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Constructing Vector-Valued Siegel

Modular Forms from Scalar-Valued Siegel

Modular Forms

Fabien Cléry and Gerard van der Geer

Abstract: This paper gives a simple method for constructing
vector-valued Siegel modular forms from scalar-valued ones. The
method is efficient in producing the siblings of Delta, the smallest
weight cusp forms that appear in low degrees. It also shows the
strong relations between these modular forms of different degrees.
We illustrate this by a number of examples.
Keywords: Siegel modular form, vector-valued modular form.

1. Introduction

In this paper we describe a simple method to construct vector-valued Siegel
modular forms from scalar-valued ones by developing modular forms in the
normal bundle of a locus on which they vanish. If f is a scalar-valued Siegel
modular form of degree g and weight k, given by a holomorphic function on
the Siegel upper half space Hg and 1 ≤ j ≤ g − 1 an integer, then the restric-
tion of f to the diagonally embedded Hj × Hg−j in Hg gives a tensor product
f ′ ⊗ f ′′ of modular forms of weight k and degree j and g − j. If f vanishes
on Hj × Hg−j , then we can develop f in the normal bundle of Hj × Hg−j
inside Hg and one finds as lowest non-zero term a sum of tensor products of
vector-valued Siegel modular forms of degree j and g − j. By applying this
to well-known scalar-valued Siegel modular forms one can produce explicit
vector-valued Siegel modular forms on the full group Sp(2g,Z). In this way
one can produce for example many siblings of Delta, modular forms that
play for a given low degree g a role analogous to the role that ∆, the cusp
form of weight 12 on SL(2,Z), plays for elliptic modular forms. That is, the
cusp forms that appear among the first few if one orders these according
to their Deligne weight. For example, for degree 2 the first cusp forms that
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appear are a cusp form χ10 of weight 10, a form χ12 of weight 12 and a
vector-valued form χ6,8 of weight (j, k) = (6, 8) of Deligne weight j + 2k − 3
equal to 17, 21 and 19. The forms χ10 and χ6,8 appear immediately in the
development of the Schottky form, a scalar-valued cusp form of weight 8
in degree 4, along H2 × H2. Similarly, the first cusp form in degree 3 is a
cusp form of weight (4, 0, 8) and is also obtained by developing the Schottky
form, this time along H1 × H3.

Recently there has been quite some progress in our knowledge of vector-
valued Siegel modular forms of low degree; besides [3] there is the impres-
sive work of Chenevier and Renard and Täıbi (see [5, 6, 20]) who among
other things give conjectural values for the dimensions of spaces of cusp
forms for degree g ≤ 6. As an illustration of our method we construct cusp
forms in a number of cases where the dimension of the space is predicted to
be 1. For example, we construct the ‘first’ cusp form in degree 5, of weight
(2, 0, 0, 0, 10). Likewise, we construct a form of weight (2, 0, 0, 0, 0, 0, 10) in
degree 7, again of rather low Deligne weight (44) compared with that (56)
of the first scalar-valued cusp form (of weight 12).

Just like the ubiquitous ∆, the siblings of ∆ appear to play a role at many
places, e.g. in the study of K3 surfaces, and they all appear to be intimately
connected. We study the form χ6,8 and some other siblings of Delta in more
detail, giving alternative constructions and calculating eigenvalues of Hecke
operators. In an appendix we summarize some facts about Hecke operators
of degree 2 and 3 that we need.

2. Restricting scalar-valued modular forms

Let Γg = Sp(2g,Z) be the symplectic group of degree g acting in the usual
way on the Siegel upper half space Hg:

τ 7→ (aτ + b)(cτ + d)−1 for all τ ∈ Hg and
(
a b
c d

)
∈ Γg .

We denote by Mk(Γg) the space of scalar-valued Siegel modular forms of
weight k on Γg, that is, holomorphic functions on Hg satisfying

f((aτ + b)(cτ + d)−1) = det(cτ + d)kf(τ)

for all (a, b; c, d) ∈ Γg and τ ∈ Hg (and satisfying an additional holomorphic-
ity condition at infinity for g = 1). More generally, if g > 1 and ρ : GLg →
GL(V ) denotes a finite-dimensional complex representation of GLg, then by
Mρ(Γg) we mean the vector space of holomorphic functions f : Hg → V such
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that

f((aτ + b)(cτ + d)−1) = ρ(cτ + d)f(τ) .

If ρ is an irreducible complex representation of GLg of highest weight
w = (a1 ≥ a2 ≥ · · · ≥ ag) then we denote the complex vector space Mρ(Γg)
by Mk(Γg) with k = (a1 − a2, a2 − a3, . . . , ag−1 − ag, ag). The subspaces of
cusp forms are denoted by Sk(Γg) and Sρ(Γg). These cusp forms can be
interpreted as sections of a line bundle or a vector bundle on the quotient
space Ag = Γg\Hg.

If f ∈Mk(Γg) is a scalar-valued modular form of weight k we can restrict
f to Hj × Hg−j , where we use the modular embedding Γj × Γg−j → Γg, given
by ((

a b
c d

)
,
(
α β
γ δ

))
7→

(
a 0 b 0
0 α 0 β
c 0 d 0
0 γ 0 δ

)
with corresponding map for the symmetric spaces

Hj × Hg−j → Hg, (τ ′, τ ′′) 7→
(
τ ′ 0
0 τ ′′

)
with image Aj,g−j of Aj ×Ag−j in Ag. The result is a tensor product of
modular forms f ′ ⊗ f ′′ ∈Mk(Γj)⊗Mk(Γg−j). In [17] Witt used this method
to study Siegel modular form of degree 2. However, often this restriction
vanishes. If this is the case we can develop f in the conormal bundle of
Hj × Hg−j in Hg. This conormal bundle is a vector bundle of rank j (g − j)
with an action of Γj × Γg−j and it descends to the tensor product

N∨ := Ej � Eg−j := p∗j (Ej)⊗ p∗g−j(Eg−j)

on Aj ×Ag−j of the pullbacks of Hodge bundles Ej and Eg−j on the fac-
tors Aj and Ag−j . Here pj (resp. pg−j) denotes the projection of Γj\Hj ×
Γg−j\Hg−j onto the factor Γj\Hj (resp. Γg−j\Hg−j). This readily can be
checked by a direct computation, but also follows from the observation that
the cotangent space to the moduli space Ag = Γg\Hg of principally polarized
complex abelian varieties at a (general) point X ′ ×X ′′ with X ′ (resp. X ′′)
a principally polarized abelian variety of dimension j (resp. g − j), can be
identified with

Sym2(T∨X′)⊕ (T∨X′ ⊗ T∨X′′)⊕ Sym2(T∨X′′),

with TX = TX′ ⊕ TX′′ denoting the tangent space to X at the origin, and the
middle term corresponds to the (co-)normal space. Since for g = 2j the map
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of Aj ×Aj → Ag has degree 2, we see the development of f along Hj × Hj
is symmetric, that is, invariant under the interchange of factors.

The Hodge bundle Eg on Ag is associated to the standard representation
of GLg. In concrete terms it corresponds to the factor of automorphy cτ + d.
Its determinant is denoted Lg. The bundleN∨ then corresponds to the tensor
product of the standard representations of GLj and GLg−j .

If f is a scalar-valued modular form of weight k, that is, a section of Lkg ,
we can develop f in a point (τ ′, τ ′′) ∈ Hj × Hg−j in a Taylor series: if we
write τ ∈ Hg as

(
τ ′ z
zt τ ′′

)
then we have

f = t0(f) + t1(f) + t2(f) + . . . , (1)

where tr(f) is the sum of the terms of degree r in the coordinates za,b with
1 ≤ a ≤ j, 1 ≤ b ≤ g − j of z; in other words we develop f along Hj × Hg−j .
If t0(f) vanishes then we can interpret the term t1(f) as a section of the
conormal bundle tensored with Lkg over Hj × Hg−j and it descends to a

section of the vector bundle Lkj ⊗ Lkg−j ⊗N∨ on Aj ×Ag−j , where Lkj ⊗
Lkg−j is the restriction of the line bundle Lkg onAg whose sections are modular
forms of weight k. More generally, if ti(f) = 0 for i = 0, . . . , r − 1 then tr(f)
gives a section of Lkj ⊗ Lkg−j ⊗ Symr(N∨). In fact, the nth jet bundle Bn
tensored by Lkg admits a filtration

Lkg ⊗B0 ⊂ Lkg ⊗B1 ⊂ . . . ⊂ Lkg ⊗Bn

and the quotient Bj/Bj−1 is isomorphic to Symj(N∨).
We consider the rth symmetric power Symr(N∨). Note that if we have

two vector spaces V1 and V2 of dimension j and g − j with the standard GLj
and GLg−j-action then we have a natural map

Symr(V1 ⊗ V2)→ Symr(V1)⊗ Symr(V2)

which is an isomorphism if either V1 or V2 has dimension 1. This happens if
j = 1 and then Symr(E1 ⊗ Eg−1) ∼= Er1 ⊗ Symr(Eg−1). We begin by consid-
ering this case.

Proposition 2.1. Let f ∈Mk(Γg). If the restriction of f along H1 × Hg−1
vanishes to order r and not to higher order, then the lowest order terms
of f along H1 × Hg−1 define a non-vanishing element f ′ ⊗ f ′′ ∈Mk′(Γ1)⊗
Mk′′(Γg−1) where the weight k′ of f ′ equals k + r and that of f ′′ equals
k′′ = (r, 0, . . . , 0, k).
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Proof. If tj(f) = 0 for j < r but tr(f) 6= 0 then tr(f) defines a non-zero
section of Symr(N∨)⊗ Lk|A1,g−1

and the pullback of this to A1 ×Ag−1 is

equal to Er+k1 ⊗ Symr(Eg−1)⊗ Lkg−1. �

For given partition g = j + (g − j) of g we let GLj ×GLg−j be the sub-
group of GLg that respects a decomposition V = V1 ⊕ V2. In general, the
space Symk(V1 ⊗ V2) admits a decomposition as a direct sum of tensor
products of irreducible representations of GLj ×GLg−j in which the term
Symk(V1)⊗ Symk(V2) has high codimension.

If f is a scalar-valued Siegel modular form of weight k vanishing up to
order r along Hj × Hg−j then we look at its term of order r. This defines a
section of

Lkj � Lkg−j ⊗ Symr(Ej � Eg−j)

and we can project it to each of the irreducible constituents of this bundle; in
particular we can consider the projection of the second factor to Symr(Ej) �
Symr(Eg−j). The following proposition describes the result.

Proposition 2.2. If f ∈Mk(Γg) vanishes up to order r along Hj × Hg−j
then the projection of its rth term to Lkj ⊗ Lkg−j ⊗ Symr(Ej)⊗ Symr(Eg−j)
gives a tensor product f ′ ⊗ f ′′ with f ′ ∈Mk′(Γj) (resp. f ′′ ∈Mk′′(Γg−j))
with k′ (resp. k′′) a vector of length j (resp. g − j) of the form (r, 0, . . . , 0, k)
.

In general, if Vn is the standard representation of GLn and we write it
as Vn = Vj ⊕ Vg−j then we have a decomposition of Symr(Vj ⊗ Vg−j) as a
direct sum of isotypic subspaces for GLj ×GLg−j

Symr(V ) = ⊕mλ′,λ′′Wλ′ ⊗Wλ′′ (2)

If the restriction of a scalar-valued Siegel modular form f vanishes up to
order r along Hj × Hg−j , then the projection onto any of the isotypic spaces
in (2) gives a vector-valued modular form.

But we can also find modular forms further on in the Taylor expansion.
The following proposition gives an example.

We write a form f ∈Mk(Γg) as a Taylor expansion f =
∑

n≥0 tr(f) and
decompose each term in its isotypic components tn(f) =

∑
λ tn,λ(f), where

λ indexes the irreducible representations Rλ that occur in Symn(Vj ⊗ Vg−j).

Proposition 2.3. Let f ∈Mk(Γg) vanish to order r on Hj × Hg−j and
write f =

∑
n≥r tr(f). Let Rα be an irreducible representation of GLj ×
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GLg−j occurring in the representation Symr+1(Vj ⊗ Vg−j) that does not
occur in (Vj ⊗ Vg−j)⊗Rβ for any Rβ for which tr,β(f) 6= 0. Then the pro-
jection tr+1,α(f) of f to the α-isotypic component of the (r + 1)th step is a
modular form.

Proof. Exterior differentiation d induces the homogeneous differential oper-
ator on Hj × Hg−j from Symr(N∨) to Symr+1(N∨). In terms of representa-
tions of GL it corresponds to multiplication by Vj ⊗ Vg−j . In fact, the func-
tional equation for f says that f(γτ) = ρ(γ, τ)f(τ) for γ ∈ Γj × Γg−j ⊂ Γg
and this implies that tr(f(γτ)) + tr+1(f(γτ)) equals

t0(ρ(γ, τ)) tr(f(τ)) + t1(ρ(γ, τ)) tr(f(τ)) + t0(ρ(γ, τ)) tr+1(f(τ))

and since tr(f) is a scalar-valued modular form we see that

tr+1(f(γτ)) = t1(ρ(γ, τ)) tr(f(τ)) + t0(ρ(γ, τ)) tr+1(f(τ))

Note that t1(ρ(γ, τ)) is isomorphic to Vj ⊗ Vg−j as a GL-representation.
Projection on the isotypic terms gives the result. �

Question 2.4. In connection with the method presented here it is an inter-
esting question what the ideal is of scalar-valued Siegel modular forms of
degree g vanishing on Hj × Hg−j . For g = 2 and j = 1 the answer is the
ideal generated by χ10, but for other cases, even for g = 3, the answer seems
unknown. See also Igusa [12] and Sasaki [19].

3. Example: Restricting The Schottky Form

We illustrate the method by the example of the restriction of the Schottky
form J8, a cusp form of weight 8 in degree 4 along degree 2 + 2 and degree
3 + 1, cf. [11]. Its divisor in A4 is the closure of the locus of Jacobians. The
Schottky form can be described in various ways: as the difference of the
theta series attached to the two unimodular lattices E8 ⊕ E8 and D+

16, but
also as the Ikeda lift of ∆ ∈ S12(Γ1). For yet other descriptions, we refer to
[18] top of the page 209. Since there are no cusp forms of weight 8 on Γ2,
its restriction to H2 × H2 vanishes. Using the action of the matrix(

a 0
0 d

)
with a = d =

(
12 0
0 −12

)
we see that ti(J8) in the development (1) vanishes for i odd. If V = V ′ ⊕ V ′′
is the standard representation of GL4 and V ′ and V ′′ are the standard
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representations of GL2 then we have a decomposition

Sym2(V ′ ⊗ V ′′) ∼= Sym2(V ′)⊗ Sym2(V ′′)
⊕
∧2V ′ ⊗ ∧2V ′′ ,

so starting with a modular form f of weight k that vanishes with order 2
along H2 × H2 the term t2(f) gives modular forms in

M2,k(Γ2)⊗M2,k(Γ2) and M0,k+1(Γ2)⊗M0,k+1(Γ2)

But in the case at hand k = 8 and the spaces S2,8(Γ2) and S0,9(Γ2) vanish.
Therefore we pass to order 4. Here we have the identification of Sym4(V ′ ⊗
V ′′) with

Sym4(V ′)⊗ Sym4(V ′′)
⊕

(Sym2(V ′)⊗ ∧2(V ′))⊗ (Sym2(V ′′)⊗ ∧2(V ′′))⊕
(∧2(V ′)⊗ ∧2(V ′))⊗ (∧2(V ′′)⊗ ∧2(V ′′)) .

Thus for a modular form of weight k on Γ4 which vanishes at order four
along H2 × H2, t4(f) lies in

Sym2M4,k(Γ2)⊕ Sym2M2,k+1(Γ2)⊕ Sym2M0,k+2(Γ2)

The following Proposition shows that ∆ and its siblings of degree 2 and
3 occur in the development of the Schottky form.

Proposition 3.1. For the Schottky form J8 ∈ S8(Γ4) of weight 8 on Γ4 the
term t4(J8) in the restriction from degree 4 to degree 2 + 2 is a non-zero
multiple of

χ10 ⊗ χ10 ∈ Sym2S10(Γ2)

with χ10 a generator of S10(Γ2), while the projection of t6(J8) to
Sym2S6,8(Γ2) is equal to a non-zero multiple of

χ6,8 ⊗ χ6,8 ∈ Sym2S6,8(Γ2)

where χ6,8 is a generator of S6,8(Γ2). The term t4(J8) in the restriction from
degree 4 to degree 3 + 1 is a non-zero multiple of

χ4,0,8 ⊗∆

with χ4,0,8 ∈ S4,0,8(Γ3) a generator.
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Proof. Since S4,8(Γ2) = S2,9(Γ2) = (0) we see that t4(J8) lies in
Sym2S10(Γ2). By calculating the coefficients one sees that it does not
vanish. Indeed, if (e1, e2) is a basis of V1 and (f1, f2) is a basis of V2 we let
ei ⊗ fj correspond to τij . The projection of Sym4(V1 ⊗ V2) on the direct
summand (∧2V1 ⊗ ∧2V1)⊗ (∧2V2 ⊗ ∧2V2) is then given by

∂4

∂τ213∂τ
2
24

+
∂4

∂τ214∂τ
2
23

− 2
∂4

∂τ13∂τ14∂τ23∂τ24

and a direct computation shows that

t4(J8) = 12χ10 ⊗ χ10.

Playing the same game with the term t6(J8) we find components in

Sym6(V ) =
∑
λ

V
′

λ ⊗ V ′′λ

where λ runs through (6, 0), (4, 1), (2, 2) and (0, 3). By Proposition 2.3 all
components except the last one can give modular forms. But the spaces
S4,9(Γ2), S2,10(Γ2) and S0,11(Γ2) are zero, therefore we find

t6(J8) ∈ Sym2S6,8(Γ2)

and a calculation shows that this term does not vanish. The argument for
the restriction from degree 4 to 3 + 1 is similar. �

More details on the forms χ6,8 and the form in S4,0,8(Γ3) can be found in
sections 8 and 9.

4. Dimensions of Spaces of Scalar Cusp Forms

It will be useful to have a table for the dimensions of scalar-valued Siegel
modular cusp forms of weight 4 ≤ k ≤ 18 and degree 1 ≤ g ≤ 8. We will use
this table as a heuristic tool that tells us where to look for modular forms
vanishing on Hj × Hg−j . The tables of Täıbi [20] provide the dimensions
in many cases, though some of his results are conditional. For g = 2 the
dimensions were determined by Igusa, for g = 3 by Tsuyumine. For degree
4 and some higher degrees there are results of Poor and Yuen in [18].
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g\k <8 8 9 10 11 12 13 14 15 16 17 18

1 0 0 0 0 0 1 0 0 0 1 0 1

2 0 0 0 1 0 1 0 1 0 2 0 2

3 0 0 0 0 0 1 0 1 0 3 0 4

4 0 1 0 1 0 2 0 3 0 7 0 12

5 0 0 0 0 0 2 0 3 0 13 0 28

6 0 0 0 1 0 3 ? 9 0 33 0 117

7 0 0 0 0 0 3 0 9 0 83 0 ?

8 0 ? 0 ≥ 1 0 ≥ 4 ≥ 1 ≥ 23 ≥ 2 ≥ 234 ? ?

5. Restricting from Degree Three

Restriction of forms on Γ2 to forms on Γ1 × Γ1 does not produce vector-
valued modular forms, just scalar-valued ones, though it shows how much
the siblings of Delta are related: χ10 ∈ S10(Γ2) vanishes on H1 × H1 and its
first non-vanishing term, t2, gives ∆⊗∆, while in a similar way Igusa’s cusp
form χ35 ∈ S35(Γ2) produces ∆2e12 ⊗∆2e12 with e12 the Eisenstein series of
weight 12 on Γ1.

The rings of scalar-valued Siegel modular forms on Γg for g ≤ 3 are
well-known. ([9, 21]). A generator ψ12 of S12(Γ3) is given by the following
combination of theta series associated to Niemeier lattices (of rank 24)

ψ12 =
1

1152
(−ϑLeech + 6ϑ24A1

− 8ϑ12A2
+ 3ϑ3A8

) ,

where we refer for example to [16] for notations for lattices. The coeffi-
cients in the Fourier expansion

∑
N≥0 a(N)e2πiTr(Nτ) of ψ12 that we need

are a(13) = 164, a(A1(1/2))⊕A2(1/2)) = 18 and a(A3(1/2)) = 1. Thus the
restriction of ψ12 to H1 × H2 does not vanish and equals 24 ∆⊗ χ12.

The restriction of a cusp form in S14(Γ3) to H1 × H2 must vanish. Let
F be the cusp form of weight 14 that generates S14(Γ3). The form F was
constructed first by Miyawaki ([15, p. 314–315]) and later by Ikeda as a lift
([13]). We recall its construction. Let

D+
16 =

{
x ∈ Q16| 2xi ∈ Z, xi − xj ∈ Z, x1 + . . .+ x16 ∈ 2Z

}
be the unimodular lattice of rank 16 which is not E8 ⊕ E8. Let Q be the
3× 16 complex matrix (13, ρ13, ρ

213, 0) ∈ Mat(3× 16,C), with ρ = e2πi/3.
Then for a triple (v1, v2, v3) of vectors from D+

16 we get a 3× 3 matrix
Q(v1, v2, v3) and we define F by

F (τ) =
∑

v1,v2,v3∈D+
16

Re(det(Q(v1, v2, v3))
6) eπi

∑3
i,j=1(vi,vj)τij
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for τ = (τij) ∈ H3.
We shall denote the Eisenstein series of weight k for Γ1 by ek and for Γg

with g ≥ 2 by Ek.

Proposition 5.1. The lowest non-zero term in the development of F along
H2 ⊗ H1 is t2(F ) and it is a non-zero multiple of the form χ2,14 ⊗∆e4, where
∆e4 ∈ S16(Γ1) and χ2,14 = [χ10, E4] ∈ S2,14(Γ2).

Proof. We claim that the term t2(F ) starts as follows

t2(F ) = (2πi)2

(
4q−1

12 +4+2x+4q12
4(q12−q−1

12 )

4q−1
12 +4+2x+4q12

)
q1q2q3 + · · ·

where x is the Fourier coefficient of

(
1 0 0
0 1 1/2
0 1/2 1

)
and where qj = e2πiτj for

j = 1, 2, 3 and q12 = e2πiτ12 . This can be deduced from [15] (last table there)
and the fact that the Fourier coefficients a(N) of F satisfy a(N) = a(U tNU)
for U ∈ GL(3,Z). We know that t2(F ) lies in S2,14(Γ2)⊗ S16(Γ1) and does
not vanish. We can construct a generator of S2,14(Γ2) by the bracket con-
struction, cf. [7, 10]. The Fourier expansions of χ10 and the Eisenstein series
E4 ∈M4(Γ2) start as follows:

χ10(τ) = (q−112 − 2 + q12) q1q2 + · · · and E4(τ) = 1 + 240 (q1 + q2) + · · ·

so we have

[χ10, E4] = 10

(
q−1
12 −2+q12
q12−q−1

12

q−1
12 −2+q12

)
q1q2 + · · ·

The Fourier expansion of ∆e4 starts by ∆e4(τ3) = q3 + . . . so we get

[χ10, E4] ( τ1 τ12
τ12 τ2 )⊗∆e4(τ3) = 10

(
q−1
12 −2+q12
q12−q−1

12

q−1
12 −2+q12

)
q1q2q3 + . . .

It follows that x = −6 = a(

(
1 0 0
0 1 1/2
0 1/2 1

)
) for the unknown Fourier coefficient

of F . �

In weight 18 there is a well-known scalar-valued cusp form χ18 of degree 3
that vanishes along the locus of Jacobians of hyperelliptic curves of degree 3.
It is defined as the product of the 36 even theta characteristics in degree 3.
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The Fourier expansion of this χ18 starts as follows

228 (108− 60 (q−112 + q12 + q−113 + q13 + q−123 + q23 + · · · ) q21q22q23 + · · · )

showing that χ18 vanishes of order 2 at infinity. The restriction to H2 × H1

vanishes because this restriction lies in S18(Γ2)⊗ S18(Γ1), and because χ18

vanishes twice at infinity the components of its restriction do so too, and
there is no cusp form of weight < 24 on Γ1 vanishing twice at infinity.

Proposition 5.2. Along H2 × H1 we have

t6(χ18) = c χ10 χ6,8 ⊗∆2 ∈ S6,18(Γ2)⊗ S24(Γ1) ,

where c 6= 0 and χ6,8 is a generator of S6,8(Γ2).

Proof. From the fact that there is no cusp form of weight less than 24 on
Γ1 that vanishes twice at the cusp it follows that ti(χ18) vanishes for i ≤ 5.
We know that the t6(χ18) lies in S6,18(Γ2)⊗ S24(Γ1). But the subspace of
S24(Γ1) of elements vanishing twice at infinity is generated by ∆2. Moreover,
the calculation

∂6χ18
∂τ6

13

6
∂6χ18

∂τ5
13
∂τ23

...
6

∂6χ18
∂τ13∂τ

5
23

∂6χ18
∂τ6

23


( τ1 τ12 0
τ12 τ2 0
0 0 τ3

)
=


0
0

q−2
12 −4q−1

12 +6−4q12+q212
−2q−2

12 +4q−1
12 −4q12+2q212

q−2
12 −4q−1

12 +6−4q12+q212
0
0

 q21q
2
2q

2
3 + . . .

shows that it does not vanish and is divisible by χ10 because substitution of
q12 = 1 gives zero. Since dimS6,8(Γ2) = 1 the result follows. �

6. Restricting from Degree 4

We begin by listing the modular forms that we are going to restrict. As
before, we denote by ek the Eisenstein series of weight k on Γ1 and by Ek
the Eisenstein series of weight k in higher genera, always normalized such
that their Fourier expansion starts with 1.

Besides the Schottky form J8 that generates S8(Γ4) we have the genera-
tor F10 = −I4(e4∆)/168 ∈ S10(Γ4) where I4 is the Ikeda lift I4 : S16(Γ1)→
S10(Γ4), the two generators G1 = I4(e

2
4∆)/360 and G2 = −J8E4/2 of

S12(Γ4), the three Hecke eigenforms H1, H2, H3 that generate S14(Γ4), see
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[18, p. 213] (but note that the eigenvalues given there are not correct; in
fact, the expressions of f7 and f8 on page 214 and the eigenvalues for J8 in
table 2 on page 218 are incorrect), where

H1 = I4(∆e
3
4 − (156− 12α)∆2), and H2 = I4(∆e

3
4 − (156 + 12α)∆2)

with α =
√

144169. One can calculate the first Fourier coefficients. We give
the results in a table. The coefficients of H2 are the conjugates of those of
H1. The space S14(Γ4) contains E6J8.

Note that the paper [14] gives a closed formula for the eigenvalues of an
Ikeda lift.

J8 F10 G1 G2 H1 H3

14 40 472 −4440 −40 −434984− 968α −2080

2A1(1/2)⊕ A2(1/2) −12 −36 −492 12 63132 + 204α 288

2A2(1/2) 6 72 −78 −6 −44904− 48α −198

A1(1/2)⊕ A3(1/2) 2 −22 −38 −2 4994− 22α 28

A4(1/2) −1 2 1 1 −274 + 2α −5

D4(1/2) 1 1 −3 −1 −467 + α 2

According to [3] we should have dimS4,0,8(Γ3) = 1, dimS2,0,10(Γ3) = 1
and dimS2,0,14(Γ3) = 2. We denote the generating eigenforms by χ4,0,8,
χ2,0,10, and χ2,0,14 and χ′2,0,14. The form χ2,0,14 and its conjugate χ′2,0,14
are lifts with Hecke eigenvalues of the form

a(p)(p11 + b(p) + p12)

with a(p) the eigenvalue of the eigenform of S16(Γ1) and b(p) the eigenvalue
of a Hecke eigenform in S24(Γ1).

Proposition 6.1. By restricting scalar-valued modular cusp forms of
degree 4 and small weight to H3 × H1 we find (a non-zero multiple of) the
vector-valued modular forms as in the table below where χ0,0,12 = ψ12.

k dimSk(Γ4) form r tr
8 1 J8 4 χ4,0,8 ⊗∆

10 1 F10 2 χ2,0,10 ⊗∆
12 2 G1 0 χ0,0,12 ⊗∆

G2 2 E4χ6,8 ⊗ e4∆
14 3 H1 2 χ2,0,14 ⊗ e4∆

H2 2 χ′2,0,14 ⊗ e4∆
E6J8 4 E6χ4,0,8 ⊗ e6∆
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Proposition 6.2. By restricting scalar-valued modular cusp forms of
degree 4 and small weight to H2 × H2 we find the vector-valued modular
forms as in the table below.

k dimSk(Γ4) form r tr
8 1 J8 6 χ6,8 ⊗ χ6,8

10 1 F10 0 χ10 ⊗ χ10

12 2 G1 0 χ12 ⊗ χ12

G2 6 E4χ6,8 ⊗ E4χ6,8

14 3 H1 0 E4χ10 ⊗ E4χ10

H1 −H2 2 χ2,14 ⊗ χ2,14

E6J8 6 E6χ6,8 ⊗ E6χ6,8 + E6χ10 ⊗ E6χ10

Note that if f is a form in Sk(Γ4) such that along H2 × H2 we have that
tr(f) = 0 for r < 6 then t6(f) lies in

Sym2(S6,k(Γ2))⊕ Sym2(S4,k+1(Γ2))⊕ Sym2(S2,k+2(Γ2))⊕ Sym2(S0,k+3(Γ2)) .

We can deduce the Fourier expansion of these forms. For example, the
Fourier expansion of χ2,0,10/12(2πi)2 starts by q1q2q3 times

[−2000−20
0
−20

+

−6−60
−6
0
14

 q12 +

−660
−6
0
14

 q−112 +

−60−6
14
0
−6

 q13 + . . .+

 1
1
1
1
0
1

 q12q13 + . . .
]

and that of χ2,0,14/12(2πi)2) starts by q1q2q3 times

[ 13540+20α
0
0

13540+20α
0

13540+20α

+

−6α+1482
−6α+1482

0
−6α+1482

0
−6α−7758

 q12 + . . .+

 α−247
α−247
α−247
α−247

0
α−247

 q12q13 + . . .
]

7. Restriction from Degree Six and Eight

We begin by constructing a form of weight 10 both in degree 8 and
degree 6. The Ikeda lift of ∆ ∈ S12(Γ1) to degree 8 gives a form I8(∆)
in S10(Γ8). For our purpose we need a number of Fourier coefficients of
I8(∆) =

∑
T b(T )e2πitr(T ·τ); in fact, we need these for all positive definite

half-integral symmetric matrices with diagonal equal to (1, . . . , 1). For a
positive definite half-integral symmetric matrix T with fundamental discrim-
inant DT the Fourier coefficient is given by b(T ) = c(|DT |) = c(det(2T )),



34 Fabien Cléry and Gerard van der Geer

where

h =
∑

n≥1,n≡0,1 mod 4

c(n)qn ∈ S+
13/2(Γ0(4))

is the form of half-integral weight corresponding to ∆ under the Shimura
correspondence. By restricting this form I8(∆) to H7 × H1 we find linear
relations between the Fourier coefficients and this gives a way of calculat-
ing further Fourier coefficients. Indeed, the restriction r7,1(I8(∆)) is zero in
view of dim S10(Γ7) = dimS10(Γ1) = 0 and we thus find that the Fourier
coefficient at N ⊗A1(1/2)) of r7,1(I8(∆)) is given by∑

N⊕A1(1/2)=T

b(I8(∆), T ),

where the sum runs over all positive definite T with upper left block N
and lower right block A1(1/2). This gives a relation b(I8(∆), A7(1/2)⊕
A1(1/2)) + 56b(I8(∆), E8(1/2)) = 0. In this way we obtain a number of rela-
tions between the Fourier coefficients.

Furthermore we consider the restriction of I8(∆) to H6 × H2. We know
that S10(Γ2) is generated by the form χ10 and that dimS10(Γ6) = 1. Then
restricting further to H5 × H1 × H2, H4 × H2 × H2 and H3 × H3 × H2 gives
further relations. Together these suffice to determine all the coefficients
b(I8(∆), T ) for T a positive definite half-integral symmetric matrix with
diagonal equal to (1, . . . , 1). At the same time it gives us a number of Fourier
coefficients of the generator G ∈ S10(Γ6). This shows that we get a non-zero
cusp form of weight 10 on Γ6. The results are given in two tables.

2Ti b(I8(∆), Ti) 2Ti b(I8(∆), Ti) 2Ti b(I8(∆), Ti)

8A1 146657280 6A1 ⊕ A2 9676800 4A1 ⊕ 2A2 3456000

5A1 ⊕ A3 −1612800 2A1 ⊕ 3A2 362880 3A1 ⊕ A2 ⊕ A3 311040

4A2 1970568 4A1 ⊕ A4 −760320 A1 ⊕ 2A2 ⊕ A3 −293760

2A1 ⊕ 2A3 393728 4A1 ⊕D4 −523776 2A1 ⊕ A2 ⊕ A4 −51840

A2 ⊕ 2A3 −126720 2A1 ⊕ A2 ⊕ A4 −34560 3A1 ⊕ A5 −34560

2A2 ⊕ A4 146880 A1 ⊕ A3 ⊕ A4 23520 2A2 ⊕D4 86400

A1 ⊕ A2 ⊕ A5 −41328 A1 ⊕ A3 ⊕D4 5760 3A1 ⊕D5 5760

2A2 ⊕ A6 13440 2A4 17330 A3 ⊕D5 −12960

A1 ⊕ A2 ⊕D5 −12960 A2 ⊕ A6 5040 A4 ⊕D4 8640

2D4 4416 A3 ⊕D5 −4288 A1 ⊕ A7 −704

2A1 ⊕D6 3392 A2 ⊕D6 1440 2A1 ⊕ E6 1440

A2 ⊕ E6 1440 A8 9 A1 ⊕D7 −240

D8 8 A1 ⊕ E7 −56 E8 1

2N a(G,N) 2N a(G,N) 2N a(G,N) 2N a(G,N)

6A1 280320 4A1 ⊕ A2 −15744 2A1 ⊕ 2A2 8496 3A1 ⊕ A3 10176

3A2 12996 A1 ⊕ A2 ⊕ A3 2472 2A1 ⊕ A4 1000 2A1 ⊕D4 384

2A3 −1040 A2 ⊕ A4 750 A1 ⊕ A5 −164 A2 ⊕D4 384

A1 ⊕D5 −52 A6 7 D6 2 E6 1
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Proposition 7.1. The restriction of second order of I8(∆) along H7 × H1

is a non-zero form in S2,0,0,0,0,0,10(Γ7)⊗ S12(Γ1). The restriction of the gen-
erator G ∈ S10(Γ6) along H5 × H1 is a non-zero form in S2,0,0,0,10(Γ5)⊗
S12(Γ1).

Proof. We write the term t2(I8(∆)) as F ⊗∆ with F ∈ S2,0,0,0,0,0,10(Γ7). It
is given as the transpose of

(
∂2I8(∆)

∂τ218
, 2
∂2I8(∆)

∂τ18τ28
, . . . ,

∂2I8(∆)

∂τ278
)|H7×H1

Then the Fourier expansion of F starts as follows:

F (τ) =
∑
N>0

a(N)e2πiTr(Nτ) =
∑
N∈I7

PN (qab, q
−1
ab ) · q1 · · · q7 + . . .

where

τ = (τij) ∈ H7, qa = e2πiτaa , qab = e2πiτab , PN (X,X−1) ∈ C[X,X−1]28

and I7 is the set of symmetric positive definite half-integral 7× 7 matrices
with (1, . . . , 1) on the diagonal. The ‘constant’ term in the Fourier expan-
sion of F is a(17) and we get it by substituting τ18 = . . . = τ78 = 0 in the
transpose of

(
∂2P

∂τ218
, 2

∂2P

∂τ18τ28
, . . . ,

∂2P

∂τ278
)

where

P =
∑
N∈I8

b(I8(∆), N)qn18

18 · · · q
n78

78

and I8 is the set of positive definite half-integral matrices of the form

(
17 n
nt 11

). This set of matrices contains 379 elements and we can classify

them modulo GL(7,Z)-equivalence. As it turns out the lattices 8A1(1/2),
6A1(1/2)⊕A2(1/2), 5A1(1/2)⊕A3(1/2) and 4A1(1/2)⊕D4(1/2) occur
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with multiplicities 1, 14, 84 and 280. We thus find

P = b(I8(∆), 8A1(1/2))

+ b(I8(∆), 6A1(1/2)⊕A2(1/2))(q18 + q−118 + . . .+ q78 + q−178 )

+ b(I8(∆), 5A1(1/2)⊕A3(1/2))(q18q28 + . . .+ q18q78 + . . .)

+ b(I8(∆), 4A1(1/2)⊕D4(1/2))(q18q28q38 + . . .+ q18q68q78 + . . .)

= 146657280 + 9676800(q18 + q−118 + . . .+ q78 + q−178 )

− 1612800(q18q28 + . . .+ q18q78 + . . .)

− 523776(q18q28q38 + . . .+ q18q68q78 + . . .).

Thus we get that the vector ta(17) equals π2 · 82206720 times

[1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 1]

which shows our result for I8(∆). For the restriction of G the argument
is similar. Instead of I8 we have a set I6 of 131 elements representing the
lattices 6A1(1/2), 4A1(1/2)⊕A2(1/2), 3A1(1/2)⊕A3(1/2) and 2A1(1/2)⊕
D4(1/2) with multiplicities 1, 10, 40 and 80 from which we find for the
constant term a(15) the transpose of

−4π2149760 [1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 1]

�

Along similar lines one finds the following result.

Proposition 7.2. The second order restriction t2(G) of the generator
G ∈ S10(Γ6) along H5 × H1 is a non-zero form in S2,0,0,0,10(Γ5)⊗ S12(Γ1).
Furthermore, the second order restriction of G along H3 × H3 yields a form
f ⊗ f with f a non-zero form in S2,0,10(Γ3).

Note that the spaces S2,0,0,0,10(Γ5) and S2,0,10(Γ3) are both 1-dimensional
according to Täıbi [20].

8. The Sibling χ6,8 of degree 2

As we have seen the form χ6,8 in S6,8(Γ2) appears ubiquitously. Its presence
was first seen in the cohomology of local systems on the moduli spaces
A2 and M2 in [8]. One of us asked Ibukiyama whether he could con-
struct a form in S6,8(Γ2). Ibukiyama answered in 2001 with a construction
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of this form using theta functions with pluriharmonic polynomial coeffi-
cients. Now we have easier ways to construct it. One way is as follows. Let
Gti = (∂ϑi/∂z1, ∂ϑi/∂z2) be the (transposed) gradient of the ith odd theta
function for i = 1, . . . , 6, see [7]. It defines a section of E2 ⊗ det(E2)

1/2 for
the congruence subgroup Γ2[4, 8]. We let Symj(E2) be the Sj-invariant sub-

bundle of E⊗j2 . Then the expression

Symj(G1, . . . , G6)

defines a cusp form f6,3 of weight (6, 3) on the principal congruence sub-
group Γ2[2]. The product χ5 f6,3 with χ5, the product of the ten even theta
characteristics, is a form of level 1 and is up to a normalization equal to
χ6,8:

χ6,8 := −(χ5Sym6(G1, . . . , G6))/4096π6

We write its Fourier expansion as

χ6,8(τ) =
∑
N>0

a(N)e2πiTr(Nτ) =
∑
N>0

t(a(N)0, . . . , a(N)6)e
2πiTr(Nτ) .

It starts as follows (with q1 = e2πiτ1 , q2 = e2πiτ2 and r = e2πiτ12)


0
0

r−1−2+r
2(r−r−1)
r−1−2+r

0
0

 q1q2 +


0
0

−2(r−2+8r−1−18+8r+r2)
8(r−2+4r−1−4r−r2)

−2(7r−2−4r−1−6−4r+7r2)
12(r−2−2r−1+2r−r2)
−4(r−2−4r−1+6−4r+r2)

 q1q
2
2

+


−4(r−2−4r−1+6−4r+r2)
12(r−2−2r−1+2r−r2)

−2(7r−2−4r−1−6−4r+7r2)
8(r−2+4r−1−4r−r2)

−2(r−2+8r−1−18+8r+r2)
0
0

 q21q2 +


16(r−3−9r−1+16−9r+r3)
−72(r−3−3r−1+3r−r3)

+128(r−3−2+r3)
−144(r−3+5r−1−5r−r3)

+128(r−3−2+r3)
−72(r−3−3r−1+3r−r3)

16(r−3−9r−1+16−9r+r3)

 q21q
2
2 + . . .

Using standard involutions one sees that interchanging q1 and q2 inverts
the order of the coordinates of a(N), while interchanging r and 1/r makes
the ith coordinate change sign by (−1)i for i = 0, . . . , 6. One can read off
the first non-zero Fourier coefficients:

ta([1, 0, 1]) ta([1, 1, 1]) ta([1, 0, 2])
(0, 0,−2, 0,−2, 0, 0) (0, 0, 1, 2, 1, 0, 0) (0, 0, 36, 0, 12, 0,−24)
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Remark 8.1. We can play the same game of restriction also with χ6,8. It
restriction to H1 × H1 vanishes. Its first non-vanishing term is t1(χ6,8) and
it can be viewed as a section of

⊕6
i=0 L

15−i
1 ⊗ L9+i

2

with L1 and L2 the Hodge bundle E1 on the first and second component. It
turns out to be (0, 0, 0,∆⊗∆, 0, 0, 0).

The question arises what the zero locus of χ6,8 is. It contains A1,1. Prob-
ably this is all. We prove that additionally there are only finitely many points
where χ6,8 vanishes.

Proposition 8.2. The zero locus of χ6,8 in A2 consists of A1,1 and possibly
finitely many isolated points.

Proof. If V is the zero locus of χ6,8 in A2 then V contains A1,1. Let V1 be the
1-dimensional part of V . Then the closure V̄1 of V1 in the Satake compact-
ification A∗2 intersects the closure A1,1 of A1,1 since it is an ample divisor.
But in the neighborhood of A1,1 our form is given by (0, 0, 0,∆⊗∆, 0, 0, 0)
and this does not vanish in U\Ā1,1 with U a suitable open neighborhood
of Ā1,1 in A∗2. Hence every irreducible component of the curve V1 has to
intersect A1,1 at the point (∞,∞), the 0-dimensional cusp of A∗2. But there
the Fourier series shows that χ6,8 does not vanish in U ′\(U ′ ∩ A1,1) for U ′

a suitable neighborhood of the 0-dimensional cusp of A∗2. �

We end this section by giving a list of eigenvalues λp for the Hecke
operator Tp for p prime ≤ 47. These eigenvalues were obtained by using the
Fourier expansion. In an appendix we give a short summary how to calculate
such eigenvalues. In [8] the eigenvalues λp of T (p) and λp2 of T (p2) were
calculated for p = 2, 3, 5 and 7 using a completely different method, namely
using counting points on genus 2 curves over finite fields. Also the eigenvalues
of all T (q) for q ≤ 37 and q 6= 27 are available by [8], see also [3]. These values
agree. Yet another way to obtain these eigenvalues is given in [5, Section
2, Table 3] where Chenevier and Lannes use the Kneser neighborhoods of
lattices to calculate these.
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p λp λp2

2 0 −57344
3 −27000 143765361
5 2843100 −7734928874375
7 −107822000 4057621173384801

11 3760397784
13 9952079500
17 243132070500
19 595569231400
23 −6848349930000
29 53451678149100
31 234734887975744
37 448712646713500
43 −1828093644641000
47 −6797312934516000

9. The Sibling in S4,0,8(Γ3)

Let B (beta) denote a generator of the 1-dimensional space S4,0,8(Γ3). We
can find B in the restriction B ⊗∆ of the Schottky form J8 along H3 × H1.
This enables us to write the beginning of the Fourier expansion. With the
variables qm = e2πiτm and u = e2πiτ12 , v = e2πiτ13 , w = e2πiτ23 , we find the
expansion

B(τ) =



0
0
0

(v−1)2(w−1)2/vw
(u−1)(v−1)(w−1)(−1+1/vw+1/uw−1/uv)

(u−1)2(w−1)2/uw
0

(u−1)(v−1)(w−1)(−1+1/vw−1/uw+1/uv)
(u−1)(v−1)(w−1)(−1−1/vw+1/uw+1/uv)

0
0
0

(u−1)2(v−1)2/uv
0
0


q1q2q3 + · · ·

Using the action of γ ∈ Γ3 that sends τij to τ ′ = τσ(i),σ(j) with σ = (1 3) ∈ S3

we see that the coordinates vi (i = 1, . . . , 15) of the Fourier coefficients sat-
isfy the identities v1(τ) = v15(τ

′), v2(τ) = v14(τ
′), v3(τ) = v10(τ

′), v4(τ) =
v13(τ

′), v5(τ) = v9(τ
′), v6(τ) = v6(τ

′), v7(τ) = v12(τ
′), v8(τ) = v8(τ

′) One
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can use the Fourier coefficients

a([1 1 1 ; 0 0 0]) =t [0, 0, 0, 4, 0, 4, 0, 0, 0, 0, 0, 0, 4, 0, 0]

a([2 2 2 ; 0 0 0]) = −t[512, 0, 0, 2816, 0, 2816, 0, 0, 0, 0, 512, 0, 2816, 0, 512]

a([1 1 2 ; 1 2 2]) =t [0, 0, 0, 0, 1, 1, 0, 1, 3, 2, 0, 0, 1, 2, 1]

a([1 2 2 ; 0 2 0]) =t [0, 0, 0,−24, 0,−48, 0,−48, 0,−96, 48, 0,−48, 0,−48]

a([1 2 2 ; 2 0 0]) =t [0, 0, 0,−48, 0,−24,−96, 0,−48, 0,−48, 0,−48, 0, 48];

to calculate the Hecke eigenvalue at 2, see the appendix. We have λ2 =
−1728, and this fits because B is a lift of ∆ from Γ1 (see [3]) and its Hecke
eigenvalue λp is given by the formula

λp = τ(p)(p5 + τ(p) + p6) ,

where τ(p) is the Hecke eigenvalue of ∆ at p.

10. Appendix: Hecke Operators for Vector valued Modular
forms of Degree Two

Here we give a short treatment of Hecke operators on vector-valued Siegel
modular forms of degree 2. The basic reference is [2].

10.1. The Hecke operator Tp

For a prime p we consider the double coset Tp = Γ2 diag(1, 1, p, p)Γ2. Fol-
lowing Andrianov, we have the following left coset decomposition for Tp.

Proposition 10.1. The double coset Tp admits the following left coset
decomposition:

Γ2

( p 0 0 0
0 p 0 0
0 0 1 0
0 0 0 1

)
+

∑
0≤a,b,c≤p−1

Γ2

( 1 0 a b
0 1 b c
0 0 p 0
0 0 0 p

)

+
∑

0≤a≤p−1
Γ2

(
0 −p 0 0
1 0 a 0
0 0 0 −1
0 0 p 0

)
+

∑
0≤a,m≤p−1

Γ2

(
p 0 0 0
−m 1 0 a
0 0 1 m
0 0 0 p

)

and we have deg(Tp) = p3 + p2 + p+ 1.
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Then we define an action of Tp on Mj,k(Γ2) via

F |j,k Tp = p2k+j−3
∑
i

F |j,k σi

where for σi =
(
ai bi
ci di

)
, the slash operator is given by:

(F |j,k σi)(τ) = det(ciτ + di)
−kSymj((ciτ + di)

−1)F ((aiτ + bi)(ciτ + di)
−1)

for every τ ∈ H2.
The action on the Fourier expansion of F (τ) =

∑
N≥0 a(N)e2πiTr(Nτ) is

given by the following proposition. If

(F |j,k Tp)(τ) =
∑
N>0

b(N)e2πiTr(Nτ)

and if we write [n1, n12, n2] for N =
(

n1 n12/2
n12/2 n2

)
with ni ∈ N and n12 ∈ Z,

we have

Proposition 10.2. The coefficient b([n1, n12, n2]) is given by

p2k+j−3a([
n1
p
,
n12
p
,
n2
p

]) + a([pn1, pn12, pn2])

+ pk+j−2Symj
(

0 1/p
−1 0

)
a([

n2
p
,−n12, pn1])

+ pk+j−2
∑

0≤m≤p−1
Symj

(
1 −m/p
0 1/p

)
a([

n1 + n12m+ n2m
2

p
, n12 + 2n2m, pn2])

where a([n1, n12, n2]) = 0 if n1, n2 and n12 are not all integral.

Corollary 10.3. For N = [1, 1, 1] the Fourier coefficient b([1, 1, 1]) is given
by a([p, p, p])+

3k−2Symj
(
3 −1
0 1

)
a([1, 3, 3]) if p = 3

0 if p 6≡ 1 mod 3

pk−2
∑2

i=1 Symj
(
p −mi

0 1

)
a([1+mi+m2

i

p , 1 + 2mi, p]) if p ≡ 1 mod 3

where in the latter case m1 and m2 are the two integers 0 ≤ mi ≤ p− 1 that
reduce to the roots of the polynomial 1 +X +X2 over Fp.
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Corollary 10.4. For N = [1, 0, 1], the coefficient b([1, 0, 1]) is given by


a([2, 0, 2]) + 2k−2Symj

(
2 −1
0 1

)
a([1, 2, 2]) if p = 2

a([p, 0, p]) if p 6≡ 1 mod 4

a([p, 0, p]) + pk−2Symj
(
p ±m0

0 1

)
a([1+m

2
0

p ,∓2m0, p]) if p ≡ 1 mod 4

where in the latter case ±m0 are the two roots of the polynomial 1 +X2 over
Fp.

With these corollaries we can calculate eigenvalues λp of an eigen-
form F ∈Mj,k(Γ2) as follows. If p 6= 3 and p 6≡ 1(mod3) and the ith coor-
dinate of the vector a([1, 1, 1]) does not vanish then we can take λp =
a([p, p, p])i/a([1, 1, 1])i, and similarly, for p 6= 2 and p 6≡ 1(mod4) we can take
λp = a([p, p, p])i/a([1, 0, 1])i provided that the ith coordinate of a([1, 0, 1])
does not vanish. Moreover, if the last component of a([1, 1, 1]) is not zero
and p = 3 or p ≡ 1(mod3) we can use only this component to get λp since
Symj ( p ∗0 1 ) is upper triangular. Similarly, if the last component of a([1, 0, 1])
is not zero and p = 2 or p ≡ 1 mod 4, we can use only this component in
order to compute λp for the same reason as before.

10.2. The Hecke operator Tp2

The Hecke operator Tp2 is defined via the double coset

Tp2 = Γ2

(
p 0 0 0
0 p 0 0
0 0 p 0
0 0 0 p

)
Γ2 + Γ2

(
1 0 0 0
0 p 0 0
0 0 p2 0
0 0 0 p

)
Γ2 + Γ2

(
1 0 0 0
0 1 0 0
0 0 p2 0
0 0 0 p2

)
Γ2

Proposition 10.5. The Hecke operator Tp2 has degree p6 + p5 + 2p4 +
2p3 + p2 + p+ 1 and admits the following left coset decomposition

Γ2

 p2 0 0 0

0 p2 0 0
0 0 1 0
0 0 0 1

 +
∑

0≤a,b,c≤p−1

Γ2

 p 0 a b
0 p b c
0 0 p 0
0 0 0 p

 +
∑

0≤a,b,c≤p2−1

Γ2

 1 0 a b
0 1 b c

0 0 p2 0

0 0 0 p2



+
∑

0≤a≤p−1

Γ2

 p 0 a 0

0 p2 0 0
0 0 p 0
0 0 0 1

 +
∑

0≤a,m≤p−1

Γ2

 p2 0 0 0
−mp p 0 a

0 0 1 m
0 0 0 p

 +
∑

0≤a,b≤p−1

0≤c≤p2−1

Γ2

 1 0 c −b
0 p −pb a

0 0 p2 0
0 0 0 p



+
∑

0≤a,b,m≤p−1

0≤c≤p2−1

Γ2

 p 0 a am+bp
−m 1 b bm+c
0 0 p pm

0 0 0 p2

 +
∑

0≤a,m≤p2−1

Γ2

 p2 0 0 0
−m 1 0 a
0 0 1 m

0 0 0 p2

 +
∑

0≤a≤p2−1
0≤n≤p−1

Γ2

 1 np a 0

0 p2 0 0

0 0 p2 0
0 0 −np 1

 .
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We now consider the action on a modular form F ∈Mj,k(Γ2) defined by

F |j,kTp2 = p4k+2j−6
∑
i

F |j,kσi

where the sum is over the left coset representatives. If F =∑
N≥0 a(N)e2πiTr(Nτ) the result is a modular form with Fourier expansion∑
N≥0 c(N)e2πiTr(Nτ) with the c(N) = ap2(N) expressed in the a(N) as fol-

lows.

Proposition 10.6. Let F ∈Mj,k(Γ2) with Fourier expansion

F (τ) =
∑
N>0

a(N)e2πiTr(Nτ) and write F |j,k Tp2(τ) =
∑
N>0

ap2(N)e2πiTr(Nτ).

Then we have with N = [n1, n12, n2] that ap2(N) is equal to

a(p2N) + p4k+2j−6a(
N

p2
) + p2k+j−3a(N)δp(n1, n12, n2)

+ p3k+j−5Symj
(
1 0
0 p

)
a([n1, n12/p, n2/p

2])δp(n1)

+ p3k+j−5
∑

0≤m≤p−1
Symj

(
p −m
0 1

)
a([

n1 + n12m+ n2m
2

p2
,
n12 + 2n2m

p
, n2])δp(n2)

+ pk−2Symj
(
1 0
0 p

)
a([p2n1, pn12, n2])δp(n2)

+ pk−2
∑

0≤m≤p−1
p|(n1+n12m+n2m2)

Symj
(
p −m
0 1

)
a([n1 + n12m+ n2m

2, p(n12 + 2n2m), p2n2])

+ p2k−4
∑

0≤m≤p2−1
Symj

(
p2 −m
0 1

)
a([

n1 + n12m+ n2m
2

p2
, n12 + 2n2m, p

2n2])

+ p2k−4
∑

0≤n≤p−1
Symj

(
1 0
np p2

)
a([p2n1, n12 − 2pn1n,

n1p
2n2 − n12np+ n2

p2
])

where a([n1, n12, n2]) = 0 if n1, n12 and n2 are not all integral.

From this proposition, we deduce the following corollary:
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Corollary 10.7. Let F ∈Mj,k(Γ2) be a Hecke eigenform with eigenvalue
λp2 at p2. Assume that a([1, 1, 1]) 6= 0. Then λp2(F )a([1, 1, 1]) equals

a(p2N)+pk−2
∑

0≤m≤p−1
1+m+m2≡0 mod p

Symj
(
p −m
0 1

)
a([1 +m+m2, p(1 + 2m), p2])

+ p2k−4
∑

0≤m≤p2−1
Symj

(
p2 −m
0 1

)
a([

1 +m+m2

p2
, 1 + 2m, p2]).

11. Appendix: Hecke Operators for Vector valued Modular
forms of Degree Three

Here we treat only the case of the Hecke operator Tp for p a prime. Here Tp
is the double coset Γ3 diag(1, 1, 1, p, p, p)Γ3.

Proposition 11.1. We have deg(Tp) = p6 + p5 + p4 + 2 p3 + p2 + p+ 1
and there is the following left coset decomposition.

Γ3

 p 0 0 0 0 0
0 p 0 0 0 0
0 0 p 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

+
∑

0≤a,...,f≤p−1
Γ3


1 0 0 a b c
0 1 0 b d e
0 0 1 c e f
0 0 0 p 0 0
0 0 0 0 p 0
0 0 0 0 0 p

+

∑
0≤a,u,v≤p−1

Γ3


p 0 0 0 0 0
0 p 0 0 0 0
−u −v 1 0 0 a
0 0 0 1 0 u
0 0 0 0 1 v
0 0 0 0 0 p

+
∑

0≤a,u≤p−1
Γ3


p 0 0 0 0 0
0 0 p 0 0 0
−u 1 0 0 a 0
0 0 0 1 u 0
0 0 0 0 0 1
0 0 0 0 p 0


+

∑
0≤a≤p−1

Γ3

 0 0 p 0 0 0
0 p 0 0 0 0
1 0 0 a 0 0
0 0 0 0 0 1
0 0 0 0 1 0
0 0 0 p 0 0

+
∑

0≤a,b,c,u,v≤p−1
Γ3


p 0 0 0 0 0
−u 1 0 0 a b
−v 0 1 0 b c
0 0 0 1 u v
0 0 0 0 p 0
0 0 0 0 0 p


+

∑
0≤a,b,c,u≤p−1

Γ3


0 p 0 0 0 0
1 0 0 a 0 b
0 −u 1 b 0 c
0 0 0 0 1 u
0 0 0 p 0 0
0 0 0 0 0 p

+
∑

0≤a,b,c≤p−1
Γ3

 0 0 p 0 0 0
0 1 0 a b 0
1 0 0 c a 0
0 0 0 0 0 1
0 0 0 0 p 0
0 0 0 p 0 0



We are now able to describe the action of the operator Tp on the Fourier
expansion of a modular form on Γ3. Let F ∈Mi,j,k(Γ3) with Fourier expan-
sion F (τ) =

∑
N≥0 a(N)e2πiTr(Nτ). The action of the operator Tp on F reads

as follows:

F |i,j,k Tp = pi+2j+3k−6
∑
i

F |i,j,k σi
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where for σi =
(
ai bi
ci di

)
, the slash operator is given by:

(F |i,j,k σi)(τ) = det(ciτ + di)
−kSymi((ciτ + di)

−1)Symj(∧2((ciτ + di)
−1)))

·F ((aiτ + bi)(ciτ + di)
−1)

for every τ ∈ H3. Let us write

(F |i,j,k Tp)(τ) =
∑
N>0

ap(N)e2πiTr(Nτ).

We will use two kinds of notations for N =

(
n1 n12/2 n13/2

n12/2 n2 n23/2
n13/2 n23/2 n3

)
, namely

N =

(
n1 n12/2 n13/2

n12/2 n2 n23/2
n13/2 n23/2 n3

)
↔ [n1 n2 n3 ;n12 n13 n23]↔

[ n1
n2
n3
n12
n13
n23

]
.

We also use the notations

Symi(a−1) = Sym−i(a) and Symj(∧2(a−1)) = Sym−j(∧2(a)).

Proposition 11.2. We have that ap(N) is given by

p
i+2j+3k−6

a(N/p) + a(pN)

+ p
i+2j+2k−5

∑
0≤u,v≤p−1

Sym
−i
(

1 0 u
0 1 v
0 0 p

)
Sym

−j
(∧2

(

(
1 0 u
0 1 v
0 0 p

)
)a(


(n1+n13u+n3u

2)/p

(n2+n23v+n3v
2)/p

pn3
(n12+n23u+n13v+2n3uv)/p

n13+2n3u
n23+2n3v

)

+ p
i+2j+2k−5

∑
0≤u≤p−1

Sym
−i
(

1 u 0
0 0 1
0 p 0

)
Sym

−j
(∧2

(

(
1 u 0
0 0 1
0 p 0

)
)a(


(n1+n12u+n2u

2)/p

n3/p
pn2

(n13+2n23u)/p
n12+2n2u

n23

)

+ p
i+2j+2k−5

Sym
−i
(

0 0 1
0 1 0
p 0 0

)
Sym

−j
(∧2

(

(
0 0 1
0 1 0
p 0 0

)
)a([n3/p n2/p pn1 ; n23/p n13/p n23])

+ p
i+2j+k−3

∑
0≤u,v≤p−1

Sym
−i
(

1 u v
0 p 0
0 0 p

)
Sym

−j
(∧2

(

(
1 u v
0 p 0
0 0 p

)
)a(


(n1+n12u+n13v+n2u

2+n23uv+n3v
2)/p

p n2
p n3

n12+2n2u+n23v
n13+n23u+2n3v

p n23

)

+ p
i+2j+k−3

∑
0≤u≤p−1

Sym
−i
(

0 1 u
p 0 0
0 0 p

)
Sym

−j
(∧2

(

(
0 1 u
p 0 0
0 0 p

)
)a(


(n2+n23u+n3u

2)/p
p n1
p n3

n12+n13u
n23+2n3u
pn13

)

+ p
i+2j+k−3

Sym
−i
(

0 0 1
0 p 0
p 0 0

)
Sym

−j
(∧2

(

(
0 0 1
0 p 0
p 0 0

)
)a([n3/p pn2 pn1 ; n23 n13 pn12])

where a([n1 n2 n3 ;n12 n13 n23]) = 0 if n1, . . . , n23 are not all integral.
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