# Realizing Enveloping Algebras via Moduli Stacks

LIQIAN BAI AND FAN XU

Abstract: Let  $CF(\mathfrak{Obj}_{\mathcal{A}})$  denote the vector space of  $\mathbb{Q}$ -valued constructible functions on a given stack  $\mathfrak{Obj}_{\mathcal{A}}$  for an abelian category  $\mathcal{A}$ . In [12], Joyce proved that  $CF(\mathfrak{Obj}_{\mathcal{A}})$  is an associative  $\mathbb{Q}$ -algebra via the convolution multiplication and the subspace  $CF^{ind}(\mathfrak{Obj}_{\mathcal{A}})$  of constructible functions supported on indecomposables is a Lie subalgebra of  $CF(\mathfrak{Obj}_{\mathcal{A}})$ . In this paper, we extend Joyce's result to an exact category  $\mathcal{A}$  and show that there is a subalgebra  $CF^{KS}(\mathfrak{Obj}_{\mathcal{A}})$  of  $CF(\mathfrak{Obj}_{\mathcal{A}})$  isomorphic to the universal enveloping algebra of  $CF^{ind}(\mathfrak{Obj}_{\mathcal{A}})$ . Moreover we construct a comultiplication on  $CF^{KS}(\mathfrak{Obj}_{\mathcal{A}})$  and a degenerate form of Green's theorem. This refines Joyce's result, as well as results of [4]. **Keywords:** Hall algebra; stack; constructible set; universal enveloping algebra.

# 1. Introduction

Let  $\Lambda$  be a finite dimensional  $\mathbb{C}$ -algebra such that it is a representation-finite algebra, i.e., there are finitely many finite dimensional indecomposable  $\Lambda$ modules up to isomorphism. Let  $\mathcal{I}(\Lambda) = \{X_1, \ldots, X_n\}$  be a set of representatives. Let  $\mathcal{P}(\Lambda)$  be a set of representatives for all isomorphism classes of  $\Lambda$ -modules. There is a free  $\mathbb{Z}$ -module  $R(\Lambda)$  with a basis  $\{u_X \mid X \in \mathcal{P}(\Lambda)\}$ . Using the Euler characteristic,  $\mathcal{P}(\Lambda)$  can be endowed with a multiplicative structure (see [24] and [15]). The multiplication is defined by

$$u_X \cdot u_Y = \sum_{A \in \mathcal{P}(\Lambda)} \chi(V(X, Y; A)) u_A,$$

where  $V(X, Y; A) = \{0 \subseteq A_1 \subseteq A \mid A_1 \cong X, A/A_1 \cong Y\}$  and  $\chi(V(X, Y; A))$ is the Euler characteristic of V(X, Y; A). Thus  $(R(\Lambda), +, \cdot)$  is a  $\mathbb{Z}$ -algebra with identity  $u_0$ . Let  $L(\Lambda)$  be the submodule of  $R(\Lambda)$  which is spanned by

Received November 2, 2015.

The research was supported by NSF of China (No. 11471177).

 $\{u_X \mid X \in \mathcal{I}(\Lambda)\}$ . It follows that  $L(\Lambda)$  is a Lie subalgebra of  $R(\Lambda)$  with the Lie bracket  $[u_X, u_Y] = u_X \cdot u_Y - u_Y \cdot u_X$ . Riedtmann studied the universal enveloping algebra of  $L(\Lambda)$ . Let  $R(\Lambda)'$  be the subalgebra of  $R(\Lambda)$  generated by  $\{u_X \mid X \in \mathcal{I}(\Lambda)\}$ . Riedtmann showed that  $R(\Lambda)'$  is isomorphic to the universal enveloping algebra of  $L(\Lambda)$ . These results have been generalized in two ways.

Joyce generalized Riedtmann's work in the context of constructible functions (also stack functions) over moduli stacks. In [11], Joyce defined the Euler characteristics of constructible sets in K-stacks, pushforwards and pullbacks for constructible functions, where K is an algebraically closed field. Let  $\mathcal{A}$  be an abelian category and  $\operatorname{CF}(\mathfrak{Dbj}_{\mathcal{A}})$  the vector space of  $\mathbb{Q}$ -valued constructible functions on  $\mathfrak{Dbj}_{\mathcal{A}}(\mathbb{K})$ , where  $\mathfrak{Dbj}_{\mathcal{A}}$  is the moduli stack of objects in  $\mathcal{A}$  and  $\mathfrak{Dbj}_{\mathcal{A}}(\mathbb{K})$  the collection of isomorphism classes of objects in  $\mathcal{A}$ . Joyce proved that  $\operatorname{CF}(\mathfrak{Dbj}_{\mathcal{A}})$  is an associative  $\mathbb{Q}$ -algebra. The algebra  $\operatorname{CF}(\mathfrak{Dbj}_{\mathcal{A}})$  can be viewed as a variant of the Ringel-Hall algebra. Let  $\operatorname{CF}^{\operatorname{ind}}(\mathfrak{Dbj}_{\mathcal{A}})$  be the subspace of  $\operatorname{CF}(\mathfrak{Dbj}_{\mathcal{A}})$  satisfying the condition that  $f([X]) \neq 0$  implies X is an indecomposable object in  $\mathcal{A}$  for every  $f \in \operatorname{CF}^{\operatorname{ind}}(\mathfrak{Dbj}_{\mathcal{A}})$ . Then  $\operatorname{CF}^{\operatorname{ind}}(\mathfrak{Dbj}_{\mathcal{A}})$  is shown to be a Lie subalgebra of  $\operatorname{CF}(\mathfrak{Dbj}_{\mathcal{A}})$  ([12, Theorem 4.9]). Let  $\operatorname{CF}_{\operatorname{fin}}(\mathfrak{Dbj}_{\mathcal{A}})$  be the subspace of  $\operatorname{CF}(\mathfrak{Dbj}_{\mathcal{A}})$  such that

$$\operatorname{supp}(f) = \left\{ [X] \in \mathfrak{Obj}_{\mathcal{A}}(\mathbb{K}) \mid f([X]) \neq 0 \right\}$$

is a finite set for every  $f \in CF_{fin}(\mathfrak{Obj}_{\mathcal{A}})$ . Let

$$\mathrm{CF}_{\mathrm{fin}}^{\mathrm{ind}}(\mathfrak{Obj}_{\mathcal{A}}) = \mathrm{CF}_{\mathrm{fin}}(\mathfrak{Obj}_{\mathcal{A}}) \cap \mathrm{CF}^{\mathrm{ind}}(\mathfrak{Obj}_{\mathcal{A}}).$$

Assume that a conflation  $X \to Y \to Z$  in  $\mathcal{A}$  implies that the number of isomorphism classes of Y is finite for all  $X, Z \in \mathrm{Obj}(A)$ . With the assumption, Joyce proved that  $\mathrm{CF}_{\mathrm{fin}}(\mathfrak{Obj}_{\mathcal{A}})$  is an associative algebra and  $\mathrm{CF}_{\mathrm{fin}}^{\mathrm{ind}}(\mathfrak{Obj}_{\mathcal{A}})$ a Lie subalgebra of  $\mathrm{CF}_{\mathrm{fin}}(\mathfrak{Obj}_{\mathcal{A}})$ . It follows that  $\mathrm{CF}_{\mathrm{fin}}(\mathfrak{Obj}_{\mathcal{A}})$  is isomorphic to the universal enveloping algebra of  $\mathrm{CF}_{\mathrm{fin}}^{\mathrm{ind}}(\mathfrak{Obj}_{\mathcal{A}})$ . Joyce defined a comultiplication on  $\mathrm{CF}_{\mathrm{fin}}(\mathfrak{Obj}_{\mathcal{A}})$  and proved that  $\mathrm{CF}_{\mathrm{fin}}(\mathfrak{Obj}_{\mathcal{A}})$  is a bialgebra.

In [4], the authors extended Riedtmann's results to algebras of representation-infinite type, i.e., the cardinality of isomorphism classes of indecomposable finite dimensional  $\Lambda$ -modules is infinite. Let  $R(\Lambda)$  be the  $\mathbb{Z}$ -module spanned by  $1_{\mathcal{O}}$ , where  $1_{\mathcal{O}}$  is the characteristic function over a constructible set of stratified Krull-Schmidt  $\mathcal{O}$  (see [4, Section 3]). The subspace  $L(\Lambda)$  of  $R(\Lambda)$  is spanned by  $1_{\mathcal{O}}$ , where  $\mathcal{O}$  are indecomposable constructible sets. The multiplication is defined by

$$1_{\mathcal{O}_1} \cdot 1_{\mathcal{O}_2}(X) = \chi(V(\mathcal{O}_1, \mathcal{O}_2; X)),$$

where X is a  $\Lambda$ -module. Then  $R(\Lambda)$  is an associative algebra with identity  $1_0$  and  $L(\Lambda)$  a Lie subalgebra of  $R(\Lambda)$  with Lie bracket. The algebra  $R(\Lambda) \otimes \mathbb{Q}$  is the universal enveloping algebra of  $L(\Lambda) \otimes \mathbb{Q}$ . The authors gave the degenerate form of Green's theorem and established the comultiplication of  $R(\Lambda)$  in [4].

The goal of this paper is to explicitly construct the enveloping algebra of  $\operatorname{CF}^{\operatorname{ind}}(\mathfrak{Obj}_{\mathcal{A}})$  by the methods in [4]. Let  $\mathcal{A}$  be an exact category satisfying some properties. Let  $X \xrightarrow{f} Y \xrightarrow{g} Z$  be a conflation in  $\mathcal{A}$  and  $\operatorname{Aut}(X \xrightarrow{f} Y \xrightarrow{g} Z)$ Z) the automorphism group of  $X \xrightarrow{f} Y \xrightarrow{g} Z$ . The key idea in [4] is that V(X,Y;L) has the same Euler characteristic as its fixed point set under the action of  $\mathbb{C}^*$ . In this paper, we consider exact categories instead of categories of modules. Then as a substitute of the action of  $\mathbb{C}^*$ , we analyze the action of a maximal torus of  $\operatorname{Aut}(X \xrightarrow{f} Y \xrightarrow{g} Z)$  on  $X \xrightarrow{f} Y \xrightarrow{g} Z$ . The universal enveloping algebra of  $\operatorname{CF}^{\operatorname{ind}}(\mathfrak{Obj}_{\mathcal{A}})$  can be endowed with a comultiplication structure (Definition 4.1). It is compatible with multiplication (Theorem 4.6). The compatibility can be viewed as the degenerate form of Green's theorem on Ringel-Hall algebras (see [5] or [22]).

The paper is organized as follows. In Section 2 we recall the basic concepts about stacks, constructible sets and constructible functions. In Section 3 we define the constructible sets of stratified Krull-Schmidt. We study the the subspace  $CF^{KS}(\mathfrak{Obj}_{\mathcal{A}})$  of  $CF(\mathfrak{Obj}_{\mathcal{A}})$  generated by characteristic functions supported on constructible sets of stratified Krull-Schmidt. Then  $CF^{KS}(\mathfrak{Obj}_{\mathcal{A}})$  provides a realization of the universal enveloping algebra of  $CF^{ind}(\mathfrak{Obj}_{\mathcal{A}})$ . In Section 4 we give the comultiplication  $\Delta$  in  $CF^{KS}(\mathfrak{Obj}_{\mathcal{A}})$ and prove that  $\Delta$  is an algebra homomorphism.

# 2. Preliminaries

#### 2.1. Constructible sets and constructible functions

From now on, let  $\mathbb{K}$  be an algebraically closed field with characteristic zero. A good introduction to algebraic stacks and 2-categories is [6]. We recall the definitions of constructible sets and constructible functions on  $\mathbb{K}$ -stacks. These definitions are taken from [11]. **Definition 2.1.** Let  $\mathcal{F}$  be a K-stack. Let  $\mathcal{F}(\mathbb{K})$  denote the set of 2isomorphism classes [x] where  $x : \operatorname{Spec} \mathbb{K} \to \mathcal{F}$  are 1-morphisms. Every element of  $\mathcal{F}(\mathbb{K})$  is called a geometric point (or K-point) of  $\mathcal{F}$ . For K-stacks  $\mathcal{F}$ and  $\mathcal{G}$ , let  $\phi : \mathcal{F} \to \mathcal{G}$  be a 1-morphism of K-stacks. Then  $\phi$  induces a map  $\phi_* : \mathcal{F}(\mathbb{K}) \to \mathcal{G}(\mathbb{K})$  by  $[x] \mapsto [\phi \circ x]$ .

For any  $[x] \in \mathcal{F}(\mathbb{K})$ , let  $\operatorname{Iso}_{\mathbb{K}}(x)$  denote the group of 2-isomorphisms  $x \to x$  which is called a stabilizer group. For ease of notations,  $\operatorname{Iso}_{\mathbb{K}}(x)$  is used to denote the group instead of  $\operatorname{Iso}_{\mathbb{K}}([x])$ . If  $\operatorname{Iso}_{\mathbb{K}}(x)$  is an affine algebraic  $\mathbb{K}$ -group for each  $[x] \in \mathcal{F}(\mathbb{K})$ , then we say  $\mathcal{F}$  with affine geometric stabilizers. A morphism of algebraic  $\mathbb{K}$ -groups  $\phi_x : \operatorname{Iso}_{\mathbb{K}}(x) \to \operatorname{Iso}_{\mathbb{K}}(\phi_*(x))$  is induced by  $\phi : \mathcal{F} \to \mathcal{G}$  for each  $[x] \in \mathcal{F}(\mathbb{K})$ .

A subset  $\mathcal{O} \subseteq \mathcal{F}(\mathbb{K})$  is called a constructible set if  $\mathcal{O} = \coprod_{i=1}^{n} \mathcal{F}_{i}(\mathbb{K})$  for some  $n \in \mathbb{N}^{+}$ , where every  $\mathcal{F}_{i}$  is a finite type algebraic  $\mathbb{K}$ -substack of  $\mathcal{F}$ . A subset  $S \subseteq \mathcal{F}(\mathbb{K})$  is called a locally constructible set if  $S \cap \mathcal{O}$  are constructible for all constructible subsets  $\mathcal{O} \subseteq \mathcal{F}(\mathbb{K})$ . If  $\mathcal{O}_{1}$  and  $\mathcal{O}_{2}$  are constructible sets, then  $\mathcal{O}_{1} \cup \mathcal{O}_{2}$ ,  $\mathcal{O}_{1} \cap \mathcal{O}_{2}$  and  $\mathcal{O}_{1} \setminus \mathcal{O}_{2}$  are constructible sets by [11, Lemma 2.4].

Let  $\Phi : \mathcal{F}(\mathbb{K}) \to \mathcal{G}(\mathbb{K})$  be a map. The set  $\Gamma_{\Phi} = \{(x, \Phi(x)) \mid x \in \mathcal{F}(\mathbb{K})\}$  is called the graph of  $\Phi$ . Recall that  $\Phi$  is a pseudomorphism if  $\Gamma_{\Phi} \bigcap (\mathcal{O} \times \mathcal{G}(\mathbb{K}))$ are constructible for all constructible subsets  $\mathcal{O} \subseteq \mathcal{F}(\mathbb{K})$ . By [11, Proposition 4.6], if  $\phi : \mathcal{F} \to \mathcal{G}$  is a 1-morphism then  $\phi_*$  is a pseudomorphism,  $\Phi(\mathcal{O})$ and  $\Phi^{-1}(y) \cap \mathcal{O}$  are constructible sets for all constructible subset  $\mathcal{O} \subseteq \mathcal{F}(\mathbb{K})$ and  $y \in \mathcal{G}(\mathbb{K})$ . If  $\Phi$  is a bijection and  $\Phi^{-1}$  is also a pseudomorphism, we call  $\Phi$  a pseudoisomorphism.

Then we will recall the definition of the naïve Euler characteristic of a constructible subset of  $\mathcal{F}(\mathbb{K})$  in [11].

There is a useful result due to Rosenlicht [23].

**Theorem 2.2.** Let G be an algebraic  $\mathbb{K}$ -group acting on a  $\mathbb{K}$ -variety X. There exist an open dense G-invariant subset  $X_1 \subseteq X$  and a  $\mathbb{K}$ -variety Y such that there is a morphism of varieties  $\phi : X_1 \to Y$  which induces a bijection form  $X_1(\mathbb{K})/G$  to  $Y(\mathbb{K})$ .

Let X be a separated K-scheme of finite type, the Euler characteristic  $\chi(X)$  of X is defined by

$$\chi(X) = \sum_{i=0}^{2 \dim X} (-1)^i \dim_{\mathbb{Q}_p} H^i_{\mathrm{cs}}(X, \mathbb{Q}_p),$$

where p is a prime number,  $\mathbb{Z}_p = \lim_{\leftarrow} \mathbb{Z}/p^r \mathbb{Z}$  is the ring of p-adic integers,  $\mathbb{Q}_p$  is its field of fractions and  $H^i_{cs}(X, \mathbb{Q}_p)$  are the compactly-supported p-adic cohomology groups of X for  $i \geq 0$ .

The following properties of Euler characteristic follow [4] and [11].

**Proposition 2.3.** Let X, Y be separated, finite type  $\mathbb{K}$ -schemes and  $\varphi$ :  $X \to Y$  a morphism of schemes. Then:

(1) If Z is a closed subscheme of X, then  $\chi(X) = \chi(X \setminus Z) + \chi(Z)$ .

(2)  $\chi(X \times Y) = \chi(X) \times \chi(Y).$ 

(3) Let X be a disjoint union of finitely many subschemes  $X_1, \ldots, X_n$ , we have

$$\chi(X) = \sum_{i=1}^{n} \chi(X_i).$$

(4) If  $\varphi$  is a locally trivial fibration with fibre F, then  $\chi(X) = \chi(F) \cdot \chi(Y)$ .

(5)  $\chi(\mathbb{K}^n) = 1$ ,  $\chi(\mathbb{K}\mathbb{P}^n) = n+1$  for all  $n \ge 0$ .

An algebraic K-stack  $\mathcal{F}$  is said to be stratified by global quotient stacks if  $\mathcal{F}(\mathbb{K}) = \coprod_{i=1}^{s} \mathcal{F}_{i}(\mathbb{K})$  for finitely many locally closed substacks  $\mathcal{F}_{i}$  where each  $\mathcal{F}_{i}$  is 1-isomorphic to a quotient stack  $[X_{i}/G_{i}]$ , where  $X_{i}$  is an algebraic K-variety and  $G_{i}$  a smooth connected linear algebraic K-group acting on  $X_{i}$ . By [14, Propostion 3.5.9], if  $\mathcal{F}$  is a finite type algebraic K-stack with affine geometric stabilizers, then  $\mathcal{F}$  is stratified by global quotient stacks.

Let  $\mathcal{F} = \coprod_{i=1}^{s} \mathcal{F}_{i}(\mathbb{K})$  where each  $\mathcal{F}_{i} \cong [X_{i}/G_{i}]$  as above. By Theorem 2.2, there exists an open dense  $G_{i}$ -invariant subvariety  $X_{i1}$  of  $X_{i}$  for each i such that there exists a morphism of varieties  $\phi_{i1} : X_{i1} \to Y_{i1}$ , which induces a bijection between  $X_{i1}(\mathbb{K})/G_{i}$  and  $Y_{i1}(\mathbb{K})$ . Then  $\phi_{i1}$  induces a 1-morphism  $\theta_{i1} : \mathcal{G}_{i1} \to Y_{i1}$ , where  $\mathcal{G}_{i1}$  is 1-isomorphic to  $[X_{i1}/G_{i}]$ . Note that

$$\dim(X_{i(j-1)} \setminus X_{ij}) < \dim X_{i(j-1)}$$

for  $j = 1, ..., k_i$ . Using Theorem 2.2 again, we get a stratification

$$\mathcal{F}(\mathbb{K}) = \coprod_{i=1}^{s} \coprod_{j=1}^{k_i} \mathcal{G}_{ij}(\mathbb{K})$$

for  $s, k_i \in \mathbb{N}^+$ , where  $\mathcal{G}_{ij} \cong [X_{ij}/G_i]$  such that  $\phi_{ij} : X_{ij} \to Y_{ij}$  is a morphism of  $\mathbb{K}$ -varieties and  $\theta_{ij} : \mathcal{G}_{ij} \to Y_{ij}$  a 1-morphism induced by  $\phi_{ij}$ . Let

$$Y = \coprod_{i=1}^{s} \coprod_{j=1}^{k_i} Y_{ij} \text{ and } \Theta = \coprod_{i=1}^{s} \coprod_{j=1}^{k_i} (\theta_{ij})_* : \mathcal{F}(\mathbb{K}) \to Y(\mathbb{K}).$$

Then Y is a separated K-scheme of finite type and  $\Theta$  a pseudoisomorphism (see [11, Proposition 4.4 and Proposition 4.7]).

**Definition 2.4.** Let  $\mathcal{F}$  be an algebraic  $\mathbb{K}$ -stack with affine geometric stabilizers and  $\mathcal{C} \subseteq \mathcal{F}(\mathbb{K})$  a constructible set. Then  $\mathcal{C}$  is pseudoisomorphic to  $Y(\mathbb{K})$ , where Y is a separated  $\mathbb{K}$ -scheme of finite type by [11, Proposition 4.7]. The naïve Euler characteristic of  $\mathcal{C}$  is defined by  $\chi^{\mathrm{na}}(\mathcal{C}) = \chi(Y)$ .

The following lemma is a generalization of Proposition 2.3 (4).

**Lemma 2.5.** Let  $\mathcal{F}$  and  $\mathcal{G}$  be algebraic  $\mathbb{K}$ -stacks with affine geometric stabilizers. If  $\mathcal{C} \subseteq \mathcal{F}(\mathbb{K})$ ,  $\mathcal{D} \subseteq \mathcal{G}(\mathbb{K})$  are constructible sets, and  $\Phi : \mathcal{C} \to \mathcal{D}$  is a surjective pseudomorphism such that all fibers have the same naïve Euler characteristic  $\chi$ , then  $\chi^{\operatorname{na}}(\mathcal{C}) = \chi \cdot \chi^{\operatorname{na}}(\mathcal{D})$ .

Proof. Because  $\mathcal{C}, \mathcal{D}$  are constructible sets, there exist separated finite type  $\mathbb{K}$ -schemes X, Y such that  $\mathcal{C}, \mathcal{D}$  are pseudoisomorphic to  $X(\mathbb{K}), Y(\mathbb{K})$  respectively. Therefore  $\chi^{\mathrm{na}}(\mathcal{C}) = \chi(X), \ \chi^{\mathrm{na}}(\mathcal{D}) = \chi(Y)$ . Then  $\Phi$  induces a surjective pseudomorphism between  $X(\mathbb{K})$  and  $Y(\mathbb{K})$ , say  $\phi : X(\mathbb{K}) \to Y(\mathbb{K})$ . There exist two projective morphisms  $\pi_1 : \Gamma_{\phi} \to X(\mathbb{K})$  and  $\pi_2 : \Gamma_{\phi} \to Y(\mathbb{K})$ . Note that  $\pi_1$  is also a pseudoisomorphism, that is  $\chi^{\mathrm{na}}(\Gamma_{\phi}) = \chi(X)$ , and all fibres of  $\pi_2$  have the same naïve Euler characteristic  $\chi$ . Then  $\chi^{\mathrm{na}}(\Gamma_{\phi}) = \chi \cdot \chi(Y)$ . Hence  $\chi(X) = \chi \cdot \chi(Y)$ . We finish the proof.  $\Box$ 

**Definition 2.6.** A function  $f : \mathcal{F}(\mathbb{K}) \to \mathbb{Q}$  is called a constructible function on  $\mathcal{F}(\mathbb{K})$  if the codomain of f is a finite set and  $f^{-1}(a)$  is a constructible subset of  $\mathcal{F}(\mathbb{K})$  for each  $a \in f(\mathcal{F}(\mathbb{K})) \setminus \{0\}$ . Let  $CF(\mathcal{F})$  denote the  $\mathbb{Q}$ -vector space of all  $\mathbb{Q}$ -valued constructible functions on  $\mathcal{F}(\mathbb{K})$ .

Let  $S \subseteq \mathcal{F}(\mathbb{K})$  be a locally constructible set. The integral of f on S is

$$\int_{x \in S} f(x) = \sum_{a \in f(S) \setminus \{0\}} a \chi^{\mathrm{na}}(f^{-1}(a) \cap S)$$

for each  $f \in CF(\mathcal{F})$ .

We recall the pushforwards and pullbacks of constructible functions due to Joyce [11].

**Definition 2.7.** Let  $\mathcal{F}$  and  $\mathcal{G}$  be algebraic K-stacks with affine geometric stabilizers and  $\phi : \mathcal{F} \to \mathcal{G}$  a 1-morphism. For each  $f \in CF(\mathcal{F})$ , the naïve

pushforward  $\phi_!^{\mathrm{na}}(f) : \mathcal{F}(\mathbb{K}) \to \mathbb{Q}$  of f is

$$\phi^{\mathrm{na}}_{!}(f)(t) = \sum_{a \in f(\phi^{-1}_{*}(t)) \setminus \{0\}} a\chi^{\mathrm{na}}(f^{-1}(a) \cap \phi^{-1}_{*}(t))$$

for each  $t \in \mathcal{G}(\mathbb{K})$ . Then  $\phi_!^{\mathrm{na}}(f)$  is a constructible function for each  $f \in \mathrm{CF}(\mathcal{F})$  by [11, Theorem 4.9].

Similarly, if  $\Phi : \mathcal{F}(\mathbb{K}) \to \mathcal{G}(\mathbb{K})$  is a pseudomorphism, the naïve pushforward  $\Phi^{\mathrm{na}}_{!}(f) : \mathcal{F}(\mathbb{K}) \to \mathbb{Q}$  of  $f \in \mathrm{CF}(\mathcal{F})$  is defined by

$$\Phi^{\mathrm{na}}_{!}(f)(t) = \sum_{a \in f(\Phi^{-1}(t)) \setminus \{0\}} a\chi^{\mathrm{na}}(f^{-1}(a) \cap \Phi^{-1}(t))$$

for  $t \in \mathcal{G}(\mathbb{K})$ . Joyce proved that there is a linear map  $\Phi_{!}^{na} : \operatorname{CF}(\mathcal{F}) \to \operatorname{CF}(\mathcal{G})$ and in particular,  $\Phi_{!}^{\operatorname{na}}(f) \in \operatorname{CF}(\mathcal{G})$  [11, Theorem 4.9]. We often apply this result by studying the constructibility of the function  $\Phi_{!}^{\operatorname{na}}(1_{\mathcal{F}(\mathbb{K})})$ . The constructibility of the function implies that the set  $\{\chi(\Phi^{-1}(t)) \mid t \in \mathcal{G}(\mathbb{K})\}$  is a finite set.

If  $\phi: \mathcal{F} \to \mathcal{G}$  is a 1-morphism, then we have a long exact sequence of groups

$$1 \longrightarrow \operatorname{Ker}(\phi_*) \longrightarrow \operatorname{Iso}_{\mathbb{K}}(x) \xrightarrow{\phi_*} \operatorname{Iso}_{\mathbb{K}}(\phi_*(x)) \longrightarrow \operatorname{Coker}(\phi_*) \longrightarrow 1$$

for each  $x \in \mathcal{F}(\mathbb{K})$ . Note that  $\operatorname{Ker}(\phi_*)$  is an affine algebraic  $\mathbb{K}$ -group and  $\operatorname{Coker}(\phi_*)$  is a quasi-projective  $\mathbb{K}$ -variety. Assume that  $\chi(\operatorname{Ker}(\phi_*)) \neq 0$ , we can define a function  $m_{\phi} : \mathcal{F}(\mathbb{K}) \to \mathbb{Q}$  by

$$m_{\phi}(x) = \frac{\chi(\operatorname{Coker}(\phi_*))}{\chi(\operatorname{Ker}(\phi_*))}$$

for each  $x \in \mathcal{F}(\mathbb{K})$ . In particular, if  $\phi$  is representable, i.e., for  $U \in \operatorname{Sch}_{\mathbb{K}}, X \in \operatorname{Obj}(\mathcal{F}(U))$ , the map  $\phi(U) : \operatorname{End}_{\mathcal{F}(U)}(X) \to \operatorname{End}_{\mathcal{G}(U)}(\phi(U)(X))$  is injective, then  $\operatorname{Ker}(\phi_*) = \{1\}$  and  $m_{\phi}(x) = \chi(\operatorname{Coker}(\phi_*))$ . Here  $\operatorname{Sch}_{\mathbb{K}}$  is the 2-category of  $\mathbb{K}$ -schemes (see Section 2.2 for more details).

For each  $f \in CF(\mathcal{F})$ , the pushforward  $\phi_!(f) : \mathcal{G}(\mathbb{K}) \to \mathbb{Q}$  of f is defined by

$$\phi_!(f) = \phi_!^{na}(f \cdot m_\phi),$$

where  $(f \cdot m_{\phi})(x) = f(x)m_{\phi}(x)$  for  $x \in \mathcal{F}(\mathbb{K})$ . Note that  $\phi_{!}(f) \in CF(\mathcal{G})$  (see [11]).

If  $\phi$  is a 1-morphism of finite type, then  $\phi_*^{-1}(\mathcal{D}) \subset \mathcal{F}(\mathbb{K})$  is a constructible set for each constructible subset  $\mathcal{D}$  of  $\mathcal{G}(\mathbb{K})$ . Then  $g \circ \phi_* \in \mathrm{CF}(\mathcal{F})$  for  $g \in$   $CF(\mathcal{G})$ . Recall that the pullback  $\phi^* : CF(\mathcal{G}) \to CF(\mathcal{F})$  of  $\phi$  is defined by  $\phi^*(g) = g \circ \phi_*$  and it is linear.

## 2.2. Stacks of objects and conflations in $\mathcal{A}$

From now on, let  $(\mathcal{A}, \mathcal{S})$  be a Krull-Schmidt exact K-category (see A.1). For simplicity, we write  $\mathcal{A}$  instead of  $(\mathcal{A}, \mathcal{S})$ . Note that  $\mathcal{A}$  is idempotent complete (see A.2).

The isomorphism classes of  $X \in \text{Obj}(\mathcal{A})$  and conflations  $X \xrightarrow{i} Y \xrightarrow{d} Z$  in  $\mathcal{A}$  are denoted by [X] and  $[X \xrightarrow{i} Y \xrightarrow{d} Z]$  (or [(X, Y, Z, i, d)]), respectively. Two conflations  $X \xrightarrow{i} Y \xrightarrow{d} Z$  and  $A \xrightarrow{f} B \xrightarrow{g} C$  are isomorphic if there exist isomorphisms  $a: X \to A, b: Y \to B$  and  $c: Z \to C$  in  $\mathcal{A}$  such that the following diagram is communicative

(1) 
$$\begin{array}{ccc} X \xrightarrow{i} Y \xrightarrow{d} Z \\ a & \downarrow & b \\ A \xrightarrow{f} B \xrightarrow{g} C \end{array}$$

The morphism (a, b, c) is called an isomorphism of conflations in  $\mathcal{A}$ .

**Assumption 2.8.** Assume that  $\dim_{\mathbb{K}} \operatorname{Hom}_{\mathcal{A}}(X, Y)$  and  $\dim_{\mathbb{K}} \operatorname{Ext}^{1}_{\mathcal{A}}(X, Y)$  are finite for all  $X, Y \in \operatorname{Obj}(\mathcal{A})$ . Let  $K(\mathcal{A})$  denote the quotient group of the Grothendieck group  $K_{0}(\mathcal{A})$  such that  $\widehat{[X]} = 0$  in  $K(\mathcal{A})$  implies that X is a zero object in  $\mathcal{A}$ , where  $\widehat{[X]}$  denotes the image of X in  $K(\mathcal{A})$ .

The following 2-categories are defined in [10].

Let  $\operatorname{Sch}_{\mathbb{K}}$  be a 2-category of  $\mathbb{K}$ -schemes such that objects are  $\mathbb{K}$ -schemes, 1-morphisms morphisms of schemes and 2-morphisms only the natural transformations  $\operatorname{id}_f$  for all 1-morphisms f. Let (exactcat) denote the 2-category of all exact categories with 1-morphisms exact functors of exact categories and 2-morphisms natural transformations between the exact functors. If all morphisms of a category are isomorphisms, then the category is called a groupoid. Let (groupoids) be the 2-category with objects groupoids, 1morphisms functors of groupoids and 2-morphisms natural transformations (see also [10, Definition 2.8]).

In [10, Section 7.1], Joyce defined a stack  $\mathcal{F}_{\mathcal{A}} : \operatorname{Sch}_{\mathbb{K}} :\to (\operatorname{exactcat})$  associated to the exact category  $\mathcal{A}$  (the original definition is for abelian category, it can be extended to exact categories directly), where  $\mathcal{F}_{\mathcal{A}}$  is a contravariant 2-functor and satisfies the condition  $\mathcal{F}_{\mathcal{A}}(\operatorname{Spec}(\mathbb{K})) = \mathcal{A}$ . Applying  $\mathcal{F}_{\mathcal{A}}$ ,

he defined two moduli stacks

$$\mathfrak{Obj}_{\mathcal{A}}, \mathfrak{Eract}_{\mathcal{A}} : \mathrm{Sch}_{\mathbb{K}} \to (\mathrm{groupoids})$$

which are contravatiant 2-functors ([10, Definition 7.2]). The 2-functor

$$\mathfrak{Obj}_{\mathcal{A}} = F \circ \mathcal{F}_{\mathcal{A}},$$

where  $F : (\text{exactcat}) \to (\text{groupoids})$  is a forgetful 2-functor as follows. For an exact category G, F(G) is a groupoid such that Obj(F(G)) = Obj(G) and morphisms are isomorphisms in G. For  $U \in \text{Sch}_{\mathbb{K}}$ , a category  $\mathfrak{Cract}_{\mathcal{A}}(U)$  is a groupoid whose objects are conflations in  $\mathcal{F}_{\mathcal{A}}(U)$  and morphisms isomorphisms of conflations in  $\mathcal{F}_{\mathcal{A}}(U)$ .

Let  $\eta: U \to V$  and  $\theta: V \to W$  be morphisms of schemes in  $\operatorname{Sch}_{\mathbb{K}}$ . Obviously, the functors  $\mathfrak{Obj}_{\mathcal{A}}(\eta): \mathfrak{Obj}_{\mathcal{A}}(V) \to \mathfrak{Obj}_{\mathcal{A}}(U)$  and  $\mathfrak{Eract}_{\mathcal{A}}(\eta):$  $\mathfrak{Eract}_{\mathcal{A}}(V) \to \mathfrak{Eract}_{\mathcal{A}}(U)$  are induced by  $\mathcal{F}_{\mathcal{A}}(\eta): \mathcal{F}_{\mathcal{A}}(V) \to \mathcal{F}_{\mathcal{A}}(U)$ . The natural transformations  $\epsilon_{\theta,\eta}: \mathfrak{Obj}_{\mathcal{A}}(\eta) \circ \mathfrak{Obj}_{\mathcal{A}}(\theta) \to \mathfrak{Obj}_{\mathcal{A}}(\theta \circ \eta)$  and  $\epsilon_{\theta,\eta}:$  $\mathfrak{Eract}_{\mathcal{A}}(\eta) \circ \mathfrak{Eract}_{\mathcal{A}}(\theta) \to \mathfrak{Eract}_{\mathcal{A}}(\theta \circ \eta)$  are also induced by  $\epsilon_{\theta,\eta}: \mathcal{F}_{\mathcal{A}}(\eta) \circ \mathcal{F}_{\mathcal{A}}(\theta) \to \mathcal{F}_{\mathcal{A}}(\theta \circ \eta)$ .

Let

$$K'(\mathcal{A}) = \{\widehat{[X]} \in K(\mathcal{A}) \mid X \in \mathrm{Obj}(\mathcal{A})\} \subset K(\mathcal{A}).$$

For each  $\alpha \in K'(\mathcal{A})$ , Joyce defined  $\mathfrak{Dbj}^{\alpha}_{\mathcal{A}} : \operatorname{Sch}_{\mathbb{K}} \to (\text{groupoids})$  which is a substack of  $\mathfrak{Dbj}_{\mathcal{A}}$  in [10, Definition 7.4]. For each  $U \in \operatorname{Sch}_{\mathbb{K}}$ ,  $\mathfrak{Dbj}^{\alpha}_{\mathcal{A}}(U)$  is a full subcategory of  $\mathfrak{Dbj}_{\mathcal{A}}(U)$ . For each object X in  $\mathfrak{Dbj}^{\alpha}_{\mathcal{A}}(U)$ , the image of  $\mathfrak{Dbj}_{\mathcal{A}}(f)(X)$  in  $K(\mathcal{A})$  is  $\alpha$  for each morphism  $f : \operatorname{Spec}(\mathbb{K}) \to U$ .

Let  $\eta: U \to V$  and  $\theta: V \to W$  be morphisms in  $\operatorname{Sch}_{\mathbb{K}}$ . The functor

$$\mathfrak{Obj}^{\alpha}_{\mathcal{A}}(\eta):\mathfrak{Obj}^{\alpha}_{\mathcal{A}}(V)\to\mathfrak{Obj}^{\alpha}_{\mathcal{A}}(U)$$

is defined by restriction from  $\mathfrak{Obj}_{\mathcal{A}}(\eta) : \mathfrak{Obj}_{\mathcal{A}}(V) \to \mathfrak{Obj}_{\mathcal{A}}(U)$ . The natural transformation  $\epsilon_{\theta,\eta} : \mathfrak{Obj}^{\alpha}_{\mathcal{A}}(\eta) \circ \mathfrak{Obj}^{\alpha}_{\mathcal{A}}(\theta) \to \mathfrak{Obj}^{\alpha}_{\mathcal{A}}(\theta \circ \eta)$  is restricted from  $\epsilon_{\theta,\eta} : \mathfrak{Obj}_{\mathcal{A}}(\eta) \circ \mathfrak{Obj}_{\mathcal{A}}(\theta) \to \mathfrak{Obj}_{\mathcal{A}}(\theta \circ \eta)$ .

For  $\alpha, \beta, \gamma \in K'(\mathcal{A})$  and  $\beta = \alpha + \gamma$ ,  $\mathfrak{eract}_{\mathcal{A}}^{\alpha,\beta,\gamma} : \operatorname{Sch}_{\mathbb{K}} \to (\text{groupoids})$  is defined as follows. For  $U \in \operatorname{Sch}_{\mathbb{K}}$ ,  $\mathfrak{eract}_{\mathcal{A}}^{\alpha,\beta,\gamma}(U)$  is a full subcategory of  $\mathfrak{eract}_{\mathcal{A}}^{\alpha,\beta,\gamma}(U)$ . The objects of  $\mathfrak{eract}_{\mathcal{A}}^{\alpha,\beta,\gamma}(U)$  are conflations

$$X \xrightarrow{i} Y \xrightarrow{d} Z \in \operatorname{Obj}(\mathfrak{Eract}_{\mathcal{A}}(U)),$$

where  $X \in \operatorname{Obj}(\mathfrak{Dbj}^{\alpha}_{\mathcal{A}}(U))$ ,  $Y \in \operatorname{Obj}(\mathfrak{Dbj}^{\beta}_{\mathcal{A}}(U))$  and  $Z \in \operatorname{Obj}(\mathfrak{Dbj}^{\gamma}_{\mathcal{A}}(U))$ . Similarly, the morphism  $\mathfrak{exact}^{\alpha,\beta,\gamma}_{\mathcal{A}}(\eta)$  and natural transformation  $\epsilon_{\theta,\eta}$  are defined by restriction. Let  $\mathcal{TS}$  be a substack of  $\mathfrak{Eract}_{\mathcal{A}} \times \mathfrak{Eract}_{\mathcal{A}}$ . For each  $U \in \operatorname{Sch}_{\mathbb{K}}$ ,  $\mathcal{TS}(U)$ is a full subcategory of  $\mathfrak{Eract}_{\mathcal{A}} \times \mathfrak{Eract}_{\mathcal{A}}(U)$  whose objects are  $(X \xrightarrow{f} L \xrightarrow{g} Y, L \xrightarrow{l} M \xrightarrow{m} Z)$ ,



where  $X \xrightarrow{f} L \xrightarrow{g} Y$  and  $L \xrightarrow{l} M \xrightarrow{m} Z$  are objects in  $\mathfrak{Eract}_{\mathcal{A}}(U)$ . The morphisms of  $\mathcal{TS}(U)$  are (x, a, y, b, z), where  $x : X \to X'$ ,  $a : L \to L'$ ,  $y : Y \to Y'$ ,  $b : M \to M'$  and  $z : Z \to Z'$  are isomorphisms, such that the following diagrams are commutative



The morphism  $\mathcal{TS}(\eta)$  and natural transformation  $\epsilon_{\theta,\eta}$  are defined in a natural way.

The following theorem is taking from [10, Theorem 7.5].

**Theorem 2.9.** The 2-functors  $\mathfrak{Obj}_{\mathcal{A}}$ ,  $\mathfrak{Eract}_{\mathcal{A}}$  are  $\mathbb{K}$ -stacks, and  $\mathfrak{Obj}_{\mathcal{A}}^{\alpha}$ ,  $\mathfrak{Eract}_{\mathcal{A}}^{\alpha,\beta,\gamma}$  are open and closed  $\mathbb{K}$ -substacks of them respectively. There are disjoint unions

$$\mathfrak{Obj}_{\mathcal{A}} = \amalg_{\alpha \in K'(\mathcal{A})} \mathfrak{Obj}_{\mathcal{A}}^{\alpha}, \mathfrak{Cract}_{\mathcal{A}} = \amalg_{\alpha,\beta,\gamma \in K'(\mathcal{A})}_{\beta = \alpha + \gamma} \mathfrak{Cract}_{\mathcal{A}}^{\alpha,\beta,\gamma}.$$

Assume that  $\mathfrak{Obj}_{\mathcal{A}}$  and  $\mathfrak{Cract}_{\mathcal{A}}$  are locally of finite type algebraic  $\mathbb{K}$ stacks with affine algebraic stabilizers. Recall that  $\mathfrak{Obj}_{\mathcal{A}}(\mathbb{K})$  and  $\mathfrak{Cract}_{\mathcal{A}}(\mathbb{K})$ are the collection of isomorphism classes of objects in  $\mathcal{A}$  and the collection of isomorphism classes of conflations in  $\mathcal{A}$ , respectively. For each  $\alpha \in K'(\mathcal{A})$ ,  $\mathfrak{Dbj}^{\alpha}_{\mathcal{A}}(\mathbb{K})$  is the collection of isomorphism classes of  $X \in \mathrm{Obj}(\mathcal{A})$  such that  $\widehat{[X]} = \alpha$  (see [12, Section 3.2]).

**Example 2.10.** Let  $Q = (Q_0, Q_1, s, t)$  be a finite connected quiver, where  $Q_0 = \{1, \ldots, n\}$  is the set of vertices,  $Q_1$  is the set of arrows and  $s : Q_1 \to Q_0$  (resp.  $t : Q_1 \to Q_0$ ) is a map such that  $s(\rho)$  (resp.  $t(\rho)$ ) is the source (resp. target) of  $\rho$  for  $\rho \in Q_1$ . Let  $A = \mathbb{C}Q$  be the path algebra of Q and mod-A denote the category of all finite dimensional right A-modules.

Let  $\underline{d} = (d_i)_{i \in Q_0}$  for all  $d_i \in \mathbb{N}$ . There is an affine variety

$$\operatorname{Rep}(Q,\underline{d}) = \bigoplus_{\rho \in Q_1} \operatorname{Hom}(\mathbb{C}^{d_{s(\rho)}}, \mathbb{C}^{d_{t(\rho)}}).$$

For each  $x = (x_{\rho})_{\rho \in Q_1} \in \operatorname{Rep}(Q, \underline{d})$ , there is a  $\mathbb{C}$ -linear representation  $M(x) = (\mathbb{C}^{d_j}, x_{\rho})_{j \in Q_0, \rho \in Q_1}$  of Q. Let  $\operatorname{rep}(Q)$  denote the category of finite dimensional  $\mathbb{C}$ -linear representations of Q. Recall that  $\operatorname{rep}(Q) \cong \operatorname{mod} \mathcal{A}$ . We identify  $\operatorname{rep}(Q)$  with  $\operatorname{mod} \mathcal{A}$ . The linear algebraic group

$$\operatorname{GL}(\underline{d}) = \prod_{j \in Q_0} \operatorname{GL}(d_j, \mathbb{C})$$

acts on  $\operatorname{Rep}(Q,\underline{d})$  by  $g.x = (g_{t(\rho)}x_{\rho}g_{s(\rho)}^{-1})_{\rho \in Q_1}$  for  $g = (g_j)_{j \in Q_0} \in \operatorname{GL}(\underline{d}).$ 

A complex  $M^{\bullet} = (M^{(i)}, \partial^i)$ , where  $M^{(i)} \in \text{Obj}(\text{mod}-\mathcal{A})$  and  $\partial^{i+1}\partial^i = 0$ , is bounded if there exist some positive integers  $n_0$  and  $n_1$  such that  $M^{(i)} = 0$ for  $i \leq -n_0$  or  $i \geq n_1$ . Let  $\underline{\dim}M^{(i)} = \underline{d}^{(i)}$  be the dimension vector of  $M^{(i)}$ for each  $i \in \mathbb{Z}$ . The vector sequence  $(\underline{d}^{(i)})_{i \in \mathbb{Z}}$  of  $M^{\bullet}$  is denoted by  $\underline{\mathbf{ds}}(M^{\bullet})$ .

Let  $\mathcal{C}(Q, \underline{\mathbf{d}})$  denote the affine variety consisting of all complexes  $M^{\bullet}$ with  $\underline{\mathbf{ds}}(M^{\bullet}) = \underline{\mathbf{d}}$ . The group  $G(\underline{\mathbf{d}}) = \prod_{i \in \mathbb{Z}} \operatorname{GL}(\underline{d}^{(i)})$  is a linear algebraic group acting on  $\mathcal{C}^b(Q, \underline{\mathbf{d}})$ . The action is induced by the actions of  $\operatorname{GL}(\underline{d}^{(i)})$  on  $\operatorname{Rep}(Q, \underline{d}^{(i)})$  for all  $i \in \mathbb{Z}$ , that is

$$(g^{(i)})_i \cdot (x^{(i)}, \partial^i)_i = (g^{(i)} \cdot x^{(i)}, g^{(i+1)} \partial^i (g^{(i)})^{-1})_i.$$

Let  $\{P_1, \ldots, P_n\}$  be a set of representatives for all isomorphism classes of finite dimensional indecomposable projective A-modules. A complex  $P^{\bullet} =$ 

$$\dots \to P^{(i-1)} \xrightarrow{\partial^{i-1}} P^{(i)} \xrightarrow{\partial^i} P^{(i+1)} \to \dots$$

is projective if  $P^{(i)} \cong \bigoplus_{j=1}^n m_j^{(i)} P_j$  for  $m_j^{(i)} \in \mathbb{N}$  and  $i \in \mathbb{Z}$ . Let

$$\underline{e}(P^{(i)}) = \underline{m}^{(i)} = (m_1^{(i)}, \dots, m_n^{(i)})$$

be a vector corresponding to  $P^{(i)}$ . By the Krull-Schmidt Theorem,  $\underline{e}(P^{(i)})$  is unique. The dimension vector of  $P^{\bullet}$  can be defined by

$$\underline{\operatorname{dim}}(P^{\bullet}) = (\dots, \underline{m}^{(i-1)}, \underline{m}^{(i)}, \underline{m}^{(i+1)}, \dots).$$

A dimension vector  $\underline{\operatorname{dim}}(P^{\bullet})$  is bounded if  $P^{\bullet}$  is bounded.

let  $\underline{\mathbf{m}} = (\underline{m}^{(i)})_{i \in \mathbb{Z}}$  be a bounded dimension vector and  $\underline{\mathbf{d}}(\underline{\mathbf{m}}) = (\underline{d}^{(i)})_{i \in \mathbb{Z}}$ be the vector sequence of a complex whose dimension vector is  $\underline{\mathbf{m}}$ . Let  $\mathcal{P}^b(Q, \underline{\mathbf{m}})$  be the set of all bounded project complexes  $P^{\bullet}$  with  $\underline{\dim}(P^{\bullet}) = \underline{\mathbf{m}}$ and  $\underline{\mathbf{ds}}(P^{\bullet}) = \underline{\mathbf{d}}(\underline{\mathbf{m}})$ . Note that  $\mathcal{P}^b(Q, \underline{\mathbf{m}})$  is a locally closed subset of  $\mathcal{C}^b(Q, \underline{\mathbf{d}}(\underline{\mathbf{m}}))$ . An action of  $G(\underline{\mathbf{d}}(\underline{\mathbf{m}}))$  on the variety  $\mathcal{P}^b(Q, \underline{\mathbf{m}})$  is induced by the action of  $G(\underline{\mathbf{d}}(\underline{\mathbf{m}}))$ .

Let  $\mathcal{P}^b(Q)$  denote the exact category with objects bounded project complexes and morphisms  $\phi: P^{\bullet} \to Q^{\bullet}$  morphisms between bounded projective complexes. The Grothendieck group

$$K_0(\mathcal{P}^b(Q)) \cong \bigoplus_{i \in \mathbb{Z}} \mathbb{Z}^n_{(i)},$$

where  $\mathbb{Z}_{(i)}^n = \mathbb{Z}^n$ . Note that  $K(\mathcal{P}^b(Q)) = K_0(\mathcal{P}^b(Q))$  and

$$K'(\mathcal{P}^b(Q)) \cong \bigoplus_{i \in \mathbb{Z}} \mathbb{N}^n_{(i)},$$

where  $\mathbb{N}_{(i)}^n = \mathbb{N}^n$ .

Joyce defined  $\mathcal{F}_{\text{mod}-\mathbb{K}Q}$  in [10, Example 10.5]. Similarly, for each  $U \in$  Sch<sub>K</sub>, we define  $\mathcal{F}_{\mathcal{P}^b(Q)}(U)$  to be the category as follows.

The objects of  $\mathcal{F}_{\mathcal{P}^{b}(Q)}(U)$  are complexes of sheaves  $P^{\bullet} = (P^{(i)}, \partial^{i})_{i \in \mathbb{Z}}$ , where  $P^{(i)} = (\bigoplus_{j \in Q_{0}} X_{j}^{(i)}, x^{i})$  and  $\partial^{i+1}\partial^{i} = 0$ . The data  $X_{j}^{(i)}$  are locally free sheaves of finite rank on U and  $x^{i} = (x_{\rho}^{i})_{\rho \in Q_{1}}$ , where  $x_{\rho}^{i} : X_{s(\rho)}^{(i)} \to X_{t(\rho)}^{(i)}$ are morphisms of sheaves, such that  $P^{(i)} = (\bigoplus_{j \in Q_{0}} X_{j}^{(i)}, x^{i})$  are projective  $\mathbb{C}Q$ -modules for all  $i \in \mathbb{Z}$ . The morphisms of  $\mathcal{F}_{\mathcal{P}^{b}(Q)}(U)$  are morphisms of complexes  $\phi^{\bullet} : (P^{(i)}, \partial^{i}) \to (Q^{(i)}, d^{i})$ , where  $Q^{(i)} = (\bigoplus_{j \in Q_{0}} Y_{j}^{(i)}, y^{i})$  and  $\phi^{\bullet}$  is a sequence of morphisms

$$(\phi^i: P^{(i)} \to Q^{(i)})_{i \in \mathbb{Z}}$$

with  $\phi^i = (\phi^i_j : X^{(i)}_j \to Y^{(i)}_j)_{j \in Q_0}$  such that  $\phi^{i+1}\partial^i = d^i\phi^i$  and  $\phi^i_{t(\rho)}x^i_{\rho} = y^i_{\rho}\phi^i_{s(\rho)}$  for all  $i \in \mathbb{Z}$  and  $\rho \in Q_1$ . It is easy to see that  $\mathcal{F}_{\mathcal{P}^b(Q)}(U)$  is an exact category.

Let  $\eta: U \to V$  be a morphism in  $\operatorname{Sch}_{\mathbb{K}}$ . A functor

 $\mathcal{F}_{\mathcal{P}^b(Q)}(\eta) : \mathcal{F}_{\mathcal{P}^b(Q)}(V) \to \mathcal{F}_{\mathcal{P}^b(Q)}(U)$ 

is defined as follows. If  $(P^{(i)}, \partial^i)_{i \in \mathbb{Z}} \in \text{Obj}(\mathcal{F}_{\mathcal{P}^b(Q)}(V)),$ 

$$\mathcal{F}_{\mathcal{P}^{b}(Q)}(\eta)(P^{(i)},\partial^{i})_{i\in\mathbb{Z}} = (\eta^{*}(P^{(i)}),\eta^{*}(\partial^{i}))_{i\in\mathbb{Z}}$$

for  $\eta^*(P^{(i)}) = \left(\bigoplus_{j \in Q_0} \eta^*(X_j^{(i)}), (\eta^*(x_{\rho}^i))_{\rho \in Q_1}\right)$ , where  $\eta^*(X_j^{(i)})$  are the inverse images of  $X_j^{(i)}$  by the morphism  $\eta$ ,  $\eta^*(\partial^i) : \eta^*(P^{(i)}) \to \eta^*(P^{(i+1)})$  with  $\eta^*(\partial^{i+1})\eta^*(\partial^i) = 0$  for  $i \in \mathbb{Z}$  and

$$\eta^*(x_{\rho}^i): \eta^*(X_{s(\rho)}^{(i)}) \to \eta^*(X_{t(\rho)}^{(i)})$$

for  $\rho \in Q_1$  are pullbacks of morphisms between inverse images. For a morphism  $\phi^{\bullet} : (P^{(i)}, \partial^i) \to (Q^{(i)}, d^i)$  in  $\mathcal{F}_{\mathcal{P}^b(Q)}(V)$ , the morphism

$$\mathcal{F}_{\mathcal{P}^{b}(Q)}(\eta)(\phi^{\bullet}): \left(\eta^{*}(P^{\bullet}), \eta^{*}(\partial^{i})\right) \to \left(\eta^{*}(Q^{\bullet}), \eta^{*}(d^{i})\right)$$

is a sequence of morphisms

$$\left(\eta^*(\phi^i): \left(\bigoplus_{j\in Q_0}\eta^*(X_j^{(i)}), (\eta^*(x_\rho^i))_\rho\right) \to \left(\bigoplus_{j\in Q_0}\eta^*(Y_j^{(i)}), (\eta^*(y_\rho^i))_\rho\right)\right)_{i\in\mathbb{Z}},$$

with  $\eta^*(\phi^{i+1})\eta^*(\partial^i) = \eta^*(d^i)\eta^*(\phi^i)$ , where  $\eta^*(d^i)$  are pullbacks of morphisms between inverse images which satisfy  $\eta^*(d^{i+1})\eta^*(d^i) = 0$ , and

$$\eta^*(Q^{\bullet}) = \left(\bigoplus_{j \in Q_0} \eta^*(Y_j^{(i)}), (\eta^*(y_{\rho}^i))_{\rho \in Q_1}\right)_{i \in \mathbb{Z}}$$

such that the pullbacks

$$\eta^*(\phi_j^i) : \eta^*(X_j^{(i)}) \to \eta^*(Y_j^{(i)})$$

satisfy  $\eta^*(\phi_{t(\rho)}^i)\eta^*(x_{\rho}^i) = \eta^*(y_{\rho}^i)\eta^*(\phi_{s(\rho)}^i)$ . Because locally free sheaves are flat,  $\mathcal{F}_{\mathcal{P}^b(Q)}(\eta)(\phi^{\bullet})$  is an exact functor.

Let  $\eta: U \to V$  and  $\theta: V \to W$  be morphisms in  $\operatorname{Sch}_{\mathbb{K}}$ . As in [10, Example 9.1], for each  $P^{\bullet} \in \operatorname{Obj}(\mathcal{F}_{\mathcal{P}^{b}(Q)}(W))$ , there is a canonical isomorphism  $\epsilon_{\theta,\eta}(P^{\bullet}): \mathcal{F}_{\mathcal{P}^{b}(Q)}(\eta) \circ \mathcal{F}_{\mathcal{P}^{b}(Q)}(\theta)(P^{\bullet}) \to \mathcal{F}_{\mathcal{P}^{b}(Q)}(\theta \circ \eta)(P^{\bullet})$ . We get a 2-isomorphism of functors

$$\epsilon_{\theta,\eta}: \mathcal{F}_{\mathcal{P}^b(Q)}(\eta) \circ \mathcal{F}_{\mathcal{P}^b(Q)}(\theta) \to \mathcal{F}_{\mathcal{P}^b(Q)}(\theta \circ \eta)$$

by the canonical isomorphisms. Thus we have the 2-functor  $\mathcal{F}_{\mathcal{P}^b(Q)}$ .

The set  $\mathfrak{Obj}_{\mathcal{P}^b(Q)}(\mathbb{C})$  consists of all isomorphism classes of complexes in  $\mathcal{P}^b(Q)$ .

As in [10, Definition 7.7] and [12, Section 3.2], we have the following 1-morphisms

$$\pi_l: \mathfrak{Eract}_{\mathcal{A}} \to \mathfrak{Obj}_{\mathcal{A}}$$

which induces a map  $(\pi_l)_* : \mathfrak{Eract}_{\mathcal{A}}(\mathbb{K}) \to \mathfrak{Obj}_{\mathcal{A}}(\mathbb{K})$  defined by  $[X \xrightarrow{i} Y \xrightarrow{d} Z] \mapsto [X];$ 

$$\pi_m: \mathfrak{Eract}_{\mathcal{A}} \to \mathfrak{Obj}_{\mathcal{A}}$$

such that the induced map  $(\pi_m)_* : \mathfrak{Eract}_{\mathcal{A}}(\mathbb{K}) \to \mathfrak{Obj}_{\mathcal{A}}(\mathbb{K})$  maps  $[X \xrightarrow{i} Y \xrightarrow{d} Z]$  to [Y];

$$\pi_r: \mathfrak{Eract}_{\mathcal{A}} \to \mathfrak{Obj}_{\mathcal{A}}$$

inducing the map  $(\pi_r)_* : \mathfrak{Exact}_{\mathcal{A}}(\mathbb{K}) \to \mathfrak{Obj}_{\mathcal{A}}(\mathbb{K})$  by  $[X \xrightarrow{i} Y \xrightarrow{d} Z] \mapsto [Z]$ . The map  $\pi_{l*} \times \pi_{r*} : \mathfrak{Exact}_{\mathcal{A}}(\mathbb{K}) \to \mathfrak{Obj}_{\mathcal{A}}(\mathbb{K}) \times \mathfrak{Obj}_{\mathcal{A}}(\mathbb{K})$  is defined by  $(\pi_{l*} \times \pi_{r*})([X \xrightarrow{i} Y \xrightarrow{d} Z]) = ([X], [Z])$ . Note that  $(\pi_l \times \pi_r)_* = \pi_{l*} \times \pi_{r*}$ .

## 3. Hall Algebras

#### 3.1. Constructible sets of stratified Krull-Schmidt

These definitions are related to [4].

**Definition 3.1.** Let  $\mathcal{O}_1$  and  $\mathcal{O}_2$  be two constructible subsets of  $\mathfrak{Obj}_{\mathcal{A}}(\mathbb{K})$ , the direct sum of  $\mathcal{O}_1$  and  $\mathcal{O}_2$  is

$$\mathcal{O}_1 \oplus \mathcal{O}_2 = \left\{ [X_1 \oplus X_2] \mid [X_1] \in \mathcal{O}_1, [X_2] \in \mathcal{O}_2 \text{ and } X_1, X_2 \in \mathrm{Obj}(\mathcal{A}) \right\}.$$

Let  $n\mathcal{O}$  denote the direct sum of n copies of  $\mathcal{O}$  for  $n \in \mathbb{N}^+$  and  $0\mathcal{O} = \{[0]\}$ . Similarly, let nX denote the direct sum of n copies of  $X \in \text{Obj}(\mathcal{A})$ . A constructible subset  $\mathcal{O}$  of  $\mathfrak{Obj}_{\mathcal{A}}(\mathbb{K})$  is called indecomposable if  $X \in \text{Obj}(\mathcal{A})$  is indecomposable and  $X \ncong 0$  for every  $[X] \in \mathcal{O}$ .

A constructible set  $\mathcal{O}$  is called to be of Krull-Schmidt if

$$\mathcal{O}=n_1\mathcal{O}_1\oplus n_2\mathcal{O}_2\oplus\ldots\oplus n_k\mathcal{O}_k,$$

where  $\mathcal{O}_i$  are indecomposable constructible sets and  $n_i \in \mathbb{N}$  for  $i = 1, \ldots, k$ . If a constructible set  $\mathcal{Q} = \coprod_{i=1}^n \mathcal{Q}_i$ , where  $\mathcal{Q}_i$  are constructible sets of Krull-Schmidt for  $1 \leq i \leq n$ , namely  $\mathcal{Q}$  is a disjoint union of finitely many constructible sets of Krull-Schmidt, then  $\mathcal{Q}$  is said to be a constructible set of stratified Krull-Schmidt.

Let  $\mathcal{O}_1$  and  $\mathcal{O}_2$  be two indecomposable constructible sets. If  $\mathcal{O}_1 \cap \mathcal{O}_2 \neq \emptyset$ and  $\mathcal{O}_1 \neq \mathcal{O}_2$ , we have

$$\mathcal{O}_{1} \oplus \mathcal{O}_{2} = 2(\mathcal{O}_{1} \cap \mathcal{O}_{2}) \amalg \left( \left( \mathcal{O}_{1} \setminus (\mathcal{O}_{1} \cap \mathcal{O}_{2}) \right) \oplus \left( \mathcal{O}_{2} \setminus (\mathcal{O}_{1} \cap \mathcal{O}_{2}) \right) \right)$$
$$\amalg \left( \left( \mathcal{O}_{1} \cap \mathcal{O}_{2} \right) \oplus \left( \mathcal{O}_{2} \setminus (\mathcal{O}_{1} \cap \mathcal{O}_{2}) \right) \right) \amalg \left( \left( \mathcal{O}_{1} \setminus (\mathcal{O}_{1} \cap \mathcal{O}_{2}) \right) \oplus \left( \mathcal{O}_{1} \cap \mathcal{O}_{2} \right) \right)$$

If  $\mathcal{Q} = m_1 \mathcal{O}_1 \oplus \ldots \oplus m_l \mathcal{O}_l$  is a constructible set of Krull-Schmidt, we can write  $\mathcal{Q} = \coprod_{i=1}^n \mathcal{Q}_i$  as a constructible set of stratified Krull-Schmidt, where

$$\mathcal{Q}_i = n_{i1}\mathcal{O}_{i1} \oplus n_{i2}\mathcal{O}_{i2} \oplus \ldots \oplus n_{ik_i}\mathcal{O}_{ik_i}$$

for indecomposable constructible sets  $\mathcal{O}_{ij}$  which are disjoint each other. Hence we can assume that  $\mathcal{O}_1, \ldots, \mathcal{O}_l$  are disjoint each other.

Let  $CF^{KS}(\mathfrak{Obj}_{\mathcal{A}})$  be the subspace of  $CF(\mathfrak{Obj}_{\mathcal{A}})$  which is spanned by characteristic functions  $1_{\mathcal{O}}$  for constructible sets of stratified Krull-Schmidt  $\mathcal{O}$ , where each  $1_{\mathcal{O}}$  satisfies that  $1_{\mathcal{O}}([X]) = 1$  for  $[X] \in \mathcal{O}$ , and  $1_{\mathcal{O}}([X]) = 0$ otherwise.

**Example 3.2.** Let  $\mathbb{P}^1$  be the projective line over  $\mathbb{K}$  and  $\operatorname{coh}(\mathbb{P}^1)$  denote the category of coherent sheaves on  $\mathbb{P}^1$ .

Let O(n) denote an indecomposable locally free coherent sheaf whose rank and degree are equal to 1 and *n* respectively. Let  $S_x^{[r]}$  be an indecomposable torsion sheaf such that  $\operatorname{rk}(S_x^{[r]}) = 0$ ,  $\operatorname{deg}(S_x^{[r]}) = r$  and the support of  $S_x^{[r]}$  is  $\{x\}$  for  $x \in \mathbb{P}^1$ . The Grothendieck group  $K_0(\operatorname{coh}(\mathbb{P}^1)) \cong \mathbb{Z}^2$ . The data  $K(\operatorname{coh}(\mathbb{P}^1))$  and  $\mathcal{F}_{\operatorname{coh}(\mathbb{P}^1)}$  are defined in [10, Example 9.1]. The set of isomorphism classes of indecomposable objects in  $\operatorname{coh}(\mathbb{P}^1)$  is

$$\{[S_x^{[d]}] \mid x \in \mathbb{P}^1, d \in \mathbb{N}\} \cup \{[O(n)] \mid n \in \mathbb{Z}\}.$$

Recall that a non-trivial subset  $U \subset \mathbb{P}^1$  is closed (resp. open) if U is a finite (resp. cofinite) set. Let  $\mathcal{O}_d$  be a finite or cofinite subset of  $\{[S_x^{[d]}] \mid x \in \mathbb{P}\}$  for each  $d \in \mathbb{Z}^+$  and  $\mathcal{O}_0$  a finite subset of  $\{[O(n)] \mid n \in \mathbb{Z}\}$ . Then  $\mathcal{O}_d$  and  $\mathcal{O}_0$  are indecomposable constructible subsets of  $\mathfrak{Obj}_{\operatorname{coh}(\mathbb{P}^1)}(\mathbb{K})$ . Note that every indecomposable constructible subset of  $\mathfrak{Obj}_{\operatorname{coh}(\mathbb{P}^1)}(\mathbb{K})$  is of the form

$$\mathcal{O}_0 \amalg \mathcal{O}_{i_1} \amalg \ldots \amalg \mathcal{O}_{i_n}$$

for  $1 \leq i_1 < \ldots < i_n$ . Then the finite direct sum  $\oplus(\mathcal{O}_0 \amalg \mathcal{O}_{i_1} \amalg \ldots \amalg \mathcal{O}_{i_n})$  is a constructible set of Krull-Schmidt. Every constructible set of Krull-Schmidt in  $\mathfrak{Dbj}_{\mathrm{coh}(\mathbb{P}^1)}(\mathbb{K})$  is of the form. A constructible set of stratified Krull-Schmidt is a disjoint union of finitely many constructible sets of Krull-Schmidt.

**Example 3.3.** In Example 2.10,  $\mathfrak{Obj}_{\mathcal{P}^b(Q)}^{\mathbf{m}}(\mathbb{C})$  is the set of all isomorphism classes of project complexes in  $\mathcal{P}^b(Q, \mathbf{m})$ . Note that

$$\mathfrak{Dbj}_{\mathcal{P}^{b}(Q)}(\mathbb{C}) = \amalg_{\underline{\mathbf{m}} \in K'(\mathcal{P}^{b}(Q))} \mathfrak{Dbj}_{\mathcal{P}^{b}(Q)}^{\underline{\mathbf{m}}}(\mathbb{C}).$$

There is a canonical map

$$p_{\underline{\mathbf{m}}}: \mathcal{P}^b(Q, \underline{\mathbf{m}}) \to \mathfrak{Obj}_{\mathcal{P}^b(Q)}^{\underline{\mathbf{m}}}(\mathbb{C})$$

which maps  $P^{\bullet}$  to  $[P^{\bullet}]$ . A subset  $U \subseteq \mathfrak{Dbj}_{\mathcal{P}^{b}(Q)}^{\mathbf{m}}(\mathbb{C})$  is closed (resp. open) if  $p_{\mathbf{m}}^{-1}(U)$  is closed (resp. open) in  $\mathcal{P}^{b}(Q, \mathbf{m})$ . A subset  $V_{\mathbf{m}} \subseteq \mathfrak{Dbj}_{\mathcal{P}^{b}(Q)}^{\mathbf{m}}(\mathbb{C})$  is locally closed if it is an intersection of a closed subset and an open subset of  $\mathfrak{Dbj}_{\mathcal{P}^{b}(Q)}^{\mathbf{m}}(\mathbb{C})$ . A subset  $\mathcal{O} \subseteq \mathfrak{Dbj}_{\mathcal{P}^{b}(Q)}(\mathbb{C})$  is constructible if it is a finite disjoint union of locally closed sets  $V_{\mathbf{m}}$ . Every indecomposable constructible set  $\mathcal{O}$  is of the form  $\coprod_{\mathbf{m} \in S} V_{\mathbf{m}}$ , where S is a finite set and each complex in  $p_{\mathbf{m}}^{-1}(V_{\mathbf{m}})$  is an indecomposable complex.

#### 3.2. Automorphism groups of conflations

For each  $X \in \text{Obj}(\mathcal{A})$ , suppose that  $X = n_1 X_1 \oplus n_2 X_2 \oplus \ldots \oplus n_t X_t$ , where  $X_i$  are indecomposable for  $i = 1, \ldots, t$  and  $X_i \not\cong X_j$  for  $i \neq j$ . Then we have

$$\operatorname{Aut}(X) \cong (1 + rad\operatorname{End}(X)) \rtimes \sum_{i=1}^{t} \operatorname{GL}(n_i, \mathbb{K}).$$

The rank of maximal torus of  $\operatorname{Aut}(X)$  is denoted by  $\operatorname{rk}\operatorname{Aut}(X)$ . Let  $n = n_1 + n_2 + \ldots + n_t$ . Thus the number of indecomposable direct summands of X is n, which is denoted by  $\gamma(X)$ . Note that  $\gamma(X) = \operatorname{rk}\operatorname{Aut}(X)$ . Let

$$\gamma(\mathcal{O}) = \max\{\gamma(X) \mid [X] \in \mathcal{O}\}$$

for each constructible set  $\mathcal{O}$  in  $\mathfrak{Obj}_{\mathcal{A}}(\mathbb{K})$ .

Let  $X \xrightarrow{f} Y \xrightarrow{g} Z$  be a conflation in  $\mathcal{A}$  and  $\operatorname{Aut}(X \xrightarrow{f} Y \xrightarrow{g} Z)$  denote the group of  $(a_1, a_2, a_3)$  for  $a_1 \in \operatorname{Aut}(X)$ ,  $a_2 \in \operatorname{Aut}(Y)$  and  $a_3 \in \operatorname{Aut}(Z)$  such that the following diagram is commutative

$$\begin{array}{c|c} X & \xrightarrow{f} Y & \xrightarrow{g} Z \\ a_1 & a_2 & a_2 \\ X & \xrightarrow{f} Y & \xrightarrow{g} Z \end{array}$$

The homomorphism

$$p_1 : \operatorname{Aut}(X \xrightarrow{f} Y \xrightarrow{g} Z) \to \operatorname{Aut}(Y)$$

is defined by  $(a_1, a_2, a_3) \mapsto a_2$ . If  $p_1((a_1, a_2, a_3)) = p_1((a'_1, a_2, a'_3))$  then  $f(a_1 - a'_1) = 0$  and  $(a_3 - a'_3)g = 0$ . We have  $a_1 = a'_1$  and  $a_3 = a'_3$  since f is an inflation and g a deflation. Hence  $p_1$  is an injective homomorphism of affine algebraic K-groups and

(2) 
$$\operatorname{rk}(\operatorname{Aut}(X \xrightarrow{f} Y \xrightarrow{g} Z)) = \operatorname{rk} \operatorname{Im} p_1 \le \operatorname{rk} \operatorname{Aut}(Y)$$

Let

$$p_2: \operatorname{Aut}(X \xrightarrow{f} Y \xrightarrow{g} Z) \to \operatorname{Aut}(X) \times \operatorname{Aut}(Z)$$

be a homomorphism given by  $(a_1, a_2, a_3) \mapsto (a_1, a_3)$ . If  $p_2((a_1, a_2, a_3)) = p_2((a_1, a'_2, a_3))$ , then  $(a_2 - a'_2)f = 0$  and  $g(a_2 - a'_2) = 0$ , we have

$$a_2 - a'_2 \in (\operatorname{Hom}(Z, Y)g) \cap (f \operatorname{Hom}(Y, X))$$

Observe that  $\text{Ker}p_2$  is a linear space. It follows that  $\chi(\text{Ker}p_2) = 1$  and

(3) 
$$\operatorname{rk} \operatorname{Im}(p_2) \leq \operatorname{rk} \operatorname{Aut}(X) + \operatorname{rk} \operatorname{Aut}(Z).$$

Let  $\mathcal{P}(\mathcal{A})$  be a complete set of representatives of all isomorphism classes of objects in  $\mathcal{A}$ . Let  $W(X, Z; Y) = \{(f, g) \mid X \xrightarrow{f} Y \xrightarrow{g} Z \in \mathcal{S}\}$ . Note that W(X, Z; Y) is a subset of  $\operatorname{Hom}(X, Y) \times \operatorname{Hom}(Y, Z)$ . Let  $W(\mathcal{O}_1, \mathcal{O}_2; Y)$ denote the set of  $X \xrightarrow{f} Y \xrightarrow{g} Z \in \mathcal{S}$ , where  $X, Y, Z \in \mathcal{P}(\mathcal{A})$  and  $[X] \in \mathcal{O}_1, [Y] \in \mathcal{O}_2$ .

**Lemma 3.4.** For  $X, Y, Z \in \mathcal{P}(\mathcal{A})$ , the set W(X, Z; Y) is a constructible subset of  $\operatorname{Hom}(X, Y) \times \operatorname{Hom}(Y, Z)$ .

*Proof.* Recall that Hom(A, ?) and Hom(?, A) are left exact functors for each  $A \in \text{Obj}(\mathcal{A})$ . The inflation f induces a monomorphism

$$f^* : \operatorname{Hom}(?, X) \to \operatorname{Hom}(?, Y)$$

in the functor category  $\operatorname{Hom}(\mathcal{A}, \operatorname{Ab})$ , where  $\operatorname{Ab}$  denotes the category of abelian groups. Recall that  $\operatorname{Hom}(?, X)$  is a projective object. Because  $\operatorname{Ab}$ is an abelian category,  $\operatorname{Hom}(\mathcal{A}, \operatorname{Ab})$  is also an abelian category. Let P(X)denote  $\operatorname{Hom}(?, X)$  and inj(P(X), P(Y)) denote the set of monomorphisms  $f^*: P(X) \hookrightarrow P(Y)$ . Using inf(X, Y) to denote the set of inflations between X and Y. Note that inf(X, Y) is isomorphic to inj(P(X), P(Y)). Because  $inj(P(X), P(Y)) = \operatorname{Aut}(P(X))f^*, inj(P(X), P(Y))$  is a locally closed subset. Therefore inf(X, Y) is locally closed.

Let P'(Z) = Hom(Z, ?). Similarly, the deflation g induces a monomorphism

$$g^* : \operatorname{Hom}(Z, ?) \to \operatorname{Hom}(Y, ?),$$

then the set  $inj(P'(Z), P'(Y)) = \operatorname{Aut}(Z)g^*$  is locally closed. Hence the set of deflations  $g: Y \to Z$  is a locally closed set.

Fixed  $X, Y, Z \in \mathcal{P}(\mathcal{A})$ , using the facts that f is an inflation and g a deflation, we obtain that gf = 0 if and only if  $X \xrightarrow{f} Y \xrightarrow{g} Z$  is a conflation. Clearly,  $(f,g) \in \operatorname{Hom}(X,Y) \times \operatorname{Hom}(Y,Z)$  satisfying above conditions if and only if  $(f,g) \in W(X,Z;Y)$ . Hence W(X,Z;Y) is constructible. Two conflations  $X \xrightarrow{i} Y \xrightarrow{d} Z$  and  $X' \xrightarrow{i'} Y \xrightarrow{d'} Z'$  in  $\mathcal{A}$  are said to be equivalent if there exists a commutative diagram

$$\begin{array}{ccc} X & \stackrel{i}{\longrightarrow} Y & \stackrel{d}{\longrightarrow} Z \\ f & & 1_Y & & \downarrow g \\ X' & \stackrel{i'}{\longrightarrow} Y & \stackrel{d'}{\longrightarrow} Z' \end{array}$$

where both f and g are isomorphisms. If the two conflations are equivalent, we write  $X \xrightarrow{i} Y \xrightarrow{d} Z \sim X' \xrightarrow{i'} Y \xrightarrow{d'} Z'$ . The equivalence class of  $X \xrightarrow{i} Y \xrightarrow{d} Z$  is denoted by  $\langle X \xrightarrow{i} Y \xrightarrow{d} Z \rangle$ . Define

$$V(\mathcal{O}_1, \mathcal{O}_2; Y) = \left\{ \langle X \xrightarrow{i} Y \xrightarrow{d} Z \rangle \mid X \xrightarrow{i} Y \xrightarrow{d} Z \in \mathcal{S}, [X] \in \mathcal{O}_1, [Z] \in \mathcal{O}_2 \right\},\$$

where  $\mathcal{S}$  is the collection of all conflations of  $\mathcal{A}$ . Note that V([X], [Z]; Y) is isomorphic to the orbit space  $W(X, Z; Y)/(\operatorname{Aut} X \times \operatorname{Aut} Z)$ . Note that

$$[W(X, Z; Y)/(\operatorname{Aut} X \times \operatorname{Aut} Z)] = W(X, Z; Y)/(\operatorname{Aut} X \times \operatorname{Aut} Z)$$

since the action of  $\operatorname{Aut} X \times \operatorname{Aut} Z$  on W(X, Z; Y) is free. Hence V([X], [Z]; Y) is a quotient stack.

#### 3.3. Associative algebras and Lie algebras

For  $f, g \in CF(\mathfrak{Obj}_{\mathcal{A}})$ , define  $f \cdot g$  by  $(f \cdot g)([X], [Y]) = f([X])g([Y])$  for  $([X], [Y]) \in \mathfrak{Obj}_{\mathcal{A}}(\mathbb{K}) \times \mathfrak{Obj}_{\mathcal{A}}(\mathbb{K})$ . Thus  $f \cdot g \in CF(\mathfrak{Obj}_{\mathcal{A}} \times \mathfrak{Obj}_{\mathcal{A}})$ .

By [10, Theorem 8.4],  $\pi_m$  is representable and  $\pi_l \times \pi_r$  is of finite type. The pushforward of  $\pi_m$  is well-defined and  $p_1$  is injective. The following definition of multiplication is taken from [12, Definition 4.1].

**Definition 3.5.** Using the following diagram

$$\mathfrak{Obj}_{\mathcal{A}} \times \mathfrak{Obj}_{\mathcal{A}} \xleftarrow{\pi_l \times \pi_r} \mathfrak{Eract}_{\mathcal{A}} \xrightarrow{\pi_m} \mathfrak{Obj}_{\mathcal{A}},$$

we can define the convolution multiplication

$$\mathrm{CF}(\mathfrak{Obj}_{\mathcal{A}}\times\mathfrak{Obj}_{\mathcal{A}})\xrightarrow{(\pi_l\times\pi_r)^*}\mathrm{CF}(\mathfrak{Eract}_{\mathcal{A}})\xrightarrow{(\pi_m)_!}\mathrm{CF}(\mathfrak{Obj}_{\mathcal{A}}).$$

The multiplication  $* : \operatorname{CF}(\mathfrak{Obj}_{\mathcal{A}}) \times \operatorname{CF}(\mathfrak{Obj}_{\mathcal{A}}) \to \operatorname{CF}(\mathfrak{Obj}_{\mathcal{A}})$  is a bilinear map defined by

$$f * g = (\pi_m)_! [(\pi_l \times \pi_r)^* (f \cdot g)] = (\pi_m)_! [\pi_l^*(f) \cdot \pi_r^*(g)].$$

Let  $\mathcal{O}_1$  and  $\mathcal{O}_2$  be constructible subsets of  $\mathfrak{Dbj}_{\mathcal{A}}(\mathbb{K})$ , the meaning of  $1_{\mathcal{O}_1} * 1_{\mathcal{O}_2}$  can be understood as follows. The function  $m_{\pi_m} : \mathfrak{Eract}_{\mathcal{A}}(\mathbb{K}) \to \mathbb{Q}$ , which is defined by

$$m_{\pi_m}([X \xrightarrow{f} Y \xrightarrow{g} Z]) = \chi \big[\operatorname{Aut}(Y)/p_1\big(\operatorname{Aut}(X \xrightarrow{f} Y \xrightarrow{g} Z)\big)\big],$$

is a locally constructible function on  $\mathfrak{Cract}_{\mathcal{A}}(\mathbb{K})$  by [11, Proposition 4.16], namely  $m_{\pi_m}|_{\mathcal{O}}$  is a constructible function on  $\mathcal{O}$  for every constructible subset  $\mathcal{O} \subseteq \mathfrak{Cract}_{\mathcal{A}}(\mathbb{K}).$ 

For each  $[Y] \in \mathfrak{Obj}_{\mathcal{A}}(\mathbb{K}),$ 

(4) 
$$1_{\mathcal{O}_1} * 1_{\mathcal{O}_2}([Y]) = \sum_{c \in \Lambda(\mathcal{O}_1, \mathcal{O}_2; Y)} c\chi^{na}(Q_c(\mathcal{O}_1, \mathcal{O}_2, Y)),$$

where

$$\Lambda(\mathcal{O}_1, \mathcal{O}_2; Y) = \{ c = m_{\pi_m} ([A \xrightarrow{f} Y \xrightarrow{g} B]) \mid [A] \in \mathcal{O}_1, [B] \in \mathcal{O}_2 \} \setminus \{0\}$$

is a finite set, and

$$Q_c(\mathcal{O}_1, \mathcal{O}_2, Y) =$$

$$\{[A \xrightarrow{f} Y \xrightarrow{g} B] \mid [A] \in \mathcal{O}_1, [B] \in \mathcal{O}_2, m_{\pi_m}([A \xrightarrow{f} Y \xrightarrow{g} B]) = c\}$$

are constructible sets for  $c \in \Lambda(\mathcal{O}_1, \mathcal{O}_2; Y)$ . In fact, the 1-morphism  $\pi_l \times \pi_r$ is of finite type by [10, Theorem 8.4]. Hence  $(\pi_{l*} \times \pi_{r*})^{-1}(\mathcal{O}_1 \times \mathcal{O}_2)$  is a constructible subset of  $\mathfrak{Eract}_{\mathcal{A}}$ . Then

$$\Lambda(\mathcal{O}_1, \mathcal{O}_2; Y) = m_{\pi_m} \left[ \left( (\pi_{l*} \times \pi_{r*})^{-1} (\mathcal{O}_1 \times \mathcal{O}_2) \right) \cap \left( (\pi_{m*})^{-1} ([Y]) \right) \right] \setminus \{0\}$$

is a finite set by [11, Proposition 4.6]. Therefore

$$Q_c(\mathcal{O}_1, \mathcal{O}_2, Y) = m_{\pi_m}^{-1}(c) \cap [(\pi_{l*} \times \pi_{r*})^{-1}(\mathcal{O}_1 \times \mathcal{O}_2)] \cap ((\pi_{m*})^{-1}([Y]))$$

are constructible for all  $c \in \Lambda(\mathcal{O}_1, \mathcal{O}_2; Y)$ .

For each  $([X], [Z]) \in \mathcal{O}_1 \times \mathcal{O}_2$ , let

$$\Lambda(X,Z;Y) = \left\{ c = m_{\pi_m}([X \xrightarrow{f} Y \xrightarrow{g} Z]) \mid [X \xrightarrow{f} Y \xrightarrow{g} Z] \in \mathfrak{Eract}_{\mathcal{A}}(\mathbb{K}) \right\}$$

and

$$Q_c(X, Z, Y) = \left\{ [X \xrightarrow{f} Y \xrightarrow{g} Z] \mid m_{\pi_m}([X \xrightarrow{f} Y \xrightarrow{g} Z]) = c \right\},\$$

where  $\Lambda(X, Z; Y)$  is a finite set and  $Q_c(X, Z, Y)$  are constructible sets for all  $c \in \Lambda(X, Z; Y)$ . Then

(5) 
$$(1_{[X]} * 1_{[Z]})([Y]) = \sum_{c \in \Lambda(X,Z;Y)} c\chi^{na}(Q_c(X,Z,Y)).$$

The set consisting of  $\chi \Big( \operatorname{Aut}(Y)/p_1 \big( \operatorname{Aut}(X \xrightarrow{f} Y \xrightarrow{g} Z) \big) \Big)$ , where

$$[X \xrightarrow{f} Y \xrightarrow{g} Z] \in \bigcup_{c \in \Lambda(\mathcal{O}_1, \mathcal{O}_2; Y)} Q_c(\mathcal{O}_1, \mathcal{O}_2, Y),$$

is finite since  $\chi(\operatorname{Aut}(Y)/\operatorname{Im} p_1) = m_{\pi_m}([X \xrightarrow{f} Y \xrightarrow{g} Z]).$ Let

$$\pi_1: V(\mathcal{O}_1, \mathcal{O}_2; Y) \to \bigcup_{c \in \Lambda(\mathcal{O}_1, \mathcal{O}_2; Y)} Q_c(\mathcal{O}_1, \mathcal{O}_2, Y)$$

be a morphism given by  $\langle X \xrightarrow{f} Y \xrightarrow{g} Z \rangle \mapsto ([X \xrightarrow{f} Y \xrightarrow{g} Z])$ . For each fibre of  $\pi_1$ ,  $\chi^{\mathrm{na}}(\pi_1^{-1}([X \xrightarrow{f} Y \xrightarrow{g} Z])) = \chi \Big( \mathrm{Aut}(Y)/p_1 \big( \mathrm{Aut}(X \xrightarrow{f} Y \xrightarrow{g} Z) \big) \Big)$ .

The following result is due to [4, Proposition 6] and [12, Theorem 4.3].

**Theorem 3.6.** The  $\mathbb{Q}$ -space  $CF(\mathfrak{Dbj}_{\mathcal{A}})$  is an associative  $\mathbb{Q}$ -algebra, with convolution multiplication \* and identity  $1_{[0]}$ , where  $1_{[0]}$  is the characteristic function of  $[0] \in \mathfrak{Dbj}_{\mathcal{A}}(\mathbb{K})$ .

*Proof.* Let  $\mathcal{O}_1, \mathcal{O}_2$  and  $\mathcal{O}_3$  be constructible subsets of  $\mathfrak{Obj}_{\mathcal{A}}(\mathbb{K})$ . It suffices to show that  $(1_{\mathcal{O}_1} * 1_{\mathcal{O}_2}) * 1_{\mathcal{O}_3}([M]) = 1_{\mathcal{O}_1} * (1_{\mathcal{O}_2} * 1_{\mathcal{O}_3})([M])$  for  $M \in \mathrm{Obj}(\mathcal{A})$ . Take  $X, Y, Z \in \mathcal{P}(\mathcal{A})$  satisfying  $[X] \in \mathcal{O}_1, [Y] \in \mathcal{O}_2$  and  $[Z] \in \mathcal{O}_3$ . Consider

 $(f, g, m, l) \in W(X, Y; L) \times W(L, Z; M)$ . There is a pushout

$$\begin{array}{c} L \xrightarrow{g} Y \\ \downarrow l & \stackrel{|}{\downarrow} l' \\ M - \stackrel{g'}{-} \succ L' \end{array}$$

where  $L' \in \mathcal{P}(\mathcal{A})$ . We obtain an inflation  $l': Y \to L'$  and a deflation  $g': M \to L'$ . Let f' = lf. Then f' is an inflation and g'f' = 0. Hence g' is a cokernel of f' and  $X \xrightarrow{f'} M \xrightarrow{g'} L'$  is a conflation.

There is a morphism  $m': L' \to Z$  such that m = m'g' and m'l' = 0. It is easy to see that l' is a kernel of m' and (l', m') is a conflation. The following diagram is commutative



Note that the rows and columns are conflations. For  $L, L' \in \mathcal{P}(\mathcal{A})$ , we claim that the morphism

$$\cup_L V([X], [Y]; L) \times V([L], [Z]; M) \xrightarrow{F} \cup_{L'} V([X], [L']; M) \times V([Y], [Z]; L'),$$

which maps  $(\langle X \xrightarrow{f} L \xrightarrow{g} Y \rangle, \langle L \xrightarrow{l} M \xrightarrow{m} Z \rangle)$  to  $(\langle X \xrightarrow{f'} M \xrightarrow{g'} L' \rangle, \langle Y \xrightarrow{l'} L' \xrightarrow{m'} Z \rangle)$ , is a bijection. The proof of this claim is quite similar to the proof of [8, Proposition 2] and so is omitted. The morphism F induces a morphism  $T: \mathcal{TS}(\mathbb{K}) \to \mathcal{TS}(\mathbb{K})$  by

$$([X \xrightarrow{f} L \xrightarrow{g} Y], [L \xrightarrow{l} M \xrightarrow{m} Z]) \mapsto ([X \xrightarrow{f'} M \xrightarrow{g'} L'], [Y \xrightarrow{l'} L' \xrightarrow{m'} Z]).$$

The following diagram is commutative

Let  $c \in \Lambda(X, Y; L)$ ,  $d \in \Lambda(L, Z; M)$ ,  $c' \in \Lambda(X, L'; M)$ ,  $d' \in \Lambda(Y, Z; L')$ . Assume that  $m_{\pi_m}([X \xrightarrow{f} L \xrightarrow{g} Y]) = c$ ,  $m_{\pi_m}([L \xrightarrow{l} M \xrightarrow{m} Z]) = d$ ,  $m_{\pi_m}([X \xrightarrow{f'} M \xrightarrow{g'} L']) = c'$  and  $m_{\pi_m}([Y \xrightarrow{l'} L' \xrightarrow{m'} Z]) = d'$ . Then

$$\chi^{na} \left( T^{-1}([X \xrightarrow{f'} M \xrightarrow{g'} L'], [Y \xrightarrow{l'} L' \xrightarrow{m'} Z]) \right) = \frac{c'd'}{cd}.$$

Let  $Q_c(X, Y, L)$  be as in Section 3.3. By Lemma 2.5, we have

$$cd\chi^{\rm na}(Q_c(X,Y,L))\chi^{\rm na}(Q_d(L,Z,M)) = c'd'\chi^{\rm na}(Q'_c(X,L',M))\chi^{\rm na}(Q'_d(Y,Z,L')).$$

It follows that  $(1_{[X]} * 1_{[Y]}) * 1_{[Z]}([M]) = 1_{[X]} * (1_{[Y]} * 1_{[Z]})([M])$ . Recall that

$$(1_{\mathcal{O}_1} * 1_{\mathcal{O}_2}) * 1_{\mathcal{O}_3}([M]) = \int_{[X] \in \mathcal{O}_1, [Y] \in \mathcal{O}_2, [Z] \in \mathcal{O}_3} (1_{[X]} * 1_{[Y]}) * 1_{[Z]}([M])$$

and

$$1_{\mathcal{O}_1} * (1_{\mathcal{O}_2} * 1_{\mathcal{O}_3})([M]) = \int_{[X] \in \mathcal{O}_1, [Y] \in \mathcal{O}_2, [Z] \in \mathcal{O}_3} 1_{[X]} * (1_{[Y]} * 1_{[Z]})([M])$$

This completes the proof of Theorem 3.6.

Joyce defined 
$$CF^{ind}(\mathfrak{Obj}_{\mathcal{A}})$$
 to be the subspace of  $CF(\mathfrak{Obj}_{\mathcal{A}})$  such that  
if  $f([X]) \neq 0$  then X is an indecomposable object in  $\mathcal{A}$  for every  $f \in CF^{ind}(\mathfrak{Obj}_{\mathcal{A}})$ . There is a result of [4, Theorem 13] and [12, Theorem 4.9].

**Theorem 3.7.** The Q-space  $CF^{ind}(\mathfrak{Obj}_{\mathcal{A}})$  is a Lie algebra under the Lie bracket [f,g] = f \* g - g \* f for  $f,g \in CF^{ind}(\mathfrak{Obj}_{\mathcal{A}})$ .

*Proof.* Let  $\mathcal{O}_1$  and  $\mathcal{O}_2$  be two indecomposable constructible sets. It suffices to show that  $1_{\mathcal{O}_1} * 1_{\mathcal{O}_2} - 1_{\mathcal{O}_2} * 1_{\mathcal{O}_1} \in CF^{ind}(\mathfrak{Dbj}_{\mathcal{A}})$ . Without loss of generality, we can assume that  $\mathcal{O}_1 \cap \mathcal{O}_2 = \emptyset$ . By corollary 3.13,  $1_{\mathcal{O}_1} * 1_{\mathcal{O}_2} - 1_{\mathcal{O}_2} * 1_{\mathcal{O}_1} \in CF^{ind}(\mathfrak{Dbj}_{\mathcal{A}})$ .

# 3.4. The algebra $CF^{KS}(\mathfrak{Obj}_{\mathcal{A}})$

**Lemma 3.8.** Let  $\mathcal{O}_1$  and  $\mathcal{O}_2$  be two constructible subsets of  $\mathfrak{Obj}_{\mathcal{A}}(\mathbb{K})$ . For any  $Y \in \mathrm{Obj}(\mathcal{A})$ , if  $1_{\mathcal{O}_1} * 1_{\mathcal{O}_2}([Y]) \neq 0$ , then there exists a conflation  $A \xrightarrow{f} Y \xrightarrow{g} B$  in  $\mathcal{A}$  satisfying that  $[A] \in \mathcal{O}_1$ ,  $[B] \in \mathcal{O}_2$  and  $m_{\pi_m}([A \xrightarrow{f} Y \xrightarrow{g} B]) \neq 0$ . Moreover, there exist  $X, Z \in \mathrm{Obj}(\mathcal{A})$  such that  $[X] \in \mathcal{O}_1$ ,  $[Z] \in \mathcal{O}_2$  and  $1_{[X]} * 1_{[Z]}([Y]) \neq 0$ .

*Proof.* Let  $Q_c(\mathcal{O}_1, \mathcal{O}_2, Y)$  and  $\Lambda(\mathcal{O}_1, \mathcal{O}_2; Y)$  be as in Section 3.3. Let

$$Q = \sqcup_{c \in \Lambda(\mathcal{O}_1, \mathcal{O}_2; Y)} Q_c(\mathcal{O}_1, \mathcal{O}_2, Y) \text{ and } Q_c = Q_c(\mathcal{O}_1, \mathcal{O}_2, Y)$$

for simplicity. Since  $\Lambda(\mathcal{O}_1, \mathcal{O}_2, Y)$  is a finite set, Q is constructible.

For each  $c \in \Lambda(\mathcal{O}_1, \mathcal{O}_2; Y)$ , there exists some conflations  $A \xrightarrow{f} Y \xrightarrow{g} B$  in  $\mathcal{A}$  such that  $[A] \in \mathcal{O}_1, [B] \in \mathcal{O}_2$  and  $m_{\pi_m}([A \xrightarrow{f} Y \xrightarrow{g} B]) = c$ . By equation (4), we know that there exist some  $c \neq 0$ . This proves the first statement. Let

$$\pi: Q \to (\pi_{l*} \times \pi_{r*})(Q)$$

be a map which maps  $[X \xrightarrow{i} Y \xrightarrow{d} Z]$  to ([X], [Z]) and

$$m_m = m_{\pi_m}|_Q.$$

It follows that  $m_m$  is a constructible function over Q.

Because  $\pi_l \times \pi_r$  is a 1-morphism,  $\pi$  is a pseudomorphism by [11, Proposition 4.6]. Thus  $\pi(Q)$  is constructible and the naïve pushforward  $(\pi)_!^{\mathrm{na}}(m_m)$  of  $m_m$  to  $\pi(Q)$  exists. Note that  $(\pi)_!^{\mathrm{na}}(m_m)$  is a constructible function on  $\pi(Q)$ . In fact

$$(\pi)_{!}^{\mathrm{na}}(m_m)([X], [Z]) = 1_{[X]} * 1_{[Z]}([Y])$$

for all  $([X], [Z]) \in \pi(Q)$ . Therefore

$$\left\{ \mathbf{1}_{[X]} \ast \mathbf{1}_{[Z]}([Y]) \ | \ ([X], [Z]) \in \pi(Q) \right\}$$

is a finite set. Note that

$$\pi^{-1}([X], [Z]) = \{ [X \xrightarrow{f} Y \xrightarrow{g} Z] \in Q_c \} = Q_c(X, Z, Y)$$

is constructible for  $([X], [Z]) \in \pi(Q_c)$  since  $\pi_l \times \pi_r$  is of finite type. The set

$$\{1_{[X]} * 1_{[Z]}([Y]) \mid ([X], [Z]) \in \pi(Q)\}$$

is a finite set since  $1_{[X]} * 1_{[Z]}$  is a constructible function. Using the equation 5 and the fact that  $\Lambda(\mathcal{O}_1, \mathcal{O}_2, Y)$  is a finite set, we know that

$$\{\chi^{na}(Q_c(X, Z, Y)) \mid ([X], [Z]) \in \pi(Q)\}$$

is a finite set.

198

Suppose that

$$S_c(X,Z) = \Big\{ ([A],[B]) \in \pi(Q_c) \mid \chi^{\mathrm{na}}(\pi^{-1}([A],[B])) = \chi^{\mathrm{na}}(Q_c(X,Z,Y)) \Big\}.$$

Then we have

$$\chi^{\rm na}(Q_c) = \sum_{([X], [Z])} \chi^{\rm na}(S_c(X, Z))\chi^{\rm na}(Q_c(X, Z, Y))$$

for finitely many  $([X], [Z]) \in \pi(Q_c)$ . For  $c \in \Lambda(\mathcal{O}_1, \mathcal{O}_2; Y)$ , let  $\{([X_1^{(c)}], [Z_1^{(c)}]), \dots, ([X_{k_c}^{(c)}], [Z_{k_c}^{(c)}])\}$  be a complete set of representatives for  $([X], [Z]) \in \pi(Q_c)$  such that

$$\chi^{\mathrm{na}}(Q_c(X_i^{(c)}, Z_i^{(c)}, Y) \neq \chi^{\mathrm{na}}(Q_c(X_j^{(c)}, Z_j^{(c)}, Y))$$

for  $i \neq j$  and  $i, j \in \{1, 2, \dots, k_c\}$ . It is easy to see that

$$\pi(Q_c) = \bigsqcup_{i=1}^{k_c} S_c(X_i^{(c)}, Z_i^{(c)}) \text{ and } \pi(Q) = \bigcup_c \Bigl(\bigsqcup_{i=1}^{k_c} S_c(X_i^{(c)}, Z_i^{(c)})\Bigr).$$

Assume that  $m_m(Q) = \{c_1, c_2, ..., c_m\}$ . Set

$$S(i_1, i_2, \dots, i_n) = S_{c_{i_1}}(X_{l_{i_1}}^{(c_{i_1})}, Z_{l_{i_1}}^{(c_{i_1})}) \cap \dots \cap S_{c_{i_n}}(X_{l_{i_n}}^{(c_{i_n})}, Z_{l_{i_n}}^{(c_{i_n})})$$

be a non-empty set for  $1 \le i_1 < i_2 < \ldots < i_n \le m$  and  $1 \le l_{i_j} \le k_{c_{i_j}}$ , which satisfies the 'minimal' condition, namely  $S(i_1, i_2, \dots, i_n) \cap S_c(X_i^{(c)}, Z_i^{(c)}) = \emptyset$ for any  $c \notin \{c_{i_1}, \ldots, c_{i_n}\}$  or  $i \notin \{l_{i_1}, \ldots, l_{i_n}\}$ . The choice of  $S(i_1, i_2, \ldots, i_n)$ are finite. By definition,  $S(i_1, i_2, \ldots, i_n)$  are pairwise disjoint. For simplicity, we use  $S_1, S_2, \ldots, S_r$  to denote sets  $S(i_1, i_2, \ldots, i_n)$ . It follows that

$$S_1 \sqcup \ldots \sqcup S_r = \pi(Q).$$

By Lemma 2.5, we obtain that

$$\sum_{c \in \Lambda(\mathcal{O}_1, \mathcal{O}_2, Y)} c\chi^{\mathrm{na}}(Q_c) = \sum_{c \in \Lambda(\mathcal{O}_1, \mathcal{O}_2; Y)} c\sum_{i=1}^r \chi^{na}(S_i)\chi^{\mathrm{na}}(Q_c(X_i, Z_i, Y))\delta(i, c),$$

where  $([X_i], [Z_i]) \in S_i$ ,  $\delta(i, c) = 1$  if  $S_i \cap \pi(Q_c(X_i, Z_i, Y)) \neq \emptyset$  and  $\delta(i, c) = 0$ otherwise. Then

$$1_{\mathcal{O}_1} * 1_{\mathcal{O}_2}([Y]) = \sum_{i=1}^r \chi^{na}(S_i) \sum_{c \in \Lambda(\mathcal{O}_1, \mathcal{O}_2; Y)} c\chi^{na}(Q_c(X_i, Z_i, Y))\delta(i, c)$$

$$= \sum_{i=1}^{r} \chi^{na}(S_i) \big( \mathbb{1}_{[X_i]} * \mathbb{1}_{[Z_i]}([Y]) \big).$$

There exists  $([X_i], [Z_i])$  for some  $i \in \{1, \ldots, r\}$  such that  $1_{[X_k]} * 1_{[Z_k]}([Y]) \neq 0$ 0 since  $1_{\mathcal{O}_1} * 1_{\mathcal{O}_2}([Y]) \neq 0$ .

Let  $\mathbf{D}_n(\mathbb{K})$  denote the group of invertible diagonal matrices in  $\mathbf{GL}(n, \mathbb{K})$ . The following lemma is related to Riedtmann[20, Lemma 2.2].

**Lemma 3.9.** Let  $X, Y, Z \in \text{Obj}(\mathcal{A})$  and  $X \xrightarrow{f} Y \xrightarrow{g} Z$  be a conflation in  $\mathcal{A}$ . If  $m_{\pi_m}([X \xrightarrow{f} Y \xrightarrow{g} Z]) \neq 0$ , then  $\gamma(Y) \leq \gamma(X) + \gamma(Z)$ . In particular,  $\gamma(Y) = \gamma(X) + \gamma(Z)$  if and only if  $Y \cong X \oplus Z$ .

*Proof.* Recall that  $m_{\pi_m}([X \xrightarrow{f} Y \xrightarrow{g} Z]) = \chi(\operatorname{Aut} Y/\operatorname{Im}(p_1)).$ 

If  $\operatorname{rk}\operatorname{Aut}(Y) > \operatorname{rk}\operatorname{Im}(p_1)$ , then the fibre of the action of a maximal torus of  $\operatorname{Aut}(Y)$  on  $\operatorname{Aut} Y/\operatorname{Im}(p_1)$  is  $(\mathbb{K}^*)^k$  for some  $k \ge 1$ , it forces  $\chi(\operatorname{Aut} Y/\operatorname{Im}(p_1)) = 0$ . Hence we have  $\operatorname{rk}\operatorname{Aut}(Y) = \operatorname{rk}\operatorname{Im}(p_1) \le \operatorname{rk}\operatorname{Aut}(X) + \operatorname{rk}\operatorname{Aut}(Z)$ .

We prove the second assertion by induction on rk Aut(Y). First of all, suppose that  $X \not\cong 0$  and  $Z \not\cong 0$ . If rk Aut(Y) = 2 and  $Y = Y_1 \oplus Y_2$ , then rk Aut(X) = rk Aut(Z) = 1 since X and Z are not isomorphic to 0. For  $t \in \mathbb{K}^* \setminus \{1\}, \begin{pmatrix} t & 0 \\ 0 & t^2 \end{pmatrix} \in Aut(Y)$  and it is an element of a maximal torus  $\mathbf{D}_2(\mathbb{K})$  of Aut(Y). A maximal torus of Im( $p_1$ ) is also a maximal torus of Aut(Y) since rk Aut(Y) = rk Im( $p_1$ ). Because two maximal tori of a connected linear algebraic group are conjugate, there exists  $\alpha \in Aut(Y)$  such that  $\alpha \begin{pmatrix} t & 0 \\ 0 & t^2 \end{pmatrix} \alpha^{-1}$  lies in a maximal torus of Im( $p_1$ ). Hence there exist  $a \in Aut(X)$  and  $b \in Aut(Z)$  satisfying  $(a, \alpha \begin{pmatrix} t & 0 \\ 0 & t^2 \end{pmatrix} \alpha^{-1}, b) \in Aut(X \xrightarrow{f} Y \xrightarrow{g} Z)$ , namely

$$(a, \begin{pmatrix} t & 0\\ 0 & t^2 \end{pmatrix}, b) \in \operatorname{Aut}(X \xrightarrow{\alpha^{-1}f} Y \xrightarrow{g\alpha} Z).$$

Let  $f' = \alpha^{-1}f$  and  $g' = g\alpha$ . Observe  $(t, \begin{pmatrix} t & 0 \\ 0 & t \end{pmatrix}, t) \in \operatorname{Aut}(X \xrightarrow{f'} Y \xrightarrow{g'} Z)$ . Hence  $f'(a-t) = \begin{pmatrix} 0 & 0 \\ 0 & t^2 - t \end{pmatrix} f'$ . Let  $s = \frac{1}{t^2 - t}(a-t) \in \operatorname{End}(X)$   $(t \neq t)$ .

0,1). Then 
$$f's = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} f'$$
. Because  $f'$  is an inflation and  
$$f's^2 = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} f's = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} f' = f's,$$

 $s^2 = s$ . The category  $\mathcal{A}$  is idempotent completion, consequently s has a kernel and an image such that  $X = \text{Ker} s \oplus \text{Im} s$ . But X is indecomposable, without loss of generality we can assume X = Ker s. Then s = 0. Let  $f' = \binom{f_1}{f_2}$  and  $g' = (g_1, g_2)$ . It follows that

$$\left(\begin{array}{c}0\\0\end{array}\right) = f's = \left(\begin{array}{c}0&0\\0&1\end{array}\right) \left(\begin{array}{c}f_1\\f_2\end{array}\right) = \left(\begin{array}{c}0\\f_2\end{array}\right).$$

We have  $f_2 = 0$  and  $f' = \begin{pmatrix} f_1 \\ 0 \end{pmatrix}$ . The morphism  $Y_1 \oplus Y_2 \xrightarrow{(0,1)} Y_2$  is a deflation by [2, Lemma 2.7]. Because  $(0,1) \begin{pmatrix} f_1 \\ 0 \end{pmatrix} = 0$ , there exits  $h \in \text{Hom}(Z, Y_1)$  such that  $(0,1) = h(g_1, g_2)$ . We have  $hg_1 = 0$  and  $hg_2 = 1_{Y_2}$ . Observe  $g_2h \in \text{End}(Z)$  and  $(g_2h)(g_2h) = g_2h$ , so  $g_2h$  has a kernel  $k : K \to Z$  and an image  $i : I \to Z$ . Moreover  $Z \cong K \oplus I$ . It follows that  $Z \cong K$  or  $Z \cong I$  since Z is indecomposable. If  $Z \cong K$  then  $g_2h = 0$ . But  $hg_2h = h$ , K = 0. Thus h is an isomorphism and  $g_1 = 0$ . We have  $Z \cong Y_2$ . Similarly  $X \cong Y_1$ . Hence  $X \oplus Z \cong Y_1 \oplus Y_2$ .

Assume that the assertion is true for rk Aut(Y) = n < N. When n = N, we can assume rk Aut $(X) = n_1$  where  $0 < n_1 < N$ , then rk Aut $(Z) = N - n_1 = n_2$ . Let  $Y = Y' \oplus Y_N$  and  $Y' = Y_1 \oplus \ldots \oplus Y_{N-1}$ , where  $Y_i$  are indecomposable. Observe that  $\begin{pmatrix} tI_{N-1} & 0 \\ 0 & t^2 \end{pmatrix}$  lies in a maximal torus of Aut(Y) for  $t \in \mathbb{K}^* \setminus \{1\}$ . There exists  $(a, c, b) \in \text{Aut}(X \xrightarrow{f} Y \xrightarrow{g} Z)$  such that c and  $\begin{pmatrix} tI_{N-1} & 0 \\ 0 & t^2 \end{pmatrix}$  are conjugate in Aut(Y). For simplicity we assume  $c = \begin{pmatrix} tI_{N-1} & 0 \\ 0 & t^2 \end{pmatrix}$ . So we have the following commutative diagram

$$\begin{array}{c|c} X & \stackrel{f}{\longrightarrow} Y' \oplus Y_N & \stackrel{g}{\longrightarrow} Z \\ a & & c & & \downarrow \\ a & & c & & \downarrow \\ X & \stackrel{f}{\longrightarrow} Y' \oplus Y_N & \stackrel{g}{\longrightarrow} Z \end{array}$$

where  $f = (f_1, f_2, ..., f_N)^t$  and  $g = (g_1, g_2, ..., g_N)$ .

There is another commutative diagram

$$\begin{array}{c} X \xrightarrow{(f^*,f_N)^t} Y' \oplus Y_N \xrightarrow{(g^*,g_N)} Z \\ tI_{n_1} \middle| \begin{array}{c} tI_N \\ \downarrow \\ X \xrightarrow{(f^*,f_N)^t} Y' \oplus Y_N \xrightarrow{(g^*,g_N)} Z \end{array} \right| tI_{n_2} \end{array}$$

where  $f^* = (f_1, f_2, \dots, f_{N-1})^T$  and  $g^* = (g_1, g_2, \dots, g_{N-1})$ . Then  $f = (f^*, f_N)^t$ ,  $g = (g^*, g_N)$  and  $f(a - tI_{n_1}) = \begin{pmatrix} 0I_{N-1} & 0\\ 0 & t^2 - t \end{pmatrix} f$ . Let

$$s_N = \frac{1}{t^2 - t}(a - tI_{n_1}).$$

Then  $fs_N = \text{diag}\{0, \dots, 0, 1\}f$ . It follows  $f^*s_N = 0$ ,  $f_Ns_N = f_N$  and  $g_Nf_N = g\begin{pmatrix} 0I_{N-1} & 0\\ 0 & 1 \end{pmatrix}f = gfs_N = 0$ . Moreover  $s_N$  is an idempotent, we know that  $X = \text{Kers}_N \oplus \text{Im}s_N$ . If  $f_N \neq 0$  then  $\text{Im}s_N$  is not isomorphic to 0. Similarly we can define  $s_1, s_2, \dots, s_{N-1} \in \text{End}(X)$  with the property that  $fs_i = \text{diag}\{0, \dots, 0, 1, 0, \dots, 0\}f = (0, \dots, 0, f_i, 0, \dots, 0)^t$ . Hence  $s_i$  is idempotent and if  $f_i \neq 0$  then  $\text{Im}s_i$  is not isomorphic to 0 for each i. Note that  $s_1 + s_2 + \ldots + s_N = 1_X \in \text{Aut}(X)$ , it follows

$$X = \operatorname{Im} s_1 \oplus \ldots \oplus \operatorname{Im} s_N.$$

Hence  $f_i = 0$  for some *i* since rk Aut(X) < N. Without loss of generality, we assume  $f_N = 0$ . Let  $(0, \ldots, 0, 1) : Y_1 \oplus \ldots \oplus Y_N \to Y_N$ , then

$$(0,\ldots,0,1)(f_1,\ldots,f_N)^t = 0$$

Hence there exists  $h \in \text{Hom}(Z, Y_N)$  such that  $h(g_1, \ldots, g_N) = (0, \ldots, 0, 1)$ , namely  $hg_1 = 0, \ldots, hg_{N-1} = 0$  and  $hg_N = 1$ . Therefore  $Y_N$  is isomorphic to a direct summand of Z. Assume that  $Z = Z' \oplus Y_N$  where  $\gamma(Z') = \gamma(Z) - 1$ . The morphism  $(1,0) : Z' \oplus Y_N \to Z'$  is a deflation, so  $g' = g^*(1,0) : Y' \to Z'$ is a deflation by Definition A.1. Obviously,  $(f_1, \ldots, f_{N-1})^t : X \to Y_1 \oplus \ldots \oplus$  $Y_{N-1}$  is a kernel of g'. Thus

$$X \xrightarrow{(f_1,\ldots,f_{N-1})^t} Y_1 \oplus \ldots \oplus Y_{N-1} \xrightarrow{g'} Z'$$

is a conflation. By hypothesis,  $Y_1 \oplus \ldots \oplus Y_{N-1} \cong X \oplus Z'$ . Hence  $Y = Y_1 \oplus \ldots \oplus Y_N \cong X \oplus Z$ . The proof is completed.  $\Box$ 

**Remark 3.10.** If  $1_{[X]} * 1_{[Z]}([Y]) \neq 0$ , then  $\gamma(Y) \leq \gamma(X) + \gamma(Z)$ , where the equality holds if and only if  $Y \cong X \oplus Z$ .

**Lemma 3.11.** Let  $X, Y, Z \in \text{Obj}(\mathcal{A})$  and  $X \xrightarrow{f} Y \xrightarrow{g} Z$  be a conflation in  $\mathcal{A}$ . If  $m_{\pi_m}([X \xrightarrow{f} Y \xrightarrow{g} Z]) \neq 0$ ,  $\gamma(Y) < \gamma(X) + \gamma(Z)$  and  $Y = Y_1 \oplus Y_2$ , then there exist two conflations  $X_1 \xrightarrow{f_1} Y_1 \xrightarrow{g_1} Z_1$  and  $X_2 \xrightarrow{f_2} Y_2 \xrightarrow{g_2} Z_2$  in  $\mathcal{A}$  such that  $X \cong X_1 \oplus X_2$ ,  $Z \cong Z_1 \oplus Z_2$  and  $f = diag\{f_1, f_2\}, g = diag\{g_1, g_2\}.$ 

*Proof.* Suppose that  $\operatorname{rk}\operatorname{Aut}(X) = n_1$ ,  $\operatorname{rk}\operatorname{Aut}(X) = N$  and  $\operatorname{rk}\operatorname{Aut}(Z) = n_2$ . Then  $N < n_1 + n_2$ . For simplicity, we use the notation as above. Let  $Y = Y_1 \oplus \ldots \oplus Y_N$ ,  $f = (f_1, f_2, \ldots, f_N)^t$ ,  $g = (g_1, g_2, \ldots, g_N)$  and the isomorphisms  $(a, c, b), (tI_{n_1}, tI_N, tI_{n_2}) \in \operatorname{Aut}(X \xrightarrow{f} Y \xrightarrow{g} Z)$ , where  $c = \begin{pmatrix} tI_{N-1} & 0 \\ 0 & t^2 \end{pmatrix}$ . Recall that

$$s_N = \frac{1}{t^2 - t}(a - tI_{n_1}) \in \operatorname{End}(X)$$

is an idempotent such that

$$fs_N = (0, \ldots, 0, f_N)^t$$

and  $X = \text{Ker}s_N \oplus \text{Im}s_N$ . Similarly, there exists an idempotent

$$r_N = \frac{1}{t - t^2} (b - tI_{n_2})$$

in End(Z) such that  $r_N g = (0, ..., 0, g_N)$  and  $Z = \text{Ker} r_N \oplus \text{Im} r_N$ . Without loss of generality, we assume that  $f_N \neq 0$  and  $g_N \neq 0$ . Because  $f_N s_N = f_N$ and  $r_N g_N = g_N$ ,

$$g_N f_N = r_N g_N f_N s_N = r_N (g_1, \dots, g_N) (f_1, \dots, f_N)^t s_N = 0.$$

It is clear that  $i: \operatorname{Ker} s_N \hookrightarrow X$  is a kernel of  $f_N: X \to Y_N$ . There exists a morphism  $f'_N: \operatorname{Im} s_N \to Y_N$  which is an image of  $f_N$  since  $X = \operatorname{Ker} s_N \oplus$  $\operatorname{Im} s_N$ . Similarly we can find a morphism  $g'_N: Y_N \to \operatorname{Im} r_N$  which is a coimage of  $g_N$  such that  $g_N = jg'_N$ , where  $j: \operatorname{Im}(r_N) \hookrightarrow Z$  is an image of  $g_N$ . It is easy to check that  $f'_N$  is an inflation,  $g'_N$  a deflation and  $g'_N f'_N = 0$ . Let  $h: Y_N \to A$  be a morphism in  $\mathcal{A}$  such that  $hf'_N = 0$ . The morphism

$$(0,\ldots,0,h):Y_1\oplus\ldots\oplus Y_N\to A$$

satisfies  $(0, \ldots, 0, h)f = 0$ . There exists  $k \in \text{Hom}_{\mathcal{A}}(Z, A)$  such that

$$(0,\ldots,0,h)=kg$$

since g is a cokernel of f. It follows that  $h = kg_N = kjg'_N$ . Hence  $g'_N$  is a cokernel of  $f'_N$ . Therefore  $\operatorname{Im} s_N \xrightarrow{f'_N} Y_N \xrightarrow{g'_N} \operatorname{Im} r_N$  is a conflation. By induction, every indecomposable direct summand of Y is extended by the direct summands of X and Z. The proof is finished.

**Lemma 3.12.** Let  $\mathcal{O}_1$  and  $\mathcal{O}_2$  be two indecomposable constructible subsets of  $\mathfrak{Obj}_{\mathcal{A}}(\mathbb{K})$ . Let  $A \in \mathrm{Obj}(\mathcal{A})$  and  $\gamma(A) \geq 2$ . If  $[A] \notin \mathcal{O}_1 \oplus \mathcal{O}_2$ , then  $1_{\mathcal{O}_1} * 1_{\mathcal{O}_2}([A]) = 0$ .

*Proof.* If  $1_{\mathcal{O}_1} * 1_{\mathcal{O}_2}([A]) \neq 0$ , then there exist  $X, Y \in \text{Obj}(\mathcal{A})$  such that  $[X] \in \mathcal{O}_1, [Y] \in \mathcal{O}_2$  and  $1_{[X]} * 1_{[Y]}(A) \neq 0$  by Lemma 3.8. It follows that  $\gamma(A) = 2$  and  $A \cong X \oplus Y$  by Lemma 3.9 (also see [12, Theorem 4.9]). This leads to a contradiction.

**Corollary 3.13.** Let  $\mathcal{O}_1$  and  $\mathcal{O}_2$  be indecomposable constructible subsets of  $\mathfrak{Obj}_{\mathcal{A}}(\mathbb{K})$ . If  $\mathcal{O}_1 \cap \mathcal{O}_2 = \emptyset$ , then

$$1_{\mathcal{O}_1} * 1_{\mathcal{O}_2} = 1_{\mathcal{O}_1 \oplus \mathcal{O}_2} + \sum_{i=1}^m a_i 1_{\mathcal{P}_i}$$

where  $\mathcal{P}_i$  are indecomposable constructible subsets and  $a_i = 1_{\mathcal{O}_1} * 1_{\mathcal{O}_2}([X])$ for  $[X] \in \mathcal{P}_i$ .

*Proof.* Let  $[M] \in \mathcal{O}_1$  and  $[N] \in \mathcal{O}_2$ . Then M is not isomorphic to N since  $\mathcal{O}_1 \cap \mathcal{O}_2 = \emptyset$ . Using the fact that  $m_{\pi_m}([M \xrightarrow{(1,0)^t} M \oplus N \xrightarrow{(0,1)} N]) = 1$ , we obtain

$$1_{\mathcal{O}_1} * 1_{\mathcal{O}_2}([M \oplus N])$$

$$= m_{\pi_m}([M \xrightarrow{(1,0)^t} M \oplus N \xrightarrow{(0,1)} N]) \cdot \chi^{\mathrm{na}}([M \xrightarrow{(1,0)^t} M \oplus N \xrightarrow{(0,1)} N]) = 1.$$

By Lemma 3.12, we know that if  $1_{\mathcal{O}_1} * 1_{\mathcal{O}_2}([X]) \neq 0$  and  $[X] \notin \mathcal{O}_1 \oplus \mathcal{O}_2$ , then X is an indecomposable object. Note that

$$(1_{\mathcal{O}_1} * 1_{\mathcal{O}_2}(\mathfrak{Obj}_{\mathcal{A}}(\mathbb{K}) \setminus \mathcal{O}_1 \oplus \mathcal{O}_2)) \setminus \{0\} = \{a_1, a_2, \dots, a_m\}.$$

204

Then  $\mathcal{P}_i = (1_{\mathcal{O}_1} * 1_{\mathcal{O}_2})^{-1}(a_i) \setminus \mathcal{O}_1 \oplus \mathcal{O}_2$  for  $1 \leq i \leq m$ . We complete the proof.

Using Lemma 3.9 and Lemma 3.11, one easily obtains the following corollary:

**Corollary 3.14.** Let  $\mathcal{O}_1$  and  $\mathcal{O}_2$  be two constructible sets. There exist finitely many constructible sets  $\mathcal{Q}_1, \mathcal{Q}_2, \ldots, \mathcal{Q}_n$  such that

$$1_{\mathcal{O}_1} * 1_{\mathcal{O}_2} = \sum_{i=1}^n a_i 1_{\mathcal{Q}_i}$$

where  $\gamma(\mathcal{Q}_i) \leq \gamma(\mathcal{O}_1) + \gamma(\mathcal{O}_2)$  and  $a_i = (1_{\mathcal{O}_1} * 1_{\mathcal{O}_2})([X])$  for any  $[X] \in \mathcal{Q}_i$ .

For indecomposable constructible sets  $\mathcal{O}_1, \ldots, \mathcal{O}_k$  and  $X \in \text{Obj}(\mathcal{A})$ ,  $1_{\mathcal{O}_1} * 1_{\mathcal{O}_2} * \ldots * 1_{\mathcal{O}_k}([X]) \neq 0$  implies that  $\gamma(X) \leq k$ . In particular,  $\gamma(X) = k$  means  $X = X_1 \oplus \ldots \oplus X_k$  with  $[X_i] \in \mathcal{O}_i$  for  $1 \leq i \leq k$ .

Let  $X_1, \ldots, X_m \in \text{Obj}(\mathcal{A})$  and there be r isomorphic classes, we can assume that  $X_1, \ldots, X_{m_1}$  are isomorphic,  $X_{m_1+1}, \ldots, X_{m_2}$  are isomorphic,  $\ldots$ , and  $X_{m_{r-1}+1}, \ldots, X_{m_r}$  are isomorphic, where  $m_1 + \ldots + m_r = m$ . By [12], we have

(6)  
$$\operatorname{Aut}(X_1 \oplus \ldots \oplus X_m) / \operatorname{Aut}(X_1) \times \ldots \times \operatorname{Aut}(X_m) \\ \cong \mathbb{K}^l \times \prod_{i=1}^r (\operatorname{GL}(m_i, \mathbb{K}) / (\mathbb{K}^*)^{m_i}),$$

(7) 
$$\chi(\operatorname{Aut}(X_1 \oplus X_2 \oplus \ldots \oplus X_m) / \operatorname{Aut}(X_1) \times \ldots \times \operatorname{Aut}(X_m)) = \prod_{i=1}^r m_i!.$$

**Proposition 3.15.** Let  $\mathcal{O}$  be an indecomposable constructible set. Then

$$1_{\mathcal{O}}^{*k} = k! 1_{k\mathcal{O}} + \sum_{i=1}^{t} m_i 1_{\mathcal{P}_i}$$

where  $\gamma(\mathcal{P}_i) < k$  for each *i* and  $m_i = 1^{*k}_{\mathcal{O}}([X])$  for  $[X] \in \mathcal{P}_i$ .

*Proof.* We prove the proposition by induction on k. When k = 1, it is easy to see that the formula is true. If k = 2, then

$$1_{\mathcal{O}}^{*2}([X \oplus X]) = 1_{\mathcal{O}}([X]) \cdot 1_{\mathcal{O}}([X]) \cdot \chi(\operatorname{Aut}(X \oplus X) / \operatorname{Aut}(X) \times \operatorname{Aut}(X)) = 2$$

for  $[X] \in \mathcal{O}$  and

$$1^{*2}_{\mathcal{O}}([X \oplus Y]) =$$

$$(1_{\mathcal{O}}([X])1_{\mathcal{O}}([Y]) + 1_{\mathcal{O}}([Y])1_{\mathcal{O}}([X])) \cdot \chi (\operatorname{Aut}(X \oplus Y) / \operatorname{Aut}(X) \times \operatorname{Aut}(Y))$$
  
= 2,

where  $[X], [Y] \in \mathcal{O}$  and  $X \not\cong Y$ . If  $[X] \notin \mathcal{O} \oplus \mathcal{O}$  and  $\gamma(X) \geq 2$  then  $1^{*2}_{\mathcal{O}}([X]) = 0$  by Lemma 3.12. Hence  $1^{*2}_{\mathcal{O}} = 2 \cdot 1_{\mathcal{O} \oplus \mathcal{O}} + \sum_{i} m_i \mathcal{P}_i$  where  $\mathcal{P}_i$  are indecomposable constructible sets by Corollary 3.14.

Now we suppose that the formula is true for  $k \leq n$ . When k = n + 1, we have

$$1_{\mathcal{O}}^{*(n+1)} = 1_{\mathcal{O}}^{*(n)} * 1_{\mathcal{O}} = (n! 1_{n\mathcal{O}} + \sum c_{\mathcal{P}'} 1_{\mathcal{P}'}) * 1_{\mathcal{O}}$$

where  $\mathcal{P}'$  are constructible sets with  $\gamma(\mathcal{P}') < n$ . If the formula is true for k = n + 1, then

$$n! \mathbf{1}_{n\mathcal{O}} * \mathbf{1}_{\mathcal{O}} = (n+1)! \mathbf{1}_{(n+1)\mathcal{O}} + \sum c_{\mathcal{Q}} \mathbf{1}_{\mathcal{Q}},$$

where  $\mathcal{Q}$  are constructible sets with  $\gamma(\mathcal{Q}) < n + 1$ . Hence it suffices to show that the initial term of  $1_{n\mathcal{O}} * 1_{\mathcal{O}}$  is  $(n+1)1_{(n+1)\mathcal{O}}$ , namely  $(1_{n\mathcal{O}} * 1_{\mathcal{O}})([X]) = n+1$  for all  $[X] \in (n+1)\mathcal{O}$ .

Assume that  $X = m_1 X_1 \oplus m_2 X_2 \oplus \ldots \oplus m_r X_r$ , where  $X_1, \ldots, X_r \in Obj(\mathcal{A})$  which are not isomorphic to each other,  $[X_i] \in \mathcal{O}$  for  $1 \leq i \leq r$ ,  $m_1, \ldots, m_r$  are positive integers and  $m_1 + m_2 + \ldots + m_r = n + 1$ .

$$(1_{n\mathcal{O}} * 1_{\mathcal{O}})([X]) = (1_{[(m_1 - 1)X_1 \oplus m_2 X_2 \oplus \dots \oplus m_r X_r]} * 1_{[X_1]})([X]) + (1_{[m_1 X_1 \oplus (m_2 - 1)X_2 \oplus \dots \oplus m_r X_r]} * 1_{[X_2]})([X]) + \dots$$

+ $(1_{[m_1X_1\oplus...\oplus m_{r-1}X_{r-1}\oplus (m_r-1)X_r]} * 1_{[X_r]})([X])$ 

Using Equation (7), it follows that

$$1_{[X_1]}^{*(m_1-1)} * 1_{[X_2]}^{*m_2} * \dots * 1_{[X_r]}^{*m_r}$$

Realizing Enveloping Algebras via Moduli Stacks

$$= (m_1 - 1)! m_2! \dots m_r! \mathbf{1}_{[(m_1 - 1)X_1 \oplus m_2 X_2 \oplus \dots \oplus m_r X_r]} + \dots,$$
  
$$\mathbf{1}_{[X_1]}^{*(m_1 - 1)} * \mathbf{1}_{[X_2]}^{*m_2} * \dots * \mathbf{1}_{[X_r]}^{*m_r} * \mathbf{1}_{[X_1]} = (\prod_{i=1}^r m_i!) \mathbf{1}_{[m_1 X_1 \oplus m_2 X_2 \oplus \dots \oplus m_r X_r]} + \dots$$

Compare the initial monomials of the two equations, it follows that

$$1_{[(m_1-1)X_1 \oplus m_2 X_2 \oplus \dots \oplus m_r X_r]} * 1_{[X_1]} = m_1 1_{[m_1 X_1 \oplus m_2 X_2 \oplus \dots \oplus m_r X_r]} + \dots$$

Thus  $1_{[(m_1-1)X_1 \oplus m_2 X_2 \oplus \ldots \oplus m_r X_r]} * 1_{[X_1]}([X]) = m_1.$ Similarly, we have  $1_{[m_1 X_1 \oplus \ldots \oplus (m_i-1)X_i \oplus \ldots \oplus m_r X_r]} * 1_{[X_i]}([X]) = m_i$  for  $i = 2, \ldots, r$ . Hence  $(1_{n\mathcal{O}} * 1_{\mathcal{O}})([X]) = \sum_{i=1}^r m_i = n+1$  which completes the proof.

By induction, we have the following corollary.

**Corollary 3.16.** Let  $\mathcal{O}_1, \mathcal{O}_2, \ldots, \mathcal{O}_k$  be indecomposable constructible sets which are pairwise disjoint. Then we have the following equations

$$1_{\mathcal{O}_{1}}^{*n_{1}} * 1_{\mathcal{O}_{2}}^{*n_{2}} \dots * 1_{\mathcal{O}_{k}}^{*n_{k}} = n_{1}!n_{2}!\dots n_{k}! 1_{n_{1}\mathcal{O}_{1}\oplus\dots\oplus n_{k}\mathcal{O}_{k}} + \dots,$$
$$1_{m_{1}\mathcal{O}_{1}\oplus\dots\oplus m_{k}\mathcal{O}_{k}} * 1_{n_{1}\mathcal{O}_{1}\oplus\dots\oplus n_{k}\mathcal{O}_{k}}$$
$$= \prod_{i=1}^{k} \frac{(m_{i}+n_{i})!}{m_{i}!n_{i}!} 1_{(m_{1}+n_{1})\mathcal{O}_{1}\oplus\dots\oplus (m_{k}+n_{k})\mathcal{O}_{k}} + \dots,$$

where k is a positive integer and  $m_1, \ldots, m_k, n_1, \ldots, n_k \in \mathbb{N}$ .

Let  $\operatorname{Ind}(\alpha)$  be the subset of  $\mathfrak{Dbj}^{\alpha}_{\mathcal{A}}(\mathbb{K})$  such that X are indecomposable for all  $[X] \in \operatorname{Ind}(\alpha)$ .

**Lemma 3.17.** For each  $\alpha \in K'(\mathcal{A})$ ,  $\operatorname{Ind}(\alpha)$  is a locally constructible set.

*Proof.* Assume  $\alpha, \beta, \gamma \in K'(\mathcal{A}) \setminus \{0\}$ . The map

$$f: \coprod_{\beta,\gamma;\atop \beta+\gamma=\alpha} \mathfrak{Obj}^{\beta}_{\mathcal{A}}(\mathbb{K}) \times \mathfrak{Obj}^{\gamma}_{\mathcal{A}}(\mathbb{K}) \to \mathfrak{Obj}^{\alpha}_{\mathcal{A}}(\mathbb{K})$$

is defined by  $([B], [C]) \mapsto [B \oplus C]$ . It is clear that f is a pseudomorphism. Every  $\mathfrak{Obj}^{\beta}_{\mathcal{A}}(\mathbb{K}) \times \mathfrak{Obj}^{\gamma}_{\mathcal{A}}(\mathbb{K})$  is a locally constructible set. For any constructible set  $\mathcal{C} \subseteq \mathfrak{Obj}_{\mathcal{A}}(\mathbb{K}) \times \mathfrak{Obj}_{\mathcal{A}}(\mathbb{K})$ , there are finitely many  $\mathfrak{Obj}^{\beta}_{\mathcal{A}}(\mathbb{K}) \times \mathfrak{Obj}^{\gamma}_{\mathcal{A}}(\mathbb{K})$  such that  $\mathcal{C} \cap (\mathfrak{Obj}^{\beta}_{\mathcal{A}}(\mathbb{K}) \times \mathfrak{Obj}^{\gamma}_{\mathcal{A}}(\mathbb{K})) \neq \emptyset$ . Hence  $\begin{aligned} & \Pi_{\beta,\gamma;\beta+\gamma=\alpha}\,\mathfrak{Obj}^{\beta}_{\mathcal{A}}(\mathbb{K})\times\mathfrak{Obj}^{\gamma}_{\mathcal{A}}(\mathbb{K}) \text{ is locally constructible. Then Im} f \text{ is a locally constructible set. It follows that Ind}(\alpha) = \mathfrak{Obj}^{\alpha}_{\mathcal{A}}(\mathbb{K})\setminus \mathrm{Im} f \text{ is locally constructible.} \end{aligned}$ 

The following proposition is due to [4, Proposition 11].

**Proposition 3.18.** Let  $\mathcal{O}_1, \mathcal{O}_2$  be two constructible sets of Krull-Schmidt. It follows that

$$1_{\mathcal{O}_1} * 1_{\mathcal{O}_2} = \sum_{i=1}^c a_i 1_{\mathcal{Q}_i}$$

for some  $c \in \mathbb{N}^+$ , where  $a_i = 1_{\mathcal{O}_1} * 1_{\mathcal{O}_2}([X])$  for each  $[X] \in \mathcal{Q}_i$  and  $\mathcal{Q}_i$  are constructible sets of stratified Krull-Schmidt such that  $\gamma(\mathcal{Q}_i) \leq \gamma(\mathcal{O}_1) + \gamma(\mathcal{O}_2)$ .

*Proof.* Because  $\mathcal{O}_1, \mathcal{O}_2$  are constructible sets, the equation holds for some constructible sets  $\mathcal{Q}_i$  with  $\gamma(\mathcal{Q}_i) \leq \gamma(\mathcal{O}_1) + \gamma(\mathcal{O}_2)$  by Corollary 3.14.

For every  $[Y_i] \in \mathcal{Q}_i$ ,  $1_{\mathcal{O}_1} * 1_{\mathcal{O}_2}([Y_i]) \neq 0$ . By Lemma 3.8, there exist  $X_i, Z_i \in \text{Obj}(\mathcal{A})$  such that  $[X_i] \in \mathcal{O}_1$ ,  $[Z_i] \in \mathcal{O}_2$  and  $1_{[X_i]} * 1_{[Z_i]}([Y_i]) \neq 0$  since  $1_{\mathcal{O}_1} * 1_{\mathcal{O}_2}([Y_i]) \neq 0$ . Thanks to Lemma 3.9, we have that  $\gamma(Y_i) \leq \gamma(X_i) + \gamma(Z_i)$ . According to Lemma 3.11, all indecomposable direct summands of  $Y_i$  are extended by the direct summands of  $X_i$  and  $Z_i$  since  $1_{[X_i]} * 1_{[Z_i]}([Y_i]) \neq 0$ .

By the discussion in Section 3.1, we can suppose that  $\mathcal{O}_1 = \bigoplus_{i=1}^t a_i \mathcal{C}_i$  and  $\mathcal{O}_2 = \bigoplus_{j=1}^t b_j \mathcal{C}_j$ , where  $a_i, b_j \in \{0, 1\}$  for all i, j and  $\mathcal{C}_i$  are indecomposable constructible sets such that  $\mathcal{C}_i \cap \mathcal{C}_j = \emptyset$  or  $\mathcal{C}_i = \mathcal{C}_j$  for all  $i \neq j$ . Let  $1 \leq r \leq t$ , the set

$$\{A_1, A_2, \dots, A_r \mid \emptyset \neq A_i \subseteq \{1, \dots, n\} \text{ for } i = 1, \dots, r\}$$

is called an *r*-partition of  $\{1, 2, ..., t\}$  if  $A_1 \cup A_2 \cup ... \cup A_r = \{1, 2, ..., t\}$ and  $A_i \cap A_j = \emptyset$  for all  $i \neq j$ . Obviously, the cardinal number of all partitions of  $\{1, 2, ..., t\}$  is finite. Let  $\{A_1, A_2, ..., A_r\}$ ,  $\{B_1, B_2, ..., B_r\}$  be two *r*-partitions of  $\{1, 2, ..., t\}$  and  $c_k \in \mathbb{Q} \setminus \{0\}$  for k = 1, 2, ..., r. Set  $\mathcal{O}_{A_k} = \bigoplus_{i \in A_k} a_i \mathcal{C}_i$  and  $\mathcal{O}_{B_k} = \bigoplus_{j \in B_k} b_j \mathcal{C}_j$  for  $1 \leq k \leq r$ . Then we have

$$\mathcal{R}_{A_k,B_k,c_k} = \{ [X] \in \mathcal{O}_{A_k} \oplus \mathcal{O}_{B_k} \mid 1_{\mathcal{O}_{A_k}} * 1_{\mathcal{O}_{B_k}}([X]) = c_k \},\$$

 $\mathcal{I}_{A_k,B_k,c_k} = \{ [X] \mid X \text{ indecomposable}, 1_{\mathcal{O}_{A_k}} * 1_{\mathcal{O}_{B_k}}([X]) = c_k \}.$ 

This means that for each  $[X] \in \mathcal{R}_{A_k,B_k,c_k}$ , there exist  $[A] \in \mathcal{O}_{A_k}$  and  $[B] \in \mathcal{O}_{B_k}$  such that  $X \cong A \oplus B$ . For each  $[Y] \in \mathcal{I}_{A_k,B_k,c_k}$ , there exist  $[C] \in \mathcal{O}_{A_k}$  and  $[D] \in \mathcal{O}_{B_k}$  such that  $C \to Y \to D$  is a non-split conflation in  $\mathcal{A}$ . Note that

$$\mathcal{R}_{A_k,B_k,c_k} = ((1_{\mathcal{O}_{A_k}} * 1_{\mathcal{O}_{B_k}})^{-1}(c_k)) \cap (\mathcal{O}_{A_k} \oplus \mathcal{O}_{B_k}).$$

By Corollary 3.16,  $\mathcal{R}_{A_k,B_k,c_k} = \emptyset$  or  $\mathcal{O}_{A_k} \oplus \mathcal{O}_{B_k}$ . Hence  $\mathcal{R}_{A_k,B_k,c_k}$  is a constructible set of Krull-Schmidt. There exist  $\alpha_1, \ldots, \alpha_s \in K'(\mathcal{A})$  such that  $\mathcal{I}_{A_k,B_k,c_k} = (\coprod_{i=1}^s \operatorname{Ind}(\alpha_i)) \cap ((\mathbb{1}_{\mathcal{O}_{A_k}} * \mathbb{1}_{\mathcal{O}_{B_k}})^{-1}(c_k))$ . By Lemma 3.17,  $\mathcal{I}_{A_k,B_k,c_k}$  is an indecomposable constructible set.

Finally,  $1_{\mathcal{O}_1} * 1_{\mathcal{O}_2}$  is a  $\mathbb{Q}$ -linear combination of finitely many  $1_{\bigoplus_{k=1}^r \mathcal{O}_{A_k,B_k,c_k}}$ , where  $\mathcal{O}_{A_k,B_k,c_k}$  run through  $\mathcal{R}_{A_k,B_k,c_k}$  and  $\mathcal{I}_{A_k,B_k,c_k}$  for all r-partitions and  $r = 1, 2, \ldots, t$ . We finish the proof.

Thus we summarize what we have proved as the following theorem which is due to [4, Theorem 12].

**Theorem 3.19.** The  $\mathbb{Q}$ -space  $CF^{KS}(\mathfrak{Dbj}_{\mathcal{A}})$  is an associative  $\mathbb{Q}$ -algebra with convolution multiplication \* and identity  $1_{[0]}$ .

# 3.5. The universal enveloping algebra of $CF^{ind}(\mathfrak{Obj}_{\mathcal{A}})$

From now on, let  $U(CF^{ind}(\mathfrak{Obj}_{\mathcal{A}}))$  denote the universal enveloping algebra of  $CF^{ind}(\mathfrak{Obj}_{\mathcal{A}})$  over  $\mathbb{Q}$ . The multiplication in  $U(CF^{ind}(\mathfrak{Obj}_{\mathcal{A}}))$  will be written as  $(x, y) \mapsto xy$ . There is a  $\mathbb{Q}$ -algebra homomorphism

$$\Phi: U(\mathrm{CF}^{\mathrm{ind}}(\mathfrak{Obj}_{\mathcal{A}})) \to \mathrm{CF}^{\mathrm{KS}}(\mathfrak{Obj}_{\mathcal{A}})$$

defined by  $\Phi(1) = 1_{[0]}$  and  $\Phi(f_1 f_2 \dots f_n) = f_1 * f_2 * \dots * f_n$ , where  $f_1, f_2, \dots, f_n$  belong to  $CF^{ind}(\mathfrak{Obj}_{\mathcal{A}})$ .

The following theorem is related to [4, Theorem 15].

**Theorem 3.20.**  $\Phi: U(CF^{ind}(\mathfrak{Obj}_{\mathcal{A}})) \to CF^{KS}(\mathfrak{Obj}_{\mathcal{A}})$  is an isomorphism.

Proof. For simplicity of presentation, let

$$U = U(CF^{ind}(\mathfrak{Obj}_{\mathcal{A}}))$$
 and  $CF = CF^{KS}(\mathfrak{Obj}_{\mathcal{A}}).$ 

Assume that  $\mathcal{O}_1, \mathcal{O}_2, \ldots, \mathcal{O}_{k-1}$  and  $\mathcal{O}_k$  are indecomposable constructible subsets of  $\mathfrak{Obj}_{\mathcal{A}}(\mathbb{K})$  which are pairwise disjoint. It follows that  $1_{\mathcal{O}_1}, 1_{\mathcal{O}_2}, \ldots, 1_{\mathcal{O}_k}$  are linearly independent in  $\mathrm{CF}^{\mathrm{ind}}(\mathfrak{Obj}_{\mathcal{A}})$ .

Let  $U_{\mathcal{O}_1...\mathcal{O}_k}$  denote the subspace of U which is spanned by all  $1_{\mathcal{O}_1}^{n_1} 1_{\mathcal{O}_2}^{n_2} \dots 1_{\mathcal{O}_k}^{n_k}$  for  $n_i \in \mathbb{N}$  and  $i = 1, \dots, k$ .

Define  $CF_{\mathcal{O}_1...\mathcal{O}_n}$  to be the subalgebra of CF which is generated by the elements  $1_{n_1\mathcal{O}_1\oplus n_2\mathcal{O}_2\oplus\ldots\oplus n_k\mathcal{O}_k}$  of CF, where  $n_i \in \mathbb{N}$  for  $i = 1, 2, \ldots, k$ .

The homomorphism  $\Phi$  induces a homomorphism

$$\Phi_{\mathcal{O}_1\dots\mathcal{O}_k}: U_{\mathcal{O}_1\dots\mathcal{O}_k} \to \mathrm{CF}_{\mathcal{O}_1\dots\mathcal{O}_k}$$

which maps  $1_{\mathcal{O}_1}^{n_1} 1_{\mathcal{O}_2}^{n_2} \dots 1_{\mathcal{O}_k}^{n_k}$  to  $1_{\mathcal{O}_1}^{*n_1} * 1_{\mathcal{O}_2}^{*n_2} * \dots * 1_{\mathcal{O}_k}^{*n_k}$ . First of all, we want to show that  $\Phi_{\mathcal{O}_1\dots\mathcal{O}_k}$  is injective.

For  $m \in \mathbb{N}$ , let  $U_{\mathcal{O}_1...\mathcal{O}_k}^{(m)}$  be the subspace of U which is spanned by

$$\left\{1_{\mathcal{O}_{1}}^{n_{1}}1_{\mathcal{O}_{2}}^{n_{2}}\dots1_{\mathcal{O}_{k}}^{n_{k}} \mid \sum_{i=1}^{k} n_{i} \leq m, n_{i} \geq 0 \text{ for } i=1,\dots,k\right\}$$

Using the PBW Theorem, we obtain that

$$\left\{1_{\mathcal{O}_1}^{n_1} 1_{\mathcal{O}_2}^{n_2} \dots 1_{\mathcal{O}_k}^{n_k} \mid \sum_{i=1}^k n_i = m, n_i \ge 0 \text{ for } i = 1, \dots, k\right\}$$

is a basis of the Q-vector space  $U_{\mathcal{O}_1...\mathcal{O}_k}^{(m)}/U_{\mathcal{O}_1...\mathcal{O}_k}^{(m-1)}$  for  $m \geq 1$ . Similarly, we define  $\operatorname{CF}_{\mathcal{O}_1...\mathcal{O}_k}^{(m)}$  to be a subspace of  $\operatorname{CF}_{\mathcal{O}_1...\mathcal{O}_k}$  such that

each  $f \in \mathrm{CF}_{\mathcal{O}_1...\mathcal{O}_k}^{(m)}$  is of the form  $\sum_{i=1}^l c_i 1_{\mathcal{C}_i}$ , where  $l \in \mathbb{N}^+$ ,  $c_i \in \mathbb{Q}$ ,  $1_{\mathcal{C}_i} \in \mathbb{Q}$  $\operatorname{CF}_{\mathcal{O}_1\ldots\mathcal{O}_k}$  and  $\mathcal{C}_i$  are constructible sets of Krull-Schmidt such that  $\gamma(\mathcal{C}_i) \leq m$ . In  $\operatorname{CF}^{(m)} / \operatorname{CF}^{(m-1)}$ , the set

$$\{1_{n_1\mathcal{O}_1\oplus n_2\mathcal{O}_2\oplus\ldots\oplus n_k\mathcal{O}_k} \mid \sum_{i=1}^k n_i = m, n_i \ge 0 \text{ for } i = 1,\ldots,k\}$$

is linearly independent by the Krull-Schmidt Theorem.

For each  $m \geq 1$ ,  $\Phi_{\mathcal{O}_1...\mathcal{O}_k}$  induce a map

$$\Phi_{\mathcal{O}_1\dots\mathcal{O}_k}^{(m)}: U_{\mathcal{O}_1\dots\mathcal{O}_k}^{(m)} / U_{\mathcal{O}_1\dots\mathcal{O}_k}^{(m-1)} \to \operatorname{CF}_{\mathcal{O}_1\dots\mathcal{O}_k}^{(m)} / \operatorname{CF}_{\mathcal{O}_1\dots\mathcal{O}_k}^{(m-1)}$$

which maps  $1_{\mathcal{O}_1}^{n_1} 1_{\mathcal{O}_2}^{n_2} \dots 1_{\mathcal{O}_k}^{n_k}$  to  $n_1! n_2! \dots n_k! 1_{n_1 \mathcal{O}_1 \oplus n_2 \mathcal{O}_2 \oplus \dots \oplus n_k \mathcal{O}_k}$  (also see Corollary 3.16), where  $\sum_{i=1}^{k} n_i = m$  and  $m_i \ge 0$ . From this we know that  $\Phi_{\mathcal{O}_1...\mathcal{O}_k}^{(m)}$  is injective for all  $m \in \mathbb{N}$ . Obviously, both  $U_{\mathcal{O}_1\mathcal{O}_2...\mathcal{O}_n}$  and  $\operatorname{CF}_{\mathcal{O}_1...\mathcal{O}_n}$ 

are filtered. From the properties of filtered algebra, we know that  $\Phi_{\mathcal{O}_1...\mathcal{O}_k}$  is injective. Hence  $\Phi: U \to CF$  is injective.

Finally, we show that  $\Phi$  is surjective by induction on m. When m = 1, the statement is trivial. Then we assume that every constructible function  $f = \sum_{i=1}^{t} a_i 1_{\mathcal{Q}_i}$  lies in  $\operatorname{Im}(\Phi)$ , where  $a_i \in \mathbb{Q}$  and  $\mathcal{Q}_i$  are constructible sets of stratified Krull-Schmidt with  $\gamma(\mathcal{Q}_i) < m$ .

Let  $n_1 + n_2 + \ldots + n_k = m$  and  $n_i \in \mathbb{N}$  for  $1 \leq i \leq k$ . Then

$$\Phi(1_{\mathcal{O}_{1}}^{n_{1}}1_{\mathcal{O}_{2}}^{n_{2}}\dots1_{\mathcal{O}_{k}}^{n_{k}}) = 1_{\mathcal{O}_{1}}^{*n_{1}}*1_{\mathcal{O}_{2}}^{*n_{2}}*\dots*1_{\mathcal{O}_{k}}^{*n_{k}}$$
$$= n_{1}!n_{2}!\dots n_{n}!1_{n_{1}\mathcal{O}_{1}\oplus n_{2}\mathcal{O}_{2}\oplus\dots\oplus n_{k}\mathcal{O}_{k}} + \sum_{j=1}^{s}b_{j}1_{\mathcal{P}_{j}};$$

where  $b_j \in \mathbb{Q}$  and  $\mathcal{P}_j$  are constructible sets of stratified Krull-Schmidt with  $\gamma(\mathcal{P}_j) < m$ . By the hypothesis,  $\sum_{j=1}^{s} b_j 1_{\mathcal{P}_j} \in \operatorname{Im}(\Phi)$ . Hence  $1_{n_1\mathcal{O}_1 \oplus n_2\mathcal{O}_2 \oplus \ldots \oplus n_k\mathcal{O}_k}$  lies in  $\operatorname{Im}(\Phi)$ . The algebra CF is generated by all  $1_{n_1\mathcal{O}_1 \oplus \ldots \oplus n_k\mathcal{O}_k}$ , which proves that  $\Phi$  is surjective, the proof is finished.  $\Box$ 

## 4. Comultiplication and Green's theorem

#### 4.1. Comultiplication

We now turn to define a comultiplication on the algebra  $CF^{KS}(\mathfrak{Obj}_{\mathcal{A}})$ . For  $f,g \in CF(\mathfrak{Obj}_{\mathcal{A}}), f \otimes g$  is define by  $f \otimes g([X], [Y]) = f([X])g([Y])$ for  $([X], [Y]) \in (\mathfrak{Obj}_{\mathcal{A}} \times \mathfrak{Obj}_{\mathcal{A}})(\mathbb{K}) = \mathfrak{Obj}_{\mathcal{A}}(\mathbb{K}) \times \mathfrak{Obj}_{\mathcal{A}}(\mathbb{K})$  (see [12, Difinition 4.1]). Let  $X \xrightarrow{f} Y \xrightarrow{g} Z$  be a conflation in  $\mathcal{A}$ . Recall that the map  $p_2$ :  $Aut(X \xrightarrow{f} Y \xrightarrow{g} Z) \to Aut(X) \times Aut(Z)$  is defined by  $(a_1, a_2, a_3) \mapsto (a_1, a_3)$ and  $\chi(\text{Ker}p_2) = 1$ .

The following definitions are related to [4, Section 6] and [12, Defintion 4.16].

**Definition 4.1.** From now on, assume that  $\pi_m : \mathfrak{Cract}_{\mathcal{A}} \to \mathfrak{Dbj}_{\mathcal{A}}$  is of finite type and  $\pi_l \times \pi_r$  is representable. Then we have the following diagram

$$\mathrm{CF}^{\mathrm{KS}}(\mathfrak{Obj}_{\mathcal{A}} \times \mathfrak{Obj}_{\mathcal{A}}) \xleftarrow{(\pi_{l} \times \pi_{r})_{!}} \mathrm{CF}^{\mathrm{KS}}(\mathfrak{Eract}_{\mathcal{A}}) \xleftarrow{(\pi_{m})^{*}} \mathrm{CF}^{\mathrm{KS}}(\mathfrak{Obj}_{\mathcal{A}})$$

The comultiplication

$$\Delta: \mathrm{CF}^{\mathrm{KS}}(\mathfrak{Obj}_{\mathcal{A}}) \to \mathrm{CF}^{\mathrm{KS}}(\mathfrak{Obj}_{\mathcal{A}} \times \mathfrak{Obj}_{\mathcal{A}})$$

is defined by  $\Delta = (\pi_l \times \pi_r)_! \circ (\pi_m)^*$ , where  $\operatorname{CF}^{\operatorname{KS}}(\mathfrak{Obj}_{\mathcal{A}} \times \mathfrak{Obj}_{\mathcal{A}})$  is regarded as a topological completion of  $\operatorname{CF}^{\operatorname{KS}}(\mathfrak{Obj}_{\mathcal{A}}) \otimes \operatorname{CF}^{\operatorname{KS}}(\mathfrak{Obj}_{\mathcal{A}})$ .

The counit  $\varepsilon : \operatorname{CF}^{\mathrm{KS}}(\mathfrak{Obj}_{\mathcal{A}}) \to \mathbb{Q}$  maps f to f([0]).

Note that  $\Delta$  is a  $\mathbb{Q}$ -linear map since  $(\pi_l \times \pi_r)_!$  and  $(\pi_m)^*$  are  $\mathbb{Q}$ -linear map.

**Definition 4.2.** Let  $\alpha = [A], \beta = [B] \in \mathfrak{Obj}_{\mathcal{A}}(\mathbb{K})$  and  $\mathcal{O} \subseteq \mathfrak{Obj}_{\mathcal{A}}(\mathbb{K})$  be a constructible set of stratified Krull-Schmidt, define

$$h_{\mathcal{O}}^{\beta\alpha} = \Delta(1_{\mathcal{O}})([A], [B]).$$

Let  $\mathcal{O}_1$  and  $\mathcal{O}_2 \subseteq \mathfrak{Obj}_{\mathcal{A}}(\mathbb{K})$  be constructible sets, define

$$g^{\alpha}_{\mathcal{O}_2\mathcal{O}_1} = 1_{\mathcal{O}_1} * 1_{\mathcal{O}_2}(\alpha).$$

Because  $\Delta(1_{\mathcal{O}})$  is a constructible function,  $\Delta(1_{\mathcal{O}}) = \sum_{i=1}^{n} h_{\mathcal{O}}^{\beta_{i}\alpha_{i}} 1_{\mathcal{O}_{i}}$  for some  $\alpha_{i}, \beta_{i} \in \mathfrak{Obj}_{\mathcal{A}}(\mathbb{K})$  and  $n \in \mathbb{N}$ , where  $\mathcal{O}_{i}$  are constructible subsets of  $\mathfrak{Obj}_{\mathcal{A}}(\mathbb{K}) \times \mathfrak{Obj}_{\mathcal{A}}(\mathbb{K})$ .

**Lemma 4.3.** Let  $X, Y, Z \in \text{Obj}(\mathcal{A})$ . If  $X \oplus Z$  is not isomorphic to Y, then  $\Delta(1_{[Y]})([X], [Z]) = 0$ .

*Proof.* If  $\Delta(1_{[Y]})([X], [Z]) \neq 0$ , there exists a conflation  $X \xrightarrow{f} Y \xrightarrow{g} Z$  in  $\mathcal{A}$  such that  $m_{\pi_l \times \pi_r}([X \xrightarrow{f} Y \xrightarrow{g} Z]) \neq 0$ . Recall that

$$m_{\pi_l \times \pi_r}([X \xrightarrow{f} Y \xrightarrow{g} Z]) = \chi((\operatorname{Aut}(X) \times \operatorname{Aut}(Z))/\operatorname{Im}p_2).$$

If rk  $\operatorname{Im} p_2 < \operatorname{rk} (\operatorname{Aut}(X) \times \operatorname{Aut}(Z))$ , the fibre of the action of a maximal torus of  $\operatorname{Aut}(X) \times \operatorname{Aut}(Z)$  on  $(\operatorname{Aut}(X) \times \operatorname{Aut}(Z))/\operatorname{Im} p_2$  is  $(\mathbb{K}^*)^l$  for some l > 0. Then  $\chi((\operatorname{Aut}(X) \times \operatorname{Aut}(Z))/\operatorname{Im} p_2) = 0$ , which is a contradiction. Hence  $\operatorname{rk}(\operatorname{Aut}(X) \times \operatorname{Aut}(Z)) = \operatorname{rk} \operatorname{Im} p_2$ .

Assume that  $\operatorname{rk}\operatorname{Aut}(X) = n_1$ ,  $\operatorname{rk}\operatorname{Aut}(Z) = n_2$  and  $\operatorname{rk}\operatorname{Aut}(Y) = n$  for some positive integers  $n_1$ ,  $n_2$  and n. Note that  $\mathbf{D}_{n_1} \times \mathbf{D}_{n_2}$  is a maximal torus of  $\operatorname{Aut}(X) \times \operatorname{Aut}(Z)$ . Because  $\operatorname{rk}(\operatorname{Aut}(X) \times \operatorname{Aut}(Z)) = \operatorname{rk}\operatorname{Im}(p_2)$ , each maximal torus of  $\operatorname{Im}_2$  is also a maximal torus of  $\operatorname{Aut}(X) \times \operatorname{Aut}(Z)$ . Therefore every maximal torus of  $\operatorname{Im}_2$  and  $\mathbf{D}_{n_1} \times \mathbf{D}_{n_2}$  are conjugate. For simplicity, we can assume that  $\mathbf{D}_{n_1} \times \mathbf{D}_{n_2}$  is a maximal torus of  $\operatorname{Im}_2$ . For  $(t_1I_{n_1}, t_2I_{n_2}) \in \mathbf{D}_{n_1} \times \mathbf{D}_{n_2}$ , where  $t_1 \neq t_2$ , there exists  $\tau \in \operatorname{Aut}(Y)$  such that

212

 $(t_1I_{n_1}, \tau, t_2I_{n_2}) \in \operatorname{Aut}(X \xrightarrow{f} Y \xrightarrow{g} Z)$ . Then we have the commutative diagram

$$\begin{array}{c|c} X \xrightarrow{f} Y \xrightarrow{g} Z \\ t_1 I_{n_1} \middle| & \tau \middle| & \downarrow t_2 I_{n_2} \\ X \xrightarrow{f} Y \xrightarrow{g} Z \end{array}$$

The morphism  $(t_2I_{n_1}, t_2I_n, t_2I_{n_2})$  is also in Aut $(X \xrightarrow{f} Y \xrightarrow{g} Z)$ . The following diagram is commutative

$$\begin{array}{c|c} X \xrightarrow{f} Y \xrightarrow{g} Z \\ t_2 I_{n_1} \middle| & t_2 I_n \middle| & & \downarrow t_2 I_{n_2} \\ X \xrightarrow{f} Y \xrightarrow{g} Z \end{array}$$

Consequently  $g(\tau - t_2 I_n) = 0$ . Because f is a kernel of g, there exists  $h \in \text{Hom}(Y, X)$  such that  $\tau - t_2 I_n = fh$ . Then  $\tau = fh + t_2 I_n$ . We have

$$f(t_1 I_{n_1}) = \tau f = (fh + t_2 I_n)f,$$

it follows that

$$fhf = f(t_1I_{n_1}) - (t_2I_n)f = f(t_1I_{n_1} - t_2I_{n_1}).$$

Then  $hf = (t_1 - t_2)I_{n_1}$  since f is an inflation. Let  $f' = \frac{1}{t_1 - t_2}h$ , then  $f'f = 1_X$ . Hence X is isomorphic to a direct summand of Y. The proof is completed.

For an indecomposable object  $X \in \text{Obj}(\mathcal{A})$ , direct summands of X are only X and 0. Thus  $\Delta(1_{[X]}) = 1_{[X]} \otimes 1_{[0]} + 1_{[0]} \otimes 1_{[X]}$ . It follows that  $\Delta(f) = f \otimes 1_{[0]} + 1_{[0]} \otimes f$  for  $f \in CF^{\text{ind}}(\mathfrak{Obj}_{\mathcal{A}})$ .

By Lemma 4.3,  $h_{\mathcal{O}}^{\beta\alpha} = 1$  if  $\alpha \oplus \beta \in \mathcal{O}$ , and  $h_{\mathcal{O}}^{\beta\alpha} = 0$  otherwise. Let  $\mathcal{O} = n_1 \mathcal{O}_1 \oplus \ldots \oplus n_m \mathcal{O}_m$  be a constructible set of Krull-Schmidt, where  $\mathcal{O}_i$  are indecomposable constructible sets for all  $1 \leq i \leq m$ . By Lemma 4.3, the formula  $\Delta(1_{\mathcal{O}}) = \sum_{i=1}^n h_{\mathcal{O}}^{\beta_i \alpha_i} 1_{\mathcal{O}_i}$  can be written as

$$\Delta(1_{\mathcal{O}}) = \sum_{1 \le i \le m; 0 \le k_i \le n_i} \mathbf{1}_{k_1 \mathcal{O}_1 \oplus \dots \oplus k_m \mathcal{O}_m} \otimes \mathbf{1}_{(n_1 - k_1) \mathcal{O}_1 \oplus \dots \oplus (n_m - k_m) \mathcal{O}_m}.$$

Hence we have the following proposition.

**Proposition 4.4.** Let  $\mathcal{O}$  be a constructible set of stratified Krull-Schmidt, then  $\Delta(1_{\mathcal{O}}) \in CF^{KS}(\mathfrak{Obj}_{\mathcal{A}}) \otimes CF^{KS}(\mathfrak{Obj}_{\mathcal{A}})$ , i.e., the map

$$\Delta: \mathrm{CF}^{\mathrm{KS}}(\mathfrak{Obj}_{\mathcal{A}}) \to \mathrm{CF}^{\mathrm{KS}}(\mathfrak{Obj}_{\mathcal{A}}) \otimes \mathrm{CF}^{\mathrm{KS}}(\mathfrak{Obj}_{\mathcal{A}}))$$

is well-defined.

#### 4.2. Green's theorem on stacks

Recall that

$$\int_{x\in S} f(x) = \sum_{a\in f(S)\setminus\{0\}} a\chi^{\mathrm{na}}(f^{-1}(a)\cap S),$$

where f is a constructible function and S a locally constructible set.

Let  $\mathcal{O}_1, \mathcal{O}_2, \mathcal{O}_{\rho}, \mathcal{O}_{\sigma}, \mathcal{O}_{\epsilon}, \mathcal{O}_{\tau}, \mathcal{O}_{\lambda}$  be constructible sets and  $\alpha \in \mathcal{O}_1, \beta \in \mathcal{O}_2, \rho \in \mathcal{O}_{\rho}, \sigma \in \mathcal{O}_{\sigma}, \epsilon \in \mathcal{O}_{\epsilon}, \tau \in \mathcal{O}_{\tau}, \lambda \in \mathcal{O}_{\lambda}$  such that  $\mathcal{O}_{\rho} \oplus \mathcal{O}_{\sigma} = \mathcal{O}_1$  and  $\mathcal{O}_{\epsilon} \oplus \mathcal{O}_{\tau} = \mathcal{O}_2$ .

The following theorem is the degenerate form of Green's theorem which is related to [4, Theorem 22].

**Theorem 4.5.** Let  $\mathcal{O}_1, \mathcal{O}_2$  be constructible subsets of  $\mathfrak{Dbj}_{\mathcal{A}}(\mathbb{K})$  and  $\alpha', \beta' \in \mathfrak{Dbj}_{\mathcal{A}}(\mathbb{K})$ , then we have

$$g_{\mathcal{O}_2\mathcal{O}_1}^{\alpha'\oplus\beta'} = \int_{\rho,\sigma,\epsilon,\tau\in\mathfrak{Obj}_{\mathcal{A}}(\mathbb{K});\rho\oplus\sigma\in\mathcal{O}_1,\epsilon\oplus\tau\in\mathcal{O}_2} g_{\epsilon\rho}^{\alpha'}g_{\tau\sigma}^{\beta'}$$

*Proof.* By the proof of Lemma 3.8,  $g_{\mathcal{O}_2\mathcal{O}_1}^{\alpha'\oplus\beta'} = \int_{\alpha\in\mathcal{O}_1,\beta\in\mathcal{O}_2} g_{\beta\alpha}^{\alpha'\oplus\beta'}$ . It suffices to prove the following formula

$$g_{\beta\alpha}^{\alpha'\oplus\beta'} = \int_{\rho,\sigma,\epsilon,\tau\in\mathfrak{Obj}_{\mathcal{A}}(\mathbb{K});\rho\oplus\sigma=\alpha,\epsilon\oplus\tau=\beta} g_{\epsilon\rho}^{\alpha'}g_{\tau\sigma}^{\beta'}.$$

Suppose that  $[A] = \alpha$ ,  $[B] = \beta$ ,  $[A'] = \alpha'$ ,  $[B'] = \beta'$ ,  $[C] = \rho$ ,  $[D] = \sigma$ ,  $[E] = \epsilon$  and  $[F] = \tau$  for  $A, B, C, D, E, F \in \text{Obj}(\mathcal{A})$ . There are finitely many  $(\rho, \sigma)$  and  $(\epsilon, \tau)$  such that  $\rho \oplus \sigma = \alpha$  and  $\epsilon \oplus \tau = \beta$ . Take

$$V = \bigcup_{\substack{[C], [D], [E], [F];\\ [C \oplus D] = [A], [E \oplus F] = [B]}} V([C], [E]; A') \times V([D], [F]; B').$$

The map

$$i: V \to V([A], [B]; A' \oplus B')$$

is defined by

$$(\langle C \xrightarrow{f_1} A' \xrightarrow{g_1} E \rangle, \langle D \xrightarrow{f_2} B' \xrightarrow{g_2} F \rangle) \mapsto \langle C \oplus D \xrightarrow{f} A' \oplus B' \xrightarrow{g} E \oplus F \rangle,$$

where  $f = \begin{pmatrix} f_1 & 0 \\ 0 & f_2 \end{pmatrix}$  and  $g = \begin{pmatrix} g_1 & 0 \\ 0 & g_2 \end{pmatrix}$ . Because both  $C \xrightarrow{f_1} A' \xrightarrow{g_1} E$ and  $D \xrightarrow{f_2} B' \xrightarrow{g_2} F$  are conflations,  $C \oplus D \xrightarrow{f} A' \oplus B' \xrightarrow{g} E \oplus F$  is a conflation by [2, Proposition 2.9]. Hence the morphism is well-defined. Note that *i* is injective.

There is a map  $\Omega_1 : V(A, B, A' \oplus B') \to \mathfrak{Eract}_{\mathcal{A}}(\mathbb{K})$  which maps  $\langle A \xrightarrow{f} A' \oplus B' \xrightarrow{g} B \rangle$  to  $[A \xrightarrow{f} A' \oplus B' \xrightarrow{g} B]$ . Recall that

$$\chi(\Omega_1^{-1}([A \xrightarrow{f} A' \oplus B' \xrightarrow{g} B])) = m_{\pi_m}([A \xrightarrow{f} A' \oplus B' \xrightarrow{g} B]).$$

Take

$$Q(A, B, A' \oplus B') = \sqcup_{a \in \Lambda(A, B; A' \oplus B')} Q_a(A, B, A' \oplus B')$$

which is the image of  $\Omega_1$ .

A map

$$\Omega_2: V \to \mathfrak{Eract}_{\mathcal{A}}(\mathbb{K}) \times \mathfrak{Eract}_{\mathcal{A}}(\mathbb{K})$$

is defined by

$$(\langle C \xrightarrow{f_1} A' \xrightarrow{g_1} E \rangle, \langle D \xrightarrow{f_2} B' \xrightarrow{g_2} F \rangle) \mapsto ([C \xrightarrow{f_1} A' \xrightarrow{g_1} E], [D \xrightarrow{f_2} B' \xrightarrow{g_2} F]).$$

The Euler characteristic of  $\Omega_2^{-1}\left(([C \xrightarrow{f_1} A' \xrightarrow{g_1} E], [D \xrightarrow{f_2} B' \xrightarrow{g_2} F])\right)$  is  $m_{\pi_m}([C \xrightarrow{f_1} A' \xrightarrow{g_1} E])m_{\pi_m}([D \xrightarrow{f_2} B' \xrightarrow{g_2} F])$ . Let

$$Q(c, d, C, D, E, F) = Q_c(C, E, A') \times Q_d(D, F, B')$$

for  $c \in \Lambda(C, E; A'), d \in \Lambda(D, F; B')$  and

$$Q(A', B') = \sqcup_{c,d,[C],[D],[E],[F]} Q(c,d,C,D,E,F),$$

where  $C \oplus E \cong A$  and  $D \oplus F \cong B$ .

There is a morphism

$$\overline{i}: Q(A', B') \to Q(A, B, A' \oplus B')$$

by  $([C \xrightarrow{f_1} A' \xrightarrow{g_1} E], [D \xrightarrow{f_2} B' \xrightarrow{g_2} F]) \mapsto [C \oplus D \xrightarrow{f} A' \oplus B' \xrightarrow{g} E \oplus F].$ Then there is a commutative diagram

$$\begin{array}{c|c} \Omega_2^{-1}(Q(A',B')) & \stackrel{i}{\longrightarrow} \Omega_1^{-1}(Q(A,B,A'\oplus B')) \\ & & & & & & \\ \Omega_2 & & & & & \\ Q(A',B') & \stackrel{\overline{i}}{\longrightarrow} Q(A,B,A'\oplus B') \end{array}$$

According to Lemma 3.11, if  $m_{\pi_m}([A \xrightarrow{f} A' \oplus B' \xrightarrow{g} B]) \neq 0$ , then there exist two conflations  $C \xrightarrow{f_1} A' \xrightarrow{g_1} E$  and  $D \xrightarrow{f_2} B' \xrightarrow{g_2} F$  in  $\mathcal{A}$  such that  $A \cong C \oplus$  $D, B \cong E \oplus F, f = \begin{pmatrix} f_1 & 0 \\ 0 & f_2 \end{pmatrix}$  and  $g = \begin{pmatrix} g_1 & 0 \\ 0 & g_2 \end{pmatrix}$ . If

$$m_{\pi_m}([A \xrightarrow{f} A' \oplus B' \xrightarrow{g} B]) = 0,$$

then  $[A \xrightarrow{f} A' \oplus B' \xrightarrow{g} B] \in \mathfrak{Eract}_{\mathcal{A}}(\mathbb{K}) \setminus Q(A, B, A' \oplus B')$ . Hence  $\overline{i}$  is surjective. For each  $[A \xrightarrow{f} A' \oplus B' \xrightarrow{g} B] \in Q(A, B, A' \oplus B')$ ,

$$= \frac{\chi(\overline{i}^{-1}([A \xrightarrow{f} A' \oplus B' \xrightarrow{g} B]))}{m_{\pi_m}([C \xrightarrow{f_1} A' \xrightarrow{g_1} E])m_{\pi_m}([D \xrightarrow{f_2} B' \xrightarrow{g_2} F])}$$

By Lemma 2.5, it follows that

$$cd\chi^{\mathrm{na}}(Q_c(C,E;A'))\chi^{\mathrm{na}}(Q_d(D,F;B')) = a\chi^{\mathrm{na}}(Q_c(A,B;A'\oplus B'),$$

where  $c = m_{\pi_m}([C \xrightarrow{f_1} A' \xrightarrow{g_1} E]), \quad d = m_{\pi_m}([D \xrightarrow{f_2} B' \xrightarrow{g_2} F]), \quad a = m_{\pi_m}([A \xrightarrow{f} A' \oplus B' \xrightarrow{g} B])$  and  $acd \neq 0$ . This completes the proof.  $\Box$ 

For all  $f_1, f_2, g_1, g_2 \in CF^{KS}(\mathfrak{Dbj}_{\mathcal{A}})$ , define  $(f_1 \otimes g_1) * (f_2 \otimes g_2) = (f_1 * f_2) \otimes (g_1 * g_2)$ . Using Green's theorem, we have the following theorem due to [4, Theorem 24].

**Theorem 4.6.** The map  $\Delta : \operatorname{CF}^{\operatorname{KS}}(\mathfrak{Obj}_{\mathcal{A}}) \to \operatorname{CF}^{\operatorname{KS}}(\mathfrak{Obj}_{\mathcal{A}}) \otimes \operatorname{CF}^{\operatorname{KS}}(\mathfrak{Obj}_{\mathcal{A}})$  is an algebra homomorphism.

*Proof.* The proof is similar to the one in [4, Theorem 24]. Let  $\mathcal{O}_1, \mathcal{O}_2 \in \mathfrak{Obj}_{\mathcal{A}}(\mathbb{K})$  be constructible sets of stratified Krull-Schmidt. Then

$$\Delta(1_{\mathcal{O}_{1}} * 1_{\mathcal{O}_{2}}) = \Delta(\sum_{\lambda} g_{\mathcal{O}_{2}\mathcal{O}_{1}}^{\lambda} 1_{\mathcal{O}_{\lambda}}) = \sum_{\lambda} g_{\mathcal{O}_{2}\mathcal{O}_{1}}^{\lambda} \Delta(1_{\mathcal{O}_{\lambda}})$$
$$= \sum_{\lambda} g_{\mathcal{O}_{2}\mathcal{O}_{1}}^{\lambda} (\sum_{\alpha',\beta'} h_{\mathcal{O}_{\lambda}}^{\beta'\alpha'} 1_{\mathcal{O}_{\alpha'}} \otimes 1_{\mathcal{O}_{\beta'}}) = \sum_{\alpha',\beta'} g_{\mathcal{O}_{2}\mathcal{O}_{1}}^{\alpha'\oplus\beta'} 1_{\mathcal{O}_{\alpha'}} \otimes 1_{\mathcal{O}_{\beta'}},$$

$$\Delta(1_{\mathcal{O}_{1}}) * \Delta(1_{\mathcal{O}_{2}}) = \left(\sum_{\rho,\sigma} h_{\mathcal{O}_{1}}^{\sigma\rho} 1_{\mathcal{O}_{\rho}} \otimes 1_{\mathcal{O}_{\sigma}}\right) * \left(\sum_{\epsilon,\tau} h_{\mathcal{O}_{2}}^{\tau\epsilon} 1_{\mathcal{O}_{\epsilon}} \otimes 1_{\mathcal{O}_{\tau}}\right)$$
$$= \sum_{\rho,\sigma,\epsilon,\tau} h_{\mathcal{O}_{1}}^{\sigma\rho} h_{\mathcal{O}_{2}}^{\tau\epsilon} (1_{\mathcal{O}_{\rho}} * 1_{\mathcal{O}_{\epsilon}}) \otimes (1_{\mathcal{O}_{\sigma}} * 1_{\mathcal{O}_{\tau}})$$
$$= \sum_{\rho,\sigma,\epsilon,\tau} h_{\mathcal{O}_{1}}^{\sigma\rho} h_{\mathcal{O}_{2}}^{\tau\epsilon} (\sum_{\alpha',\beta'} g_{\mathcal{O}_{\epsilon}\mathcal{O}_{\rho}}^{\beta'} g_{\mathcal{O}_{\tau}\mathcal{O}_{\sigma}}^{\beta'} 1_{\mathcal{O}_{\alpha'}} \otimes 1_{\mathcal{O}_{\beta'}})$$
$$= \sum_{\alpha',\beta'} (\sum_{\rho,\sigma,\epsilon,\tau} h_{\mathcal{O}_{1}}^{\sigma\rho} h_{\mathcal{O}_{2}}^{\tau\epsilon} g_{\mathcal{O}_{\epsilon}\mathcal{O}_{\rho}}^{\alpha'} g_{\mathcal{O}_{\tau}\mathcal{O}_{\sigma}}^{\beta'} 1_{\mathcal{O}_{\alpha'}} \otimes 1_{\mathcal{O}_{\beta'}}).$$

According to Theorem 4.5, it follows that

$$\sum_{\rho,\sigma,\epsilon,\tau} h_{\mathcal{O}_1}^{\sigma\rho} h_{\mathcal{O}_2}^{\tau\epsilon} g_{\mathcal{O}_\epsilon \mathcal{O}_\rho}^{\alpha'} g_{\mathcal{O}_\tau \mathcal{O}_\sigma}^{\beta'} = g_{\mathcal{O}_2 \mathcal{O}_1}^{\alpha' \oplus \beta'}.$$

Therefore  $\Delta(1_{\mathcal{O}_1} * 1_{\mathcal{O}_2}) = \Delta(1_{\mathcal{O}_1}) * \Delta(1_{\mathcal{O}_2})$ . We have thus proved the theorem.

# Appendix A. Exact categories

We recall the definition of an exact category (see [13, Appendix A]).

**Definition A.1.** Let  $\mathcal{A}$  be an additive category. A sequence

$$X \xrightarrow{f} Y \xrightarrow{g} Z$$

in  $\mathcal{A}$  is called exact if f is a kernel of g and g is a cokernel of f. The morphisms f and g are called inflation and deflation respectively. The short exact sequence is called a conflation. Let  $\mathcal{S}$  be the collection of conflations closed under isomorphism and satisfying the following axioms

A0  $1_0: 0 \to 0$  is a deflation.

A1 The composition of two deflations is a deflation.

A2 For every  $h \in \text{Hom}(X, X')$  and every inflation  $f \in \text{Hom}(X, Y)$  in  $\mathcal{A}$ , there exists a pushout



where  $f' \in \text{Hom}(X', Y')$  is an inflation.

A3 For every  $l \in \text{Hom}(Z', Z)$  and every deflation  $g \in \text{Hom}(Y, Z)$  in  $\mathcal{A}$ , there exists a pullback

$$\begin{array}{c|c} Y' \xrightarrow{g'} Z' \\ \downarrow & & \downarrow \\ I' & & \downarrow \\ Y \xrightarrow{g} Z \end{array}$$

where  $g' \in \text{Hom}(Y', Z')$  is an deflation. Then  $(\mathcal{A}, \mathcal{S})$  is called an exact category.

The definition of idempotent complete is taken from [2, Definition 6.1].

**Definition A.2.** Let  $\mathcal{A}$  be an additive category. The category  $\mathcal{A}$  is idempotent complete if for every idempotent morphism  $s : A \to A$  in  $\mathcal{A}$ , s has a kernel  $k : K \to A$  and a image  $i : I \to A$  (a kernel of a cokernel of s) such that  $A \cong K \oplus I$ . We write  $A \cong \text{Kers} \oplus \text{Ims}$ , for simplicity.

# References

- I. Assem, D. Simson, A. Skowronski. Elements of the representation theory of associative algebras. Vol. 1. Techniques of representation theory. London Mathematical Society Student Texts, 65. Cambridge University Press, Cambridge, 2006.
- [2] T. Bühler. Exact categories. Expo. Math. 28 (2010), no. 1, 1-69.
- [3] P. Caldero, B. Keller. From triangulated categories to cluster algebras. Invent. Math. 172 (2008), no. 1, 169-211.
- [4] M. Ding, J. Xiao, F. Xu. Realizing enveloping algebras via varieties of modules. Acta Math. Sin. (Engl. Ser.) 26 (2010), no. 1, 29-48.
- [5] J. A. Green. Hall algebras, hereditary algebras and quantum groups. Invent. Math. 120 (1995), no. 2, 361-377.

- [6] T. L. Gómez. Algebraic stacks. Proc. Indian Acad. Sci. Math. Sci. 111 (2001), no. 1, 1-31.
- [7] R. Hartshorne. Algebraic geometry. Graduate Texts in Mathematics, No. 52. Springer-Verlag, New York-Heidelberg, 1977.
- [8] A. Hubery. From triangulated categories to Lie algebras: a theorem of Peng and Xiao. Trends in representation theory of algebras and related topics, 51-66, Contemp. Math., 406, Amer. Math. Soc., Providence, RI, 2006.
- [9] B. T. Jensen, X. Su, A. Zimmermann. Degenerations for derived categories. J. Pure Appl. Algebra 198 (2005), no. 1-3, 281-295.
- [10] D. Joyce. Configurations in abelian categories. I. Basic properties and moduli stacks. Adv. Math. 203 (2006), no. 1, 194-255.
- [11] D. Joyce. Constructible functions on Artin stacks. J. London Math. Soc. (2) 74 (2006), no. 3, 583-606.
- [12] D. Joyce. Configurations in abelian categories. II. Ringel-Hall algebras. Adv. Math. 210 (2007), no. 2, 635-706.
- [13] B. Keller. Chain complexes and stable categories. Manuscripta Math. 67 (1990), no. 4, 379-417.
- [14] A. Kresch. Cycle groups for Artin stacks. Invent. Math. 138 (1999), no. 3, 495-536.
- [15] G. Lusztig. Intersection cohomology methods in representation theory. Proceedings of the International Congress of Mathematicians, Vol. I, II (Kyoto, 1990), 155-174, Math. Soc. Japan, Tokyo, 1991.
- [16] S. Mozgovoy. Motivic Donaldson-Thomas invariants and McKay correspondence. arXiv:1107.6044v1 [math.AG].
- [17] D. Mumford. Algebraic geometry. I. Complex projective varieties. Reprint of the 1976 edition. Classics in Mathematics. Springer-Verlag, Berlin, 1995.
- [18] L. Peng, J. Xiao. Triangulated categories and Kac-Moody algebras. Invent. Math. 140 (2000), no. 3, 563-603.
- [19] D. Quillen. Higher algebraic K-theory. I. Algebraic K-theory, I: Higher K-theories (Proc. Conf., Battelle Memorial Inst., Seattle, Wash., 1972), pp. 85-147. Lecture Notes in Math., Vol. 341, Springer, Berlin 1973.

- [20] C. Riedtmann. Lie algebras generated by indecomposables. J. Algebra 170 (1994), no. 2, 526-546.
- [21] C. M. Ringel. Hall algebras and quantum groups. Invent. Math. 101 (1990), no. 3, 583-591.
- [22] C. M. Ringel. Green's theorem on Hall algebras. Representation theory of algebras and related topics (Mexico City, 1994), 185-245, CMS Conf. Proc., 19, Amer. Math. Soc., Providence, RI, 1996.
- [23] M. Rosenlicht. A remark on quotient spaces. An. Acad. Brasil. Ci. 35 1963 487-489.
- [24] A. Schofield. Notes on constructing Lie algebras from finite-dimensional algebras. Manuscript.
- [25] J. Xiao, F. Xu, G. Zhang. *Derived categories and Lie algebras*. arXiv:0604564v2 [math.QA].

Liqian Bai

Department Of Mathematical Sciences, Tsinghua University,

Beijing 100084, People's Repubic of China.

E-mail: 196baiyz@163.com

Fan Xu

Department Of Mathematical Sciences, Tsinghua University, Beijing 100084, People's Repubic of China. E-mail: fanxu@mail.tsinghua.edu.cn