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Valuations and Log Canonical Thresholds

Zhengyu Hu

Abstract: The goal of this paper is to continue the investigation
of valuative quasi-plurisubharmonic functions (qpsh for short) on
certain valuation spaces of a regular scheme, in line with the works
[4], [5], [6] of Boucksom, Favre, Jonsson, and the works [31], [32]
of Jonsson, Mustaţă. We divide this paper into two parts. In the
first part we mainly discuss those valuations which compute the
log canonical thresholds of qpsh functions. We expect them to be
useful for the conjecture [[31], Conjecture B] raised by Jonsson and
Mustaţă. In the second part we define the restriction of a valua-
tive qpsh function to a regular subscheme and prove a number of
expected results including the restriction theorem and the inver-
sion of adjunction. We also treat some applications in complex
algebraic geometry such as extensions of pluri-canonical forms on
a dlt pair under an abundance assumption.
Keywords: pluri-canonical extensions, log canonical thresholds,
multiplier ideals, valuations.

1. Introduction

Given a smooth complex algebraic variety X, one can consider the space
of all real valuations of the function field of X centered on X. This is a
subspace of the Berkovich space of X, which has recently been attracted
interest for its relations to the log canonical thresholds of valuative quasi-
plurisubharmonics or equivalently, of graded and subadditive sequences of
ideals. The study of the valuation space from this point of view was ini-
tiated by S. Boucksom, C. Favre and M. Jonsson in [4], [5], [6], and then
expanded by M. Jonsson and M. Mustaţă in [31], [32]. In particular, M. Jon-
sson and M. Mustaţă studied a conjecture (see Conjecture 3.16) concerning
the valuations that compute the log canonical threshold of a fraded sequence
of ideals, and its connection to the Openness Conjecture of Demailly and
Kollár on (analytic) plurisubharmonic functions. Note that Q. Guan and
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X. Zhou announced a proof of the openness conjecture (see [27]) and that
Lempert also announced a particularly simple proof (see [38]) recently.

In [29] we began the study of certain functions defined on the tempered
valuation space on a regular scheme by following [31]. We briefly introduce
some terminology from the valuation theory. Given a regular scheme (see
Section [? ]), a tempered valuation v is a real valuation of K(X) of finite log
discrepancy A(v) <∞, and the tempered valuation space VX is the subspace
consisting of tempered valuations. Given a log resolution (Y,D) of X, we
can define the retraction of a valuation v by setting rY,D(v)(Di) = v(Di). In
particular, a real valuation v is said to be quasi-monomial if there exists a
log resolution (Y,D) such that v = rY,D(v).

A valuative function ϕ is said to be bounded homogeneous if ϕ(tv) =

tϕ(v) for all tempered valuations v and t ∈ R+ and if supv∈V∗X
|ϕ(v)|
A(v) <∞.

For such functions we can define the norm ‖ϕ‖ = supv∈V∗X
|ϕ(v)|
A(v) on the set of

bounded homogeneous functions. A typical example of such function is that
one c log |a| induced from a coherent ideal sheaf (or simply an ideal) a on X
and a positive real number c by letting c log |a|(v) = −cv(a). In this case the
norm of the function c log |a| is nothing but the reciprocal of the log canon-
ical threshold lct(ac). Further, we define a valuative quasi-plurisubharmonic
(qpsh for short) function to be a function that lies within the closure of
the set of such functions induced by ideals. As in complex geometry we
can define the multiplier ideal associated to a qpsh function. In [29] we
define the multiplier ideal J (ϕ) of ϕ to be the largest ideal a satisfying that
‖ log |a| − ϕ‖ < 1. One can see that this definition is reasonable (see [[29],
Proposition 4.3]).

Because the log canonical threshold lct(a) is a fundamental invariant
both in singularity theory and birational geometry (see [36], [35] and etc.),
we will discuss some properties of the norm of a qpsh function in detail.
We say that a nontrivial tempered valuation v computes ‖ϕ‖ if the equality

‖ϕ‖ = |ϕ(v)|
A(v) holds. One of the main results of [29] asserts that, for every qpsh

function ϕ, there exists a nontrivial tempered valuation v which computes
‖ϕ‖. See also [31] and [32] for more discussions. As suggested by M. Jonsson
and M. Mustaţă, the following conjecture is closely related to the Openness
Conjecture in analytic geometry (see [31, Conjecture B and Theorem 7.8]
and [32]). This conjecture is already known in several special cases (see [31,
Section 8 and 9]).

Conjecture 1.1 (=Conjecture 3.16). If ϕ is a qpsh function on X, then
there exists a nontrivial quasi-monomial valuation v which computes ‖ϕ‖.
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Conversely, if a nontrivial tempered valuation v computes the norm of some
qpsh function, then v is quasi-monomial.

To investigate those valuations which compute some log canonical
thresholds, we first define a class of algebraic qpsh functions which can be
regarded as the global version of valuative transforms of tame psh weights
in [4, Section 5.3, Section 5.2]. More precisely, a qpsh function ϕ is said
to be tame if there exists a constant C > 0 such that J ((t+ C)ϕ) ⊆ a(tϕ)
for every t ≥ 0 where a(tϕ) is defined to be the largest ideal a such that
log |a| ≤ ϕ. These functions behave very nicely in many situations. An
important observation is that, to every tempered valuation v, one can nat-
urally associate a tame function φv.

A tempered valuation v is said to be computing if there exists a qpsh
function ϕ such that v computes the norm ‖ϕ‖. According to Lemma 3.17,
this is equivalent to saying that v computes the norm ‖φv‖ of its associate
tame function.

Theorem 1.2 (=Theorem 3.25). Let v be a nontrivial tempered valua-
tion. If rY,D(v) is computing for all sufficiently high log resolutions (Y,D)
of X, then v is computing.

It is also natural to ask if the converse statement of the previous theorem
is true, which is closely related to Conjecture 3.16.

Conjecture 1.3 (=Conjecture 3.27). Let v be a nontrivial tempered
valuation. If v is computing, then rY,D(v) is computing for all sufficiently
high log resolutions (Y,D) of X.

Now we introduce the restriction of a qpsh function. Consider an irre-
ducible regular closed subscheme Z and a qpsh function ϕ. If we write
ϕk = 1

k log |J (kϕ)|, then we say that ϕ satisfies the restriction condition
to Z if
• ϕk|Z := 1

k log |J (kϕ) · OZ | is well-defined for every integer k, and
• ϕk|Z converges strongly in the norm.
In this case we define the restriction ϕ|Z to be the limit function of ϕk|Z .
Unfortunately, this definition is not a sufficiently good analogue of the

restriction of qpsh function in analytic geometry via the valuative transfor-
mation (see [4, 5.2] for valuative transform of a psh germ). If we take the
analytic psh germ ϕ = − log(− log max |z1|) around the origin of C2, then
the valuative transform ϕ̂ is the zero function because the singularity is too
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mild to be detected by tempered valuations. On the other hand, the equation
ϕ(z) ≡ −∞ holds identically on {z1 = 0}. See Remark 4.2.

As in complex algebraic geometry, we conclude the following expected
Restriction Theorem.

Theorem 1.4 (=Theorem 4.6). If ϕ is a qpsh function which satisfies
the restriction condition to Z, then we have the inclusion

J (ϕ|Z) ⊆ J (ϕ) · OZ .

We can interpret the theorem above in terms of log canonical thresholds.
See Definition 4.7 for the definition of local log canonical thresholds.

Theorem 1.5 (=Theorem 4.8). Let ϕ be a qpsh function which satisfies
the restriction condition to Z. Given a point ξ ∈ Z, we have the inequality of
norms ‖ϕ|Z,ξ‖ ≥ ‖ϕξ‖, or equivalently of log canonical thresholds lctξ(ϕ|Z) ≤
lctξ(ϕ). In particular, given a closed subset K of Z, we have lctK(ϕ|Z) ≤
lctK(ϕ).

In the theory of classification of higher dimensional varieties inversion of
adjunction provides a central tool. This was originally proved by V. Shokurov
in [43] in dimension 3 and generalized to all dimensions by J. Kollár in [34].
Here is a non-exhaustive list of references in recent progress: [28], [33], [44],
[45], [18], [19], [2]. In this paper we will prove a version of inversion of
adjunction on a regular scheme.

Theorem 1.6 (=Theorem 4.12). Let H ⊆ X be an irreducible regular
closed subscheme of codimension one, and let ϕ be a qpsh function which
satisfies the restriction condition to H. Write ψ = log |OX(−H)|. Given a
point ξ ∈ H, lctξ(ϕ|H) ≥ 1 if and only if lctξ(ϕ+ ψ) ≥ 1. In particular, given
a closed subset Z of H, lctZ(ϕ|H) ≥ 1 if and only if lctZ(ϕ+ ψ) ≥ 1.

As an application to complex algebraic geometry we prove the following
extension of pluri-canonical forms on a log smooth pair. See [14, Theorem
1.7] and [23, Proposition 5.11] for a comparison. Recall that the augmented
base locus of a big line bundle L is defined to be B+(L) =

⋂
A B(L−A)

where A runs over all ample divisors, and that the restricted base locus of a
pseudo-effective line bundle L is defined to be B−(L) =

⋃
A B(L+A) where

A runs over all ample divisors. We use the notations v(‖L‖Z) := v(a•|Z)
where {ak|Z = b(bkLc|) · OZ} is a graded sequence of ideals and σv(‖L‖Z) :=
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supA v(‖L+A‖Z) where A runs over all ample divisors. See Section 5 for
more details.

Let (X,S +B) be a dlt pair such that bS +Bc = S. Assume that the
restricted base locus B−(KX + S +B) does not contain any lc centre of
(X,S +B). Let π : X ′ → X be a log resolution of (X,S +B) and we write

KX′ + S′ +B′ = π∗(KX + S +B) + E′

where S′ +B′ ≥ 0 and E′ ≥ 0 do not have common components and bS′ +
B′c = S′. Following [30], [42], [14] and [10], if we consider the extension
obstruction divisor

Ξ := Nσ(‖KX′ + S′ +B′‖S′) ∧B′|S′

on S′ for every log resolution X ′, then we have the following result. Note
that the divisor Nσ(‖KX′ + S′ +B′‖S′) is well-defined on the simple normal
crossing pair (S′, B′|S′) if B−(KX + S +B) does not contain any lc centre
of (X,S +B) (or any stratum of the normal crossing pair (S,B|S), see [[21],
Section 2]).

Proposition 1.7 (=Proposition 5.18). Let (X,S +B) be a dlt pair such
that bS +Bc = S. Assume that

(1). there exists an effective divisor D ∼Q KX + S +B such that D con-
tains S in its support,

(2). the restricted base locus B−(KX + S +B) does not contain any lc
centre, and

(3). KX + S +B is abundant.
Let m be an integer such that m(KX + S +B) is Cartier. If σ is a

section of m(KS +BS) such that for every log resolution of (X,S +B) we
have that

divπ∗(σ) +mE′|S ≥ mΞ,

then σ extends to X.

It is conjectured that Proposition 5.18 holds without the assumption
KX + S +B being abundant. Using analytic methods, J.-P. Demailly,
C. D. Hacon and M. Pǎun proved this in [14] when (X,S +B) is
plt and there exists an effective divisor D ∼Q KX + S +B such that
S ⊆ Supp(D) ⊆ Supp(S +B). At this point we cannot attack similar
problems without using analysis. However, the analytic argument fails
when S has multiple components because the L2-estimates behave badly on
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the intersection of components of S. It is expected that we could combine
algebraic and analytic methods to deal with these problems.
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2. Valuative qpsh functions

Throughout this paper, all schemes are assumed to be separated, regular,
connected and excellent noetherian schemes over Q. All rings are assumed
to be integral, regular and excellent noetherian rings containing Q. An ideal
on a scheme means a coherent ideal sheaf on a scheme. A birational model
of a scheme is a scheme birational to and proper over this scheme, and a
divisor over a scheme is a divisor on a birational model of the scheme. For
definitions and properties of valuations, multiplier ideals, singularities in
birational geometry, etc., we refer to [36],[31] and [35].

The main purpose of this section is to review [29] in which we studied
certain functions defined on the tempered valuation space (see Definition
2.5) over a scheme X. Inside this space of functions, we isolated the closed
convex cone generated by functions associated to ideals on X and defined
as the cone of quasi-plurisubharmonic(qpsh, for short) functions. We also
introduced some basic properties of such functions.

Real valuations and quasi-monomial valuations. Let X be a
scheme, and let K(X) be its function field. A real valuation v is a
function v : K(X)∗ −→ R such that v(fg) = v(f) + v(g) and v(f + g) ≥
min{v(f), v(g)}. By convention we set v(0) := +∞. Let Ov := {f |v(f) ≥ 0}
be its valuation ring. If there exists a point ξ ∈ X such that the morphism
OX,ξ ↪→ Ov is a local homomorphism, then ξ is called the centre of v on X
and denoted by cX(v). Note that ξ is unique since X is separated, and also
note that the centre always exists provided that X is proper over Q. A real
valuation with centered on X is called a real valuation on X or simply a
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valuation on X, and we denote by ValX the set of valuations on X. The
set of valuations ValX is independent of the choice of a birational model of
X. More precisely, if Y → X is a proper birational morphism of schemes,
then ValX = ValY . The trivial valuation v is the valuation centered at the
generic point of X, or equivalently, v(f) = 0 for all f ∈ K(X)∗. We denote
by Val∗X ⊆ ValX the set of nontrivial valuations on X.

The set ValX can be equipped with an induced topology defined by the
maps v −→ v(f) for all rational functions f ∈ K(X)∗. For every nonzero
ideal a, recall that v(a) is defined as the minimum of v(f) over f ∈ a · OX,ξ
with ξ the center of v. We have that v(a) = v(a) where a denotes the integral
closure of a. Note that the topology on ValX defined by pointwise conver-
gence on ideals on X is equivalent to that on functions in K(X). Readers
can consult [[31], Section 1] for more details.

For two valuations v, w on X, we say that v ≤ w if v(a) ≤ w(a)
for every nonzero ideal a. This is equivalent to saying that the centre
η := cX(w) ∈ cX(v) and that v(f) ≤ w(f) for every nonzero local function
f ∈ OX,η.

Let ξ ∈ X be a point, and let x = (x1, . . . , xr) be a regular system
of parameters at ξ. If f ∈ OX,ξ is a local regular function, then f can

be expressed as f =
∑

β cβx
β in ÔX,ξ with each coefficient cβ either zero

or a unit. For each α = (α1, . . . , αr) ∈ Rr≥0, we define a real valuation

by valξ,α(f) = min{< α, β > |cβ 6= 0} where < α, β >:=
∑

i αiβ
i, which is

called a monomial valuation on X.
A pair (Y,D) is called log smooth if Y is a scheme and D is a reduced

divisor whose components are regular subschemes intersecting each other
transversally. A pair (Y,D) is called a log resolution of X if there is a bira-
tional projective morphism π : Y → X and (Y,D + E) is log smooth where
E consists of all exceptional divisors over X. Let (Y ′, D′) be another log
resolution of X, we say (Y ′, D′) � (Y,D) if Y ′ is projective over Y and the
support of D′ contains the support of the pull-back of D. Note that log
resolutions of X form an inverse system.

Let (Y,D) be a log resolution of X, and let η be the generic point of
an irreducible component of the intersection of some prime components of
D. We denote by QMη(Y,D) the set of real valuations which can be defined

as a monomial valuation at η. Note that η ∈ cX(v) and QMη(Y,D) ∼= Rr≥0
as topological spaces. We also define QM(Y,D) =

⋃
η QMη(Y,D) where η

runs over every generic point of some component of the intersection of some
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prime components of D. A real valuation v is said to be quasi-monomial if
there exists a log resolution (Y,D) such that v ∈ QM(Y,D).

Let v ∈ ValX be a quasi-monomial valuation. A log smooth pair (Y,D)
is said to be adapted to v if v ∈ QM(Y,D). We say that (Y,D) is a good pair
adapted to v if {v(Di)|v(Di) > 0} are rationally independent. The following
useful lemma is established as [[31], Lemma 3.6].

Lemma 2.1. Let v ∈ ValX be a quasi-monomial valuation. There exists a
good pair (Y,D) adapted to v. If (Y ′, D′) � (Y,D) and (Y,D) is a good pair
adapted to v, then (Y ′, D′) is also a good pair adapted to v.

An important class of valuations are divisorial valuations. A valuation
is called divisorial if it is positively proportional to ordE for some prime
divisor E over X, where ordE is the vanishing order along E. One easily
verifies that the trivial valuation is quasi-monomial of rational rank zero,
and a divisorial valuation is quasi-monomial of rational rank one. Let (Y,D)
be a log smooth pair adapted to v. It can be verified that v is divisorial
if and only if R≥0[v] ⊆ QMη(Y,D) ∼= Rr≥0 is a rational ray, that is, R≥0[v]
contains some rational point in Rr≥0.

For every log resolution (Y,D) we can define the retraction map

rY,D : ValX −→ QM(Y,D)

by taking v to a quasi-monomial valuation in QM(Y,D) with rY,D(v)(Di) =
v(Di). Note that rY,D is continuous and v ≥ rY,D(v) with equality if
and only if v ∈ QM(Y,D). Furthermore, if (Y ′, D′) � (Y,D) is another
resolution, then the retraction map rY,D : QM(Y ′, D′) −→ QM(Y,D) (by
abuse of notation if without confusion) is a surjective mapping which is
integral linear on every QMη′(Y

′, D′) and we have that rY,D ◦ rY ′,D′ = rY,D.
Therefore we can naturally regard QM(Y,D) as a subset of QM(Y ′, D′),
and hence of the set of quasi-monomial valuations on X. Also note that
v(a) ≥ rY,D(v)(a) for an ideal a on X, with equality if (Y,D) is a log
resolution of a (see [[31], Corollary 4.8]).

Tempered valuations and the tempered valuation space. We first
introduce the log discrepancy on a scheme. Let π : Y −→ X be a birational
proper morphism. The 0th fitting ideal Fitt0(ΩY/X) is a locally principle
ideal with its corresponding effective divisor denoted by KY/X (see [[31],
Section 1.3]). For a quasi-monomial valuation v ∈ QM(Y,D), we define the
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log discrepancy

AX(v) =
∑

v(Di) ·AX(ordDi) =
∑

v(Di) · (1 + ordDi(KY/X)).

We simply denote this by A when the scheme X is obvious. Note that A
is strictly positive linear on every QMη(Y,D), and in particular continuous
on every QMη(Y,D). One important property of A is its monotonicity with
respect to retractions, that is, if (Y ′, D′) � (Y,D) and v ∈ QM(Y ′, D′), then
A(v) ≥ A(rY,D(v)) and equality holds only when v ∈ QM(Y,D). See [[39],
[41]] for the construction of a related “log discrepancy like” function, and
[46] for a vast generalization. For an arbitrary valuation v ∈ ValX , we define

A(v) = sup
(Y,D)

A(rY,D(v)) ∈ [0,+∞].

Note that A is lower-semicontinuous (lsc) as a valuative function.

Definition 2.2. A valuation v is said to be tempered if A(v) <∞. The
tempered valuation space VX of X is defined to be the space of tempered
valuations as a subspace of ValX .

We similarly denote by V∗X the subset of nontrivial tempered val-
uations. If f : X ′ → X is a proper birational morphism, then AX(v) =
AX′(v) + v(KX′/X) (see [[31], Proposition 5.1(3)]) and hence VX′ = VX .
Since VX is a topological subspace of ValX , it is naturally a subspace of the
Berkovich space Xan. See [[31], Section 6.3] for a comparison.

With the aid of the log discrepancy, we can normalize V∗X by let-
ting A(v) = 1, that is, we define ΛX := {v ∈ V∗X |A(v) = 1}. In particular,
we normalize every cone complex QM(Y,D) by setting ∆(Y,D) := {v ∈
QM(Y,D)|A(v) = 1}. It is clear that ∆(Y,D) naturally possess the structure
of a simplicial complex, and by convention we say that ∆(Y,D) is a dual
complex. Readers can compare the constructions here with [4], [5] and [6].

The following lemma allows us to compare v and ordξ where ξ = cX(v)
which is quite useful (see [36], [[31], Section 5.3] for the definition of ordξ).
See [[31], Proposition 5.10] for a proof. Recently S. Boucksom, C. Favre and
M. Jonsson gave a refinement of the following lemma in [7].

Lemma 2.3 (Izumi type inequality). Let ξ = cX(v) and mξ be the defin-

ing ideal of {ξ}. Then, we have v(mξ)ordξ ≤ v ≤ A(v)ordξ.

Valuative qpsh functions. Let X be a scheme and VX be its tem-
pered valuation space. A valuative function ϕ is said to be homogeneous
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if ϕ(tv) = tϕ(v) for all v ∈ VX and t ∈ R+. A valuative function ϕ is said

to be bounded if supv∈V∗X
|ϕ(v)|
A(v) <∞. In other words, a bounded valuative

function is just a bounded function on ΛX . The set of bounded homoge-
neous functions forms an R-linear space, which can be equipped with the
norm ‖ϕ‖ = supv∈V∗X

|ϕ(v)|
A(v) , and will be denoted by BH(X). If q is a nonzero

ideal on X, then we define the q-norm to be ‖ϕ‖q = supv∈V∗X
|ϕ(v)|

A(v)+v(q) . When

equipped with the norm, BH(X) is actually a Banach space (see [[29], Propo-
sition 3.2]).

We also define

‖ϕ‖+q := sup
v∈V∗X

ϕ(v)

A(v) + v(q)

and

‖ϕ‖−q := sup
v∈V∗X

−ϕ(v)

A(v) + v(q)
.

Clearly, ‖ϕ‖+q = ‖ − ϕ‖−q and ‖ · ‖q = max{‖ · ‖+q , ‖ · ‖−q }.
Given a nonzero ideal a, we define |a|(v) = −ev(a) by convention. It is

obvious that log |a| is a continuous bounded homogeneous function.

Definition 2.4. A bounded homogeneous function ϕ is said to be an ideal
function if there exists a finite number of nonzero ideals aj and positive real

numbers cj such that ϕ =
∑l

j=1 cj log |aj |.

Definition 2.5. A bounded homogeneous function ϕ is said to be a val-
uative quasi-plurisubharmonic (qpsh for short) function if there exists a
sequence of ideal functions which converges to ϕ strongly in the norm. The
set of valuative qpsh functions, which is a closed convex cone in BH(X), is
denoted by QPSH(X). We usually omit ”valuative” if there is no confusion.

Readers can compare the constructions here with [4]. If we work on
X = SpecR̂ where R is the localization of C[x1, . . . , xn] at the origin, then
our definition of qpsh functions coincides the notion of formal psh functions.
A brief argument is as follows. Given a formal psh function g, we have a
subadditive sequence of ideals {L2(tg)}t>0 in R̂ by [[4], Theorem 3.10] which
satisfies that v(L2(tg)) +A(v) + (1 + ε)tg(v) ≥ 0 for every quasi-monomial
valuation v centered at the origin and an arbitrary small ε = ε(t) depending
on t by [[4], Theorem 3.9]. It follows that {L2(tg)}t>0 form a subadditive
sequence of ideals of controlled growth which induces a qpsh function ϕ on
X by definition (see [[31], Definition 2.9] for the definition of ”controlled
growth”). Therefore ϕ(v) = g(v) for every divisorial valuation v centered
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at the origin. Conversely, a qpsh function can be naturally viewed as a
formal psh function by definition. Therefore we constructed an one-to-one
correspondence.

Remark 2.6. Recall from complex geometry that a function ϕ : X →
[−∞,+∞) from a complex manifold is qpsh if it is locally equal to the
sum of a smooth function and a psh function. If X is a smooth complex
variety, then we should be able to define the valuative transform of ϕ which
is expected to be a qpsh function on the tempered valuation space VX as
defined in this paper. This was done locally in [4] and its predecessors [24],
[25], [26]. However, the global situation is not fully understood by us at this
point.

We can also define the multiplier ideal of a (valuative) qpsh function as
in complex analysis and geometry,

Definition 2.7. For a qpsh function ϕ ∈ BH(X), the multiplier ideal J (ϕ)
of ϕ is defined to be the largest ideal in the set of nonzero ideals {a|‖ log |a| −
ϕ‖+ < 1}.

If ϕ is of the form
∑l

i=1 ci log |ai|, then J (ϕ) = J (
∏l
i=1 ai

ci). Therefore
the definition given by valuative analysis coincides with the classic algebraic
definition of multiplier ideals. See [[29], Proposition 4.3].

The first important property of a qpsh function is that it is a decreasing
limit of a sequence of qpsh functions of the form ck log |bk|. In complex anal-
ysis and geometry, such a regularization is crucial. See [11], [12]. Moreover,
we can actually choose bk = J (kϕ) where J (kϕ) satisfies the subadditivity
property (See [13] for a comparison). For the definition and basic properties
of subadditive sequence of ideals (of controlled growth), we refer to [31].
Readers could see [[29], Theorem 4.24] for a proof.

Theorem 2.8. Let ϕ be a bounded homogeneous function. Then ϕ is qpsh
if and only if ϕ is the limit function, in the norm, of a decreasing sequence
of qpsh functions of the form ck log |bk|. Furthermore, we can choose ck = 1

k
and bk = J (kϕ) which form a subadditive sequence of ideals.

Note that a pointwise limit of a decreasing sequence of qpsh functions
of the form ck log |bk| is not necessarily qpsh.

Example 2.9. Let X = Spec k[x] be an affine line, and let φp =∑p
j=1 log |fj | where fj = x− j. We see that φp is a decreasing sequence of
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ideal functions and the pointwise limit function ϕ exists. But ϕ is not qpsh
because ‖ϕ− φ‖ ≥ 1 for any ideal function φ.

Now we define a set of qpsh functions associated to a graded sequence of
ideals. For the definition and basic properties of a graded sequence of ideals,
please refer to [31]. See also [29]. For a graded sequence of ideals a•, we use
the notation log |a•| to indicate the limit function of 1

k log |ak|.

Definition 2.10. A qpsh function ϕ is algebraic if it is the poinwise limit
function of an increasing sequence of ideal functions ϕ = lim

m→∞
ϕm. Equiv-

alently, a qpsh function ϕ is algebraic if it can be written as ϕ = log |a•|
which is associated to a graded sequence of ideals a•. The set of algebraic
qpsh functions is denoted by QPSHa(X).

Note that a general qpsh function is not necessarily algebraic.

Example 2.11. Let X = Spec k[x1, x2] be the affine plane. If we set φk =
k∑
l=1

1
2l log |fl| where fl = x1 + x2

l

2 , then φk converges to a qpsh function φ

strongly in the norm. However, the qpsh function φ is not algebraic because
there is no ideal function ϕ ≤ φ.

In fact we can choose the standard graded sequence of ideals associ-
ated to an algebraic qpsh function. Before that we introduce the notion of
envelope ideals.

Definition 2.12. Let ϕ ∈ BH(X) be a bounded homogeneous function. Its
envelope ideal a(ϕ) is defined to be the largest ideal in the set {a| log |a| ≤ ϕ}
if this set is nonempty. If it is empty, we set a(ϕ) = 0.

Note that the envelope ideal of an algebraic qpsh function is always
nonzero. If we set a(ϕ)m = a(mϕ), then {a(ϕ)•} is a graded sequence of
ideals. We can easily show that every algebraic qpsh function is of the form
log |a(ϕ)•|. (See [[29], Theorem 4.12]).

Also note if an algebraic qpsh function ϕ is associated to a graded
sequence of ideals a•, then its multiplier ideal J (ϕ) = J (a•). Therefore the
definition from valuative analysis is compatible with the algebraic definition
of multiplier ideals of graded sequences of ideals. See [[29], Corollary 4.14].
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3. Log canonical thresholds

Given an ideal a on a scheme X, the log canonical threshold lct(a) is a
fundamental invariant both in singularity theory and birational geometry
(see [35], [36] and etc.). The log canonical threshold admits the following
description in terms of valuations:

lct(a) = inf
E

A(ordE)

ordE(a)

where E runs over all prime divisors overX and A(ordE) = ordE(KY/X) + 1.
In fact in the above formulae one can take the infimum over all real valuations
centered on X. It is well-known that if Y is a log resolution of a, then there
exists some prime divisor E on Y such that ordE computes the log canonical
threshold, that is, lct(a) = A(ordE)

ordE(a)
. Given a qpsh function ϕ, we can define

the log canonical threshold as

lct(ϕ) = inf
E

A(ordE)

−ϕ(ordE)
.

We can show that lct(ϕ) equals to the limit of 1
ck

lct(ak) where ck log |ak|
converges to ϕ strongly in the norm (see [[29], Theorem 4.24, Remark 4.25]
for an argument). Unfortunately, there may be no divisorial valuation which
computes the log canonical threshold in general. However, we can prove that
there exists a tempered valuation which computes the log canonical thresh-
old. This has been thoroughly studied in [31], [32] and other references. It is
conjectured (see [[31], Conjecture B]) that a valuation which computes the
log canonical threshold is always quasi-monomial. Equivalently we consider
the reciprocal of the log canonical threshold which is exactly the norm of ϕ
by definition as below. By definition we note that lct(ϕ)−1 = ‖ϕ‖+ which is
also known as the Arnold multiplicity in the literature.

Definition 3.1. Let ϕ be a bounded homogeneous function and q be a
nonzero ideal on X. We say a nontrivial tempered valuation v ∈ V∗X com-

putes ‖ϕ‖q if the equality ‖ϕ‖q = |ϕ(v)|
A(v)+v(q) holds.

More generally, for a nonzero ideal q, there exists a tempered valuation
which compute this norm.

Theorem 3.2. Let ϕ be a qpsh function and let q be a nonzero ideal on X.
Then there exists a nontrivial tempered valuation v which computes ‖ϕ‖q.
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Readers can consult [29] for a proof. Also see [31] and [32] for more
discussions.

Tame qpsh functions. We will discuss a class of algebraic qpsh func-
tions whose associated graded sequence of envelope ideals and associated
subadditive sequence of multiplier ideals ”converge uniformly” by abuse of
language (see Remark 3.10). If we work on X = SpecR̂ where R is the local-
ization of C[x1, . . . , xn] at the origin, then these tame qpsh functions defined
below are very close to the valuative transforms of tame psh weights in [[4],
Section 5.3, Section 5.2].

Definition 3.3. Let ϕ be a qpsh function on X. A qpsh ϕ is said to be
tame if there exists a constant C > 0 such that

J ((t+ C)ϕ) ⊆ a(tϕ)

for every t ≥ 0. Such a constant can be chosen to be minimal, and is called
its tameness constant. A qpsh function ϕ is said to be weakly tame if there
exists a nonzero ideal c such that

J (tϕ) · c ⊆ a(tϕ)

for all sufficiently large numbers t� 0. Such an ideal can be chosen to be
maximal, and is called its tameness ideal.

Example 3.4. Given a complex projective manifold X and a big line
bundle L, we have a graded sequence of ideals a• := {b(|mL|)}∞m=1, where
b(|mL|) denotes the base ideal of mL, and we have the corresponding alge-
braic qpsh function φ = log |a•|. Then, φ is weakly tame according to [[36],
Theorem 11.2.21].

Lemma 3.5. (1). If ϕ is tame, then it is weakly tame and its tameness
ideal contains a(ηϕ) where η is its tameness constant.
(2). If ϕ is (weakly) tame, then so is tϕ for any t > 0. If ϕ and ψ are both
(weakly) tame, then so is ϕ+ ψ.
(3). A (weakly) tame function ϕ is algebraic.

Proof. (1). The assertion directly follows from the inclusion J (tϕ) · a(ηϕ) ⊆
a((t− η)ϕ) · a(ηϕ) ⊆ a(tϕ) for t ≥ η.
(2). We only prove the case when ϕ and ψ are weakly tame here because
the tame case can be proved in a similar way. If ϕ is weakly tame, then
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J (t′tϕ) · c ⊆ a(t′tϕ) for every sufficiently large number t′. If ϕ and ψ are
weakly tame with their tame ideals c and c′ respectively, then

J (t(ϕ+ ψ)) · c · c′ ⊆ J (t(ϕ) · c · J (t(ψ) · c′ ⊆ a(tϕ) · a(tψ) ⊆ a(t(ϕ+ ψ))

for every sufficiently large number t.
(3). If ϕ is weakly tame, then ‖ 1

m log |J (mϕ)| − 1
m log |a(mϕ)|‖ ≤

1
m‖ log |c|‖. Therefore 1

m log |a(mϕ)| converges to ϕ strongly in the norm. �

Proposition 3.6. If ϕ is tame with its tameness constant η, then η ≥
lct(ϕ).

Proof. If η < λ := lct(ϕ), then one has

OX = J ((η + ε)ϕ) ⊆ I(εϕ) 6= OX

for ε sufficiently small, which is a contradiction. �

Now we need the notion of the envelope qpsh function of a bounded
homogeneous function.

Definition 3.7. Let ϕ be a bounded homogeneous function. Assume that
the set {ψ ∈ QPSH(X)|ψ ≤ ϕ} is nonempty. Then we say the maximal func-
tion in this set the qpsh envelope function. The existence of such maxi-
mal function follows from [[29], Lemma 4.15 and Definition 4.16] We sim-
ilarly define the algebraic qpsh envelope function of ϕ if it exists. Also
note that the algebraic qpsh envelope function exists if and only if the set
{ψ ∈ QPSHa(X)|ψ ≤ ϕ} is nonempty.

Lemma 3.8. Let ϕ be a bounded homogeneous function. If ϕ is determined
on some dual complex ∆(Y,D) in the sense of ϕ = ϕ ◦ rY,D, and if we denote
the image of D on X by Z, then its qpsh envelope function ψ exists and it is
weakly tame. Assume further that infv∈VX,ξ ϕ(v) < 0 for every generic point
ξ of Z. Then ψ is tame.

Proof. The existence of ψ follows from [[29], Lemma 4.17]. Let m be the cor-
responding ideal of Z. Note that log |m| is strictly negative on ∆(Y,D). There
exists an integer k such that v(mk) ≥ 1 on ∆(Y,D). If f ∈ Γ(U,J (tψ)),
then v(f) +A(v) + tψ(v) > 0 for every v centered on U . The inequality
v(f) + v(mk) + tϕ(v) > 0 holds for every valuation v in ∆(Y,D) centered
on U , hence it holds on VU by the convexity of log |f |+ k log |m| (see [[29],
Proposition 3.11]). It follows that J (tψ) ·mk ⊆ a(tϕ) = a(tψ).
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If infv∈VX,ξ ϕ(v) < 0 for every generic point ξ of Z, then ψ is strictly
negative on ∆(Y,D). Therefore there exists a positive number C such that
Cψ(v) < −1 for every valuation v in ∆(Y,D). For any f ∈ Γ(U,J ((t+
C)ψ)), we have v(f) + tψ(v) > 0 for every v in ∆(Y,D) centered on U .
Since ψ ≤ ϕ, we have that v(f) + tϕ(v) > 0 holds for every v in ∆(Y,D)
centered on U and hence holds for every v ∈ VU . It follows that f ∈ a(tψ)
which implies the conclusion. �

An immediate consequence of the previous lemma is the following corol-
lary.

Corollary 3.9. Every ideal function is tame.

Remark 3.10. If ϕ is weakly tame with its tameness ideal c, then we have

a(mlϕ) · cl ⊆ J (mlϕ) · cl ⊆ J (mϕ)l · cl ⊆ a(mϕ)l

for every sufficiently large integer m and every integer l. In particular,
ϕ+ 1

k log |c| ≤ 1
k log |a(kϕ)| for every sufficiently large integer k. However,

we still have no idea if the converse would be true (possibly with some
extra assumption).

On the other hand, we have

J (mϕ)l · cl ⊆ a(mϕ)l ⊆ a(mlϕ) ⊆ J (mlϕ)

for every sufficiently large integer m and every integer l. In particular, ϕ ≤
1
k log |J (kϕ)|+ 1

k log |c| for every sufficiently large integer k. Conversely, such
an inequality implies that ϕ is weakly tame by the definitions of envelope
ideals and weak tameness.

Tame Functions associated to Tempered Valuations. To investi-
gate more on the structure of the valuation space, we observe that for every
nontrivial tempered valuation v, we can construct the corresponding tame
function in a natural way.

Definition 3.11. Let v ∈ V ∗X be a nontrivial tempered valuation. We define

a valuative function dv(w) =

{
1 if w = v

0 otherwise
which is called the Dirac func-

tion of v. Further, we define φv to be the qpsh envelope function of −dv.

In fact we can describe the function φv more explicitly.
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Lemma 3.12. (1). Γ(U, a(tφv)) = {f ∈ OX(U)|v(f) ≥ t} if cX(v) ∈ U and
it is trivial otherwise. In particular, φv(v) = −1.
(2). φv is tame with its tameness constant ηv ≤ A(v).

(3). φv(w) = − inf
b

w(b)
v(b) where b runs over all nonzero ideals such that v(b) 6=

0.

Proof. (1). Let I be an ideal sheaf such that Γ(U, I) = {f ∈ OU |v(f) ≥ t} if
cX(v) ∈ U and trivial otherwise. We have that a(tφv) ⊆ I and equality holds
if I is coherent. By a similar argument used in the proof of [[29], Proposition
4.10] we obtain the conclusion. Consequenctly φv(v) = −1 by [[31], Lemma
2.4].
(2). Let C = A(v). If f ∈ Γ(U,J ((t+ C)φv)), then w(f) +A(w) + (t+
C)φv(w) > 0 for every w ∈ VU , and it follows that v(f) > t when cX(v) ∈ U .
Therefore f ∈ Γ(U, a(tφv)).
(3). Since φv is tame, it is algebraic according to Lemma 3.5. Therefore,
φv = log |a(φv)•|. Now we apply [[31], Lemma 2.4] and obtain the conclu-
sion. �

An important feature of a qpsh function is its support. We introduce the
definition of the support of a qpsh function from [[29], Definition 3.10].

Definition 3.13. The support of a qpsh function ϕ is defined to be the
set {x ∈ X|x = cX(v) for some nontrivial tempered valuation v such that
ϕ(v) < 0}, and is denoted by Supp(ϕ).

We have a very straightforward description of the support of a tame
function φv as below.

Corollary 3.14. Supp(φv) = {cX(v)}.

Proof. If φv(w) > 0, then by Lemma 3.12(3) we have tw ≥ v for some real
number t > 0. Hence cX(w) = cX(tw) ∈ {cX(v)}. �

Another feature of φv is that the mapping v → φv preserves the partial
order of tempered valuations.

Proposition 3.15. w ≥ v if and only if φw ≥ φv.

Proof. If w ≥ v, then φv(w) ≤ φv(v) = −1 = φw(w) by Lemma 3.12(1).
Since φw is the qpsh envelope function of−dw, the inequality φw ≥ φv follows
directly by definition. Conversely, if φw ≥ φv, then −1 = φw(w) ≥ φv(w).
Thus w ≥ v by Lemma 3.12(3). �
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Computing Sets of Log Canonical Thresholds. We continue our
study by computing the log canonical thresholds of qpsh functions, or equiv-
alently by computing the norms (see [[29], Section 5]). The following con-
jecture was raised as [[31], Conjecture B] (see also [[31], Theorem 7.8]). It
is already known for several special cases (see [[31], Section 8 and 9] for
thorough proofs). Their recent work [32] reveals the relation between this
conjecture and the openness conjecture. Recently Q. Guan and X. Zhou
announced a proof of the openness conjecture (see [27]).

Conjecture 3.16. Let ϕ be a qpsh function on X and q be a nonzero
ideal on X. Then there exists a nontrivial quasi-monomial valuation v which
computes ‖ϕ‖q. Conversely, if a nontrivial tempered valuation v computes
the norm of some qpsh function, then v is quasi-monomial.

Further, one can ask if it is possible to characterize those tempered
valuations which compute the norm of some qpsh function. By convention
we use the notation lctq(ϕ) as the reciprocal of ‖ϕ‖q. The following lemma
and its proof are taken from [31].

Lemma 3.17. Let v ∈ V ∗X be a nontrivial tempered valuation. The following
statements are equivalent.
(1). There exists a qpsh function ϕ such that v computes lctq(ϕ).
(2). For every tempered valuation w ≥ v, we have A(w) + w(q) ≥ A(v) +
v(q).
(3). v computes lctq(φv).

Proof. (1)⇒(2). If ϕ is a qpsh function such that lctq(ϕ) = A(v)+v(q)
−ϕ(v) , then

for any tempered valuation w ≥ v we have A(v)+v(q)
−ϕ(v) ≤ A(w)+w(q)

−ϕ(w) and ϕ(w) ≤
ϕ(v). Therefore A(w) + w(q) ≥ A(v) + v(q).
(2)⇒(3). For an arbitrary tempered valuation w with φv(w) 6= 0, we replace
w by (−φv(w))−1w. Therefore we can assume φv(w) = −1. Since w ≥ v by
Lemma 3.12(3), we have A(w) + w(q) ≥ A(v) + v(q), and it follows that
A(w)+w(q)
−φv(w) ≥ A(v)+v(q)

−φv(v) .

(3)⇒(1). Note that φv is obviously qpsh. �

Definition 3.18. A nontrivial tempered valuation that satisfies one of the
conditions in the previous lemma is said to be q-computing. Given an ideal
q, we define

Λq := {v ∈ VX |A(v) + v(q) = 1},
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and we denote the set of q-computing valuations in Λq by Ωq. Given a qpsh
function ϕ, the set of all valuations in Λq which compute lctq(ϕ) is denoted
by Ωq(ϕ). Moreover, one defines a partial order on Λq such that w � v if
Ωq(φw) ⊆ Ωq(φv).

Lemma 3.19. Let w, v ∈ Λq be two tempered valuations.
(1). v ∈ Ωq if and only if lctq(φv) = 1.
(2). w ∈ Ωq(φv) if and only if w ≥ ‖φv‖q · v, or equivalently φw ≥ (lctqφv) ·
φv.
(3). If w, v ∈ Ωq. Then w � v if and only if w ≥ v.
(4). If ‖φw‖q · w ≥ ‖φv‖q · v, or equivalently (lctqφw) · φw ≥ (lctqφv) · φv,
then w � v.

Proof. (1). According to Lemma 3.17(3), v ∈ Ωq if and only if v computes

lctqφv. Therefore, lctqφv = A(v)+v(q)
−φv(v) = 1.

(2). w ∈ Ωq(φv) if and only if lctq(φv) = A(w)+w(q)
−φv(w) . That is, inf

b

w(b)
v(b) = ‖φv‖q.

This is equivalent to saying that w ≥ ‖φv‖q · v.
(3). If w, v ∈ Ωq and w � v, then w ∈ Ωq(φv) by Lemma 3.17(3). Therefore
w ≥ ‖φv‖q · v = v by (1). Conversely if w ≥ v, then Ωq(φw) = {u|u ≥ w} ⊆
{u|u ≥ v} = Ωq(φv) by (1) and (2).
(4). If u ∈ Ωq(φw), then by (2) u ≥ ‖φw‖q · w. It follows that u ≥ ‖φv‖q · v
and by (2) again u ∈ Ωq(φv). We conclude that Ωq(φw) ⊆ Ωq(φv). �

Remark 3.20. On the subset Ωq the partial order � is nothing else but
≥. But this is much more complicated on the whole space Λq. An interest-
ing question is, given a tempered valuation v ∈ Λq, is it possible to find a
valuation w ∈ Ωq such that Ωq(φv) = Ωq(φw)?

Corollary 3.21. Let v be a nontrivial tempered valuation, and let ηv be its
tameness constant. Then, we have the inequality

lct(φv) ≤ ηv ≤ A(v).

As a result, if v is computing, then ηv = A(v).

Proof. The assertion follows by combining Proposition 3.6, Lemma 3.12(1)
and (2). �

Remark 3.22. We expect that there would be an invariant which give a
criterion for a q-computing tempered valuation. As the previous corollary
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asserts, if v is computing, then its tameness constant ηv = A(v). However it
is not known if the converse statement is true.

Definition 3.23. Given a nontrivial tempered valuation v ∈ V ∗X , we define
the set Ωq(v) := {w ∈ Λq|w ≥ v}.

Lemma 3.24. Let v be a nontrivial tempered valuation.
(1). Ωq(tv) is a closed subset of Λq for every t > 0, and Ωq(tv) ⊇ Ωq(t′v) if
0 < t ≤ t′.
(2). ‖φv‖q = max{t|Ωq(tv) 6= ∅}. In particular, for a valuation v ∈ Λq, v ∈
Ωq if and only if Ωq((1 + ε)v) = ∅ for every ε > 0.

Proof. (1). Note that Ωq(tv) = {w ∈ Λq|φtv(w) ≤ −1} by Lemma 3.12(3).
This is closed since φtv is continuous (see [[29], Section 4.2]).

(2). If Ωq(tv) 6= ∅, then ‖φv‖q ≥ −φv(w)
A(w)+w(q) ≥ t. Conversely, if there exists a

tempered valuation w ∈ Λq which computes ‖φv‖q, then w ≥ ‖φv‖q · v by
Lemma 3.12(3). This proves ‖φv‖q ≤ max{t|Ωq(tv) 6= ∅}. �

Theorem 3.25. Let v be a nontrivial tempered valuation. If rY,D(v) is q-
computing for all sufficiently high log resolutions (Y,D) of X, then v is
q-computing.

Proof. After replacing v by 1
A(v)+v(q)v, we can assume that v ∈ Λq. If v is not

q-computing, then Ωq((1 + ε)v) 6= ∅ for some small number ε > 0. Therefore
Ωq((1 + ε)rY,D(v)) 6= ∅ since v ≥ rY,D(v). Assume the log resolution (Y,D) is
sufficiently high such that (1 + ε)(A(rY,D(v)) + rY,D(v)(q)) > 1 + δ for some
sufficiently small number δ > 0. Let w = 1

A(rY,D(v))+rY,D(v)(q)rY,D(v) ∈ Λq.

Since Ωq((1 + δ)w) 6= ∅, we deduce that w /∈ Ωq by Lemma 3.19(1) and
Lemma 3.24(2), and thus rY,D(v) is not q-computing. �

Remark 3.26. We do not know wether Ωq is closed or not. The previous
theorem only asserts that if v lies outside Ωq, then rY,D(v) is not q-computing
provided that (Y,D) is sufficiently high. Also, it is natural to ask if the
converse statement of the previous theorem is true which is closely related
to Conjecture 3.16.

Conjecture 3.27. Let v be a nontrivial tempered valuation. If v is q-
computing, then rY,D(v) is q-computing for all sufficiently high log reso-
lutions (Y,D) of X.
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4. Restrictions of valuative qpsh functions

In this section we will discuss restrictions of (valuative) qpsh functions and
their basic properties. A natural way to define the restriction of a (valua-
tive) qpsh function is to use the fact that every qpsh function ϕ is of the
form ϕ = log |b•| where bk = J (kϕ) forms a subadditive sequence of ideals.
Unfortunately, we will see that this definition is not a precise analogue of the
restriction of qpsh function in analytic geometry via the valuative transfor-
mation (see [[4]. 5.2] for valuative transform of a psh germ). One important
reason that we cannot construct such an analogue is that we do not have an
algebraic description of the weak topology of psh germs (see [[4], Corollary
5.7]).

Definition 4.1. Let Z ⊆ X be an irreducible regular closed subscheme and
let ϕ be a qpsh function. If we write ϕk = 1

k log |J (kϕ)|, then we say that ϕ
satisfies the restriction condition to Z if
(1). ϕk|Z := 1

k log |J (kϕ) · OZ | is well-defined, that is, J (kϕ) · OZ 6= (0), for
every integer k, and
(2). ϕk|Z converges strongly in the norm.
In this case then we define the restriction ϕ|Z to be the limit function of
ϕk|Z . Note that Condition (2) will be automatically satisfied if the qpsh
function ϕ is associated to a Q-Cartier Q-divisor D or a Q-line bundle L.
See Proposition 5.5.

Remark 4.2. If we work on X = SpecR̂ where R is the localization of
C[x1, . . . , xn] at the origin, then the qpsh functions are exactly the formal
psh functions discussed in [4] (See [[29], Remark 4.27] for an argument). If
we take the analytic psh germ ϕ = − log(− log max |z1|), then the valuative
transform ϕ̂ is the zero function because the singularity is too mild to be
detected by tempered valuations. On the other hand, the equation ϕ(z) ≡
−∞ holds identically on {z1 = 0}. This example shows that the valuative
transform loses some important information from complex analysis.

Lemma 4.3. (1). If ϕ satisfies the restriction condition to Z, then so does
tϕ for every t > 0. Further, (tϕ)|Z = tϕ|Z .
(2). If ϕ and ψ satisfy the restriction condition to Z, then so does ϕ+ ψ.
Further, (ϕ+ ψ)|Z = ϕ|Z + ψ|Z .

Proof. (1). By definition of the multiplier ideal we have J (ktϕ) · OZ 6= (0),
and by [[31], Lemma 2.6] we have that 1

kt log |J (ktϕ) · OZ | converges to ϕ|Z
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strongly in the norm. Therefore tϕk|Z := 1
k log |J (tkϕ) · OZ | form a Cauchy

sequence which converges to tϕ|Z strongly in the norm.
(2). For every integer k and every sufficiently small number ε > 0, there
exists a sufficiently divisible number m such that J (k(ϕ+ ψ)) = J ((1 +
ε)k(ϕm + ψm)) according to [[29], Lemma 4.20]. Therefore,

1

k
log |J (k(ϕ+ ψ))| ≥ (1 + ε)(ϕm + ψm) = (1 + ε)

1

m
log |J (mϕ) · J (mψ)|

and it follows that

(J (k(ϕ+ ψ)) · OZ)m/k(1+ε) = J (k(ϕ+ ψ))m/k(1+ε) · OZ
⊇ J (mϕ) · J (mψ) · OZ
= (J (mϕ) · OZ) · (J (mψ) · OZ) 6= (0).

Now we write Φk = 1
k log |J (k(ϕ+ ψ))| and Φk|Z = 1

k log |J (k(ϕ+ ψ)) ·
OZ |. We have

ϕk|Z + ψk|Z ≥ Φk|Z ≥ (1 + ε)(ϕm|Z + ψm|Z)

≥ (1 + ε)(ϕ|Z + ψ|Z).

Since ε can be chosen arbitrary small, we have ϕk|Z + ψk|Z ≥ Φk|Z ≥ ϕ|Z +
ψ|Z . Thus Φk|Z converges to ϕ|Z + ψ|Z strongly in the norm. �

The previous lemma shows that qpsh functions which satisfy the restric-
tion condition to Z form a convex subcone of QPSH(X). We denote this
subcone by QPSHZ(X). Like [[29], Lemma 4.16, Proposition 6.10 and Propo-
sition 6.11], it is natural to ask the following question.

Question 4.4. Is the cone QPSHZ(X) closed under taking the supremum?

We will only give the affirmative answer in some cases (see Proposition
5.9). However, we expect this to hold unconditionally.

Remark 4.5. Note that the cone QPSHZ(X) is NOT closed in norm. We
will give a counter example later (See Example 5.11).

Theorem 4.6 (Restriction Theorem I). If ϕ is a qpsh function which
satisfies the restriction condition to Z, then we have the inclusion

J (ϕ|Z) ⊆ J (ϕ) · OZ .
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Proof. By the definition of the restriction condition, ϕ|Z is approximated by
ϕk|Z strongly in the norm. Therefore from [[29], Lemma 4.20] there exists a
small number ε > 0 such that J (ϕ|Z) = J ((1 + ε)ϕk|Z) and J (ϕ) = J ((1 +
ε)ϕk) for every sufficiently divisible integer k. Now we apply [[31], Theorem
A.1] and hence conclude this inclusion. �

Definition 4.7 (Local log canonical threshold). Let X be a scheme
and ξ be a point of X. The inclusion SpecOX,ξ → X induces an inclusion of
tempered valuation spaces VSpecOX,ξ → VX which preserves the log discrep-
ancy. If ϕ is a qpsh function on X, then we define ϕξ to be the pull-back
of ϕ. In this case, we denote the log canonical threshold of ϕξ by lctξ(ϕ).
It is easy to see that lctξ(ϕ) ≤ lctξ′(ϕ) if ξ dominates ξ′. Further, if Z is a
closed subset of X, then we define the log canonical threshold of ϕ on Z to
be lctZ(ϕ) := infξ∈Z lctξ(ϕ). Clearly, if Z ′ ⊆ Z, then lctZ(ϕ) ≤ lctZ′(ϕ).

It is easy to check that, if a qpsh function ϕ is induced by a finite
number of ideals ai in the sense of ϕ =

∑
ci log |ai|, then lctξ(ϕ) is precisely

the log canonical threshold of
∏

acii at ξ. Similarly if ϕ is induced by a
graded sequence of ideals a•, then lctξ(ϕ) is exactly the local log canonical
threshold lctξ(a•). For details, we refer to [[29], Section 3.2].

Theorem 4.8 (Restriction Theorem II). Let ϕ be a qpsh function which
satisfies the restriction condition to Z. Given a point ξ ∈ Z, we have the
inequality of norms ‖ϕ|Z,ξ‖ ≥ ‖ϕξ‖, or equivalently of log canonical thresh-
olds, lctξ(ϕ|Z) ≤ lctξ(ϕ). In particular, given a closed subset Y of Z, we have
lctY (ϕ|Z) ≤ lctY (ϕ).

Proof. After replacing X and Z by SpecOX,ξ and SpecOZ,ξ respectively,
we will show that lct(ϕ|Z) ≤ lct(ϕ). If we set λ := lct(ϕ|Z), then we have
J ((λ− ε)ϕ|Z) = OZ for every ε > 0. By theorem 4.6 we have OZ = J ((λ−
ε)ϕ|Z) ⊆ J ((λ− ε)ϕ) · OZ . Therefore J ((λ− ε)ϕ) contains the maximal
ideal mξ properly since mZ ⊆ mξ, which implies that J ((λ− ε)ϕ) = OX and
hence λ ≤ lct(ϕ). The last assertion follows from the definition directly. �

Remark 4.9. The readers could compare the previous result to [[15], 2.2.
Proposition]. Note that if an analytic psh function ϕ has algebraic singu-
larities, then the complex singularity exponents cK(ϕ) on an irreducible
analytic set K is exactly the log canonical threshold of its corresponding
”algebraic data” on K. As we mentioned in Remark 4.2, the restriction of a
valuative qpsh function is not a precise analogue of that in complex analysis.
For instance, if we take an analytic psh function ϕ and denote its valuative
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transform by ϕ̂, then we have cK(ϕ) = lctK(ϕ̂) by [[15], 3.2 Theorem(3)].
But in general, cK(ϕ|Z) can be very different from lctK(ϕ̂|Z).

Proposition 4.10. Let Z ⊆ X be a regular closed irreducible subscheme.
If ϕ is a tame qpsh function, then ϕ satisfies the restriction condition to Z if
and only if ϕ(ordξ) = 0 where ξ is the generic point of Z. In this case, a(kϕ) ·
OZ 6= (0) for every integer k > 0 and ϕ|Z , which is of the form log |a(ϕ)•,|Z |,
is also tame.

Proof. By definition there exists a constant C > 0 such that log |J ((C +
t)ϕ)| ≤ tϕ. It follows that ϕ(ordξ) ≤ ordξJ ((C + 1)ϕ) = 0 provided that
ϕ satisfies the restriction condition to Z. Conversely if ϕ(ordξ) = 0,
then we have a(kϕ) · OZ ⊇ J ((k + C)ϕ) · OZ 6= (0). Set ψk = 1

k log |a(kϕ)|
and ψk|Z = 1

k log |a(kϕ) · OZ |, and hence ϕk|Z ≥ ψk|Z ≥ (1 + C
k )ϕk|Z . Since

a•,|Z := {a(kϕ) · OZ}∞k=1 is a graded sequence of ideals, ψk|Z converges
strongly in the norm. We obtain that ϕk|Z converges to ϕ|Z strongly in
the norm.
To see that ϕ|Z is tame, it suffices to consider the inclusions

J ((k + C)ϕ|Z) ⊆ J ((k + C)ϕ) · OZ ⊆ a(kϕ) · OZ ⊆ a(kϕ|Z)

as an application of Theorem 4.6. �

Corollary 4.11. If ϕ =
k∑
i=1

ci log |ai| is an ideal function, then ϕ satisfies

the restriction condition to Z if and only if all ai do not vanish along Z. In

this case, ϕ|Z =
k∑
i=1

ci log |ai · OZ |.

Proof. This assertion follows by combining Proposition 4.10, Corollary 3.9
and Lemma 4.3. �

Inversion of adjunction. The aim of this subsection is to prove the
following theorem which is a version of inversion of adjunction. In the the-
ory of classification of higher dimensional varieties inversion of adjunction
provides a central tool. This was originally proved by V. Shokurov in [43]
in dimension 3 and generalized to all dimensions by J. Kollár in [34]. Here
is a non-exhaustive list of references in recent progress: [28], [33], [44], [45],
[18], [19], [2].

Theorem 4.12. Let H ⊆ X be an irreducible regular closed subscheme of
codimension one, and let ϕ be a qpsh function which satisfies the restriction
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condition to H. Write ψ = log |OX(−H)|. Given a point ξ ∈ H, lctξ(ϕ|H) ≥
1 if and only if lctξ(ϕ+ ψ) ≥ 1. In particular, given a closed subset Z of H,
lctZ(ϕ|H) ≥ 1 if and only if lctZ(ϕ+ ψ) ≥ 1.

Proof. Note that the assertion is equivalent to saying that ‖ϕ|H,ξ‖ ≤ 1 if
and only if ‖ϕξ + ψξ‖ ≤ 1. According to [[31], Proposition 1.9] and [[29],

Proposition 4.22], we can replace X by SpecÔX,ξ (See [[31], Appendix A]
for more details). Therefore, by Cohen’s structure theorem we can assume
that X = Speck[[x1, . . . , xm]], for some m, and that H is defined by the ideal
(x1). In particular, we can assume that ξ is a closed point of X.

Now we prove the ”only if” part since the ”if” part is easier and can be
argued similarly. Assume that lctξ(ϕ|H) ≥ 1. It follows that J ((1− ε)ϕk|H)ξ
is trivial for every sufficiently large integer k and every sufficiently small
number ε > 0 by [[29], Lemma 4.20]. Recall that ϕk = 1

k log |J (kϕ)| as we
denoted earlier. From the fact that J ((1− ε)ϕk|H) =

⋂
N J ((J (kϕ)H +

mN
H)

1−ε
k ) and J ((1− ε)(ϕk + ψ)) =

⋂
N J ((J (kϕ) · OX(−H)k + mN )

1−ε
k ),

where J (kϕ)H and mH denotes the restriction of J (kϕ) and m to H respec-

tively, we only need to show that J ((J (kϕ) · OX(−H)k + mN )
1−ε
k ) is trivial

for every N . For this reason we can assume that X = Amk . By [[31], Example
1.1] we can assume that k is algebraically closed.

Pick a general member fk of the ideal J (kϕ) and denote the correspond-
ing divisor byDk. It is obvious that fk|H is also a general member of J (kϕ)H .
Therefore, by usual inversion of adjunction (for example, see [[19], Theorem
0.1]) and [[36], Proposition 9.2.28], we obtain that J ((1− ε)(ϕk + ψ)) =
J (1−εk Dk + (1− ε)H)) is trivial from that J ((1− ε)ϕk|H) = J (1−εk Dk|H) is
trivial, and hence lctξ(ϕ+ ψ) ≥ 1. �

Remark 4.13. The readers could compare the previous theorem with [[15],
2.5. Theorem].

5. Applications

IfX is a smooth complex projective variety, then we can associate a valuative
qpsh function to a line bundle. This has been studied for ideal functions (see
Definition 2.4) in many relevant references such as [3], [16], [17], [20], [37],
[40]. We developed such a theory for qpsh functions in [[29], Section 6].
Besides, it might be possible to generalize the results to varieties with mild
singularities such as klt singularities (see [8], [9]).
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Throughout this section X will be a projective smooth variety over C
for simplicity. The term ”divisor” will always refer to a Q-Cartier Q-divisor.
Given a section s ∈ H0(X,L) of a line bundle, the notation log |s| denotes
the qpsh function defined locally by a regular function corresponding to s.

Restriction of D-psh functions. To begin with, we briefly review the
definitions and propositions from [[29], Section 6].

Definition 5.1. Given a divisor D, we define the set

LD :={1

k
log |a| |kmD ⊗ am is globally generated

for every sufficiently divisible m}.

We then define the set of D-psh functions to be the closure PSH(D) = LD
in the norm.

Definition 5.2. The set of pseudo D-psh functions is defined to be
PSHσ(D) :=

⋂
ε>0

PSH(D + εA) where A is an ample divisor.

Note that the above definition is independent of the choice of the ample
divisor A. As in complex algebraic geometry, we have the corresponding
vanishing theorem, global generation theorem, etc. We will frequently use
them and we present here for the reader’s convenience. See [[29], Theorem
6.5, Theorem 6.6] for proofs and more details.

Theorem 5.3 (Nadel Vanishing). Let L be a line bundle on a smooth
projective variety X and L ≡ A+D where A is a nef and big Q-divisor.
Assume that ϕ ∈ PSHσ(D). Then

H i(X, (KX + L)⊗ J (ϕ)) = 0

for all i > 0.

Theorem 5.4 (Global generation). Let D be a divisor on X and ϕ be
a qpsh function. Then, ϕ is pseudo D-psh if and only if there exists a line
bundle G such that (mD +G)⊗ J (mϕ) is globally generated for all m ∈ Z+

with mD integral.

Now we discuss of the restriction of a pseudo D-psh function and that of
a D-psh function. An important feature of a pseudo D-psh function is that
condition (2) in Definition 4.1 automatically holds as long as condition (1)
is satisfied.
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Proposition 5.5. Let Z ⊆ X be a smooth closed subvariety, let D be a
divisor and let ϕ be a pseudo D-psh function. If we write ϕk = 1

k log |J (kϕ)|,
then ϕ satisfies the restriction condition to Z if ϕk|Z := 1

k log |J (kϕ) · OZ | is
well-defined, that is, J (kϕ) · OZ 6= (0), for every integer k, or equivalently
ϕ(ordZ) = 0.

Before we prove this proposition, we show the following useful lemmas
as preparation.

Lemma 5.6. Let D be a divisor on X, and let {φk} be a decreasing sequence
of pseudo D-psh functions. Then, φk converges to a pseudo D-psh function
strongly in the norm.

Proof. For every integer m, the sequence of ideals {J (mφk)} satisfies
descending chain condition as a result of Theorem 5.4. That is, J (mφk)
stabilizes when k ≥ N(m), which in turn implies that ‖φk − φk′‖ < 1

m for k
and k′ ≥ N(m). �

Now we can prove the following stronger version of Proposition 5.5.

Corollary 5.7. Let D, Z, X and ϕ be as in Proposition 5.5. Then, the
function ϕ|Z is well-defined and pseudo D|Z-psh.

Proof. There exists an ample divisor A such that ϕk ∈ LD+A for every inte-
ger k by Theorem 5.4. It follows that ϕk|Z ∈ LD|Z+A|Z for all k. Note that
{J (kϕ) · OZ} is a subadditive sequence of ideals. Therefore, {ϕk|Z} has a
decreasing subsequence of D|Z +A|Z-psh functions (see [[29], Remark 4.25])
which converges to the limit function of ϕk|Z strongly in the norm by [[31],
Lemma 2.6] and Lemma 5.6. �

In the previous corollary we see that being pseudo D-psh can be ”pre-
served” under restricting to a smooth closed subvariety. However, if we
assume that ϕ is D-psh, then ϕ|Z is not necessarily D|Z-psh.

Example 5.8. Let D be a nef and abundant divisor on X, and let Z be
a smooth hypersurface of a variety X such that D|Z is not abundant. It is
easy to see that the zero function φ is D-psh and its restriction φ|Z is also
a zero function. But φ|Z is not D|Z-psh (see [[29], Corollary 5.13(2)]).

Proposition 5.9. Let D, Z and X be as in Proposition 5.5, and let {φk}
be a decreasing sequence of pseudo D-psh functions such that φk satisfies the
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restriction condition to Z for every integer k. If we denote the limit function
of φk by ϕ, then ϕ|Z is well-defined and lim

k→∞
φk|Z = ϕ|Z .

Proof. Since J (mϕ) = J ((1 + ε)mφk) for a sufficiently small number ε and
every sufficiently divisible integer k by [[29], Lemma 4.20], we have ϕm ≥
(1 + ε)φk and hence ϕm|Z is well-defined such that ϕm|Z ≥ (1 + ε)φk|Z . By
Lemma 5.6 we have that φk|Z converges to a function. Now we obtain that
ϕm|Z ≥ lim

k→∞
(1 + ε)φk|Z and hence ϕm|Z ≥ lim

k→∞
φk|Z since ε can be chosen

arbitrary small. By Proposition 5.5, ϕ|Z = lim
m→∞

ϕm|Z is well-defined and

lim
k→∞

φk|Z ≤ ϕ|Z . On the other hand, we have lim
k→∞

φk|Z ≥ ϕ|Z since φk ≥ ϕ
for every integer k. Therefore we obtain the equality. �

Remark 5.10. The previous proposition asserts that the definition of the
restriction of a pseudo D-psh function ϕ is independent of the choice of a
decreasing sequence of ideal functions which converges to ϕ although the
multiplier ideals provide us a natural way. As an application of the previous
discussions we construct an example below to give a negative answer of [[29],
Question 6.3].

Example 5.11. LetX = CP2, U ∼= C2 ⊆ X, Z be the closure of the z2-axis,

and let φk =
k∑
l=1

1
2l log |fl| where fl = z1 + z2

l

2 on U . Note that φk converges

to a qpsh function ϕ strongly in the norm because ‖φm − φn‖ ≤ 1
2m when

m < n. We can explicitly compute that φk|Z = k log |m0| by Lemma 4.3(2),
where m0 = {z2 = 0} on Z. Therefore φk|Z doe not converge and φ|Z is not
well-defined. Hence, ϕ is not pseudo D-psh for any divisor D by Proposition
5.5 and Proposition 5.9.

Proposition 5.12. Let D, Z and X be as in Proposition 5.5, and let φ be a
set of pseudo D-psh functions such that φλ satisfies the restriction condition
to Z for every index λ. Then, supλ ϕλ satisfies the restriction condition to
Z and (supλ ϕλ)|Z = supλ ϕλ|Z .
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Proof. The first assertion follows directly from Proposition 5.5. To see the
second assertion, we notice that

(sup
λ
ϕλ)|Z = lim

k→∞
(sup
λ
ϕλ)k|Z

= lim
k→∞

sup
λ
ϕλ,k|Z

≥ sup
λ

lim
k→∞

ϕλ,k|Z

= sup
λ
ϕλ|Z

where the second equality follows from the definition of multiplier ideals and
Proposition 5.9.

Now we prove that the inequality appeared above is in fact equality.
Because supλ ϕλ|Z can be approximated by supλ ϕλ|Z,k, we can replace Λ by
a countable subset. We consider the sequences {ϕλ,t|Z}t∈R≥0

. Given a non-
trivial tempered valuation v and an arbitrary small number ε > 0, there
exists some λ0 such that lim

t→∞
supλ ϕλ,t|Z(v)− ε < lim

t→∞
ϕλ0,t|Z(v). Hence

lim
k→∞

supλ ϕλ,k|Z ≤ supλ lim
k→∞

ϕλ,k|Z and we obtain the conclusion. �

Extensions of pluri-canonical forms on a dlt pair. Now we discuss
the extension problem of pluri-canonical forms as an application of the above
constructions. Recall that the augmented base locus of a big line bundle L is
defined to be B+(L) =

⋂
A B(L−A) where A runs over all ample divisors,

and that the restricted base locus of a pseudo-effective line bundle L is
defined to be B−(L) =

⋃
A B(L+A) where A runs over all ample divisors.

We use the notations v(‖L‖Z) := v(a•|Z) where ak|Z = b(bkLc|) · OZ and
σv(‖L‖Z) := supA v(‖L+A‖Z) where A runs over all ample divisors.

Lemma 5.13. Let Z be a smooth closed subvariety, let L be a big line
bundle on X such that the augmented base locus B+(L) does not contain Z,
and let ϕ be the maximal L-psh function, or explicitly, ϕ(v) = −v(‖L‖) (see
[[29], Proposition 6.10]). Then, ϕ|Z is well-defined and ϕ|Z(v) = −v(‖L‖Z).

Proof. Note that ϕ is weakly tame (see Example 3.4). In particular, by the
proof of [[36], Theorem 11.2.21] there exists a divisor E ≥ 0 such that E
does not contain Z in its support and

J (mϕ) · OX(−E) ⊆ b(|mL|)
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for every integer m > 0. It follows that

J (mϕ) · OZ(−E|Z) ⊆ b(|mL|) · OZ

for every sufficiently divisible integer m > 0. Therefore, ϕ||Z = log |a•|Z |
where ak|Z = b(|bkLc|) · OZ . �

Lemma 5.14. Let Z be a smooth closed subvariety, let L be a pseudo-
effective line bundle on X such that the restricted base locus B−(L) does not
contain Z, and let ϕ be the maximal pseudo L-psh function, or explicitly,
ϕ(v) = −σv(‖L‖) (see [[29], Proposition 6.11]). Then, ϕ|Z is well-defined
and ϕ|Z(v) = −σv(‖L‖Z).

Proof. Fix an ample divisor A, and we have that ϕ = lim
k→∞

φk where φk is

the maximal (L+ 1
kA)-psh function. Because B+(L+ 1

kA) does not con-
tain Z, φk|Z is well-defined and φk|Z(v) = −v(‖L+ 1

kA‖Z) by Lemma 5.13.
Therefore by Proposition 5.9 we have ϕ|Z = lim

k→∞
φk|Z which gives the con-

clusion. �

The notion of adjoint ideals is crucial in birational algebraic geometry.
It is powerful in inductive proofs with the aid of Nadel vanishing. Here
we introduce the adjoint ideal of a pseudo D-psh function along a reduced
simple normal crossing (snc for short) divisor.

Definition 5.15. Let S =
∑l

i=1 Si be a reduced divisor with its support
snc on X, and let ϕ be a pseudo D-psh function such that ϕ|Z is well-defined
for every lc centre Z of the pair (X,S). The adjoint ideal AdjS(ϕ) is defined
to be

AdjS((1 + ε)ϕk) := AdjS(J (kϕ)
1+ε

k )

for a sufficiently small number ε > 0 and every sufficiently divisible integer
k > 0.

Lemma 5.16. The adjoint ideal appeared in the above definition is well-
defined. Further, if there is a decreasing sequence of (D +A)-psh functions
φk such that ϕ = lim

k→∞
φk for an ample divisor A, then AdjS(ϕ) = AdjS((1 +

ε)φm) for a sufficiently small number ε > 0 and every sufficiently divisible
integer m > 0.

Proof. We only prove the latter assertion by induction on the number of
components of S which essentially implies the first statement. If l = 1, then
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S is a smooth hypersurface and hence we have the following exact sequence
of ideals

0 −→ J (ϕ) · OX(−S) −→ AdjS((1 + ε)φk) −→ J (ϕ|S) −→ 0

for a sufficiently small number ε > 0 and every sufficiently divisible integer
k > 0 by definition. It is easy to check that AdjS((1 + ε)ϕk) stabilizes when is
ε sufficiently small and k is sufficiently divisible by 5-lemma. Now we assume
that the adjoint ideal is well-defined for l − 1. If we write S = S′ + Sl where
Sl is an irreducible component, then we have the following exact sequence

0 −→ AdjS′(ϕ) · OX(−Sl) −→ AdjS((1 + ε)φk) −→ AdjS′|Sl (ϕ|Sl) −→ 0

for a sufficiently small number ε > 0 and every sufficiently divisible integer
k > 0 by Proposition 5.9 and the inductive assumption which implies the
conclusion. �

Remark 5.17. The previous lemma shows that the definition of adjoint
ideal is independent of the choice of a decreasing sequence of ideal functions
which converges to ϕ.

We apply the above constructions to prove the following extension of
pluri-canonical forms on a dlt pair. See [[14], Theorem 1.7] and [[23], Propo-
sition 5.11] for a comparison.

Let (X,S +B) be a dlt pair such that bS +Bc = S. Assume that the
restricted base locus B−(KX + S +B) does not contain any lc centre of
(X,S +B). Let π : X ′ → X be a log resolution of (X,S +B) and we write

KX′ + S′ +B′ = π∗(KX + S +B) + E′

where (X ′, S′ +B′) is dlt such that S′ +B′ and E′ ≥ 0 does not have com-
mon components and bS′ +B′c = S′. Following [30], [42], [14] and [10], if
we consider the extension obstruction divisor

Ξ := Nσ(‖KX′ + S′ +B′‖S′) ∧B′|S′

on S′ for every log resolution X ′, then we have the following result.

Proposition 5.18. Let (X,S +B) be a dlt pair such that bS +Bc = S.
Assume that

(1). there exists an effective divisor D ∼Q KX + S +B such that D con-
tains S in its support,
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(2). the restricted base locus B−(KX + S +B) does not contain any lc
centre, and

(3). KX + S +B is abundant.
Let m be an integer such that m(KX + S +B) is Cartier. If σ is a section

of m(KS +BS) such that for every log resolution of (X,S +B) we have

divπ∗(σ) +mE′|S ≥ mΞ,

then σ extends to X.

Proof. After replacing (X,S +B) by a log resolution, we can assume that
(X,S +B) is log smooth. We divide the proof into three steps.

Step 1. Let ϕ be the maximal (KX + S +B)-psh function. If we write
S =

∑l
i=1 Si, then we will show that log |σ|Si | ≤ mϕ|Si for every i. To this

end, we choose an ample divisor A and fix an index i. For every suffi-
ciently large integer q, we have KX + S +B + 1

qA ∼Q KX + Si +Aq + ∆q

such that
• (X,Si +Aq + ∆q) is plt and Aq is ample;
• Supp(∆q) ⊆ Supp(S − Si +B).
If we write KX′ + S′i +A′q + ∆′q = π∗(KX + Si +Aq + ∆q) + E′q such

that S′i is the birational transformation of Si, A
′
q is ample, the effective divi-

sors ∆′q and E′q have no common components and the pair (Si, Aq|Si + ∆q|Si)
has terminal singularities. If sA is a section of OX(A), then for a sufficiently
divisible integer l we have

divπ∗(σl|Si · s
lm/q
A|Si ) + lmE′q ≥ lm∆′q|S′i ∧Nσ(‖KX′ + S′i +A′q + ∆′q‖S′i)

This implies that σl|Si · s
lm/q
A|Si extends to X by the extension theorem (for

example, see [[10], Theorem 3.4] or [[30], Theorem 6.3]), which in turn implies
that log |σ|Si | ≤ mϕq|Si where ϕq is the maximal (KX + S +B + 1

qA)-psh
function. Therefore we obtain that log |σ|Si | ≤ mϕ|Si by [[29], Proposition
6.11].

If we write bk = J (kϕ) and b = OX(−mB), then we set an ideal

I := J (b
(1+ε)(m−1)

k

k,S · b
1

m

S ) for a sufficiently small number ε > 0 and every suf-
ficiently divisible integer k > 0. Note that I is well-defined on S because
I = AdjS((m− 1)ϕ+ ψ)S where ψ = 1

m log |smB| and smB is the tautologi-
cal section of OX(−mB). Since

log |ISi | = log |Adj(S−Si)|Si ((m− 1)ϕ|Si + ψ|Si)|
= log |Adj(S−Si)|Si ((m− 1)(1 + ε)ϕ|Si,k + ψ|Si)| ≥ log |σ|Si |
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on every Si, the section σ vanishes along I.
Step 2. One observes that the following exact sequence

0 −→ J ((m− 1)ϕ+ ψ) · OX(−S) −→ AdjS((m− 1)ϕ+ ψ) −→ I −→ 0

is exact. Since σ ∈ H0(S,m(KS +B|S)⊗ I), it suffices to show that the map

H1(X,OX(m(KX + S +B)− S)⊗ J ((m− 1)ϕ+ ψ))

→ H1(X,OX(m(KX + S +B))⊗AdjS((m− 1)ϕ+ ψ))

is injective. Since KX + S +B is abundant, by [[29], Proposition 6.10,
Proposition 6.11 and Corollary 6.13(5)] and Lemma 5.16 we choose a

sufficiently divisible integer k such that J (mϕ+ ψ) = J (a
m

k

k · b
1

m ) and

AdjS(mϕ+ ψ)) = AdjS(b
(1+ε)m

k

k · b
1

m ) where ak = b(|k(KX + S +B)|). Let
π : X ′ → X be a log resolution of ak · bk · b. If we write ak · OX′ =
OX′(−Fk), bk · OX′ = OX′(−Gk) and T := bm−1k Fk +Bc − bm−1k Gk +Bc,
then we have a natural isomorphism

H1(X ′,OX′(KX′+
m− 1

k
Mk + {m− 1

k
Fk +B}))

∼= H1(X,OX(m(KX + S +B)− S)⊗ J ((m− 1)ϕ+ ψ))

where Mk is a free divisor such that |kπ∗(KX + S +B)| = |Mk|+ Fk, and
an inclusion

H1(X,OX(m(KX + S +B))⊗AdjS((m− 1)ϕ+ ψ))

↪→ H1(X ′,OX′(KX′ + S′ + (m− 1)π∗(KX + S +B)−

b(1 + ε)(m− 1)

k
Gk +Bc))

by the Leray spectral sequence and the exact sequence of low degrees.
Step 3. Note that the morphism

ι : H1(X ′,OX′(KX′ +
m− 1

k
Mk + {m− 1

k
Fk +B}))

−→ H1(X ′,OX′(KX′ +
m− 1

k
Mk + {m− 1

k
Fk +B}+ S′ + T ))

factors through H1(X ′,OX′(KX′ + S′ + (m− 1)π∗(KX + S +B)−
b (1+ε)(m−1)k Gk +Bc)). We write T =

∑l
j=1 ajTj . After reindexing we
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can assume that

ordTj (b
m− 1

k
Fk +Bc − b(1 + ε)(m− 1)

k
Gk +Bc) > 0

for 1 ≤ j ≤ p and

ordTj (b
m− 1

k
Fk +Bc − b(1 + ε)(m− 1)

k
Gk +Bc) ≤ 0

for p < j ≤ l. It is easy to check that the morphism

H1(X ′,OX′(KX′ +
m− 1

k
Mk + {m− 1

k
Fk +B}))

↪→ H1(X ′,OX′(KX′ +
m− 1

k
Mk + {m− 1

k
Fk +B}+ T ′))

is injective where T ′ is a reduced divisor which consists of those Tj ’s such
that 1 ≤ j ≤ p and Tj * Supp({m−1k Fk +B}) by the exact sequence of low
degrees, and the morphism

ι′ :H1(X ′,OX′(KX′ +
m− 1

k
Mk + {m− 1

k
Fk +B}+ T ′))

−→ H1(X ′,OX′(KX′ +
m− 1

k
Mk + {m− 1

k
Fk +B}+ S′ +

p∑
j=1

ajTj))

factors through H1(X ′,OX′(KX′ + S′ + (m− 1)π∗(KX + S +B)−
b (1+ε)(m−1)k Gk +Bc)). Therefore it suffices to prove that ι′ is injec-
tive. Since there exists an effective divisor D ∼Q KX + S +B
such that D contains S in its support, we can assume that
(X ′, m−1k Mk + {m−1k Fk +B}+ T ′) is log smooth and dlt such that
Supp(S′ +

∑p
j=1 ajTj) ⊆ Supp(m−1k Mk + {m−1k Fk +B}+ T ′). Hence the

injectivity of ι′ follows from [[22], Theorem 1.1] or [[1], Corollary 5.2]. �

Remark 5.19. It is conjectured that Proposition 5.18 holds without the
assumption KX + S +B being abundant. Using analytic methods, J.-P.
Demailly, C. D. Hacon and M. Pǎun proved this in [14] when (X,S +B)
is plt and there exists an effective divisor D ∼Q KX + S +B such that
S ⊆ Supp(D) ⊆ Supp(S +B). At this point we cannot attack similar prob-
lems without using complex analysis. However, the analytic argument fails
in the dlt case because the L2-estimates behave badly on the intersection of
components of S. It is expected that we could combine algebraic and analytic
methods to deal with these problems. It is also interesting that the proof
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above provides an essential application of the recent injectivity theorem (see
[1] and [22]).
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