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Abstract: In this paper, we prove several formulas related to
Hodge theory, and using them to prove the deformations of a com-
pact H-twisted generalized Calabi-Yau manifold are unobstructed
and L2 convergence in a fixed neighbourhood in another power
series. And if we assume that the deformation is smooth in a fixed
neighbourhood, and assume the existence of a global canonical fam-
ily of deformation, we also construct the global canonical family of
the deformations of generalized Kähler manifolds.
Keywords: Deformations of complex structures, Hodge theory,
Hermitian and Kählerian manifolds, Calabi-Yau manifolds.

1. Introduction

The generalized complex geometry is introduced by N. Hitchin and
developed by M. Gualtieri and G. R. Cavalcanti and many others in
[2, 3, 5, 6, 10]. This new geometry provides an indeed broad platform
for the people working in both mathematics and physics. The theory
of deformations of complex structures can be dated back to Riemann,
and extensively studied by K. Kodaira, D. C. Spencer, N. Nirenberg,
M. Kuranishi and many other great mathematicians in [11, 15]. The
deformation theory of generalized complex geometry is first studied by M.
Gualtieri, R. Goto and so on in in [2, 9]. The concept of H-twisted was
introduced by P. Ševera and A. Weinstein in [16]. Yi Li in [14] has proved
that the deformations of a compact H-twisted Generalized Calabi-Yau
manifold are unobstructed in an infinitesimal neighborhood by using
Kodaira-Spencer-Kuranishis method.
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In this paper, we re-state the deformations of a compact H-twisted
generalized Calabi-Yau manifold are unobstructed and L2 convergence in
a fixed neighbourhood by using Hodge theory. And if we assume that the
deformation is smooth in a fixed neighbourhood, we also construct the
global canonical family of the deformations by using the parallel method in
[12].

This paper is organized as follows. In Section 2 and Section 3, we intro-
duce some basic definitions and some propositions of compact H-twisted
generalized Calabi-Yau manifolds which we will use. In Section 4, by using
the Hodge theory, we prove the following two propositions which will be
used in constructing the deformations.

Lemma 1.1. On compact generalized Kähler manifold M , For any ρ ∈
∧∗T ∗M , we have

||∂∗HGρ||2 ≤ (ρ,Gρ),

||∂∗HG∂Hρ||2 ≤ ||ρ||2,

where ∂
∗
H is the adjoint operator of ∂H , G is the Green operator correspond-

ing to the harmonic operator 4∂H
, ∂H , ∂H is definite in Definition 2.5 and

Definition 2.10, and the norms || · || is definite in Definition 2.7 in Section
2 in details.

Proposition 1.2. Let (M,J) be a compact H-twisted generalized Kähler
manifold. Then for any ρ ∈ ∧∗T ∗M ,

s = ∂
∗
HG∂Hρ

is a solution to the equation ∂Hs = ∂Hρ with condition ∂H∂Hρ = 0, such
that

||s||2 ≤ (∂Hρ,G∂Hρ),

where (·, ·) is the Born-Infeld inner product definite in Definition 2.7. More-
over, if Hs = 0 and ∂

∗
Hs = 0, s is uniquely determined.

In Section 5, we re-state that the deformations of a compact H-twisted
generalized Calabi-Yau manifold are unobstructed and L2 convergence in a
fixed neighbourhood by another power series. In details, we have
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Theorem 1.3. Let (M,J) be a compact H-twisted generalized Calabi-Yau
manifold. Then there exists a globally L2 convergent power series which
determines the deformation in t < 1

4ac ,

ε(t)ρ0 =

N∑
i=1

εiρ0t
i +

∑
k≥2

∑
k1+···+kN=k,ki≥0

εk1···kNρ0(t
1)k1 · · · (tN )kN ,

which satisfies:
(1) ∂Hε(t)ρ0 + 1

2 [ε(t), ε(t)]Hρ0 = 0;

(2) εk1···kNρ0 is ∂
∗
H-closed, and ∂H-exact for any k1 + · · ·+ kN = k ≥ 2;

(3) ε(t)ρ0 is L2 convergence in t < 1
4ac .

The convergence of the deformations is proved by using the power series
in Lemma 3.4 as follows:

Lemma 1.4 (See Lemma 4.1 in [12]). Let x1 = a be a constant, and
xk = c

∑k−1
i=1 xixk−i, where c is a constant, then

∑∞
i=1 xit

i converge on |t| ≤
1

4ac .

In Section 6, if we assume the existence of a global canonical family of
deformation, we also construct the global canonical family of the deforma-
tions of generalized Kähler manifolds. We have the theorem as follows:

Proposition 1.5. On compact generalized Kähler manifold M , if we
assume that ε(t) smooth with convergence radius 1

4ac exists. Then

ε(t)ρ0 ∈ H2
∂H

(M,∧∗T ∗M ),

where H2
∂H

(M,∧∗T ∗M ) is the cohomology group of the complex (∧∗T ∗M , ∂H),
and there exists

ρt := ρ0 +
∑

K,|K|≥1

ρKt
K ∈ U0,

where tK := (t1)k1 · · · (tN )kN , |K| := k1 + · · ·+ kN , such that
(1) ρct := e−ε(t)ρt holomorphic with respect to Jε(t),

(2) ρK is ∂H -exact and ∂
∗
H-closed, (|K| ≥ 1)

(3) ρt converges with radius 1
16a2c2 .

And we also give the representations of the global canonical family of
the deformations:
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Proposition 1.6.

ρct := e−ε(t)ρt,

and

[ρct ] = [ρ0] +

N∑
i=1

[H(−εiρ0)]t+O(|t|2),

where [ρ0] means a representation in H0
∂H

(M,∧∗T ∗M ), and O(|t|2) denotes
the terms in
H4
∂H

(M,∧∗T ∗M )
⊕
· · ·

⊕
H2n
∂H

(M,∧∗T ∗M ) of order at least 2 in t.

The method we use is parallel to the method in [12].

Thanks to my supervisor Professor Kefeng Liu. Also thanks to Dr. Sheng
Rao, Dr. Shengmao Zhu, Professor D. Baraglia, and Professor M. Gualtieri.

2. Some basic definitions

In this section, we review some basic definitions of compact H-twisted gen-
eralized Calabi-Yau manifolds. We refer the reader to [1–3, 8, 10] for details.

We define a pair on smooth manifold M similar to the pair between TM
and T ∗M .

Definition 2.1. Let Mn be a smooth manifold with dimR = n. We define
the following pair on (TM ⊕ T ∗M )⊗R C:

< A,B > := < X + ξ, Y + η >:=
1

2
(ξ(Y ) + η(X)),

where A := X + ξ,B := Y + η ∈ (TM ⊕ T ∗M )⊗R C, X, Y ∈ TM ⊗R C, ξ, η ∈
T ∗M ⊗R C.

We can define the generalized complex structures similar to complex
structures on M .

Definition 2.2. Let Mn be a smooth manifold with dimR = n. If there
exists an endomorphism J on (TM ⊕ T ∗M )⊗R C, satisfying
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J2 = −1,

and

< A,B >=< JA, JB >,

J is called a generalized almost complex structure on M .
Since J2 = −1, we may decompose (TM ⊕ T ∗M )⊗R C into the ±i -

eigenvalue subspaces of J :

(TM ⊕ T ∗M )⊗R C = E + Ē,

where E be the +i-eigenvalue subspace.
If there is an H ∈ H3(M,R), we can define H-twisted Courant bracket

as follow:
Let A = X + ξ,B = Y + η ∈ (TM ⊕ T ∗M )⊗R C, where X,Y ∈ TM ⊗R

C, ξ, η ∈ T ∗M ⊗R C,

[A,B]H := [X + ξ, Y + η]H

:= [X,Y ] + LXη − LY ξ −
1

2
d(ιXη − ιY ξ) + ιY ιXH,

where [X,Y ] := XY − Y X,LXη := dιXη + ιXdη, ιX means the contraction
by the vector field X.

If J is an almost generalized complex structure, [E,E]H ⊂ E,
J is integrable, and J is called the generalized complex structure. See

Definition 4.36 in [2]. From Proposition 4.5 in [2], we have also known
that the generalized complex manifold has even real dimension, so from now
on, we assume that dimCM = n.We have also known the the generalized
complex manifold has even real dimension, so we assume that dimCM = n
in the following.

This Courant bracket restricts to a Lie bracket on E∗ ∼= Ē with respect
to the pair in Definition 2.1, and this Lie bracket can be extended into a
Schouten bracket on ∧∗T ∗M , which we continue to denote by [·, ·]H ; it is
defined by

[A,B]H :=
∑
i,j

[Ai, Bj ]H ∧A1 ∧ · · · ∧ Âi ∧ · · · ∧Ap ∧B1 ∧ · · · ∧ B̂j ∧ · · · ∧Bq,

where A = A1 ∧ · · · ∧Ap ∈ ∧pE∗, B = B1 ∧ · · · ∧Bq ∈ ∧qE∗, Âi means
omit Ai.
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Specially, if ε ∈ ∧2E∗, [ε, ε]H ∈ ∧3E∗ by definition.

Next, we define Clifford actions on ∧∗T ∗M .

Definition 2.3. Let α ∈ ∧∗T ∗M and X + ξ ∈ (TM ⊕ T ∗M )⊗R C, where X ∈
TM ⊗R C, ξ ∈ T ∗M ⊗R C, we can define Clifford actions on ∧∗T ∗M :

(X + ξ)α := ιXα+ ξ ∧ α

Since J is integrable, we have < Ē, Ē >= 0, so

ABα+BAα = 0,

where A,B ∈ E∗. More generally,

ABα = (−1)pqBAα,

where A ∈ ∧pE∗, B ∈ ∧qE∗.

Definition 2.4. In complex case, we have the Hodge decomposition. In
generalized case, we can also define

U0 := {ρ ∈ ∧∗T ∗M | Eρ = 0},
Uk := ∧kE∗ · U0.

One can show that U0 is a complex line bundle in ∧∗T ∗M . See Definition
20 in Page 34 [4]. we call it the canonical bundle of J . And Uk is the (n− k)i-
eigenvalue subspace of J .

Thus we can get the decomposition of ∧∗T ∗M :

∧∗T ∗M = U0 ⊕ U1 ⊕ ...⊕ U2n,

where n = dimCM . See P13 in [1].

Definition 2.5. Like the de Rham differential in complex case, we define
the twisted de Rham differential dH on ∧∗T ∗M by

dH : ∧∗T ∗M → ∧∗T ∗M ,
α 7→ dα−H ∧ α

where H ∈ H3(M,R).



Some Results of Deformations on Compact H-twisted Generalized...137

We can also define the twisted Dolbeault operator ∂H and ∂H by

∂H := πk−1 ◦ dH : Uk → Uk−1,

∂H := πk+1 ◦ dH : Uk → Uk+1,

where πK is the projection onto Uk.

Then J is integrable if and only if dH = ∂H + ∂H . See P51 in [2].
Now, we define the compact generalized Kähler manifolds and the com-

pact generalized Calabi-Yau manifold.

Definition 2.6. Let (M,J) be a compact generalized complex manifold, if
there exists another generalized complex structure I, such that IJ = JI, then
we call (M,J, I) a compact H-twisted generalized manifold. And also exists
a global nowhere zero ρ0 ∈ U0, satisfying

dHρ0 = 0,

we call (M,J, I) a compact H-twisted generalized Calabi-Yau manifold, and
U0 is a trivial line bundle.

We still can define the inner product similar to the complex case which
we call it as Born-Infeld inner products.

Definition 2.7. See P3 in [3]. Let M be a compact H-twisted Generalized
Kähler manifold, we can define a positive-definite metric on (TM ⊕ T ∗M )⊗R
C by

((TM ⊕ T ∗M )⊗R C)⊗ ((TM ⊕ T ∗M )⊗R C) → C∞(M),

A,B 7→ < GA,B >

where GA := −IJA, A ∈ (TM ⊕ T ∗M )⊗R C. And one can show that
G2 = 1.

The restriction of this metric to the the sub-bundle TM is the Riemannian
metric g − bg−1b, where g is a Riemannian metric and b is a 2-form. And
the volume element induced by this metric is
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volG =
√
det(g − bg−1b)

=
det(g + b)√

detg
.

Next, we define the ∗ operator by

∗ = A1A2...An,

which is a product of an oriented orthonormal basis for C+, where C+ is the
+1-eigenvalue subspace of G on (TM ⊕ T ∗M )⊗R C, since G2 = 1. And one
can also show that C+ is a real space, Ai = Āi. So ∗ is a real operator, i.e.
∗ = ∗̄.

Then we can get

∗2 := A1A2...AnA1A2...An

= (−1)n(n−1)/2AnAn−1...A1A1A2...An

= (−1)n(n−1)/2,

where n = dimCM . The 2nd equality holds since AiAj = −AjAi and, the
3rd equality holds since Ai be orthonormal with respect to the pair < ·, · >
definite in Definition 2.1.

We now define the positive-definite Hermitian inner product on
Γ(M,∧∗T ∗M ) which we call the Born-Infeld inner product by

(α, β) :=

∫
M
< α, σ(∗)β̄ >,

||α||2 := (α, α),

where < α, σ(∗)β̄ > is definite by

< α, σ(∗)β̄ > = G(α, β) < 1, σ(∗)1 >
= G(α, β)volG

= g(e−bα, e−bβ)volg,

G(α, β) is a positive-definite metric on ∧∗T ∗M satisfying G(1, 1) = 1,
σ(A1...An) := An...A1 = (−1)n(n−1)/2A1...An, and g is the Riemannian met-
ric b is some 2-form definite above.
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Remark 2.8. If M is a Kähler manifold, we get that b = 0, ∗ is just the
ordinary Hodge ∗-operator and (·, ·) is the ordinary positive-definite inner
product on differential forms definite in [15].

Lemma 2.9 (∂H∂H-Lemma). We say (M,J) satisfies the ∂H∂H-Lemma
if

Im(∂H) ∩Ker(∂H) = Im(∂H) ∩Ker(∂H) = Im(∂H∂H).

One can show that a compact H-twisted generalized Kähler manifold
(M,J)satisfies the ∂H∂H-Lemma. See Corollary 4.2 in Page 6 [3].

From now on, we only discuss about the compact H-twisted generalized
Kähler manifold (M,J) which satisfies the ∂H∂H -Lemma.

We also have some elliptic operator similar to the complex case.

Definition 2.10. We now let ∂∗H , ∂
∗
H , d∗H be the dual operators of

∂H , ∂H , dH with respect to the inner product (·, ·) respectively, i.e.

(∂Hα, β) = (α, ∂∗Hβ),

(∂Hα, β) = (α, ∂
∗
Hβ),

(dHα, β) = (α, d∗Hβ).

And we also define the Laplacian operators by

4dH := dHd
∗
H + d∗HdH ,

4∂H := ∂H∂
∗
H + ∂∗H∂H ,

4∂H
:= ∂H∂

∗
H + ∂

∗
H∂H .

Then one can show that 4dH , 4∂H , 4∂H
are self-duality operators with

respect to inner product (·, ·) and

4dH = 24∂H = 24∂H
,

id = H +G4∂H
= H +4∂H

G,

where H is the projection onto H∗
∂H

(M,∧∗T ∗M ), and G is the Green operator

corresponding to 4∂H
. See P6 in [3].

We can also get the Hodge decomposition in twisted cohomology:

H
even/odd
dH

(M,∧∗T ∗M ) = H0
∂H

(M,∧∗T ∗M )⊕H2
∂H

(M,∧∗T ∗M )⊕
· · · ⊕H2n

∂H
(M,∧∗T ∗M ).
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3. Some lemmas

In this section, we review some basic propositions of compact H-twisted
generalized Calabi-Yau manifolds which will be used in this paper.

Lemma 3.1. The complex (∧∗T ∗M , ∂H) is definite in Definition 2.3. We
now introduce the complex (∧pE∗, dE):
dE : ∧kE∗ → ∧k+1E∗ is the Lie derivation define by

dEA(X0, ...Xk) :=
∑
i

(−1)ia(Xi)A(X0, ..., X̂i, ..., Xk)

+
∑
i<j

(−1)i+jA([Xi, Xj ]H , X0, ..., X̂i, ..., X̂j , ..., Xk),

where A ∈ ∧kE∗, Xi ∈ E, a : E → TM is the projection which is called the
anchor.

On compact generalized Kähler manifold M , we have

∂H(Aρ) = (dEA)ρ+ (−1)pA∂Hρ,

where A ∈ ∧pE∗, ρ ∈ ∧∗T ∗M .
So, on compact generalized Calabi-Yau manifold M , we have the rela-

tionship between two complex (∧∗T ∗M , ∂H) and (∧pE∗, dE). See P8 in [14],
or [2].

Then we have the two complex are isomorphism:

(∧pE∗, dE) ∼= (∧∗T ∗M , ∂H),

(dEA)ρ0 = ∂H(Aρ0),

where A ∈ ∧pE∗, ρ0 ∈ U0 is the global nowhere zero dH-closed section which
is fixed and we call it the pure spinor for J .

Next, we have the following Clifford actions on compact generalized
Kähler manifold M . See [13, 14].

Lemma 3.2. Let α ∈ ∧∗T ∗M be a smooth differential form , A ∈ ∧pE∗, B ∈
∧qE∗, we have
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dH(ABα) = (−1)pAdH(Bα) + (−1)(p−1)qBdH(Aα) + (−1)p−1[A,B]Hα

+(−1)p+q+1ABdHα,

∂H(ABα) = (−1)pA∂H(Bα) + (−1)(p−1)qB∂H(Aα) + (−1)p−1[A,B]Hα

+(−1)p+q+1AB∂Hα,

∂H(ABα) = (−1)pA∂H(Bα) + (−1)(p−1)qB∂H(Aα)

+(−1)p+q+1AB∂Hα.

Further more, if dHρ0 = ∂Hρ0 = ∂Hρ0 = 0 and ∂H(Aρ0) = ∂H(Bρ0) =
0, A,B ∈ ∧2E∗, we have

∂H(ABρ0) = −[A,B]Hρ0.(3.1)

The following inequivalent we will need to prove the convergence.

Lemma 3.3. On compact generalized Kähler manifold M . Let s ≥ 2 ∈ N,
α ∈ R, 0 < α < 1 is fixed. Then there exist positive constants c1, c2, c3 which
only depend on s, α,H, and the manifold M itself, such that for any A,B ∈
∧∗E∗,

||[A,B]H ||s+α ≤ c1||A||s+1+α · ||B||s+1+α,

||d∗EA||s+α ≤ c2||B||s+1+α,

||GdEA||s+α ≤ c3||A||s−2+α,

where GdE is the Green operator corresponding to 4dE , and || · ||s+α
means the Hölder norms definite in [11] and we consider the norms of A ∈
∧pE the same as the norms of Aρ0 ∈ ∧∗T ∗M since Lemma 3.1.

So we have

||d∗EGdE [A,B]H ||s+α ≤ c1c2c3||A||s+α||B||s+α
:= (2C)||A||s+α||B||s+α.

On compact generalized Calabi-Yau manifold M . If ∂H(Aρ0) =
∂H(Bρ0) = 0, we have
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||∂∗HG∂H(ABρ0)||s+α ≤ (2c)||Aρ0||s+α||Bρ0||s+α(3.2)

by using the formula (3.1) in Lemma 3.2.

Proof. (1) Locally, A|U = AIJ
∂
∂xI ∧ dx

J . Then ||A||Us+α := ||AIJ ||s+α just as
the definition in Calabi-Yau case.

By the definition of the dE , it is sufficient to prove the inequality holds
for A = X + ϕ,B = Y + η ∈ E∗. Since by direct computation, we have

ιY0
dη1 = ιY i0 ∂

∂xi

∂η1j
∂xp

dxp ∧ dxj

= ιY i0 ∂

∂xi

1

2
(
∂η1j
∂xp

− ∂η1p
∂xj

)dxp ∧ dxj

=
1

2
(
∂η1j
∂xp

− ∂η1p
∂xj

)Y p
0 dx

j − 1

2
(
∂η1j
∂xp

− ∂η1p
∂xj

)Y j
0 dx

p

=
1

2
(
∂η1p
∂xj

− ∂η1j
∂xp

)Y j
0 dx

p − 1

2
(
∂η1j
∂xp

− ∂η1p
∂xj

)Y j
0 dx

p

= (
∂η1p
∂xj

− ∂η1j
∂xp

)Y j
0 dx

p,

1

2
d ◦ ιY0

η1 =
1

2
d(Y i

0η1i)

=
1

2
(
∂Y i

0

∂xp
η1i + Y i

0

∂η1i
∂xp

)dxp,

ιY1
ιY0
H = ιY1

ιY0
(

1

3!
Hijkdx

i ∧ dxj ∧ dxk)

= ιY1
(

1

3!
Y p
0 (Hpij −Hipj +Hijp)dx

i ∧ dxj)

= ιY1
(

1

2!
Y p
0 Hijpdx

i ∧ dxj)

=
1

2!
Y p
0 Y

q
1 (Hqjp −Hjqp)dx

j

= Y p
0 Y

q
1 Hqjpdx

j

= Y p
0 Y

q
1 Hpqjdx

j ,
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[A,B]H := [Y0 + η0, Y1 + η1]H

:= [Y0, Y1] + LY0
η1 − LY1

η0 −
1

2
d(ιY0

η1 − ιY1
η0) + ιY1

ιY0
H

= [Y i
0

∂

∂xi
, Y j

1

∂

∂xj
] + d ◦ ιY0

η1 + ιY0
dη1 −

1

2
dιY0

η1

−d ◦ ιY1
η0 − ιY1

dη0 +
1

2
dιY1

η0 + ιY1
ιY0
H

= [Y i
0

∂

∂xi
, Y j

1

∂

∂xj
] +

1

2
d ◦ ιY0

η1 + ιY0
dη1

−1

2
d ◦ ιY1

η0 − ιY1
dη0 + ιY1

ιY0
H

= (Y i
0

∂Y j
1

∂xi
− Y i

1

∂Y j
0

∂xi
)
∂

∂xj
+

1

2
(
∂Y i

0

∂xp
η1i + Y i

0

∂η1i
∂xp

−∂Y
i
1

∂xp
η10 − Y i

1

∂η0i
∂xp

)dxp + (
∂η1p
∂xj

Y j
0 −

∂η1j
∂xp

Y j
0

−∂η0p
∂xj

Y j
1 +

∂η0j
∂xp

Y j
1 )dxp + Y i

0Y
j
1Hijpdx

p

= (Y i
0

∂Y j
1

∂xi
− Y i

1

∂Y j
0

∂xi
)
∂

∂xj

+(
1

2
(
∂Y i

0

∂xp
η1i −

∂Y i
1

∂xp
η0i) + (

∂η1p
∂xj

Y0j −
∂η0p
∂xj

Y1j)

+
1

2
(Y i

1

∂η0i
∂xp

− Y i
0

∂η1i
∂xp

) + Y i
0Y

j
1Hijp)dx

p,

where xi can be zi or zi, H = 1
3!Hijkdx

i ∧ dxj ∧ dxk, Hijk is skew-symmetric
with respect to i, j, k.

We also have known that H is fixed, M is compact, we can get some
proper larger constant c1 such that c1 ≥ max{Hijk,

∂γHijk
∂xγ : |γ| ≤ k}. So by

the definition of Hölder norms, we get the 1st inequality.
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(2) By the definition of the dE , it is sufficient to prove the inequality
holds for A = X + ϕ ∈ E∗. Since by direct computation, we have

(dE(X + ϕ))(Y0 + η0, Y1 + η1)

:= (dE(Xi ∂

∂xi
+ ϕjdx

j))(Y k
0

∂

∂xk
+ η0ldx

l, Y k
1

∂

∂xk
+ η1ldx

l)

:= Y0 < X + ϕ, Y1 + η1 > −Y1 < X + ϕ, Y0 + η0 >

− < X + ϕ, [Y0 + η0, Y1 + η1]H >

=
1

2
Y i
0

∂

∂xi
(ϕjY

j
1 +Xkη1k)−

1

2
Y i
1

∂

∂xi
(ϕjY

j
0 +Xkη0k)

< Xi ∂

∂xi
+ ϕjdx

j , (Y i
0

∂Y j
1

∂xi
− Y i

1

∂Y j
0

∂xi
)
∂

∂xj

+(
1

2
(
∂Y i

0

∂xp
η1i −

∂Y i
1

∂xp
η0i) + (

∂η1p
∂xj

Y0j −
∂η0p
∂xj

Y1j)

+
1

2
(Y i

1

∂η0i
∂xp

− Y i
0

∂η1i
∂xp

) + Y i
0Y

j
1Hijp)dx

p, >

=
1

2
(Y i

0Y
j
1

∂ϕj
∂xi
− Y i

1Y
j
0

∂ϕj
∂xi

+ Y i
0ϕj

∂Y j
1

∂xi
− Y i

1ϕj
∂Y j

0

∂xi

+Y i
0η1k

∂Xk

∂xi
− Y i

1η0k
∂Xk

∂xi
+XkY i

0

∂η1k
∂xi

−XkY i
1

∂η0k
∂xi

)

+
1

2
(Y i

1ϕj
∂Y j

0

∂xi
− Y i

0ϕj
∂Y j

1

∂xi
)

+
1

2
(XpY j

1

∂η0p
∂xj

−XpY j
0

∂η1p
∂xj

) +
1

4
(Xpη0i

∂Y i
1

∂xp
−Xpη1i

∂Y i
0

∂xp
)

+
1

4
(XpY i

0

∂η1i
∂xp

−XpY i
1

∂η0i
∂xp

)− 1

2
XpY i

0Y
j
1Hijp

=
1

2
Y i
0Y

j
1 (
∂ϕj
∂xi
− ∂ϕi
∂xj

) +
1

2
(Y i

0η1k
∂Xk

∂xi
− Y i

1η0k
∂Xk

∂xi
)

+
1

4
Xp(η0i

∂Y i
1

∂xp
− η1i

∂Y i
0

∂xp
) +

1

4
Xp(Y i

0

∂η1i
∂xp

− Y i
1

∂η0i
∂xp

)

−1

2
XpY i

0Y
j
1Hijp,

where Y0 + η0, Y1 + η1 ∈ E.
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So we can get that

dE(X + ϕ) :=
1

2
((
∂ϕj
∂xi
− 1

2
XpHijp)dx

i ∧ dxj +
1

2

∂Xk

∂xi
dxi ∧ ∂

∂xk

+
1

2

∂

∂xi
∧Xp ∂

∂xp
dxi +

1

2
dxi ∧Xp ∂

∂xp
∂

∂xi
)

:=
1

2
((
∂ϕj
∂xi
− 1

2
XpHijp)dx

i ∧ dxj + dXk ∧ ∂

∂xk

1

2

∂

∂xi
∧Xdxi +

1

2
dxi ∧X ∂

∂xi
)

Thus dE is an operator of order 1.
In the above computation, we just assume that A = X + ϕ ∈ E∗ ⊂

TM ⊕ T ∗M , and we didn’t use the condition [E,E]H ⊂ E. There is another
way to show dE is an operator of order 1. If we choose a basis E : {ei =
Yi + ηi}2ni=1, E

∗ : {ei = Xi + ϕi}2ni=1, [ej , ek]H := cpjkep, c
p
jk ∈ C

∞(U). Also we
let fi ∈ C∞(U).

Then we have

(dE(fie
i))(ej , ek) := a(ej) < fie

i, ek > −a(ek) < fie
i, ej >

− < fie
i, [ej , ek]H >

= Yj(fk)− Yk(fj)− < fie
i, cpjkep >

= Y p
j

∂fk
∂xp
− Y p

k

∂fj
∂xp
− fpcpjk.

Thus, we get

dE(fie
i) = (Y p

j

∂fk
∂xp
− Y p

k

∂fj
∂xp
− fpcpjk)e

j ∧ ek.

Thus dE is an operator of order 1 since the coefficients only has f, df ’s
terms and the change of the basis not change the order of dE .

We have also known that

d∗E := ∗dE ∗−1

:= A1 · · ·An ◦ dE ◦An · · ·A1

= (X1 + g(X1) + b(X1)) · · · (Xn + g(Xn) + b(Xn))

◦dE ◦ (Xn + g(Xn) + b(Xn)) · · · (X1 + g(X1) + b(X1)).
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The 3rd equality holds since every element in C+ can be represented as
X + g(X) + b(X) for some X ∈ TM ×R C, where g, b is definite in Definition
2.7. See [8].

So we can get that d∗E is also an operator of order 1. Since every Xi, g, b
is fixed, only depend on the manifold M itself, and by the definition of the
Hölder norms, we can get the 2nd inequality.

(3) Since dE and d∗E are both operators of order 1, we get that 4dE :=
dEd

∗
E + d∗EdE is an operator of order 2 just as the harmonic operator in

Calabi-Yau case.
Since the Green operator GdE is a strongly elliptic operator just as

the Green operator in Calabi-Yau case, we can use the same proof as
Lemma 5.7 at P276 and Theorem 4.3 in P436 in [11] just replace the vec-
tor bundle ∧∗T ∗M by ∧∗TM ⊕ ∧∗T ∗M and replace the local representation
A = 1

3!Aijkdx
i ∧ dxj ∧ dxk by A = 1

3!(Aijkdx
i ∧ dxj ∧ dxk +Aijk

∂
∂xi ∧ dx

j ∧
dxk +Aijk

∂
∂xi ∧

∂
∂xj ∧ dx

k +Aijk ∂
∂xi ∧

∂
∂xj ∧

∂
∂xk to get the 3rd inequality.

�

The following convergent power series we will use to prove the conver-
gence.

Lemma 3.4 (See Lemma 4.1 in [12]). Let x1 = a be a constant, and
xk = c

∑k−1
i=1 xixk−i, where c is a constant, then

∑∞
i=1 xit

i converge on |t| ≤
1

4ac .

4. A generalized version of ∂H∂H-lemma

In this section, we will prove a generalized version of ∂H∂H -lemma on a com-
pact H-twisted generalized Kähler manifold which is similar to the result in
Kähler case in [12]. This lemma will be used in the next section to construct
the deformations.

Lemma 4.1. For any ρ ∈ ∧∗T ∗M ,

||∂∗HGρ||2 ≤ (ρ,Gρ),

||∂∗HG∂Hρ||2 ≤ ||ρ||2.
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Proof. (1)

||∂∗HGρ||2 := (∂
∗
HGρ, ∂

∗
HGρ)

= (∂H∂
∗
HGρ,Gρ)

= (ρ−Hρ− ∂∗H∂HGρ,Gρ)

= (ρ,Gρ)− (∂
∗
H∂HGρ,Gρ)

= (ρ,Gρ)− (∂HGρ, ∂HGρ)

≤ (ρ,Gρ)

The 4th equality holds since Hρ ∈ H∗
∂H

(M,S)) ⊥ Gρ ∈ Im4∂H
with

respect to the inner product (·, ·) which is definite in Definition 2.7. And
the equality holds if and only if ∂HGρ = 0.

(2)

||∂∗HG∂Hρ||2 := (∂
∗
HG∂ρ, ∂

∗
HG∂Hρ)

= (∂H∂
∗
HG∂Hρ,G∂Hρ)

= (4∂H
G∂Hρ,G∂Hρ)− (∂

∗
HG∂H∂ρ,G∂Hρ)

= (ρ, ∂∗HG∂Hρ)− (G∂H∂Hρ,G∂H∂Hρ)

= (ρ,4∂H
Gρ)− (ρ, ∂H∂

∗
HGρ)− ||G∂H∂Hρ||2

= (ρ, ρ−Hρ− ∂H∂∗HGρ)− ||G∂H∂Hρ||2

= ||ρ||2 − ||Hρ||2 − (∂∗Hρ,G∂
∗
Hρ)− ||G∂H∂Hρ||2

≤ ||ρ||2

The 3rd and 4th equality holds since 4∂H = 4∂H
, and ∂HG = G∂H which

we give a simple proof: let G∂Hρ := β ∈ Im∆∂H
, Gρ := α ∈ Im∆∂H

, then

∆∂H
α = ρ−Hρ, ∂Hρ = ∆∂H

β. since ∂
∗
H∂

2
Hα+ ∂H∂

∗
H∂Hα = ∂H∂

∗
H∂Hα+

∂
2
H∂
∗
Hα, we have that ∆∂H

∂Hα = ∂H∆∂H
α = ∂Hρ− ∂H(Hρ) = ∂Hρ. So

G∂Hρ = G∆∂H
∂Hα = ∂Hα = ∂HGρ.(Or see P147, theorem 5.2(d) in [21]

and the elliptic proposition see Proposition 6 in Page 35 [4].). The last
inequality holds since G∂H |Im4∂H = 4−1∂H , we assume G∂H∂

∗
Hρ := α, then

(∂∗Hρ,G∂H∂
∗
Hρ) = (4∂Hα, α) ≥ 0, see more details in [7]. And the equality

holds if and only if ρ ∈ Im4∂H
, ∂H∂Hρ = 0, and ∂∗Hρ = 0.

�
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Proposition 4.2. Let (M,J) be a compact H-twisted Generalized Calabi-
Yau manifold, then for any ρ ∈ ∧∗T ∗M ,

s = ∂
∗
HG∂Hρ

is a solution to the equation ∂Hs = ∂Hρ with condition ∂H∂Hρ = 0, such
that

||s||2 ≤ (∂Hρ,G∂Hρ).

Moreover, if Hs = 0, and ∂
∗
Hs = 0, s is uniquely determined.

Proof.

∂Hs = ∂H∂
∗
HG∂Hρ

= ∂Hρ−H∂Hρ− ∂
∗
H∂HG∂Hρ

= ∂Hρ− ∂
∗
H∂HG∂Hρ

= ∂Hρ

The 3rd equality holds since ∂Hρ ∈ Im∂H ⊥ H∗∂H (M,∧∗T ∗M ); the last

equality holds since the assumption ∂H∂Hρ = 0. So s is a solution and

||s||2 ≤ (∂Hρ,G∂Hρ)

holds by the Lemma 4.1 above.

We now prove the uniqueness of the solution under the assumptions
given.
If there exists another solution s′, we have ∂H(s− s′) = 0. Also we have
H(s− s′) = 0, ∂

∗
H(s− s′) = 0 by assumption, then s− s′ = 0. �

5. An application on a compact H-twisted generalized
Calabi-Yau manifold

In [14], it has been proved that a sufficiently small deformations of a compact
H-twisted generalized Calabi-Yau manifold are unobstructed. In this section,
we shall re-state that the deformation can be L2 convergence in a fixed
neighbourhood by using another convergent power series which is parallel
to that in [12].
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Theorem 5.1. Let (M,J) be a compact H-twisted generalized Calabi-Yau
manifold, then there exists a globally L2 convergent power series which deter-
mines the deformations in t < 1

4ac ,

ε(t)ρ0 =

N∑
i=1

εiρ0t
i +

∑
k≥2

∑
k1+···+kN=k,ki≥0

εk1···kNρ0(t
1)k1 · · · (tN )kN ,

which satisfies:
(1)∂Hε(t)ρ0 + 1

2 [ε(t), ε(t)]Hρ0 = 0;

(2)εk1···kNρ0 is ∂
∗
H-closed, and ∂H-exact for any k1 + · · ·+ kN = k ≥ 2;

(3)ε(t)ρ0 is L2 convergence in t < 1
4ac .

Proof. In step 1, we recall the construction of the deformation ε(t), in step
2, we prove that ε(t) is L2 convergence in t < 1

4ac .

Step 1:
The construction of a power series solution ε(t) to the integrable condi-

tion has been given in [14], here we just recall it in order to make the proof
more clearly.

The integrable condition which is called Maurer-Cartan equation is:

dEε(t) +
1

2
[ε(t), ε(t)]H = 0.

By Lemma 3.1, we can rewrite it:

∂H(ε(t)ρ0) +
1

2
[ε(t), ε(t)]Hρ0 = 0,

where ρ0 ∈ U0 is the canonical bundle.
Choose a basis of H2

dE
(M,∧∗E∗) : {εi}Ni=1. We now recall the construc-

tion of a power series solution ε(t) to the integrable condition in [14]. We
write ε(t) in the form of

ε(t) := εit
i + εijt

itj + · · ·+ εi1···iN (t1)i1 · · · (tN )iN + · · · ,

such that εi1···ikρ0 are ∂
∗
H -closed and ∂H -exact for all k ≥ 2.
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For simplicity the notation, let us assume that dimCH
2
dE

(M,∧∗E∗) = 1
and a basis of H2

dE
(M,∧∗E∗) : {ε1}. So we shall discuss ε(t) in the form of

ε(t) := ε1t+ ε2t
2 + · · · ,

such that εkρ0 be ∂
∗
H -closed and ∂H -exact for all k ≥ 2.

To compare the coefficients of t in the Maurer-Cartan equation, we get

k = 1, ∂H(ε1ρ0) = 0,

k = 2, ∂H(ε2ρ0) = −1

2
[ε1, ε1]Hρ0,

· · ·

k, ∂H(εkρ0) = −1

2

k−1∑
i=1

[εi, εk−i]Hρ0.

Let

ψk := −1

2

k−1∑
i=1

[εi, εk−i]Hρ0.

We show that ∂Hψk = 0 by induction on k.
For k = 2, we have

∂Hψ2 := ∂H(−1

2
[ε1, ε1]Hρ0)

= −1

2
(dE [ε1, ε1]H)ρ0

= −1

2
([dEε1, ε1]H − [ε1, dEε1]H)ρ0

= 0

The last equality holds since ε1 ∈ H2
dE

(M,∧∗E∗), hence dEε1 = 0.
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If we suppose that i from 2 to k − 1, ∂Hψi = 0 holds. For i = k, we have

−2∂Hψk

:= ∂H(

k−1∑
i=1

[εi, εk−i]Hρ0)

=

k−1∑
i=1

(dE [εi, εk−i]H)ρ0

=

k−1∑
i=1

([dEεi, εk−i]H − [εi, dEεk−i]H)ρ0

= −1

2

k−1∑
i=1

i−1∑
j=1

([[εj , εi−j ]H , εk−i]H)ρ0 +
1

2

k−1∑
i=1

i−j−1∑
j=1

([εi, [εj , εn−i−j ]H)ρ0

=
1

2

k−1∑
i=1

i−1∑
j=1

([εk−i, [εj , εi−j ]H ]H)ρ0 +
1

2

k−1∑
i=1

i−j−1∑
j=1

([εi, [εj , εn−i−j ]H)ρ0

= 2
∑

i+j+h=k,1≤i<j<h
([εi, [εj , εh]H ]H + [εj , [εh, εi]H ]H + [εh, [εi, εj ]H ]H)ρ0

+
∑

2i+j=k,1≤i 6=j
(2[εi, [εi, εj ]H ]H + [εj , [εi, εi]H ]H)ρ0

+
∑

3i=k,1≤i
[εi, [εi, εi]H ]Hρ0

= 0

The 2nd equality holds by the definition of [·, ·]H and dE ; the 3rd equality
is the induction; and the last equality holds since the Jacobian identity. See
P21 in [2].

Next, we show that ψk is ∂H -exact by induction on k, and there exists
an unique εkρ0, such that εkρ0 is ∂H -exact, ∂

∗
H -closed for any k ≥ 2.

Since ε1 ∈ H2
dE

(M,∧∗E∗), in Calabi-Yau case, we have ε1ρ0 ∈
H2
∂H

(M,∧∗T ∗M ). Hence 4∂H
(ε1ρ0) = 4∂H (ε1ρ0) = 0 since 4∂H = 4∂H

. So

we get ∂H(ε1ρ0) = 0(We need this since it is the condition of the formula
(3.1) in Lemma 3.2.).

Therefore, for k = 2, by using the formula (3.1) in Lemma 3.2, we have

ψ2 := −1

2
[ε1, ε1]H

=
1

2
∂H(ε1ε1ρ0),
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i.e. ψ2 is ∂H -exact.
Since

1

2
∂H∂H(ε1ε1ρ0) := ∂Hψ2

= 0,

by Proposition 4.2, we can get that the equation

∂Hε2ρ0 =
1

2
∂Hε1ε1ρ0

has the unique solution

ε2ρ0 =
1

2
∂
∗
HG∂H(ε1ε1ρ0).

which satisfying that ε2ρ0 is ∂
∗
H -closed and ∂H -exact thus ∂H -closed.

If we suppose that for i = 2 to k − 1, εiρ0 exists uniquely, such that εiρ0
is ∂H -exact, ∂

∗
H -closed hold. For i = k, we have

ψk := −1

2

k−1∑
i=1

[εi, εk−i]Hρ0 =
1

2
∂H(

k−1∑
i=1

εiεk−iρ0)

is also ∂H -exact.
Since

1

2
∂H∂H(

k−1∑
i=1

εiεk−iρ0) := ∂Hψk

= 0,

by Proposition 4.2, we can get that the equation

∂Hεkρ0 =
1

2
∂H

k−1∑
i=1

εiεk−iρ0

has the solution

εkρ0 =
1

2
∂
∗
HG∂H(

k−1∑
i=1

εiεk−iρ0).

(Since Ui := ∧iE∗ · U0 and U0 is a complex line bundle whose generator
is ρ0, any α ∈ Ui can be represented as Aρ0, where A ∈ ∧iE∗.)
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Hence by Proposition 4.2, we can get that H(εkρ0) = 0 and εkρ is ∂H -
exact, ∂

∗
H -closed, and

||εkρ0||2 ≤
1

4
(∂H(

k−1∑
i=1

εiεk−iρ), G∂H(

k−1∑
i=1

εiεk−iρ0)).

For the general case of t = (t1, · · · , tN ), we can also give the same dis-
cussion.

Comparing the coefficients of t = (t1, · · · , tN ) in the Maurer-Cartan
equation, we get

k = 1, ∂H(εiρ0) = 0,

k = 2, ∂H(εijρ0) = −1

2
([εi, εj ]H + [εj , εi]H)ρ0,

· · ·
k, ∂H(εi1···iNρ0) = −1

2

∑
jα+hα=iα,jα,hα≥0,α=1···N

[εj1···jN , εh1···hN ]Hρ0.

(i1 + · · ·+ iN = k)

Let

ψi1···iN := −1

2

∑
jα+hα=iα,jα,hα≥0,α=1···N

[εj1...jN , εh1···hN ]Hρ0.

(i1 + · · ·+ iN = k)

We show that ∂Hψi1...iN = 0 by induction on i1 + ...+ iN = k.
For k = 2, we have

∂Hψij := ∂H(−1

2
([εi, εj ]H + [εj , εi]H)ρ0)

= −1

2
(dE([εi, εj ]H + [εj , εi]H))ρ0

= −1

2
([dEεi, εj ]H − [εi, dEεj ]H) + [dEεj , εi]H

−[εj , dEεi]H)ρ0

= 0.

The last equality holds since εi ∈ H2(M,∧∗E∗), hence dEεi = 0.
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If we suppose that from i1 + · · ·+ iN = 2 to k − 1, ∂Hψi1···iN = 0 holds.
For i1 + · · ·+ iN = k, we have

−2∂Hψi1···iN

:= ∂H(
∑

jα+hα=iα,jα,hα≥0,α=1···N
[εj1···jN , εh1···hN ]Hρ0)

=
∑

jα+hα=iα,jα,hα≥0,α=1···N
(dE([εj1···jN , εh1···hN ]H))ρ0

=
∑

jα+hα=iα,jα,hα≥0,α=1···N
([dEεj1···jN , εh1···hN ]H)− [εj1···jN , dEεh1···hN ]H))ρ0

= 2
∑

jα+hα+pα=iα

([εj1···jN , [εh1···hN , εp1···pN ]H ]H +

[εh1···hN , [εp1···pN , εj1···jN ]H ]H + [εp1···pN , [εj1···jN , εh1···hN ]H ]H)ρ0

+
∑

2jα+hα=iα

(2[εj1···jN , [εj1···jN , εh1···hN ]H ]H

+[εh1···hN , [εj1···jN , εj1···jN ]H ]H)ρ0 +
∑

3jα=iα

[εj1···jN , [εj1···jN , εj1···jN ]H ]Hρ0

= 0

The 2nd equality holds by the definition of [·, ·]H and dE ; the 3rd equality
is the induction; and the last equality holds since the Jacobian identity.

Next, we show that ψi1···iN is ∂H -exact by induction on i1 + · · ·+ iN = k,
and there exists an unique εi1...iNρ0, such that εi1...iNρ0 is ∂H -exact, ∂

∗
H -

closed for any i1 + · · ·+ iN = k ≥ 2.
Since εi ∈ H2

dE
(M,∧∗E∗), in Calabi-Yau case, we have εiρ0 ∈

H2
∂H

(M,∧∗T ∗M ). Hence4∂H
(εiρ0) = 4∂H (εiρ0) = 0 since4∂H = 4∂H

. So we

get ∂H(εiρ0) = 0.
Therefore, for k = 2, by using the formula (3.1) in Lemma 3.2, we have

ψij := −1

2
([εi, εj ]H + [εi, εj ]H)

=
1

2
∂H((εiεj + εjεi)ρ0),

i.e. ψij is ∂H -exact.
Since

1

2
∂H∂H(εiεjρ0 + εjεiρ0) := ∂Hψij

= 0
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by Proposition 4.2, we can get that the equation

∂Hεijρ0 =
1

2
∂H(εiεj + εjεi)ρ0

has the unique solution

εijρ0 =
1

2
∂
∗
HG∂H((εiεj + εjεi)ρ0).

which satisfying that εijρ0 is ∂
∗
H -closed and∂H -exact.

If we suppose that for i1 + · · ·+ iN = 2 to k − 1, εi1···iNρ0 exists uniquely,
such that εi1···iNρ0 is ∂H -exact, ∂

∗
H -closed hold. For i1 + · · ·+ iN = k, we

have

ψi1···iN := −1

2

∑
jα+hα=iα

[εj1···jN , εh1···hN ]Hρ0

=
1

2
∂H(

∑
jα+hα=iα

εj1···jN εh1···hNρ0)

is also ∂H -exact.
Since

1

2
∂H∂H(

∑
jα+hα=iα

εj1···jN εh1···hNρ0) := ∂Hψi1···iN

= 0,

by Proposition 4.2, we can get that the equation

∂Hεi1···iNρ0 =
1

2
∂H

∑
jα+hα=iα

εj1···jN εh1···hNρ0

has the unique solution

εi1···iNρ0 =
1

2
∂
∗
HG∂H(

∑
jα+hα=iα

εj1···jN εh1···hNρ0).

And by Proposition 4.2, we can get that H(εi1···iNρ0) =
0, εi1···iNρ is ∂H -exact, ∂

∗
H -closed, and ||εi1···iNρ0||2 ≤

1
4(∂H(

∑
jα+hα=iα

εj1···jN εh1···hNρ0), G∂H(
∑

jα+hα=iα
εj1···jN εh1···hNρ0)).

Step 2: We show ε(t) L2 converges at |t| ≤ 1
4ac by using the same con-

vergent power series as in the [12].



156 Kang Wei

Firstly, we have

||εk1···kNρ0|| :=
1

2
||∂HG∂∗H(

∑
iα+jα=kα

εi1···iN εj1...jNρ0)||

≤
∑

iα+jα=kα

||εi1···iN εj1···jNρ0||

≤
∑

iα+jα=kα

||εi1···iNρ0||s+α · ||εj1···jNρ0||,(5.1)

where k ≥ 2 ∈ N, 0 ≤ α ≤ 1. The 1st inequality holds since Lemma 4.1 and
the last inequality holds by the definition of the Hölder norms.

Secondly, we set {xi}∞i=1, such that x1 = a, xk = c
∑k−1

i=1 xixk−i just as
in Lemma 3.4 and c is a constant definite in inequality (3.2) after Lemma
3.3. We set c := max{1, c} which we still denote it as c. We will show that

xk ≥
∑

k1+···+kN=k

||εk1···kNρ0||s+α

by induction on k.
Since ρ0, εi, s ≥ 2, α fixed, we can assume that a =

max{
∑N

i=1 ||εiρ0||,
∑N

i=1 ||εiρ0||s+α, ||ρ0||} is a constant.
For k = 2, we have

x2 := cx1x1

= c(

N∑
i=1

||εiρ0||s+α)(

N∑
i=1

||εiρ0||s+α)

≥ 1

2

N∑
i,j=1

||∂∗HG∂H(εiεjρ0)||s+α

≥
N∑

i,j=1

||εijρ0||s+α.

The 1st inequality holds since Lemma 3.3, and the last inequality holds since
the construction of ε(t)

If for ≤ k − 1, the inequality above holds, for k, we have
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xk := c
∑
i+j=k

xixj

≥ c
∑
i+j=k

(
∑

i1+···+iN=i

||εi1···iNρ0||s+α)(
∑

j1+···+jN=j

||εj1···jNρ0||s+α)

≥ c
∑
i+j=k

(
∑

i1+···+iN=i

||εi1···iN ||s+α)(
∑

j1+···+jN=j

||εj1···jNρ0||s+α)

=
1

2

∑
i1+···+iN+j1+···+jN=k

||∂∗HG∂H(εi1···iN εj1···jNρ0)||s+α

≥
∑

k1+···+kN=k

||εk1···kNρ0||s+α.(5.2)

The 1st inequality holds since the induction, the 2nd equality holds since
ρ0 is fixed and we consider ||εi1···iNρ0||s+α equivalent to ||εi1···iN ||s+α, and the
constant c′ is different, for simplity, we consider max{c, c′} and still denote
as c.

We also need to show

xk ≥
∑

k1+···+kN=k

||εk1···kNρ0||

by induction on k.
For k = 2, we have

x2 := cx1x1

= c(

N∑
i=1

||εiρ0||s+α)(

N∑
i=1

||εiρ0||)

≥
N∑

i,j=1

||εijρ0||.

If for ≤ k − 1, the inequality above holds, for k, we have
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xk := c
∑
i+j=k

xixj

≥ c
∑
i+j=k

(
∑

i1+···+iN=i

||εi1···iNρ0||s+α)(
∑

j1+···+jN=j

||εj1···jNρ0||)

≥ 1

2

∑
i1+···+iN+j1+···+jN=k

||∂∗HG∂Hεi1···iN εj1···jNρ0||

≥
∑

k1+···+kN=k

||εk1···kNρ0||

by formula (5.1).
Hence, we get

||ε(t)ρ0||

:= ||
N∑
i=1

εiρ0t
i +

∑
k≥2,k1+···+kN=k

εk1···kNρ0(t
1)k1 · · · (tN )kN ||

:= ||
N∑
i=1

εiρ0|| · |ti|+
1

2

∑
k≥2,k1+···+kN=k

||∂∗HG∂H
∑

iα+jα=kα

εi1···iN

εj1···jNρ0(t
1)k1 · · · (tN )kN ||

≤
N∑
i=1

||εiρ0|| · |ti|+
1

2

∑
k≥2,k1+···+kN=k

||
∑

iα+jα=kα

εi1···iN εj1···jNρ0||

·|t1|k1 · · · |tN |kN

≤ a|t|+ c
∑

k≥2,i1+···+iN+j1+···+jN=k

||εi1···iNρ0||s+α · ||εj1···jNρ0|| · |t|k

(t = maxi{ti})
≤ x1|t|+

∑
k≥2

xk|t|k

< +∞

at |t| ≤ 1
4ac .

�
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Remark 5.2. (1)Since

∂H(εi1···iNρ0) = −1

2

∑
jα+hα=iα,jα,hα≥0,α=1···N

[εj1···jN , εh1···hN ]Hρ0,

(i1 + · · ·+ iN = k)

∂
∗
H(εi1···iNρ0) = 0,

we can get

4∂H
(εi1···iNρ0) = ∂

∗
H∂H(εi1···iNρ0)

= −1

2

∑
jα+hα=iα,jα,hα≥0,α=1···N

∂
∗
H([εj1···jN , εh1···hN ]Hρ0).

So by the assumption that εiρ0 is smooth on M , and 4∂H
is a strongly

elliptic operator, we can get that εi1···iNρ0 is smooth on M by the elliptic
regularity theorem in [17], and the induction on i1 + · · ·+ iN = k.

(2)From P281 in [11], we have known that ε(t)ρ0 is smooth on M ×4δ

for a sufficiently small neighbourhood of t ∈ 4δ.

6. Global canonical family

In this section, if we assume that the deformation is smooth in a fixed
neighbourhood, we shall get the global canonical sections for deformations
of compact H-twisted Generalized Kähler manifold by using the parallel
method in [12] and [22] if we assume the existence of a global canonical
family of deformation. There are already many works on [18, 19].

First, we have the following equivalence to criterion the holomorphism
with respect to the generalized complex structure.

Proposition 6.1. [20] On compact generalized Kähler manifold M . For
any ρ ∈ U0,M , e−ε(t)ρ is holomorphic with respect to the generalized complex
structure Jε(t) induced by ε(t) on Mt if and only if

∂Hρ− ∂H(ε(t)ρ) = 0.

Proof. Since if A ∈ E,

((1 + ε)A)ρ = e−εAeερ,
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(See P16, Proposition 7 in [14].) we have

((1 + ε)A)e−ερ0 = e−εAeεe−ερ

= e−εAρ

= 0.

The last equality is by the definition of U0. Hence we get e−ε(t)ρ ∈ U0,Mt
.

Since

eεdHe
−ερ = ∂Hρ− ∂H(ερ),

we have

dHe
−ερ = 0⇔ ∂Hρ− ∂H(ερ) = 0.

Since e−ερ ∈ U0,Mt
, we have

∂H,te
−ερ = 0,

where dH = ∂H,t + ∂H,t on Mt. So we have

∂H,te
−ερ = 0⇔ ∂Hρ− ∂H(ερ) = 0.

�

In compact generalized Calabi-Yau case, we have

Proposition 6.2 (See P16, Proposition 7 in [14].). If we assume that
ε(t) smooth with fixed convergence radius exists, then

ε(t)ρ0 ∈ H2
∂H

(M,∧∗T ∗M ),

where H2
∂H

(M,∧∗T ∗M ) is the cohomology group of the complex (∧∗T ∗M , ∂H),
and

ρct := e−ε(t)ρ0

holomorphic with respect to Jε(t) with fixed convergence radius.
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Proof. For any test form η on M ,

(∂H(ε(t)ρ0), η) = (ε(t)ρ0, ∂
∗
Hη)

= limk→∞
∑
‖I‖≤k

(εIt
Iρ0, ∂

∗
Hη)

=

N∑
i=1

(∂Hεit
iρ0, η) + limk→∞

∑
2≤‖I‖≤k

(∂HεIt
Iρ0, η)

= 0.

The last equality holds since εiρ0 are harmonic, and εIρ0 are ∂H -exact
for ‖I‖] ≥ 2.
So we have ∂H(ε(t)ρ0) = 0 in the distribution sense.
Also, ∂Hρ0 = 0, and ε(t) is smooth by assumption, we have ∂Hρ−
∂H(ε(t)ρ) = 0 and by Propositon 6.1, we get the conclusion. �

Proposition 6.3. Let (Mt, Jε(t)) be the deformation of a compact H-twisted
generalized Calabi-Yau manifold M , then we have

[ρct ] = [ρ0] +

N∑
i=1

[−εiρ0]t+O(|t|2),

where [ρ0] means a representation in H0
∂H

(M,∧∗T ∗M ), and O(|t|2) denotes
the terms in
H4
∂H

(M,∧∗T ∗M )
⊕
· · ·

⊕
H2n
∂H

(M,∧∗T ∗M ) of order at least 2 in t.

Proof. On convergence radius, we have

[ρct ] := [ρ0] +

N∑
i=1

[H(−εiρ0)]t+
∑
I,|I|≥2

[H((−1)|I|εIρ0)]t
|I| + · · ·

= [ρ0] +

N∑
i=1

[−εiρ0]t+O(|t|2),

where tI := (t1)
i1 ...(tN )iN , εI := εi1...tN .

The last equality holds since εiρ0 are harmonic, and εIρ0 are ∂H -exact
in Calabi-Yau case.

�

Next, like in [12], as an extension of the case of the generalized Calabi-
Yau manifolds, we assume that on compact generalized Kähler M , there
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exists

ε(t) := εit
i + εijt

itj + · · ·+ εi1···iN (t1)i1 · · · (tN )iN + · · · ,

satisfying
(1) εi form a basis of H2

dE
(M,∧∗E∗);

(2) the integral condition: dEε(t) + 1
2 [ε(t), ε(t)]H = 0;

(3)||ε(t)ρ0|| ≤
∑
‖I‖≥1 ||εI ||||ρ0||t‖I‖ < +∞ is convergence in t < 1

4ac , where

for any ρ0 6= 0 ∈ H0
∂H

(M,∧∗T ∗M ), xk ≥
∑

k1+···+kN=k ||εk1···kN ||s+α, xk is in

Lemma 3.4, and ε(t) has the convergence as the same as that in Theorem
5.1. As an analogue, we can get that

Proposition 6.4. If we assume that ε(t) smooth with convergence radius
1

4ac exists, and (Mt, J−ε(t)) be the deformation, then for any ρ0 6= 0 ∈
H0
∂H

(M,∧∗T ∗M ), we can construct a smooth power series

ρt := ρ0 +
∑

K,|K|≥1

ρKt
K ∈ U0,

such that
(1) ρct := e−ε(t)ρt holomorphic with respect to Jε(t),

(2) ρK is ∂H-exact and ∂
∗
H-closed, (|K| ≥ 1)

(3) ρt converges with radius 1
16a2c2 .

Proof. In step 1, we construct ρt, in step 2, we prove ρt is L2 convergent in
t < 1

16a2c2 , and in step 3, we prove ρt is smooth.

Step 1: We shall construct ρt.
If ρct := e−ε(t)ρt is holomorphic with respect to Jε(t), by Proposition 6.1,

we have

∂Hρt = ∂H(ε(t)ρt).

Let

ρt := ρ0 +
∑
k≥1

∑
i1+···+iN=k

ρi1···iN (t1)i1 · · · (tN )iN ∈ U0,M ,

ε(t) :=
∑
k≥1

∑
i1+···+iN=k

εi1···iN (t1)i1 · · · (tN )iN ∈ ∧2E∗.
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Comparing the coefficients of t = (t1, · · · , tN ), we have

k = 0, ∂Hρ0 = 0,

k ≥ 1, ∂Hρi1···iN = ∂H(
∑

jα+hα=iα,jα,hα≥0
εj1···jNρh1···hN ). (i1 + · · ·+ iN = k)

Let

ηi1···iN := ∂H(
∑

jα+hα=iα,jα,hα≥0
εj1···jNρh1···hN ).

We shall prove that ∂Hηi1···iN = 0 by induction on i1 + · · ·+ iN = k and
construct ρi1···iN .

For k = 1, we have

∂Hηi := ∂H∂H(εiρ0)

= −∂H∂H(εiρ0)

= −∂H(dEεi)ρ0

= 0.

So by Proposition 4.2, the equation

∂Hρi = ∂H(εiρ0)

has the unique solution

ρi = ∂
∗
HG∂H(εiρ0).

which satisfying that ρi is ∂
∗
H -closed, ∂H -exact, Hρi = 0, and

||ρi||2 ≤ (∂H(εiρ0), G∂H(εiρ0)).
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If we suppose that for i1 + · · ·+ iN ≤ k − 1, ∂Hηi1···iN = 0 holds and
ρi1···iN is constucted. For i1 + · · ·+ iN = k, we have

∂Hηi1···iN := ∂H∂H(
∑

jα+hα=iα,jα,hα≥0
εj1···jNρh1···hN )

= −∂H∂H(
∑

jα+hα=iα,jα,hα≥0
εj1···jNρh1···hN )

= −∂H
∑

jα+hα=iα

((dEεj1···jN )ρh1···hN + εj1···jN (∂Hρh1···hN ))

= −∂H
∑

jα+hα=iα

(−
∑

lα+pα=jα

1

2
[εl1···lN , εp1···pN ]Hρh1···hN

+
∑

lα+pα=hα

εj1···jN∂H(εl1···lNρp1···pN ))

=
1

2
∂H

∑
lα+pα+hα=iα

(−∂H(εl1···lN εp1···pNρh1···hN )

+εl1···lN∂H(εp1···pNρh1···hN ) + εp1···pN∂H(εl1···lNρh1···hN )

−∂H(
∑

lα+pα=hα

εj1···jN∂H(εl1···lNρp1···pN ))

= ∂H
∑

lα+pα+hα=iα

+εl1···lN∂H(εp1···pNρh1···hN )

−∂H(
∑

lα+pα=hα

εj1···jN∂H(εl1···lNρp1···pN ))

= 0.

The 3rd equality holds since the definition of Lie derivation dE ; the
4th equality is by induction and using the integral condition of ε(t); the
5th equality holds since Lemma 3.2 and each εi1···iN ∈ ∧2E∗; and the 6th
equality holds since ∂2H = 0.

From the discussion above, we know that the conditions of Proposition
4.2 hold. So we have the equation

∂Hρi1···iN = ∂H(
∑

jα+hα=iα,jα,hα≥0
εj1···jNρh1···hN )

has the unique solution

ρi1···iN = ∂
∗
HG∂H(

∑
jα+hα=iα,jα,hα≥0

εj1···jNρh1···hN ) ∈ U0,M .
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which satisfying that ρi1···iN is ∂
∗
H -closed, ∂H -exact, Hρi1···iN = 0, and

||ρi1···iN ||2 ≤ (∂H(
∑

jα+hα=iα

εj1···jNρh1···hN ), G∂H(
∑

jα+hα=iα

εj1···jNρh1···hN )).

Step 2: We show ρt is L2 converges at t < 1
16a2c2 .

We have already known that∑
k1+·+kN=k

||ρk1···kN ||

:=
∑

k1+·+kN=k

||∂∗HG∂H(
∑

jα+hα=kα,jα,hα≥0
εj1···jNρh1···hN )||

≤ (2c)
∑

k1+·+kN=k

||
∑

jα+hα=kα,jα,hα≥0
εj1···jNρh1···hN )||

≤
∑

k1+·+kN=k

∑
jα+hα=kα,jα,hα≥0

(2c)||εj1···jN ||s+α · ||ρh1···hN ||.(6.1)

The 1st inequality holds since Lemma 4.1, and the 2nd inequality holds by
the definition of the Hölder norms.

Also we set {xi}∞i=1, such that x1 = 2a2c, xk = (2c)
∑k−1

i=1 xixk−i just as
in Lemma 3.4. As we assume the existence of ε(t) which is constructed in
Theorem 5.1, and we also assume that xk ≥

∑
k1+···+kN=k ||εk1···kNρ0||s+α.

Next, we will show

xk ≥
∑

k1+···+kN=k

||ρk1···kN ||

by induction on k.
For k = 1, we have

x1 ≥ (2c)(

N∑
i=1

||εi||s+α)||ρ0||

≥
N∑
i=1

||ρi||.

If for ≤ k − 1, the inequality above holds, for k, we have
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xk := (2c)
∑
i+j=k

xixj

≥ (2c)
∑
i+j=k

(
∑

i1+···+iN=i

||εi1···iN ||s+α)(
∑

j1+···+jN=j

||ρj1···jN ||)

≥ (2c)
∑

i1+···+iN+j1+···+jN=k

||εi1···iN ||s+α · ||ρj1···jN ||

≥
∑

k1+···+kN=k

||ρk1···kN ||.

The 1st inequality is the induction and the formula (5.2), the in the 2nd
inequality we need that ε(t) has the convergence in 5.1, and the last inequal-
ity holds since the formula (6.1).

Hence, we get

||ρt|| := ||ρ0 +
∑
k≥1

∑
k1+···+kN=k

ρk1···kN (t1)k1 · · · (tN )kN ||

≤ ||ρ0||+
∑
k≥1

∑
k1+···+kN=k

||ρk1···kN (t1)k1 · · · (tN )kN ||

≤ a+ (2c)
∑

k≥1,i1+···+iN+j1+···+jN=k

||εi1···iN ||s+α · ||ρj1···jN || · |t|k

(t = maxi{ti})
≤ a+ 2a2c|t|+ (2c)

∑
k≥2,i1+···+iN+j1+···+jN=k

||εi1···iN ||s+α · ||ρj1···jN ||

·|t|k

≤ a+ x1|t|+
∑
k≥2

xk|t|k

< +∞

at |t| ≤ 1
16a2c2 .

Step 3:
Since ρct := e−ε(t)ρt is holomorphic with respect to Jε(t), we can get that

∂H,tρ
c
t = 0.

Since ρct := e−ε(t)ρt ∈ U0,t is the canonical bundle in Mt, where

∧∗T ∗Mt
= U0,t ⊕ U1,t ⊕ ...⊕ U2n,t
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is the decomposition in Definition 2.3, we can get that

∂
∗
H,tρ

c
t = 0

by ∂
∗
H,tρ

c
t ∈ U−1,t = 0.

So we get

4∂
∗
H,t
ρct = 0.

Thus, by the fact that4∂
∗
H,t

is a strongly elliptic operator and the elliptic

regularity theorem, we get that ρct is smooth.
�

Proposition 6.5. We have

[ρct ] = [ρ0] +

N∑
i=1

[H(−εiρ0)]t+O(|t|2),

where [ρ0] means a representation in H0
∂H

(M,∧∗T ∗M ), and O(|t|2) denotes
the terms in
H4
∂H

(M,∧∗T ∗M )
⊕
· · ·

⊕
H2n
∂H

(M,∧∗T ∗M ) of order at least 2 in t.

Proof. On convergence radius, we have

[ρct ] := [ρ0] +

N∑
i=1

[H(−εiρ0)]t+
∑
I,|I|≥2

[H((−1)|I|εIρ0)]t
|I|

+
∑

i,J,|J |≥1

[H(−εiρJ)]t1+|J | +
∑

I,J,|I|≥2,|J |≥1

[H((−1)|I|εIρJ)]t|I|+|J |

= [ρ0] +

N∑
i=1

[H(−εiρ0)]t+O(|t|2),

where tI := (t1)
i1 ...(tN )iN , εI := εi1...tN .

�

Remark 6.6. Here −εiρ0 not necessary in H2
∂H

(M,∧∗T ∗M ). In Calabi-Yau

case, −εiρ0 ∈ H2
∂H

(M,∧∗T ∗M ) and thus ∂H(−εiρ0) = 0, all ρK = 0 just as in
Proposition 6.2.
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