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On Recent Advance of Nonlinear Filtering

Theory: Emphases on Global Approaches

Xue Luo

Abstract: The surveys in the field of nonlinear filtering (NLF)
are numerous. Most of them are application-oriented and served
as the tutorials for the practitioners. The local approaches, includ-
ing Kalman filter and its invariants, have already been studied from
various point of views, due to its off-the-shelf implementation and
wide applications. However, it cannot give good estimation of the
states in highly nonlinear system or with non-Gaussian initial con-
ditional density functions. Moreover, while the local methods only
approximate the mean and variance, the global ones seek the way to
directly obtain the conditional density function of the states. Con-
sequently, all the statistical information is acquired. In this survey,
we shall briefly go through the local approaches and put emphases
on the existing three major global approaches: finite-dimensional
NLF, sequential Monte Carlo methods (particle filter) and the Yau-
Yau’s on- and off-line solver of Duncan-Mortensen-Zakai’s equation
[75]. The discussions are mainly from the mathematical point of
view.
Keywords: Nonlinear filtering, global approach, Bayesian frame-
work, Duncan-Mortensen-Zakai’s equation.

1. Introduction

The field of nonlinear filtering (NLF) has its origin from tracking and sig-
nal processing problems. Yet, the underlying formulation is so general and
ubiquitous that it can be widely applied to various complex dynamical phe-
nomenon modeled by stochastic processes. The aim of filtering is to obtain
good estimates of the states in the stochastic dynamical system recursively
in time, based on the noisy observations of the states. The states are also
called signals. The states or signals represent all kinds of quantities in var-
ious applications. For example, the states in the tracking problem [51] are

Received November 5, 2014.
Mathematics Subject Classification. 60G35,60F05,82C31,93E11.

685



686 Xue Luo

the moving target’s position and velocity, and the observations are some
nonlinear functions of the states corrupted by noise. The states in volatility
calibration problem is the underlying volatility process while the observa-
tions are the security and derivative prices [28]. The signal process in the ion
channel kinetics problem for nerve cells is the underlying molecular dynam-
ics, while the observations are the channel conductances [53]. In the atmo-
spheric data assimilation problems [27], the state refers to the location of a
hurricane and the observations may be the measurements of the wind speed
at various locations.

The study of stochastic filtering has a long story dated back to 1940s. It
was first investigated in the pioneering work by Wiener [67] and Kolmogorov
[48]. The most influential work in filtering theory is the classic Kalman filter
(KF) published in 1960 [45] and subsequent Kalman-Bucy filter published
one year later [46]. After the discovery of KF, its variants and itself have been
dominated the field of filtering theory in signal processing and control area
for more than half century. Till now, KF and its derivatives are still widely
applied in various engineering and scientific problems, including tracking,
communications, machine learning, economics, finance and etc. However,
the KF performs poorly once either the linear or the Gaussian assumption
is violated [2]. Consequently, the mathematicians and engineers are urged to
pursue a computationally efficient, recursive optimal solution applicable to
the more general NLF problems. Unfortunately, such algorithm only exists
for the limited class of dynamic systems, say Beneš filter [8], Yau filter [14]
and etc. It motivates the researches on the suboptimal solutions of NLF,
which can be classified into two categories: the local and global approaches.
The local ones approximate the posterior density function by some particular
form, say Gaussian or mixture of Gaussian; while the posterior density func-
tion in global approaches are directly computed without any assumptions
on its type. More extensive discussions on the local and global approaches
can be found in section 3.1 and 3.2, respectively.

From the formulation of NLF, Bayesian theory is no doubt one of the
main tools, which is the most commonly used method for the study of the
dynamic systems. Bayesian theory was originally discovered by [7] in 1763.
It reveals the fundamental probability law governing the process of logi-
cal inference. However, it didn’t receive much attention at that time until
the re-discovery of its modern form by Laplace in “Théorie analytique des
probailités”. One of the important branches in statistics is the Bayesian
statistics to statistical inference. Not surprisingly, Bayesian theory was also
investigated in the field of filtering theory. Starting from the KF, although
it is first developed by the orthogonal projection method [40, 45], it has
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very nice interpretation of Bayesian framework. It is Ho and Lee who first
explored the iterative Bayesian estimation. They specified in [35] the princi-
ple and procedure of Bayesian framework in the context of filtering. In gen-
eral, the Bayesian filtering requires a dynamic state-space model (2), which
consists of two processes: one describes the evolution of a hidden state of the
system, while the other one is the observation process related to the states
and corrupted with noises. In the Bayesian approach, the posterior density
of the states, obtained from Bayes’ theorem, provides a complete statistical
description of the state variable at that time [1]. The procedure of Bayesian
filtering consists of prediction-correction recursions. All sorts of variants of
KF and the sequential Monte Carlo methods (particle filters) belong to this
framework.

Besides the Bayesian framework, the conditional density function of the
states can also be obtained by numerically solving the so-called Kusher’s or
Duncan-Mortensen-Zakai’s equation. It is shown in [50] that the conditional
density p(xt|Yt) of the states xt based on the observation history Yt satis-
fies an Itô stochastic differential equation (SDE), which is called Kusher’s
equation. After the change of measure, the unnormalized conditional den-
sity π(xt|Yt) satisfies a linear Itô SDE, so-called DMZ equation [24, 59, 77].
Apparently, the DMZ equation is the more preferable one. And the solution
to the Kusher’s equation p(xt|Yt) and that to the DMZ equation π(xt|Yt)
is one-to-one correspondence. Detailed discussions can be found in section
2.2. Numerous efforts have been devoted in the past to solve DMZ equa-
tion for a general dynamic systems. We refer the interested readers to the
survey [32] and references therein. By then, the algorithms are neither com-
putational efficient nor recursive. In 2008, Yau and Yau [75] made a major
breakthrough, due to a key observation (see Proposition 3.1) so that the
heavy computation of solving the partial differential equation (PDE) can be
pre-computed, stored and updated by synchronizing with the observations
on-line. Thus, the real-time manner of the algorithm is foreseeable. The
convergence of their algorithm has been rigorously shown when the drift
function, the diffusion term and the observation function are time-invariant.
We refer this method as Yau-Yau’s on- and off-line algorithm, and Yau-Yau’s
method for short, in this survey. Recently, Yau and the author validated it
also for the time-varying system, and numerically verified the real-time per-
formance when the state is of one dimension [56, 57]. More recently, Yueh et
al. [76] present an efficient algorithm of Yau-Yau’s method, and numerical
simulations with two-dimensional states are performed well. In private com-
munication, they claimed the feasibility and efficiency of Yau-Yau’s method
in even higher dimensions, say for the state with 6 dimension, which is a
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major breakthrough in this direction. We briefly summarize the idea of Yau-
Yau’s method in this survey.

This survey is aim to present various approaches studied in the literature
with the emphases on the recent advance of the global approaches. We note
that it is by no means exhaustive, in particular the local approaches, i.e. the
discussion of some variants of KF, say ensemble Kalman filter (cf. [3, 36])
is not mentioned in section 3.1, which may be efficient in certain extremely
high-dimensional problems, for example the atmospheric data assimilation.

The paper is organized as follows. We present the general formulation of
NLF problems in both discrete and continuous-time versions. In section 2
we describe the stochastic filtering problem abstractly in two aspects: one is
the Bayesian framework; the other one is the Kusher’s and DMZ equations.
Section 3 devotes to summarize local and global approaches of NLF. The
KF, as the most influential one, is re-derived from the viewpoint of DMZ
equation, which provides a natural relation between the approaches based on
Bayesian theory and DMZ equation. Following the KF, its variants including
extended Kalman filter (EKF), Gaussian sum filter (GSF) and unscented
Kalman filter (UKF), etc are briefly presented. We emphasize the results
of global approaches in section 3.2, where we display three of the kind:
finite-dimensional filters, sequential Monte Carlo methods (particle filter)
and the Yau-Yau’s method. At last, we arrive the conclusion and mention
some possible future developments in section 4.

2. Stochastic filtering problem

The aim of the stochastic filtering is to obtain the “best” estimate of the state
or the signal in some sense, where the state is modeled by a stochastic pro-
cess or a random sequence, denoted as {Xt, t ≥ 0} or {Xk, k ∈ N}. The state
itself can’t be measured directly, while certain measurements of the state can
be obtained, denoted as {Yt, t ≥ 0} or {Yk, k ∈ N}, which is another stochas-
tic process or random sequence. The observation usually is a function of the
state with some measurement noise {Wt, t ≥ 0} or {Wk, k ∈ N}. If we are
in the continuous-time case, we assume further that Xt, Yt and all the other
processes in the sequel are defined on the probability space (Ω,F ,P). Let
Yt = σ(Ys, s ∈ [0, t]) be the filtration generated by the observation process
Yt up to time t, which contains all the information from the observation
history up to time t. The filtering problem is to estimate Xt based on Yt,
i.e. E[Xt|Yt].
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Let us describe the discrete-time stochastic filtering as the vector-valued
SDE [40], which is commonly used in the point-based filter.

(1)

{
xk =f(xk−1) + wk−1
yk =h(xk) + vk

,

where the state xk is the Nx-vector and the measurement yk is the Ny-
vector; wk−1 and vk are independent white Gaussian process noise and
measurement noise with the covariance Qk−1 and Rk, respectively. The aim
of discrete estimation problem is to estimate the state xk based on y1:k,
given certain realization of observations y1:k := {y1,y2, · · · ,yk}, .

Suppose {xt} is a Markov process with an infinitesimal generator, the
state-space equations can be written in the form of Itô stochastic differential
equation [62]:

(2)

{
dxt =f(t,xt)dt+ G(t,xt)dwt

dyt =h(t,xt)dt+ dvt
,

where f(t,xt) is the drift term, G(t,xt) is the volatility or diffusion coef-
ficient, and h(t,xt) is the observation function. The two noise processes
{wt, t ≥ 0} and {vt, t ≥ 0} are Wiener processes, with E[dwtdw

T
t ] = Qtdt

and E[dvtdv
T
t ] = Rtdt, Rt > 0, respectively. xt ∈ RNx and yt ∈ RNy , where

Nx and Ny are the dimension of the states and observations, respectively.

2.1. Bayesian estimation framework

In this framework, we assume that

1) The state is a Markov process, i.e. p(xk|x1:k−1) = p(xk|xk−1);

2) The observations are independent of the given states, i.e. y1:k−1 are
independent of xk.
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Let p(xk|y1:k) denote the probability density function (pdf) of xk under
the condition of the observations y1:k, then from the Bayes’ rule, we have

p(xk|y1:k)
Bayes′

=
p(y1:k|xk)p(xk)

p(y1:k)
=
p(yk,y1:k−1|xk)p(xk)

p(yk,y1:k−1)

=
p(yk|y1:k−1,xk)p(y1:k−1|xk)p(xk)

p(yk|y1:k−1)p(y1:k−1)
Bayes′

=
p(yk|y1:k−1,xk)p(xk|y1:k−1)p(y1:k−1)p(xk)

p(yk|y1:k−1)p(y1:k−1)p(xk)

=
p(yk|xk)p(xk|y1:k−1)

p(yk|y1:k−1)
=

p(yk|xk)p(xk|y1:k−1)∫
p(yk|xk)p(xk|y1:k−1)dxk

.(3)

It is clear to see from (3) that the posterior pdf p(xk|y1:k) is obtained
by three terms: the prior pdf p(xk|y1:k−1), the likelihood function p(yk|xk)
and the denominator in (3).

The Bayesian filtering consists of recursive prediction and update pro-
cedures [40].

Prediction: Given the prior pdf p(xk−1|y1:k−1), the conditional pdf
of p(xk|y1:k−1) satisfies the Chapman-Kolmogorov equation:

(4) p(xk|y1:k−1) =

∫
p(xk|xk−1)p(xk−1|y1:k−1)dxk−1;

Update: When yk is available, the posterior pdf p(xk|y1:k) is given
by (3), i.e.,

(5) p(xk|y1:k) =
p(yk|xk)p(xk|y1:k−1)∫
p(yk|xk)p(xk|y1:k−1)dxk

.

In the general NLF problems, both prior and posterior conditional pdf
can’t be computed in the analytic form. Therefore, it is essential to approx-
imate prior and likelihood functions in (3). As the consequence, a variety of
local approaches have been developed by using different approximations.

2.2. Kusher’s and Duncan-Mortensen-Zakai’s equation

In the continuous-time case, we can reformulate the stochastic filtering
problem, by considering the infinitesimal generator of the state process
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{xt, t ≥ 0}:

L(◦) :=
1

2

Nx∑
i,j=1

(GQGT )ij(t,xt)
∂2(◦)
∂xi∂xj

+

Nx∑
i=1

fi(t,xt)
∂(◦)
∂xi

,

where fi and xi are the ith component of the vector-valued function f and the
vector state xt, respectively. The question now can be interpreted as how to
find a recursive or finite-dimensional method to compute the conditional pdf
of xt with the filtration Yt, i.e. p(xt|Yt). It turns out that p(xt|Yt) satisfies
the following Kusher’s equation (cf. [50]):

dp(xt|Yt) = �L∗p(xt|Yt)dt+ p(xt|Yt)etΣ
−1
v,tdt,

where �L∗ is the adjoint operator of �L, i.e.

(6) �L∗(◦) =
1

2

Nx∑
i,j=1

∂2((GQGT )ij◦)
∂xi∂xj

−
Nx∑
i=1

∂(fi◦)
∂xi

,

et is the innovation process
(7)

et = yt −
∫ t

0
E[h(s,xs)|Ys]ds, E[h(s,xs)|Ys] =

∫
h(s,xs)p(xs|Ys)dxs

and Σv,t = E[vt].
Although the Kusher’s equation leads a way to solve the NLF problem

completely, it needs to solve an infinite-dimensional system to get even the
conditional mean (cf. [13]). Generally speaking, the solution is neither in a
closed form nor easy to be computed numerically, due to the nonlinearity
with respect to p(xt|Yt) in (7).

Through the Kallianpur-Striebel formula [11], one can define the unnor-
malized conditional pdf π(xt|Yt) through the following procedure. In par-
ticular, for any ϕ ∈ B(Ω), the Borel σ-field on the state space Ω, which is a
complete separate metric space,

P[ϕ] :=

∫
ϕ(xt)p(xt|Yt)dxt =

Ẽ[z̃tϕ(xt)|Yt]

Ẽ(z̃t|Yt)
, P̃− a.s.,

where the process z̃t satisfying

dz̃t =

Ny∑
i=1

z̃thi(t,xt)dyi,
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with hi and yi the ith component of h and y, respectively. P̃ is the probability
measure introduced by the process z̃t, such that

dP

dP̃

∣∣∣∣
Ft

= z̃t,

for all t ≥ 0, where Ft is the filtration of xt. And Ẽ is the expectation with
respect to P̃. Hence, the unnormalized conditional pdf of xt is defined as
following. For any ϕ ∈ B(S), we define

(8) Π[ϕ] = P[ϕ]Π[1], ∀ t ≥ 0, P̃(P)− a.s.

where Π[ϕ] :=
∫
ϕ(xt)π(xt|Yt)dxt. Equation (8) explains the usage of the

term “unnormalized” of π(xt|Yt), since the denominator Π[1] can be viewed
as the normalizing factor. Under certain mild condition, the unnormal-
ized conditional pdf π(xt|Yt) satisfies the Duncan-Mortensen-Zakai’s (DMZ)
equation (cf. [24, 59, 77])

(9) dπ(xt|Yt) = �L∗π(xt|Yt)dt+ h(t,xt)π(xt|Yt)dyt,

where �L∗ is defined in (6). There is an one-to-one correspondence between
the solution of Kusher’s equation and that of DMZ equation. And it is
clear to see that DMZ equation is linear with respect to the unnormalized
conditional pdf π(xt|Yt). Therefore, studies on how to numerically solve the
DMZ equation efficiently is the key to solve NLF problems completely.

3. Two categories: local and global approaches

3.1. Local approach

Around 1960s, the Kalman filtering (KF) has been developed in the seminal
papers [45, 46] by using the orthogonal projection method, under the linear
and Gaussian assumptions. It has been shown to be optimal in the sense
that it is unbiased, i.e. E[x̂k] = E[xk] and is a minimum variance estimate.
In the late 1960s, Kailath [44] reformulated the KF with the innovation
approach [1] and the tool of martingales theory [23]. The KF is also optimal
from the viewpoint of innovation that it is whitening filter. The celebrated
KF can also be derived within the Bayesian framework, which is reduced to
the maximum a posteriori (MAP) solution [13] and the maximum likelihood
(ML) solution [64]. The nice Bayesian interpretation of KF can be found in
[35]. Recently, the derivation from DMZ equation is investigated in [25, 26].
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We refer the interested readers for a detailed history of KF and its variants
to [29, 40, 44] and reference therein. To be somewhat self-contained, we
briefly sketch the re-derivation of the KF from the discrete DMZ equation
[26] under the linear and Gaussian assumptions. Equation (1) reduces to the
following special case:

(1)

{
xk =Fk,k−1xk−1 + wk−1
yk =Hkxk + vk

,

where Fk,k−1 and Hk are called transition matrix and measurement matrix,
respectively. Let us further assume that the state process xk, the observation
process yk and the noise processes wk, vk are mutually independent. To
simplify notation, we suppose that {wk}∞k=1 and {vk}∞k=0 are sequences of
independent N (0, INx

) and N (0, INy
) random variables, respectively.

The following theorem provides a recursive formula for unnormalized
conditional pdf of xk given y1:k. It is the discrete time version of DMZ
equation.

Theorem 3.1 ([25, 26]). π(xk|y1:k) satisfies the recursion:
(2)

π(xk|y1:k) =
φ(yk −Hkxk)

φ(yk)

∫
RNx

π(xk−1|y1:k−1)ψ(xk − Fk,k−1xk−1)dxk−1,

where ψ(x) = (2π)−
Nx
2 exp

(−x′x
2

)
and φ(y) = (2π)−

Ny

2 exp
(
−y′y

2

)
, for x ∈

RNx and y ∈ RNy , respectively.

The DMZ equation (2) is exact under the linear and Gaussian assump-
tions, and it has the form of a convolution equation. It is readily to verify
that (2) yields the KF.

The KF consists of an iterative prediction-correction procedure. Let us
denote xk|k−1 = E[xk|y1:k−1] the conditional expectation of xk given y1:k−1,
and the conditional variance Σk|k−1 = V ar[xk|y1:k−1]. Assume it is xk−1 ∼
N (μk−1,Σk−1), that is, the normalized conditional pdf is

p(xk−1|y1:k−1) = |Σk−1|−
1

2 ψ
(
Σ−1k−1(xk−1 − μk−1)

)
.

Prediction: Starting from π(xk−1|y1:k−1) ∼ ψ
(
Σ−1k−1(xk−1 − μk−1)

)
, we

have

xk|k−1 =E[xk|y1:k−1]
(1)
= E[Fk,k−1xk−1 + wk−1|y1:k−1]

=E[Fk,k−1xk−1|y1:k−1] = Fk,k−1μk−1,
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with μk−1 = E[xk−1|y1:k−1], and

Σk|k−1
=E[(xk − xk|k−1)(xk − xk|k−1)′|y1:k−1]
=E[(Fk,k−1(xk−1 − μk−1) + wk−1) (Fk,k−1(xk−1 − μk−1) + wk−1)′ |y1:k−1]
=Fk,k−1Σk−1F ′k,k−1 + I2Nx×Nx

.

Correction: The posterior conditional pdf is shown to be N (μk,Σk).
That is, π(xk|y1:k) ∼ ψ

(
Σ−1k (xk − μk)

)
, where μk and Σk are given in (4)

and (3) below.

Theorem 3.2 ([26]). Suppose xk−1 ∼ N (μk−1,Σk−1). Then xk ∼ N (μk,Σk),
where

Σk =Σk|k−1 −Σk|k−1H ′k
(
I2Ny×Ny

+HkΣk|k−1H ′k
)−1

HkΣk|k−1,(3)

and

μk =Fk,k−1μk−1

+ Σk|k−1H ′k
(
I2Ny×Ny

+HkΣk|k−1H ′k
)−1

(yk −HkFk,k−1μk−1).(4)

The quantity Kk = Σk|k−1H ′k
(
I2Ny×Ny

+HkΣk|k−1H ′k
)−1

is the so-called Kalman

gain.

The KF is well-known to be optimal under linear Gaussian assumptions.
However, real applications generally can’t be set up with the model satisfying
these assumptions. Therefore, many variants have been developed, following
the idea of the KF in the hope of solving the general NLF problems.

3.1.1. Linearization methods: extended Kalman filter (EKF) [29].
The basic idea of EKF is to linearize (1) at the previous step’s estimation,
i.e.

F̂k,k−1 =
df(x)

dx

∣∣∣∣
x=xk−1

, Ĥk =
dh(x)

dx

∣∣∣∣
x=xk−1

.

Then the KF is applied to this linearized equation. The EKF is biased
in general and it only works well when the true posterior conditional pdf
is almost Gaussian. It could perform extremely poor especially when the
true posterior is heavily skew or multimodal or the dynamics are highly
nonlinear. Another drawback of EKF is the heavy computation to evaluate
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the Jacobian matrix at each time step. A detailed discussion on EKF and
its applications can be found in many books, say [29, 40] etc.

3.1.2. Finite sum approximation: Gaussian sum filter (GSF) [2,
49]. Unlike the EKF, which approximate the nonlinear term near the vicin-
ity of the previous estimation, the GSF proposed to approximate the poste-
rior pdf by a mixture of weighted Gaussians. That is,

p(x) =

M∑
i=1

wiN (μi,Σi),

where the weighted coefficients wi > 0 and
∑

i=1wi = 1. Then the GSF runs
a bank of EKF in parallel to obtain a suboptimal estimation.

3.1.3. Deterministic points approximation. Ito, et. al [38] improves
the GSF further to avoid the intensive computational part of EKF, i.e. the
evaluation of the Jacobian matrix. Indeed, with the Gaussian assumption,
the Bayesian nonlinear filtering framework is given as follows:

Prediction:

xk|k−1 =

∫
RNx

f(xk−1)N (xk−1;μk−1,Σk−1) dxk−1(5)

Σk|k−1 =

∫
RNx

f(xk−1)(f(xk−1))′N (xk−1;μk−1,Σk−1) dxk−1

− xk|k−1x′k|k−1 + INx×Nx
,(6)

where N (xk−1;μk−1,Σk−1) represents the multivariate normal distribution
with the mean μk−1 and the covariance Σk−1.

Correction:

μk =xk|k−1 + Lk(yk − zk)

Σk =Σk|k−1 − LkΣ
′
xz,

where

Lk =Σxz(Rk + Σzz)−1(7)

zk =

∫
RNx

h(xk)N (
xk;xk|k−1,Σk|k−1

)
dxk(8)

Σxz =

∫
RNx

(xk − xk|k−1)(h(xk)− zk)′N (
xk;xk|k−1,Σk|k−1

)
dxk(9)

Σzz =

∫
RNx

(h(xk)− zk)(h(xk)− zk)′N (
xk;xk|k−1,Σk|k−1

)
dxk.(10)
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The integrals in (5)-(6) and (8)-(10) can be approximated by various numeri-
cal rules, such as Gauss quadrature rule, unscented transformation and cuba-
ture rule, etc. Consequently, they lead to different filtering methods, such as
unscented Kalman filter (UKF) [42, 43], Gaussian quadrature Kalman filter
(GKF) [5, 38] and cubature Kalman filter (CKF) [4, 6]. Very recently, Jia,
et al. [41] investigated the high-dimensional NLF problems by GKF with
the sparse-grid algorithm [66].

3.2. Global approach

The local approaches performs more effective than the global ones. The
real-time manner is very appealing in many real applications. However, the
common drawbacks inherited from KF are the follows:

1) They perform well only when the posterior conditional pdf is close to
the Gaussian and the dynamic system is almost linear.

2) Only mean and variance are obtained. No more statistical information
is available.

Unlike the local approaches, the global ones are aim to obtain the approx-
imation of the conditional pdf. No apriori assumptions need to be imposed
on the system or the posterior conditional pdf. All statistical information
is obtained automatically. In this sense, the NLF problems are solved com-
pletely. The only problems are the real-time manner and the heavy compu-
tation in high-dimensional states NLF problems.

In general, the NLF problem is intractable with finite statistics, say mean
and moments. It is interesting to understand under what conditions certain
NLF problems can be transformed into finite dimensional ones. And is there
any NLF problem essentially infinite-dimensional?

3.2.1. Finite-dimensional filters. KF is a typical finite-dimensional fil-
ter in the sense that it can be implemented by integrating a finite number of
(actually two) ordinary differential equations (ODE). Or say, it has the suffi-
cient statistics with finite (two) variables, i.e. the conditional mean and vari-
ance. However, not all NLF problems are finite-dimensional. For instance,
Hazewinkel et al. have shown in [34] the nonexistence of finite-dimensional
filter for the cubic sensor problem. Hence, it is meaningful to construct finite-
dimensional filter for more general NLF problems and to study the necessary
and sufficient conditions to guarantee the existence of such filters.

As far as the author knows, Beneš [8] is the first one to investigate the
exact finite-dimensional filter in the NLF context. Later, Yau [14] gives a
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more general case including the KF and Beneš filter as special cases. Around
2000, the exact finite-dimensional filter from the differential geometric point
of view is studied by Brigo et al. [10] and reference therein, which is the
so-called projection filters.

At the International Congress of Mathematicians in 1983, Brockett [11]
proposed to systematically study the finite-dimensional filters by using the
estimation algebra to classify all the finite-dimensional ones. The estimation
algebra E of the filtering model (2) is defined as the Lie algebra generated
by {L0, L1, . . . , Lm}, where L0 is related to �L∗ and Li, i = 1, . . . ,m, are the
zero degree differential operators of multiplication by hi. As an immedi-
ate application of the classification, it can be used to construct new exact
finite-dimensional filters for NLF problems. The following theorem given by
Ocone [61] is the first one characterized the functions in a finite-dimensional
estimation algebra.

Theorem 3.3 ([61]). Let E be a finite-dimensional estimation algebra. If
a function ξ is in E, then ξ is a polynomial of degree at most two.

In particular, if G = Q = R = I, I is the identity matrix, then

(11) L0(◦) :=
1

2

Nx∑
i=1

∂2◦
∂x2i

−
Nx∑
i=1

fi
∂◦
∂xi

−
Nx∑
i=1

∂fi
∂xi

◦ −1

2

Ny∑
i=1

h2i ◦,

and Li(◦) := hi◦, where fi and hi are the ith component of f and h, respec-
tively. In real applications, the actual observations consist of piecewise smooth
sample paths y(t). Davis [19] was interested in constructing robust esti-
mators from these kind of observation paths. He considered a version of
(9) dealing with path-wise observation y(t). It follows immediately from an
exponential transformation:

u(t,x) = exp

⎛
⎝ Ny∑

i=1

hi(x)yi(t)

⎞
⎠π(t,x).
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Equation (9) is reduced to the following PDE, which is called robust DMZ
equation in our context.

∂u

∂t
(t,x) =L0u(t,x) +

Ny∑
i=1

yi(t)[LNy
, Li]u(t,x)

+
1

2

Ny∑
i,j=1

yi(t)yj(t)[[L0, Li], Lj ]u(t,x),(12)

where [Li, Lj ] is the Lie bracket of the differential operators Li and Lj ,
defined as [Li, Lj ](φ) := Li(Lj(φ))− Lj(Li(φ)), for any φ ∈ C∞.

Yau [69] constructs a class of finite-dimensional filter for NLF problem
using estimation algebra techniques. It is referred as Yau filter in [14], which
includes the Kalman-Bucy filter and Beneš filter as special cases. Yau also
gave a necessary and sufficient condition to guarantee the estimation algebra
to be finite-dimensional.

In particular, the following theorem from [69] shows how to construct
finite-dimensional filters from finite-dimensional estimation algebras with
maximal rank. The estimation algebra E is said to be of maximal rank if,
for any 1 ≤ i ≤ Nx, there exists a constant ci such that xi + ci is in E.

Theorem 3.4 (Yau [69]). Let E be an estimation algebra of (2) satisfying
∂fj
∂xi
− ∂fi

∂xj
= cij, where the cijs are constants for all 1 ≤ i, j ≤ Nx. Suppose

that E is a finite dimensional estimation algebra of maximal rank. Then E
has a basis of the form 1, x1, . . . , xNx

, D1, . . . , DNx
and L0, and

∑Nx

i=1
∂fi
∂xi

+∑Nx

i=1 f
2
i +

∑Ny

i=1 h
2
i is a degree two polynomial

∑Nx

i,j=1 aijxixj +
∑Nx

i=1 bixi +

d, where Di = ∂
∂xi
− fi and L0 is defined in (11). The robust DMZ equation

(12) has a solution for all t ≥ 0 of the form

u(t,x) = eT (t)erNx (t)xNx . . . er1(t)x1esNx (t)DNx . . . es1(t)D1etL0σ0
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where T (t), r1(t), . . . , rNx
(t), s1(t), . . . , sNx

(t) satisfies the following ODEs:

dsi
dt

(t) =ri(t) +

Nx∑
j=1

sj(t)cji +

Nx∑
k=1

hkiyk(t), 1 ≤ i ≤ Nx;

drj
dt

(t) =
1

2

Nx∑
i=1

si(t)(aij + aji), 1 ≤ j ≤ Nx;

dT

dt
=− 1

2

Nx∑
i=1

r2i (t)− 1

2

Nx∑
i=1

s2i (t)

⎛
⎝ Nx∑

j=1

c2ij − aij
⎞
⎠ +

Nx∑
i=1

ri(t)

−
Nx∑
j=2

j∑
i=1

sj(t)cij +
∑

1≤i<k≤Nx

si(t)sk(t)

⎡
⎣ Nx∑
j=1

cijcjk +
1

2
(aik + aki)

⎤
⎦

+
1

2

Nx∑
i=1

si(t)bi +
1

2

Ny∑
i,j=1

yi(t)yj(t)

Nx∑
k=1

hikhjk −
Nx∑

i,j=1

si(t)rj(t)cij ,

where hk(x) =
∑Nx

j=1 hkjxj + ek, 1 ≤ k ≤ Ny, hkj and ek are constants. In
particular, a universal finite-dimensional filter exists.

The characterization of the condition ∂fj
∂xi
− ∂fi

∂xj
= cij , where cij are con-

stants for all 1 ≤ i, j ≤ Nx, is also given in [69].

Theorem 3.5 ([69]). ∂fj
∂xi
− ∂fi

∂xj
= cij, where cij are constants for all 1 ≤

i, j ≤ Nx, if and only if

(f1, . . . , fNx
) = (l1, . . . , lNx

) +

(
∂ψ

∂x1
, . . . ,

∂ψ

∂xNx

)
,

where l1, . . . , lNx
are polynomials of degree one and ψ is a C∞ function.

And the classification of the finite-dimensional estimation algebra with
maximal rank has been completed in [70, 72].

Theorem 3.6 ([72]). Suppose that the state space of the filtering model
(2) is of dimension Nx. If E is the finite-dimensional estimation algebra
with maximal rank, then f = ∇φ+ (α1, . . . , αNx

), where φ is a smooth func-
tion and αi, 1 ≤ i ≤ Nx are affine functions and E is a real vector space of
dimension 2Nx + 2 with basis given by 1, x1, . . . , xNx

, D1, . . . , DNx
and L0.

The finite-dimensional filter can also be constructed from the finite-
dimensional estimation algebra with non-maximal rank, see [63]. However,
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the classification of the non-maximal rank ones is still wide open, except
some partial results, including those for low-dimensional estimation alge-
bra with arbitrary states’ dimension [15, 73]; the classification with state
dimension 2 and arbitrary dimensional estimation algebra [68].

Besides the classification of the estimation algebra, Yau et al. [74] intro-
duced the direct method to solve the NLF with finite-dimensional estimation
algebra, which has been further generalized by [37, 72]. Based on the Wei-
Norman approach of the estimation algebra to solve the DMZ equation, one
needs to know the basis of the estimation algebra explicitly, so that the DMZ
equation can be reduced to a finite system of ODE and several first-order
linear PDEs. Unfortunately, the basis can only be known when the estima-
tion algebra has maximal rank. The direct method in [37, 71, 74] is easy
to implement and don’t rely on the explicit basis of the estimation algebra,
which can be applied to all Yau filters [14]. Moreover, the number of suffi-
cient statistics required to acquire the conditional pdf is Nx. More precisely,
in [37] Yau et al. assume that the following conditions are satisfied:

1) ∂fj
∂xi
− ∂fi

∂xj
= cij , where cij are constants, 1 ≤ i, j ≤ Nx. This is so-called

Yau filter in [14]. This condition is equivalent to

(13) fi(x) = li(x) +
∂F

∂xi
(x),

for 1 ≤ i ≤ Nx, where li(x) =
∑Nx

j=1 dijxj + di for 1 ≤ i ≤ Nx and F is
a C∞ function.

2) Yau showed in [69] that the observation functions h1, · · · , hNy
are

polynomials of degree at most one for all the Yau filters with finite-
dimensional estimation algebra. Without loss of generality, we assume
that

(14) hi(x) =

Nx∑
j=1

cijxj + ci,

for 1 ≤ i ≤ Ny, where cij and ci are constants.

3) It is also shown in [69] that

η(x) :=

Nx∑
i=1

∂fi
∂xi

+

Nx∑
i=1

f2i +

Ny∑
i=1

h2i
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is a polynomial of degree at most two for all the Yau filter with
finite-dimensional estimation algebra. Without loss of generality, let
us assume that

(15) η(x) =

Nx∑
i,j=1

ηijxixj +

Nx∑
i=1

ηixi + η0,

where ηij , ηi and η0 are constants.

Under the conditions above, the solution of the robust DMZ equation (12)
can be solved directly as described in the following theorem:

Theorem 3.7 ([71]). Consider the filtering model (2) with Q = G = R =
I with the conditions (13)-(15). Then the solution u(t,x) for the robust DMZ
equation (12) is reduced to the solution of ũ(t,x) for the forward Kolmogorov
equation

(16)

⎧⎪⎪⎨
⎪⎪⎩
∂ũ

∂t
(t,x) =

1

2
	ũ(t,x)−

Nx∑
i=1

Hi(x)
∂ũ

∂xi
(t,x)− P (x)ũ(t,x)

ũ(0,x) =eG(x)−F (x)σ0(x)

where

ũ(t,x) = exp

[
c(t) +G(x)−

Nx∑
i=1

ai(t)xi − F (x + b(t))

]
u(t,x + b(t))

and ai(t), bi(t) and c(t) satisfy the following system of ODEs:

(17)

⎧⎪⎪⎨
⎪⎪⎩
a′i(t)−

1

2

Nx∑
j=1

(ηij + ηji)bj(t) +

Nx∑
j=1

djib
′
j(t) = 0

ai(0) = 0

,

(18)

⎧⎪⎪⎨
⎪⎪⎩
b′i(t)− ai(t)−

Nx∑
j=1

dijbj(t) +

Nx∑
j=1

cjiyj(t) = 0

bi(0) = 0

,
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(19)⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

c′i(t) = −1

2

Nx∑
i=1

(b′i(t))
2 +

Nx∑
i=1

ai(t)b
′
i(t)−

Nx∑
i=1

dib
′
i(t) +

1

2

Nx∑
i,j=1

ηijbi(t)bj(t)

+
1

2

Nx∑
i=1

ηibi(t)

c(0) = 0

,

for 1 ≤ i ≤ Nx, if we can choose H(x), G(x) and P (x) such that

1

2

Nx∑
i=1

H2
i (x)− 1

2

Nx∑
i=1

∂Hi

∂xi
(x)− 1

2
η(x) + P (x) = 0,

where Hi(x)− ∂G
∂xi

(x) = li(x).

The possible choices of H(x), G(x) and P (x) in [71] include the follows:

1) Choose a C∞ function G(x) such that

	G(x) + |∇G|2(x) + 2

Nx∑
i=1

li(x)
∂G

∂xi
(x) =η(x)−

Nx∑
i=1

l2i (x)−
Nx∑
i=1

∂li
∂xi

(x),

Hi(x) =
∂G

∂xi
(x) + li(x),

and

P (x) =

Nx∑
i=1

∂Hi

∂xi
(x) =

Nx∑
i=1

(
∂2G

∂x2i
(x) +

∂li
∂xi

(x)

)
.

2) Choose

G(x) ≡0;

P (x) =
1

2
η(x)− 1

2

Nx∑
i=1

l2i (x)− 1

2

Nx∑
i=1

∂li
∂xi

(x);

Hi(x) =li(x),

for 1 ≤ i ≤ Nx.
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3) Choose a function G(x) such that ∂G
∂xi

(x) = −li(x) if dij = dji for 1 ≤
i, j ≤ Nx. Let P (x) = 1

2η(x) and Hi(x) ≡ 0, 1 ≤ i ≤ Nx.

4) Choose

G(x) =F (x);

P (x) =
1

2
η(x)− 1

2

Nx∑
i=1

f2i (x) +
1

2

Nx∑
i=1

∂fi
∂xi

(x);

Hi(x) =fi(x),

for 1 ≤ i ≤ Nx.

3.2.2. Sequential Monte Carlo methods and particle filters (PF).
The use of Monte Carlo methods for NLF can be traced back to [33]. The
algorithm is so-called sequential importance sampling (SIS). Although it has
been known since 1970s, it is not commonly used in the NLF problems, due
to some major drawbacks until [30], the so-called bootstrap filter has been
developed. In [30], Gordon et. al. identified the degeneracy of the importance
weights as sample impoverishment. In brief, it asserts that most of the sam-
ples are annihilated due to the very small normalized importance weights in
the long run. The remedy is to rejuvenate by replicating the samples with
high importance weights and removing those with low weights. This is sim-
ilar as the algorithm in [65], so-called sampling and importance resampling
(SIR). Starting from the bootstrap filter [30], various similar filtering have
been studied, including Monte Carlo filter [47], particle filter [21] and etc. A
good introduction to this field has been written by Künsch [52], while the
interesting recent developments in theory and applications are covered in
[20].

The sequential Monte Carlo method is within the Bayesian framework.
In the NLF context, we are concerned to compute the expectations of the
form:

E(ϕ) =

∫
ϕ(x)p(x)dx,

where ϕ(◦) are some functions for estimation. For example, ϕ(x) = x gives
the mean. The approximation of integral by Monte Carlo method can be

achieved by generating random samples from p, denoted as
{
x(i)

}N
i=1

, and

approximate p by point masses, i.e. p(x) =
∑N

i=1 δx(i)(x), where δa(x) is the
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Kronecker-delta function. Henceforth, the expectation E(ϕ) is given by

(20) E(ϕ) ≈ 1

N

N∑
i=1

ϕ
(
x(i)

)
.

Intuitively, as N → +∞, E(ϕ) is well approximated.
Sampling directly from the distribution p is no doubt a good choice.

However, in the NLF context, neither the prior pdf p(xk−1|y1:k−1) nor the
posterior one p(xk|y1:k) are known. Generally speaking, we can’t sample
directly from p. Instead, we sample from another convenient distribution
q, which is called importance distribution or instruction distribution. To
guarantee the unbiased estimation of E(ϕ), we need to make a correction by
(21)

E(ϕ) =

∫
ϕ(x)p(x)dx =

∫
ϕ(x)

p(x)

q(x)
q(x)dx

(20)≈ 1∑N
j=1w

(j)

N∑
i=1

w(i)ϕ
(
x(i)

)
,

where w(i) :=
p(x(i))
q(x(i)) is the unnormalized importance weight.

Back to the Bayesian framework, let us apply the Monte Carlo sampling

technique as follows. We sample N particles
{
x
(i)
k

}N

i=1
from an importance

distribution qk(xk|y1:k) and compute the unnormalized importance weights

(22) w
(i)
k =

p
(
x
(i)
k |y1:k

)
q
(
x
(i)
k |y1:k

) ,
for i = 1, 2, . . . , N . Then the conditional expectation of any function ϕ can

be approximated by the weighted sample
{
x(i), w

(i)
k

}N

i=1
:

(23) E(ϕ) =

∫
ϕ(xk)p(xk|y1:k)dxk ≈

N∑
i=1

w
(i)
k∑N

j=1w
(j)
k

ϕ
(
x
(i)
k

)
.

How does the pair
(
x
(i)
k , w

(i)
k

)
propagate through the dynamic system?

The samples
{
x
(i)
k

}N

i=1
are propagated as

(24) x
(i)
k+1 ∼ q̃

(
x
(i)
k+1|x(i)

k ,y1:k+1

)
=
q
(
x
(i)
k+1|y1:k+1

)
q
(
x
(i)
k |y1:k

) ;
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and the unnormalized weights
{
w

(i)
k

}N

i=1
are updated as

w
(i)
k+1 =

p
(
x
(i)
k+1|y1:k+1

)
q
(
x
(i)
k+1|y1:k+1

) (24)
=

f
(
x
(i)
k+1|x(i)

k

)
p
(
x
(i)
k |y1:k+1

)
q̃
(
x
(i)
k+1|xk,y1:k+1

)
q
(
x
(i)
k |y1:k

)
(22)
= w

(i)
k

f
(
x
(i)
k+1|x(i)

k

)
p
(
x
(i)
k |y1:k+1

)
q̃
(
x
(i)
k+1|xk,y1:k+1

)
p
(
x
(i)
k |y1:k

)

=w
(i)
k

f
(
x
(i)
k+1|x(i)

k

)
h
(
yk+1|x(i)

k

)
q̃
(
x
(i)
k+1|xk,y1:k+1

)
l(yk+1|y1:k)

,

where f(xk|xk−1) and h(yk|xk) are the transition density and the observa-
tion density, respectively, and l(yk|y1:k−1) is the predictive distribution of
yk given y1:k−1. l(yk|y1:k−1) is usually difficult to evaluate. But it does not
depend on the state, and hence it is not necessary to be computed, since
the weights will be renormalized as in (21). The algorithm described above
is so-called SIS.

Although SIS achieves great success for short data records, it is doomed
to fail in the long run, since the probability mass concentrated on a small
portion of the samples after a few iteration steps, see [22]. The remedy is to
resample the particles. The procedure surely will introduce some additional
Monte Carlo variance, but in the long run it alleviates the accumulative error
over time and help to eliminate the particle impoverishment. The standard
particle filtering algorithm is to resample the particles according to the nor-
malized weights, and after that, the weights are reset to be 1

N . In detail, the
particles with small importance weights are eliminated; while those with
large ones are replicated. This improved algorithm is referred as SIR.

The structure of the particle filter [18] can be summarized abstractly as
follows:

1) Mutation: Draw for i = 1, . . . , N ,

x
(i)
k ∼ Kk

(
x̂
(i)
k−1, dxk

)
,

where x̂
(i)
k are the ith resampled particles at time step k, Kk : Xk−1 →

P (Xk) is a given probability kernel, and Xk is the sample space at time
step k.
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2) Correction: Assign weights to particles so that, for i = 1, . . . , N ,

w
(i)
k ∝

p
(
x
(i)
k |y1:k

)
p̃
(
x
(i)
k |y1:k−1

) ,

where p̃(·|y1:k−1) =

∫
p(xk−1|y1:k−1)Kk(xk−1, ·)dxk−1.

3) Selection: Resample, according to a given selection scheme,

(
x
(i)
k , w

(i)
k

)N

i=1
→

(
x̂
(i)
k , 1

)N

i=1
.

Various resampling strategies give different algorithms. Multinomial resam-
pling [30] amounts to drawing N independent new particles from the multi-

nomial distribution which produces
{
x
(i)
k

}N

i=1
with the probability w̃

(i)
k ,

where w̃
(i)
k :=

w
(i)
k∑N

j=1 w
(j)
k

with w
(i)
k defined in (22). Residual resampling [54]

consists of reproducing
⌊
Nw̃

(i)
k

⌋
times each particle x

(i)
k , where �·� stands

for the integer part. The number of new particles need to draw from the

multinomial distribution is Nr = N −∑N
i=1

⌊
Nw̃

(i)
k

⌋
. This strategy yields

N particles
{
x
(i)
k

}N

i=1
with probability

Nw̃
(i)
k −�Nw̃

(i)
k �

Nr
. Systematic resampling

[12, 17] is the selection method such that the number of replicates of certain

particle x
(i)
k with the probability in the range of Nw̃

(i)
k ± 1.

It has been discussed in [16, 18] that to what extent (23) yields a good
approximation of the expectation as the number of the particles N tends
to infinity. The following theorem gives the central limit theorem of the PF
with either multinomial resampling or residual resampling strategies.

Theorem 3.8 ([18]). If the selection strategies are either multinomial
resampling or residual resampling, and provided that the unit function xk �→
1 belongs to Φ

(1)
k for every k, where Φ

(d)
k is the set of measurable functions

ϕ : Xk → Rd such that for some δ > 0,

Ep(xk|y1:k−1)||wk · ϕ||2+δ < +∞,



The Recent Progress in NLF 707

where Xk is the sample space at time step k. Then for any ϕ ∈ Φ
(d)
k , Ep(xk|y1:k−1)(ϕ),

Vk(ϕ) and V̂k(ϕ) are finite quantities, and the following convergences in dis-
tribution hold as N → +∞:

N
1

2

⎧⎨
⎩
∑N

i=1w
(i)
k ϕ

(
x
(i)
k

)
∑N

j=1w
(j)
k

− Ep(xk|y1:k)(ϕ)

⎫⎬
⎭ D→N (0, Vk(ϕ));

N
1

2

{
N−1

N∑
i=1

ϕ
(
x̂
(i)
k

)
− Ep(xk|y1:k)(ϕ)

}
D→N (0, V̂k(ϕ)),

where

Ṽk(ϕ) =V̂k−1{EKk
(ϕ)}+ Ep(xk−1|y1:k−1){V arKk

(ϕ)};
Vk(ϕ) =Ṽk{wk · (ϕ− Ep(xk|y1:k)ϕ)}.

For multinomial resampling, we have

V̂k(ϕ) = Vk(ϕ) + V arp(xk|y1:k)(ϕ);

while for residual resampling, we have

V̂k(ϕ) = Vk(ϕ) +Rk(ϕ),

with

Rk(ϕ)

=Ep̃(xk|y1:k−1){r(wk)ϕϕ′}
− 1

Ep̃(xk|y1:k−1){r(wk)}
[
Ep̃(xk|y1:k−1){r(wk)ϕ}] [Ep̃(xk|y1:k−1){r(wk)ϕ}]′ ,

and r(·) = · − �·�. The notation EKk
(ϕ) and V arKk

(ϕ) are the short for
EKk(xk−1,·){ϕ(·)} and V arKk(xk−1,·){ϕ(·)}, respectively.
3.2.3. Yau-Yau’s method. Various numerical schemes to solve the PDEs
can applied to (9) to obtain an approximation to the conditional pdf π. Yet,
the main drawback of PDE methods are the intensive computation. It is
almost impossible to achieve the real time performance. To overcome this
shortcoming, the splitting-up algorithm is introduced to move the heavy
computation off-line. It is like the Trotter product formula from semigroup
theory. This operator splitting algorithm is proposed for the DMZ equa-
tion by Bensoussan, et al. [9]. More research articles follow this direction are
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[31, 39, 60] etc. In 1990s, Lototsky, et al. [55] developed a new algorithm (so-
called S3-algorithm) based on the Cameron-Martin version of Wiener chaos
expansion. However, both the splitting-up method and the S3-algorithm
require the boundedness of the drifting term and the observation term (f and
h in (2)), which leaves out even the linear case. To overcome this restriction,
Yau and Yau [75] developed a real-time novel algorithm, called Yau-Yau’s
method, to solve the robust DMZ equation, where the boundedness of the
drift term and observation term is replaced by some mild growth conditions
on f and h. This algorithm has been further validated and applied to time-
varying system in [56, 57] i.e. f , h and g can be explicitly time-dependent.
We report this method in this section.

Let us assume that we know the observation time sequence a-prior, and
denote it as Pk = {0 = τ0 < τ1 < · · · < τk = T}. But the observation data
{yτi} at each sampling time τi, i = 0, · · · , k are unknown until the on-line
experiment runs. We call the computation off-line if it can be performed
without any on-line experimental data; otherwise, it is called on-line com-
putations.

The robust DMZ equation of the model (2) in general form is given as
following:
(25)⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂u

∂t
(t,x) +

∂

∂t

(
hTR−1

)T
ytu(t,x)

= exp
(−hTR−1yt

) [
L− 1

2
hTR−1h

]
exp

(
hTR−1yt

)
u(t,x)

u(0,x) =π0(x).

,

where L is defined as

L(∗) ≡ 1

2

Nx∑
i,j=1

∂2

∂xi∂xj

[(
GQGT

)
ij
∗
]
−

Nx∑
i=1

∂(fi∗)
∂xi

,(26)

by using the exponential transformation [19]

u(t,x) = exp [hT (t,x)R−1(t)yt]π(t,x).(27)

More explicitly, (25) can be expanded as

(28)

⎧⎨
⎩
∂u

∂t
(t,x) =

1

2
D2

wu(t,x) + F(t,x) · ∇u(t,x) + J(t,x)u(t,x)

u(0,x) = π0(x),
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where

D2
w =

Nx∑
i,j=1

(GQGT )ij
∂2

∂xi∂xj
,

(29)

F(t,x) =

⎡
⎣ Nx∑
j=1

∂

∂xj

(
GQGT

)
ij

+

Nx∑
j=1

(GQGT )ij
∂K

∂xj
− fi

⎤
⎦
Nx

i=1

,

(30)

J(t,x) =− ∂

∂t

(
hTR−1

)T
y(t) +

1

2

Nx∑
i,j=1

∂2

∂xi∂xj

(
GQGT

)
ij

(31)

+

Nx∑
i,j=1

∂

∂xi

(
GQGT

)
ij

∂K

∂xj
+

1

2

Nx∑
i,j=1

(GQGT )ij

[
∂2K

∂xi∂xj
+
∂K

∂xi

∂K

∂xj

]

−
Nx∑
i=1

∂fi
∂xi

−
Nx∑
i=1

fi
∂K

∂xi
− 1

2

(
hTR−1h

)
,

in which

K(t,x) = hT (t,x)R−1(t)yt.(32)

Let ui(t,x) be the solution of the robust DMZ equation (12) with yt

freezed as the observation yτi−1
on the interval τi−1 ≤ t ≤ τi, i = 1, 2, · · · , k

(33)⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂ui
∂t

(t,x) +
∂

∂t

(
hTR−1

)T
yτi−1

ui(t,x)

= exp
(−hTR−1yτi−1

) [
L− 1

2
hTR−1h

]
exp

(
hTR−1yτi−1

)
ui(t,x)

u1(0,x) =π0(x),

or

ui(τi−1,x) =ui−1(τi−1,x), for i = 2, 3, · · · , k.
Define the norm of Pk by |Pk| = sup1≤i≤k(τi − τi−1). It is shown in [56, 75]
that as |Pk| → 0, we have

k∑
i=1

χ[τi−1,τi](t)ui(t,x) → u(t,x)
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in some sense, for all 0 ≤ t ≤ T , where u(t,x) is the exact solution of (25).
For the conciseness of notation, let us denote

N(t,x) ≡− ∂

∂t

(
hTR−1

)
yt − 1

2
D2

wK +
1

2
DwK · ∇K − f · ∇K

− 1

2

(
hTR−1h

)
,(34)

The proof consists of two steps:

1) The exact solution u(t,x) of the robust DMZ equation (25) is well
approximated by uR as R→∞, for any t ∈ [0, T ], where uR is the
solution to (25) restricted on BR (the ball centered at the origin with
the radius R) with Dirichlet boundary condition.

Theorem 3.9 ([56]). For any T > 0, let u(t,x) be a solution of the
robust DMZ equation (28) in [0, T ]× Rn. Let R� 1 and uR(t,x) be
the solution to (25) restricted on BR. Assume the following conditions
are satisfied, for all (t,x) ∈ [0, T ]× Rn:
• N(t,x) + 3

2Nx

∣∣∣∣GQGT
∣∣∣∣
∞ + |f −DwK| ≤ C,

• e−
√

1+|x|2 [14Nx

∣∣∣∣GQGT
∣∣∣∣
∞ + 4 |f −DwK|

] ≤ C̃,
where N and K are defined in (34) and (32), respectively, Dw is
defined as

Dw∗ =

⎡
⎣ Nx∑
j=1

(
GQGT

)
ij

(t,x)
∂∗
∂xj

⎤
⎦
Nx

i=1

,(35)

and C, C̃ are generic constants possibly depending on T . Let v = u−
uR, then v ≥ 0 for all (t,x) ∈ [0, T ]×BR and∫

BR
2

v(T,x) ≤ C̄e−
9

16
R

∫
RNx

e
√

1+|x|2π0(x),(36)

where C̄ is some constant, which may depend on T .

2) uR(τ,x) is well approximated by uk,R(τ,x), as k → +∞, in the L1

sense, where uk,R is described in detail in the theorem below.

Theorem 3.10 ([56]). Let Ω be a bounded domain in Rn. Assume
that
• |N(t,x)| ≤ C,
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• There exists some α ∈ (0, 1), such that

|N(t,x)−N(t,x; t̄)| ≤ C̃|t− t̄|α,(37)

for all (t,x) ∈ [0, T ]× Ω, t̄ ∈ [0, T ], where N(t,x) is in (34), and N(t,x; t̄)
denotes N(t,x) with the observation yt = yt̄. Let uΩ(t,x) be the solu-
tion of (28) on [0, T ]× Ω with zero-Dirichlet boundary condition. For
any 0 ≤ τ ≤ T , let Pτ

k = {0 = τ0 < τ1 < τ2 < · · · < τk = τ} be a parti-
tion of [0, τ ], where τi = iτ

k . Let ui,Ω(t,x) be the approximate solution
obtained by our algorithm restricted on [τi−1, τi]× Ω. That is, ui,Ω(t,x)
is the solution on Ω× [τi−1, τi] of the equation

(38)

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∂ui,Ω
∂t

(t,x) =
1

2
D2

wui,Ω(t,x) + F(t,x; τi−1) · ∇ui,Ω(t,x)

+ J(t,x; τi−1)ui,Ω(x, t)

ui,Ω(τi−1,x) =ui−1,Ω(τi−1,x)

ui,Ω(t,x)|∂Ω =0,

for i = 1, 2, · · · , k, with u1,Ω(0,x) = π0,Ω(x). Here, F(t,x; τi−1), J(t,x; τi−1)
denote F(t,x), J(t,x) with the observation yt = yτi−1

, respectively.
Then

uΩ(τ,x) = lim
k→∞

uk,Ω(τ,x),

in the L1 sense in space and the following estimate holds:

∫
Ω
|uΩ − uk,Ω|(τ,x) ≤ C̄

kα
,(39)

where C, C̃, C̄ are generic constants, possibly depending on T ,
∫
Ω σ0,Ω.

The right-hand side of (39) tends to zero as k →∞.

Generally speaking, it is impractical to solve (33) in the real-time man-
ner, since the on-line data {yτi}, i = 1, · · · , k, are in the coefficients of (33).
We have to numerically solve the time-consuming PDE on-line, every time
after the new observation data coming in. Yet, the proposition below helps
to move the heavy computations off-line. This is the key ingredient of the
Yau-Yau’s method in [56, 75].
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Proposition 3.1 ([56, 75]). For each τi−1 ≤ t < τi, i = 1, 2, · · · , k, ui(t,x)
satisfies (33) if and only if

(40) ρi(t,x) = exp
[
hT (t,x)R−1(t)yτi−1

]
ui(t,x),

satisfies the Kolmogorov forward equation (KFE)

(41)
∂ρi
∂t

(t,x) =

(
L− 1

2
hTR−1h

)
ρi(t,x),

where L is defined in (26).

It is clear that (41) is independent of the observation path {yτi}ki=0, and
the transformation between ui and ρi is one-to-one. It is also not hard to
see that (41) could be numerically solved beforehand. Let us denote U(t) :=
L− 1

2h
TR−1h for short to emphasize its time-dependence. Under certain

conditions, {U(t)}t∈[0,T ] forms a family of strong elliptic operators. Further-
more, the operator U(t) : D(U(t)) ⊂ L2

(
RNx

)→ L2
(
RNx

)
is the infinitesi-

mal generator of the two-parameter semigroup U(t, τ), for t ≥ τ . In particu-
lar, with the observation time sequence known {τi}ki=1, we obtain a sequence
of two-parameter semigroup {U(t, τi−1)}ki=1, for τi−1 ≤ t < τi. Let us take
the initial conditions of KFE (41) at t = τi as a set of complete orthonormal
base in L2

(
RNx

)
, say {φl(x)}∞l=1. We pre-compute the solutions of (41) at

time t = τi+1, denoted as {U(τi+1, τi)φl}∞l=1. These data should be stored in
preparation of the on-line computations.

The on-line computation in our algorithm consists of two parts at each
time step τi−1, i = 1, · · · , k.

• Project the initial condition ρi(τi−1,x) ∈ L2
(
RNx

)
at t = τi−1 onto the

base {φl(x)}∞l=1, i.e., ρi(τi−1,x) =
∑∞

l=1 ρ̂i,lφl(x). Hence, the solution
to (41) at t = τi can be expressed as

ρi(τi,x) = U(τi, τi−1)ρi(τi−1,x) =

∞∑
l=1

ρ̂i,l [U(τi, τi−1)φl(x)] ,(42)

where {U(τi, τi−1)φl(x)}∞l=1 have already been computed off-line.

• Update the initial condition of (41) at τi with the new observation yτi .
Let us specify the observation updates (the initial condition of (41) )
for each time step. For 0 ≤ t ≤ τ1, the initial condition is ρ1(x, 0) =
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π0(x). At time t = τ1, when the observation yτ1 is available,

ρ2(τ1,x)
(40)
= exp

[
hT (τ1,x)R−1(τ1)y(τ1)

]
u2(τ1,x)

(40),(33)
= exp

[
hT (τ1,x)R−1(τ1)y(τ1)

]
ρ1(τ1,x),

with the fact y0 = 0. Here, ρ1(τ1,x) =
∑∞

l=1 ρ̂1,l [U(τ1, 0)φl(x)], where
{ρ̂1,l}∞l=1 is computed in the previous step, and {U(τ1, 0)φl(x)}∞l=1 are
prepared by off-line computations. Hence, we obtain the initial condi-
tion ρ2(τ1,x) of (41) for the next time interval τ1 ≤ t ≤ τ2. Recursively,
the initial condition of (41) for τi−1 ≤ t ≤ τi is

ρi(τi−1,x) = exp
[
hT (τi−1,x)R−1(τi−1)(yτi−1

− yτi−2
)
] · ρi−1(τi−1,x),(43)

for i = 2, 3, · · · , k, where ρi−1(τi−1,x) =
∑∞

l=1 ρ̂i−2,l [U(τi−1, τi−2)φl(x)].

The approximation of u(t,x), denoted as ũ(t,x), is obtained

ũ(t,x) =

k∑
i=1

χ[τi−1,τi](t)ui(t,x),(44)

where ui(t,x) is obtained from ρi(t,x) by (40). And π(x, t) could be recov-
ered by (27).

In [57], the algorithm suggested in [56, 75] has been applied to several 1D
NLF problems, and the results have been compared with the EKF and the
PF both in accuracy and in real-time manner. The basis functions of L2 (R)
are chosen to be the generalized Hermite functions {Hα,β

n (x)}Nn=0, where α >
0 and β are the scaling factor and the translating factor, respectively. When
applying to the high-dimensional NLF problems, the curse of dimensionality
is arisen. To tackle this difficulty in some degree, Yau and the author [58]
investigate to solve the KFE by using the sparse-grid algorithm [66]. This
shed a light on applying the Yau-Yau’s method to high-dimensional NLF
problems.

4. Conclusion and future work

In this survey, starting from the KF, we briefly go through the local approaches,
including EKF, GSF, QKF and etc. The Bayesian interpretation of KF is
somewhat clear from [35]. In this survey, we briefly sketch the re-derivation
of KF from DMZ equation according to [26]. Emphases have been put on the
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existing three major global approaches: finite-dimensional filter, sequential
Monte Carlo methods (particle filter) and the Yau-Yau’s method.

The study of finite-dimensional filter starts from 1980s. It is well-known
that there exits finite-dimensional estimator for certain type of NLF prob-
lem, say [8] and there also exists essentially infinite-dimensional one [34].
Thus, the natural question is to ask for the borderline. From the viewpoint
of estimation algebra, Yau gave the complete classification for the estimation
algebra with maximal rank [69, 70] and some partial results on those with
non-maximal rank [15, 68, 73]. The complete classification of general esti-
mation algebra is still wide open. The greatest benefit from the classification
is to construct numerous novel finite-dimensional filters.

The sequential Monte Carlo methods is nowadays one of the most popu-
lar methods in industry. The derivation from the prediction-correction recur-
sion has been included in this survey. Also, the convergence of the PF with
multinomial and residual resampling strategy has been stated rigorously.
The performance of PF can be improved further with carefully chosen the
instruction distribution and experienced resampling strategies. However, the
PF can never achieve the real-time performance due to its nature of Monte
Carlo simulations.

The Yau-Yau’s method is the most recent algorithm [56, 57, 75] in solv-
ing directly the posterior pdf. The real-time performance is guaranteed for
NLF problems with medium low dimensional states [56, 76], and no further
assumptions on the function’s type (say Gaussian). The further investiga-
tions can be carried on how to apply to high-dimensional state NLF problem
and break the so-called “curse of dimension” in certain degree. A possible
way-out is to combine the sparse-grid algorithm [58]. More efforts are needed
in this direction, if in aim to solve real applications.
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