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Realizing Enveloping Algebras via Moduli
Stacks

LiQiaN BAI AND FAN XU

Abstract: Let CF(Obj4) denote the vector space of Q-valued
constructible functions on a given stack Obj 4 for an abelian cat-
egory A. In [12], Joyce proved that CF(Dbj4) is an associative
Q-algebra via the convolution multiplication and the subspace
CFind (Dbj 4) of constructible functions supported on indecompos-
ables is a Lie subalgebra of CF(9bj4). In this paper, we extend
Joyce’s result to an exact category A and show that there is a
subalgebra CF¥5(Obj4) of CF(Obj4) isomorphic to the univer-
sal enveloping algebra of CF™(9bj4). Moreover we construct a
comultiplication on CFXS (Dbj 4) and a degenerate form of Green’s
theorem. This refines Joyce’s result, as well as results of [4].
Keywords: Hall algebra; stack; constructible set; universal
enveloping algebra.

1. Introduction

Let A be a finite dimensional C-algebra such that it is a representation-finite
algebra, i.e., there are finitely many finite dimensional indecomposable A-
modules up to isomorphism. Let Z(A) = {X1,..., Xy} be a set of represen-
tatives. Let P(A) be a set of representatives for all isomorphism classes of
A-modules. There is a free Z-module R(A) with a basis {ux | X € P(A)}.
Using the Euler characteristic, P(A) can be endowed with a multiplicative
structure (see [24] and [15]). The multiplication is defined by

ux uy = > x(V(X,Y;A))ua,
AEP(A)

where V(X,Y;A)={0C A CA| A =X, A/A1 =Y} and x(V(X,Y; A))
is the Euler characteristic of V(X,Y; A). Thus (R(A),+,) is a Z-algebra
with identity ug. Let L(A) be the submodule of R(A) which is spanned by
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{ux | X € Z(A)}. It follows that L(A) is a Lie subalgebra of R(A) with the
Lie bracket [ux,uy| = ux - uy —uy - ux. Riedtmann studied the universal
enveloping algebra of L(A). Let R(A)" be the subalgebra of R(A) generated
by {ux | X € Z(A)}. Riedtmann showed that R(A)" is isomorphic to the
universal enveloping algebra of L(A). These results have been generalized in
two ways.

Joyce generalized Riedtmann’s work in the context of constructible func-
tions (also stack functions) over moduli stacks. In [11], Joyce defined the
Euler characteristics of constructible sets in K-stacks, pushforwards and
pullbacks for constructible functions, where K is an algebraically closed
field. Let A be an abelian category and CF(Obj4) the vector space of
Q-valued constructible functions on Obj 4(K), where Obj 4 is the moduli
stack of objects in A and Obj4(K) the collection of isomorphism classes
of objects in A. Joyce proved that CF(Obj4) is an associative Q-algebra.
The algebra CF(Obj 4) can be viewed as a variant of the Ringel-Hall alge-
bra. Let CF"4(9Obj4) be the subspace of CF(Obj,) satisfying the con-
dition that f([X]) # 0 implies X is an indecomposable object in A for
every f € CF(9Obj4). Then CF"(Dbj4) is shown to be a Lie subalge-
bra of CF(9Dbj4) ([12, Theorem 4.9]). Let CFg,(Obj 4) be the subspace of
CF(Obj4) such that

supp(f) = {[X] € Dbja(K) | f([X]) # 0}
is a finite set for every f € CFq,(9Dbj4). Let
CFRd(Dbja) = CFgn(Obja) N CF™(Obj 4).

Assume that a conflation X — Y — Z in A implies that the number of iso-
morphism classes of Y is finite for all X, Z € Obj(A). With the assumption,
Joyce proved that CFg,(Obj4) is an associative algebra and CFRd(Dbj 4)
a Lie subalgebra of CFg,(9Dbj4). It follows that CFg,(9Dbj4) is isomorphic
to the universal enveloping algebra of CF24(Dbj 4). Joyce defined a comul-
tiplication on CFg,(0bj 4) and proved that CFg,(Obj 4) is a bialgebra.

In [4], the authors extended Riedtmann’s results to algebras of
representation-infinite type, i.e., the cardinality of isomorphism classes of
indecomposable finite dimensional A-modules is infinite. Let R(A) be the
Z-module spanned by 1¢, where 1¢ is the characteristic function over a con-
structible set of stratified Krull-Schmidt O (see [4, Section 3]). The subspace
L(A) of R(A) is spanned by 1p, where O are indecomposable constructible
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sets. The multiplication is defined by
101 : 102(X) = X(V(Ola OQa X))7

where X is a A-module. Then R(A) is an associative algebra with identity
1p and L(A) a Lie subalgebra of R(A) with Lie bracket. The algebra R(A) ®
Q is the universal enveloping algebra of L(A) ® Q. The authors gave the
degenerate form of Green’s theorem and established the comultiplication of
R(A) in [4].

The goal of this paper is to explicitly construct the enveloping algebra
of CF4(Obj 4) by the methods in [4]. Let A be an exact category satisfying

some properties. Let X i> Y % Z be a conflation in A and Aut(X i> y &

Z) the automorphism group of X LY % 7. The key idea in [4] is that
V(X,Y; L) has the same Euler characteristic as its fixed point set under the
action of C*. In this paper, we consider exact categories instead of categories

of modules. Then as a substitute of the action of C*, we analyze the action

of a maximal torus of Aut(X Ly Z) on X 1y ¥ % Z. The universal

enveloping algebra of CFind(D bj4) can be endowed with a comultiplication
structure (Definition 4.1). It is compatible with multiplication (Theorem
4.6). The compatibility can be viewed as the degenerate form of Green’s
theorem on Ringel-Hall algebras (see [5] or [22]).

The paper is organized as follows. In Section 2 we recall the basic
concepts about stacks, constructible sets and constructible functions. In
Section 3 we define the constructible sets of stratified Krull-Schmidt. We
study the the subspace CFXS(0bj 4) of CF(Dbj4) generated by character-
istic functions supported on constructible sets of stratified Krull-Schmidt.
Then CFKS(D bj_4) provides a realization of the universal enveloping algebra
of CF™(Dbj 4). In Section 4 we give the comultiplication A in CFXS(Dbj 4)
and prove that A is an algebra homomorphism.

2. Preliminaries
2.1. Constructible sets and constructible functions

From now on, let K be an algebraically closed field with characteristic zero.
A good introduction to algebraic stacks and 2-categories is [6]. We recall
the definitions of constructible sets and constructible functions on K-stacks.
These definitions are taken from [11].
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Definition 2.1. Let F be a K-stack. Let F(K) denote the set of 2-
isomorphism classes [z] where x : Spec K — F are 1-morphisms. Every ele-
ment of F(K) is called a geometric point (or K-point) of F. For K-stacks F
and G, let ¢ : F — G be a l-morphism of K-stacks. Then ¢ induces a map
b0+ F(K) > G(K) by [2] > [$ o]

For any [z] € F(K), let Isok(x) denote the group of 2-isomorphisms z —
x which is called a stabilizer group. For ease of notations, Isok(x) is used
to denote the group instead of Isog([z]). If Isok(x) is an affine algebraic K-
group for each [z] € F(K), then we say F with affine geometric stabilizers.
A morphism of algebraic K-groups ¢, : Isog(z) — Isok(¢«(x)) is induced by
¢ : F — G for each [z] € F(K).

A subset O C F(K) is called a constructible set if O = 7", F;(K) for
some n € NT, where every F; is a finite type algebraic K-substack of F.
A subset S C F(K) is called a locally constructible set if SN O are con-
structible for all constructible subsets O C F(K). If O; and Oy are con-
structible sets, then O1 U Oy, O1 N O3 and O \ Oy are constructible sets by
[11, Lemma 2.4].

Let @ : F(K) — G(K) be a map. The set I'e = {(z, ®(z)) | z € F(K)} is
called the graph of ®. Recall that ® is a pseudomorphism if I'y [ (O x G(K))
are constructible for all constructible subsets O C F(K). By [11, Proposi-
tion 4.6], if ¢ : F — G is a 1l-morphism then ¢, is a pseudomorphism, ®(QO)
and ®~1(y) N O are constructible sets for all constructible subset O C F(K)
and y € G(K). If ® is a bijection and ®~! is also a pseudomorphism, we call
® a pseudoisomorphism.

Then we will recall the definition of the naive Euler characteristic of a
constructible subset of F(K) in [11].
There is a useful result due to Rosenlicht [23].

Theorem 2.2. Let G be an algebraic K-group acting on a K-variety X .
There exist an open dense G-invariant subset X1 C X and a K-variety Y
such that there is a morphism of varieties ¢ : X1 — Y which induces a bijec-
tion form X1(K)/G to Y (K).

Let X be a separated K-scheme of finite type, the Euler characteristic
X(X) of X is defined by

2dim X

X(X) = Z (_1)1 dlm@p Hés(X’ Qp)7
=0
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where p is a prime number, Z, = lim Z/p"Z is the ring of p-adic integers, Q,
i <
is its field of fractions and HZ,(X, Q) are the compactly-supported p-adic

cohomology groups of X for i > 0.
The following properties of Euler characteristic follow [4] and [11].

Proposition 2.3. Let X, Y be separated, finite type K-schemes and ¢ :
X — 'Y a morphism of schemes. Then:

(1) If Z is a closed subscheme of X, then x(X)=x(X\ Z) + x(2).

(2) X(X % V) = x(X) x x(¥),

(8) Let X be a disjoint union of finitely many subschemes Xi,..., Xy,
we have

X(X) = x(Xi).
i=1

(4) If ¢ is a locally trivial fibration with fibre F, then x(X) = x(F) -

x(Y).
(5) x(K") =1, x(KP") =n+1 for alln > 0.

An algebraic K-stack F is said to be stratified by global quotient stacks if
F(K) = 1I;_, F;(K) for finitely many locally closed substacks F; where each
F; is 1-isomorphic to a quotient stack [X;/G;], where X; is an algebraic K-
variety and G; a smooth connected linear algebraic K-group acting on Xj.
By [14, Propostion 3.5.9], if F is a finite type algebraic K-stack with affine
geometric stabilizers, then F is stratified by global quotient stacks.

Let F = I, F;(K) where each F; = [X;/G;] as above. By Theorem 2.2,
there exists an open dense Gj-invariant subvariety X;; of X; for each i such
that there exists a morphism of varieties ¢;1 : X;1 — Y;1, which induces a
bijection between X;;(K)/G; and Y (K). Then ¢;; induces a l-morphism
0:1 : Gin — Yi1, where G;; is 1-isomorphic to [X;1/G;]. Note that

for j =1,...,k;. Using Theorem 2.2 again, we get a stratification
F(K) =7, H?izl gij(K)

for s, k; € N*, where G;; = [X;;/G;] such that ¢;; : X;; — Y, is a morphism
of K-varieties and 0;; : G;; — Y;; a 1-morphism induced by ¢;;. Let

Y =10, 10 V5 and © =TI I15 ) (05). : F(K) — Y(K).
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Then Y is a a separated K-scheme of finite type and © a pseudoisomorphism
(see [11, Proposition 4.4 and Proposition 4.7]).

Definition 2.4. Let F be an algebraic K-stack with affine geometric sta-
bilizers and C C F(K) a constructible set. Then C is pseudoisomorphic to
Y (K), where Y is a separated K-scheme of finite type by [11, Proposition
4.7]. The naive Euler characteristic of C is defined by x**(C) = x(Y').

The following lemma is a generalization of Proposition 2.3 (4).

Lemma 2.5. Let F and G be algebraic K-stacks with affine geometric sta-
bilizers. If C C F(K), D C G(K) are constructible sets, and ® : C — D is a
surjective pseudomorphism such that all fibers have the same naive FEuler
characteristic x, then x"*(C) = x - x"*(D).

Proof. Because C, D are constructible sets, there exist separated finite type
K-schemes X, Y such that C, D are pseudoisomorphic to X(K), Y (K)
respectively. Therefore x"*(C) = x(X), x"*(D) = x(Y). Then & induces a
surjective pseudomorphism between X (K) and Y (K), say ¢ : X(K) — Y (K).
There exist two projective morphisms 71 : I'y, — X (K) and 73 : 'y — Y (K).
Note that 7 is also a pseudoisomorphism, that is x"*(I'y) = x(X), and all
fibres of 7y have the same naive Euler characteristic x. Then x"*(I'y) =
X - x(Y). Hence x(X) = x - x(Y'). We finish the proof. O

Definition 2.6. A function f : F(K) — Qs called a constructible function
on F(K) if the codomain of f is a finite set and f~!(a) is a constructible
subset of F(K) for each a € f(F(K)) \ {0}. Let CF(F) denote the Q-vector
space of all Q-valued constructible functions on F(K).

Let S C F(K) be a locally constructible set. The integral of f on S is

/ f@= Y e @)ns)
zes acf(S)\{0}

for each f € CF(F).

We recall the pushforwards and pullbacks of constructible functions due
to Joyce [11].

Definition 2.7. Let F and G be algebraic K-stacks with affine geometric
stabilizers and ¢ : F — G a l-morphism. For each f € CF(F), the naive
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pushforward ¢*(f) : F(K) — Q of f is

POG = >, ax™(fa)net @)
a€ (6 (D)\0}

for each ¢t € G(K). Then ¢*(f) is a constructible function for each f €
CF(F) by [11, Theorem 4.9].

Similarly, if ® : F(K) — G(K) is a pseudomorphism, the naive pushfor-
ward ®/*(f) : F(K) — Q of f € CF(F) is defined by

PN = Y, ax™(fHa)ndT(@)
A€ (@O0}

for t € G(K). Joyce proved that there is a linear map ®"* : CF(F) — CF(G)
and in particular, ®7'*(f) € CF(G) [11, Theorem 4.9]. We often apply this
result by studying the constructibility of the function ®*(1x ). The con-
structibility of the function implies that the set {x(®~(¢)) |t € G(K)} is a
finite set.

If ¢ : F — G is a 1-morphism, then we have a long exact sequence of
groups

1 —— Ker(¢s) — Isok () 0 Isog (¢« (x)) — Coker(¢,) —1

for each = € F(K). Note that Ker(¢,) is an affine algebraic K-group and
Coker(¢,) is a quasi-projective K-variety. Assume that y(Ker(¢.)) # 0, we
can define a function my : F(K) — Q by

() — MCoker(6.))
= Ker(o))

for each x € F(K). In particular, if ¢ is representable, i.e., for U € Schg, X €
Obj(F(U)), the map ¢(U) : End gy (X) — Endg)(¢(U)(X)) is injective,
then Ker(¢.) = {1} and my(x) = x(Coker(¢.)). Here Schy is the 2-category
of K-schemes (see Section 2.2 for more details).

For each f € CF(F), the pushforward ¢(f) : G(K) — Q of f is defined
by

i f) = o1 (f - mg),
where (f - mg)(z) = f(x)mg(x) for z € F(K). Note that ¢1(f) € CF(G) (see

[11]).
If ¢ is a 1-morphism of finite type, then ¢, (D) C F(K) is a constructible
set for each constructible subset D of G(K). Then g o ¢, € CF(F) for g €
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CF(G). Recall that the pullback ¢* : CF(G) — CF(F) of ¢ is defined by
»*(g) = g o ¢« and it is linear.

2.2. Stacks of objects and conflations in A

From now on, let (A, S) be a Krull-Schmidt exact K-category (see A.1). For
simplicity, we write A instead of (A, S). Note that 4 is idempotent complete
(see A.2).

The isomorphism classes of X € ObJ (A) and conflations X LY 4 Zin
A are denoted by [X] and X LY LN A ( [(X,Y, Z,i,d)]), respectively.

Two conflations X =Y % Z and A i> B %y C are isomorphic if there exist
isomorphisms a : X — A, b:Y — B and ¢: Z — C in A such that the fol-
lowing diagram is communicative

d

X—>Y—>Z
1)

At.p 9.

(1)

The morphism (a, b, ¢) is called an isomorphism of conflations in A.

Assumption 2.8. Assume that dimg Hom4(X,Y) and dimg ExtY(X,Y)
are finite for all X,Y" € Obj(A). Let K(A) denote the quotient group of the
Grothendieck group Ko(A) such that [X] =0 in K(A) implies that X is a
zero object in A, where [X| denotes the image of X in K(A).

The following 2-categories are defined in [10].

Let Schg be a 2-category of K-schemes such that objects are K-schemes,
1-morphisms morphisms of schemes and 2-morphisms only the natural trans-
formations idy for all 1-morphisms f. Let (exactcat) denote the 2-category
of all exact categories with 1-morphisms exact functors of exact categories
and 2-morphisms natural transformations between the exact functors. If
all morphisms of a category are isomorphisms, then the category is called
a groupoid. Let (groupoids) be the 2-category with objects groupoids, 1-
morphisms functors of groupoids and 2-morphisms natural transformations
(see also [10, Definition 2.8]).

In [10, Section 7.1], Joyce defined a stack F 4 : Schg :— (exactcat) asso-
ciated to the exact category A (the original definition is for abelian category,
it can be extended to exact categories directly), where F 4 is a contravari-
ant 2-functor and satisfies the condition F4(Spec(K)) = A. Applying F4,
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he defined two moduli stacks
Obj 4, €ract 4 : Schg — (groupoids)
which are contravatiant 2-functors ([10, Definition 7.2]). The 2-functor
Obja = F o Fyu,

where F': (exactcat) — (groupoids) is a forgetful 2-functor as follows. For an
exact category G, F(G) is a groupoid such that Obj(F(G)) = Obj(G) and
morphisms are isomorphisms in G. For U € Schg, a category €ract 4(U) is
a groupoid whose objects are conflations in F4(U) and morphisms isomor-
phisms of conflations in F4(U).

Let n: U —V and 0:V — W be morphisms of schemes in Schg.
Obviously, the functors Obj(n) : Obj 4(V) — Obj4(U) and Eract 4(n) :
Cract 4(V) — Cract 4(U) are induced by Fa(n): Fa(V)— Fa(U). The
natural transformations eg, : Obj4(n) 0 Obj4(8) = Obj4(f on) and gy :
Cract 4(n) o Eract 4(§) — Eract 4(6 on) are also induced by ep, : Fa(n) o
Fa(0) = Fa(@on).

Let

K'(A) ={[X]€e K(A) | X € Obj(A)} C K(A).
For each v € K'(A), Joyce defined Obj% : Schx — (groupoids) which is
a substack of Obj 4 in [10, Definition 7.4]. For each U € Schg, Obj%(U) is a
full subcategory of Obj4(U). For each object X in Obj%(U), the image of
Obj 4(f)(X) in K(A) is « for each morphism f : Spec(K) — U.
Let n: U — V and 0 : V — W be morphisms in Schi. The functor

ObjZ(n) : ObjA (V) — Obj%(U)

is defined by restriction from Dbj4(n) : Obj4(V) — Obj4(U). The natu-
ral transformation eg ,, : Obj%(n) 0 Obj%(0) — Obj% (0 o ) is restricted from
€9, Dbj.4(1) 0 Obj4(0) — Dbj 4(0 0 7).

For a, 8,7 € K'(A) and 8= a+ 7, (’Emcti’ﬁ"’ : Schg — (groupoids) is
defined as follows. For U € Schyg, Gxacti’ﬁ T(U) is a full subcategory of
Eract 4(U). The objects of @xactj’ﬁ’v(U) are conflations

X 5Y % 7 e obj(Cract (1)),

where X € Obj(Dbj%(U)), Y € Obj(Db)%(U)) and Z € Obj(Dbj’(U)).
Similarly, the morphism practi’ﬁ "'(n) and natural transformation €y, are

defined by restriction.
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Let 7S be a substack of €ract 4 x Eract 4. For each U € Schg, TS(U)
is a full subcategory of €ract 4 x Eract ,(U) whose objects are (X ERYAEN
v,L L M 2),

! g

X——L—-Y

where X L L %Y and L5 M ™ Z are objects in Eract 4(U). The mor-
phisms of TS(U) are (z,a,y,b,2), where z: X - X' a: L =L, y:Y —
Y' b: M — M and z: Z — Z' are isomorphisms, such that the following
diagrams are commutative

x 1. 9.y

LL’LY’

L—lspm-—m.z

N
) Y
The morphism 7'S(n) and natural transformation €y, are defined in a nat-

ural way.
The following theorem is taking from [10, Theorem 7.5].

Theorem 2.9. The 2-functors Obj 4, €racty are K-stacks, and Obj)%,
(’Egth‘cfj\’B’7 are open and closed K-substacks of them respectively. There are
disjoint unions

Obj a4 = ek a) Obi%, Cract 4 = Hasqexa ngctiﬁﬁ_

B=a+~y
Assume that Obj4 and CEract 4 are locally of finite type algebraic K-
stacks with affine algebraic stabilizers. Recall that Obj 4(K) and €ract 4(K)
are the collection of isomorphism classes of objects in A and the collection
of isomorphism classes of conflations in A, respectively. For each o € K'(A),
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Obj%(K) is the collection of isomorphism classes of X € Obj(A) such that
[X] = « (see [12, Section 3.2]).

Example 2.10. Let Q = (Qo, Q1, s,t) be a finite connected quiver, where
Qo = {1,...,n} is the set of vertices, Q)1 is the set of arrows and s : Q1 — Qo
(resp. t : Q1 — Qo) is a map such that s(p) (resp. t(p)) is the source (resp.
target) of p for p € Q1. Let A = CQ be the path algebra of @ and mod-A
denote the category of all finite dimensional right A-modules.

Let d = (d;)jeq, for all d; € N. There is an affine variety

Rep(Q?d) = @ HOm((CdS(p),(Cdt(p)).
pPEQ1

For each z = (z,),cq, € Rep(Q,d), there is a C-linear representation
M(z) = (C%,2,)jeqo peq. of Q. Let rep(Q) denote the category of finite
dimensional C-linear representations of ). Recall that rep(Q)) = mod-.A. We
identify rep(Q) with mod-A. The linear algebraic group

GL(d) = [] GL(4;,C)

JEQo

acts on Rep(Q,d) by g.x = (gt(p)xpgs_(;))pte for g = (95)jeq, € GL(d).

A complex M*® = (M® 9%), where M®) € Obj(mod-A) and §*+19" = 0,
is bounded if there exist some positive integers ng and n; such that M@ =0
for i < —ng or i > ny. Let dimM® = d(i) be the dimension vector of M)
for each i € Z. The vector sequence (d);ez of M*® is denoted by ds(M®).

Let C(Q,d) denote the affine variety consisting of all complexes M?®
with ds(M*®) = d. The group G(d) = [] GL(d") is a linear algebraic group

i€z
acting on C’(Q,d). The action is induced by the actions of GL(d®") on
Rep(Q,d(i)) for all 7 € Z, that is

(g(i))i.(m(i),ﬁi)i _ (g(i)‘x(i),g(i+1)3i(g(i))—1)i.

Let {P1,..., P,} be a set of representatives for all isomorphism classes of
finite dimensional indecomposable projective A-modules. A complex P® =

.. PED 270 p@) 9 plitD) Ly
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is projective if P() = G}lmy)Pj for mg.i) € Nand i € Z. Let
]:
e(PD) = m® = (m{), ... m®)

be a vector corresponding to P, By the Krull-Schmidt Theorem, Q(P(i))
is unique. The dimension vector of P® can be defined by

dim(P*) = (..., m" D), m®@ m+h ).

A dimension vector dim(P*®) is bounded if P* is bounded.

let m = (m(i))iez be a bounded dimension vector and d(m) = (d(i))iez
be the vector sequence of a complex whose dimension vector is m. Let
P®(Q, m) be the set of all bounded project complexes P® with dim(P*) = m
and ds(P*®) =d(m). Note that P’(Q,m) is a locally closed subset of
C*(Q,d(m)). An action of G(d(m)) on the variety P°(Q,m) is induced
by the action of G(d(m)) on C*(Q,d(m)).

Let P*(Q) denote the exact category with objects bounded project com-
plexes and morphisms ¢ : P®* — Q® morphisms between bounded projective
complexes. The Grothendieck group

Ko(P*(Q) = P zp,

1€ZL

where Z{,) = Z". Note that K(P*(Q)) = Ko(P*(Q)) and

K'(P*(Q) = PN,

1€Z

where Na) = N".
Joyce defined Fioa—k@ in [10, Example 10.5]. Similarly, for each U €
Schy, we define Fpu(g)(U) to be the category as follows.

The objects of pr(Q;(U) are complexes of sheaves P* = (P, %)z,
where P() = (> XJ(-Z ,2') and 0'”18" = 0. The data 'X](-l) (?re 10(3&(11)3’
free sheaves of finite rank on U and z* = (T},)peq: > Wherg wz : Xs(p) —+ X Hp)
are morphisms of sheaves, such that P() = (@jer X J@,xz) are projective
CQ-modules for all i € Z. The morphisms of Fpu(g)(U) are morphisms of

complexes ¢* : (PW, 9") — (QW, d"), where Q1) = (Dje0, Yj(l),yi) and ¢*
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is a sequence of morphisms
(¢": PV = QW)iez

with ¢ = (¢4 : X\ —» VV);cq, such that ¢'*'0' =di¢' and ¢}, x} =
yéqﬁi(p) for all i € Z and p € Q1. It is easy to see that Fpu()(U) is an exact
category.

Let n: U — V be a morphism in Schg. A functor

]'-pb(Q) (77) : ]'-pb(Q)(V) — ]:pb(Q)(U)
is defined as follows. If (P, 9%);cz € Obj(Fp(q)(V)),
Fpo(@y () (PP, 8iez = (7 (P, 11°(9))iez

for n*(PW) = (EBjer n*(X](.i))7 (n*(xZ))pte), where n*(Xj@) are the
inverse images of XJ(Z) by the morphism 7, n*(8%) : n*(P®) — n*(Pt+D)
with n*(0"F1)n*(8°) = 0 for i € Z and

(@) (X)) = n (X))

for p € Q1 are pullbacks of morphisms between inverse images. For a mor-
phism ¢* : (P%W,9") — (Q1,d") in Fpv(@)(V), the morphism

Fpo@y(m(@°) : (" (P*),n*(9%) — (n*(Q%),n"(d"))
is a sequence of morphisms
(6" : (B n &' @p)a) = (D 0¥ ' wh)))
JEQo JEQo

with n* (¢ 1)n*(0) = n*(d")n*(¢"), where n*(d") are pullbacks of morphisms
between inverse images which satisfy n*(d“*1)n*(d*) = 0, and

= (B 70 e,
JEQo
such that the pullbacks
7 (65) (X5 = (V)

satisfy n*( (p))n () = n*(y\)n (qﬁ’ ) Because locally free sheaves are
flat, Fpo(g)(n)(¢°®) is an exact functor
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Let n:U —V and 0:V — W be morphisms in Schg. As in [10,
Example 9.1], for each P* € Obj(Fps(g)(W)), there is a canonical isomor-
phism 69777<P.) : fpb(@) (77) o fpb(Q) (0)(13.) — pr(@) (9 o n)(P') We get a
2-isomorphism of functors

€0+ Fpo@) (1) o Fpog)(0) — Fpogy(0on)

by the canonical isomorphisms. Thus we have the 2-functor Fpu(q).
The set Objpe(q) (C) consists of all isomorphism classes of complexes in

PNQ).

As in [10, Definition 7.7] and [12, Section 3.2], we have the following
1-morphisms

mp : Eract 4 — Objy
which induces a map (), : €ract 4(K) — Obj 4(K) defined by [X Ly 4
Z] = [X];

T @ €Eract 4 — Obj 4

such that the induced map (7, ) : Eract 4(K) — Obj 4(K) maps [X Ay 4
Z] to [Y];

Tt Eract 4 — Obj 4
inducing the map (m,), : €ract 4 (K) — Obj 4(K) by [X Ly 4 Z)— [Z].

The map m, X it Eract 4(K) = Obj4(K) x Obj4(K) is defined by
(s x ) ([X 5 Y % Z]) = ([X],[Z]). Note that (m; x m)s = Tps X s

3. Hall Algebras
3.1. Constructible sets of stratified Krull-Schmidt
These definitions are related to [4].

Definition 3.1. Let O; and O3 be two constructible subsets of Dbj 4(K),
the direct sum of O and O, is

O 809 = {[Xl @XQ] | [Xl] € 0y, [Xg] € 0Oy and X1, Xs € Obj (.A)}
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Let nO denote the direct sum of n copies of O for n € N* and 00 = {[0]}.
Similarly, let nX denote the direct sum of n copies of X € Obj(A). A con-
structible subset O of Dbj 4(K) is called indecomposable if X € Obj(A) is
indecomposable and X 2 0 for every [X] € O.

A constructible set O is called to be of Krull-Schmidt if

O =n1018n05%...5n,0,

where O; are indecomposable constructible sets and n; € N fori =1,...,k.
If a constructible set Q = II7* ; Q;, where Q; are constructible sets of Krull-
Schmidt for 1 < i < n, namely Q is a disjoint union of finitely many con-
structible sets of Krull-Schmidt, then Q is said to be a constructible set of
stratified Krull-Schmidt.

Let O and O3 be two indecomposable constructible sets. If O N Oy # ()
and Oy # Oy, we have

O1®0,=2(0,N02) 10 ((01 \ (01N 02)) s> (02 \ (01N OQ)))

H<(01 N0y @ (O2\ (01N 02))) 11 (01 \ (01 N O2)) & (01 N O)).

If Q=m0 ®...5mO; is a constructible set of Krull-Schmidt, we can
write @ =II7" | Q; as a constructible set of stratified Krull-Schmidt, where

Qi = 1i10i1 ® 1202 @ ... D nyk, Oy,

for indecomposable constructible sets O;; which are disjoint each other.
Hence we can assume that Oy, ..., O; are disjoint each other.

Let CFXS(Dbj4) be the subspace of CF(9bjy4) which is spanned by
characteristic functions 1¢ for constructible sets of stratified Krull-Schmidt
O, where each 1¢ satisfies that 1p([X]) =1 for [X] € O, and 1p([X]) =0
otherwise.

Example 3.2. Let P! be the projective line over K and coh(PP') denote the
category of coherent sheaves on P!,

Let O(n) denote an indecomposable locally free coherent sheaf whose
rank and degree are equal to 1 and n respectively. Let Sg[f] be an indecom-
posable torsion sheaf such that rk(Sg[f]) =0, deg(Sg[ﬂ) = r and the support
of SI1 is {x} for x € P'. The Grothendieck group Ky(coh(P!)) = Z2. The
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data K (coh(P')) and Foppr) are defined in [10, Example 9.1]. The set of
isomorphism classes of indecomposable objects in coh(P!) is

{IS] | z e P*,d e Ny U{[O(n)] | n € Z}.

Recall that a non-trivial subset U C P! is closed (resp. open) if U is a
finite (resp. cofinite) set. Let Oy be a finite or cofinite subset of {[Sg[cd]] | x €
P} for each d € Z* and Oy a finite subset of {[O(n)] | n € Z}. Then Oy and
Op are indecomposable constructible subsets of Objcnp)(K). Note that
every indecomposable constructible subset of Objcqppr)(K) is of the form

OO, ... 110;

for 1 <iy < ... <. Then the finite direct sum &(Op L1 O;, I1... 11 O;, ) is a
constructible set of Krull-Schmidt. Every constructible set of Krull-Schmidt
in Obj on(pr) (K) is of the form. A constructible set of stratified Krull-Schmidt
is a disjoint union of finitely many constructible sets of Krull-Schmidt.

Example 3.3. In Example 2.10, Dbj%,(Q) (C) is the set of all isomorphism
classes of project complexes in P°(Q, m). Note that

Objpe() (C) = lmer (P(@)) Dbipi ) (C):
There is a canonical map
Pm : P(Q, m) — Dbj%b(@) (©)

which maps P*® to [P®]. A subset U C Dbj%,(Q)((C) is closed (resp. open) if
pm (U) is closed (resp. open) in P(Q, m). A subset Vin C Dbj%)(Q) (C) is
locally closed if it is an intersection of a closed subset and an open subset
of Dbj%}(Q)(C). A subset O C Objpi()(C) is constructible if it is a finite
disjoint union of locally closed sets V. Every indecomposable constructible
set O is of the form [ ,.g Vin, where S is a finite set and each complex in
Pl (Vim) is an indecomposable complex.
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3.2. Automorphism groups of conflations

For each X € Obj(.A), suppose that X = n1X; @ noXo @ ... D ny X, where
X; are indecomposable for i = 1,...,¢t and X; 2 X for ¢ # j. Then we have

t
Aut(X) 2 (14 rad End(X)) x Y~ GL(n;, K).
i=1
The rank of maximal torus of Aut(X) is denoted by rk Aut(X). Let n =

n1 + ng + ...+ ng. Thus the number of indecomposable direct summands of
X is n, which is denoted by (X). Note that v(X) = rk Aut(X). Let

7(0) = max{y(X) | [X] € O}

for each constructible set O in Obj 4(K).

Let X £V % Z be a conflation in A and Aut(X Ly 4 Z) denote the
group of (ay,az,as) for a; € Aut(X), az € Aut(Y) and as € Aut(Z) such
that the following diagram is commutative

f g

X—Y =7
x- oy 9.7

The homomorphism
p1: Aut(X Ly s Z) — Aut(Y)

is defined by (a1,a2,a3)— az. If pi((a1,a2,a3)) = pi((a},az,a3)) then
f(a1 —a)) =0 and (a3 —a%)g =0. We have a1 = a) and a3 = af since f
is an inflation and ¢ a deflation. Hence p; is an injective homomorphism of
affine algebraic K-groups and

(2) rk(Aut(X 5 Y % 2)) =tk Imp; < rk Aut(Y)

Let
pr i Awt(X LY 5 Z) — Aut(X) x Aut(Z)

be a homomorphism given by (a1,a2,as) — (a1,a3). If pa((a1,as,as3)) =
p2((a1,dh, asz)), then (ag — afy) f = 0 and g(az — a%)=0, we have

as — ay € (Hom(Z,Y)g) N (f Hom(Y, X)).
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Observe that Kerps is a linear space. It follows that x(Kerps) = 1 and
(3) rk Im(p2) < rk Aut(X) + rk Aut(Z2).

Let P(A) be a complete set of representatives of all isomorphism
classes of objects in A. Let W(X,Z;Y) ={(f,9) | X Ly % ze S}. Note
that W(X, Z;Y) is a subset of Hom(X,Y) x Hom(Y, Z). Let W (01, 03;Y)
denote the set of X L5V % 7 ¢ S, where XY, Z € P(A) and [X] €
01,[Y] S (’)2.

Lemma 3.4. For X,Y,Z € P(A), the set W(X,Z;Y) is a constructible
subset of Hom(X,Y) x Hom(Y, Z).

Proof. Recall that Hom(A, ?) and Hom(?, A) are left exact functors for each
A € Obj(A). The inflation f induces a monomorphism

f*:Hom(?,X) — Hom(?,Y)

in the functor category Hom(.A, Ab), where Ab denotes the category of
abelian groups. Recall that Hom(?, X) is a projective object. Because Ab
is an abelian category, Hom(.A, Ab) is also an abelian category. Let P(X)
denote Hom(?, X) and inj(P(X), P(Y)) denote the set of monomorphisms
[ P(X)— P(Y). Using inf(X,Y) to denote the set of inflations between
X and Y. Note that inf(X,Y) is isomorphic to inj(P(X), P(Y)). Because
inj(P(X),P(Y)) =Aut(P(X))f*, inj(P(X), P(Y)) is a locally closed sub-
set. Therefore inf(X,Y") is locally closed.

Let P'(Z) = Hom(Z,?). Similarly, the deflation g induces a monomor-
phism

g* :Hom(Z,?7) — Hom(Y, ?7),

then the set inj(P'(Z), P'(Y)) = Aut(Z)g* is locally closed. Hence the set
of deflations ¢ : Y — Z is a locally closed set.

Fixed X,Y,Z € P(A), using the facts that f is an inflation and ¢ a
deflation, we obtain that ¢gf = 0 if and only if X i> Y % Z is a conflation.
Clearly, (f,g) € Hom(X,Y) x Hom(Y, Z) satisfying above conditions if and
only if (f,g9) € W(X, Z;Y). Hence W (X, Z;Y) is constructible. O
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Two conflations X 5V % Z and X’ 57 %5 2/ in A are said to be
equivalent if there exists a commutative diagram

Xty 4.7

1T
x oy g

where both f and g are 1somorphlsms If the two conflations are equlvalent
we write X &Y % Z ~ X 'y L 7/ The equivalence class of X — Y 4

Z is denoted by (X &Y 4 Z). Define
V(0,0:V)={(X 5V % 2) | x Ly S Z2e8,(X]€0,,[2] €0y},

where S is the collection of all conflations of A. Note that V([X],[Z];Y) is
isomorphic to the orbit space W (X, Z;Y)/(Aut X x Aut Z). Note that

WX, Z;Y)/(Awt X x Aut Z)| = W(X,Z;Y)/(Aut X x Aut Z)

since the action of AutX x AutZ on W(X,Z;Y) is free. Hence
V([X],[Z];Y) is a quotient stack.

3.3. Associative algebras and Lie algebras

For f,g € CF(Dbj), define f-g by (f-g)([X],[V]) = F(IXDg([V]) for
([X],[Y]) € Db) 4(K) x Obj 4(K). Thus f - g € CF(Obja x Obj4).

By [10, Theorem 8.4], 7, is representable and m; x 7, is of finite type.
The pushforward of 7, is well-defined and p; is injective. The following
definition of multiplication is taken from [12, Definition 4.1].

Definition 3.5. Using the following diagram

T X Ty

Obj 4 x Obj 4 <5 Eract 4 2 Obj g4,

we can define the convolution multiplication

CF(Dbj4 x 06.4) T cF(eract 1) s CF(Ob) 4).

The multiplication x : CF(Obj 4) x CF(Dbj4) — CF(Obj 4) is a bilinear
map defined by
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fxg=(mmhl(m xm)*(f - g)] = (M) [7 (f) - 77 (9)].
Let O and O3 be constructible subsets of Obj4(K), the meaning of

1o, * 1o, can be understood as follows. The function m,,, : €ract 4(K) — Q,
which is defined by

ma, (X Y % 2]) = x[ Aut(Y) /pr (Aut(X LY % 2))],
is a locally constructible function on €ract ,(K) by [11, Proposition 4.16],
namely m ., |o is a constructible function on O for every constructible subset

O C €ract 4(K).
For each [Y] € Obj 4(K),

(4) 101 * 102([Y]> - Z ana(QC<Olv 027 Y))7
ceN(01,02;Y)

where
ANO1,09;Y) ={c=mg., ([A ERS N B]) | [A] € O1,[B] € 02} \ {0}
is a finite set, and
Qc(01,02,Y) =
ALy % B4 €0y, B € Onms, (AL v L B) =)
are constructible sets for ¢ € A(O1,03;Y). In fact, the 1-morphism 7; x 7,

is of finite type by [10, Theorem 8.4]. Hence (m, X mm) 1(O1 x O2) is a
constructible subset of &ract 4. Then

A(01,05;Y) = ma, [((m x 774) 7H(O1 x O2)) N ((mms) T ([Y]))] \ {0}
is a finite set by [11, Proposition 4.6]. Therefore
Qe(O1,02,Y) = mz (e) N [(ms X 774) 7 (O1 % O2)] N ()~ ([Y]))

are constructible for all ¢ € A(O1,02;Y).
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For each ([X],[Z]) € O1 x Oy, let

AMX,ZY)={c=mn (X LY 5 2) | [X LY S 2] € Eract4(K)}

and
QX 2Y)={x Ly % 7 ‘ me, (X LY S 7)) =),

where A(X, Z;Y) is a finite set and Q.(X, Z,Y) are constructible sets for
all c € A(X,Z;Y). Then

(5) I+ ) (YD = D ex"(Q(X,2,Y)).

ceA(X,Z;Y)

The set consisting of x(Aut(Y)/pl(Aut(X Sy 4 Z))), where

X5y 5 2e [ Q01,0,,Y),
ceN(04,02;Y)

is finite since y(Aut(Y)/Imp;) = m,, (X YV L 2)).
Let

VI V(Ol,OQ;Y) — U QC(01’027Y)
CEA(Ol,OQ,Y)

be a morphism given by (X Ly s Z) — ([X EER Z]). For each fibre
of m, X {(X Ly % 2]) = X(Aut(Y)/pl(Aut(X Ly Z))).

The following result is due to [4, Proposition 6] and [12, Theorem 4.3].

Theorem 3.6. The Q-space CF(Dbj4) is an associative Q-algebra, with
convolution multiplication * and identity 1j5), where 1y is the characteristic
function of [0] € Obj 4(K).

Proof. Let O1, Oy and O3 be constructible subsets of Obj 4(K). It suffices to
show that (1p, * 1p,) * 1@3([M]) = 1o, * (1p, * 1(/)3)([M]) for M € Obj(A).
Take X,Y,Z € P(A) satistying [X] € Oy, [Y] € Oy and [Z] € O3. Consider
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(fyg,m,1) e W(X,Y; L) x W(L, Z; M). There is a pushout

L2y
I

il G
’ A
M-L-1

where L' € P(A). We obtain an inflation I’ : Y — L’ and a deflation ¢’ :

M — L'. Let f'=1f. Then f’ is an inflation and ¢'f’ = 0. Hence ¢’ is a

cokernel of f' and X f% M L5 I/ is a conflation.

There is a morphism m’ : L’ — Z such that m = m/¢’ and m/l’ = 0. It is
easy to see that I’ is a kernel of m’ and (I',m’) is a conflation. The following
diagram is commutative

x-l.p 9.y

l U

x- Lo 2o
m m’
A

Note that the rows and columns are conflations. For L, L’ € P(A), we claim
that the morphism

ULV ([X]. [V L) x V([L], [2); M) < Up V(X [L); M) x V(Y] [2); L),

which maps (X L L&YV (L5 M ™ 2) to (X LMLy, v &
o Z)), is a bijection. The proof of this claim is quite similar to the
proof of [8, Proposition 2| and so is omitted. The morphism F' induces a

morphism T : TS(K) — TS(K) by
xLrsvrbmmz)-x LS yLor™ ).

The following diagram is commutative

ULV (X, [V L) x V(L] [2); M) —5= Up V(X [E); M) x V([Y], [Z]; 1)

i

TS(K)

-

TS(K)
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Let c € A(X,Y:; L), de AL, Z; M), ¢ € A(X,L'; M), d' € A(Y, Z; L').
Assume  that  mg, ([X EIN R Y))=¢, mg, ([L N VN Z)) =d,

m

me (X L5 ML 1) = ¢ and my (Y 25 L' ™ Z]) = d'. Then

, , , , ! !
T x LH v Loy L z)) = %.
C

Let Q.(X,Y, L) be as in Section 3.3. By Lemma 2.5, we have
cdx"(Qc(X,Y, L)X"(Qu(L, Z, M)) = 'd'x"*(Qu(X, L', M))x"(Qu(Y, Z,L")).

It follows that (l[X] * 1[Y]) * 1[Z]([M]) = l[X] * (1[Y] * 1[Z]>([M]) Recall that

(1o, * 1o,) * 1o,([M]) = (Iix) * 1pyp) * 1z ([M])

/[X]eol,[Y]eOz,[Z]eO3

and

lo, * (1o, * 1o,)([M]) = Lixy * (I * 1) ([M]).

/[X]6(91,[}/]»5(92,[2}6(93
This completes the proof of Theorem 3.6. U

Joyce defined CF™4(Dbj4) to be the subspace of CF(Dbj4) such that
if f([X])#0 then X is an indecomposable object in A for every f €
CF™4(Obj4). There is a result of [4, Theorem 13] and [12, Theorem 4.9).

Theorem 3.7. The Q-space CFind(DbjA) is a Lie algebra under the Lie
bracket [f, 9] = f* g —g* f for f,g € CF(Dbj4).

Proof. Let O and O3 be two indecomposable constructible sets. It suffices to
show that 1o, * 1o, — 1o, * 1o, € CF™(Dbj 4). Without loss of generality,
we can assume that Q1 N Oy = (). By corollary 3.13, 1o, * 1o, — 1o, * 1o, €
CF™(Dbj4). O

3.4. The algebra CFXS(Dbj4)

Lemma 3.8. Let O; and Oy be two constructible subsets of Obj 4(K). For
any Y € Obj(A), if 1o, * 1o,([Y]) # 0, then there exists a conflation A EN
Y % B in A satisfying that [A] € O1, [B] € Oy and m,, ([A Ly B]) #
0. Moreover, there exist X,Z € Obj(A) such that [X] € Oy, [Z] € Oz and
Lix) * 17([Y]) # 0.
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Proof. Let Q.(01,02,Y) and A(O1,09;Y) be as in Section 3.3. Let

Q = uCEA(Ol,OQ;Y)QC(Olu 027 Y) and QC = QC(017 027 Y)

for simplicity. Since A(O1,02,Y) is a finite set, @ is constructible.
For each ¢ € A(O1,04;Y), there exists some conflations A i> Y 4 Bin

A such that [A] € Oy, [B] € Oz and m,,, ([A Ly s, B]) = c. By equation
(4), we know that there exist some ¢ # 0. This proves the first statement.
Let

T Q — (7 X WT*)(Q)
be a map which maps [X Ly 4 Z] to ([X],[Z]) and

M = My, |Q-

It follows that m,, is a constructible function over Q).

Because m; X 7, is a l-morphism, 7 is a pseudomorphism by [11, Propo-
sition 4.6]. Thus 7(Q) is constructible and the naive pushforward () (m,)
of my, to m(Q) exists. Note that (7)'*(m,,) is a constructible function on
m(Q). In fact

()1 (man ) ([XT, [Z]) = 11x) * 1z ([Y])
for all ([X], [Z]) € 7(Q). Therefore
{1y = 1z (YD) | (1X],[2]) € 7(Q)}

is a finite set. Note that
N XLIZ) = {X LY 5 2] € Q) = Qu(X. Z,Y)
is constructible for ([X],[Z]) € m(Q.) since m x 7, is of finite type. The set
g * Lz (Y] | ([X],[2]) € 7(Q)}

is a finite set since 1[x] * 1[z is a constructible function. Using the equation
5 and the fact that A(O1,02,Y) is a finite set, we know that

XMQe(X, 2,Y) [ ([X],[2]) e (@)}

is a finite set.
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Suppose that

Se(X, 2) = { (AL [B)) € 7(Q) | x"(x ™ ([A], [B])) = X™(Qe(X. Z,Y)) }.
Then we have

Xna(Qc): Z Xna(SC(sz))Xna(Qc(XaZaY))
(IX1,12D)

for finitely many ([X],[Z]) € 7(Q.)-
For ¢ € A0, 03 Y), let {((X\7].[Z\)..... (IX7].[ZL7])} be a com-
plete set of representatives for ([X], [Z]) € 7(Q.) such that

QX 27,7) # Qe X}, 207, Y)
for i # jand i,7 € {1,2,...,k.}. It is easy to see that
m(Qe) = Uiz, Se(X(7, Z)7) amd w(Q) = Ue( Lz, Se(X[7, 2{7)).
Assume that m,(Q) = {c1,¢2,...,cm}. Set
S(ityiz, - yin) = Se, (Xl(z"l), ZNn...nS., (X[, Z{))

1

be a non-empty set for 1 <i; <ip < ... < i, <mand 1 <1 <l<:C , which
satisfies the ‘minimal’ condition, namely S(i1, i2, . .., i) N Sc( X Z(C)) 0

for any ¢ ¢ {ci,,...,ci,} or i ¢ {l;,...,l; }. The choice of 5(11,12,.. in)
are finite. By definition, S(i1,12,...,4,) are pairwise disjoint. For simplicity,
we use S1,S59,...,5, to denote sets S(i1,42,...,i,). It follows that

SiU...US, =7(Q).
By Lemma 2.5, we obtain that
Z CXna(Qc) = Z Z Xna na Qc(Xu Zi, Y))(s( )
cEN0,,0,.Y) cEA(0),0,Y)  i=1
where ([X;],[Zi]) € Si, 0(i,¢) = 1if S; N 7w(Qc(Xi, Z;,Y)) # 0 and 6(i,¢) =0

otherwise. Then

lo, * 1o, (V) =Y x"(S) Y. ex™(Qe(Xi, Zi,Y))d(i c)
=1

ceA(01,05;Y)
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=D xS (1x * 1izy (YD)
=1

There exists ([X;], [Z;]) for some i € {1,...,7} such that 1|x,) * 1;5,([Y]) #
0 since 1p, * 1o, ([Y]) # 0. O

Let D,,(K) denote the group of invertible diagonal matrices in GL(n, K).
The following lemma is related to Riedtmann[20, Lemma 2.2].

Lemma 3.9. Let X,Y,Z € Obj(A) and X Loy 5% 7 be a conflation in

A If mg ([X Ly s Z)) #0, then v(Y) <~v(X)+~(Z). In particular,
YY) =~4(X)+~(Z) if and only if Y = X & Z.

Proof. Recall that m,, ([X Ly Z]) = x(Aut Y/Im(p1)).

If rkAut(Y) >rk Im(p;), then the fibre of the action of a maxi-
mal torus of Aut(Y) on AutY/Im(p;) is (K*)* for some k > 1, it forces
X(Aut Y/Im(p;)) = 0. Hence we have rk Aut(Y') = rk Im(p;) < rk Aut(X) +
rk Aut(Z).

We prove the second assertion by induction on rk Aut(Y). First of all,
suppose that X 220 and Z 2 0. If rtkAut(Y) =2 and Y =Y; @ Y>, then
rk Aut(X) =rk Aut(Z) = 1 since X and Z are not isomorphic to 0. For
te K\ {1}, < -
D3 (K) of Aut(Y). A maximal torus of Im(p;) is also a maximal torus of
Aut(Y) since rk Aut(Y) = rk Im(p;). Because two maximal tori of a con-
nected linear algebraic group are conjugate, there exists a € Aut(Y') such

€ Aut(Y) and it is an element of a maximal torus

that « ( (t) tg ) a~! lies in a maximal torus of Im(p;). Hence there exist
a € Aut(X) and b € Aut(Z) satisfying (a, o < é tOQ ) a~lb) € Aut(X ER

Y % Z), namely

(a,(é t%),b)eAut(XﬂyﬂZ).

/

Let f'=a 'f and ¢’ = go. Observe (¢, (t) ) ,t) € Aut(X Iy 9

Z). Hence f'(a—t) = ( 8 t20—t )f’. Let s = 2~ (a—t) € End(X) (¢t #

0
t
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0 0
0 1

re= (g ) )= (o 1) =1
2

s =s. The category A is idempotent completion, consequently s has a
kernel and an image such that X = Kers & Ims. But X is indecomposable,
without loss of generality we can assume X = Kers. Then s = 0. Let f' =
(ﬁ) and ¢’ = (g1, 92). It follows that

(0)=r=(0 V)(2)-(2)

We have fo = 0 and [ = ( ‘};1 ) The morphism Y7 & Y5 M Y5 is a defla-

0,1). Then f's = < > f'. Because f’ is an inflation and

tion by [2, Lemma 2.7]. Because (0, 1)({)1) = 0, there exits h € Hom(Z, Y1)
such that (0,1) = h(g1,g2). We have hg; = 0 and hgs = ly,. Observe goh €
End(Z) and (g2h)(g2h) = g2h, so goh has a kernel k : K — Z and an image
1:1 — Z. Moreover Z = K @ I. It follows that Z = K or Z = [ since Z
is indecomposable. If Z = K then goh = 0. But hgoh = h, K = 0. Thus h
is an isomorphism and g; = 0. We have Z = Y5. Similarly X & Y;. Hence
XpI= Y1 D YQ.
Assume that the assertion is true for tk Aut(Y) =n < N. When n =
N, we can assume rk Aut(X) =n; where 0 <n; < N, then rk Aut(Z) =
N-—-ni=n9. Let Y=Y @Yy and Y/ =Y, @ ... D Yn_1, where Y; are
tIn_1 O
0o ¢
Aut(Y) for t € K* \ {1}. There exists (a, c,b) € Aut(X Ly Z) such that
tIn—1 O
0 ¢

indecomposable. Observe that ( ) lies in a maximal torus of

¢ and are conjugate in Aut(Y'). For simplicity we assume

c= ( ﬂ% -1 tOQ > So we have the following commutative diagram

Xxtoveyy-2-z
al C\L ib
xovieyy—2-7

where f: (f17f2>"'7fN)t andg: (917927"'791\7)'
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There is another commutative diagram

X(f 7fN) Y/@Y

tlnll t[Nl ltlnz

(g gN)

where f*:(flaf27'-'afN—1)T and g*:(917927-"7gN—1)- Then f:

g = () and fa =) = (O L0 ) e

SN = m(a — tInl)
Then fsy = diag{0,...,0,1}f. It follows f*sy =0, fysy = fn and
NN =g OI](\)LI (1) f=gfsny =0. Moreover sy is an idempotent, we

know that X = Kersy @ Imsy. If fi # 0 then Imsy is not isomorphic to 0.
Similarly we can define s1, s2, ..., sy—1 € End(X) with the property that
fsi; = diag{0,...,0,1,0,...,0}f = (0,...,0, f;,0,...,0)t. Hence s; is idem-
potent and if f; # 0 then Ims; is not isomorphic to 0 for each i. Note that
s1+s2+...+sy =1x € Aut(X), it follows

X =Ims1 ®... > Imsy.

Hence f; = 0 for some i since rk Aut(X) < N. Without loss of generality, we
assume fy = 0. Let (0,...,0,1): Y1 ®...® Yy — Yy, then

0,...,0,1)(f1,..., fn)' =0

Hence there exists h € Hom(Z, Yy) such that h(g1,...,9n5) = (0,...,0,1),
namely hg; = 0,...,hgy_1 = 0 and hgy = 1. Therefore Y is isomorphic to
a direct summand of Z. Assume that Z = Z’ @ Yn where v(Z') = ~v(Z) — 1.
The morphism (1,0) : Z' ® Yn — Z’ is a deflation, so ¢’ = ¢*(1,0) : Y/ — Z’
is a deflation by Definition A.1. Obviously, (f1,...,fv-1)!: X = Y1 @ ... ®
Yn_1 is a kernel of ¢’. Thus

x Yooty o oy, L 2

is a conflation. By hypothesis, Y1 ® ... @Yy 1 XX ® Z. Hence Y =Y ®
B YNy =X @ Z. The proof is completed. 0
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Remark 3.10. If 1x) x 17 ([Y]) # 0, then 7(Y') < v(X) +v(Z), where the
equality holds if and only if Y = X & Z.

Lemma 3.11. Let X,Y,Z € Obj(A) and X Y 5% Z bea conflation in

A e (X LYV 5 2) £0,9(Y) < 7(X) +9(Z) and Y = Y, @ Y, then

there exist two conflations X1 = Y1 9, Z1 and X9 iZ—) Y, EEN Zy in A such
that X = X1 ® Xo, Z = Z1 © Z2 and f = diag{ f1, f2}, 9 = diag{g1, 92}

Proof. Suppose that rkAut(X)=mn;, rkAut(X)=N and rkAut(Z) =
ng. Then N <nj;+mne. For simplicity, we use the notation as

above.Let Y = Y1 @ ...® YN, f = (f1, fo,---, fn), 9= (91,92, --,gn) and
the isomorphisms (a,c,b), (tI,,,tIn,tl,,) € Aut(X Ly Z), where ¢ =

< ﬂ]g_l t% ) Recall that

=5 _t(a—tInl) € End(X)

is an idempotent such that
fsn=1(0,...,0, fn)

and X = Kersy @ Imsy. Similarly, there exists an idempotent

in End(Z) such that ryg = (0,...,0,gx) and Z = Kerry & Imry. Without
loss of generality, we assume that fny # 0 and gy # 0. Because fysy = fn
and rNgN = gn,

ININ =rNgNINSN = TN (915, gN) (f1se ooy fN) s = 0.

It is clear that 7 : Kersy < X is a kernel of fn : X — Yy. There exists
a morphism f} : Imsy — Y which is an image of fy since X = Kersy &
Imsy. Similarly we can find a morphism gy : Yy — Imry which is a coimage
of gn such that gy = jgy, where j : Im(ry) < Z is an image of gy. It is
casy to check that f) is an inflation, ¢, a deflation and g} fj, = 0. Let
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h: Yy — A be a morphism in A such that hf}, = 0. The morphism
0,...,0,h) : V1...0VN = A
satisfies (0,...,0,h)f = 0. There exists k € Hom 4(Z, A) such that
(0,...,0,h) = kg

since g is a cokernel of f. It follows that h = kgy = kjgly. Hence g)y is a

cokernel of f},. Therefore Imsy f—N> Yy 2% Imry is a conflation. By induc-
tion, every indecomposable direct summand of Y is extended by the direct
summands of X and Z. The proof is finished. O

Lemma 3.12. Let O; and Oy be two indecomposable constructible subsets
of Obj4(K). Let A€ Obj(A) and v(A) > 2. If [A] ¢ O1 & Oa, then 1o, *
lo,([A4]) =0.

Proof. If 10, * 10, ([A]) # 0, then there exist X, Y € Obj(.A) such that [X] €
Oy, [Y] € Og and 1) * 1[y1(A) # 0 by Lemma 3.8. It follows that v(A) = 2
and A~ X @Y by Lemma 3.9 (also see [12, Theorem 4.9]). This leads to a
contradiction. dJ

Corollary 3.13. Let Oy and Os be indecomposable constructible subsets of
ObjA(K). If O1 N Oz =0, then

m
lo, * 1o, = lo,e0, + Y _ ailp,
=1

where P; are indecomposable constructible subsets and a; = 1o, * 1o, ([X])

for [X] € P;.

Proof. Let [M] € O; and [N] € Oy. Then M is not isomorphic to N since

O1 N Oy = 0. Using the fact that mr, (M 225 M e N 2% N)) = 1, we

obtain
1o, * 1o, ([M & NJ)

— e (M 225 e N O Ny e B e v O Ny 1,

By Lemma 3.12, we know that if 1o, * 1o,([X]) # 0 and [X] ¢ O1 & Oq,
then X is an indecomposable object. Note that

(101 * 1o, (Obi4(K) \ O1 @ 02)) \ {0} ={ai,a2,...,an}.
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Then P; = (1o, * 1o,) " H(a;) \ O1 & Oy for 1 <i<m. We complete the
proof. O

Using Lemma 3.9 and Lemma 3.11, one easily obtains the following
corollary:

Corollary 3.14. Let O1 and Oy be two constructible sets. There exist
finitely many constructible sets Q1, Qa, ..., O, such that

L x1lp, = Z a;lo,

where ¥(Q;) < v(01) +v(02) and a; = (1o, * 10,)([X]) for any [X] € Q.

For indecomposable constructible sets Oi,...,0; and X € Obj(A),
1o, * 1o, * ... % 1o, ([X]) # 0 implies that v(X) < k. In particular, y(X) =
kE means X = X; @ ...® X, with [X;] € O; for 1 <i <k.

Let Xi,...,X,, € Obj(A) and there be r isomorphic classes, we can
assume that Xy,...,X,,, are isomorphic, X;,, +1,..., X, are isomorphic,

., and Xy 4+1,...,Xy,, are isomorphic, where m; + ...+ m, = m. By
[12], we have

Aut(X1 & ... 8 X))/ Aut(Xy) x ... x Aut(X,,)

() 1  [(GLOms, K0/ (K7)™),

(7)) x(Aut(X;1 @ Xo @ ... 0 X,,)/ Aut(Xq) x ... x Aut(X, l_ImZ
Proposition 3.15. Let O be an indecomposable constructible set. Then

t
1 = kllgo + > mslp,
i=1

where v(P;) < k for each i and m; = 1;¥([X]) for [X] € P;.
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Proof. We prove the proposition by induction on k. When k = 1, it is easy
to see that the formula is true. If k£ = 2, then

15 (X @ X]) = 10(1X]) - 1o([X]) - x(Aut(X & X)/ Aut(X) x Aut(X)) = 2

for [X] € O and
1G(X@Y])=

(To(XD1o([Y]) + 1o([YD1o([X]) - x(Aut(X @ Y)/ Aut(X) x Aut(Y))
=2,

where [X],[Y]€ O and X 2Y. If [X]¢O0O® O and ~(X)>2 then
1’(‘92([X]) = 0 by Lemma 3.12. Hence 1*02 =2 1logo + >_m;P; where P; are

indecomposable constructible sets by Corollary 3.14.
Now we suppose that the formula is true for £ < n. When k =n + 1, we
have

where P’ are constructible sets with v(P’) < n. If the formula is true for
=n+ 1, then

o % 1o = (n+ Do + > colo,

where Q are constructible sets with v(Q) < n + 1. Hence it suffices to show
that the initial term of 1,0 * 10 is (n + 1)1(,41)0, namely (1,0 * 1o)([X]) =
n+1 for all [X] € (n+1)0.

Assume that X = mi X7 ®@moeXo® ... dm,X,, where Xq,...,X, €
Obj(A) which are not isomorphic to each other, [X;] € O for 1 <i <,
mi, ..., m, are positive integers and my +mo + ...+ m, =n + 1.

(1no * 10)([X]) = (Ljim,—1) X, @ms Xa@...0m, X,] * 1x,1) ([X])
+(1[mlxl@(mQ—l)X2®...@mTXT} * 1[X2])([X])

+...

+Lmy xy@..0my X @m—1)x,] * 11x,7) ([X])
Using Equation (7), it follows that

1

*(mq—1) *1Mo *1Mye
X,] *1[X2]*...*1[X7.]



Realizing Enveloping Algebras via Moduli Stacks 207

= (ml - 1)'m2' e mT!l[(ml—1)X1€Bm2X2€B...€BmTXT] + ... s

*Mye

\
*(mi—1 2
Loy ™ 1 e 1 Ly = (i) o, xoma s omox) + -
i=1

Compare the initial monomials of the two equations, it follows that

Lmi—1D)X10meXo®..om. X,] * 1x,] = M1l X 0me Xoo..0m.x,] + - -

Similarly, we have 1[m1X1€B-..®(mi—1)X169-.-€Bm7~X7-} * I[XL]([X]) = m; for i =
T
2,...,r. Hence (1,0 * 1p)([X]) = > m; = n+ 1 which completes the proof.
i=1
O

By induction, we have the following corollary.

Corollary 3.16. Let O1,0o,..., O be indecomposable constructible sets
which are pairwise disjoint. Then we have the following equations

*n *n *n
lo!*x1p2...x1n" = nilng! . .onk!ly, 008 en0, + -,

1m101€9--~€9mk0k * 1n1o1@---®nkok

k
(m; +n;)!
- H W1(m1+n1)01®~~~®(mk+nk)ok +.o
Rz

=1

where k is a positive integer and mq, ..., mg,N1,...,n; € N.

Let Ind(a) be the subset of Obj%(K) such that X are indecomposable
for all [X] € Ind(«).

Lemma 3.17. For each o € K'(A), Ind(«x) is a locally constructible set.
Proof. Assume a, 3,7 € K'(A) \ {0}. The map

1] 96i% (K) x 96 (K) — Dbj%(K)
By
BHy=a

is defined by ([B],[C])— [B® C]. It is clear that f is a pseudo-
morphism. Every Obj’(K) x Obj%(K) is a locally constructible set.
For any constructible set C C Obj4(K) x Obj4(K), there are finitely
many Obj’ (K) x D67 (K) such that C N (96 (K) x Obj%(K)) # 0. Hence
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g ;84+7=a Dbji(K) x Obj7(K) is locally constructible. Then Imf is a
locally constructible set. It follows that Ind(a) = Obj%(K) \ Imf is locally
constructible. OJ

The following proposition is due to [4, Proposition 11].

Proposition 3.18. Let O, 09 be two constructible sets of Krull-Schmidt.

It follows that
k1o, = Z ailo,

for some ¢ € N*, where a; = 1o, * 1@2([ ) for each [X] € Q; and Q; are
constructible sets of stratified Krull-Schmidt such that v(Q;) < ~v(01) +
Y(O2).

Proof. Because 01,0y are constructible sets, the equation holds for some
constructible sets Q; with v(Q;) < v(O1) + v(0O3) by Corollary 3.14.

For every [Yi] € Q;, 1o, *x 1o,([Yi]) #0. By Lemma 3.8, there exist
Xi, Z;i € Obj(A) such that [X;] € O1, [Zi] € Oy and 1x,) * 11z, ([Yi]) # 0
since 1o, * 1p,([Yi]) # 0. Thanks to Lemma 3.9, we have that ~(Y;) <
v(Xi) +v(Z;). According to Lemma 3.11, all indecomposable direct sum-
mands of Y; are extended by the direct summands of X; and Z; since

1ix,) * 1z,)([Y3]) # 0.
¢
By the discussion in Section 3.1, we can suppose that O; = € a;C; and
i=1

t
Oy = @ b;Cj, where a;,b; € {0,1} for all 4,5 and C; are indecomposable
=1

]7
constructible sets such that C; NC; =P or C; = Cj foralli # j. Let 1 <r <t,
the set

{A1, Aoy A | 0#£ A, C{L,...;n} fori=1,...,r}

is called an r-partition of {1,2,...,t} if AAUAU...UA, ={1,2,...,t}
and A; N Aj =0 for all i # j. Obviously, the cardinal number of all par-
titions of {1,2,...,t} is finite. Let {41, Ao,..., A}, {B1,Ba,...,B,} be
two r-partitions of {1,2,...,t} and ¢ € Q\ {0} for k=1,2,...,r. Set

Oa, = @ aC; and Op, = @ b;C; for 1 <k <r. Then we have
1€Ay JEB

RAk;Bk,Ck = {[X] € OAk D OBk | ]‘OAk * 103k([X]) = Ck}?

Ta, By = {[X] | X indecomposable, lo,, * 1OBk([X]) = cp}.
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This means that for each [X] € Ra, B, c,, there exist [A] € O4, and [B] €
Op, such that X = A @ B. For each [Y]| € Zy, B, ,, there exist [C] € Oy,
and [D] € Op, such that C — Y — D is a non-split conflation in A. Note
that

RaBee. = (Lo, * 1o, ) (cr)) N (O4, ® Op,).

By Corollary 3.16, Ra, By, =0 or Oa, ® Op,. Hence Ra, Boc. IS a
constructible set of Krull-Schmidt. There exist aq,...,as € K'(A) such
that Za, B, = (Ii_;Ind(a;)) N ((lo,, * 1o, ) '(ck)). By Lemma 3.17,
T A, By,c. 18 an indecomposable constructible set.

Finally, 1o, *1lp, is a Q@Q-linear combination of finitely many
Loy 04, 5,.c.» Where O, B, ¢, run through Ra, B, ., and Za, B, ., for all
r-partitions and r = 1,2,...,¢. We finish the proof. O

Thus we summarize what we have proved as the following theorem which
is due to [4, Theorem 12].

Theorem 3.19. The Q-space CEFXS(Obj 1) is an associative Q-algebra with
convolution multiplication * and identity 1.

3.5. The universal enveloping algebra of CF*¢(Dbj 4)

From now on, let U (CF™(Obj 4)) denote the universal enveloping algebra of
CF™4(9bj4) over Q. The multiplication in U(CF(Obj 1)) will be written
as (z,y) — zy. There is a Q-algebra homomorphism

® : U(CF(Obj4)) — CFES(Dbj4)

defined by @®(1)=1p and @(fife...fn) = fi* fox...* fn, where
fi, f2, ..., fn belong to CFR(Dbj 4).
The following theorem is related to [4, Theorem 15].

Theorem 3.20. & : U(CF"Y(Dbj4)) — CFES(Dbj4) is an isomorphism.
Proof. For simplicity of presentation, let

U = U(CF™(Obj4)) and CF = CFX5(Dbj4).
Assume that Oq,0,,...,0,_1 and O are indecomposable constructible

subsets of ©Obj4(K) which are pairwise disjoint. It follows that
1o,,10,, ..., 10, are linearly independent in CF™4(Obj 4).
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Let Up,.. .o, denote the subspace of U which is spanned by all

Iy 1 .. 15 forn; e Nand i =1,... k.
Define CFp, ..o, to be the subalgebra of CF which is generated by the
elements 1,,0,en,0.@...en.0, of CF, where n; e N for i =1,2,... k.

The homomorphism ® induces a homomorphism
®0,..0, 1 Uo,..0, = CFo, .o,

which maps 155 155 ... 155 to 15"+ 157 % ...ox 155"
First of all, we want to show that (I)Ol...Ok is injective.

For m € N, let Ug?)ok be the subspace of U which is spanned by

k
{11518 1 > ni<myn; >0fori=1,... .k}
1=1

Using the PBW Theorem, we obtain that
k
{1515 A% [ > ni=mmn; >0fori=1,... k}

is a basis of the Q-vector space U((OT)O,C / Ug?_(lg)k for m > 1.
Similarly, we define Can) 0, to be a subspace of CFp,. o, such that
each f € Can) o, is of the form Zczlc, where [ € Nt ¢; €Q, 1¢, €

CFo, ..o, and C; are constructible sets Of Krull-Schmidt such that v(C;) < m.
In CF™ / CF™=1 | the set

k

{1711(’)1@71202@_“@”,60,6 | Z?’Lz =m,n; 2 0 fOI‘ 1= 1, ey k‘}
=1

is linearly independent by the Krull-Schmidt Theorem.
For each m > 1, ¢, o, induce a map

(m) (m) m— 1) m) m—1)
5,0, Vo, Ok/U — CF, /CF O
which maps 1’("5111’("”922...1’(19’”]'c to nilnae!. .. nE!ln, 0, 8n,0.0. .en.0, (also see
k
Corollary 3.16), where > n; =m and m; > 0. From this we know that

i=1
<b( m) .0, 1s injective for all m € N. Obviously, both Up,0,..0, and CFp,. o,
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are filtered. From the properties of filtered algebra, we know that ®o, o,
is injective. Hence ® : U — CF is injective.

Finally, we show that ® is surjective by induction on m. When m =1,
the statement is trivial. Then we assume that every constructible function

t
f=>"ailg, lies in Im(®), where a; € Q and Q; are constructible sets of

=1
stratified Krull-Schmidt with Y(Qi) < m.
Let ny +no+...+np =mand n; € N for 1 <i<k. Then

ny qN2 N _ *Mq *M2 *Np
P(IH 15 - 1) =15 152 % ..ox 135"

S
= nllng! e nnllnlol@TLzOz@...@nkok + Z bjl’pj,
j=1
where b; € Q and P; are constructible sets of stratified Krull-Schmidt with
S
v(Pj) < m. By the hypothesis, Y b;1p, € Im(®). Hence 1,,,0,0n,0,@...0n, 0
i=1

‘77
lies in Im(®). The algebra CF is generated by all 1,,,0, .. .an. 0, , which proves
that ® is surjective, the proof is finished. O

4. Comultiplication and Green’s theorem
4.1. Comultiplication

We now turn to define a comultiplication on the algebra CFXS(Obj4).
For f,g€ CF(Obja), f@g is define by f@g([X],[Y]) = f([X]g([Y])
for ([X],[Y]) € (9bja x Obj 4)(K) = Obj 4(K) x Obj 4(K) (see [12, Difini-
tion 4.1]). Let X Ly ¥ % Z be a conflation in A. Recall that the map ps :
Aut(X Ly s Z) — Aut(X) x Aut(Z2) is defined by (a1, az,as) — (a1, as)
and x(Kerpy) = 1.

The following definitions are related to [4, Section 6] and [12, Defin-
tion 4.16].

Definition 4.1. From now on, assume that 7, : €ract 4 — Obj 4 is of finite
type and m; x m, is representable. Then we have the following diagram

(TI'[Xﬂ',.)z

CFRS (€ract ;) <72 CFKS (0pj4).

CFES(Obj 4 x Obj 1)
The comultiplication

A : CFRS(Obj4) — CFES(Dbj 4 x Obj4)



212 Ligian Bai and Fan Xu

is defined by A = (m; x 7)1 0 (mm)*, where CFXS(9Dbj 4 x Obj 4) is regarded
as a topological completion of CFX5(Obj 4) @ CFXS(Dbj4).
The counit € : CFXS(9bj4) — Q maps f to f([0]).

Note that A is a Q-linear map since (m; X 7)) and (m,;,)* are Q-linear
map.

Definition 4.2. Let a = [A], 5 = [B] € Dbj 4(K) and O C Obj4(K) be a
constructible set of stratified Krull-Schmidt, define

hE' = Allo)(4], [B)).
Let O; and Oz € Obj 4(K) be constructible sets, define
9%201 = 101 * 102 (Ot)

n

Because A(lp) is a constructible function, A(lp) = > h%ailoi for
i=1

some «y, 3; € Obj 4(K) and n € N, where O; are constructible subsets of

Obj4(K) x Obj 4(K).

Lemma 4.3. Let X, Y, Z € Obj(A). If X ® Z is not isomorphic to Y,
then A(l[y})([X], [Z]) =0.

Proof. It A(1;y)([X], [Z]) # 0, there exists a conflation X Ly% zmA
such that mq xq, ([X Ly Z]) # 0. Recall that

M (X Y % 7)) = y((Aut(X) x Aut(Z))/Tmpy).

If rk Impy < rk(Aut(X) x Aut(Z)), the fibre of the action of a maximal
torus of Aut(X) x Aut(Z) on (Aut(X) x Aut(Z))/Imp, is (K*)! for some [ >
0. Then x((Aut(X) x Aut(Z))/Imps) = 0, which is a contradiction. Hence
rk( Aut(X) x Aut(Z)) = rk Imp,.

Assume that rk Aut(X) = ny, rkAut(Z) = ny and rk Aut(Y) =n for
some positive integers ni, ny and n. Note that D,, x D,, is a maxi-
mal torus of Aut(X) x Aut(Z). Because rk( Aut(X) x Aut(Z)) = rk Im(pz),
each maximal torus of Imps is also a maximal torus of Aut(X) x Aut(Z).
Therefore every maximal torus of Imps and D,,, x D,,, are conjugate. For
simplicity, we can assume that D,, x D,,, is a maximal torus of Imp,. For
(tiln,,toly,) € Dy, x Dy, where t1 # ta, there exists 7 € Aut(Y') such that
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(t1ln,, T, tal,,) € Aut(X Ly 4 Z). Then we have the commutative dia-
gram
x Ty 2.z
t1 ﬂli i t21w2
X R y-2-7

The morphism (to1y,,, toly, taly,,) is also in Aut(X Ly s 7). The following

diagram is commutative

x- oy 9. g7

tzfnli tol, taln,
X A y 9.

Consequently g(7 — tol,,) = 0. Because f is a kernel of g, there exists h €
Hom(Y, X) such that 7 — toI, = fh. Then 7 = fh + taI,,. We have

f(tllnl) =7f= (fh + t2In))f7
it follows that

fhf = f(tllnl) - (tQIn)f = f(tllnl - t2In1)'

Then hf = (t; — t2)I,, since f is an inflation. Let [’ = 7—; I, then f'f=
1x. Hence X is isomorphic to a direct summand of Y. The proof is com-
pleted. O

For an indecomposable object X € Obj(.A), direct summands of X are
only X and 0. Thus A(1x]) = 1;x] ® 1jo] + 1jg ® 1x]. It follows that A(f) =
f @1 + 1 @ f for f € CF(Dbja).

By Lemma, 4.3, h@a =lifa®p e, and h%a = 0 otherwise. Let O =
n1O01® ... D ny,0, be a constructible set of Krull-Schmidt, where O; are
indecomposable constructible sets for all 1 <i <m. By Lemma 4.3, the

n
formula A(1p) = h%‘ail@i can be written as
i=1

A(lp) = Z k018, 0k 0 @ Ly —£1)018...0 (1 — k) Orn -
1<i<m;0<k; <n,

Hence we have the following proposition.
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Proposition 4.4. Let O be a constructible set of stratified Krull-Schmidt,
then A(1p) € CFXS(Dbj4) @ CFXS(Dbj4), i.e., the map

A : CFXS(0bj4) — CFRS(Obj4) @ CFES(Dbj4))
18 well-defined.
4.2. Green’s theorem on stacks

Recall that

[ fw= > ai@ns),
ves a€f($)\{0}
where f is a constructible function and S a locally constructible set.

Let 01,02,0,,0,,0.,0.,0, be constructible sets and o € O1,f €
O2,p€ Op,0 € Oy,e € O, 7 € O7,A € Oy such that O, ® O, = 07 and
O O, = 0s.

The following theorem is the degenerate form of Green’s theorem which
is related to [4, Theorem 22].

Theorem 4.5. Let O1, 02 be constructible subsets of Obj4(K) and o, 5" €
Obj 4(K), then we have

/@ ’ ! ’
9o = / 9,975
0,0,6,7€ED ) 4 (K);pP0€01,eDTEO,
CM’@B’ o O{’@B/
Proof. By the proof of Lemma 3.8, gp o = faeol 5c0, Y50 - It suffices to

prove the following formula

a/@/j/ _

98a > g0

/ Gep9ro-
0,0,6,7€Obj 4(K);pPo=a,e®dT=0

Suppose that [A] = o, [B] = §, [A] =d/, [B'] =f', [C]=p, [D] =0,
[E]=¢€and [F] =7 for A,B,C,D,E,F € Obj(A). There are finitely many
(p,0) and (e, 7) such that p@® o = a and e ® 7 = . Take

V= U V([C, [E]; A) x V([D], [F}; B').

[CL[DL,[E]L[F];
[CeD]=[A],[E®@F]=[B]

The map
i:V—=V(A],[B];A @®B)
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is defined by
Chas e BB ) copb Ao S EaF),

where f = fi 0 and g = g0 . Because both C f—1> A2 B
0 fo 0 g2

and D 2% B' 2 F are conflations, C & D Sy A eB % EaFis aconfla-
tion by [2, Proposition 2.9]. Hence the morphism is well-defined. Note that
1 is injective.

There is a map Q; : V(A4, B, A’ ® B') — €ract 4(K) which maps (A ERN
A@B % B)to[AL A'e B % B). Recall that

XN AL AeB % B)=m., (AL A e B % B).
Take

Q(A, B, A ® B') = Ugen(a,paop)Qd(A, B, A" ® B')

which is the image of ;.
A map

Qo : V — Cract 4 (K) x Eract 4(K)

is defined by

The Euler characteristic of Q5 (([C ELNy/TN E],[D EENY; R F))) is
me, ([C L5 A" 25 E)me, (ID 25 B/ 25 FI). Let

Q(C7da C>D7E7F) = QC(OaEaAI) X Qd(D7FaB/)
for ce A(C,E;A"), d e A(D, F; B') and
Q(A',B') = U, a0y, Q(c: d,C, D, E, F),

where CO E=2Aand DD F = B.
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There is a morphism
i1: QA B - Q(A,B,A®B)

by  (CBA S EDEBE ) scep LA S Ea R
Then there is a commutative diagram

0N (Q(A, B)) ——= Q7Y (Q(A, B,A' & B))

QA B') : QA B, A B)

According to Lemma 3.11, if m,_([A Laep s B]) # 0, then there exist

two conflations C il—) A" B and D iz\—) B’ 2y Fin Asuch that A~ C &

D,B%E@F,f:<{)l 2>andg:(% ;2>.If

ma, (AL A e B % B) =0,

then [A ERYY: N B] € €ract 4(K) \ Q(A4, B, A’ ® B’). Hence i is surjec-
tive. For each [A ENYEY: N Bl e Q(A,B,A" @ B,
XA (AL Ao B % B))
B me (A5 Ao B % B)
ma, ([C L5 A 25 E)my, (ID 25 B2 F))

By Lemma 2.5, it follows that

cdx"(Qe(C, E; AN))X"(Qa(D, F; B)) = ax™(Qc(A, B; A" @ B'),
where c:m,rm([CgA’ 2 E),  d=mg, (D EENy ;7 EyF), a=
m, ([A Laep B]) and acd # 0. This completes the proof. O

For all fi, fa,g1,92 € CF*3(Dbj4), define (f1 @ g1) * (f2 ® g2) = (f1 #
f2) ® (g1 * g2). Using Green’s theorem, we have the following theorem due

to [4, Theorem 24].

Theorem 4.6. The map A : CFXS(9Dbj4) — CFXS(Dbj4) @ CFXS(Dbj 4)
1s an algebra homomorphism.
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Proof. The proof is similar to the one in [4, Theorem 24]. Let 01,02 €
0bj 4(K) be constructible sets of stratified Krull-Schmidt. Then

A(lp, * 1o,) = }:%%OJOA }:ggﬂh (10,)
a,B a’,p’

A(lo,) * Alle,) = O hZlo, @ 10,) * (O hE,1lo, @ 1o,)

€,T

— }: hy h,(lo, * 10,) ® (1o, * 1o,)

P,0,€,T

- Z héplh ZQO o, 9(9 o, lo, ® lo,)

P,0,€,T o ﬂ/

=> (Y W hE,e 0, 960,10, ®10,).
Oél,ﬁ/ P,0,€,T

According to Theorem 4.5, it follows that
Y 5,960,900, = om0, -
p7o—7677—
Therefore A(1lp, * 1p,) = A(lp,) * A(1lp,). We have thus proved the theo-

rem. O

Appendix A. Exact categories
We recall the definition of an exact category (see [13, Appendix A]).

Definition A.1. Let A be an additive category. A sequence
xLy%z

in A is called exact if f is a kernel of g and ¢ is a cokernel of f. The
morphisms f and g are called inflation and deflation respectively. The short
exact sequence is called a conflation. Let S be the collection of conflations
closed under isomorphism and satisfying the following axioms

A0 1p: 0 — 0 is a deflation.

A1 The composition of two deflations is a deflation.
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A2 For every h € Hom(X, X’) and every inflation f € Hom(X,Y) in A,
there exists a pushout

x-—1.oy

3 | |

X —=Y'
where f/ € Hom(X’,Y”) is an inflation.
A3 For every | € Hom(Z', Z) and every deflation g € Hom(Y, Z) in A,
there exists a pullback

Yl L) Z/

1

)

where ¢' € Hom(Y”, Z') is an deflation. Then (A, S) is called an exact cate-
gory.

The definition of idempotent complete is taken from|[2, Definition 6.1].

Definition A.2. Let A be an additive category. The category A is idem-
potent complete if for every idempotent morphism s : A — A in A, s has a
kernel k: K — A and a image i : I — A (a kernel of a cokernel of s) such
that A = K @ I. We write A = Kers @ Ims, for simplicity.
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