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Realizing Enveloping Algebras via Moduli

Stacks

Liqian Bai and Fan Xu

Abstract: Let CF(ObjA) denote the vector space of Q-valued
constructible functions on a given stack ObjA for an abelian cat-
egory A. In [12], Joyce proved that CF(ObjA) is an associative
Q-algebra via the convolution multiplication and the subspace
CFind(ObjA) of constructible functions supported on indecompos-
ables is a Lie subalgebra of CF(ObjA). In this paper, we extend
Joyce’s result to an exact category A and show that there is a
subalgebra CFKS(ObjA) of CF(ObjA) isomorphic to the univer-
sal enveloping algebra of CFind(ObjA). Moreover we construct a
comultiplication on CFKS(ObjA) and a degenerate form of Green’s
theorem. This refines Joyce’s result, as well as results of [4].
Keywords: Hall algebra; stack; constructible set; universal
enveloping algebra.

1. Introduction

Let Λ be a finite dimensional C-algebra such that it is a representation-finite
algebra, i.e., there are finitely many finite dimensional indecomposable Λ-
modules up to isomorphism. Let I(Λ) = {X1, . . . , Xn} be a set of represen-
tatives. Let P(Λ) be a set of representatives for all isomorphism classes of
Λ-modules. There is a free Z-module R(Λ) with a basis {uX | X ∈ P(Λ)}.
Using the Euler characteristic, P(Λ) can be endowed with a multiplicative
structure (see [24] and [15]). The multiplication is defined by

uX · uY =
∑

A∈P(Λ)

χ(V (X,Y ;A))uA,

where V (X,Y ;A) = {0 ⊆ A1 ⊆ A | A1
∼= X,A/A1

∼= Y } and χ(V (X,Y ;A))
is the Euler characteristic of V (X,Y ;A). Thus (R(Λ),+, ·) is a Z-algebra
with identity u0. Let L(Λ) be the submodule of R(Λ) which is spanned by

Received November 2, 2015.
The research was supported by NSF of China (No. 11471177).

175



176 Liqian Bai and Fan Xu

{uX | X ∈ I(Λ)}. It follows that L(Λ) is a Lie subalgebra of R(Λ) with the
Lie bracket [uX , uY ] = uX · uY − uY · uX . Riedtmann studied the universal
enveloping algebra of L(Λ). Let R(Λ)′ be the subalgebra of R(Λ) generated
by {uX | X ∈ I(Λ)}. Riedtmann showed that R(Λ)′ is isomorphic to the
universal enveloping algebra of L(Λ). These results have been generalized in
two ways.

Joyce generalized Riedtmann’s work in the context of constructible func-
tions (also stack functions) over moduli stacks. In [11], Joyce defined the
Euler characteristics of constructible sets in K-stacks, pushforwards and
pullbacks for constructible functions, where K is an algebraically closed
field. Let A be an abelian category and CF(ObjA) the vector space of
Q-valued constructible functions on ObjA(K), where ObjA is the moduli
stack of objects in A and ObjA(K) the collection of isomorphism classes
of objects in A. Joyce proved that CF(ObjA) is an associative Q-algebra.
The algebra CF(ObjA) can be viewed as a variant of the Ringel-Hall alge-
bra. Let CFind(ObjA) be the subspace of CF(ObjA) satisfying the con-
dition that f([X]) �= 0 implies X is an indecomposable object in A for
every f ∈ CFind(ObjA). Then CFind(ObjA) is shown to be a Lie subalge-
bra of CF(ObjA) ([12, Theorem 4.9]). Let CFfin(ObjA) be the subspace of
CF(ObjA) such that

supp(f) =
{
[X] ∈ ObjA(K) | f([X]) �= 0

}
is a finite set for every f ∈ CFfin(ObjA). Let

CFind
fin (ObjA) = CFfin(ObjA) ∩ CFind(ObjA).

Assume that a conflation X → Y → Z in A implies that the number of iso-
morphism classes of Y is finite for all X,Z ∈ Obj(A). With the assumption,
Joyce proved that CFfin(ObjA) is an associative algebra and CFind

fin (ObjA)
a Lie subalgebra of CFfin(ObjA). It follows that CFfin(ObjA) is isomorphic
to the universal enveloping algebra of CFind

fin (ObjA). Joyce defined a comul-
tiplication on CFfin(ObjA) and proved that CFfin(ObjA) is a bialgebra.

In [4], the authors extended Riedtmann’s results to algebras of
representation-infinite type, i.e., the cardinality of isomorphism classes of
indecomposable finite dimensional Λ-modules is infinite. Let R(Λ) be the
Z-module spanned by 1O, where 1O is the characteristic function over a con-
structible set of stratified Krull-Schmidt O (see [4, Section 3]). The subspace
L(Λ) of R(Λ) is spanned by 1O, where O are indecomposable constructible
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sets. The multiplication is defined by

1O1
· 1O2

(X) = χ(V (O1,O2;X)),

where X is a Λ-module. Then R(Λ) is an associative algebra with identity
10 and L(Λ) a Lie subalgebra of R(Λ) with Lie bracket. The algebra R(Λ)⊗
Q is the universal enveloping algebra of L(Λ)⊗Q. The authors gave the
degenerate form of Green’s theorem and established the comultiplication of
R(Λ) in [4].

The goal of this paper is to explicitly construct the enveloping algebra
of CFind(ObjA) by the methods in [4]. Let A be an exact category satisfying

some properties. Let X
f−→ Y

g−→ Z be a conflation in A and Aut(X
f−→ Y

g−→
Z) the automorphism group of X

f−→ Y
g−→ Z. The key idea in [4] is that

V (X,Y ;L) has the same Euler characteristic as its fixed point set under the
action of C∗. In this paper, we consider exact categories instead of categories
of modules. Then as a substitute of the action of C∗, we analyze the action

of a maximal torus of Aut(X
f−→ Y

g−→ Z) on X
f−→ Y

g−→ Z. The universal
enveloping algebra of CFind(ObjA) can be endowed with a comultiplication
structure (Definition 4.1). It is compatible with multiplication (Theorem
4.6). The compatibility can be viewed as the degenerate form of Green’s
theorem on Ringel-Hall algebras (see [5] or [22]).

The paper is organized as follows. In Section 2 we recall the basic
concepts about stacks, constructible sets and constructible functions. In
Section 3 we define the constructible sets of stratified Krull-Schmidt. We
study the the subspace CFKS(ObjA) of CF(ObjA) generated by character-
istic functions supported on constructible sets of stratified Krull-Schmidt.
Then CFKS(ObjA) provides a realization of the universal enveloping algebra
of CFind(ObjA). In Section 4 we give the comultiplication Δ in CFKS(ObjA)
and prove that Δ is an algebra homomorphism.

2. Preliminaries

2.1. Constructible sets and constructible functions

From now on, let K be an algebraically closed field with characteristic zero.
A good introduction to algebraic stacks and 2-categories is [6]. We recall
the definitions of constructible sets and constructible functions on K-stacks.
These definitions are taken from [11].
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Definition 2.1. Let F be a K-stack. Let F(K) denote the set of 2-
isomorphism classes [x] where x : SpecK → F are 1-morphisms. Every ele-
ment of F(K) is called a geometric point (or K-point) of F . For K-stacks F
and G, let φ : F → G be a 1-morphism of K-stacks. Then φ induces a map
φ∗ : F(K) → G(K) by [x] 	→ [φ ◦ x].

For any [x] ∈ F(K), let IsoK(x) denote the group of 2-isomorphisms x →
x which is called a stabilizer group. For ease of notations, IsoK(x) is used
to denote the group instead of IsoK([x]). If IsoK(x) is an affine algebraic K-
group for each [x] ∈ F(K), then we say F with affine geometric stabilizers.
A morphism of algebraic K-groups φx : IsoK(x) → IsoK(φ∗(x)) is induced by
φ : F → G for each [x] ∈ F(K).

A subset O ⊆ F(K) is called a constructible set if O = �n
i=1Fi(K) for

some n ∈ N+, where every Fi is a finite type algebraic K-substack of F .
A subset S ⊆ F(K) is called a locally constructible set if S ∩ O are con-
structible for all constructible subsets O ⊆ F(K). If O1 and O2 are con-
structible sets, then O1 ∪ O2, O1 ∩ O2 and O1 \ O2 are constructible sets by
[11, Lemma 2.4].

Let Φ : F(K) → G(K) be a map. The set ΓΦ = {(x,Φ(x)) | x ∈ F(K)} is
called the graph of Φ. Recall that Φ is a pseudomorphism if ΓΦ

⋂
(O × G(K))

are constructible for all constructible subsets O ⊆ F(K). By [11, Proposi-
tion 4.6], if φ : F → G is a 1-morphism then φ∗ is a pseudomorphism, Φ(O)
and Φ−1(y) ∩ O are constructible sets for all constructible subset O ⊆ F(K)
and y ∈ G(K). If Φ is a bijection and Φ−1 is also a pseudomorphism, we call
Φ a pseudoisomorphism.

Then we will recall the definition of the näıve Euler characteristic of a
constructible subset of F(K) in [11].

There is a useful result due to Rosenlicht [23].

Theorem 2.2. Let G be an algebraic K-group acting on a K-variety X.
There exist an open dense G-invariant subset X1 ⊆ X and a K-variety Y
such that there is a morphism of varieties φ : X1 → Y which induces a bijec-
tion form X1(K)/G to Y (K).

Let X be a separated K-scheme of finite type, the Euler characteristic
χ(X) of X is defined by

χ(X) =

2 dimX∑
i=0

(−1)i dimQp
H i

cs(X,Qp),
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where p is a prime number, Zp = lim←− Z/prZ is the ring of p-adic integers, Qp

is its field of fractions and H i
cs(X,Qp) are the compactly-supported p-adic

cohomology groups of X for i ≥ 0.
The following properties of Euler characteristic follow [4] and [11].

Proposition 2.3. Let X, Y be separated, finite type K-schemes and ϕ :
X → Y a morphism of schemes. Then:

(1) If Z is a closed subscheme of X, then χ(X) = χ(X \ Z) + χ(Z).
(2) χ(X × Y ) = χ(X)× χ(Y ).
(3) Let X be a disjoint union of finitely many subschemes X1, . . . , Xn,

we have

χ(X) =

n∑
i=1

χ(Xi).

(4) If ϕ is a locally trivial fibration with fibre F , then χ(X) = χ(F ) ·
χ(Y ).

(5) χ(Kn) = 1, χ(KPn) = n+ 1 for all n ≥ 0.

An algebraic K-stack F is said to be stratified by global quotient stacks if
F(K) = �s

i=1Fi(K) for finitely many locally closed substacks Fi where each
Fi is 1-isomorphic to a quotient stack [Xi/Gi], where Xi is an algebraic K-
variety and Gi a smooth connected linear algebraic K-group acting on Xi.
By [14, Propostion 3.5.9], if F is a finite type algebraic K-stack with affine
geometric stabilizers, then F is stratified by global quotient stacks.

Let F = �s
i=1Fi(K) where each Fi

∼= [Xi/Gi] as above. By Theorem 2.2,
there exists an open dense Gi-invariant subvariety Xi1 of Xi for each i such
that there exists a morphism of varieties φi1 : Xi1 → Yi1, which induces a
bijection between Xi1(K)/Gi and Yi1(K). Then φi1 induces a 1-morphism
θi1 : Gi1 → Yi1, where Gi1 is 1-isomorphic to [Xi1/Gi]. Note that

dim(Xi(j−1) \Xij) < dimXi(j−1)

for j = 1, . . . , ki. Using Theorem 2.2 again, we get a stratification

F(K) = �s
i=1 �ki

j=1 Gij(K)

for s, ki ∈ N+, where Gij
∼= [Xij/Gi] such that φij : Xij → Yij is a morphism

of K-varieties and θij : Gij → Yij a 1-morphism induced by φij . Let

Y = �s
i=1 �ki

j=1 Yij and Θ = �s
i=1 �ki

j=1 (θij)∗ : F(K) → Y (K).
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Then Y is a a separated K-scheme of finite type and Θ a pseudoisomorphism
(see [11, Proposition 4.4 and Proposition 4.7]).

Definition 2.4. Let F be an algebraic K-stack with affine geometric sta-
bilizers and C ⊆ F(K) a constructible set. Then C is pseudoisomorphic to
Y (K), where Y is a separated K-scheme of finite type by [11, Proposition
4.7]. The näıve Euler characteristic of C is defined by χna(C) = χ(Y ).

The following lemma is a generalization of Proposition 2.3 (4).

Lemma 2.5. Let F and G be algebraic K-stacks with affine geometric sta-
bilizers. If C ⊆ F(K), D ⊆ G(K) are constructible sets, and Φ : C → D is a
surjective pseudomorphism such that all fibers have the same näıve Euler
characteristic χ, then χna(C) = χ · χna(D).

Proof. Because C, D are constructible sets, there exist separated finite type
K-schemes X, Y such that C, D are pseudoisomorphic to X(K), Y (K)
respectively. Therefore χna(C) = χ(X), χna(D) = χ(Y ). Then Φ induces a
surjective pseudomorphism betweenX(K) and Y (K), say φ : X(K) → Y (K).
There exist two projective morphisms π1 : Γφ → X(K) and π2 : Γφ → Y (K).
Note that π1 is also a pseudoisomorphism, that is χna(Γφ) = χ(X), and all
fibres of π2 have the same näıve Euler characteristic χ. Then χna(Γφ) =
χ · χ(Y ). Hence χ(X) = χ · χ(Y ). We finish the proof. �

Definition 2.6. A function f : F(K) → Q is called a constructible function
on F(K) if the codomain of f is a finite set and f−1(a) is a constructible
subset of F(K) for each a ∈ f(F(K)) \ {0}. Let CF(F) denote the Q-vector
space of all Q-valued constructible functions on F(K).

Let S ⊆ F(K) be a locally constructible set. The integral of f on S is∫
x∈S

f(x) =
∑

a∈f(S)\{0}
aχna(f−1(a) ∩ S)

for each f ∈ CF(F).

We recall the pushforwards and pullbacks of constructible functions due
to Joyce [11].

Definition 2.7. Let F and G be algebraic K-stacks with affine geometric
stabilizers and φ : F → G a 1-morphism. For each f ∈ CF(F), the näıve
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pushforward φna
! (f) : F(K) → Q of f is

φna
! (f)(t) =

∑
a∈f(φ−1

∗ (t))\{0}
aχna(f−1(a) ∩ φ−1

∗ (t))

for each t ∈ G(K). Then φna
! (f) is a constructible function for each f ∈

CF(F) by [11, Theorem 4.9].
Similarly, if Φ : F(K) → G(K) is a pseudomorphism, the näıve pushfor-

ward Φna
! (f) : F(K) → Q of f ∈ CF(F) is defined by

Φna
! (f)(t) =

∑
a∈f(Φ−1(t))\{0}

aχna(f−1(a) ∩ Φ−1(t))

for t ∈ G(K). Joyce proved that there is a linear map Φna
! : CF(F) → CF(G)

and in particular, Φna
! (f) ∈ CF(G) [11, Theorem 4.9]. We often apply this

result by studying the constructibility of the function Φna
! (1F(K)). The con-

structibility of the function implies that the set {χ(Φ−1(t)) | t ∈ G(K)} is a
finite set.

If φ : F → G is a 1-morphism, then we have a long exact sequence of
groups

1 �� Ker(φ∗) �� IsoK(x)
φ∗ �� IsoK(φ∗(x)) �� Coker(φ∗) �� 1

for each x ∈ F(K). Note that Ker(φ∗) is an affine algebraic K-group and
Coker(φ∗) is a quasi-projective K-variety. Assume that χ(Ker(φ∗)) �= 0, we
can define a function mφ : F(K) → Q by

mφ(x) =
χ(Coker(φ∗))
χ(Ker(φ∗))

for each x ∈ F(K). In particular, if φ is representable, i.e., for U ∈ SchK, X ∈
Obj(F(U)), the map φ(U) : EndF(U)(X) → EndG(U)(φ(U)(X)) is injective,
then Ker(φ∗) = {1} and mφ(x) = χ(Coker(φ∗)). Here SchK is the 2-category
of K-schemes (see Section 2.2 for more details).

For each f ∈ CF(F), the pushforward φ!(f) : G(K) → Q of f is defined
by

φ!(f) = φna
! (f ·mφ),

where (f ·mφ)(x) = f(x)mφ(x) for x ∈ F(K). Note that φ!(f) ∈ CF(G) (see
[11]).

If φ is a 1-morphism of finite type, then φ−1∗ (D) ⊂ F(K) is a constructible
set for each constructible subset D of G(K). Then g ◦ φ∗ ∈ CF(F) for g ∈
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CF(G). Recall that the pullback φ∗ : CF(G) → CF(F) of φ is defined by
φ∗(g) = g ◦ φ∗ and it is linear.

2.2. Stacks of objects and conflations in A

From now on, let (A,S) be a Krull-Schmidt exact K-category (see A.1). For
simplicity, we write A instead of (A,S). Note that A is idempotent complete
(see A.2).

The isomorphism classes of X ∈ Obj(A) and conflations X
i−→ Y

d−→ Z in

A are denoted by [X] and [X
i−→ Y

d−→ Z] (or [(X,Y, Z, i, d)]), respectively.

Two conflations X
i−→ Y

d−→ Z and A
f−→ B

g−→ C are isomorphic if there exist
isomorphisms a : X → A, b : Y → B and c : Z → C in A such that the fol-
lowing diagram is communicative

(1) X

a
��

i �� Y

b
��

d �� Z

c
��

A
f �� B

g �� C

The morphism (a, b, c) is called an isomorphism of conflations in A.

Assumption 2.8. Assume that dimKHomA(X,Y ) and dimK Ext1A(X,Y )
are finite for all X,Y ∈ Obj(A). Let K(A) denote the quotient group of the

Grothendieck group K0(A) such that [̂X] = 0 in K(A) implies that X is a

zero object in A, where [̂X] denotes the image of X in K(A).

The following 2-categories are defined in [10].
Let SchK be a 2-category of K-schemes such that objects are K-schemes,

1-morphisms morphisms of schemes and 2-morphisms only the natural trans-
formations idf for all 1-morphisms f . Let (exactcat) denote the 2-category
of all exact categories with 1-morphisms exact functors of exact categories
and 2-morphisms natural transformations between the exact functors. If
all morphisms of a category are isomorphisms, then the category is called
a groupoid. Let (groupoids) be the 2-category with objects groupoids, 1-
morphisms functors of groupoids and 2-morphisms natural transformations
(see also [10, Definition 2.8]).

In [10, Section 7.1], Joyce defined a stack FA : SchK :→ (exactcat) asso-
ciated to the exact category A (the original definition is for abelian category,
it can be extended to exact categories directly), where FA is a contravari-
ant 2-functor and satisfies the condition FA(Spec(K)) = A. Applying FA,
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he defined two moduli stacks

ObjA,ExactA : SchK → (groupoids)

which are contravatiant 2-functors ([10, Definition 7.2]). The 2-functor

ObjA = F ◦ FA,

where F : (exactcat) → (groupoids) is a forgetful 2-functor as follows. For an
exact category G, F (G) is a groupoid such that Obj(F (G)) = Obj(G) and
morphisms are isomorphisms in G. For U ∈ SchK, a category ExactA(U) is
a groupoid whose objects are conflations in FA(U) and morphisms isomor-
phisms of conflations in FA(U).

Let η : U → V and θ : V → W be morphisms of schemes in SchK.
Obviously, the functors ObjA(η) : ObjA(V ) → ObjA(U) and ExactA(η) :
ExactA(V ) → ExactA(U) are induced by FA(η) : FA(V ) → FA(U). The
natural transformations εθ,η : ObjA(η) ◦ObjA(θ) → ObjA(θ ◦ η) and εθ,η :
ExactA(η) ◦ ExactA(θ) → ExactA(θ ◦ η) are also induced by εθ,η : FA(η) ◦
FA(θ) → FA(θ ◦ η).

Let

K ′(A) = {[̂X] ∈ K(A) | X ∈ Obj(A)} ⊂ K(A).

For each α ∈ K ′(A), Joyce defined ObjαA : SchK → (groupoids) which is
a substack of ObjA in [10, Definition 7.4]. For each U ∈ SchK, ObjαA(U) is a
full subcategory of ObjA(U). For each object X in ObjαA(U), the image of
ObjA(f)(X) in K(A) is α for each morphism f : Spec(K) → U .

Let η : U → V and θ : V → W be morphisms in SchK. The functor

ObjαA(η) : ObjαA(V ) → ObjαA(U)

is defined by restriction from ObjA(η) : ObjA(V ) → ObjA(U). The natu-
ral transformation εθ,η : ObjαA(η) ◦ObjαA(θ) → ObjαA(θ ◦ η) is restricted from
εθ,η : ObjA(η) ◦ObjA(θ) → ObjA(θ ◦ η).

For α, β, γ ∈ K ′(A) and β = α+ γ, Exactα,β,γA : SchK → (groupoids) is

defined as follows. For U ∈ SchK, Exactα,β,γA (U) is a full subcategory of

ExactA(U). The objects of Exactα,β,γA (U) are conflations

X
i−→ Y

d−→ Z ∈ Obj(ExactA(U)),

where X ∈ Obj(ObjαA(U)), Y ∈ Obj(ObjβA(U)) and Z ∈ Obj(ObjγA(U)).

Similarly, the morphism Exactα,β,γA (η) and natural transformation εθ,η are
defined by restriction.
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Let T S be a substack of ExactA×ExactA. For each U ∈ SchK, T S(U)

is a full subcategory of ExactA×ExactA(U) whose objects are (X
f−→ L

g−→
Y, L

l−→ M
m−→ Z),

X
f �� L

g ��

l
��

Y

M

m
��
Z

where X
f−→ L

g−→ Y and L
l−→ M

m−→ Z are objects in ExactA(U). The mor-
phisms of T S(U) are (x, a, y, b, z), where x : X → X ′, a : L → L′, y : Y →
Y ′, b : M → M ′ and z : Z → Z ′ are isomorphisms, such that the following
diagrams are commutative

X

x
��

f �� L

a
��

g �� Y

y
��

X ′ f ′ �� L′ g′ �� Y ′

L

a
��

l �� M

b
��

m �� Z

z
��

L′ l′ �� M ′ m′ �� Z ′

The morphism T S(η) and natural transformation εθ,η are defined in a nat-
ural way.

The following theorem is taking from [10, Theorem 7.5].

Theorem 2.9. The 2-functors ObjA, ExactA are K-stacks, and ObjαA,
Exactα,β,γA are open and closed K-substacks of them respectively. There are
disjoint unions

ObjA = �α∈K′(A)ObjαA,ExactA = �α,β,γ∈K′(A)

β=α+γ

Exactα,β,γA .

Assume that ObjA and ExactA are locally of finite type algebraic K-
stacks with affine algebraic stabilizers. Recall that ObjA(K) and ExactA(K)
are the collection of isomorphism classes of objects in A and the collection
of isomorphism classes of conflations in A, respectively. For each α ∈ K ′(A),
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ObjαA(K) is the collection of isomorphism classes of X ∈ Obj(A) such that

[̂X] = α (see [12, Section 3.2]).

Example 2.10. Let Q = (Q0, Q1, s, t) be a finite connected quiver, where
Q0 = {1, . . . , n} is the set of vertices, Q1 is the set of arrows and s : Q1 → Q0

(resp. t : Q1 → Q0) is a map such that s(ρ) (resp. t(ρ)) is the source (resp.
target) of ρ for ρ ∈ Q1. Let A = CQ be the path algebra of Q and mod-A
denote the category of all finite dimensional right A-modules.

Let d = (dj)j∈Q0
for all dj ∈ N. There is an affine variety

Rep(Q, d) =
⊕
ρ∈Q1

Hom(Cds(ρ) ,Cdt(ρ)).

For each x = (xρ)ρ∈Q1
∈ Rep(Q, d), there is a C-linear representation

M(x) = (Cdj , xρ)j∈Q0,ρ∈Q1
of Q. Let rep(Q) denote the category of finite

dimensional C-linear representations of Q. Recall that rep(Q) ∼= mod-A. We
identify rep(Q) with mod-A. The linear algebraic group

GL(d) =
∏
j∈Q0

GL(dj ,C)

acts on Rep(Q, d) by g.x = (gt(ρ)xρg
−1
s(ρ))ρ∈Q1

for g = (gj)j∈Q0
∈ GL(d).

A complex M• = (M (i), ∂i), where M (i) ∈ Obj(mod-A) and ∂i+1∂i = 0,
is bounded if there exist some positive integers n0 and n1 such that M (i) = 0
for i ≤ −n0 or i ≥ n1. Let dimM (i) = d(i) be the dimension vector of M (i)

for each i ∈ Z. The vector sequence (d(i))i∈Z of M• is denoted by ds(M•).
Let C(Q,d) denote the affine variety consisting of all complexes M•

with ds(M•) = d. The group G(d) =
∏
i∈Z

GL(d(i)) is a linear algebraic group

acting on Cb(Q,d). The action is induced by the actions of GL(d(i)) on
Rep(Q, d(i)) for all i ∈ Z, that is

(g(i))i.(x
(i), ∂i)i = (g(i).x(i), g(i+1)∂i(g(i))−1)i.

Let {P1, . . . , Pn} be a set of representatives for all isomorphism classes of
finite dimensional indecomposable projective A-modules. A complex P • =

. . . → P (i−1) ∂i−1

−−−→ P (i) ∂i

−→ P (i+1) → . . .
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is projective if P (i) ∼=
n⊕

j=1
m

(i)
j Pj for m

(i)
j ∈ N and i ∈ Z. Let

e(P (i)) = m(i) = (m
(i)
1 , . . . ,m(i)

n )

be a vector corresponding to P (i). By the Krull-Schmidt Theorem, e(P (i))
is unique. The dimension vector of P • can be defined by

dim(P •) = (. . . ,m(i−1),m(i),m(i+1), . . .).

A dimension vector dim(P •) is bounded if P • is bounded.
let m = (m(i))i∈Z be a bounded dimension vector and d(m) = (d(i))i∈Z

be the vector sequence of a complex whose dimension vector is m. Let
Pb(Q,m) be the set of all bounded project complexes P • with dim(P •) = m
and ds(P •) = d(m). Note that Pb(Q,m) is a locally closed subset of
Cb(Q,d(m)). An action of G(d(m)) on the variety Pb(Q,m) is induced
by the action of G(d(m)) on Cb(Q,d(m)).

Let Pb(Q) denote the exact category with objects bounded project com-
plexes and morphisms φ : P • → Q• morphisms between bounded projective
complexes. The Grothendieck group

K0(Pb(Q)) ∼=
⊕
i∈Z

Zn
(i),

where Zn
(i) = Zn. Note that K(Pb(Q)) = K0(Pb(Q)) and

K ′(Pb(Q)) ∼=
⊕
i∈Z

Nn
(i),

where Nn
(i) = Nn.

Joyce defined Fmod−KQ in [10, Example 10.5]. Similarly, for each U ∈
SchK, we define FPb(Q)(U) to be the category as follows.

The objects of FPb(Q)(U) are complexes of sheaves P • = (P (i), ∂i)i∈Z,
where P (i) = (

⊕
j∈Q0

X
(i)
j , xi) and ∂i+1∂i = 0. The data X

(i)
j are locally

free sheaves of finite rank on U and xi = (xiρ)ρ∈Q1
, where xiρ : X

(i)
s(ρ) → X

(i)
t(ρ)

are morphisms of sheaves, such that P (i) = (
⊕

j∈Q0
X

(i)
j , xi) are projective

CQ-modules for all i ∈ Z. The morphisms of FPb(Q)(U) are morphisms of

complexes φ• : (P (i), ∂i) → (Q(i), di), where Q(i) = (
⊕

j∈Q0
Y

(i)
j , yi) and φ•
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is a sequence of morphisms

(φi : P (i) → Q(i))i∈Z

with φi = (φi
j : X

(i)
j → Y

(i)
j )j∈Q0

such that φi+1∂i = diφi and φi
t(ρ)x

i
ρ =

yiρφ
i
s(ρ) for all i ∈ Z and ρ ∈ Q1. It is easy to see that FPb(Q)(U) is an exact

category.
Let η : U → V be a morphism in SchK. A functor

FPb(Q)(η) : FPb(Q)(V ) → FPb(Q)(U)

is defined as follows. If (P (i), ∂i)i∈Z ∈ Obj(FPb(Q)(V )),

FPb(Q)(η)(P
(i), ∂i)i∈Z = (η∗(P (i)), η∗(∂i))i∈Z

for η∗(P (i)) =
(⊕

j∈Q0
η∗(X(i)

j ), (η∗(xiρ))ρ∈Q1

)
, where η∗(X(i)

j ) are the

inverse images of X
(i)
j by the morphism η, η∗(∂i) : η∗(P (i)) → η∗(P (i+1))

with η∗(∂i+1)η∗(∂i) = 0 for i ∈ Z and

η∗(xiρ) : η
∗(X(i)

s(ρ)) → η∗(X(i)
t(ρ))

for ρ ∈ Q1 are pullbacks of morphisms between inverse images. For a mor-
phism φ• : (P (i), ∂i) → (Q(i), di) in FPb(Q)(V ), the morphism

FPb(Q)(η)(φ
•) :

(
η∗(P •), η∗(∂i)

)
→

(
η∗(Q•), η∗(di)

)
is a sequence of morphisms(

η∗(φi) :
( ⊕
j∈Q0

η∗(X(i)
j ), (η∗(xiρ))ρ

)
→

( ⊕
j∈Q0

η∗(Y (i)
j ), (η∗(yiρ))ρ

))
i∈Z

,

with η∗(φi+1)η∗(∂i) = η∗(di)η∗(φi), where η∗(di) are pullbacks of morphisms
between inverse images which satisfy η∗(di+1)η∗(di) = 0, and

η∗(Q•) =
( ⊕

j∈Q0

η∗(Y (i)
j ), (η∗(yiρ))ρ∈Q1

)
i∈Z

such that the pullbacks

η∗(φi
j) : η

∗(X(i)
j ) → η∗(Y (i)

j )

satisfy η∗(φi
t(ρ))η

∗(xiρ) = η∗(yiρ)η∗(φi
s(ρ)). Because locally free sheaves are

flat, FPb(Q)(η)(φ
•) is an exact functor.
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Let η : U → V and θ : V → W be morphisms in SchK. As in [10,
Example 9.1], for each P • ∈ Obj(FPb(Q)(W )), there is a canonical isomor-
phism εθ,η(P

•) : FPb(Q)(η) ◦ FPb(Q)(θ)(P
•) → FPb(Q)(θ ◦ η)(P •). We get a

2-isomorphism of functors

εθ,η : FPb(Q)(η) ◦ FPb(Q)(θ) → FPb(Q)(θ ◦ η)

by the canonical isomorphisms. Thus we have the 2-functor FPb(Q).
The set ObjPb(Q)(C) consists of all isomorphism classes of complexes in

Pb(Q).

As in [10, Definition 7.7] and [12, Section 3.2], we have the following
1-morphisms

πl : ExactA → ObjA

which induces a map (πl)∗ : ExactA(K) → ObjA(K) defined by [X
i−→ Y

d−→
Z] 	→ [X];

πm : ExactA → ObjA

such that the induced map (πm)∗ : ExactA(K) → ObjA(K) maps [X
i−→ Y

d−→
Z] to [Y ];

πr : ExactA → ObjA

inducing the map (πr)∗ : ExactA(K) → ObjA(K) by [X
i−→ Y

d−→ Z] 	→ [Z].
The map πl∗ × πr∗ : ExactA(K) → ObjA(K)×ObjA(K) is defined by

(πl∗ × πr∗)([X
i−→ Y

d−→ Z]) = ([X], [Z]). Note that (πl × πr)∗ = πl∗ × πr∗.

3. Hall Algebras

3.1. Constructible sets of stratified Krull-Schmidt

These definitions are related to [4].

Definition 3.1. Let O1 and O2 be two constructible subsets of ObjA(K),
the direct sum of O1 and O2 is

O1 ⊕O2 =
{
[X1 ⊕X2] | [X1] ∈ O1, [X2] ∈ O2 and X1, X2 ∈ Obj(A)

}
.
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Let nO denote the direct sum of n copies of O for n ∈ N+ and 0O = {[0]}.
Similarly, let nX denote the direct sum of n copies of X ∈ Obj(A). A con-
structible subset O of ObjA(K) is called indecomposable if X ∈ Obj(A) is
indecomposable and X � 0 for every [X] ∈ O.

A constructible set O is called to be of Krull-Schmidt if

O = n1O1 ⊕ n2O2 ⊕ . . .⊕ nkOk,

where Oi are indecomposable constructible sets and ni ∈ N for i = 1, . . . , k.
If a constructible set Q = �n

i=1Qi, where Qi are constructible sets of Krull-
Schmidt for 1 ≤ i ≤ n, namely Q is a disjoint union of finitely many con-
structible sets of Krull-Schmidt, then Q is said to be a constructible set of
stratified Krull-Schmidt.

Let O1 and O2 be two indecomposable constructible sets. If O1 ∩ O2 �= ∅
and O1 �= O2, we have

O1 ⊕O2 = 2(O1 ∩ O2)�
((

O1 \ (O1 ∩ O2)
)
⊕
(
O2 \ (O1 ∩ O2)

))

�
(
(O1 ∩ O2)⊕

(
O2 \ (O1 ∩ O2)

))
�
(
(O1 \ (O1 ∩ O2))⊕ (O1 ∩ O2)

)
.

If Q = m1O1 ⊕ . . .⊕mlOl is a constructible set of Krull-Schmidt, we can
write Q = �n

i=1Qi as a constructible set of stratified Krull-Schmidt, where

Qi = ni1Oi1 ⊕ ni2Oi2 ⊕ . . .⊕ niki
Oiki

for indecomposable constructible sets Oij which are disjoint each other.
Hence we can assume that O1, . . . ,Ol are disjoint each other.

Let CFKS(ObjA) be the subspace of CF(ObjA) which is spanned by
characteristic functions 1O for constructible sets of stratified Krull-Schmidt
O, where each 1O satisfies that 1O([X]) = 1 for [X] ∈ O, and 1O([X]) = 0
otherwise.

Example 3.2. Let P1 be the projective line over K and coh(P1) denote the
category of coherent sheaves on P1.

Let O(n) denote an indecomposable locally free coherent sheaf whose

rank and degree are equal to 1 and n respectively. Let S
[r]
x be an indecom-

posable torsion sheaf such that rk(S
[r]
x ) = 0, deg(S

[r]
x ) = r and the support

of S
[r]
x is {x} for x ∈ P1. The Grothendieck group K0(coh(P

1)) ∼= Z2. The
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data K(coh(P1)) and Fcoh(P1) are defined in [10, Example 9.1]. The set of
isomorphism classes of indecomposable objects in coh(P1) is

{[S[d]
x ] | x ∈ P1, d ∈ N} ∪ {[O(n)] | n ∈ Z}.

Recall that a non-trivial subset U ⊂ P1 is closed (resp. open) if U is a

finite (resp. cofinite) set. Let Od be a finite or cofinite subset of {[S[d]
x ] | x ∈

P} for each d ∈ Z+ and O0 a finite subset of {[O(n)] | n ∈ Z}. Then Od and
O0 are indecomposable constructible subsets of Objcoh(P1)(K). Note that
every indecomposable constructible subset of Objcoh(P1)(K) is of the form

O0 �Oi1 � . . .�Oin

for 1 ≤ i1 < . . . < in. Then the finite direct sum ⊕(O0 �Oi1 � . . .�Oin) is a
constructible set of Krull-Schmidt. Every constructible set of Krull-Schmidt
inObjcoh(P1)(K) is of the form. A constructible set of stratified Krull-Schmidt
is a disjoint union of finitely many constructible sets of Krull-Schmidt.

Example 3.3. In Example 2.10, Obj
m
Pb(Q)(C) is the set of all isomorphism

classes of project complexes in Pb(Q,m). Note that

ObjPb(Q)(C) = �m∈K′(Pb(Q))Obj
m
Pb(Q)(C).

There is a canonical map

pm : Pb(Q,m) → Obj
m
Pb(Q)(C)

which maps P • to [P •]. A subset U ⊆ Obj
m
Pb(Q)(C) is closed (resp. open) if

p−1
m (U) is closed (resp. open) in Pb(Q,m). A subset Vm ⊆ Obj

m
Pb(Q)(C) is

locally closed if it is an intersection of a closed subset and an open subset
of Obj

m
Pb(Q)(C). A subset O ⊆ ObjPb(Q)(C) is constructible if it is a finite

disjoint union of locally closed sets Vm. Every indecomposable constructible
set O is of the form

∐
m∈S Vm, where S is a finite set and each complex in

p−1
m (Vm) is an indecomposable complex.
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3.2. Automorphism groups of conflations

For each X ∈ Obj(A), suppose that X = n1X1 ⊕ n2X2 ⊕ . . .⊕ ntXt, where
Xi are indecomposable for i = 1, . . . , t and Xi � Xj for i �= j. Then we have

Aut(X) ∼= (1 + radEnd(X))�

t∑
i=1

GL(ni,K).

The rank of maximal torus of Aut(X) is denoted by rkAut(X). Let n =
n1 + n2 + . . .+ nt. Thus the number of indecomposable direct summands of
X is n, which is denoted by γ(X). Note that γ(X) = rkAut(X). Let

γ(O) = max{γ(X) | [X] ∈ O}

for each constructible set O in ObjA(K).

Let X
f−→ Y

g−→ Z be a conflation in A and Aut(X
f−→ Y

g−→ Z) denote the
group of (a1, a2, a3) for a1 ∈ Aut(X), a2 ∈ Aut(Y ) and a3 ∈ Aut(Z) such
that the following diagram is commutative

X

a1

��

f �� Y

a2

��

g �� Z

a3

��
X

f �� Y
g �� Z

The homomorphism

p1 : Aut(X
f−→ Y

g−→ Z) → Aut(Y )

is defined by (a1, a2, a3) 	→ a2. If p1((a1, a2, a3)) = p1((a
′
1, a2, a

′
3)) then

f(a1 − a′1) = 0 and (a3 − a′3)g = 0. We have a1 = a′1 and a3 = a′3 since f
is an inflation and g a deflation. Hence p1 is an injective homomorphism of
affine algebraic K-groups and

(2) rk(Aut(X
f−→ Y

g−→ Z)) = rk Imp1 ≤ rkAut(Y )

Let

p2 : Aut(X
f−→ Y

g−→ Z) → Aut(X)×Aut(Z)

be a homomorphism given by (a1, a2, a3) 	→ (a1, a3). If p2((a1, a2, a3)) =
p2((a1, a

′
2, a3)), then (a2 − a′2)f = 0 and g(a2 − a′2)=0, we have

a2 − a′2 ∈ (Hom(Z, Y )g) ∩ (f Hom(Y,X)).
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Observe that Kerp2 is a linear space. It follows that χ(Kerp2) = 1 and

(3) rk Im(p2) ≤ rkAut(X) + rkAut(Z).

Let P(A) be a complete set of representatives of all isomorphism

classes of objects in A. Let W (X,Z;Y ) = {(f, g) | X f−→ Y
g−→ Z ∈ S}. Note

that W (X,Z;Y ) is a subset of Hom(X,Y )×Hom(Y, Z). Let W (O1,O2;Y )

denote the set of X
f−→ Y

g−→ Z ∈ S, where X,Y, Z ∈ P(A) and [X] ∈
O1,[Y ] ∈ O2.

Lemma 3.4. For X,Y, Z ∈ P(A), the set W (X,Z;Y ) is a constructible
subset of Hom(X,Y )×Hom(Y, Z).

Proof. Recall that Hom(A, ?) and Hom(?, A) are left exact functors for each
A ∈ Obj(A). The inflation f induces a monomorphism

f∗ : Hom(?, X) → Hom(?, Y )

in the functor category Hom(A,Ab), where Ab denotes the category of
abelian groups. Recall that Hom(?, X) is a projective object. Because Ab
is an abelian category, Hom(A,Ab) is also an abelian category. Let P (X)
denote Hom(?, X) and inj(P (X), P (Y )) denote the set of monomorphisms
f∗ : P (X) ↪→ P (Y ). Using inf(X,Y ) to denote the set of inflations between
X and Y . Note that inf(X,Y ) is isomorphic to inj(P (X), P (Y )). Because
inj(P (X), P (Y )) = Aut(P (X))f∗, inj(P (X), P (Y )) is a locally closed sub-
set. Therefore inf(X,Y ) is locally closed.

Let P ′(Z) = Hom(Z, ?). Similarly, the deflation g induces a monomor-
phism

g∗ : Hom(Z, ?) → Hom(Y, ?),

then the set inj(P ′(Z), P ′(Y )) = Aut(Z)g∗ is locally closed. Hence the set
of deflations g : Y → Z is a locally closed set.

Fixed X,Y, Z ∈ P(A), using the facts that f is an inflation and g a

deflation, we obtain that gf = 0 if and only if X
f−→ Y

g−→ Z is a conflation.
Clearly, (f, g) ∈ Hom(X,Y )×Hom(Y, Z) satisfying above conditions if and
only if (f, g) ∈ W (X,Z;Y ). Hence W (X,Z;Y ) is constructible. �
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Two conflations X
i−→ Y

d−→ Z and X ′ i′−→ Y
d′−→ Z ′ in A are said to be

equivalent if there exists a commutative diagram

X

f
��

i �� Y

1Y

��

d �� Z

g
��

X ′ i′ �� Y
d′ �� Z ′

where both f and g are isomorphisms. If the two conflations are equivalent,

we write X
i−→ Y

d−→ Z ∼ X ′ i′−→ Y
d′−→ Z ′. The equivalence class of X i−→ Y

d−→
Z is denoted by 〈X i−→ Y

d−→ Z〉. Define

V (O1,O2;Y ) =
{
〈X i−→ Y

d−→ Z〉 | X i−→ Y
d−→ Z ∈ S, [X] ∈ O1, [Z] ∈ O2

}
,

where S is the collection of all conflations of A. Note that V ([X], [Z];Y ) is
isomorphic to the orbit space W (X,Z;Y )/(AutX ×AutZ). Note that

[W (X,Z;Y )/(AutX ×AutZ)] = W (X,Z;Y )/(AutX ×AutZ)

since the action of AutX ×AutZ on W (X,Z;Y ) is free. Hence
V ([X], [Z];Y ) is a quotient stack.

3.3. Associative algebras and Lie algebras

For f, g ∈ CF(ObjA), define f · g by (f · g)([X], [Y ]) = f([X])g([Y ]) for
([X], [Y ]) ∈ ObjA(K)×ObjA(K). Thus f · g ∈ CF(ObjA×ObjA).

By [10, Theorem 8.4], πm is representable and πl × πr is of finite type.
The pushforward of πm is well-defined and p1 is injective. The following
definition of multiplication is taken from [12, Definition 4.1].

Definition 3.5. Using the following diagram

ObjA×ObjA
πl×πr←−−−− ExactA

πm−−→ ObjA,

we can define the convolution multiplication

CF(ObjA×ObjA)
(πl×πr)∗−−−−−→ CF(ExactA)

(πm)!−−−→ CF(ObjA).

The multiplication ∗ : CF(ObjA)× CF(ObjA) → CF(ObjA) is a bilinear
map defined by
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f ∗ g = (πm)![(πl × πr)
∗(f · g)] = (πm)![π

∗
l (f) · π∗

r (g)].

Let O1 and O2 be constructible subsets of ObjA(K), the meaning of
1O1

∗ 1O2
can be understood as follows. The function mπm

: ExactA(K) → Q,
which is defined by

mπm
([X

f−→ Y
g−→ Z]) = χ

[
Aut(Y )/p1

(
Aut(X

f−→ Y
g−→ Z)

)]
,

is a locally constructible function on ExactA(K) by [11, Proposition 4.16],
namelymπm

|O is a constructible function on O for every constructible subset
O ⊆ ExactA(K).

For each [Y ] ∈ ObjA(K),

(4) 1O1
∗ 1O2

([Y ]) =
∑

c∈Λ(O1,O2;Y )

cχna(Qc(O1,O2, Y )),

where

Λ(O1,O2;Y ) = {c = mπm
([A

f−→ Y
g−→ B]) | [A] ∈ O1, [B] ∈ O2} \ {0}

is a finite set, and

Qc(O1,O2, Y ) =

{[A f−→ Y
g−→ B] | [A] ∈ O1, [B] ∈ O2,mπm

([A
f−→ Y

g−→ B]) = c}

are constructible sets for c ∈ Λ(O1,O2;Y ). In fact, the 1-morphism πl × πr
is of finite type by [10, Theorem 8.4]. Hence (πl∗ × πr∗)−1(O1 ×O2) is a
constructible subset of ExactA. Then

Λ(O1,O2;Y ) = mπm

[(
(πl∗ × πr∗)−1(O1 ×O2)

)
∩
(
(πm∗)−1([Y ])

)]
\ {0}

is a finite set by [11, Proposition 4.6]. Therefore

Qc(O1,O2, Y ) = m−1
πm

(c) ∩ [(πl∗ × πr∗)−1(O1 ×O2)] ∩ ((πm∗)−1([Y ]))

are constructible for all c ∈ Λ(O1,O2;Y ).
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For each ([X], [Z]) ∈ O1 ×O2, let

Λ(X,Z;Y ) =
{
c = mπm

([X
f−→ Y

g−→ Z]) | [X f−→ Y
g−→ Z] ∈ ExactA(K)

}
and

Qc(X,Z, Y ) =
{
[X

f−→ Y
g−→ Z]

∣∣∣ mπm
([X

f−→ Y
g−→ Z]) = c

}
,

where Λ(X,Z;Y ) is a finite set and Qc(X,Z, Y ) are constructible sets for
all c ∈ Λ(X,Z;Y ). Then

(5) (1[X] ∗ 1[Z])([Y ]) =
∑

c∈Λ(X,Z;Y )

cχna(Qc(X,Z, Y )).

The set consisting of χ
(
Aut(Y )/p1

(
Aut(X

f−→ Y
g−→ Z)

))
, where

[X
f−→ Y

g−→ Z] ∈
⋃

c∈Λ(O1,O2;Y )

Qc(O1,O2, Y ),

is finite since χ(Aut(Y )/Imp1) = mπm
([X

f−→ Y
g−→ Z]).

Let

π1 : V (O1,O2;Y ) →
⋃

c∈Λ(O1,O2;Y )

Qc(O1,O2, Y )

be a morphism given by 〈X f−→ Y
g−→ Z〉 	→ ([X

f−→ Y
g−→ Z]). For each fibre

of π1, χ
na(π−1

1 ([X
f−→ Y

g−→ Z])) = χ
(
Aut(Y )/p1

(
Aut(X

f−→ Y
g−→ Z)

))
.

The following result is due to [4, Proposition 6] and [12, Theorem 4.3].

Theorem 3.6. The Q-space CF(ObjA) is an associative Q-algebra, with
convolution multiplication ∗ and identity 1[0], where 1[0] is the characteristic
function of [0] ∈ ObjA(K).

Proof. Let O1,O2 and O3 be constructible subsets of ObjA(K). It suffices to
show that (1O1

∗ 1O2
) ∗ 1O3

([M ]) = 1O1
∗ (1O2

∗ 1O3
)([M ]) for M ∈ Obj(A).

Take X,Y, Z ∈ P(A) satisfying [X] ∈ O1, [Y ] ∈ O2 and [Z] ∈ O3. Consider
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(f, g,m, l) ∈ W (X,Y ;L)×W (L,Z;M). There is a pushout

L
g ��

l
��

Y

l′
��

M
g′ �� L′

where L′ ∈ P(A). We obtain an inflation l′ : Y → L′ and a deflation g′ :
M → L′. Let f ′ = lf . Then f ′ is an inflation and g′f ′ = 0. Hence g′ is a

cokernel of f ′ and X
f ′−→ M

g′−→ L′ is a conflation.
There is a morphism m′ : L′ → Z such that m = m′g′ and m′l′ = 0. It is

easy to see that l′ is a kernel of m′ and (l′,m′) is a conflation. The following
diagram is commutative

X
f �� L

g ��

l
��

Y

l′
��

X
f ′ �� M

g′ ��

m
��

L′

m′

��
Z Z

Note that the rows and columns are conflations. For L,L′ ∈ P(A), we claim
that the morphism

∪LV ([X], [Y ];L)× V ([L], [Z];M)
F−→ ∪L′V ([X], [L′];M)× V ([Y ], [Z];L′),

which maps (〈X f−→ L
g−→ Y 〉, 〈L l−→ M

m−→ Z〉) to (〈X f ′−→ M
g′−→ L′〉, 〈Y l′−→

L′ m′−→ Z〉), is a bijection. The proof of this claim is quite similar to the
proof of [8, Proposition 2] and so is omitted. The morphism F induces a
morphism T : T S(K) → T S(K) by

([X
f−→ L

g−→ Y ], [L
l−→ M

m−→ Z]) 	→ ([X
f ′−→ M

g′−→ L′], [Y l′−→ L′ m′−→ Z]).

The following diagram is commutative

∪LV ([X], [Y ];L)× V ([L], [Z];M)
F ��

��

∪L′V ([X], [L′];M)× V ([Y ], [Z];L′)

��
T S(K)

T �� T S(K)
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Let c ∈ Λ(X,Y ;L), d ∈ Λ(L,Z;M), c′ ∈ Λ(X,L′;M), d′ ∈ Λ(Y, Z;L′).
Assume that mπm

([X
f−→ L

g−→ Y ]) = c, mπm
([L

l−→ M
m−→ Z]) = d,

mπm
([X

f ′−→ M
g′−→ L′]) = c′ and mπm

([Y
l′−→ L′ m′−→ Z]) = d′. Then

χna
(
T−1([X

f ′−→ M
g′−→ L′], [Y l′−→ L′ m′−→ Z])

)
=

c′d′

cd
.

Let Qc(X,Y, L) be as in Section 3.3. By Lemma 2.5, we have

cdχna(Qc(X,Y, L))χna(Qd(L,Z,M)) = c′d′χna(Q′
c(X,L′,M))χna(Q′

d(Y, Z, L
′)).

It follows that (1[X] ∗ 1[Y ]) ∗ 1[Z]([M ]) = 1[X] ∗ (1[Y ] ∗ 1[Z])([M ]). Recall that

(1O1
∗ 1O2

) ∗ 1O3
([M ]) =

∫
[X]∈O1,[Y ]∈O2,[Z]∈O3

(1[X] ∗ 1[Y ]) ∗ 1[Z]([M ])

and

1O1
∗ (1O2

∗ 1O3
)([M ]) =

∫
[X]∈O1,[Y ]∈O2,[Z]∈O3

1[X] ∗ (1[Y ] ∗ 1[Z])([M ]).

This completes the proof of Theorem 3.6. �
Joyce defined CFind(ObjA) to be the subspace of CF(ObjA) such that

if f([X]) �= 0 then X is an indecomposable object in A for every f ∈
CFind(ObjA). There is a result of [4, Theorem 13] and [12, Theorem 4.9].

Theorem 3.7. The Q-space CFind(ObjA) is a Lie algebra under the Lie
bracket [f, g] = f ∗ g − g ∗ f for f, g ∈ CFind(ObjA).

Proof. LetO1 andO2 be two indecomposable constructible sets. It suffices to
show that 1O1

∗ 1O2
− 1O2

∗ 1O1
∈ CFind(ObjA). Without loss of generality,

we can assume that O1 ∩ O2 = ∅. By corollary 3.13, 1O1
∗ 1O2

− 1O2
∗ 1O1

∈
CFind(ObjA). �

3.4. The algebra CFKS(ObjA)

Lemma 3.8. Let O1 and O2 be two constructible subsets of ObjA(K). For

any Y ∈ Obj(A), if 1O1
∗ 1O2

([Y ]) �= 0, then there exists a conflation A
f−→

Y
g−→ B in A satisfying that [A] ∈ O1, [B] ∈ O2 and mπm

([A
f−→ Y

g−→ B]) �=
0. Moreover, there exist X,Z ∈ Obj(A) such that [X] ∈ O1, [Z] ∈ O2 and
1[X] ∗ 1[Z]([Y ]) �= 0.
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Proof. Let Qc(O1,O2, Y ) and Λ(O1,O2;Y ) be as in Section 3.3. Let

Q = �c∈Λ(O1,O2;Y )Qc(O1,O2, Y ) and Qc = Qc(O1,O2, Y )

for simplicity. Since Λ(O1,O2, Y ) is a finite set, Q is constructible.

For each c ∈ Λ(O1,O2;Y ), there exists some conflations A
f−→ Y

g−→ B in

A such that [A] ∈ O1, [B] ∈ O2 and mπm
([A

f−→ Y
g−→ B]) = c. By equation

(4), we know that there exist some c �= 0. This proves the first statement.
Let

π : Q → (πl∗ × πr∗)
(
Q
)

be a map which maps [X
i−→ Y

d−→ Z] to ([X], [Z]) and

mm = mπm
|Q.

It follows that mm is a constructible function over Q.
Because πl × πr is a 1-morphism, π is a pseudomorphism by [11, Propo-

sition 4.6]. Thus π(Q) is constructible and the näıve pushforward (π)na! (mm)
of mm to π(Q) exists. Note that (π)na! (mm) is a constructible function on
π(Q). In fact

(π)na! (mm)([X], [Z]) = 1[X] ∗ 1[Z]([Y ])

for all ([X], [Z]) ∈ π(Q). Therefore

{
1[X] ∗ 1[Z]([Y ]) | ([X], [Z]) ∈ π(Q)

}
is a finite set. Note that

π−1([X], [Z]) = {[X f−→ Y
g−→ Z] ∈ Qc} = Qc(X,Z, Y )

is constructible for ([X], [Z]) ∈ π(Qc) since πl × πr is of finite type. The set

{1[X] ∗ 1[Z]([Y ]) | ([X], [Z]) ∈ π(Q)}

is a finite set since 1[X] ∗ 1[Z] is a constructible function. Using the equation
5 and the fact that Λ(O1,O2, Y ) is a finite set, we know that

{χna(Qc(X,Z, Y )) | ([X], [Z]) ∈ π(Q)}

is a finite set.
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Suppose that

Sc(X,Z) =
{
([A], [B]) ∈ π(Qc) | χna(π−1([A], [B])) = χna(Qc(X,Z, Y ))

}
.

Then we have

χna(Qc) =
∑

([X],[Z])

χna(Sc(X,Z))χna(Qc(X,Z, Y ))

for finitely many ([X], [Z]) ∈ π(Qc).

For c ∈ Λ(O1,O2;Y ), let {([X(c)
1 ], [Z

(c)
1 ]), . . . , ([X

(c)
kc

], [Z
(c)
kc

])} be a com-
plete set of representatives for ([X], [Z]) ∈ π(Qc) such that

χna(Qc(X
(c)
i , Z

(c)
i , Y ) �= χna(Qc(X

(c)
j , Z

(c)
j , Y )

for i �= j and i, j ∈ {1, 2, . . . , kc}. It is easy to see that

π(Qc) = �kc

i=1Sc(X
(c)
i , Z

(c)
i ) and π(Q) = ∪c

(
�kc

i=1 Sc(X
(c)
i , Z

(c)
i )

)
.

Assume that mm(Q) = {c1, c2, . . . , cm}. Set

S(i1, i2, . . . , in) = Sci1
(X

(ci1 )
li1

, Z
(ci1 )
li1

) ∩ . . . ∩ Scin (X
(cin )
lin

, Z
(cin )
lin

)

be a non-empty set for 1 ≤ i1 < i2 < . . . < in ≤ m and 1 ≤ lij ≤ kcij , which

satisfies the ‘minimal’ condition, namely S(i1, i2, . . . , in) ∩ Sc(X
(c)
i , Z

(c)
i ) = ∅

for any c /∈ {ci1 , . . . , cin} or i /∈ {li1 , . . . , lin}. The choice of S(i1, i2, . . . , in)
are finite. By definition, S(i1, i2, . . . , in) are pairwise disjoint. For simplicity,
we use S1, S2, . . . , Sr to denote sets S(i1, i2, . . . , in). It follows that

S1 � . . . � Sr = π(Q).

By Lemma 2.5, we obtain that

∑
c∈Λ(O1,O2,Y )

cχna(Qc) =
∑

c∈Λ(O1,O2;Y )

c

r∑
i=1

χna(Si)χ
na(Qc(Xi, Zi, Y ))δ(i, c),

where ([Xi], [Zi]) ∈ Si, δ(i, c) = 1 if Si ∩ π(Qc(Xi, Zi, Y )) �= ∅ and δ(i, c) = 0
otherwise. Then

1O1
∗ 1O2

([Y ]) =

r∑
i=1

χna(Si)
∑

c∈Λ(O1,O2;Y )

cχna(Qc(Xi, Zi, Y ))δ(i, c)
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=

r∑
i=1

χna(Si)
(
1[Xi] ∗ 1[Zi]([Y ])

)
.

There exists ([Xi], [Zi]) for some i ∈ {1, . . . , r} such that 1[Xk] ∗ 1[Zk]([Y ]) �=
0 since 1O1

∗ 1O2
([Y ]) �= 0. �

Let Dn(K) denote the group of invertible diagonal matrices inGL(n,K).
The following lemma is related to Riedtmann[20, Lemma 2.2].

Lemma 3.9. Let X,Y, Z ∈ Obj(A) and X
f−→ Y

g−→ Z be a conflation in

A. If mπm
([X

f−→ Y
g−→ Z]) �= 0, then γ(Y ) ≤ γ(X) + γ(Z). In particular,

γ(Y ) = γ(X) + γ(Z) if and only if Y ∼= X ⊕ Z.

Proof. Recall that mπm
([X

f−→ Y
g−→ Z]) = χ(AutY/Im(p1)).

If rkAut(Y ) > rk Im(p1), then the fibre of the action of a maxi-
mal torus of Aut(Y ) on AutY/Im(p1) is (K∗)k for some k ≥ 1, it forces
χ(AutY/Im(p1)) = 0. Hence we have rkAut(Y ) = rk Im(p1) ≤ rkAut(X) +
rkAut(Z).

We prove the second assertion by induction on rkAut(Y ). First of all,
suppose that X � 0 and Z � 0. If rkAut(Y ) = 2 and Y = Y1 ⊕ Y2, then
rkAut(X) = rkAut(Z) = 1 since X and Z are not isomorphic to 0. For

t ∈ K∗ \ {1},
(

t 0
0 t2

)
∈ Aut(Y ) and it is an element of a maximal torus

D2(K) of Aut(Y ). A maximal torus of Im(p1) is also a maximal torus of
Aut(Y ) since rkAut(Y ) = rk Im(p1). Because two maximal tori of a con-
nected linear algebraic group are conjugate, there exists α ∈ Aut(Y ) such

that α

(
t 0
0 t2

)
α−1 lies in a maximal torus of Im(p1). Hence there exist

a ∈ Aut(X) and b ∈ Aut(Z) satisfying (a, α

(
t 0
0 t2

)
α−1, b) ∈ Aut(X

f−→

Y
g−→ Z), namely

(a,

(
t 0
0 t2

)
, b) ∈ Aut(X

α−1f−−−→ Y
gα−→ Z).

Let f ′ = α−1f and g′ = gα. Observe (t,

(
t 0
0 t

)
, t) ∈ Aut(X

f ′−→ Y
g′−→

Z). Hence f ′(a− t) =

(
0 0
0 t2 − t

)
f ′. Let s = 1

t2−t(a− t) ∈ End(X) (t �=
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0, 1). Then f ′s =
(

0 0
0 1

)
f ′. Because f ′ is an inflation and

f ′s2 =
(

0 0
0 1

)
f ′s =

(
0 0
0 1

)
f ′ = f ′s,

s2 = s. The category A is idempotent completion, consequently s has a
kernel and an image such that X = Kers⊕ Ims. But X is indecomposable,
without loss of generality we can assume X = Kers. Then s = 0. Let f ′ =(
f1
f2

)
and g′ = (g1, g2). It follows that(

0
0

)
= f ′s =

(
0 0
0 1

)(
f1
f2

)
=

(
0
f2

)
.

We have f2 = 0 and f ′ =
(

f1
0

)
. The morphism Y1 ⊕ Y2

(0,1)−−−→ Y2 is a defla-

tion by [2, Lemma 2.7]. Because (0, 1)
(
f1
0

)
= 0, there exits h ∈ Hom(Z, Y1)

such that (0, 1) = h(g1, g2). We have hg1 = 0 and hg2 = 1Y2
. Observe g2h ∈

End(Z) and (g2h)(g2h) = g2h, so g2h has a kernel k : K → Z and an image
i : I → Z. Moreover Z ∼= K ⊕ I. It follows that Z ∼= K or Z ∼= I since Z
is indecomposable. If Z ∼= K then g2h = 0. But hg2h = h, K = 0. Thus h
is an isomorphism and g1 = 0. We have Z ∼= Y2. Similarly X ∼= Y1. Hence
X ⊕ Z ∼= Y1 ⊕ Y2.

Assume that the assertion is true for rkAut(Y ) = n < N . When n =
N , we can assume rkAut(X) = n1 where 0 < n1 < N , then rkAut(Z) =
N − n1 = n2. Let Y = Y ′ ⊕ YN and Y ′ = Y1 ⊕ . . .⊕ YN−1, where Yi are

indecomposable. Observe that

(
tIN−1 0

0 t2

)
lies in a maximal torus of

Aut(Y ) for t ∈ K∗ \ {1}. There exists (a, c, b) ∈ Aut(X
f−→ Y

g−→ Z) such that

c and

(
tIN−1 0

0 t2

)
are conjugate in Aut(Y ). For simplicity we assume

c =

(
tIN−1 0

0 t2

)
. So we have the following commutative diagram

X

a

��

f �� Y ′ ⊕ YN

c

��

g �� Z

b

��
X

f �� Y ′ ⊕ YN
g �� Z

where f = (f1, f2, . . . , fN )t and g = (g1, g2, . . . , gN ).
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There is another commutative diagram

X

tIn1

��

(f∗,fN )t�� Y ′ ⊕ YN

tIN
��

(g∗,gN )�� Z

tIn2

��
X

(f∗,fN )t�� Y ′ ⊕ YN
(g∗,gN )�� Z

where f∗ = (f1, f2, . . . , fN−1)
T and g∗ = (g1, g2, . . . , gN−1). Then f =

(f∗, fN )t, g = (g∗, gN ) and f(a− tIn1
) =

(
0IN−1 0

0 t2 − t

)
f . Let

sN =
1

t2 − t
(a− tIn1

).

Then fsN = diag{0, . . . , 0, 1}f . It follows f∗sN = 0, fNsN = fN and

gNfN = g

(
0IN−1 0

0 1

)
f = gfsN = 0. Moreover sN is an idempotent, we

know that X = KersN ⊕ ImsN . If fN �= 0 then ImsN is not isomorphic to 0.
Similarly we can define s1, s2, . . ., sN−1 ∈ End(X) with the property that
fsi = diag{0, . . . , 0, 1, 0, . . . , 0}f = (0, . . . , 0, fi, 0, . . . , 0)

t. Hence si is idem-
potent and if fi �= 0 then Imsi is not isomorphic to 0 for each i. Note that
s1 + s2 + . . .+ sN = 1X ∈ Aut(X), it follows

X = Ims1 ⊕ . . .⊕ ImsN .

Hence fi = 0 for some i since rkAut(X) < N . Without loss of generality, we
assume fN = 0. Let (0, . . . , 0, 1) : Y1 ⊕ . . .⊕ YN → YN , then

(0, . . . , 0, 1)(f1, . . . , fN )t = 0

Hence there exists h ∈ Hom(Z, YN ) such that h(g1, . . . , gN ) = (0, . . . , 0, 1),
namely hg1 = 0, . . . , hgN−1 = 0 and hgN = 1. Therefore YN is isomorphic to
a direct summand of Z. Assume that Z = Z ′ ⊕ YN where γ(Z ′) = γ(Z)− 1.
The morphism (1, 0) : Z ′ ⊕ YN → Z ′ is a deflation, so g′ = g∗(1, 0) : Y ′ → Z ′

is a deflation by Definition A.1. Obviously, (f1, . . . , fN−1)
t : X → Y1 ⊕ . . .⊕

YN−1 is a kernel of g′. Thus

X
(f1,...,fN−1)t−−−−−−−−→ Y1 ⊕ . . .⊕ YN−1

g′−→ Z ′

is a conflation. By hypothesis, Y1 ⊕ . . .⊕ YN−1
∼= X ⊕ Z ′. Hence Y = Y1 ⊕

. . .⊕ YN ∼= X ⊕ Z. The proof is completed. �
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Remark 3.10. If 1[X] ∗ 1[Z]([Y ]) �= 0, then γ(Y ) ≤ γ(X) + γ(Z), where the
equality holds if and only if Y ∼= X ⊕ Z.

Lemma 3.11. Let X,Y, Z ∈ Obj(A) and X
f−→ Y

g−→ Z be a conflation in

A. If mπm
([X

f−→ Y
g−→ Z]) �= 0, γ(Y ) < γ(X) + γ(Z) and Y = Y1 ⊕ Y2, then

there exist two conflations X1
f1−→ Y1

g1−→ Z1 and X2
f2−→ Y2

g2−→ Z2 in A such
that X ∼= X1 ⊕X2, Z ∼= Z1 ⊕ Z2 and f = diag{f1, f2}, g = diag{g1, g2}.

Proof. Suppose that rkAut(X) = n1, rkAut(X) = N and rkAut(Z) =
n2. Then N < n1 + n2. For simplicity, we use the notation as
above. Let Y = Y1 ⊕ . . .⊕ YN , f = (f1, f2, . . . , fN )t, g = (g1, g2, . . . , gN ) and

the isomorphisms (a, c, b), (tIn1
, tIN , tIn2

) ∈ Aut(X
f−→ Y

g−→ Z), where c =(
tIN−1 0

0 t2

)
. Recall that

sN =
1

t2 − t
(a− tIn1

) ∈ End(X)

is an idempotent such that

fsN = (0, . . . , 0, fN )t

and X = KersN ⊕ ImsN . Similarly, there exists an idempotent

rN =
1

t− t2
(b− tIn2

)

in End(Z) such that rNg = (0, . . . , 0, gN ) and Z = KerrN ⊕ ImrN . Without
loss of generality, we assume that fN �= 0 and gN �= 0. Because fNsN = fN
and rNgN = gN ,

gNfN = rNgNfNsN = rN (g1, . . . , gN )(f1, . . . , fN )tsN = 0.

It is clear that i : KersN ↪→ X is a kernel of fN : X → YN . There exists
a morphism f ′

N : ImsN → YN which is an image of fN since X = KersN ⊕
ImsN . Similarly we can find a morphism g′N : YN → ImrN which is a coimage
of gN such that gN = jg′N , where j : Im(rN ) ↪→ Z is an image of gN . It is
easy to check that f ′

N is an inflation, g′N a deflation and g′Nf ′
N = 0. Let
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h : YN → A be a morphism in A such that hf ′
N = 0. The morphism

(0, . . . , 0, h) : Y1 ⊕ . . .⊕ YN → A

satisfies (0, . . . , 0, h)f = 0. There exists k ∈ HomA(Z,A) such that

(0, . . . , 0, h) = kg

since g is a cokernel of f . It follows that h = kgN = kjg′N . Hence g′N is a

cokernel of f ′
N . Therefore ImsN

f ′N−−→ YN
g′N−−→ ImrN is a conflation. By induc-

tion, every indecomposable direct summand of Y is extended by the direct
summands of X and Z. The proof is finished. �

Lemma 3.12. Let O1 and O2 be two indecomposable constructible subsets
of ObjA(K). Let A ∈ Obj(A) and γ(A) ≥ 2. If [A] /∈ O1 ⊕O2, then 1O1

∗
1O2

([A]) = 0.

Proof. If 1O1
∗ 1O2

([A]) �= 0, then there existX, Y ∈ Obj(A) such that [X] ∈
O1, [Y ] ∈ O2 and 1[X] ∗ 1[Y ](A) �= 0 by Lemma 3.8. It follows that γ(A) = 2
and A ∼= X ⊕ Y by Lemma 3.9 (also see [12, Theorem 4.9]). This leads to a
contradiction. �

Corollary 3.13. Let O1 and O2 be indecomposable constructible subsets of
ObjA(K). If O1 ∩ O2 = ∅, then

1O1
∗ 1O2

= 1O1⊕O2
+

m∑
i=1

ai1Pi

where Pi are indecomposable constructible subsets and ai = 1O1
∗ 1O2

([X])
for [X] ∈ Pi.

Proof. Let [M ] ∈ O1 and [N ] ∈ O2. Then M is not isomorphic to N since

O1 ∩ O2 = ∅. Using the fact that mπm
([M

(1,0)t−−−→ M ⊕N
(0,1)−−−→ N ]) = 1, we

obtain

1O1
∗ 1O2

([M ⊕N ])

= mπm
([M

(1,0)t−−−→ M ⊕N
(0,1)−−−→ N ]) · χna([M

(1,0)t−−−→ M ⊕N
(0,1)−−−→ N ]) = 1.

By Lemma 3.12, we know that if 1O1
∗ 1O2

([X]) �= 0 and [X] /∈ O1 ⊕O2,
then X is an indecomposable object. Note that(

1O1
∗ 1O2

(ObjA(K) \ O1 ⊕O2)
)
\ {0} = {a1, a2, . . . , am}.
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Then Pi = (1O1
∗ 1O2

)−1(ai) \ O1 ⊕O2 for 1 ≤ i ≤ m. We complete the
proof. �

Using Lemma 3.9 and Lemma 3.11, one easily obtains the following
corollary:

Corollary 3.14. Let O1 and O2 be two constructible sets. There exist
finitely many constructible sets Q1,Q2, . . . ,Qn such that

1O1
∗ 1O2

=

n∑
i=1

ai1Qi

where γ(Qi) ≤ γ(O1) + γ(O2) and ai = (1O1
∗ 1O2

)([X]) for any [X] ∈ Qi.

For indecomposable constructible sets O1, . . . ,Ok and X ∈ Obj(A),
1O1

∗ 1O2
∗ . . . ∗ 1Ok

([X]) �= 0 implies that γ(X) ≤ k. In particular, γ(X) =
k means X = X1 ⊕ . . .⊕Xk with [Xi] ∈ Oi for 1 ≤ i ≤ k.

Let X1, . . . , Xm ∈ Obj(A) and there be r isomorphic classes, we can
assume that X1, . . . , Xm1

are isomorphic, Xm1+1, . . . , Xm2
are isomorphic,

. . ., and Xmr−1+1, . . . , Xmr
are isomorphic, where m1 + . . .+mr = m. By

[12], we have

Aut(X1 ⊕ . . .⊕Xm)/Aut(X1)× . . .×Aut(Xm)

∼= Kl ×
r∏

i=1

(GL(mi,K)/(K∗)mi),
(6)

(7) χ(Aut(X1 ⊕X2 ⊕ . . .⊕Xm)/Aut(X1)× . . .×Aut(Xm)) =

r∏
i=1

mi!.

Proposition 3.15. Let O be an indecomposable constructible set. Then

1∗kO = k!1kO +

t∑
i=1

mi1Pi

where γ(Pi) < k for each i and mi = 1∗kO ([X]) for [X] ∈ Pi.
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Proof. We prove the proposition by induction on k. When k = 1, it is easy
to see that the formula is true. If k = 2, then

1∗2O ([X ⊕X]) = 1O([X]) · 1O([X]) · χ(Aut(X ⊕X)/Aut(X)×Aut(X)) = 2

for [X] ∈ O and

1∗2O ([X ⊕ Y ]) =(
1O([X])1O([Y ]) + 1O([Y ])1O([X])

)
· χ

(
Aut(X ⊕ Y )/Aut(X)×Aut(Y )

)
= 2,

where [X], [Y ] ∈ O and X � Y . If [X] /∈ O ⊕O and γ(X) ≥ 2 then
1∗2O ([X]) = 0 by Lemma 3.12. Hence 1∗2O = 2 · 1O⊕O +

∑
i
miPi where Pi are

indecomposable constructible sets by Corollary 3.14.
Now we suppose that the formula is true for k ≤ n. When k = n+ 1, we

have

1
∗(n+1)
O = 1

∗(n)
O ∗ 1O = (n!1nO +

∑
cP ′1P ′) ∗ 1O,

where P ′ are constructible sets with γ(P ′) < n. If the formula is true for
k = n+ 1, then

n!1nO ∗ 1O = (n+ 1)!1(n+1)O +
∑

cQ1Q,

where Q are constructible sets with γ(Q) < n+ 1. Hence it suffices to show
that the initial term of 1nO ∗ 1O is (n+ 1)1(n+1)O, namely (1nO ∗ 1O)([X]) =
n+ 1 for all [X] ∈ (n+ 1)O.

Assume that X = m1X1 ⊕m2X2 ⊕ . . .⊕mrXr, where X1, . . . , Xr ∈
Obj(A) which are not isomorphic to each other, [Xi] ∈ O for 1 ≤ i ≤ r,
m1, . . . ,mr are positive integers and m1 +m2 + . . .+mr = n+ 1.

(1nO ∗ 1O)([X]) = (1[(m1−1)X1⊕m2X2⊕...⊕mrXr] ∗ 1[X1])([X])

+(1[m1X1⊕(m2−1)X2⊕...⊕mrXr] ∗ 1[X2])([X])

+ . . .

+(1[m1X1⊕...⊕mr−1Xr−1⊕(mr−1)Xr] ∗ 1[Xr])([X])

Using Equation (7), it follows that

1
∗(m1−1)
[X1]

∗ 1∗m2

[X2]
∗ . . . ∗ 1∗mr

[Xr]
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= (m1 − 1)!m2! . . .mr!1[(m1−1)X1⊕m2X2⊕...⊕mrXr] + . . . ,

1
∗(m1−1)
[X1]

∗ 1∗m2

[X2]
∗ . . . ∗ 1∗mr

[Xr]
∗ 1[X1] = (

r∏
i=1

mi!)1[m1X1⊕m2X2⊕...⊕mrXr] + . . .

Compare the initial monomials of the two equations, it follows that

1[(m1−1)X1⊕m2X2⊕...⊕mrXr] ∗ 1[X1] = m11[m1X1⊕m2X2⊕...⊕mrXr] + . . .

Thus 1[(m1−1)X1⊕m2X2⊕...⊕mrXr] ∗ 1[X1]([X]) = m1.
Similarly, we have 1[m1X1⊕...⊕(mi−1)Xi⊕...⊕mrXr] ∗ 1[Xi]([X]) = mi for i =

2, . . . , r. Hence (1nO ∗ 1O)([X]) =
r∑

i=1
mi = n+ 1 which completes the proof.

�
By induction, we have the following corollary.

Corollary 3.16. Let O1,O2, . . . ,Ok be indecomposable constructible sets
which are pairwise disjoint. Then we have the following equations

1∗n1

O1
∗ 1∗n2

O2
. . . ∗ 1∗nk

Ok
= n1!n2! . . . nk!1n1O1⊕...⊕nkOk

+ . . . ,

1m1O1⊕...⊕mkOk
∗ 1n1O1⊕...⊕nkOk

=

k∏
i=1

(mi + ni)!

mi!ni!
1(m1+n1)O1⊕...⊕(mk+nk)Ok

+ . . . ,

where k is a positive integer and m1, . . . ,mk, n1, . . . , nk ∈ N.

Let Ind(α) be the subset of ObjαA(K) such that X are indecomposable
for all [X] ∈ Ind(α).

Lemma 3.17. For each α ∈ K ′(A), Ind(α) is a locally constructible set.

Proof. Assume α, β, γ ∈ K ′(A) \ {0}. The map

f :
∐
β,γ;

β+γ=α

ObjβA(K)×ObjγA(K) → ObjαA(K)

is defined by ([B], [C]) 	→ [B ⊕ C]. It is clear that f is a pseudo-
morphism. Every ObjβA(K)×ObjγA(K) is a locally constructible set.
For any constructible set C ⊆ ObjA(K)×ObjA(K), there are finitely
many ObjβA(K)×ObjγA(K) such that C ∩ (ObjβA(K)×ObjγA(K)) �= ∅. Hence
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�β,γ;β+γ=αObjβA(K)×ObjγA(K) is locally constructible. Then Imf is a
locally constructible set. It follows that Ind(α) = ObjαA(K) \ Imf is locally
constructible. �

The following proposition is due to [4, Proposition 11].

Proposition 3.18. Let O1,O2 be two constructible sets of Krull-Schmidt.
It follows that

1O1
∗ 1O2

=

c∑
i=1

ai1Qi

for some c ∈ N+, where ai = 1O1
∗ 1O2

([X]) for each [X] ∈ Qi and Qi are
constructible sets of stratified Krull-Schmidt such that γ(Qi) ≤ γ(O1) +
γ(O2).

Proof. Because O1,O2 are constructible sets, the equation holds for some
constructible sets Qi with γ(Qi) ≤ γ(O1) + γ(O2) by Corollary 3.14.

For every [Yi] ∈ Qi, 1O1
∗ 1O2

([Yi]) �= 0. By Lemma 3.8, there exist
Xi, Zi ∈ Obj(A) such that [Xi] ∈ O1, [Zi] ∈ O2 and 1[Xi] ∗ 1[Zi]([Yi]) �= 0
since 1O1

∗ 1O2
([Yi]) �= 0. Thanks to Lemma 3.9, we have that γ(Yi) ≤

γ(Xi) + γ(Zi). According to Lemma 3.11, all indecomposable direct sum-
mands of Yi are extended by the direct summands of Xi and Zi since
1[Xi] ∗ 1[Zi]([Yi]) �= 0.

By the discussion in Section 3.1, we can suppose that O1 =
t⊕

i=1
aiCi and

O2 =
t⊕

j=1
bjCj , where ai, bj ∈ {0, 1} for all i, j and Ci are indecomposable

constructible sets such that Ci ∩ Cj = ∅ or Ci = Cj for all i �= j. Let 1 ≤ r ≤ t,
the set

{A1, A2, . . . , Ar | ∅ �= Ai ⊆ {1, . . . , n} for i = 1, . . . , r}

is called an r-partition of {1, 2, . . . , t} if A1 ∪A2 ∪ . . . ∪Ar = {1, 2, . . . , t}
and Ai ∩Aj = ∅ for all i �= j. Obviously, the cardinal number of all par-
titions of {1, 2, . . . , t} is finite. Let {A1, A2, . . . , Ar}, {B1, B2, . . . , Br} be
two r-partitions of {1, 2, . . . , t} and ck ∈ Q \ {0} for k = 1, 2, . . . , r. Set
OAk

=
⊕
i∈Ak

aiCi and OBk
=

⊕
j∈Bk

bjCj for 1 ≤ k ≤ r. Then we have

RAk,Bk,ck = {[X] ∈ OAk
⊕OBk

| 1OAk
∗ 1OBk

([X]) = ck},

IAk,Bk,ck = {[X] | X indecomposable, 1OAk
∗ 1OBk

([X]) = ck}.
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This means that for each [X] ∈ RAk,Bk,ck , there exist [A] ∈ OAk
and [B] ∈

OBk
such that X ∼= A⊕B. For each [Y ] ∈ IAk,Bk,ck , there exist [C] ∈ OAk

and [D] ∈ OBk
such that C → Y → D is a non-split conflation in A. Note

that

RAk,Bk,ck = ((1OAk
∗ 1OBk

)−1(ck)) ∩ (OAk
⊕OBk

).

By Corollary 3.16, RAk,Bk,ck = ∅ or OAk
⊕OBk

. Hence RAk,Bk,ck is a
constructible set of Krull-Schmidt. There exist α1, . . . , αs ∈ K ′(A) such
that IAk,Bk,ck = (�s

i=1Ind(αi)) ∩ ((1OAk
∗ 1OBk

)−1(ck)). By Lemma 3.17,
IAk,Bk,ck is an indecomposable constructible set.

Finally, 1O1
∗ 1O2

is a Q-linear combination of finitely many
1⊕r

k=1OAk,Bk,ck
, where OAk,Bk,ck run through RAk,Bk,ck and IAk,Bk,ck for all

r-partitions and r = 1, 2, . . . , t. We finish the proof. �

Thus we summarize what we have proved as the following theorem which
is due to [4, Theorem 12].

Theorem 3.19. The Q-space CFKS(ObjA) is an associative Q-algebra with
convolution multiplication ∗ and identity 1[0].

3.5. The universal enveloping algebra of CFind(ObjA)

From now on, let U(CFind(ObjA)) denote the universal enveloping algebra of
CFind(ObjA) over Q. The multiplication in U(CFind(ObjA)) will be written
as (x, y) 	→ xy. There is a Q-algebra homomorphism

Φ : U(CFind(ObjA)) → CFKS(ObjA)

defined by Φ(1) = 1[0] and Φ(f1f2 . . . fn) = f1 ∗ f2 ∗ . . . ∗ fn, where

f1, f2, . . . , fn belong to CFind(ObjA).
The following theorem is related to [4, Theorem 15].

Theorem 3.20. Φ : U(CFind(ObjA)) → CFKS(ObjA) is an isomorphism.

Proof. For simplicity of presentation, let

U = U(CFind(ObjA)) and CF = CFKS(ObjA).

Assume that O1,O2, . . . ,Ok−1 and Ok are indecomposable constructible
subsets of ObjA(K) which are pairwise disjoint. It follows that
1O1

, 1O2
, . . . , 1Ok

are linearly independent in CFind(ObjA).
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Let UO1...Ok
denote the subspace of U which is spanned by all

1n1

O1
1n2

O2
. . . 1nk

Ok
for ni ∈ N and i = 1, . . . , k.

Define CFO1...On
to be the subalgebra of CF which is generated by the

elements 1n1O1⊕n2O2⊕...⊕nkOk
of CF, where ni ∈ N for i = 1, 2, . . . , k.

The homomorphism Φ induces a homomorphism

ΦO1...Ok
: UO1...Ok

→ CFO1...Ok

which maps 1n1

O1
1n2

O2
. . . 1nk

Ok
to 1∗n1

O1
∗ 1∗n2

O2
∗ . . . ∗ 1∗nk

Ok
.

First of all, we want to show that ΦO1...Ok
is injective.

For m ∈ N, let U
(m)
O1...Ok

be the subspace of U which is spanned by

{
1n1

O1
1n2

O2
. . . 1nk

Ok
|

k∑
i=1

ni ≤ m,ni ≥ 0 for i = 1, . . . , k
}

Using the PBW Theorem, we obtain that

{
1n1

O1
1n2

O2
. . . 1nk

Ok
|

k∑
i=1

ni = m,ni ≥ 0 for i = 1, . . . , k
}

is a basis of the Q-vector space U
(m)
O1...Ok

/U
(m−1)
O1...Ok

for m ≥ 1.

Similarly, we define CF
(m)
O1...Ok

to be a subspace of CFO1...Ok
such that

each f ∈ CF
(m)
O1...Ok

is of the form
l∑

i=1
ci1Ci

, where l ∈ N+, ci ∈ Q, 1Ci
∈

CFO1...Ok
and Ci are constructible sets of Krull-Schmidt such that γ(Ci) ≤ m.

In CF(m) /CF(m−1), the set

{1n1O1⊕n2O2⊕...⊕nkOk
|

k∑
i=1

ni = m,ni ≥ 0 for i = 1, . . . , k}

is linearly independent by the Krull-Schmidt Theorem.
For each m ≥ 1, ΦO1...Ok

induce a map

Φ
(m)
O1...Ok

: U
(m)
O1...Ok

/U
(m−1)
O1...Ok

→ CF
(m)
O1...Ok

/CF
(m−1)
O1...Ok

which maps 1n1

O1
1n2

O2
. . . 1nk

Ok
to n1!n2! . . . nk!1n1O1⊕n2O2⊕...⊕nkOk

(also see

Corollary 3.16), where
k∑

i=1
ni = m and mi ≥ 0. From this we know that

Φ
(m)
O1...Ok

is injective for all m ∈ N. Obviously, both UO1O2...On
and CFO1...On



Realizing Enveloping Algebras via Moduli Stacks 211

are filtered. From the properties of filtered algebra, we know that ΦO1...Ok

is injective. Hence Φ : U → CF is injective.
Finally, we show that Φ is surjective by induction on m. When m = 1,

the statement is trivial. Then we assume that every constructible function

f =
t∑

i=1
ai1Qi

lies in Im(Φ), where ai ∈ Q and Qi are constructible sets of

stratified Krull-Schmidt with γ(Qi) < m.
Let n1 + n2 + . . .+ nk = m and ni ∈ N for 1 ≤ i ≤ k. Then

Φ(1n1

O1
1n2

O2
. . . 1nk

Ok
) = 1∗n1

O1
∗ 1∗n2

O2
∗ . . . ∗ 1∗nk

Ok

= n1!n2! . . . nn!1n1O1⊕n2O2⊕...⊕nkOk
+

s∑
j=1

bj1Pj
,

where bj ∈ Q and Pj are constructible sets of stratified Krull-Schmidt with

γ(Pj) < m. By the hypothesis,
s∑

j=1
bj1Pj

∈ Im(Φ). Hence 1n1O1⊕n2O2⊕...⊕nkOk

lies in Im(Φ). The algebra CF is generated by all 1n1O1⊕...⊕nkOk
, which proves

that Φ is surjective, the proof is finished. �

4. Comultiplication and Green’s theorem

4.1. Comultiplication

We now turn to define a comultiplication on the algebra CFKS(ObjA).
For f, g ∈ CF(ObjA), f ⊗ g is define by f ⊗ g([X], [Y ]) = f([X])g([Y ])
for ([X], [Y ]) ∈ (ObjA×ObjA)(K) = ObjA(K)×ObjA(K) (see [12, Difini-

tion 4.1]). Let X
f−→ Y

g−→ Z be a conflation in A. Recall that the map p2 :

Aut(X
f−→ Y

g−→ Z) → Aut(X)×Aut(Z) is defined by (a1, a2, a3) 	→ (a1, a3)
and χ(Kerp2) = 1.

The following definitions are related to [4, Section 6] and [12, Defin-
tion 4.16].

Definition 4.1. From now on, assume that πm : ExactA → ObjA is of finite
type and πl × πr is representable. Then we have the following diagram

CFKS(ObjA×ObjA)
(πl×πr)!←−−−−− CFKS(ExactA)

(πm)∗←−−− CFKS(ObjA).

The comultiplication

Δ : CFKS(ObjA) → CFKS(ObjA×ObjA)
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is defined by Δ = (πl × πr)! ◦ (πm)∗, where CFKS(ObjA×ObjA) is regarded
as a topological completion of CFKS(ObjA)⊗ CFKS(ObjA).

The counit ε : CFKS(ObjA) → Q maps f to f([0]).

Note that Δ is a Q-linear map since (πl × πr)! and (πm)∗ are Q-linear
map.

Definition 4.2. Let α = [A], β = [B] ∈ ObjA(K) and O ⊆ ObjA(K) be a
constructible set of stratified Krull-Schmidt, define

hβαO = Δ(1O)([A], [B]).

Let O1 and O2 ⊆ ObjA(K) be constructible sets, define

gαO2O1
= 1O1

∗ 1O2
(α).

Because Δ(1O) is a constructible function, Δ(1O) =
n∑

i=1
hβiαi

O 1Oi
for

some αi, βi ∈ ObjA(K) and n ∈ N, where Oi are constructible subsets of
ObjA(K)×ObjA(K).

Lemma 4.3. Let X, Y , Z ∈ Obj(A). If X ⊕ Z is not isomorphic to Y ,
then Δ(1[Y ])([X], [Z]) = 0.

Proof. If Δ(1[Y ])([X], [Z]) �= 0, there exists a conflation X
f−→ Y

g−→ Z in A
such that mπl×πr

([X
f−→ Y

g−→ Z]) �= 0. Recall that

mπl×πr
([X

f−→ Y
g−→ Z]) = χ

(
(Aut(X)×Aut(Z))/Imp2

)
.

If rk Imp2 < rk
(
Aut(X)×Aut(Z)

)
, the fibre of the action of a maximal

torus of Aut(X)×Aut(Z) on (Aut(X)×Aut(Z))/Imp2 is (K
∗)l for some l >

0. Then χ
(
(Aut(X)×Aut(Z))/Imp2

)
= 0, which is a contradiction. Hence

rk
(
Aut(X)×Aut(Z)

)
= rk Imp2.

Assume that rkAut(X) = n1, rkAut(Z) = n2 and rkAut(Y ) = n for
some positive integers n1, n2 and n. Note that Dn1

×Dn2
is a maxi-

mal torus of Aut(X)×Aut(Z). Because rk
(
Aut(X)×Aut(Z)

)
= rk Im(p2),

each maximal torus of Imp2 is also a maximal torus of Aut(X)×Aut(Z).
Therefore every maximal torus of Imp2 and Dn1

×Dn2
are conjugate. For

simplicity, we can assume that Dn1
×Dn2

is a maximal torus of Imp2. For
(t1In1

, t2In2
) ∈ Dn1

×Dn2
, where t1 �= t2, there exists τ ∈ Aut(Y ) such that
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(t1In1
, τ, t2In2

) ∈ Aut(X
f−→ Y

g−→ Z). Then we have the commutative dia-
gram

X

t1In1

��

f �� Y

τ
��

g �� Z

t2In2

��
X

f �� Y
g �� Z

The morphism (t2In1
, t2In, t2In2

) is also in Aut(X
f−→ Y

g−→ Z). The following
diagram is commutative

X

t2In1

��

f �� Y

t2In
��

g �� Z

t2In2

��
X

f �� Y
g �� Z

Consequently g(τ − t2In) = 0. Because f is a kernel of g, there exists h ∈
Hom(Y,X) such that τ − t2In = fh. Then τ = fh+ t2In. We have

f(t1In1
) = τf = (fh+ t2In))f,

it follows that

fhf = f(t1In1
)− (t2In)f = f(t1In1

− t2In1
).

Then hf = (t1 − t2)In1
since f is an inflation. Let f ′ = 1

t1−t2
h, then f ′f =

1X . Hence X is isomorphic to a direct summand of Y . The proof is com-
pleted. �

For an indecomposable object X ∈ Obj(A), direct summands of X are
onlyX and 0. Thus Δ(1[X]) = 1[X] ⊗ 1[0] + 1[0] ⊗ 1[X]. It follows that Δ(f) =

f ⊗ 1[0] + 1[0] ⊗ f for f ∈ CFind(ObjA).
By Lemma 4.3, hβαO = 1 if α⊕ β ∈ O, and hβαO = 0 otherwise. Let O =

n1O1 ⊕ . . .⊕ nmOm be a constructible set of Krull-Schmidt, where Oi are
indecomposable constructible sets for all 1 ≤ i ≤ m. By Lemma 4.3, the

formula Δ(1O) =
n∑

i=1
hβiαi

O 1Oi
can be written as

Δ(1O) =
∑

1≤i≤m;0≤ki≤ni

1k1O1⊕...⊕kmOm
⊗ 1(n1−k1)O1⊕...⊕(nm−km)Om

.

Hence we have the following proposition.
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Proposition 4.4. Let O be a constructible set of stratified Krull-Schmidt,
then Δ(1O) ∈ CFKS(ObjA)⊗ CFKS(ObjA), i.e., the map

Δ : CFKS(ObjA) → CFKS(ObjA)⊗ CFKS(ObjA))

is well-defined.

4.2. Green’s theorem on stacks

Recall that ∫
x∈S

f(x) =
∑

a∈f(S)\{0}
aχna(f−1(a) ∩ S),

where f is a constructible function and S a locally constructible set.
Let O1,O2,Oρ,Oσ,Oε,Oτ ,Oλ be constructible sets and α ∈ O1, β ∈

O2, ρ ∈ Oρ, σ ∈ Oσ, ε ∈ Oε, τ ∈ Oτ , λ ∈ Oλ such that Oρ ⊕Oσ = O1 and
Oε ⊕Oτ = O2.

The following theorem is the degenerate form of Green’s theorem which
is related to [4, Theorem 22].

Theorem 4.5. Let O1,O2 be constructible subsets of ObjA(K) and α′, β′ ∈
ObjA(K), then we have

gα
′⊕β′

O2O1
=

∫
ρ,σ,ε,τ∈ObjA(K);ρ⊕σ∈O1,ε⊕τ∈O2

gα
′

ερg
β′
τσ.

Proof. By the proof of Lemma 3.8, gα
′⊕β′

O2O1
=

∫
α∈O1,β∈O2

gα
′⊕β′

βα . It suffices to
prove the following formula

gα
′⊕β′

βα =

∫
ρ,σ,ε,τ∈ObjA(K);ρ⊕σ=α,ε⊕τ=β

gα
′

ερg
β′
τσ.

Suppose that [A] = α, [B] = β, [A′] = α′, [B′] = β′, [C] = ρ, [D] = σ,
[E] = ε and [F ] = τ for A,B,C,D,E, F ∈ Obj(A). There are finitely many
(ρ, σ) and (ε, τ) such that ρ⊕ σ = α and ε⊕ τ = β. Take

V =
⋃

[C],[D],[E],[F ];

[C⊕D]=[A],[E⊕F ]=[B]

V ([C], [E];A′)× V ([D], [F ];B′).

The map

i : V → V ([A], [B];A′ ⊕B′)



Realizing Enveloping Algebras via Moduli Stacks 215

is defined by

(〈C f1−→ A′ g1−→ E〉, 〈D f2−→ B′ g2−→ F 〉) 	→ 〈C ⊕D
f−→ A′ ⊕B′ g−→ E ⊕ F 〉,

where f =

(
f1 0
0 f2

)
and g =

(
g1 0
0 g2

)
. Because both C

f1−→ A′ g1−→ E

and D
f2−→ B′ g2−→ F are conflations, C ⊕D

f−→ A′ ⊕B′ g−→ E ⊕ F is a confla-
tion by [2, Proposition 2.9]. Hence the morphism is well-defined. Note that
i is injective.

There is a map Ω1 : V (A,B,A′ ⊕B′) → ExactA(K) which maps 〈A f−→
A′ ⊕B′ g−→ B〉 to [A

f−→ A′ ⊕B′ g−→ B]. Recall that

χ(Ω−1
1 ([A

f−→ A′ ⊕B′ g−→ B])) = mπm
([A

f−→ A′ ⊕B′ g−→ B]).

Take

Q(A,B,A′ ⊕B′) = �a∈Λ(A,B;A′⊕B′)Qa(A,B,A′ ⊕B′)

which is the image of Ω1.
A map

Ω2 : V → ExactA(K)× ExactA(K)

is defined by

(〈C f1−→ A′ g1−→ E〉, 〈D f2−→ B′ g2−→ F 〉) 	→ ([C
f1−→ A′ g1−→ E], [D

f2−→ B′ g2−→ F ]).

The Euler characteristic of Ω−1
2

(
([C

f1−→ A′ g1−→ E], [D
f2−→ B′ g2−→ F ])

)
is

mπm
([C

f1−→ A′ g1−→ E])mπm
([D

f2−→ B′ g2−→ F ]). Let

Q(c, d, C,D,E, F ) = Qc(C,E,A′)×Qd(D,F,B′)

for c ∈ Λ(C,E;A′), d ∈ Λ(D,F ;B′) and

Q(A′, B′) = �c,d,[C],[D],[E],[F ]Q(c, d, C,D,E, F ),

where C ⊕ E ∼= A and D ⊕ F ∼= B.
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There is a morphism

i : Q(A′, B′) → Q(A,B,A′ ⊕B′)

by ([C
f1−→ A′ g1−→ E], [D

f2−→ B′ g2−→ F ]) 	→ [C ⊕D
f−→ A′ ⊕B′ g−→ E ⊕ F ].

Then there is a commutative diagram

Ω−1
2 (Q(A′, B′)) i ��

Ω2

��

Ω−1
1 (Q(A,B,A′ ⊕B′))

Ω1

��
Q(A′, B′) i �� Q(A,B,A′ ⊕B′)

According to Lemma 3.11, if mπm
([A

f−→ A′ ⊕B′ g−→ B]) �= 0, then there exist

two conflations C
f1−→ A′ g1−→ E and D

f2−→ B′ g2−→ F in A such that A ∼= C ⊕
D, B ∼= E ⊕ F , f =

(
f1 0
0 f2

)
and g =

(
g1 0
0 g2

)
. If

mπm
([A

f−→ A′ ⊕B′ g−→ B]) = 0,

then [A
f−→ A′ ⊕B′ g−→ B] ∈ ExactA(K) \Q(A,B,A′ ⊕B′). Hence i is surjec-

tive. For each [A
f−→ A′ ⊕B′ g−→ B] ∈ Q(A,B,A′ ⊕B′),

χ
(
i
−1

([A
f−→ A′ ⊕B′ g−→ B])

)
=

mπm
([A

f−→ A′ ⊕B′ g−→ B])

mπm
([C

f1−→ A′ g1−→ E])mπm
([D

f2−→ B′ g2−→ F ])
.

By Lemma 2.5, it follows that

cdχna(Qc(C,E;A′))χna(Qd(D,F ;B′)) = aχna(Qc(A,B;A′ ⊕B′),

where c = mπm
([C

f1−→ A′ g1−→ E]), d = mπm
([D

f2−→ B′ g2−→ F ]), a =

mπm
([A

f−→ A′ ⊕B′ g−→ B]) and acd �= 0. This completes the proof. �
For all f1, f2, g1, g2 ∈ CFKS(ObjA), define (f1 ⊗ g1) ∗ (f2 ⊗ g2) = (f1 ∗

f2)⊗ (g1 ∗ g2). Using Green’s theorem, we have the following theorem due
to [4, Theorem 24].

Theorem 4.6. The map Δ : CFKS(ObjA) → CFKS(ObjA)⊗ CFKS(ObjA)
is an algebra homomorphism.
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Proof. The proof is similar to the one in [4, Theorem 24]. Let O1,O2 ∈
ObjA(K) be constructible sets of stratified Krull-Schmidt. Then

Δ(1O1
∗ 1O2

) = Δ(
∑
λ

gλO2O1
1Oλ

) =
∑
λ

gλO2O1
Δ(1Oλ

)

=
∑
λ

gλO2O1
(
∑
α′,β′

hβ
′α′

Oλ
1Oα′ ⊗ 1Oβ′ ) =

∑
α′,β′

gα
′⊕β′

O2O1
1Oα′ ⊗ 1Oβ′ ,

Δ(1O1
) ∗Δ(1O2

) = (
∑
ρ,σ

hσρO1
1Oρ

⊗ 1Oσ
) ∗ (

∑
ε,τ

hτεO2
1Oε

⊗ 1Oτ
)

=
∑

ρ,σ,ε,τ

hσρO1
hτεO2

(1Oρ
∗ 1Oε

)⊗ (1Oσ
∗ 1Oτ

)

=
∑

ρ,σ,ε,τ

hσρO1
hτεO2

(
∑
α′,β′

gα
′

OεOρ
gβ
′

OτOσ
1Oα′ ⊗ 1Oβ′ )

=
∑
α′,β′

(
∑

ρ,σ,ε,τ

hσρO1
hτεO2

gα
′

OεOρ
gβ
′

OτOσ
1Oα′ ⊗ 1Oβ′ ).

According to Theorem 4.5, it follows that∑
ρ,σ,ε,τ

hσρO1
hτεO2

gα
′

OεOρ
gβ
′

OτOσ
= gα

′⊕β′

O2O1
.

Therefore Δ(1O1
∗ 1O2

) = Δ(1O1
) ∗Δ(1O2

). We have thus proved the theo-
rem. �

Appendix A. Exact categories

We recall the definition of an exact category (see [13, Appendix A]).

Definition A.1. Let A be an additive category. A sequence

X
f−→ Y

g−→ Z

in A is called exact if f is a kernel of g and g is a cokernel of f . The
morphisms f and g are called inflation and deflation respectively. The short
exact sequence is called a conflation. Let S be the collection of conflations
closed under isomorphism and satisfying the following axioms

A0 10 : 0 → 0 is a deflation.
A1 The composition of two deflations is a deflation.
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A2 For every h ∈ Hom(X,X ′) and every inflation f ∈ Hom(X,Y ) in A,
there exists a pushout

X
f ��

h
��

Y

h′
��

X ′ f ′ �� Y ′

where f ′ ∈ Hom(X ′, Y ′) is an inflation.
A3 For every l ∈ Hom(Z ′, Z) and every deflation g ∈ Hom(Y, Z) in A,

there exists a pullback

Y ′ g′ ��

l′

��

Z ′

l
��

Y
g �� Z

where g′ ∈ Hom(Y ′, Z ′) is an deflation. Then (A,S) is called an exact cate-
gory.

The definition of idempotent complete is taken from[2, Definition 6.1].

Definition A.2. Let A be an additive category. The category A is idem-
potent complete if for every idempotent morphism s : A → A in A, s has a
kernel k : K → A and a image i : I → A (a kernel of a cokernel of s) such
that A ∼= K ⊕ I. We write A ∼= Kers⊕ Ims, for simplicity.
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