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A New Boundary Rigidity Theorem for

Holomorphic Self-Mappings of the Unit

Ball in Cn

Taishun Liu∗ and Xiaomin Tang

Abstract: In this paper, we give some new boundary rigidity
properties for holomorphic self-mappings of the unit ball in Cn.
Compared with the previous related work, our result only requires
conditions on the first-order derivatives, thought at n linearly inde-
pendent different boundary points.
Keywords: Holomorphic mapping, Schwarz lemma, Boundary rigid-
ity, Unit ball.

1. Introduction

Let C be the complex plane, and let D be the unit disk in C. Denote by
Cn the n-dimensional complex Hilbert space with the inner product and the
norm given by

〈z, w〉 =

n∑
j=1

zjwj , ‖z‖ = (〈z, z〉)
1

2 ,

where z, w ∈ Cn. Let

Bn = {z ∈ Cn : ‖z‖2 = |z1|2 + · · ·+ |zn|2 < 1}

be the open unit ball in Cn. The unit sphere is defined by ∂Bn = {z ∈ Cn :
‖z‖ = 1}. Let H(Bn) be the family of all holomorphic mappings from Bn to
Cn. Throughout this paper, we write a point z ∈ Cn as a column vector in
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the following n× 1 matrix form

z =


z1
z2
...
zn

 ,

and the symbol ′ stands for the transpose of vectors or matrices. For f ∈

H(Bn), we also write it as the n× 1 matrix form f = (f1, f2, · · · , fn)′, where
fj is a holomorphic function from Bn to C, j = 1, · · · , n. The complex Jaco-
bian matrix of f ∈ H(Bn) at a point a ∈ Bn is given by

Jf (a) =

(
∂fj
∂zk

(a)

)
n×n

=

 ∂f1
∂z1

(a) · · · ∂f1
∂zn

(a)

. . . . . . . . . . . . . . . . . . . .
∂fn
∂z1

(a) · · · ∂fn
∂zn

(a)

 .

It is clear that Jf (a) is a linear mapping from Cn to Cn. Denote by
Aut(Bn) the set of all holomorphic automorphisms of Bn. In what follows,
a domain is a connected open subset in Cn.

The Schwarz lemma is one of the most important results in the classi-
cal complex analysis. And almost all results in the holomorphic geometric
function theory have the Schwarz lemma lurking in the background. Here
we refer the reader to [1-7], as well as, many references therein for discus-
sions related to such studies. From the point of view of applications, it has
been a very natural task to obtain various boundary versions of the Schwarz
lemma. In the case of one complex variable, the following boundary Schwarz
lemma is classical:

Theorem 1.1 ([8]) Let f : D −→ D be a holomorphic function with
f(0) = 0 and let f be holomorphic at z = 1 with f(1) = 1. Then the following
two conclusions hold.

(1) f ′(1) ≥ 1.
(2) f ′(1) = 1 if and only if f(z) ≡ z.

Theorem 1.1 has the following extension.

Theorem 1.1′ Let f : D −→ D be a holomorphic mapping with f(0) =
0 and let f be holomorphic at z = α ∈ ∂D with f(α) = β ∈ ∂D. Then the
following two conclusions hold.

(1) βf ′(α)α ≥ 1.
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(2) βf ′(α)α = 1 if and only if f(z) ≡ eiθz and eiθ = βα−1, where θ ∈ R.

When α = β = 1, Theorem 1.1′ is just Theorem 1.1.

Remark 1.1 Theorem 1.1′ needs only to assume that f is C1 up to the
boundary of the unit disk near z = α.

In [9, 10], Osserman and Chelst studied the Schwarz lemma at the
boundary on the unit disk, respectively. In several complex variables, Burns
and Krantz obtained a new Schwarz lemma at the boundary, which gives a
new boundary rigidity theorem for holomorphic self-mappings of a bounded
strongly pseudoconvex domain (see [11]). Huang obtained a sharp boundary
version of the Schwarz lemma for holomorphic self-mappings of simply con-
nected strongly pseudo-convex domains which have an interior fixed point in
[12]. See [13] for more on these matters. These results are stated as follows:

Theorem 1.2 ([11]) Let Ω be a bounded strongly pseudoconvex domain
in Cn. Let p ∈ ∂Ω, and let f : Ω→ Ω be a holomorphic mapping such that

f(z) = z +O(‖z − p‖4)

as z → p. Then f(z) ≡ z.

Theorem 1.3 ([12]) Let Ω ⊂⊂ Cn(n > 1) be a simply connected pseu-
doconvex domain with C∞ boundary. Suppose that p ∈ ∂Ω is a strongly
pseudoconvex point with at least C3 boundary. If f : Ω→ Ω is a holomor-
phic mapping such that f(z0) = z0 for some z0 ∈ Ω and

f(z) = z + o(‖z − p‖2)

as z → p, then f(z) ≡ z.

In [14], Huang studied a semi-rigidity property for holomorphic map-
pings between unit balls with different dimensions. And Krantz explored
versions of the Schwarz lemma at the boundary point of a domain, and
reviewed results of several authors (see [15]).

In this paper, we prove a new version of the boundary rigidity theorem
for holomorphic self-mappings of the unit ball. With different from those
results in [10-13, 15], we need not consider the partial derivatives of order 2
and order 3.
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2. Some lemmas

In this section, we exhibit some notations and collect several basic
lemmas, which will be used in the subsequent section.

Lemma 2.1 ([16]) For given a ∈ Bn, let A = sIn + aa′

1+s , where s =√
1− ‖a‖2, In is the unit square matrix of order n. Then

ϕa(z) = A
a− z

1− a′z

is a holomorphic automorphism of Bn which interchanges 0 and a. Moreover,
ϕa is biholomorphic in a neighborhood of Bn, and

A2 = s2In + aa′, Aa = a, Jϕa
(z) = A

[
− In

1− a′z
+

(a− z)a′

(1− a′z)2

]
.

In the case of the unit disk, ϕa is just the Möbius transformation. That
is,

ϕa(z) =
a− z
1− az

, z ∈ D.

In [17], Wu proved what is now called the Carathéodory-Cartan-Kaup-
Wu theorem, which generalizes the classical Schwarz lemma for holomorphic
mappings to higher dimension. This theorem is stated as follows:

Lemma 2.2 ([17]) Let Ω be a bounded domain in Cn, and let f be a
holomorphic self-mapping of Ω which fixes a point p ∈ Ω. Then

(1) The eigenvalues of Jf (p) all have modulus not exceeding 1;
(2) | det Jf (p)| ≤ 1;
(3) If | det Jf (p)| = 1, then f is a biholomorphism of Ω.

Lemma 2.3 ([16]) Let ϕ ∈ Aut(Bn) and ϕ(0) = 0. Then ϕ is a unitary
transformation on Cn. This is, there exists a unique unitary square matrix
U such that

ϕ(z) = Uz

for any z ∈ Bn.

Lemma 2.4 ([18]) Let T ∈ Cm×n be an m× n matrix and 1 ≤ m ≤ n.
Then there are unitary square matrices U of order m and V of order n
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respectively such that

T = U

 λ1 0 0 · · · 0
. . . · · ·

0 λm 0 · · · 0

V,

where λ1 ≥ · · · ≥ λm ≥ 0, and λ21, · · · , λ2m are the all eigenvalues of TT
′
.

3. Main results

In this section, we first generalize Theorem 1.1′ to higher dimension.
As application, we give a new boundary rigidity theorem for holomorphic
self-mappings of the unit ball.

Theorem 3.1 Let f : Bn −→ Bn be a holomorphic mapping with f(0) =
0. We have the following two conclusions.

(1) If f is holomorphic at z = α ∈ ∂Bn with f(α) = β ∈ ∂Bn, then

β
′
Jf (α)α ≥ 1.

(2) If there exist linearly independent α1, · · · , αn ∈ ∂Bn such that f
is holomorphic at z = αk with f(αk) = βk ∈ ∂Bn (k = 1, · · · , n), then the
following n equalities

βk
′
Jf (αk)αk = 1 (k = 1, · · · , n) (3.1)

hold if and only if

f(z) ≡ Uz

and U = (β1, · · · , βn)(α1, · · · , αn)−1 is a unitary square matrix of order n.

When n = 1, Theorem 3.1 is just Theorem 1.1′.

Proof. (1) Take

g(ζ) = β
′
f(ζα), ζ ∈ D.

Then g : D −→ D is a holomorphic function with g(0) = 0 and g is holomor-
phic at ζ = 1 with g(1) = 1. Hence, by Theorem 1.1, we obtain

1 ≤ g′(1) = β
′
Jf (α)α.

The proof of (1) is complete.
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(2) Suppose that the equalities hold in (3.1). For any k = 1, · · · , n, take

gk(ζ) = βk
′
f(ζαk), ζ ∈ D.

From f(αk) = βk ∈ ∂Bn and (3.1), we know that gk : D −→ D is a holomor-
phic function with gk(0) = 0, gk is holomorphic at ζ = 1 with gk(1) = 1 and

g′k(1) = βk
′
Jf (αk)αk = 1 (k = 1, · · · , n). Hence, by Theorem 1.1, we obtain

gk(ζ) ≡ ζ for each k = 1, · · · , n. It follows that

1 = g′k(0) = βk
′
Jf (0)αk, k = 1, · · · , n. (3.2)

Assume that

f(z) = Jf (0)z + P2(z) + P3(z) + · · · , z ∈ Bn,

where Pj(z) is a homogenous polynomial mapping of order j, j = 2, 3, · · · .
Then

f(eiθz) = Jf (0)zeiθ + P2(z)e
i2θ + P3(z)e

i3θ + · · · , z ∈ Bn, θ ∈ R.

This implies

1

2π

∫ 2π

0
f(eiθz)e−iθdθ = Jf (0)z.

It follows that for any z ∈ Bn,

‖Jf (0)z‖ ≤ 1

2π

∫ 2π

0
‖f(eiθz)‖dθ < 1. (3.3)

That means

‖Jf (0)αk‖ ≤ 1, k = 1, · · · , n. (3.4)

Thus, (3.2) and (3.4) yield

‖Jf (0)αk‖ = 1.

This, together with ‖βk‖ = 1 and (3.2), gives

βk = Jf (0)αk, k = 1, · · · , n.

Hence,

Jf (0) = (β1, · · · , βn)(α1, · · · , αn)−1.
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On the other hand, by Lemma 2.4, we set

Jf (0) = U

 λ1 0
. . .

0 λn

V,

where U and V are both unitary square matrices of order n, and λ1 ≥ λ2 ≥
· · · ≥ λn ≥ 0. Then

U
′
βk = U

′
Jf (0)αk =

 λ1 0
. . .

0 λn

 (V αk) ∈ ∂Bn, k = 1, · · · , n. (3.5)

This shows that

 λ1 0
. . .

0 λn

 maps these linearly independent unit

vectors V α1, · · · , V αn into the unit vectors.

Now, we claim that λ1 = · · · = λn = 1. It follows from (3.3) that

0 ≤ λn ≤ · · · ≤ λ2 ≤ λ1 ≤ 1.

So without loss of generality, we assume that

0 ≤ λn < 1.

Write

A1 = (V α1, · · · , V αn) =


a11 a12 · · · a1n
a21 a22 · · · a2n
. . . . . . . . . . . . . . . . . . .
an1 an2 · · · ann

 .

Since α1, · · · , αn are linearly independent, we know that A1 is a nonsingular
square matrix of order n, and

(a1j , a2j , · · · , anj)′ ∈ ∂Bn, j = 1, · · · , n. (3.6)

By (3.5) and (3.6), we have

λ21|a1j |2 + · · ·+ λ2n|anj |2 = 1 = |a1j |2 + · · ·+ |anj |2, j = 1, · · · , n.

It follows from this and 0 ≤ λn < 1 that

anj = 0, j = 1, · · · , n.
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This contradicts the nonsingularity of A1. Thus,

λ1 = · · · = λn = 1.

Hence, Jf (0) is a unitary square matrix and | det Jf (0)| = 1. By Lemma 2.2
and Lemma 2.3, we get

f(z) ≡ Jf (0)z

and Jf (0) = (β1, · · · , βn)(α1, · · · , αn)−1 is a unitary square matrix of order
n.

Conversely, suppose that

f(z) ≡ Uz

and U = (β1, · · · , βn)(α1, · · · , αn)−1 is a unitary square matrix of order n.
Then

βk
′
Jf (αk)αk = αk

′U
′
Uαk = 1, k = 1, · · · , n.

The proof of (2) is complete.

In particular, Theorem 3.1 shows that if f(αk) = αk (k = 1, · · · , n), then
the equalities hold in (3.1) if and only if

f(z) ≡ z.

Thus, we obtain the following boundary rigidity theorem for holomorphic
self-mappings of the unit ball in Cn.

Corollary 3.1 (Boundary Rigidity Theorem) Let f : Bn −→ Bn be
a holomorphic mapping with f(0) = 0 and there exist linearly independent
α1, · · · , αn ∈ ∂Bn such that f is holomorphic at z = αk with f(αk) = αk ∈
∂Bn (k = 1, · · · , n). Then the following n equalities

αk
′Jf (αk)αk = 1 (k = 1, · · · , n) (3.7)

hold if and only if

f(z) ≡ z.

When n = 1, Corollary 3.1 is just (2) of Theorem 1.1.

Remark 3.1 In Corollary 3.1, one of the conditions is that it requires
n fixed points which are linearly independent on ∂Bn. If we remove even one
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fixed point, then f(z) ≡ z does not hold. In fact, write

ej = (0, · · · , 0,
j-th︷︸︸︷
1 , 0, · · · , 0)′ ∈ ∂Bn, j = 1, · · · , n.

Take

f(z) = (z1, · · · , zn−1, zn(z21 + · · ·+ z2n−1))
′, z ∈ Bn.

Then for each z ∈ Bn, we obtain

‖f(z)‖2

= |z1|2 + · · ·+ |zn−1|2 + |zn|2|z21 + · · ·+ z2n−1|2

≤ |z1|2 + · · ·+ |zn−1|2 + |zn|2(|z1|2 + · · ·+ |zn−1|2)2

< 1− |zn|2 + |zn|2(1− |zn|2)
≤ 1.

Hence, f : Bn −→ Bn is a holomorphic mapping and f(0) = 0. It is obvious
that f is holomorphic at ej ,

f(ej) = ej and Jf (ej) = In, j = 1, · · · , n− 1.

It is clear that the equality holds in (3.7). However,

f(z) = (z1, · · · , zn−1, zn(z21 + · · ·+ z2n−1))
′ 6= z.

Therefore, we must make use of at least n fixed points on ∂Bn in Corollary
3.1, which can imply the conclusion.

Remark 3.2 In Corollary 3.1, it follows from f(0) = 0 and α1, · · · , αn
are linearly independent that there are 2C0

n conditions. And for any k =
1, · · · , n, f(αk) = αk ∈ ∂Bn and αk

′Jf (αk)αk = 1 show that there are 2C1
n

conditions. Thus, Corollary 3.1 uses

2C0
n + 2C1

n = 2(n+ 1)

conditions to get f(z) ≡ z.
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In Theorem 1.2, f(z) = z +O(‖z − p‖4) if and only if

f(p) = p, Jf (p) = In,

∂2f

∂zj∂zk
(p) = 0, j, k = 1, · · · , n, (3.8)

and
∂3f

∂zj∂zk∂zl
(p) = 0, j, k, l = 1, · · · , n. (3.9)

On the other hand, Jf (p) = In if and only if ∂f
∂zk

(p) = ek, k = 1, · · · , n,

which means that there are C1
n conditions. Meanwhile, (3.8) and (3.9) show

that there are C2
n+1 and C3

n+2 conditions, respectively. From this and f(p) =
p, Theorem 1.2 uses

C0
n + C1

n + C2
n+1 + C3

n+2 = 1 + n+
n(n+ 1)

2
+
n(n+ 1)(n+ 2)

6

conditions to get f(z) ≡ z.

In Theorem 1.3, f(z) = z + o(‖z − p‖2) if and only if f(p) = p, Jf (p) =

In and ∂2f
∂zj∂zk

(p) = 0 for j, k = 1, · · · , n. This, together with f(z0) = z0,
means that Theorem 1.3 uses

2C0
n + C1

n + C2
n+1 = 2 + n+

n(n+ 1)

2

conditions to get f(z) ≡ z.

Compared with Theorem 1.2 and Theorem 1.3, Corollary 3.1 uses fewer
conditions. Of course, we focus on the unit ball in Cn, which is a special
strongly pseudoconvex domain or strongly convex domain.

Next, we present a version of the boundary Schwarz lemma on the unit
disk, which is an extension of Theorem 1.1′ as well.

Theorem 3.2 Let f : D −→ D be a holomorphic mapping with f(0) = a
and let f be holomorphic at z = α ∈ ∂D with f(α) = β ∈ ∂D. Then the
following two conclusions hold.

(1) βf ′(α)α ≥ |1−aβ|
2

1−|a|2 .

(2) βf ′(α)α =
|1−aβ|2
1−|a|2 (3.10)

if and only if f(z) ≡ ϕa(eiθz) and eiθ = ϕa(β)α−1, where θ ∈ R.
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When a = 0, Theorem 3.2 is just Theorem 1.1′.

Proof. Take

g(z) = ϕa ◦ f(z), z ∈ D.

Then by Lemma 2.1, g : D −→ D is a holomorphic function with g(0) = 0 and
g is holomorphic at z = α with g(α) = ϕa(β) ∈ ∂D. It follows from Theorem
1.1′ that

1 ≤ ϕa(β)g′(α)α

= ϕa(β)ϕ′a(β)f ′(α)α

= ϕa(β)

[
−(1− |a|2)
(1− aβ)2

]
f ′(α)α

=
a− β
1− aβ

[
−(1− |a|2)
(1− aβ)2

]
f ′(α)α

=
β − a

(1− aβ)β

(
1− |a|2

|1− aβ|2

)
βf ′(α)α

= βf ′(α)α

(
1− |a|2

|1− aβ|2

)
.

This gives

βf ′(α)α ≥ |1− aβ|
2

1− |a|2
.

The proof of (1) is complete.
Suppose that the equality holds in (3.10). Then ϕa(β)g′(α)α = 1, which

implies g(z) ≡ eiθz and eiθ = ϕa(β)α−1 by Theorem 1.1′, where θ ∈ R. That
is f(z) ≡ ϕa(eiθz).

Conversely, suppose that f(z) ≡ ϕa(eiθz) and eiθ = ϕa(β)α−1. Then a
simple calculation shows that the equality holds in (3.10). The proof of (2)
is complete.

Lastly, we establish the high-dimensional version of Theorem 3.2 as fol-
lows, which also extends Theorem 3.1.

Theorem 3.3 Let f : Bn −→ Bn be a holomorphic mapping with f(0) =
a. We have the following two conclusions.

(1) If f is holomorphic at z = α ∈ ∂Bn with f(α) = β ∈ ∂Bn, then

β
′
Jf (α)α ≥ |1− a

′β|2

1− ‖a‖2
.
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(2) If there exist linearly independent α1, · · · , αn ∈ ∂Bn such that f
is holomorphic at z = αk with f(αk) = βk ∈ ∂Bn (k = 1, · · · , n), then the
following n equalities

βk
′
Jf (αk)αk =

|1− a′βk|2

1− ‖a‖2
(k = 1, · · · , n) (3.11)

hold if and only if

f(z) ≡ ϕa(Uz)

and U = (ϕa(β1), · · · , ϕa(βn))(α1, · · · , αn)−1 is a unitary square matrix of
order n.

When n = 1, Theorem 3.3 is just Theorem 3.2.

Proof. It is clear that

g = ϕa ◦ f : Bn −→ Bn

is a holomorphic mapping with g(0) = 0. Moreover, by Lemma 2.1, we know
that g is holomorphic at α with g(α) = ϕa(β) ∈ ∂Bn. It follows from Theo-
rem 3.1 that

1 ≤ g(α)
′
Jg(α)α = ϕa(β)

′
Jϕa

(β)Jf (α)α. (3.12)

By Lemma 2.1, we obtain

ϕa(β)
′
Jϕa

(β)

=
a′ − β′

1− β′a
A2

[
− In

1− a′β
+

(a− β)a′

(1− a′β)2

]
=

1

|1− a′β|2
(a′ − β′)(s2In + aa′)

[
−In +

(a− β)a′

1− a′β

]
=

1

|1− a′β|2
[(1− β′a)a′ − s2β′]

[
−In +

(a− β)a′

1− a′β

]
=

1

|1− a′β|2

[
s2β
′ − (1− β′a)a′ + (1− β′a)

(‖a‖2 − a′β)a′

1− a′β
+
s2(1− β′a)a′

1− a′β

]

=
1

|1− a′β|2

[
s2β
′ − (1− β′a)

(
1− ‖a‖

2 − a′β
1− a′β

− 1− ‖a‖2

1− a′β

)
a′
]

=
1− ‖a‖2

|1− a′β|2
β
′
. (3.13)
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This, together with (3.12), implies

β
′
Jf (α)α ≥ |1− a

′β|2

1− ‖a‖2
.

The proof of (1) is complete.
Suppose that the equalities hold in (3.11). Then by (3.12) and (3.13),

we have

g(αk)
′
Jg(αk)αk = 1, k = 1, · · · , n.

Hence, by Theorem 3.1, we get

g(z) ≡ Uz

and

U = (g(α1), · · · , g(αn))(α1, · · · , αn)−1

is a unitary square matrix of order n. This, together with g(z) = ϕa(f(z))
and ϕa = ϕ−1a , gives

f(z) ≡ ϕa(Uz)

and U = (ϕa(β1), · · · , ϕa(βn))(α1, · · · , αn)−1 is a unitary square matrix of
order n.

Conversely, suppose that f(z) ≡ ϕa(Uz) and

U = (ϕa(β1), · · · , ϕa(βn))(α1, · · · , αn)−1

is a unitary square matrix of order n. Then similar to the proof in (3.13),
for any k = 1, · · · , n, we obtain

βk
′
Jf (αk)αk

= ϕa(Uαk)
′
Jϕa

(Uαk)Uαk

=
1− ‖a‖2

|1− a′Uαk|2
Uαk

′
Uαk

=
1− ‖a‖2

|1− a′ϕa(βk)|2
. (3.14)
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By Lemma 2.1, we have

1− a′ϕa(βk)

= 1− a′A a− βk
1− a′βk

= 1− a′ a− βk
1− a′βk

= 1− ‖a‖
2 − a′βk

1− a′βk

=
1− ‖a‖2

1− a′βk
, k = 1, · · · , n. (3.15)

Combine (3.14) and (3.15) to yield

βk
′
Jf (αk)αk =

|1− a′βk|2

1− ‖a‖2
, k = 1, · · · , n.

The proof of (2) is complete.

Remark 3.3 From the proof of Theorem 3.1, Theorem 3.2 and Theorem
3.3, it is clear that we need only to assume that f is C1 up to the boundary
of the unit ball or the unit disk near z = α1, · · · , αn and z = α, respectively.
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