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Abstract: We introduce a homotopy theory of digraphs (directed
graphs) and prove its basic properties, including the relations to
the homology theory of digraphs constructed by the authors in
previous papers. In particular, we prove the homotopy invariance of
homologies of digraphs and the relation between the fundamental
group of the digraph and its first homology group.
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1. Introduction

The homology theory of digraphs has been constructed in a series of the
previous papers of the authors (see, for example, [5], [6], [7]). In the present
paper we introduce a homotopy theory of digraphs and prove that there
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are natural relations to aforementioned homology theory. In particular, we
prove the invariance of the homology theory under homotopy and the rela-
tion between the fundamental group and the first homology group, which is
similar to the one in the classical algebraic topology. Let emphasize, that the
theories of homology and homotopy of digraphs are introduced entirely inde-
pendent each other, but nevertheless they exhibit a very tight connection
similarly to the classical algebraic topology.

The homotopy theory of undirected graphs was constructed by Babson,
Barcelo, Kramer, Laubenbacher, Longueville and Weaver in [1] and [2]. We
identify in a natural way the category of graphs with a full subcategory of
digraphs, which allows us to transfer the homology and homotopy theories
to undirected graphs. The homotopy theory of graphs, obtained in this way,
coincides with the homotopy theory constructed in [1] and [2]. However,
our notion of homology of graphs is new, and the result about homotopy
invariance of homologies of graphs is also new. Hence, our results give an
answer to the question raised in [1] asking “for a homology theory associated
to the A-theory of a graph”.

There are other homology theories on graphs that try to mimic the
classical singular homology theory. In those theories one uses predefined
“small” graphs as basic cells and defines singular chains as formal sums
of the maps of the basic cell into the graph (see, for example, [9], [13]).
However, simple examples show that the homology groups obtained in this
way, depend essentially on the choice of the basic cells.

Our homology theory of digraphs (and graphs) is very different from
the ”singular” homology theories. We do not use predefined cells but formu-
late only the desired properties of the cells in terms of the digraph (graph)
structure. Namely, each cell is determined by a sequence of vertices that goes
along the edges (allowed paths), and the boundary of the cell must also be of
this type. This homology theory has very clear algebraic [6] and geometric
[7], [5] motivation. It provides effective computational methods for digraph
(graph) homology, agrees with the homotopy theory, and provides good con-
nections with homology theories of simplicial and cubical complexes [7] and,
in particular, with homology of triangulated manifolds.

Let us briefly describe the structure of the paper and the main results. In
Section 2 we give a short survey on homology theory for digraphs following
[5], [7].

In Section 3, we introduce the notion of homotopy of digraphs. We prove
the homotopy invariance of homology groups (Theorem 3.3) and give a num-
ber of examples based on the notion of deformation retraction.
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In Section 4, we define a fundamental group π1 of digraph. Elements
of π1 are equivalence classes of loops on digraphs, where the equivalence
of the loops is defined using a new notion of C-homotopy, which is more
general than a homotopy. A description of C-homotopy in terms of local
transformations of loops is given in Theorem 4.13.

We prove the homotopy invariance of π1 (Theorem 4.22) and the relation
H1 = π1/ [π1, π1] between the first homology group over Z and the funda-
mental group (Theorem 4.23). We define higher homotopy groups by induc-
tion using the notion of a loop digraph.

In Section 5 we give a new proof of the classical Sperner lemma, using
fundamental groups of digraphs. We hope that our notions of homotopy and
homology theories on digraph can find further applications in graph theory,
in particular, in graph coloring.

In Section 6 we construct isomorphism between the category of (undi-
rected) graphs and a full subcategory of digraphs, thus transferring the
aforementioned results from the category of digraphs to the category of
graphs.

2. Homology theory of digraphs

In this Section we state the basic notions of homology theory for digraphs
in the form that we need in subsequent sections. This is a slight adaptation
of a more general theory from [5], [7].

2.1. The notion of a digraph

We start with some definitions.

Definition 2.1. A directed graph (digraph) G = (V,E) is a couple of a set
V , whose elements are called the vertices, and a subset E ⊂ {V × V \ diag}
of ordered pairs of vertices that are called (directed) edges or arrows. The
fact that (v, w) ∈ E is also denoted by v → w.

In particular, a digraph has no edges v → v and, hence, it is a combina-
torial digraph in the sense of [11]. We write

v−→=w

if either v = w or v → w. In this paper we consider only finite digraphs, that
is, digraphs with a finite set of vertices.
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Definition 2.2. A morphism from a digraph G = (VG, EG) to a digraph
H = (VH , EH) is a map f : VG → VH such that for any edge v → w on G
we have f (v)−→=f (w) on H (that is, either f(v)→ f(w) or f(v) = f(w)).
We will refer to such morphisms also as digraphs maps (sometimes simply
maps) and denote them shortly by f : G→ H.

The set of all digraphs with digraphs maps form a category of digraphs
that will be denoted by D.

Definition 2.3. For two digraphs G = (VG, EG) and H = (VH , EH) define
the Cartesian product G�H as a digraph with the set of vertices VG × VH
and with the set of edges as follows: for x, x′ ∈ VG and y, y′ ∈ VH , we have
(x, y)→ (x′, y′) in G�H if and only if

either x′ = x and y → y′, or x→ x′ and y = y′,

as is shown on the following diagram:

y′• . . .
(x,y′)• −→ (x′,y′)• . . .

↑ ↑ ↑
y• . . .

(x,y)• −→ (x′,y)• . . .

H � G . . . •
x

−→ •
x′

. . .

2.2. Paths and their boundaries

Let V be a finite set. For any p ≥ 0, an elementary p-path is any (ordered)
sequence i0, ..., ip of p+ 1 vertices of V that will be denoted simply by i0...ip
or by ei0...ip . Fix a commutative ring K with unity and denote by Λp =
Λp (V ) = Λp (V,K) the free K-module that consist of all formal K-linear
combinations of all elementary p-paths. Hence, each p-path has a form

v =
∑

i0i1...ip

vi0i1...ipei0i1...ip , where vi0i1...ip ∈ K.

Definition 2.4. Define for any p ≥ 0 the boundary operator ∂ : Λp+1 → Λp

by

(2.1) (∂v)i0...ip =
∑
k

p+1∑
q=0

(−1)q vi0...iq−1kiq...ip
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where 1 is the unity of K and the index k is inserted so that it is preceded
by q indices.

Sometimes we need also the operator ∂ : Λ0 → Λ−1 where we set Λ−1 =
{0} and ∂v = 0 for all v ∈ Λ0. It follows from (2.1) that

(2.2) ∂ej0...jp+1
=

p+1∑
q=0

(−1)q ej0... ̂jq...jp+1
.

It is easy to show that ∂2v = 0 for any v ∈ Λp ([5]). Hence, the family
of K-modules {Λp}p≥−1 with the boundary operator ∂ determine a chain
complex that will be denoted by Λ∗ (V ) = Λ∗ (V,K).

2.3. Regular paths

Definition 2.5. An elementary p-path ei0...ip on a set V is called regular if
ik �= ik+1 for all k = 0, ..., p− 1, and irregular otherwise.

Let Ip be the submodule of Λp that is K-spanned by irregular ei0...ip . It is
easy to verify that ∂Ip ⊂ Ip−1 (cf. [5]). Consider the quotient Rp := Λp/Ip.
Since ∂Ip ⊂ Ip−1, the induced boundary operator

∂ : Rp → Rp−1 (p ≥ 0)

is well-defined. We denote by R∗ (V ) the obtained chain complex. Clearly,
Rp is linearly isomorphic to the space of regular p-paths:

(2.3) Rp
∼= span K

{
ei0...ip : i0...ip is regular

}
For simplicity of notation, we will identify Rp with this space, by setting all
irregular p-paths to be equal to 0.

Given a map f : V → V ′ between two finite sets V and V ′, define for
any p ≥ 0 the induced map

f∗ : Λp(V )→ Λp(V
′)

by the rule f∗
(
ei0...ip

)
= ef(i0)...f(ip), extended by K-linearity to all elements

of Λp (V ). The map f∗ is a morphism of chain complexes, because it triv-
ially follows from (2.2) that ∂f∗ = f∗∂. Clearly, if ei0...ip is irregular then
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f∗
(
ei0...ip

)
is also irregular, so that

f∗ (Ip (V )) ⊂ Ip
(
V ′

)
.

Therefore, f∗ is well-defined on the quotient Λp/Ip so that we obtain the
induced map

(2.4) f∗ : Rp (V )→ Rp

(
V ′

)
.

Since f∗ still commutes with ∂, we see that the induced map (2.4) induces
a morphism R∗(V )→ R∗(V ′) of chain complexes. With identification (2.3)
of Rp we have the following rule for the map (2.4):

(2.5) f∗
(
ei0...ip

)
=

{
ef(i0)...f(ip), if ef(i0)...f(ip) is regular,

0, if ef(i0)...f(ip) is irregular.

2.4. Allowed and ∂-invariant paths on digraphs

Definition 2.6. Let G = (V,E) be a digraph. An elementary p-path i0...ip
on V is called allowed if ik → ik+1 for any k = 0, ..., p− 1, and non-allowed
otherwise. The set of all allowed elementary p-paths will be denoted by Ep.

For example, E0 = V and E1 = E. Clearly, all allowed paths are regular.
Denote by Ap = Ap (G) the submodule of Rp (G) := Rp (V ) spanned by the
allowed elementary p-paths, that is,

(2.6) Ap = span K

{
ei0...ip : i0...ip ∈ Ep

}
.

The elements of Ap are called allowed p-paths.
Note that the modules Ap of allowed paths are in general not invariant

for ∂. Consider the following submodules of Ap

(2.7) Ωp ≡ Ωp (G) := {v ∈ Ap : ∂v ∈ Ap−1}

that are ∂-invariant. Indeed, v ∈ Ωp implies ∂v ∈ Ap−1 and ∂ (∂v) = 0 ∈
Ap−2, whence ∂v ∈ Ωp−1. The elements of Ωp are called ∂-invariant p-paths.

Hence, we obtain a chain complex Ω∗ = Ω∗ (G) = Ω∗ (G,K):

0 ← Ω0
∂← Ω1

∂← . . .
∂← Ωp−1

∂← Ωp
∂← . . .

By construction we have Ω0 = A0 and Ω1 = A1, while in general Ωp ⊂ Ap.
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Let us define for any p ≥ 0 the homologies of the digraph G with coeffi-
cients from K by

Hp(G,K) = Hp (G) := Hp (Ω∗ (G)) = ker ∂|Ωp

/
Im ∂|Ωp+1

.

Let us note that homology groups Hp (G) (as well as the modules Ωp (G))
can be computed directly by definition using simple tools of linear algebra,
in particular, those implemented in modern computational software. On the
other hand, some theoretical tools for computation of homology groups like
Künneth formulas were developed in [5].

Example 2.7. Consider a digraph G as on Fig. 1. A direct computation

4

5

1

2

3

Figure 1: Planar digraph with a nontrivial homology group H2

shows that H1 (G,K) = {0} and H2 (G,K) ∼= K, where H2 (G) is generated
by

e124 + e234 + e314 − (e125 + e235 + e315) .

It is easy to see thatG is a planar graph but nevertheless its second homology
group is non-zero. This shows that the digraph homologies “see” some non-
trivial intrinsic dimensions of digraphs that are not necessarily related to
embedding properties.

Example 2.8. Fix n ≥ 3. Denote by Sn a digraph with the vertex set
VSn

= {0, ..., n− 1} and with the set of edges ESn
that contains for any

i ∈ VSn
exactly one of the edges i→ i+ 1, i+ 1→ i (where n ≡ 0), and no

other edge. We refer to Sn as a cycle digraph.
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The following 1-path on Sn

(2.8) � =
∑

{i∈Sn:i→i+1}
ei(i+1) −

∑
{i∈Sn:i+1→i}

e(i+1)i

lies in Ω1(Sn) and is closed. We will refer to � as a standard 1-path on
Sn. It is possible to show that � generates the space of all closed 1-paths in
Ω1 (Sn), which is therefore one-dimensional. The homology group H1 (Sn,K)
is, hence, generated by the homology class [�], provided this class is non-
trivial. One can show that [�] = 0 if and only if Sn is isomorphic to one of
the following two digraphs:

(2.9) a triangle ↗
1•↘

0• → •2 or a square

1• −→ •2
↑ ↑

0• −→ •3
,

so that in this case H1 (Sn,K) = {0}. In the case of triangle, � is the bound-
ary of the 2-path e012 ∈ Ω2, and, in the case of square, � is the boundary
of e012 − e032 ∈ Ω2.

If Sn is neither triangle nor square, then [�] is a generator ofH1 (Sn,K) ∼=
K.

Proposition 2.9. Let G be any finite digraph. Then any ω ∈ Ω2 (G,Z) can
be represented as a linear combination of the ∂-invariant 2-paths of following
three types:

1) eiji with i→ j → i (a double edge in G);

2) eijk with i→ j → k and i→ k (a triangle as a subgraph of G);

3) eijk − eimk with i→ j → k, i→ m→ k, i �→ k, i �= k (a square as a
subgraph of G).

Proof. Since the 2-path ω is allowed, it can be represented as a sum of
elementary 2-path eijk with i→ j → k multiplied with +1 or −1. If k =
i then eijk is a double edge. If i �= k and i→ k then eijk is a triangle.
Subtracting from ω all double edges and triangles, we can assume that ω
has no such terms any more. Then, for any term eijk in ω we have i �= k and
i �→ k. Fix such a pair i, k and consider any vertex j with i→ j → k. The
1-path ∂ω is the sum of 1-paths of the form

∂eijk = eij − eik + ejk.
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Since ∂ω is allowed but eik is not allowed, the term eik should cancel out
after we sum up all such terms over all possible j. Therefore, the number
of j such that eijk enters ω with coefficient +1 is equal to the number of j
such that eijk enters in ω with the coefficient −1. Combining the pair with
+1 and −1 together, we obtain that ω is the sum of the terms of the third
type (squares). �

Theorem 2.10. Let G and G′ be two digraphs, and f : G→ G′ be a digraph
map. Then the map f∗|Ωp(G) (where f∗ is the induced map (2.4)) provides a
morphism of chain complexes

Ω∗(G,K)→ Ω∗(G′,K)

and, consequently, a homomorphism of homology groups

H∗(G,K)→ H∗(G′,K)

that will also be denoted by f∗.

Proof. By construction Ωp (G) is a submodule of Rp (G), and all we need to
prove is that

(2.10) f∗ (Ωp (G)) ⊂ Ωp

(
G′

)
.

Let us first show that

f∗ (Ap (G)) ⊂ Ap

(
G′

)
.

It suffices to prove that if ei0...ip is allowed on G then f∗
(
ei0...ip

)
is allowed on

G′. Indeed, if ef(i0)...(ip) is irregular then we have by (2.5) that f∗
(
ei0...ip

)
=

0 ∈ Ap (G
′) . If ef(i0)...(ip) is regular then f (ik) �= f (ik+1) for all k = 0, ..., p−

1. Since ik → ik+1 on G, by the definition of a digraph map we have either
f (ik)→ f (ik+1) on G′ or f (ik) = f (ik+1). Since the second possibility
is excluded, we obtain f (ik)→ f (ik+1) for all k, whence it follows that
f∗

(
ei0...ip

)
= ef(i0)...(ip) is allowed on G′.

Now we can prove (2.10). For any v ∈ Ωp (G) we have by (2.7) v ∈ Ap (G)
and ∂v ∈ Ap−1 (G), whence

f∗ (v) ∈ Ap

(
G′

)
and ∂ (f∗ (v)) = f∗ (∂v) ∈ Ap−1

(
G′

)
,

which implies f∗ (v) ∈ Ωp (G
′) . �
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2.5. Cylinders

For any digraphG consider its productG� I with the digraph I =
(
0• → •1)

(see Definition 2.3).

Definition 2.11. The digraph G� I is called the cylinder over G and will
be denoted by CylG or by Ĝ.

By the definition of Cartesian product, the set of vertices of Ĝ is V̂ =
V × {0, 1}, and the set Ê of its edges is defined by the rule: (x, a)→ (y, b)
if and only if either x→ y in G and a = b or x = y and a→ b in I. We shall
put the hat̂over all notation related to Ĝ, for example, R̂p := Rp(Ĝ) and

Ω̂p := Ωp(Ĝ). One can identify V̂ = V × {0, 1} with V � V ′ where V ′ is a
copy of V , and use the notation (x, 0) ≡ x and (x, 1) ≡ x′.

Define the operation of lifting paths from G to Ĝ as follows. If v = ei0...ip
then v̂ is a (p+ 1)-path in Ĝ defined by

(2.11) v̂ =

p∑
k=0

(−1)k ei0...iki′k...i′p .

By K-linearity this definition extends to all v ∈ Rp, thus giving v̂ ∈ R̂p+1.
It follows that, for any v ∈ Rp and any path i0...ip on G,

(2.12) v̂i0...iki
′
k...i

′
p = (−1)k vi0...ip .

Clearly, i0...ip is allowed in G if and only if i0...iki
′
k...i

′
p is allowed in Ĝ:

· · · i′k• −→ i′k+1• −→ · · · −→ i′p•
↑ ↑

i0• −→ · · · −→ ik• −→ ik+1• · · ·
,

for some/all k. Hence, we see that v ∈ Ap if and only if v̂ ∈ Âp+1.

Proposition 2.12. If v ∈ Ωp then v̂ ∈ Ω̂p+1.

Proof. We need to prove that if v ∈ Ap and ∂v ∈ Ap−1 then ∂v̂ ∈ Âp. Let
us prove first some properties of the lifting. For any path v in G define its
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image v′ in G′ = (V ′, E′) by (
ei0...ip

)′
= ei′0...i′p .

Let us show first that, for any p-path u and q-path v on G, the following
identity holds:

(2.13) ûv = ûv′ + (−1)p+1 uv̂.

It suffices to prove it for u = ei0...ip and v = ej0...jq . Then uv = ei0...ipj0...jq
and

ûv =

p∑
k=0

(−1)k ei0...iki′k...i′pj′0...j′q +
q∑

k=0

(−1)k+p+1 ei0...ipj0...jkj′k...j′q

= ûv′ + (−1)p+1 uv̂.

Now let us show that, for any p-path v with p ≥ 0

(2.14) ∂v̂ = −∂̂v + v′ − v.

It suffices to prove it for v = ei0...ip , which will be done by induction in p.
For p = 0 write v = ea so that ∂v = 0 and v̂ = eaa′ whence

∂v̂ = ea′ − ea = −∂̂v + v′ − v.

For p > 1 write v = ueip where u = ei0...ip−1
. Using (2.13) and the inductive

hypothesis with the (p− 1)-path u we obtain

∂v̂ = ∂
(
ûei′p + (−1)p ueipi′p

)
= (∂û) ei′p + (−1)p+1 û+ (−1)p (∂u) eipi′p + u

(
ei′p − eip

)
= (−∂̂u+ u′ − u)ei′p + (−1)p+1 û+ (−1)p (∂u) eipi′p + uei′p − v
= −(∂̂u)ei′p + v′ + (−1)p+1 û+ (−1)p (∂u) eipi′p − v .

On the other hand,

∂̂v =
(
(∂u) eip + (−1)p u)ˆ = (∂̂u)ei′p + (−1)p−1 (∂u) eipi′p + (−1)p û,

whence it follows that ∂v̂ + ∂̂v = v′ − v, which finishes the proof of (2.14).

Finally, if v ∈ Ap and ∂v ∈ Ap−1 then v′ and ∂̂v belong to Âp whence it

follows from (2.14) also ∂v̂ ∈ Âp. This proves that v̂ ∈ Âp+1. �
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Example 2.13. The cylinder over the digraph 0• → •1 is a square

2• −→ •3
↑ ↑

0• −→ •1

Lifting a ∂-invariant 1-path e01 ∈ Ω1 we obtain a ∂-invariant 2-path on the
square: e00′1′ − e011′ , that can be rewritten in the form e023 − e013.

The cylinder over a square is a 3-cube that is shown in Fig. 2.

 

0 1 

32 

4 5 

76 

Figure 2: 3-cube

Lifting the 2-path e023 − e013 we obtain a ∂-invariant 3-path on the 3-
cube:

e0467 − e0267 + e0237 − e0457 + e0157 − e0137.

Defining further n-cube as the cylinder over (n− 1)-cube, we see that n-cube
determines a ∂-invariant n-path that is a lifting of a ∂-invariant (n− 1)-path
from (n− 1)-cube and that is an alternating sum of n! elementary terms.
One can show that this n-path generates Ωn on n-cube (see [7]).

3. Homotopy theory of digraphs

In this Section we introduce a homotopy theory of digraphs and establish
the relations between this theory and the homology theory of digraphs of
[5] and [7].
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3.1. The notion of homotopy

Fix n ≥ 0. Denote by In any digraph whose the set of vertices is {0, 1, . . . , n}
and the set of edges contains exactly one of the edges i→ (i+ 1), (i+ 1)→ i
for any i = 0, 1, . . . , n− 1, and no other edges. A digraph In is called a line
digraph. Denote by In the set of all line digraphs In and by I the union of
all In.

Clearly, there is only one digraph in I0 – the one-point digraph. There
are two digraphs in I1: the digraph I with the edge (0→ 1) and the digraph
I− with the edge (1→ 0).

Definition 3.1. Let G,H be two digraphs. Two digraph maps f, g : G→ H
are called homotopic if there exists a line digraph In ∈ In with n ≥ 1 and a
digraph map

F : G� In → H

such that

(3.1) F |G�{0} = f and F |G�{n} = g.

In this case we shall write f � g. The map F is called a homotopy between
f and g.

In the case n = 1 we refer to the map F as an one-step homotopy between
f and g. In this case the identities (3.1) determine F uniquely, and the
requirement is that the so defined F is a digraph map of G� I1 to H. Since
for I1 there are only two choices 0→ 1 and 0← 1, we obtain that f and g
are one-step homotopic, if

(3.2) either f (x)−→=g (x) for all x ∈ VG or g (x)−→=f (x) for all x ∈ VG.

It follows that f and g are homotopic if there is a finite sequence of digraph
maps f = f0, f1, ..., fn = g from G to H such that fk and fk+1 are one-step
homotopic. It is obvious that the relation ”�” is an equivalence relation on
the set of all digraph maps from G to H.

Definition 3.2. Two digraphs G and H are called homotopy equivalent if
there exist digraph maps

(3.3) f : G→ H, g : H → G
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such that

(3.4) f ◦ g � idH , g ◦ f � idG .

In this case we shall write H � G. The maps f and g as in (3.4) are called
homotopy inverses of each other.

A digraph G is called contractible if G � {∗} where {∗} is a single vertex
digraph. It follows from Definition 3.2 that a digraph G is contractible if and
only if there is a digraph map h : G→ G such that the image of h consists
of a single vertex and h � idG . Examples of contractible digraphs will be
given in Section 3.3.

3.2. Homotopy preserves homologies

Now we can prove the first result about connections between homotopy and
homology theories for digraphs.

Theorem 3.3. Let G,H be two digraphs.

(i) Let f � g : G→ H be two homotopic digraph maps. Then these maps
induce the identical homomorphisms of homology groups of G and H,
that is, the maps

f∗ : Hp (G)→ Hp (H) and g∗ : Hp (G)→ Hp (H)

are identical.

(ii) If the digraphs G and H are homotopy equivalent, then they have iso-
morphic homology groups. Furthermore, if the homotopical equivalence
of G and H is provided by the digraph maps (3.3) then their induced
maps f∗ and g∗ provide mutually inverse isomorphisms of the homology
groups of G and H.

In particular, if a digraph G is contractible, then all the homology groups
of G are trivial, except for H0.

Proof. (i) Let F be a homotopy between f and g as in Definition 3.1. Con-
sider first the case n = 1 and let In be the digraph I = (0→ 1) (the case
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In = I− is similar). The maps f and g induce morphisms of chain complexes

f∗, g∗ : Ω∗(G)→ Ω∗(H),

and F induces a morphism

F∗ : Ω∗(G� I)→ Ω∗(H).

Note that, for any path v ∈ Ω∗(G� I) that lies in G� {0}, we have F∗ (v) =
f∗ (v), and for any path v′ ∈ Ω∗(G� I) that lies inG� {1}, we have F∗ (v′) =
g (v′) .

In order to prove that f∗ and g∗ induce the identical homomorphisms
H∗ (G)→ H∗ (H), it suffices by [10, Theorem 2.1, p.40] to construct a chain
homotopy between the chain complexes Ω∗ (G) and Ω∗ (H), that is, the K-
linear mappings

Lp : Ωp(G)→ Ωp+1(H)

such that

∂Lp + Lp−1∂ = g∗ − f∗

(note that all the terms here are mapping from Ωp (G) to Ωp (H)). Let us
define the mapping Lp as follows

Lp(v) = F∗ (v̂) ,

for any v ∈ Ωp (G), where v̂ ∈ Ωp+1 (G� I) is lifting of v to the graph Ĝ =
G� I defined in Section 2.5. Using ∂F∗ = F∗∂ (see Theorem 2.10) and the
product rule (2.14), we obtain

(∂Lp + Lp−1∂)(v) = ∂(F∗(v̂)) + F∗(∂̂v)
= F∗ (∂v̂) + F∗(∂̂v)
= F∗(∂v̂ + ∂̂v)

= F∗
(
v′ − v)

= g∗ (v)− f∗ (v) .

The case of an arbitrary n follows then by induction.
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(ii) Let f, g be the maps from Definition 3.2. Then they induce the
following mappings

Hp (G)
f∗→ Hp (H)

g∗→ Hp (G)
f∗→ Hp (H) .

By (i) and (3.4) we have f∗ ◦ g∗ = id and g∗ ◦ f∗ = id, which implies that f∗
and g∗ are mutually inverse isomorphisms of Hp (G) and Hp (H). �

3.3. Retraction

A (induced) sub-digraph H of a digraph G is a digraph whose set of vertices
is a subset of that of G and the edges of H are all those edges of G whose
adjacent vertices belong to H.

Definition 3.4. Let G be a digraph and H be its sub-digraph.
(i) A retraction of G onto H is a digraph map r : G→ H such that

r|H = idH .
(ii) A retraction r : G→ H is called a deformation retraction if i ◦ r �

idG, where i : H → G is the natural inclusion map.

Proposition 3.5. Let r : G→ H be a deformation retraction. Then G � H
and the maps r, i are homotopy inverses.

Proof. By definition of retraction we have r ◦ i = IdH and, in particular
r ◦ i � idH . Since i ◦ r � idG, we obtain by Definition 3.2 that G � H. �

In general the existence of a deformation retraction r : G→ H is a
stronger condition that the homotopy equivalence G � H. However, in the
case when H = {∗}, the existence of a deformation retraction r : G→ {∗}
is equivalent to the contractibility of G, which follows from the remark after
Definition 3.2.

The next two statements provide a convenient way of constructing a
deformation retraction.

Proposition 3.6. Let r : G→ H be a retraction of a digraph G onto a sub-
digraph H. Assume that there exists a finite sequence {fk}nk=0 of digraph
maps fk : G→ G with the following properties:

1) f0 = idG;

2) fn = i ◦ r (where i is the inclusion map i : H → G), that is, fn (v) =
r (v) for all vertices v of G;
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3) for any k = 1, ..., n either fk−1 (x)−→=fk (x) ∀ x ∈ VG or fk (x)
−→=fk−1 (x)

∀ x ∈ VG.
Then r is a deformation retraction, the digraphs G and H are homotopy

equivalent, and i, r are their homotopy inverses.

Proof. Since fk−1 and fk satisfy (3.2), we see that fk−1 � fk whence by
induction we obtain that fn � f0 and, hence, i ◦ r � idG . Therefore, r is a
deformation retraction, and the rest follow from Proposition 3.4. �

Corollary 3.7. Let r : G→ H be a retraction of a digraph G onto a sub-
digraph H and

(3.5) x−→=r (x) for all x ∈ VG or r (x) −→=x for all x ∈ VG.

Then r is a deformation retraction, the digraphs G and H are homotopy
equivalent, and i, r are their homotopy inverses.

Clearly, Corollary 3.7 is an important particular case n = 1 of Proposi-
tion 3.6. Note also that the condition (3.5) is automatically satisfies for all
x ∈ VH , so in applications it remains to verify it for v ∈ VG \ VH .

Corollary 3.8. For any digraph G and for any line digraph In ∈ In (n ≥ 0)
we have G� In � G.

Proof. It suffices to show that G� In � G� In−1 where In−1 is obtained
from In by removing the vertex n and the adjacent edge, and then to argue
by induction since G� I0 = G. Define a retraction r : G� In → G� In−1
by

r (x, k) =

{
(x, k) , k ≤ n− 1,
(x, n− 1) , k = n.

Let us show that r is an 1-step deformation retraction, that is, r satisfied
(3.5):

(x, k) −→=r (x, k) ∀ (x, k) ∈ G� In or r (x, k) −→= (x, k) ∀ (x, k) ∈ G� In

Indeed, for k ≤ n− 1 this is obvious. If k = n then consider two cases.

1) If (n− 1)→ n in In then (x, n− 1)→ (x, n) in G� In whence

r (x, k) = r (x, n) = (x, n− 1)→ (x, n) = (x, k) .
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2) If n→ (n− 1) in In then (x, n)→ (x, n− 1) in G� In whence

(x, k)→ r (x, k) .

�

Corollary 3.9. Let G be a digraph. Fix some n ∈ N and consider for any
k = 0, ..., n the natural inclusion

ik : G→ G� In, ik(v) = (v, k)

and a natural projection

p : G� In → G, p(v, k) = v.

Then the maps i,p induce isomorphism of homology groups.

Proof. The projection p can be decomposed into composition of retractions
G� Im → G� Im−1 which are homotopy equivalences by the proof of Corol-
lary 3.8. Therefore, p is also a homotopy equivalence and hence induces iso-
morphism of homology groups. The inclusion ik can be decomposed into
composition of natural inclusions G� Im−1 → G� Im, each of them being
homotopy inverse of the retraction G� Im → G� Im−1, which implies the
claim. �

Example 3.10. A digraph G is called a tree if the underlying undirected
graph is a tree. We claim that if a digraph G is a connected tree then G is
contractible. Indeed, let a be a pendant vertex of G and let b be another
vertex such that a→ b or b← a. LetG′ be the subgraph ofG that is obtained
from G by removing the vertex a with the adjacent edge. Then the map r :
G→ G′ defined by r (a) = b and r|H = id is by Corollary 3.7 a deformation
retraction, whence G � G′. Since G′ is also a connected tree, continuing the
procedure of removing of a pendant vertices, we obtain in the end that G is
contractible.

Example 3.11. A digraph G is called star-like (resp. inverse star-like)
if there is a vertex a ∈ VG such that a→ x (resp. x→ a) for all x ∈ VG \
{a} . if G is a (inverse) star-like digraph, then the map r : G→ {a} is by
Corollary 3.7 a deformation retraction, whence we obtain G � {a}, that is,
G is contractible. Consequently, all homology groups of G are trivial except
for H0.
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For example, consider a digraph-simplex of dimension n, which is a
digraph G with the set of vertices {0, 1, . . . , n} and the set of edges given by
the condition

i→ j ⇐⇒ i < j

(a digraph-simplex with n = 3 is shown on the left panel on Fig. 3). Then G
is star-like and, hence, G is contractible. In particular, the triangular digraph
from Example 2.8 is contractible. Another star-like digraph is shown on the
right panel of Fig. 3.

0

3

1

2

0

3

1

2

Figure 3: Star-like digraphs

Example 3.12. For any n ≥ 1, consider the n-dimensional cube

In = I � I � · · ·� I︸ ︷︷ ︸
n times

For example, I2 is the square from Example 2.8 and I3 is a 3-cube shown on
Fig. 2. By Corollary 3.8 we have Ik � Ik−1, whence we obtain that, for all
n, In � I, which implies that In is contractible. In particular, this applies to
a square digraph from Example 2.8. Consequently, the all homology groups
of In are trivial except for H0.

Example 3.13. Let Sn be a cycle digraph from Example 2.8. If Sn is
the triangle or square as in (2.9) then Sn is contractible as was shown in
Examples 3.11 and 3.12, respectively. If Sn is neither triangle nor square
then by Example 2.8 H1(Sn,K) ∼= K and, hence, Sn is not contractible. In
particular, this is always the case when n ≥ 5. Here are other examples of
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non-contractible cycles with n = 3, 4:

↗
1•↘

0• ←− •2 and

1• −→ •2
↑ ↓

0• ←− •3

Let us show that two cycles Sn and Sm with n �= m are not homotopy
equivalent, except for the case when one of them is a triangle and the other
is a square. Assume that Sn and Sm with n < m are homotopy equiva-
lent. Then by Theorem 3.3 there is a digraph map f : Sn → Sm such that
f∗ : H1 (Sn)→ H1 (Sm) is an isomorphism. If homology groups H1 (Sn) and
H1 (Sm) are not isomorphic then we are done. If they are isomorphic, then
they are isomorphic to K. Let �n ∈ Ω1 (Sn) be the generator of closed 1-
paths on Sn and �m ∈ Ω1 (Sm) be the generator of closed 1-paths on Sn,
as in (2.8). Then [�n] generates H1 (Sn), [�m] generates H1 (Sm), and we
should have

f∗ ([�n]) = k [�m]

for some non-zero constant k ∈ K. Consequently, we obtain

f∗ (�n) = k�m,

which is impossible because f cannot be surjective by n < m, whereas �m

uses all the vertices of Sm.

Example 3.14. Consider the digraph G as on Fig. 4.

0

3

4

2

1

Figure 4: The digraph admits a deformation retraction onto a subgraph
{1, 3, 4}
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Consider also its sub-digraph H with the vertex set VH = {1, 3, 4} and a
retraction r : G→ H given by r (0) = 1, r (2) = 3 and r|H = id. By Corol-
lary 3.7, r is a deformation retraction, whence G � H. Consequently, we
obtain H1 (G,K) ∼= H1 (H,K) ∼= K and Hp (G,K) = {0} for p ≥ 2.

Example 3.15. Let a be a vertex in a digraph G and let b0, b1, ..., bn be
all the neighboring vertices of a in G. Assume that the following condition
is satisfied:

(3.6) ∀i = 1, ..., n a→ bi ⇒ b0 → bi and a← bi ⇒ b0 ← bi.

Denote by H the digraph that is obtained from G by removing a vertex a
with all adjacent edges. The map r : G→ H given by r (a) = b0 and r|H = id
is by Corollary 3.7 a deformation retraction, whence we obtain that G � H.
Consequently, all homology groups of G and H are the same. This is very
similar to the results about transformations of simplicial complexes in the
simple homotopy theory (see, for example, [3]).

In particular, (3.6) is satisfied if a→ bi and b0 → bi for all i ≥ 1 or a←
bi and b0 ← bi for all i ≥ 1. Two examples when (3.6) is satisfied are shown
in the following diagram:

↗
a • −→

↘

• b1
↑
• b0
↓
• b1

· · · H G
↗

a • ←−
↖

• b1
↑
• b0
↑
• b1

· · · H G

On the contrary, the digraph G on following diagram

• b1
↗ ↓

a • ←− • b0
does not satisfy (3.6). Moreover, this digraph is not homotopy equivalent
to H =

(
0• → •1) since G and H have different homology group H1 (cf.

Example 2.8).
For example, the digraph on the left panel of Fig. 5 is contractible as

one can successively remove the vertices 5, 4, 3, 2 each time satisfying (3.6).
The digraph on the right panel of Fig. 5 is different from the left one

only by the direction of the edge between 1 and 3, but it is not contractible
as its H2 group is non-trivial by Example 2.7.
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3

4

5

1

2

3

Figure 5: The left digraph is contractible while the right one is not.

Consider one more example: the digraph G on Fig. 6.

 

3 

6 
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8 A 

B 

Figure 6: Digraph G whose H2 group is generated by an octahedron

Removing successively the vertices A,B, 8, 9, 6, 7, which each time sat-
isfy (3.6), we obtain a digraph H with VH = {0, 1, 2, 3, 4, 5} that is homo-
topy equivalent to G and, in particular, has the same homologies as G. The
digraph H is shown in two ways on Fig. 7. Clearly, the second representation
of this graph is reminiscent of an octahedron.

It is possible to show that Hp (H,K) = {0} for p = 1 and p > 2 while
H2 (H,K) ∼= K. It follows that the same is true for the homology groups of
G. Furthermore, it is possible to show that H2 (G,K) is generated by the
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Figure 7: Two representations of the digraph H

following 2-path

ω = e024 − e025 − e034 + e035 − e124 + e125 + e134 − e135,

that determines a 2-dimensional “hole” in G given by the octahedron H.
Note that on Fig. 6 this octahedron is hardy visible.

3.4. Cylinder of a map

Let us give some further examples of homotopy equivalent digraphs.

Definition 3.16. Let G = (VG, EG) and H = (VH , EH) be two digraphs
and f be a digraph map from G to H. The cylinder Cf of f is the digraph
with the set of vertices VCf

= VG � VH and with the set of edges ECf
that

consists of all the edges from EG and EH as well as of the edges of the form
x→ f (x) for all x ∈ VG.

The inverse cylinder C
−
f is defined in the same way except that the edge

x→ f (x) is replaced by f (x)→ x.

For example, for f = idG we have Cf = G� I where I =
(
0• −→ •1)

and C
−
f = G� I− where I− =

(
0• ←− •1) .

Example 3.17. Let G be the digraph with vertices {0, 1, 2, 3, 4, 5} andH is
be the digraph with vertices {a, b, c} as on Fig. 8. Consider the digraph map
f : G→ H given by f (0) = f (1) = a, f (2) = f (3) = b and f (4) = f (5) =
c. The cylinder Cf of f is shown on Fig. 8.
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Figure 8: The cylinder of the map

Proposition 3.18. Let f be a digraph map from G to H. Then we have
the following homotopy equivalences of the digraphs

Cf � H � C
−
f .

Proof. The projection p : Cf → H defined by

p (x) =

{
x, x ∈ VH ,
f (x) , x ∈ VG,

is clearly an 1-step deformation retraction of Cf ontoH, whence it follows by
Corollary 3.7 that Cf � H. The case of the inverse cylinder C

−
f is similar. �

4. Homotopy groups of digraphs

In this Section we define homotopy groups of digraphs and describe theirs
basic properties. For that, we introduce the concept of path-map in a digraph
G, and then define a fundamental group of G. Then the higher homotopy
group can be defined inductively as the fundamental group of the corre-
sponding iterated loop-digraph.

A based digraph G∗ is a digraph G with a fixed base vertex ∗ ∈ VG.
A based digraph map f : G∗ → H∗ is a digraph map f : G→ H such that
f (∗) = ∗. A category of based digraphs will be denoted by D∗.

A homotopy between two based digraph maps f, g : G∗ → H∗ is defined
as in Definition 3.1 with additional requirement that F |{∗}�In = ∗.
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4.1. Construction of π0

Let G∗ be a based digraph, and V ∗2 = {0, 1} be the based digraph consisting
of two vertices, no edges and with the base vertex 0 = ∗. Let Hom(V ∗2 , G∗)
be the set of based digraph maps from V ∗2 to G∗. Note that the set of such
maps is in one to one correspondence with the set of vertices of the digraph
G.

Definition 4.1. We say that two digraph maps φ, ψ ∈ Hom(V ∗2 , G∗) are
equivalent and write φ � ψ if there exists In ∈ I and a digraph map

f : In → G,

such that f(0) = φ (1) and f(n) = ψ (1). The relation � is evidently an
equivalence relation, and we denote by [φ] the equivalence class of the ele-
ment φ, and by π0(G

∗) the set of classes of equivalence with the base point
∗ given by a class of equivalence of the trivial map V2 → ∗ ∈ G.

The set π0(G
∗) coincides with the set of connected components of the

digraph G. In particular, the digraph G∗ connected if π0(G
∗) = ∗.

Proposition 4.2. Any based digraph map f : G∗ → H∗ induces a map

π0(f) : π0(G
∗)→ π0(H

∗)

of based sets. The homotopic maps induce the same map of based sets. We
have a functor from the category D∗ of digraphs to the category based sets.

Proof. Let x = [φ] ∈ π0(G∗) be presented by a digraph map φ : V ∗2 → G∗ we
put y = [π0(f)](x) = [f ◦ φ] ∈ π0(H∗). It is an easy exercise to check that
this map π0(f) is well defined and for the homotopic maps f � g : G∗ → H∗

we have π0(f) = π0(g). �

4.2. C-homotopy and π1

For any line digraph In ∈ In, a based digraph I∗n will always have the base
point 0.

Definition 4.3. A path-map in a digraphG is any digraph map φ : In → G,
where In ∈ In. A based path-map on a based digraph G∗ is a based digraph
map φ : I∗n → G∗, that is, a digraph map such that φ (0) = ∗. A loop on G∗

is a based path-map φ : I∗n → G∗ such that φ (n) = ∗.



Homotopy Theory for Digraphs 645

Note that the image of a path-map is not necessary an allowed path of
the digraph G.

Definition 4.4. A digraph map h : In → Im is called shrinking if h (0) = 0,
h(n) = m, and h (i) ≤ h (j) whenever i ≤ j (that is, if h as a function from
{0, ..., n} to {0, ...,m} is monotone increasing).

Any shrinking h : In → Im is by definition a based digraph map. More-
over, h is surjective and the preimage of any edge of Im consists of exactly
one edge of In. Furthermore, we have necessarily m ≤ n, and if n = m then
h is a bijection.

Definition 4.5. Consider two based path-maps

φ : I∗n → G∗ and ψ : I∗m → G∗.

An one-step direct C-homotopy from φ to ψ is given by a shrinking map
h : In → Im such that the map F : VCh

→ VG given by

(4.1) F |In = φ and F |Im = ψ,

is a digraph map from Ch to G. If the same is true with Ch replaced every-
where by C

−
h then we refer to an one-step inverse C-homotopy.

Remark 4.6. The requirement that F is a digraph map is equivalent to
the condition

(4.2) φ (i)−→=ψ (h (i)) for all i ∈ In.

In turn, (4.2) implies that the digraph maps φ and ψ ◦ h (acting from In to
G) satisfy (3.2), which yields φ � ψ ◦ h.

If n = m then h = idIn and an one-step C-homotopy is a homotopy.

Example 4.7. An example of one-step direct C-homotopy is shown in Fig.
9.

Note that the images of the loops φ and ψ on Fig. 9 are not homotopic
as digraphs because they are cycles of different lengths 5 and 3 (see Example
3.13). Nevertheless, the loops φ and ψ are C-homotopic.

Definition 4.8. For a based digraph G∗ define a path-digraph PG as fol-
lows. The vertices of PG are all the based path-maps in G∗, and the edges of
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In

Im

h

ψ

φ

*=0

5

3

*=0

Ch

1 2

1 32 4 G
*

φ(1)

φ(2)

φ(3)

φ(4)

ψ(1)

ψ(2)

Figure 9: The loops φ : I5 → G and and ψ : I3 → G are C-homotopic. Note
that φ (0) = φ (5) = ∗ = ψ (0) = ψ (3) .

PG are defined by the following rule: φ→ ψ in PG if φ �= ψ and there is an
one-step direct C-homotopy from φ to ψ or an one-step inverse C-homotopy
from ψ to φ.

Then define a based path-digraph PG∗ by choosing in PG the base vertex
I∗0 → G∗, which will also be denoted by ∗. Define a based loop-digraph LG∗

as a sub-digraph of PG∗ whose set of vertices consists of all the loops of G∗.

Any map f : G∗ → H∗ induces a based map of path-digraphs

Pf : PG∗ → PH∗, (Pf) (ψ) = f ◦ ψ,

where ψ : I∗n → G∗ is a based path-map. Hence, P is a functor from the
category D∗ to itself. Similarly we have a map of based loop digraphs

(4.3) Lf : LG∗ → LH∗, (Lf)(ψ) = f ◦ ψ,

where ψ : I∗n → G∗ is a loop. Hence, L is a functor from the category D∗ to
itself.

Definition 4.9. We call two based path-maps φ, ψ ∈ PG C-homotopic

and write φ
C� ψ if there exists a finite sequence {φk}mk=0 of based path-

maps in PG such that φ0 = φ, φm = ψ and, for any k = 0, ...,m− 1, holds
φk → φk+1 or φk+1 → φk.

Obviously, the relation φ
C� ψ holds if and only if φ and ψ belong to the

same connected component of the undirected graph of PG. In particular,
the C-homotopy is an equivalence relation.
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Definition 4.10. Let π1(G
∗) be a set of equivalence classes under C-

homotopy of based loops of a digraph G∗. The C-homotopy class of a based
loop φ will be denoted by [φ].

Note that π1(G
∗) = π0(LG

∗) as follows directly from Definitions 4.8 and
4.10. Denote by e the trivial loop e : I∗0 → G∗. We say that a loop φ is

C-contractible if φ
C� e.

Example 4.11. A triangular loop is a loop φ : I∗3 → G∗ such that I3 =
(0→ 1→ 2← 3) .

G*=0 1 2 3

*=0

*

φ(1)

φ(2)

φ

e

h
Ch

-

Figure 10: A triangular loop φ is C-contractible.

The triangular loop is C-contractible because the following shrinking
map

h : I∗3 → I∗0 , h (k) = 0 for all k = 0, ..., 3,

provides an inverse one-step C-homotopy between φ and e (see Fig. 10).
A square loop is a loop φ : I∗4 → G such that I4 = (0→ 1→ 2← 3← 4) .The

square loop can be C-contracted to e in two steps as is shown on Fig. 11.
On the other hand, in the case n ≥ 5, a loop φ : I∗n → G∗ does not have

to be C-contractible, which is the case, for example, if φ is the natural map
In → Sn.

4.3. Local description of C-homotopy

We prove here technical results which has a self-sustained meaning for prac-
tical work with C-homotopies.

Lemma 4.12. Let a, b be two vertices in a digraph G such that either
a = b or a→ b→ a. Then any path-map φ : In → G, such that φ (i) = a,
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G

*=0 1 2

*=0

*

φ(1)=ψ(1) φ(2)

ψ

e

h2

Ch
-

*=0 1 2 3

φ

4

φ(3)
h1

2

Ch
-

1

Figure 11: A square loop φ is C-contractible. Note that φ (0) = φ (4) =
ψ (0) = ψ (2) = ∗.

φ (i+ 1) = b, and i→ i+ 1 in In, is C-homotopic to a path-map φ′ : I ′n → G
where I ′n is obtained from In by changing one edge i→ i+ 1 to i+ 1→ i and
φ′ (j) = φ (j) for all j = 0, ..., n.

Proof. A C-homotopy between φ and φ′ is constructed in two one-step
inverse C-homotopies as is shown on the following diagram:

φ′ : In′ → G ... i
a
← i+ 1

b
...

↓ ↘ ↘
ψ : In+1 → G ... i

a
→ i+ 1

a
← i+ 2

b
...

↑ ↑ ↗
φ : In → G ... i

a
→ i+ 1

b
...

The subscript under each element of the line digraph indicates the value of
the loop on this element. �

Any path-map φ : In → G defines a sequence θφ = {vi}ni=0 of vertices of
G by vi = φ (i) . By definition of a path-map, we have for any i = 0, ..., n− 1
one of the following relations:

vi = vi+1, vi → vi+1, vi+1 → vi.

If φ is a based path-map, then we have v0 = ∗, if φ is a loop then v0 = ∗ = vn.
We consider θφ as a word over the alphabet VG.
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Theorem 4.13. Two loops φ : I∗n → G∗ and ψ : I∗m → G∗ are C-homotopic
if and only if the word θψ can be obtained from θφ by a finite sequence of the
following transformations (or inverses to them):

(i) ...abc... �→ ...ac... where (a, b, c) is any permutation of a triple (v, v′, v′′)
of vertices forming a triangle in G, that is, such that v → v′, v → v′′, v′ → v′′

(and the dots “...” denote the unchanged parts of the words).
(ii) ...abc... �→ ...adc... where (a, b, c, d) is any cyclic permutation (or a

cyclic permutation in the inverse order) of a quadruple (v, v′, v′′, v′′′) of ver-
tices forming a square in G, that is, such that v → v′, v → v′′′, v′ → v′′, v′′′ →
v′′.

(iii) ...abcd... �→ ...ad... where (a, b, c, d) is as in (ii).
(iv) ...aba...→ ...a... if a→ b or b→ a.
(v) ...aa... �→ ...a...

Proof. Let us first show that if θφ = θψ then φ
C� ψ. If, for any edge i→ i+ 1

(or i← i+ 1) in In we have also i→ i+ 1 (resp. i← i+ 1) in Im then
In = Im and φ = ψ (although n = m, the line digraphs In and Im could a
priori be different elements of In). Assume that, for some i, we have i→ i+ 1
in In but i← i+ 1 in Im. Then, by Lemma 4.12, we can change the edge
i→ i+ 1 in In to i← i+ 1 while staying in the same C-homotopy class of

φ. Arguing by induction, we obtain φ
C� ψ.

We write θφ ∼ θψ if θψ can be obtained from θφ by a finite sequence of
transformations (i)− (v) (or inverses to them). Let us show that θφ ∼ θψ

implies that φ
C� ψ. For that we construct for each of the transformations

(i)− (v) a C-homotopy between φ and ψ. Note that in this part of the proof
φ and ψ can be arbitrary path-maps (not necessarily based).

(i) Assume that a→ c (the case c→ a is similar). Then either b→ c or
a→ b (otherwise we would have got a→ c→ b→ a which is excluded by a
triangle hypothesis). The C-homotopies in the both cases are shown on the
diagram:

Im ... a → c ...
| � �

In ... a − b → c...

Im ... a → c ...
| | �

In ... a → b − c...

Each position here corresponds to a vertex in a cylinder Ch or C
−
h (that is,

in In or Im) and shows its image (a, b or c) under the map φ resp. ψ. The
arrows and undirected segments shows the edges in the cylinder Ch or C

−
h

(in particular, horizontal arrows and segments show the edges in In and Im).
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The undirected segments, such as a− b and c− b, should be given directions
matching those on the digraph G.

(ii) Assume as above a→ d and b→ c. Then we have two-step C-
homotopy as on the diagram:

Im ... a → d − c ...
↑ ↖ ↖ ↖

In+1 ... a − a → d − c...
| | | �

In ... a − b → c ...

(iii) Assume a→ d. Then we have b→ c, and the C-homotopy is shown
on the diagram:

Im ... ... a → d ...
� | | �

In ... a − b → c − d

Note that if a→ b then also d→ c, and if b→ a then also c→ d.
(iv) Assuming a→ b we obtain the following C-homotopy:

Im ... ... a ...
↙ ↓ ↘

In ... a → b ← a...

(v) Here is the required C-homotopy:

Im ... ... a ...
↗ ↑

In ... a − a ...

Before we go to the second half of the proof, observe that the transfor-
mation

(4.4) ...abc... �→ ...ac...

of words is possible not only in the case when a, b, c come from a triangle as
in (i) but also when a, b, c form a degenerate triangle, that is, when there
are identical vertices among a, b, c while distinct vertices among a, b, c are
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connected by an edge. Indeed, in the case a = b we have by (v)

abc = aac ∼ ac,

in the case a = c we have by (iv) and (v)

abc = aba ∼ a ∼ ac,

and in the case b = c by (v)

abc = acc ∼ ac.

Now let us prove that φ
C� ψ implies θφ ∼ θψ. It suffices to assume that

there exists an one-step direct C-homotopy from φ to ψ given by a shrinking
map h : I∗n → I∗m. Set

θφ = a0a1...an and θψ = b0b1...bm

where ai, bj ∈ VG and a0 = b0 = an = bm = ∗. For any i = 0, ..., n set j =
h (i) and consider two words

Ai = a0a1...aibj and Bi = b0b1...bj .

We will prove by induction in i that Ai ∼ Bi for all i = 0, ..., n. If this is
already known, then for i = n we have j = m and

a0a1...anbm ∼ b0b1...bm.

Since anbm = ∗∗ ∼ ∗ = an, it follows that θφ ∼ θψ.
Now let us prove that Ai ∼ Bi for all i = 0, ..., n. For i = 0 we have

A0 = a0b0 = ∗∗ ∼ ∗ = b0 = B0. Assuming that Ai ∼ Bi, let us prove that
Ai+1 ∼ Bi+1. Let us consider a structure of the cylinder Ch over the edge
between i and i+ 1 in In. Set h (i) = j, a = ai, a

′ = ai+1, b = bj , b
′ = bj+1.

There are only the following two cases:

(4.5)
b

↗ ↖
a − a′

and
b − b′

↑ ↑
a − a′

.

Note that each arrow on Ch transforms either to an arrow between the
vertices of G or to the identity of the vertices.
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Consider first the case of the left diagram in (4.5). In this case b′ = b
and we obtain by (4.4) and by the induction hypothesis that

Ai+1 = a0a1...ai−1aa′b ∼ a0a1...ai−1ab = Ai ∼ Bi = Bi+1.

Consider now the case of the right diagram in (4.5) and prove that in this
case

(4.6) aa′b′ ∼ abb′.

If (4.6) is already known, then we obtain

Ai+1 = a0a1...ai−1aa′b′ ∼ a0a1...ai−1abb′ = Aib
′ ∼ Bib

′ = Bi+1,

which concludes the induction step in this case.
In order to prove (4.6) observe first that if all the vertices a, a′, b, b′ are

distinct, then they form a square and (4.6) follows by transformation (ii). In
the case a′ = b (4.6) is an equality, and in the case a = b′ the relation (4.6)
follows by transformation (iv):

aa′b′ ∼ a = b′ ∼ abb′.

In the case a = b the triple a, a′, b′ is a triangle or a degenerate triangle, and
we obtained from (4.4) and (v)

aa′b′ ∼ ab′ ∼ aab′ = abb′,

and the case a′ = b′ is similar. Finally, if a = a′ then similarly by (v) and
(4.4) we obtain

aa′b′ = aab′ ∼ ab′ ∼ abb′,

and the case b = b′ is similar. �

Remark 4.14. Note that the transformation (iii) was not used in the
second half of the proof, so (iii) is logically not necessary in the statement
of Theorem 4.13. Note also that (iii) can be obtained as composition of (ii)
and (iv) as follows:

abcd ∼ adcd ∼ ad.

However, in applications it is still convenient to be able to use (iii).
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Example 4.15. A triangular loop on Fig. 10 is contractible because if a, b, c
are vertices of a triangle then

abca ∼ aca ∼ a.

A square loop on Fig. 11 is contractible because if a, b, c, d are vertices of a
square then

abcda ∼ ada ∼ a.

Consider the loops φ and ψ on Fig. 9, that are known to be C-homotopic.
It is shown on Fig. 12 how to transform θφ to θψ using transformations of
Theorem 4.13.

(i)
-

(i)

(ii)

(iii)

φ 

ψ 

Figure 12: Transforming a 5-cycle θφ to a 3-cycle θψ using successively (i)−

(the inverse of (i)), (i) , (ii) and (iii) .

4.4. Group structure in π1

For any In ∈ In define a line digraph În ∈ In as follows:

i→ j in În ⇔ (n− i)→ (n− j) in In.

For any two line digraphs In and Im, define the line digraph In+m = In ∨
Im ∈ In+m that is obtained from In and Im by identification of the vertices
n ∈ In and 0 ∈ Im.
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Definition 4.16. (i) For a path-map φ : In → G define the inverse path-
map φ̂ : În → G by φ̂(i) = φ(n− i).

(ii) For two path-maps φ : In → G and ψ : Im → G with φ(n) = ψ(0)
define the concatenation path-map φ ∨ ψ : In+m → G by

φ ∨ ψ(i) =
{
φ(i), 0 ≤ i ≤ n

ψ(i− n), n ≤ i ≤ n+m.

The operation φ �→ φ̂ is evidently an involution on the set of path-maps.
Clearly, if φ is a loop in G∗ then φ̂ is also a loop, and the concatenation of
two loops is also a loop. Let us define a product in π1 (G

∗) as follows.

Definition 4.17. For any two loops

φ : I∗n → G∗ and ψ : I∗m → G∗

define the product of [φ] and [ψ] by

(4.7) [φ] · [ψ] = [φ ∨ ψ],

where φ ∨ ψ : I∗n+m → G∗ is the concatenation of φ and ψ.

Lemma 4.18. The product in π1 (G
∗) is well defined.

Proof. Let φ, φ′, ψ, ψ′ be loops of G∗ and let

(4.8) φ
C� φ′, ψ

C� ψ′.

We must prove that

(4.9) φ ∨ ψ C� φ′ ∨ ψ′.

It suffices to consider only the case when the both C-homotopies in (4.8)
are one-step C-homotopies. Then we have

φ ∨ ψ C� φ′ ∨ ψ

because one-step C-homotopy between φ and φ′ easily extends to that
between φ ∨ ψ and φ′ ∨ ψ. In the same way we obtain

φ′ ∨ ψ C� φ′ ∨ ψ′,

whence (4.9) follows. �
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Lemma 4.19. For any loop φ : I∗n → G∗ we have φ ∨ φ̂ C� e where φ̂ is the
inverse loop for the loop φ and

(4.10) e : I∗0 → G∗

is the trivial loop.

Proof. Let θφ = v0...vn. Then θφ̂ = vn...v0 and

θφ∨φ̂ = v0...vn−1vnvn−1...v0.

Using successively the transformations aba �→ a and aa �→ a of Theorem

4.13, we obtain that θφ∨φ̂ ∼ ∗ whence φ ∨ φ̂ C� e follows. �

Theorem 4.20. Let G,H be digraphs.
(i) The set π1(G

∗) with the product (4.7) and neutral element [e] from
(4.10) is a group. It will be referred to as the fundamental group of a digraph
G∗.

(ii) A based digraph map f : G∗ → H∗ induces a group homomorphism

π1(f) : π1(G
∗)→ π1(H

∗), (π1(f)) [φ] = [f ◦ φ],

which depends only on homotopy class of f . Hence, we obtain a functor from
the category of digraphs D∗ to the category of groups.

(iii) Let γ : I∗k → G∗ be a based path-map with γ(k) = v. Then γ induces
an isomorphism of fundamental groups

γ� : π1(G
∗)→ π1(G

v),

which depends only on C-homotopy class of the path-map γ.

Proof. (i) This follows from Lemmas 4.18 and 4.19, since the product in
π1(G

∗) satisfies the associative law, the class [e] ∈ π1(G∗) satisfies the defi-
nition of a neutral element, and [φ̂] is the inverse of [φ] for any [φ] ∈ π1 (G∗).

(ii) Let φ and ψ be C-homotopic loops in G∗. It follows from Definition

4.5 and (4.2) that f ◦ φ C� f ◦ ψ and, hence, the map π1(f) is well defined.
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The map π1(f) is a homomorphism because π1([e]) = [e] and, for any
two loops φ, φ′ in G∗,

f ◦ (φ ∨ φ′) = (f ◦ φ) ∨ (
f ◦ φ′) .

If f and g two homotopic based maps from G∗ to H∗ then f ◦ φ � g ◦ φ and

hence f ◦ φ C� g ◦ φ, which finishes the proof.
(iii) For any loop φ in G∗, define a based loop γ�(φ) in G

v by

γ�(φ) = γ̂ ∨ φ ∨ γ : Ik+n+k → G,

where γ̂ is the inverse path-map of γ as in Definition 4.16. Similarly to the
proof of (ii) and using Lemma 4.19, one shows that γ� : π1(G, ∗)→ π1(G, v)
is a group homomorphism. Since γ̂� is obviously the inverse map of γ�, it
follows that γ� is an isomorphism.

If γ1 and γ2 are two C-homotopic path-maps connecting vertices ∗ and
v then γ̂1 ∨ φ ∨ γ1 and γ̂2 ∨ φ ∨ γ2 are C-homotopic (cf. the proof of Lemma
4.18). Hence, γ� depends only on C-homotopy class of the map γ. �

Lemma 4.21. Let f : G∗ → Ha and g : G∗ → Hb be two based digraphs
maps. If f � g : G→ H then there exists a based path-map γ : I∗k → Ha with
γ (k) = b such that, for any loop φ : I∗n → G∗, we have

(4.11) γ� (f ◦ φ) C� g ◦ φ.

Consequently, the following diagram is commutative:

π1 (G
∗)

π1(f)−→ π1 (H
a)

↓id ↓γ�

π1 (G
∗)

π1(g)−→ π1
(
Hb

)
Proof. Note that f ◦ φ is a loop in Ha and g ◦ φ is a loop in Hb. It suffices
to prove the statement in the case when f and g are related by an one-step
homotopy, that is, f (x)−→=g (x) for all x ∈ VG. In particular, we have a−→=b.

Consider the path-map γ : I → H given by γ (0) = a and γ (1) = b. Then
the loop γ� (f ◦ φ) : Î ∨ In ∨ I → Hb is defined by

γ� (f ◦ φ) = γ̂ ∨ (f ◦ φ) ∨ γ.

Define shrinking h : Î ∨ In ∨ I → In as follows: h on In is identical, and the
endpoints of Î ∨ In ∨ I are mapped by h to the corresponding endpoints of
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In:

In 0 ... ... n
↑h ↗ ↑ ... ... ↑ ↖

Î ∨ In ∨ I −1 ← 0 ... ... n → n+ 1

where we enumerate the vertices of Î ∨ In ∨ I as {−1, 0, ..., n+ 1} .
Then we have, for 0 ≤ i ≤ n,

γ� (f ◦ φ) (i) = f (ϕ (i))−→=g (φ (i)) = (g ◦ ϕ) (h (i)) ,

for i = −1

γ� (f ◦ φ) (−1) = b = g (ϕ (0)) = (g ◦ ϕ) (h (−1)) ,

and for i = n+ 1

γ� (f ◦ φ) (n+ 1) = b = g (ϕ (n)) = (g ◦ ϕ) (h (n+ 1)) .

Hence, for all i,

γ� (f ◦ φ) (i)−→= (g ◦ ϕ) (h (i)) ,
which implies (4.11) by (4.2). �

Theorem 4.22. Let G,H be two connected digraphs. If G � H then the
fundamental groups π1 (G

∗) and π1 (H
∗) are isomorphic (for any choice of

the based vertices).

Proof. Let f : G→ H and g : H → G be homotopy inverses maps (cf. 3.4).
Applying Lemma 4.21 to f ◦ g � idG and to g ◦ f � idH , we obtain the result
by a standard argument (cf. [12, Ch.1, Thm 8]). �

4.5. Relation between H1 and π1

One of our main results is the following theorem.

Theorem 4.23. For any based connected digraph G∗ we have an isomor-
phism

π1(G
∗) /[π1(G∗), π1(G∗)] ∼= H1(G,Z)

where [π1(G
∗), π1(G∗)] is a commutator subgroup.
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Proof. The proof is similar to that in the classical algebraic topology [8,
p.166]. For any based loop φ : I∗n → G∗ of a digraph G∗, define a 1-path
χ(φ) on G as follows: χ(φ) = 0 for n = 0, 1, 2, and for n ≥ 3

(4.12) χ (φ) =
∑

{i:i→i+1}
eφ(i)φ(i+1) −

∑
{i:i+1→i}

eφ(i+1)φ(i),

where the summation index i runs from 0 to n− 1. It is easy to see that
the 1-path χ (φ) is allowed and closed and, hence, determines a homology
class [χ (φ)] ∈ H1 (G,Z). Let us first prove that, for any two based loops
φ : I∗n → G∗ and ψ : I∗m → G∗,

(4.13) φ
C� ψ ⇒ [χ(φ)] = [χ(ψ)] .

Note that any based loop with n ≤ 2 is C-homotopic to trivial. For n ≥ 3,

it is sufficiently to check (4.13) assuming that φ
C� ψ is given by an one-step

direct C-homotopy with a shrinking map h : I∗n → I∗m. Set

φ′ := ψ ◦ h : I∗n → G∗

and observe that by (4.12) χ (φ′) = χ (ψ) . It remains to show that [χ (φ)] =
[χ (φ′)] .

By Remark 4.6 the digraph maps φ and φ′, acting from In to G, are
homotopic. Denote by Sn the digraph that is obtained from In by identifi-
cation of the vertices 0 and n (that is, Sn is a cycle digraph from Example
2.8). Then ϕ and φ′ can be regarded as digraph maps from Sn to G, and
they are again homotopic as such.

Consider the standard homology class [�] ∈ H1 (Sn) given by (2.8).
Comparing (2.8) and (4.12), we see that

φ∗ (�) = χ (ϕ) and φ′∗ (�) = χ
(
φ′
)
.

On the other hand, by Theorem 3.3 we have [φ∗ (�)] = [φ′∗ (�)], which fin-
ishes the proof of (4.13).

Hence, χ determines a map

χ∗ : π1(G∗)→ H1(G,Z), χ∗[φ] = [χ(φ)].
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The map χ∗ is a group homomorphism because, for based loops φ, ψ and
the neutral element [e] ∈ π1 (G∗), we have χ∗([e]) = 0 and

χ∗([φ] · [ψ]) = χ∗([φ ∨ ψ]) = [χ(φ ∨ ψ)]
= [χ(φ) + χ(ψ)] = [χ(φ)] + [χ(ψ)] = χ∗([φ]) + χ∗([ψ]).

Since the group H1(G,Z) is abelian, it follows that

[π1(G
∗), π1(G∗)] ⊂ Kerχ∗.

Now let us prove that χ∗ is an epimorphism. Define a standard loop on
G as a finite sequence v = {vk}nk=0 of vertices of G such that v0 = vn and,
for any k = 0, ..., n− 1, either vk → vk+1 or vk+1 → vk. For a standard loop
v define an 1-path

(4.14) �v =
∑

{k:vk→vk+1}
evkvk+1

−
∑

{k:vk+1→vk}
evkvk+1

and observe that �v is allowed and closed. The 1-paths of the form (4.14)
will be referred to as standard paths. Consider an arbitrary closed 1-path

w =
∑
k

nkeikjk ∈ Ω1(G,Z).

Since ∂w = 0 and ∂eij = ej − ei, the path w can be represented as a finite
sum of standard paths. Hence, in order to prove that χ∗ is an epimorphism,
it suffices to show that any standard 1-path �v is in the image of χ. Note
that the standard loop v determines naturally a based loop φ : I∗n → Gv0

by φ (i) = vi. Since the digraph G is connected, there exists a based path
f : I∗s → G∗ with f(s) = v0. Thus we obtain a based loop

f ∨ φ ∨ f̂ : I∗2s+n → G∗.

It follows directly from our construction, that χ(f ∨ φ ∨ f̂) = �v, and hence
χ∗ is an epimorphism.

We are left to prove that

Kerχ∗ ⊂ [π1(G
∗), π1(G∗)].

For that we need to prove that, for any loop φ : I∗n → G∗, if χ∗([φ]) = 0 ∈
H1(G,Z), then [φ] lies in the commutator [π1(G

∗), π1(G∗)]. In the case n ≤ 2
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any loop φ is C-homotopic to the trivial loop. Assuming in the sequel n ≥ 3,
we use the word θφ = v0v1...vn where vi = φ (i).

Consider first the case, when χ(φ) = 0 ∈ Ω1(G). Since the digraph G
is connected, for any vertex vi there exists a based path-map ψi : I

∗
pi
→

G∗ with ψi(pi) = vi. If vi = vj for some i, j then we make sure to choose
ψi and ψj identical. For i = 0 and i = n choose ψi to be trivial path-map
e : I∗0 → G∗. For any i = 0, ..., n− 1 define path-map φi : I

± → G by the
conditions φi(0) = vi, φi(1) = vi+1 and consider the following loop
(4.15)
γ = ψ0 ∨ φ0 ∨ ψ̂1 ∨ ψ1 ∨ φ1 ∨ ψ̂2 ∨ ψ2 ∨ φ2 ∨ · · · ∨ ψ̂n−1 ∨ ψn−1 ∨ φn−1 ∨ ψn

(see Fig. 13).

*

vi
vi+1

φi

ψi ψi+1
^

φ

Figure 13: Loop ψi ∨ φi ∨ ψ̂i+1

Using transformation (iv) of Theorem 4.13 (similarly to the proof of
Lemma 4.19), we obtain that

γ
C� φ0 ∨ φ1 ∨ ... ∨ φn−1 = φ.

On the other hand, it follows from (4.15) that

[γ] =

n−1∏
i=0

[
ψi ∨ φi ∨ ψ̂i+1

]
Consider for some i = 0, ..., n− 1, such that i→ i+ 1, the vertices a = vi and
b = vi+1. If a = b then the loop ψi ∨ φi ∨ ψ̂i+1 is C-homotopic to e. Assume
a �= b, so that a→ b. Then the term eab is present in the right hand side
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of the identity (4.12) defining χ (φ). Due to χ (φ) = 0, the term eab should
cancel out with −eab in the right hand side of (4.12). Therefore, there exists
j = 0, ..., n− 1 such that j + 1→ j, vj+1 = a and vj = b. It follows that

ψj ∨ φj ∨ ψ̂j+1 = ψi+1 ∨ φ̂i ∨ ψ̂i,

and that the loops

(4.16)
[
ψi ∨ φi ∨ ψ̂i+1

]
and

[
ψj ∨ φj ∨ ψ̂j+1

]
are mutually inverse. Therefore, [γ] is a product of pairs of mutually inverse
loops, which implies that [γ] = [φ] lies in the commutator of π1.

Now consider the general case, when χ (φ) ∈ Ω1 (G) is exact, that is,
χ(φ) = ∂ω for some ω ∈ Ω2(G). Recall that by Proposition 2.9 any 2-path
ω ∈ Ω2 can be represented in the form

ω =

N∑
j=1

κjσj

where N ∈ N, κl = ±1 and σl is one of the following 2-paths: a double edge,
a triangle, a square. Further proof goes by induction in N . In the case N = 0
we have ω = 0 which was already considered above.

In the case N ≥ 1 choose an arbitrary index i = 0, ..., n− 1 such that the
vertices a = φ (i) and b = φ (i+ 1) are distinct. Assume for certainty that
i→ i+ 1 and, hence, a→ b (the case i+ 1→ i can be handled similarly).
Then eab enters χ (φ) with the coefficient 1. Since

χ (φ) = ∂ω =

N∑
j=1

κj∂σj ,

there exists σl such that ∂σl contains a term κleab. Fix this l and define a
new loop φ′ as follows.

If σl is a double edge a, b, a, then consider a loop φ′ that is obtained
from φ : I∗n → G∗ by changing one edge i→ i+ 1 in In to i→ i+ 1. Then

by Lemma 4.12 we have φ′
C� φ.

Let σl be a triangle with the vertices a, b, c. Noticing that

θφ = ...ab...



662 A. Grigor’yan, Y. Lin, Y. Muranov and S.-T. Yau

consider a loop φ′ such that

θφ′ = ...acb...

(see Fig. 14).

 

* 

a 
b 

σl 
φ 

c 

φ ' 

Figure 14: Loops φ and φ′ in the case when σl is a triangle.

If σl is a square with the vertices a, b, c, d, then we define a loop φ′ so
that

θφ′ = ...adcb.

By Theorem 4.13, we have in the both cases φ′
C� φ and, hence, [φ′] = [φ].

By construction, χ (φ′) contains no longer the term eab. On the other
hand, we will prove below that, for some κ = ±1,

(4.17) χ
(
φ′
)
= χ (φ)− κ∂σl.

Comparing the coefficients in front of eab in the both parts of (4.17), we
obtain the identity 0 = 1− κκl whence κ = κl. It follows from (4.17) with
κ = κl that

χ
(
φ′
)
= χ (φ)− ∂ (κlσl) = ∂ω − ∂ (κlσl) = ∂ω′,

where

ω′ =
∑
j �=l

cjσj .

By the inductive hypothesis we conclude that [φ′] lies in the commutator
[π1(G

∗), π1(G∗)], whence the same for [φ] follows.
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We are left to prove the identity (4.17). If σl is a double edge a, b, a then

χ
(
φ′
)− χ (φ) = −eba − eab = −∂eaba = −∂σl.

If σl is a triangle

c
� �

a −→ b

then we obtain a cycle digraph S3 with the vertices a, b, c, and if σl is a
square

d −→ c
| |
a −→ b

then we obtain a cycle digraph S4 with the vertices a, b, c, d. Let � be the
standard 1-path on S3 in the first case and that on S4 in the second case
(see (2.8)). Then it is easy to see that

χ (φ)− χ (
φ′
)
= �,

and (4.17) follows from the observation that ∂σl = ±� (cf. Example 2.8).
�

4.6. Higher homotopy groups

Recall that, for any based digraph G∗, a based loop-digraph LG∗ was defined
in Definition 4.8, and, for a digraph map f : G∗ → H∗, we defined a digraph
map Lf : LG∗ → LH∗ by (4.3).

Definition 4.24. For any digraph G∗ let LnG = LnG∗, n = 0, 1, 2, 3, . . . be
based digraphs defined inductively as

L0G∗ = G∗, L1G∗ = LG∗, and, for n ≥ 2, LnG∗ def
= L

(
Ln−1G∗

)
where the base point in LG∗ is the based map I∗0 → G∗ which we also denote
by ∗.

For n ≥ 2, define homotopy group πn(G
∗) of the digraph G∗ inductively

by

πn(G
∗) = πn−1(LG∗).
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Theorem 4.25. Let G∗, H∗ be two based digraphs. If f and g are homotopic
digraph maps G∗ → H∗ then Lf and Lg are homotopic digraph maps LG∗ →
LH∗. If G∗ � H∗ then also LG∗ � LH∗.

Proof. In the first statement, it suffices to consider the case of one-step
homotopy between f and g, which by (3.2) amounts to either f (x)−→=g (x) for
all x ∈ VG or g (x)−→=f (x) for all x ∈ VG. Assume without loss of generality
that

f (x)−→=g (x) for all x ∈ VG.

Then, for any loop ψ ∈ LG∗, ψ : I∗n → G∗, we have also

f (ψ (i))−→=g (ψ (i)) for all i = 0, ..., n,

which implies that f ◦ ψ and g ◦ ψ are one-step homotopic and, hence, one-
step C-homotopic. Therefore, the loops f ◦ ψ and g ◦ ψ as elements of LH∗

are either identical or connected by an edge in LH∗, that is

(Lf) (ψ)−→= (Lg) (ψ) for all ψ ∈ VLG.

Hence, Lf � Lg, which finishes the proof of the first statement.
Since L is a functor we obtain the proof of the rest part of the Theorem.

�

Corollary 4.26. For n ≥ 0, the functor πn is well defined on the homotopy
category of based digraphs.

Remark 4.27. The definition of higher homotopy groups πn (G
∗) depends

crucially on how we define edges in the loop-digraph LG∗. Our present def-
inition uses for that one-step C-homotopy. There may be other definitions
of edges in LG∗, for example, one could use for that the transformations of
Theorem 4.13. By switching to the latter (or any other reasonable) defini-
tion of LG∗, the set of connected components of LG∗ remains unchanged,
so that π1 (G

∗) = π0 (LG
∗) is unchanged, but π1 (LG∗) and, hence, π2 (G∗)

may become different. At present it is not quite clear what is the most nat-
ural choice of edges in LG∗. We plan to return to this question in the future
research.
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5. Application to graph coloring

An an illustration of the theory of digraph homotopy, we give here a new
proof of the classical lemma of Sperner, using the notion the fundamental
group and C-homotopy.

Consider a triangle ABC on the plane R2 and its triangulation T . The
set of vertices of T is colored with three colors 1, 2, 3 in such a way that

• the vertices A,B,C are colored with 1, 2, 3 respectively;

• each vertex on any side of ABC is colored with one of the two colors
of the endpoints of the side (see Fig. 15).

 

2 

1 

1 

1 

1 

2 

2 

2 
3 

3 

3 

Figure 15: A Sperner coloring

The classical lemma of Sperner says that then there exists in T a 3-
color triangle, that is, a triangle, whose vertices are colored with the three
different colors.

To prove this, let us first modify the triangulation T so that there are
no vertices on the sides AB,AC,BC except for A,B,C. Indeed, if X is a
vertex on AB then we move X a bit inside the triangle ABC. This gives rise
to a new triangle in the triangulation T that is formed by X and its former
neighbors, say Y and Z, on the edge AB (while keeping all other triangles).
However, since all X,Y, Z are colored with two colors, no 3-color triangle
emerges after that move. By induction, we remove all the vertices from the
sides of ABC.

The triangulation T can be regarded as a graph. Let us make it into a
digraph G by choosing the direction on the edges as follows. If the vertices
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a, b are connected by an edge in T then choose direction between a, b using
the colors of a, b and the following rule:

(5.1)
1→ 2, 2→ 3, 3→ 1
1� 1, 2� 2, 3� 3

Assume now that there is no 3-color triangle in T. Then each triangle from
T looks in G like

•
↗ ↖

• � •
or

•
↙ ↘

• � •
or

•
↗↙ ↘↖

• � •
,

in particular, each of them contains a triangle in the sense of Theorem 4.13.
Using the transformations (ii) and (iv) of Theorem 4.13 and the partition
of G into the triangles, we contract any loop on G to an empty word (cf.
Fig. 14), whence π1 (G

∗) = {0}.
Consider now a colored cycle S3

(5.2)
1

↗ ↘
3 ←− 2

and the following two maps: f : G→ S3 that preserves the colors of the
vertices and g : S3 → G that maps the vertices 1, 2, 3 of S3 onto A,B,C,
respectively. Both f, g are digraph maps, which for the case of f follows
from the choice (5.1) of directions of the edges of G. Since f ◦ g = idS3

, we
obtain that π1 (f ◦ g) = π1 (f) ◦ π1 (g) is an isomorphism of π1 (S3) � Z onto
itself, which is not possible by π1 (G

∗) = {0} .

6. Homology and homotopy of (undirected) graphs

A homotopy theory of undirected graphs was constructed in [1] and [2] (see
also [4]). Here we show that this theory can be obtained from our homotopy
theory of digraphs as restriction to a full subcategory. The same restriction
enables us to define a homotopy invariant homology theory of undirected
graphs such that the classical relation between fundamental group and the
first homology group given by Theorem 4.23 is preserved. In particular, the
so obtained homology theory for graphs answers a question raised in [1,
p.32].

To distinguish digraphs (see Definition 2.1) and (undirected) graphs (see
Definition 3.1 below) we use the following notations. To denote a digraph
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and its sets of vertices and edges, we use as in the previous sections the
standard font as G = (VG, EG). To denote a graph and its sets of vertices
and edges, we will use a bold font, for example, G = (VG,EG). The bold
font will also be used to denoted the maps between graphs.

Definition 6.1. (i) A graph G = (VG,EG) is a couple of a set VG of ver-
tices and a subset EG ⊂ {VG ×VG \ diag} of non-ordered pairs of vertices
that are called edges. Any edge (v, w) ∈ EG will be also denoted by v ∼ w.

(ii) A morphism from a graph G = (VG,EG) to a graph H = (VH,EH)
is a map

f : VG → VH

such that for any edge v ∼ w on G we have either f (v) = f (w) or f (v) ∼
f (w). We will refer to morphisms of graphs as graph maps.

To each graph G = (VG,EG) we associate a digraph G = (VG, EG)
where VG = VG and EG is defined by the condition v → w ⇔ v ∼ w. Clearly,
the digraph G satisfies the condition w → v ⇔ v → w. Any digraph with this
property will be called a double digraph.

The set of all graphs with graph maps forms a category (which was also
introduced by [1] and [2]), that will be denoted by G.

The assignment G �→ G and a similar assignment f �→ f of maps, that is
well defined, provide a functor O from G to D. It is clear that the image O
is a full subcategory O(G) of D that consists of double digraphs, such that
the inverse functor O−1 : O(G)→ G is well defined.

Definition 6.2. For two graphs G = (VG,EG) and H = (VH,EH) define
the Cartesian product G�H as a graph with the set of vertices VG ×VH

and with the set of edges as follows: for x, x′ ∈ VG and y, y′ ∈ VH, we have
(x, y) ∼ (x′, y′) in G�H if and only if

either x′ = x and y ∼ y′, or x ∼ x′ and y = y′.

The comparison of Definitions 2.3 and 6.2 yields the following statement.

Lemma 6.3. The functors O and O−1 preserve the product �, that is

O(G�H) = G�H, O−1(G�H) = G�H.

By definition, a line graph is a graph Jn = (V,E) withV = {0, 1, . . . , n}
and E = {k ∼ k + 1|0 ≤ k ≤ n− 1}. Let J = {0 ∼ 1} be the line graph with
two vertices. Let Jn = O(Jn) and J = O(J).
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Definition 6.4. [2] Let G,H be two graphs.
(i) Two graph maps f ,g : G→ H are called homotopic if there exists a

line graph Jn (n ≥ 0) and a graph map F : G� Jn → H such that

F|G�{0} = f0 and F|G�{n} = f1

In this case we shall write f � g.
(ii) The graphs G and H are called homotopy equivalent if there exist

graph maps f : G→ H and g : H→ G such that

(6.1) f ◦ g � idH, g ◦ f � idG .

In this case we shall write H � G. The maps f and g are as in (6.1) called
homotopy inverses of each other.

The relation ”�” is an equivalence relation on the set of graph maps
and on the set of graphs (see [2]).

Proposition 6.5. Let f ,g : G→ H be graph maps. The maps f and g
are homotopic if and only if the digraph maps f = O(f) and g = O(g) are
homotopic.

Proof. Let F : G� Jn → H be a homotopy between f and g as in Defi-
nition 6.4. The natural digraph inclusion In → Jn (where In ∈ I is arbi-
trary) induces the digraph inclusion Θ: G� In → G� Jn. Applying functor
O and Lemma 6.3 we obtain a digraph map F : = G� Jn → H such that
the composition F ◦Θ: G� In → H provides a digraph homotopy. Now let
F : G� In → H be a digraph homotopy as in Definition 3.1 between two
double digraphs. Define a digraph map F ′ : G� Jn → H on the set of ver-
tices by F ′(x, i) = F (x, i). Since H is a double digraph, this definition is
correct. Applying functor O−1 and Lemma 6.3 we obtain a graph homotopy
F′ : G� Jn → H. �

Denote by D′ the homotopy category of digraphs. The objects of this
category are digraphs, and the maps are classes of homotopic digraphs maps.
Similarly, denote by G′ the homotopy category of graphs and by O(G′) the
homotopy category of double digraphs.

Proposition 6.5 implies the following.

Corollary 6.6. The functors O and O−1 induce an equivalence between
homotopy category of graphs and homotopy category of double digraphs
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Definition 6.7. Let K be a commutative ring with unity. Define homol-
ogy groups of a graph G with coefficients in K as follows: Hn(G,K) : =
Hn(G,K) where G = O (G) .

The following statement follows from Theorem 3.3 and Proposition 6.5.

Proposition 6.8. The homology groups of a graph G with coefficients K

are homotopy invariant.

A (induced) subgraph H of a graph G is a graph whose set of vertices
is a subset of that of G and the edges of H are all those edges of G whose
adjacent vertices belong to H.

Definition 6.9. Let G be a graph and H be its subgraph.
(i) A retraction of G onto H is a graph map r : G→ H such that r|H =

idH .
(ii) A retraction r : G→ H is called a deformation retraction if i ◦ r �

idG, where i : H→ G is the natural inclusion map.

Note that the condition i ◦ r � idG is equivalent to the existence of a
graph morphism F : G� Jn → G such that

(6.2) F|G�{0} = idG, F|G�{n} = i ◦ r.

Similarly Proposition 3.5, a deformation retraction provides homotopy equiv-
alence G � H with homotopy inverse maps i, r (compare with [2, p.119]).

Example 6.10. (i) Let us define a cycle graph Sn (n ≥ 3) as the graph
that is obtained from Jn by identifying of the vertices n and 0. Then

Hp(Sn,K) =

⎧⎪⎨⎪⎩
K, ∀n and p = 0,

K, n ≥ 5 and p = 1,

0, in other cases.

(ii) Let G be a star-like graph, that there is a vertex a ∈ VG such that
a ∼ v for any v ∈ VG. Then the map r : G→ {a} is a deformation retraction
which impliesG � {a} (cf. Example 3.11). Consequently,H0(G,K) = K and
Hp(G,K) = 0 for all p > 0.

(iii) If a graph G is a tree, then G is contractible (cf. Example 3.10). In
particular, H0(G,K) = K and Hp(G,K) = 0 for all p > 0.
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Definition 6.11. Let f : G→ H be a graph map. The cylinder Cf of f is
a graph with the set of vertices VCf

= VG �VH and with the set of edges
ECf

that consists of all the edges from EG and EH as well as of the edges
of the form x ∼ f (x) for all x ∈ VG.

Analogously to Proposition 3.18, we obtain the following.

Proposition 6.12. We have a homotopy equivalence Cf � H.

Below we consider based graphs G∗, where ∗ is a based vertex of G. The
based vertex of Jn will be usually 0.

Definition 6.13. Let G be a graph. A path-map in a graph G is any
graph map Φ : Jn → G. A based path on based graph G∗ is a based map
Φ : J∗n → G∗. A loop in G is a based path-map Φ : J∗n → G∗ such that
Φ(n) = ∗.

The inverse path-map and the concatenation of path-maps are defined
similarly to Definition 4.16.

Definition 6.14. (i) A graph map h : Jn → Jm is called shrinking if h (0) =
0, h(n) = m, and h (i) ≤ h (j) whenever i ≤ j.

An extension of a based path-map Φ : J∗m → G∗ is any path-map ΦE =
Φ ◦ h where h : J∗n → J∗m is shrinking. An extension ΦE is called a stabi-
lization of Φ if the shrinking map h satisfies the condition h|Jm

= id. A
stabilization of Φ will be denoted by ΦS .

(ii) Two loops Φ,Ψ in a based graph G∗ are called S-homotopic if there
exist stabilizations ΦS ,ΨS which are homotopic. In this case we shall write

Φ
S� Ψ. This is an equivalence relation and equivalence class of a loop Φ will

be denoted by [Φ] (cf. [1] and [2]).

Define a set π1(G
∗) as the set of S-equivalence classes of loops in G∗,

and the product in π1(G
∗) by [Φ] · [Ψ] : = [Φ ∨Ψ]. Let e : J∗0 → G∗ be the

trivial loop.

Proposition 6.15. [1], [2, Proposition 5.6] The set π1(G
∗) with the prod-

uct defined above and with the neutral element [e] is a group, that will be
referred to as a fundamental group of the graph G∗ and denoted by π1 (G

∗).
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Definition 6.16. Consider two based path-maps

Φ: J∗n → G∗ and Ψ: J∗m → G∗.

An one-step C-homotopy from Φ to Ψ is given by a shrinking map h : Jn →
Jm such that the map F : VCh

→ VG given by

F|Jn
= Φ and F|Jm

= Ψ,

is a graph map from Ch to G.
The path-maps Φ and Ψ are said to be C-homotopic if there exists a

sequence of one-step C-homotopies that connect Φ and Ψ. We shall write in

this case Φ
C� Ψ.

The following statement follows immediately from definitions of the func-
tor O and cylinder of the graph and digraph maps.

Lemma 6.17. Let h : G→ H be a graph map. There exists a natural
digraph inclusion Ch → O(Ch), where Ch is a cylinder of the digraph map
h : G→ H.

Theorem 6.18. Let G∗ be a based double digraph. We have a natural iso-
morphism of fundamental groups π1(G

∗) ∼= π1(G
∗) where G∗ = O−1(G∗).

Proof. Let Φ: J∗n → G∗ be a based loop. Denote by Isn the special line
digraph with the vertices 0, 1, ..., n and edges i→ i+ 1 for all i = 0, ..., n− 1.
There is a natural inclusion τ : Isn → Jn. The composition O(Φ) ◦ τ : Isn∗ →
G∗ defines a based loop φ in G∗. At first we would like to prove, that the
correspondence Φ −→ O(Φ) ◦ τ = φ provides a well defined map of sets

O∗ : π1(G∗)→ π1(G
∗), O∗([Φ]) �→ [O(Φ) ◦ τ ] = [φ].

Let Φ: J∗k → G∗,Ψ: J∗m → G∗ be loops and Φ
S� Ψ. The homotopic stabi-

lizations ΦS and ΨS provide one-step C-homotopies ΦS C� Φ, ΨS C� Ψ. A

homotopy between ΦS and ΨS provides C-homotopy ΦS C� ΨS . Since C-

homotopy is an equivalence relation, we obtain Φ
C� Ψ. Now by Lemma 6.17

we obtain that φ
C� ψ. That is the map O∗ is well defined, and it is easy

to see that this is a homomorphism of groups. This is an epimorphism as
follows from Proposition 4.12.
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Digraph maps

φ : Isn
∗ → G∗, ψ : Ism

∗ → G∗

define graphs maps

Φ: Jn → G∗, Φ: Jm → G∗,

such that O(Φ) ◦ τ = φ and O(Ψ) ◦ τ = ψ. A one-step C-homotopy φ
C� ψ

implies a one-step C-homotopy Φ
C� Ψ. That implies that ΦE is homotopic

to Ψ or vice versa. To finish the proof of the Theorem, it suffices to prove

that Φ
S� Ψ. But this follows directly from definition of fundamental group

of graph in [1] and [2]. �

Theorem 6.19. For any based graph G∗ we have an isomorphism

π1(G
∗)/[π1(G∗), π1(G∗)] ∼= H1(G,Z)

where [π1(G
∗), π1(G∗)] is a commutator subgroup.

Proof. Follows from Theorems 6.18 and 4.23. �

Definition 6.20. [1, p.41] Let G∗ be a based graph.
(i) A based path graph PG∗ is a graph with the set of vertices VPG∗ =

{Φ: Jn → G∗}, a base vertex ∗ : J0 → G∗, and there is an edge Φ ∼ Ψ if
and only ΦS � Ψ or Φ � ΨS .

(ii) A based loop graph LG∗ is a based sub-graph of PG∗ with the set of
vertices VLG∗ = {Φ: Jn → G∗|Φ(n) = ∗} and with the restricted from PG∗

set of vertices.
(iii) Define higher homotopy groups πn(G

∗) : = πn−1(LG∗) for n ≥ 2.

Proposition 6.21. Let G∗ = O(G∗) be a based double digraph. Then LG∗

be a double digraph and we have a natural inclusion l : LG∗ ⊂→ O−1(LG∗)
that is an identity map on the set of vertices. This map induces a homomor-
phism of homotopy groups πn(LG

∗)→ πn(LG
∗) for n ≥ 1 and an isomor-

phism for n = 0.

Proof. The proof that LG∗ is a double digraph is similar to the proof of
Proposition 6.5 and the graph map l is well defined by Lemma 6.17. Then
the result follows. �



Homotopy Theory for Digraphs 673

References

1. Eric Babson, Helene Barcelo, Mark de Longueville, and Reinhard
Laubenbacher, Homotopy theory of graphs, Journal Algebr. Comb. 24
(2006), 31–44.

2. Helene Barcelo, Xenia Kramer, Reinhard Laubenbacher, and Christo-
pher Weaver, Foundations of a connectivity theory for simplicial com-
plexes, Advances in Appl. Mathematics 26 (2001), 97–128.

3. Marshall M. Cohen, A course in simple-homotopy theory, Berlin, New
York: Springer-Verlag, 1973.

4. Anton Dochtermann, Homotopy groups of Hom complexes of graphs,
Journal of Combinatorial Theory, Series A 116 (2009), 18–194.

5. Alexander Grigor’yan, Yong Lin, Yuri Muranov, and Shing-Tung Yau,
Homologies of path complexes and digraphs, Math arXiv: 1207.2834v4
(2013).

6. , Cohomology of digraphs and (undirected) graphs, to appear in
Asian Journal of Mathematics (2014).

7. Alexander Grigor’yan, Yuri Muranov, and Shing-Tung Yau, Graphs
associated with simplicial complexes, Homology, Homotopy, and Appli-
cations 16 (2014), 295–311.

8. Allen Hatcher, Algebraic Topology, Cambridge University Press, 2002.

9. Alexander V. Ivashchenko, Contractible transformations do not change
the homology groups of graphs, Discrete Math. 126 (1994), 159–170.

10. S. MacLane, Homology, Die Grundlehren der mathematischen Wis-
senschaften. Bd. 114. Berlin-Göttingen-Heidelberg: Springer-Verlag, 522
pp. , 1963.

11. P. Ribenboim, Algebraic structures on graphs, Algebra Universalis 16
(1983), 105–123.

12. Edwin H. Spanier, Algebraic topology, Berlin: Springer-Verlag, 528 p.,
1995.

13. Mohamed Elamine Talbi and Djilali Benayat, Homology theory of
graphs, Mediterranean J. of Math 11 (2014), 813–828.

Alexander Grigor’yan
Department of Mathematics, University of Bielefeld



674 A. Grigor’yan, Y. Lin, Y. Muranov and S.-T. Yau

33501 Bielefeld, Germany
E-mail: grigor@math.uni-bielefeld.de

Yong Lin
Department of Mathematics, Renmin University of China
59 Zhongguancun Street, Haidian,
Beijing, China, 100872
E-mail: linyong01@ruc.edu.cn

Yuri Muranov
Department of Mathematics, University of Warmia and Mazury
ul. Sloneczna 54,
10-710 Olsztyn, Poland
E-mail: muranov@matman.uwm.edu.pl

Shing-Tung Yau
Department of Mathematics, Harvard University
Cambridge MA 02138, USA
E-mail: yau@math.harvard.edu



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.7
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /CMYK
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType true
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<

    /BGR <>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <>
    /ESP <>
    /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
    /FRA <>
    /GRE <>
    /HEB <>
    /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke.  Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
    /HUN <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <>
    /LVI <>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
    /POL <>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
    /RUS <>
    /SKY <>
    /SLV <>
    /SUO <>
    /SVE <>
    /TUR <>
    /UKR <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


