2} B' \xrightarrow{g_2} F$ are conflations, $C \oplus D \xrightarrow{f} A' \oplus B' \xrightarrow{g} E \oplus F$ is a conflation by [2, Proposition 2.9]. Hence the morphism is well-defined. Note that i is injective.

There is a map $\Omega_1: V(A, B, A' \oplus B') \to \mathfrak{Exact}_{\mathcal{A}}(\mathbb{K})$ which maps $\langle A \xrightarrow{f}$ $A' \oplus B' \stackrel{g}{\rightarrow} B$ to $[A \stackrel{f}{\rightarrow} A' \oplus B' \stackrel{g}{\rightarrow} B]$. Recall that

$$
\chi(\Omega_1^{-1}([A \xrightarrow{f} A' \oplus B' \xrightarrow{g} B])) = m_{\pi_m}([A \xrightarrow{f} A' \oplus B' \xrightarrow{g} B]).
$$

Take

$$
Q(A, B, A' \oplus B') = \sqcup_{a \in \Lambda(A, B; A' \oplus B')} Q_a(A, B, A' \oplus B')
$$

which is the image of Ω_1 .

A map

$$
\Omega_2: V \to \mathfrak{Exact}_\mathcal{A}(\mathbb{K}) \times \mathfrak{Exact}_\mathcal{A}(\mathbb{K})
$$

is defined by

$$
(\langle C \xrightarrow{f_1} A' \xrightarrow{g_1} E \rangle, \langle D \xrightarrow{f_2} B' \xrightarrow{g_2} F \rangle) \mapsto ([C \xrightarrow{f_1} A' \xrightarrow{g_1} E], [D \xrightarrow{f_2} B' \xrightarrow{g_2} F]).
$$

The Euler characteristic of $\Omega_2^{-1}((C \xrightarrow{f_1} A' \xrightarrow{g_1} E], [D \xrightarrow{f_2} B' \xrightarrow{g_2} F]))$ is $m_{\pi_m}([C \xrightarrow{f_1} A' \xrightarrow{g_1} E]) m_{\pi_m}([D \xrightarrow{f_2} B' \xrightarrow{g_2} F])$. Let

$$
Q(c, d, C, D, E, F) = Q_c(C, E, A') \times Q_d(D, F, B')
$$

for $c \in \Lambda(C, E; A'), d \in \Lambda(D, F; B')$ and

$$
Q(A', B') = \sqcup_{c,d,[C],[D],[E],[F]} Q(c,d,C,D,E,F),
$$

where $C \oplus E \cong A$ and $D \oplus F \cong B$.

There is a morphism

$$
\overline{i}: Q(A', B') \to Q(A, B, A' \oplus B')
$$

by $([C \xrightarrow{f_1} A' \xrightarrow{g_1} E], [D \xrightarrow{f_2} B' \xrightarrow{g_2} F]) \mapsto [C \oplus D \xrightarrow{f} A' \oplus B' \xrightarrow{g} E \oplus F].$ Then there is a commutative diagram

$$
\Omega_2^{-1}(Q(A', B')) \xrightarrow{i} \Omega_1^{-1}(Q(A, B, A' \oplus B'))
$$

\n
$$
\Omega_2 \downarrow \qquad \qquad \downarrow \Omega_1
$$

\n
$$
Q(A', B') \xrightarrow{\overline{i}} Q(A, B, A' \oplus B')
$$

According to Lemma 3.11, if $m_{\pi_m}([A \xrightarrow{f} A' \oplus B' \xrightarrow{g} B]) \neq 0$, then there exist two conflations $C \xrightarrow{f_1} A' \xrightarrow{g_1} E$ and $D \xrightarrow{f_2} B' \xrightarrow{g_2} F$ in A such that $A \cong C \oplus$ D, $B \cong E \oplus F$, $f = \begin{pmatrix} f_1 & 0 \\ 0 & f_1 \end{pmatrix}$ $0 \quad f_2$ \sum and $g = \begin{pmatrix} g_1 & 0 \\ 0 & 0 \end{pmatrix}$ 0 g_2 \bigwedge^{\bullet} . If

$$
m_{\pi_m}([A \xrightarrow{f} A' \oplus B' \xrightarrow{g} B]) = 0,
$$

then $[A \stackrel{f}{\to} A' \oplus B' \stackrel{g}{\to} B] \in \mathfrak{Exact}_\mathcal{A}(\mathbb{K}) \setminus Q(A, B, A' \oplus B').$ Hence \overline{i} is surjective. For each $[A \stackrel{f}{\rightarrow} A' \oplus B' \stackrel{g}{\rightarrow} B] \in Q(A, B, A' \oplus B'),$

$$
\chi\left(\overline{i}^{-1}([A \xrightarrow{f} A' \oplus B' \xrightarrow{g} B])\right)
$$

=
$$
\frac{m_{\pi_m}([A \xrightarrow{f} A' \oplus B' \xrightarrow{g} B])}{m_{\pi_m}([C \xrightarrow{f_1} A' \xrightarrow{g_1} E])m_{\pi_m}([D \xrightarrow{f_2} B' \xrightarrow{g_2} F])}.
$$

By Lemma 2.5, it follows that

$$
cd\chi^{\text{na}}(Q_c(C, E; A'))\chi^{\text{na}}(Q_d(D, F; B')) = a\chi^{\text{na}}(Q_c(A, B; A' \oplus B'),
$$

where $c = m_{\pi_m}([C \xrightarrow{f_1} A' \xrightarrow{g_1} E]), \quad d = m_{\pi_m}([D \xrightarrow{f_2} B' \xrightarrow{g_2} F]), \quad a =$ $m_{\pi_m}([A \stackrel{f}{\to} A' \oplus B' \stackrel{g}{\to} B])$ and $acd \neq 0$. This completes the proof.

For all $f_1, f_2, g_1, g_2 \in \text{CF}^{\text{KS}}(\mathfrak{Ob} j_A)$, define $(f_1 \otimes g_1) * (f_2 \otimes g_2) = (f_1 * f_2)$ $f_2 \otimes (g_1 * g_2)$. Using Green's theorem, we have the following theorem due to [4, Theorem 24].

Theorem 4.6. The map Δ : $CF^{KS}(\mathfrak{Ob}_{A}) \rightarrow CF^{KS}(\mathfrak{Ob}_{A}) \otimes CF^{KS}(\mathfrak{Ob}_{A})$ is an algebra homomorphism.

Proof. The proof is similar to the one in [4, Theorem 24]. Let $\mathcal{O}_1, \mathcal{O}_2 \in$ $\mathfrak{Obj}_{\mathcal{A}}(\mathbb{K})$ be constructible sets of stratified Krull-Schmidt. Then

$$
\Delta(1_{\mathcal{O}_1} * 1_{\mathcal{O}_2}) = \Delta(\sum_{\lambda} g^{\lambda}_{\mathcal{O}_2 \mathcal{O}_1} 1_{\mathcal{O}_{\lambda}}) = \sum_{\lambda} g^{\lambda}_{\mathcal{O}_2 \mathcal{O}_1} \Delta(1_{\mathcal{O}_{\lambda}})
$$

$$
= \sum_{\lambda} g^{\lambda}_{\mathcal{O}_2 \mathcal{O}_1} (\sum_{\alpha', \beta'} h^{\beta' \alpha'}_{\mathcal{O}_{\lambda}} 1_{\mathcal{O}_{\alpha'}} \otimes 1_{\mathcal{O}_{\beta'}}) = \sum_{\alpha', \beta'} g^{\alpha' \oplus \beta'}_{\mathcal{O}_2 \mathcal{O}_1} 1_{\mathcal{O}_{\alpha'}} \otimes 1_{\mathcal{O}_{\beta'}},
$$

$$
\Delta(1_{\mathcal{O}_{1}}) * \Delta(1_{\mathcal{O}_{2}}) = \left(\sum_{\rho,\sigma} h^{\sigma\rho}_{\mathcal{O}_{1}} 1_{\mathcal{O}_{\rho}} \otimes 1_{\mathcal{O}_{\sigma}}\right) * \left(\sum_{\epsilon,\tau} h^{\tau\epsilon}_{\mathcal{O}_{2}} 1_{\mathcal{O}_{\epsilon}} \otimes 1_{\mathcal{O}_{\tau}}\right)
$$

$$
= \sum_{\rho,\sigma,\epsilon,\tau} h^{\sigma\rho}_{\mathcal{O}_{1}} h^{\tau\epsilon}_{\mathcal{O}_{2}} (1_{\mathcal{O}_{\rho}} * 1_{\mathcal{O}_{\epsilon}}) \otimes (1_{\mathcal{O}_{\sigma}} * 1_{\mathcal{O}_{\tau}})
$$

$$
= \sum_{\rho,\sigma,\epsilon,\tau} h^{\sigma\rho}_{\mathcal{O}_{1}} h^{\tau\epsilon}_{\mathcal{O}_{2}} (\sum_{\alpha',\beta'} g^{\alpha'}_{\alpha',\mathcal{O}_{\rho}} g^{\beta'}_{\mathcal{O}_{\tau}\mathcal{O}_{\sigma}} 1_{\mathcal{O}_{\alpha'}} \otimes 1_{\mathcal{O}_{\beta'}})
$$

$$
= \sum_{\alpha',\beta'} \left(\sum_{\beta,\sigma,\epsilon,\tau} h^{\sigma\rho}_{\mathcal{O}_{1}} h^{\tau\epsilon}_{\mathcal{O}_{2}} g^{\alpha'}_{\mathcal{O}_{\epsilon}} \mathcal{O}_{\rho} g^{\beta'}_{\mathcal{O}_{\tau}\mathcal{O}_{\sigma}} 1_{\mathcal{O}_{\alpha'}} \otimes 1_{\mathcal{O}_{\beta'}}\right).
$$

According to Theorem 4.5, it follows that

$$
\sum_{\rho,\sigma,\epsilon,\tau}h^{\sigma\rho}_{\mathcal{O}_1}h^{\tau\epsilon}_{\mathcal{O}_2}g^{\alpha'}_{\mathcal{O}_\epsilon\mathcal{O}_\rho}g^{\beta'}_{\mathcal{O}_\tau\mathcal{O}_\sigma}=g^{\alpha'\oplus\beta'}_{\mathcal{O}_2\mathcal{O}_1}.
$$

Therefore $\Delta(1_{\mathcal{O}_1} * 1_{\mathcal{O}_2}) = \Delta(1_{\mathcal{O}_1}) * \Delta(1_{\mathcal{O}_2})$. We have thus proved the theorem. rem. \Box

Appendix A. Exact categories

We recall the definition of an exact category (see [13, Appendix A]).

Definition A.1. Let A be an additive category. A sequence

$$
X \xrightarrow{f} Y \xrightarrow{g} Z
$$

in A is called exact if f is a kernel of g and g is a cokernel of f. The morphisms f and g are called inflation and deflation respectively. The short exact sequence is called a conflation. Let $\mathcal S$ be the collection of conflations closed under isomorphism and satisfying the following axioms

A0 1_0 : $0 \rightarrow 0$ is a deflation.

A1 The composition of two deflations is a deflation.

A2 For every $h \in \text{Hom}(X, X')$ and every inflation $f \in \text{Hom}(X, Y)$ in A, there exists a pushout

where $f' \in \text{Hom}(X', Y')$ is an inflation.

A3 For every $l \in \text{Hom}(Z', Z)$ and every deflation $g \in \text{Hom}(Y, Z)$ in A, there exists a pullback

$$
Y' \xrightarrow{g'} Z'
$$

\n
$$
v \downarrow \qquad \qquad v
$$

\n
$$
Y \xrightarrow{g} Z
$$

where $g' \in \text{Hom}(Y', Z')$ is an deflation. Then $(\mathcal{A}, \mathcal{S})$ is called an exact category.

The definition of idempotent complete is taken from[2, Definition 6.1].

Definition A.2. Let $\mathcal A$ be an additive category. The category $\mathcal A$ is idempotent complete if for every idempotent morphism $s : A \to A$ in A , s has a kernel $k : K \to A$ and a image $i : I \to A$ (a kernel of a cokernel of s) such that $A \cong K \oplus I$. We write $A \cong \text{Ker } s \oplus \text{Im } s$, for simplicity.

References

- [1] I. Assem, D. Simson, A. Skowronski. Elements of the representation theory of associative algebras. Vol. 1. Techniques of representation theory. London Mathematical Society Student Texts, 65. Cambridge University Press, Cambridge, 2006.
- [2] T. Bühler. *Exact categories*. Expo. Math. 28 (2010), no. 1, 1-69.
- [3] P. Caldero, B. Keller. From triangulated categories to cluster algebras. Invent. Math. 172 (2008), no. 1, 169-211.
- [4] M. Ding, J, Xiao, F. Xu. Realizing enveloping algebras via varieties of modules. Acta Math. Sin. (Engl. Ser.) 26 (2010), no. 1, 29-48.
- [5] J. A. Green. Hall algebras, hereditary algebras and quantum groups. Invent. Math. 120 (1995), no. 2, 361-377.
- [6] T. L. Gómez. *Algebraic stacks.* Proc. Indian Acad. Sci. Math. Sci. 111 (2001), no. 1, 1-31.
- [7] R. Hartshorne. Algebraic geometry. Graduate Texts in Mathematics, No. 52. Springer-Verlag, New York-Heidelberg, 1977.
- [8] A. Hubery. From triangulated categories to Lie algebras: a theorem of Peng and Xiao. Trends in representation theory of algebras and related topics, 51-66, Contemp. Math., 406, Amer. Math. Soc., Providence, RI, 2006.
- [9] B. T. Jensen, X. Su, A. Zimmermann. Degenerations for derived categories. J. Pure Appl. Algebra 198 (2005), no. 1-3, 281-295.
- [10] D. Joyce. Configurations in abelian categories. I. Basic properties and moduli stacks. Adv. Math. 203 (2006), no. 1, 194-255.
- [11] D. Joyce. Constructible functions on Artin stacks. J. London Math. Soc. (2) 74 (2006), no. 3, 583-606.
- [12] D. Joyce. Configurations in abelian categories. II. Ringel-Hall algebras. Adv. Math. 210 (2007), no. 2, 635-706.
- [13] B. Keller. Chain complexes and stable categories. Manuscripta Math. 67 (1990), no. 4, 379-417.
- [14] A. Kresch. Cycle groups for Artin stacks. Invent. Math. 138 (1999), no. 3, 495-536.
- [15] G. Lusztig. Intersection cohomology methods in representation theory. Proceedings of the International Congress of Mathematicians, Vol. I, II (Kyoto, 1990), 155-174, Math. Soc. Japan, Tokyo, 1991.
- [16] S. Mozgovoy. Motivic Donaldson-Thomas invariants and McKay correspondence. arXiv:1107.6044v1 [math.AG].
- [17] D. Mumford. Algebraic geometry. I. Complex projective varieties. Reprint of the 1976 edition. Classics in Mathematics. Springer-Verlag, Berlin, 1995.
- [18] L. Peng, J. Xiao. Triangulated categories and Kac-Moody algebras. Invent. Math. 140 (2000), no. 3, 563-603.
- [19] D. Quillen. Higher algebraic K-theory. I. Algebraic K-theory, I: Higher K-theories (Proc. Conf., Battelle Memorial Inst., Seattle, Wash., 1972), pp. 85-147. Lecture Notes in Math., Vol. 341, Springer, Berlin 1973.
- [20] C. Riedtmann. Lie algebras generated by indecomposables. J. Algebra 170 (1994), no. 2, 526-546.
- [21] C. M. Ringel. Hall algebras and quantum groups. Invent. Math. 101 (1990), no. 3, 583-591.
- [22] C. M. Ringel. Green's theorem on Hall algebras. Representation theory of algebras and related topics (Mexico City, 1994), 185-245, CMS Conf. Proc., 19, Amer. Math. Soc., Providence, RI, 1996.
- [23] M. Rosenlicht. A remark on quotient spaces. An. Acad. Brasil. Ci. 35 1963 487-489.
- [24] A. Schofield. Notes on constructing Lie algebras from finite-dimensional algebras. Manuscript.
- [25] J. Xiao, F. Xu, G. Zhang. Derived categories and Lie algebras. arXiv:0604564v2 [math.QA].

Liqian Bai

Department Of Mathematical Sciences, Tsinghua University, Beijing 100084, People's Repubic of China.

E-mail: 196baiyz@163.com

Fan Xu Department Of Mathematical Sciences, Tsinghua University, Beijing 100084, People's Repubic of China. E-mail: fanxu@mail.tsinghua.edu.cn