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The Pro-Chern-Schwartz-MacPherson

Class for DM Stacks

Yunfeng Jiang

Abstract: We generalize the definition of Pro-Chern-Schwartz-
MacPherson (Pro-CSM) class of Aluffi for schemes to not neces-
sarily proper DM stacks. The Pro-CSM class of constructible func-
tions on a DM stack X can be similarly defined. In the case that
X is proper, the Pro-CSM class of the Behrend function of X is
the same as the Chern-Schwartz-MacPherson (CSM) class for the
Behrend function. The integration of this class over X gives rise
to the weighted Euler characteristic corresponding to the Behrend
function, thus proving a conjecture of Behrend.
Keywords: Pro-CSM class, Chern-Mather class, Behrend func-
tion, weighted Euler characteristic, Lagrangian intersection.

1. Introduction

The Chern-Schwartz-MacPherson (CSM) class for a singular algebraic vari-
ety is a generalization of the Chern class of smooth varieties. In Section 3 of
[18] MacPherson introduced the local Euler obstruction using the Nash blow-
up for cycles of (singular) algebraic varieties. The corresponding character-
istic class of the local Euler obstruction is the Chern-Mather class defined
by pushforward of the cap product of Chern class of the Nash tangent bun-
dle with the fundamental class of the Nash blow-up. It turns out that local
Euler obstructions form a basis for the group of constructible functions for
an algebraic variety X. Hence the constant function 1X can be written as a
linear combination of local Euler obstructions. Applying the Chern-Mather
construction for such a combination, one gets CSM class for X.

The Chern-Mather class and the CSM class for a constructible function
have recently become important in Donaldson-Thomas theory as defined by
R. Thomas [22]. In [4], Behrend found that if a proper scheme X admits
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a symmetric obstruction theory, then the virtual count, i.e. the integra-
tion of 1 over the zero-dimensional virtual fundamental class [X]vir, is the
weighted Euler characteristic χ(X, νX). The weight is given by the Behrend
function νX , which is an integer-valued constructible function on X. The
Behrend function νX is defined as the Euler obstruction of a canonical cycle
cX ∈ Z∗(X) determined by the scheme X. Applying the Chern-Mather con-
struction one gets a class αX ∈ A∗(X) in the Chow group X, which Behrend
calls the Aluffi class. Behrend also proves in Theorem 1.12 of [4] that inte-
grating the class αX over X gives the weighted Euler characteristic χ(X, νX)
if X is a proper scheme. Actually, Behrend’s construction works for any DM
stack X , and he conjectured that for a proper DM stack X , integrating the
class αX over X gives the weighted Euler characteristic χ(X , νX ).

There is another method, given by Aluffi [2], to construct the CSM class.
Aluffi’s construction actually works for all schemes, not necessarily proper.
More precisely Aluffi constructs the Pro-CSM class for non-proper schemes,
and proves that it is the same as the usual CSM class if the scheme is proper.
Aluffi also defines a degree map from the Pro-CSM class of a scheme to Z
such that it gives the weighted Euler characteristic. Aluffi constructs in the
same paper a natural transformation F  Â∗, where F is the functor from
the category of schemes to constructible functions, and Â∗ is the functor
from category of schemes to abelian groups.

In this paper we generalize Aluffi’s construction of Pro-CSM class to DM
stacks. If a DM stack X is proper, then the Pro-CSM class of X is the same
as the CSM class of X . The Pro-CSM class of a constructible function on
X can be similarly defined. In particular, the Pro-CSM class of the Behrend
function νX of X is well-defined. In the case that X is proper, the Pro-CSM
class of the Behrend function νX is the same as the Aluffi class defined in
Section 1.4 of [4]. Hence the integration of the Aluffi class over X gives the
weighted Euler characteristic χ(X , νX ), proving the conjecture of Behrend.
Note that this question has been addressed by Maulik and Treumann in
[19] by generalizing Kashiwara’s index theorem for Lagrangian intersections
from schemes to orbifolds.

The plan of this paper is as follows. We define the Pro-CSM group for
DM stacks in Section 2 and the Pro-CSM class in Section 3. In Section 4 we
prove that there is a natural transformation of functors from the category
of DM stacks to abelian groups. We discuss Behrend function and prove the
main theorem in Section 5.
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Convention:

We work over the complex numbers C, and use Q coefficients for Pro-Chow
groups and Chow groups.
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2. The Pro-Chow group

2.1.

Let X be a DM stack which is separated and finite type over complex number
C, with quasi-projective coarse moduli space. We denote by A∗(X ) the Chow
group of X with Q-coefficients in the sense of Vistoli [23]. Let X → X be
the canonical map to its coarse moduli space. Then there is an isomorphism

A∗(X ) ∼= A∗(X).

From Vistoli [23], A∗ is a functor from the category of DM stacks to abelian
groups, covariant with proper maps of DM stacks.

2.2.

Similar to Aluffi [2], we define a Pro-Chow functor Â∗(·) from DM stacks to
abelian groups, covariant with respect to regular maps for DM stacks.

Let U be a DM stack (maybe not proper). Denote U to be the category
of maps

i : U → Xi
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such that Xi is a proper DM stack over C. A morphism between i : U → Xi
and j : U → Xj is given by a commutative diagram:

U i //

j
��

Xi
π

��

Xj

where π is a proper morphism of DM stacks.

Definition 2.1. An embedding i : U → U is a closure if U is complete and
U is open and dense in U .

Lemma 2.2. Closures of DM stacks form a small cofinal subcategory U of
U.

Proof. The proof is similar to Aluffi Lemma 2.1 of [2]. The only difference
is that we should use stacky or weighted blow-up for DM stacks. We give a
brief review below.

Let i : U → Xi be a morphism from a DM stack U to a proper DM stack
Xi. In [21], Rydh generalizes Nagata’s result of compactification theorem
for schemes to DM stacks. So if j : U → U is a fixed closure, then one can
construct the following diagram:

Û

��

î

��

U �
� j

//
0�

ĵ

@@

i

??
U i // Xi,

where î : Û → Xi is a proper morphism constructed by weighted blow-up
along the complement of U , and ĵ : U ↪→ Û is also a closure. As in Section 8 of
[21], the weighted blow-up is a process combining root stack constructions on
divisors and ordinary blow-ups. A root stack construction, roughly speaking,
is a method on how to put stacky structure on divisors. This also gives a
reason why ordinary blow-ups are not enough for the construction for DM
stacks. Then î can be taken as a morphism from ĵ : U → Û to i : U → Xi.
So the closures are cofinal in U. �
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Remark 2.3. Taking coarse moduli spaces of the above diagram gives rise
to the diagram in the proof of Lemma 2.1 in [2].

Definition 2.4. The Pro-Chow group of U is defined as the inverse limit
of the system:

Â∗(U) = lim←−
Xi∈Ob(U)

A∗(Xi).

Remark 2.5. From the definition, a class α ∈ Â∗(U) ∼= Â∗(U) is given by
the choice of a class αi ∈ A∗(Xi) for any proper DM stack Xi so that i : U →
Xi is compatible with proper pushforward.

2.3.

Let f : U → V be a morphism of DM stacks. Any assignment V → Xi induces
a morphism U → V → Xi. So a compatible class in Â∗(U) defines a class in
Â∗(V). So there is a pushforward

f∗ : Â∗(U)→ Â∗(V)

and

(f ◦ g)∗ = f∗ ◦ g∗,

if g : V → W is another morphism.
To define a global pro-Chow class on a DM stack X , we need to have the

so called good local data defined in Section 3 of [2]. Let U be a nonsingular
DM stack, and let

i : U → U

be a closure of U . Consider the diagram:

(2.1) U //

��

U

��

U // U

where U and U are the coarse moduli spaces of U and U , respectively.
We say i is a good closure of U if i : U → U is a good closure on the

coarse moduli spaces in the sense of Section 2.4 of [2], i.e. U \ U consists of
simple normal crossing divisors and U is nonsingular.
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Remark 2.6. In the Diagram (2.1), the DM stack U can be constructed
from U by root constructions, see Example 2.4.5 in [8].

The following result is a generalization of Proposition 2.5 of [2].

Proposition 2.7. 1) Defining a class α ∈ Â∗(U) is equivalent to assign-
ing αi ∈ A∗(Xi) for any good closure i : U → Xi satisfying

U //

��

Xi
π

��

Xj

where π is a (stacky or) weighted blow-up of Xj, and αj = π∗(αi);

2) Two elements α = β ∈ Â∗(U) if and only if αi = βi for all good closures
i.

Proof. Let π : U → U be the canonical map to its coarse moduli space. Then
the result is true for the scheme U , see Proposition 2.5 in [2]. Since

π∗ : A∗(U)
∼=−→ A∗(U)

is an isomorphism, from diagram (1) and

π∗ : A∗(Xi)
∼=−→ A∗(Xi)

a class in A∗(U) determines a class in U .
Then the result just follows from the weak factorization of birational

maps of DM stacks due to D. Bergh and D. Rydh [6], [7], which generalizes
the weak factorization theorem of AKMW [1] to orbifolds. �

3. The Pro-Chow class of DM stacks

3.1.

Let U be a nonsingular DM stack. Let i : U → U be a good closure so that
D = U \ U is a divisor with simple normal crossing.
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Definition 3.1. Define

cUU := c(Ω1
U (logD)∨) ∩ [U ] ∈ A∗(U).

Here Ω1
U (logD) denotes the bundle of differential one forms with logarithmic

poles along D.

Definition 3.2. A good local data for the DM stack X is given by:

1) A decomposition

X =
⋃
α

Uα,

where X is the disjoint union of the DM stacks Uα, and Uα is nonsin-
gular and irreducible.

2) A class {Uα} ∈ Â∗(Uα) for all α such that the class {X} :=∑
Uα iUα∗{Uα} is well-defined.

Remark 3.3. That the class {X} is well-defined means that the class {X}
is independent of the decomposition of X into disjoint union of open sub-
stacks.

3.2.

In this section we prove the following result:

Proposition 3.4. The data {cUU} defined in Definition 3.1 gives a good
local data for the DM stack X .

We make the following set up: there is a diagram

(3.1) V //

��

V

π
��

E //

��

__

F

ρ

��

``

U // U

Z

^^

//W,

w

``

where



94 Yunfeng Jiang

1) W is a nonsingular closed irreducible substack of U meeting D with
normal crossing.

2) Z =W ∩ U . If Z 6= ∅, Z → W is a good closure.

3) π : V → U is the weighted blow-up along W.

4) F : exceptional divisor π−1(W).

5) E = π−1(Z) = F ∩ V, so that E → F is a good closure.

Lemma 3.5.

cUU = π∗c
V
V\E + w∗c

W
Z .

Proof. The proof is similar to Aluffi, except that we work with smooth DM
stacks. The main points in Aluffi’s proof of Proposition 4.3 in [2] is the
lemma below, which is similar to Formula (2), (3) of Lemma 3.8 in [3]:

Lemma 3.6. 1)

π∗(c(TV) ∩ [V]) = c(TU ) ∩ [U ] + (d− 1) · c(TW) ∩ [W];

2)

ρ∗(c(TF ) ∩ [F ]) = d · c(TW) ∩ [W],

where d is the Euler characteristic of the weighted projective space of
the fibre ρ : F →W.

Proof. We first prove the formula (2), which is from pushforward formula for
the smooth morphism ρ : F →W. The morphism ρ : F →W is a weighted
projective fibration associated with the normal bundleN := NW/U . As in the
paragraph following the proof of Lemma 2.9 of [17], the weighted projective
fibration F is the quotient stack

[NW/U \W/C∗],

where C∗ acts on the normal bundle by weights {wn}. Let {Nn}n≥1 be the
filtration of N under the C∗ action and define Qn = Nwn/Nwn+1

to be the
sub-bundle such that the C∗ acts with weight wn. Then from Proposition
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2.11 of [17] we have:

c(TF ) = ρ∗c(TW) ·
∏
n

c(Qn ⊗OV(1)⊗wn).

Applying projection formula as in Proposition 3.7 in [23] we get the result,
since the top Chern class of

∏
n c(Qn ⊗OV(1)⊗wn) is the Euler class of the

fibre weighted projective space and its integral gives the Euler characteristic
of the weighted projective space, see Proposition 1.6 in [4].

Now we prove Formula (1) using the formula in (2). The DM stack F is
the exceptional divisor of π. Then Proposition 2.12 in [17] proves:

c(TV) = π∗c(TU ) ·
(F + 1) ·

∏
n(p(Qn(−wnF )))∏
n p(Qn)

,

where p(Qn) = c(Qn) but taken as a class pullback from U . Denote by Pw

the fibre weighted projective space. Then applying pushforward by π∗ (note
that product with F means doing intersection with F ), and note that the
integration of

∏
nwnc1(O(1))dim(Pw) over Pw is 1, we have

π∗(c(TV)) = c(TU ) + (d− 1)(c(TW) ∩ [W]),

where d is the Euler characteristic of the fibre weighted projective space of
ρ. �

Corollary 3.7. Let Dj , j ∈ J be nonsingular hypersurfaces of U meeting

with normal crossings, and let D̃i be the proper transform of Dj in V. Assume
that at least one of the Dj contains W. Then

π∗

(
c(TV)

(1 + F )
∏
j∈J(1 + D̃j)

[V]

)
=

c(TU )∏
j∈J(1 +Dj)

[U ].

Proof. This is from Formulas (1), (2) in Lemma 3.6 and the proof in Lemma
3.8 (5) of [3]. Note that Lemma 3.8 (5) of [3] only deals with schemes, but
the arguments only involve the class of divisors and Chern class of tangent
bundles, which both works for smooth DM stacks as in the intersection
theory of Vistoli [23]. We omit details. �

We continue the proof of main Lemma 3.5, which can be divided into
two cases.
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Case I: Z = ∅. Then

cUU =
c(TU )∏

j∈J(1 +Dj)
[U ],

and

cVV\E =
c(TV)

(1 + F )
∏
j∈J(1 + D̃j)

[V].

Then the formula is from Corollary 3.7.
Case II: Z 6= ∅. i.e. W is not contained in any component of D. We have

D̃j = π−1(Dj). We calculate:

π∗

(
c(TV)∏
i(1 + D̃i)

[V]

)
=

1∏
i(1 +Di)

∩ π∗(c(TV) ∩ [V])

=
1∏

i(1 +Di)
∩ π∗(c(TU ) ∩ [U ]) + (d− 1) · w∗(c(TW) ∩ [W])

by Formula (1) in Lemma 3.6. So

π∗c
V
V = cUU + (d− 1) · w∗cWZ .

On the other hand, similar calculation as in Proposition 4.3 of Aluffi [2]
gives:

cVV\E = cVV − j∗cFE .

Since ρ∗c
F
E = d · cWZ from Formula (2) in Lemma 3.6. These formulas together

imply Lemma 3.5. �

Proof of Proposition 3.4:

Proof. This basically follows from the following formula:

(3.2) {U} = z∗{Z}+ i∗{U \ Z}

where z : Z ↪→ U and i : U \ Z ↪→ U are embeddings and z∗, i∗ are push
forwards defined in Section 2.3. Formula (3.2) is proved in Lemma 3.5. If
there is a decomposition X = ∪αUα and

∑
α iα∗{Uα} is a class in Â∗(X ),

we claim that
∑

α iα∗{Uα} is independent of the decomposition. Any two
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decompositions have a refinement. So every element U of one decomposition
is a finite disjoint union of elements from the other, i.e. if

U = V1 ∪ V2 ∪ · · · ∪ Vr

where Vj are nonsingular, and Vj is closed in V1 ∪ V2 ∪ · · · ∪ Vj , then

{U} = i1∗{V1}+ · · ·+ ir∗{Vr}

is just from Formula (3.2). �

3.3.

Definition 3.8. For a DM stack X , the Pro-CSM class of X is defined by

{X} ∈ Â∗(X )

Proposition 3.9. The class {X} satisfies the following property: if X =
∪j∈JXj is a finite union of substacks, then

{X} =
∑
∅6=I⊂J

(−1)|I|+1iI∗{XI}

where XI = ∩i∈IXi and iI : XI ↪→ X is the inclusion.

Proof. It suffices to prove the case |J | = 2. Then

{X1 ∪ X2} = {X1}+ {X2} − {X1 ∩ X2}

just follows from definition. �

3.4.

Let X be a DM stack. A Q-valued constructible function φ : X → Q is a com-
pactly supported function such that it is constant along locally closed sub-
stacks of X . It is well-known that the group of integer-valued constructible
functions on a scheme X is generated by characteristic functions of sub-
schemes. Since every DM stack is generically the quotient of a scheme by a
finite group, Corollaire 6.11 in [16], the constructible functions of X are well-
defined. A detail treatment of constructible function using Grothendieck site
can be found in Section 2 and 3 in [19].
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Let F (X ) be the group of Q-valued constructible functions on X . Let
φ ∈ F (X ) be a constructible function. We write:

φ =
∑
Z
nZ1Z ,

where Z is a locally closed substack of X , nZ ∈ Q and 1Z is the constructible
function

1Z(p) =

{
1, p ∈ Z;

0, p /∈ Z.

Definition 3.10. The Pro-Chow class {φ} of a constructible function φ of
X is defined by:

{φ} =
∑
Z
nZ · iZ∗{Z}

where iZ : Z ↪→ X is the inclusion.

Remark 3.11. The Pro-Chow class {φ} is a class in the Pro-Chow group
Â∗(X ). From inclusion-exclusion Proposition 3.9 it is independent of the
decomposition of the constructible function.

3.5.

We briefly review the Euler characteristic for DM stacks in Section 1.3 of
[4], which generalizes the Euler characteristic for schemes.

From Section 1.3 in [4], the Euler characteristic with compact support
χ is a Q-valued function on isomorphism classes of pairs (X , f), where X is
a DM stack and f is a constructible function on X . It satisfies the following
properties:

1) if X is separated and smooth, χ(X ,1) = χ(X ) is the usual Euler char-
acteristic of X , see [5];

2) χ(X , f + g) = χ(X , f) + χ(X , g);

3) if X is the disjoint union of a closed substack Z and its open comple-
ment U , then χ(X , f) = χ(U , f |U ) + χ(Z, f |Z);

4) χ(X × Y, f � g) = χ(X , f) · χ(Y, g);

5) if X → Y is a finite śtale morphism of degree d, then χ(X , f |X ) =
d · χ(Y, f), for any constructible function f on Y.
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Then we take χ(X ,1X ) = χ(X ) the Euler characteristic of X .
Applying the pushforward map in Section 2.3 to the structure map U →

Spec k, we get a well-defined degree for each α ∈ Â∗(U):∫
α ∈ A∗(Spec k) = Q.

Thus every constructible function φ ∈ F (X ) gives rise to∫
: F (X )→ Q

by

φ 7→
∫
X
{φ}.

Proposition 3.12. 1) If X is proper and nonsingular, then {X} =
c(TX ) ∩ [X ] and ∫

X
{X} = χ(X )

is the Euler characteristic of X .

2) Let X be proper. If φ ∈ F (X ), then∫
X
{φ} = χ(X , φ)

is the weighted Euler characteristic of X .

Proof. (1) is the Gauss-Bonnet theorem, see Proposition 1.6 in [4]. For (2),
from properties of weighted Euler characteristic in the beginning of this sec-
tion, and Proposition 3.9, both

∫
{·} and χ(·) satisfy inclusion-exclusion, so

we only need to prove
∫
X {X} = χ(X ,1X ) of X is compact and nonsingular.

This is (1). �

4. The natural transformation functor

4.1.

In Section 3 we define the Pro-Chow class and the Pro-CSM class for a
DM stack X . Moreover, we define the Pro-CSM class for any constructible
function φ on X .
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Let f : X → Y be a morphism of DM stacks. Let φ =
∑
Z nZ · 1Z ∈

F (X ) be a constructible function on X , where Z ↪→ X is the inclusion of a
locally closed substack, and nZ ∈ Q. Define

f∗ : F (X )→ F (Y)

by

f∗(φ)(p) =
∑
Z
nZ ·

∫
{f−1(p) ∩ Z},

where {f−1(p) ∩ Z} is the Pro-Chow class of f−1(p) ∩ Z, and
∫
{f−1(p) ∩ Z}

is the Euler characteristic of f−1(p) ∩ Z. Since we work on morphisms of non
proper DM stacks, we first prove that F is a functor from category of DM
stacks to abelian groups of constructible functions.

Theorem 4.1. Let f : X → Y, g : Y → Z be morphisms of DM stacks.
Then

(g ◦ f)∗ = g∗ ◦ f∗.

Proof. We provide the basic method on how to prove this result for DM
stacks, generalizing the proof of [2]. The idea is to decompose the DM stack
into nonsingular irreducible substacks, and do a similar argument as in Sec-
tion 5 in [2]. The idea of Grothendieck site as developed in [19] can be used
prove this result, but we use a direct method here.

A gentle morphism f : U → V between two nonsingular DM stacks U
and V is a smooth and surjective morphism. Furthermore there exists a
proper DM stack U and a smooth and surjective morphism f : U → V such
that:

1) U is an open dense subset of U , and f |U = f ;

2) the complement H = U \ U is a divisor with normal crossings and non-
singular components Hi;

3) letting HI = ∩i∈IHi (so that H∅ = U) and HI is nonsingular, then the
restriction

f |HI : HI → V

is proper, smooth and surjective.

If f : U → V is gentle, then χf =
∫
{f−1(p)} is independent of p ∈ V. This is

from Lemma 4.4 and a similar argument as in Lemma 5.5 in [2] for smooth
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DM stacks. Hence f∗{U} = χf · {V}, which can be proved using inclusion-
exclusion and Lemma 4.4 again. So if f : U → V and g : V → W are two
gentle morphisms, then

χg◦f = χg · χf .
Now to prove the theorem, it suffices to prove the two push forwards agree
on the characteristic functions of substacks of X . We need to decompose
f : X → Y and g : Y → Z into gentle morphisms. A DM stack is locally a
scheme by a finite group action, hence using the morphism to its coarse
moduli space (which is a scheme), morphisms f : X → Y, g : Y → Z can be
decomposed into:

X = tα,i,jUα,i,j , Y = tα,iVα,i, Z = tWα

such that

fα,i,j := f |Uα,i,j : Uα,i,j → Vα,i, gα,i := g|Vα,i : Vα,i →Wα

are gentle. Also for

Uα,i,j
fα,i,j−→ Vα,i

gα,i−→Wα

we have

χαij = χ′αij · χαi,
where χ′αij , χαi, χαij are the corresponding fiberwise degrees for fα,i,j , gα,i
and gα,i ◦ fα,i,j respectively. So a direct calculation gives:

g∗(f∗1Uα,i,j ) = g∗(χ
′
αij · 1Vα,i) = χ′αij · χαi · 1Wα

= (g ◦ f)∗(1Uα,i,j ).

�

Then the assignment:

c∗ : F  Â∗

by

φ 7→ c∗(φ) = {φ}
is a transformation of functors. In particular, c∗(1X ) = c∗(X ) ∈ Â∗(X ) is
the Pro-CSM class of X . In this section we prove that c∗ is a natural trans-
formation of functors. The naturality theorem is:

Theorem 4.2. (Naturality) The transformation functor c∗ : F → Â∗ is a
natural transformation of covariant functors from the category of DM stacks
to the category of abelian groups.
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Remark 4.3. In particular, c∗ sends the constant function 1X for a smooth
DM stack X to c(TX ) ∩ [X ].

The key point to prove Theorem 4.1 and Theorem 4.2 is the following
Lemma:

Lemma 4.4. Let f : U → V be a proper, smooth, surjective map of non-
singular DM stacks. Then

f∗({U}) = χf · {U}

where χf =
∫
{f−1(p)} and any p ∈ V.

Proof. From the definition of Pro-Chow group class {U}, it is sufficient to
prove that for any diagram of closures:

U i //

f
��

X
g

��

V j
// Y

where i and j are good closures, f is smooth, f and g are proper and
surjective, we have:

g∗c
X
U = χf · cYV ,

i.e.

(4.1) g∗(c(Ω
1
X (logD)∨) ∩ [X ]) = χf · c(Ω1

Y(logE)∨) ∩ [Y],

where D, E are the complement X \ U , Y \ V respectively.
We prove (4.1) using the graph construction of MacPherson on DM

stacks, which we construct below. For the morphism g : X → Y, we consider:

dg : g∗Ω1
Y(logE)→ Ω1

X (logD).

Since g is smooth over U , dg is injective over U . We will apply the graph
construction to dg. The formula (4.1) is equivalent to the following:

(4.2) g∗(c(Ω
1
X (logD)) ∩ [X ]) = χ̃f · c(Ω1

Y(logE)) ∩ [Y],

where χ̃f is the same as χf up to a sign. �

The next several subsections will finish the proof of Formula (4.2).
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4.2.

We generalize the graph construction of MacPherson to DM stacks. The
construction is similar to the scheme case of MacPherson in [18], except we
work with smooth DM stacks and cotangent bundles. Note that in [14], Kim,
Kresch and Pantev already used the graph construction for the compatibility
of obstruction theories which involves DM stacks.

Let m = dim(X ), n = dim(Y). Then dg gives a rational morphism:

γ : X × P1 99K G := Grassn(g∗Ω1
Y(logE)⊕ Ω1

X (logD))

by

x× {(λ : 1)} 7→ the graph of
1

λ
dg at x.

The indeterminates of γ are contained in D × 0 ⊂ X × 0 := X × {[0 : 1]}. So
we have the following diagram:

(4.3) X̃ × P1

π
��

γ̃

""

p

  

X × P1 γ
//

ρ

��

G

X
g

��

Y

where X̃ × P1 is the graph of γ, (i.e. the stacky blow-up of X × P1 along the
indeterminacies). For stacky blow-ups, see [17] and [21]. Then

[π−1(X × {∞})] = [π−1(X × {0})].

We can express the pre image as:

π−1(X × {0}) = X̃
⋃
∪iriΓi,

where X̃ is the proper transform of X × {0} and Γi are exceptional divi-
sors and ri are multiplicities. All of these results are from Example 18.1.6
of Fulton [10], which can be generalized to smooth DM stacks. The basic



104 Yunfeng Jiang

intersection theory of Fulton [10] holds for DM stacks; the author thanks for
A. Kresch for communication about this theory.

Let Q be the universal rank-m quotient bundle over the Grassmannian
bundle G. Then

c(γ̃∗Q) ∩ [π−1(X × {∞})] = c(γ̃∗Q) ∩

(
[X̃ ] +

∑
i

ri[Γi]

)
∈ A∗(X × P1)

First we have:

p∗(c(γ̃
∗Q) ∩ [π−1(X × {∞})]) = g∗(c(Ω

1
X (logD)) ∩ [X ]),

as may be verified by chasing Diagram (4.3), since over X ×∞ := X × {[1 :
0]}, γ acts on the section corresponding to g∗Ω1

Y(logE)⊕ 0.

Lemma 4.5.

p∗(c(γ̃
∗Q) ∩ [X̃ ]) = χ̃f · c(Ω1

Y(logE)) ∩ [Y].

Proof. The restriction γ̃|X̃ = γ̃′ factors through

G′ := Grassn(Ω1
X (logD)) ∼= Grassn(Ω1

X (logD)⊕ 0) ⊂ G.

Over G′, Q = g∗Ω1
Y(logE)⊕Q′. So

c(γ̃∗Q) ∩ [X̃ ] = c(p∗Ω1
Y(logE)) · c(γ̃′∗Q′) ∩ [X̃ ].

Since Q′ is the universal rank-(m− n) quotient bundle over G′, it is the
cotangent bundle of the fibres over points of V. Taking pushforward along p
the result follows. �

Hence
(4.4)

g∗(c(Ω
1
X (logD)) ∩ [X ])− χ̃f · c(Ω1

Y(logE)) ∩ [Y] =
∑
i

ri · p∗(c(Q) ∩ [Γi]).

Lemma 4.6. For any component Γ in the exceptional divisors in X̃ × P1,

p∗(c(Q) ∩ [Γ]) = 0.
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Proof. Consider the following diagram:

Γ
γ̃
//

σ
��

p

��

G

��

Z �
�

//

��

X
g

��

W �
�

// Y

Here Z and W are the images of Γ in X and Y, respectively, and also
Z ⊂ D,W ⊂ E. We assumeW ⊆ Ei for i ≤ s, andW * Ei for i > s. Denote
by

Es = E1 ∩ · · · ∩ Es.
Let SΓ and QΓ be the pullback to Γ of the universal subbundle and quotient
bundle over G. Then we have the exact sequence:

0→ SΓ −→ σ∗(g∗Ω1
Y(logE)⊕ Ω1

X (logD))|Z −→ QΓ → 0.

On the other hand, we have the residue exact sequence:

0→ Ω1
Es |W −→ Ω1

Y(logE)|W −→ O⊕sW ⊕ (⊕i>sOZ∩Ei)→ 0.

Consider the following commutative diagram:
(4.5)

0

��

NWE
∗
s

�� &&

0 // Ω1
Es
|W

��

// Ω1
Y(logE)|W //

��

O⊕sW ⊕ (⊕i>sOZ∩Ei) // 0

0 // Ω1
W

//

��

T

��

55

0 0

where the exact sequence in the middle row is the residue exact sequence and
T is the quotient of Ω1

Y(logE)|W by NWE
∗
s . Note that rk(T ) > dim(W).
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Hence we have the following diagram:

0 // SΓ
// σ∗(g∗Ω1

Y(logE)⊕ Ω1
X (logD))|Z //

��

QΓ

��

// 0

p∗NWE
∗
s

ψ
// p∗Ω1

Y(logE)|W // p∗T // 0

where the map ϕ is the first nontrivial arrow in the top row and the image
of ϕ is contained in Im(ψ). So the induced map QΓ � p∗T is surjective.

So now we have a morphism p : Γ→W and a vector bundle QΓ over Γ
of rank ≤ dim(Γ). Also QΓ � p∗T is surjective, where T is a coherent sheaf
over W. Then a similar argument in Lemma 6.5 of [2] implies that

p∗(c(QΓ) ∩ [Γ]) = 0.

The proof uses a birational morphism ν : W̃ → W of DM stacks such that
ν∗T is locally free on W̃. By weighted blow-up on the locus that T is not
locally free we get the DM stack W̃. �

Comparing to (4.4), this concludes the proof of Lemma 4.4.

4.3. Proof of Theorem 4.2

The key Lemma 4.4 helps us to prove that the pushforward of the Pro-CSM
class for gentle morphisms, as in the proof of Theorem 4.1.

If f : X → Y is a morphism of DM stacks, then using gentle morphisms,
and letting

X = tα,iUα,i, Y = tαVα

be the decomposition of X and Y such that

f |Uα,i : Uα,i → Vα

is gentle. Then by a similar argument as in Lemma 5.8 in [2] we have

f∗(1X ) =
∑
α∈A

χα · 1Vα ,

f∗({X}) =
∑
α∈A

χα · {Vα}.
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These results are enough for proving

f∗({φ}) = {f∗(φ)}

for any constructible function φ ∈ F (X ), since by linearity of f∗, it suffices
to prove this for characteristic function of any substacks of X . �

5. The Pro-CSM class of Behrend function

5.1.

Let X be a DM stack, proper or not. Behrend [4] introduces a constructible
function νX , which is defined as follows: There is a canonical integral cycle
cX ∈ Z∗(X ), such that if étale locally (or Zariski locally if X is a scheme)
there is an open chart U → X and an embedding U ↪→M into a smooth
DM stack M ,

cX |U =
∑
i

mult(Ci)(−1)dim(π(Ci))[π(Ci)],

where Ci is the irreducible component of the normal cone CU/M and π :
CU/M → U is the projection; mult(Ci) is the multiplicity of Ci at generic
point.

Definition 5.1. (Behrend)

νX = Eu(cX ),

where Eu is the local Euler obstruction of MacPherson in Section 1.2 of
[4], which generalizes the local Euler obstruction in the case of varieties in
Section 3 of [18].

The Behrend function νX is a constructible function on X . From Section
3 the Pro-Chow class of νX is well-defined.

Definition 5.2. The Pro-CSM class for νX is defined by:

cPSM (νX ) = {νX } ∈ Â∗(X ).
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Remark 5.3. By choosing a good stratification for X , we may write

νX =
∑
Z
aZ · 1Z ,

i.e. the Euler obstruction of cX is constant on Z. Then

{νX } =
∑
Z
aZ · iZ∗{Z}.

Taking degree we get ∫
X
{νX } = χ(X , νX ),

which is the weighted Euler characteristic of X .

5.2.

From this section we assume that X is proper, then the Pro-Chow group of X
is just the general Vistoli Chow group of X . We introduce the Chern-Mather
class for X .

Let Z ⊂ X be a prime cycle. The Nash blow-up µ : Ẑ → Z and the Nash
tangent bundle TZ are introduced by MacPherson in Section 2 of [18] if X
is a scheme; and by Behrend in Section 1.2 and Section 1.4 of [4] if X is a
DM stack.

Definition 5.4. The Chern-Mather class cM (Z) is:

cM ([Z]) = µ∗(c(TZ) ∩ [Ẑ]),

where cM ([Z]) ∈ A∗(X ).

As in Behrend [4], let cM0 (Z) be the degree zero part cM0 : Z∗(X )→
A0(X ). The Euler obstruction Eu(Z) is a constructible function X → Z.
The weighted Euler characteristic χ(X ,Eu(Z)) is given by∑

i

ni · χ(Eu(Z)−1(i)).

Our cycle cX is a linear combination of prime cycles in X . We define

αX = cM (cX ) ∈ A∗(X )

to be the Chern-Mather class of the canonical cycle cX , which Behrend calls
the Aluffi class.
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5.3.

We give an explanation of the weighted Euler characteristic in terms of
Lagrangian intersections. We fix an embedding X →M of the DM stack
X into a smooth DM stack M of dimension n. The following commutative
diagram is due to Behrend, Diagram (2) of [4].

(5.1) Z∗(X )
Eu
∼=
//

cM0 $$

F (X )
Ch
∼=
//

cSM0

��

LX (ΩM)

I(·,[M])yy

A0(X )

where Z∗(X ) is the group of integral cycles of X , F (X ) is the group of
constructible functions on X , and LX(ΩM ) is the subgroup of Zn(ΩM) gen-
erated by the conic Lagrangian prime cycles supported on X . The maps cM0 ,
cSM0 and I(·, [M]) represent the degree zero Chern-Mather class, the degree
zero CSM class and the Lagrangian intersection with zero section of ΩM,
respectively. Note that in [4], the notation of Lagrangian intersection with
zero section is denoted by 0!

ΩM
(·).

We briefly explain the horizontal morphisms in the diagram. The first
map is the Euler obstruction Eu and it gives an isomorphism from Z∗(X )
to F (X ).

In Section 4.1 of [4] Behrend defined the following isomorphism of groups:

(5.2) L : Z∗(X )→ LX (ΩM)

which is given by

Z 7→ (−1)dim(Z)N∗Z/M,

where N∗Z/M is the closure of the conormal bundle of smooth part of Z inside
M. Conversely there is an isomorphism:

(5.3) π : LX (ΩM)→ Z∗(X )

which is given by

V 7→ (−1)π(V )π(V ),

where π : V → X is the projection. Then the morphism Ch is defined by the
isomorphism Eu and the morphism L defined above.
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5.4.

We prove the main theorem in this section. In the case that X is a proper
scheme, the integration

∫
X αX is the weighted Euler characteristic χ(X , νX ),

which is MacPherson’s index theorem in [18]. Note that only degree zero of
αX contributes.

Theorem 5.5. Let X be a proper DM stack. Then we have∫
X
αX = χ(X , νX )

Proof. In Definition 3.10 of Section 3 we define the Pro-CSM class {νX }
for the Behrend function νX . By Remark 5.3, taking integration

∫
X {νX } =

χ(X , νX ), we get the weighted Euler characteristic. Actually to get the num-
ber only degree zero part {νX }0 ∈ A0(X ) contributes. So it suffices to prove
that the Chow classes {νX }0 and (αX )0 coincide in A0(X ).

Recall that our DM stack X is quasi-projective, meaning that there is a
locally closed embedding to a smooth DM stack M with projective coarse
moduli space. Then the cycle

cX =
∑
Ci

(−1)mult(Ci) mult(Ci)[π(Ci)],

where

π : C := CX/M → X

is the projection from the normal cone to X , Ci are all the irreducible com-
ponents of C, and [π(Ci)] is a prime cycle in Z∗(X ). Since there are finitely
many of irreducible components of C, the cycle cX is a linear combina-
tion of finite prime cycles in Z∗(X ). Let V := [π(Ci)] be one such prime
cycle. Recall that νX = Eu(cX ) and αX = cM (cX ). So to prove that (αX )0 =
{νX }0 ∈ A0(X ), it suffices to prove that cM0 (V ) = {Eu(V )}0 ∈ A0(X ).

According to Lemma 1 in [13], the Chern-Mather class cM (V ) is the
class coming from conormal cycle N∗V/M ⊂ ΩM|X . Let dim(V ) = p and µ :

M̃ →M be the Grassmannian of rank p quotient of ΩM and

µ : V̂ → V

the closure inside M̃ of the canonical rational section V 99K M̃. This is
exactly the construction of Nash blow-up V̂ of V . Hence we have an exact
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sequence on V̂ :

0→ N |V̂ −→ µ∗ΩM|V̂ −→ Q|V̂ → 0,

where Q is the universal quotient bundle on M̃, and N is the kernel of
the universal quotient map µ∗ΩM → Q. Restricting to V̂ we have the above
exact sequence. From Proposition 4.6 in [4], there is a cartesian diagram:

V̂
µ

//

0

��

V //

0

��

M

0

��

N |V̂
η
// N∗V/M

// ΩM,

where η : N |V̂ → N∗V/M is a proper birational map of integral stacks. Hence

from the commutative diagram (5.1), Ch(Eu(V )) = (−1)pN∗V/M and we have

cM0 (V ) = I((−1)pN∗V/M, [M]).

On the other hand, from Section 8 in [11] let V = ∪αSα be a stratification
of V , where Sα is nonsingular and the local Euler obstruction Eu(V ) is
constant on Sα. Then

(−1)pN∗V/M =
∑
α

nα · (−1)dim(Sα)N∗Sα/M

is a linear combination of characteristic cycles of Sα. Then the Lagrangian
intersections are equal, i.e.

I((−1)pN∗V/M, [M]) =
∑
α

nα · I((−1)dim(Sα)N∗Sα/M, [M]).

From Diagram (5.1) and Section 5.3, Eu,Ch and L are all isomorphisms.
Hence the local Euler obstruction Eu(V ) is actually Eu(V ) =

∑
α nα Eu(Sα).

The strata Sα are nonsingular, and we can take stratification such that Sα
are also compact, then

∑
α nα · I((−1)dim(Sα)N∗Sα/M, [M]) is the same as∑

α

nαiα∗({Sα}0) = {Eu(V )}0 ∈ A0(X ),

where iα : Sα ↪→ V is the inclusion. So cM0 (V ) = {Eu(V )}0 ∈ A0(X ) and
(αX )0 = {νX }0 ∈ A0(X ). The theorem is proved. �
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Remark 5.6. From Diagram (5.1), the Chern-Mather class αX of the
canonical cycle cX is the same as the Chern-Schwartz-MacPherson class
of the Behrend function νX . One may generalize the construction of the
natural transformation of functors in [18] from category of varieties to DM
stacks. Then the result αX = cPSM (νX) comes from the naturality of the
transformation F of functors in Theorem 4.2, since cPSM (νX) and αX all
satisfy the pushforward properties.

Remark 5.7. Theorem 5.5 was conjectured by Behrend in Remark 1.13 of
[4].

Finally we present Theorem 5.5 as Lagrangian intersection:

Theorem 5.8. We have:∫
X
αX = χ(X , νX ) = I(Ch(νX ), [M]).

Here I(Ch(νX ), [M]) means the Lagrangian intersection number. This
notion of Lagrangian intersection is defined and studied by Kashiwara-
Schapira in [12] for smooth scheme case, and by Maulik-Treumann [19] for
smooth DM stack case.

Proof. From Diagram (5.1), Ch(νX ) ⊂ ΩM is the characteristic cycle of νX ,
which conic Lagrangian. The first equality is Theorem 5.5 and the second
follows from Theorem 4.5 and Theorem 5.3 in [19]. �
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