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1. Introduction

Let K be a global field. Given a finite extension L/K, let JL denote the
idele group of L, and let NL/K : JL → JK denote the natural extension of
the norm map associated with L/K. When K does not vary, we will write
N(L×) and N(JL) respectively in place of NL/K(L×) and NL/K(JL). A finite
extension L/K is said to satisfy the Hasse norm principle if

K× ∩N(JL) = N(L×).

The obstruction to the norm principle is given by the Tate-Shafarevich group

X(L/K) :=
K× ∩N(JL)

N(L×)
.

By analogy, we say that a pair of finite extensions L1, L2 of K satisfies the
multinorm principle (cf. [7]) if

K× ∩N(JL1
)N(JL2

) = N(L×1 )N(L×2 ).

The obstruction to the multinorm principle is given by the quotient

X(L1, L2/K) :=
K× ∩N(JL1

)N(JL2
)

N(L×1 )N(L×2 )
.
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The multinorm principle has a variety of applications (cf. loc. cit., §1), but it
is not fully understood. The main theorem of [7] says that X(L1, L2/K) =
{1} whenever L1, L2 is a pair of finite separable extensions of K with linearly
disjoint Galois closures. However, little is known about X(L1, L2/K) for
more general pairs of extensions.

In this paper, we describe a general approach to the multinorm principle
that builds on the techniques used in [7]. The idea is that we should try to
describe X(L1, L2/K) by studying the map

f : X(L1/K)×X(L2/K)→X(L1, L2/K)

defined by (
xN(L×1 ), yN(L×2 )

)
7→ xy−1N(L×1 )N(L×2 ).

Since X(L1, L2/K) is determined up to extension by Im f and Coker f ,
it suffices to describe

X1(L1, L2/K) := Im(f) and X2(L1, L2/K) := Coker(f)

individually, and we refer to these groups as the first and second obstruc-
tions to the multinorm principle. We will analyze X1(L1, L2/K) and
X2(L1, L2/K) using group cohomology and class field theory respectively,
and prove estimates which will allow us to compute both obstructions in
some important special cases. This approach can be used to recover the
main theorem of [7] (see §5), and it enables us to prove the main theorem
of this note, which characterizes the multinorm principle for pairs of finite
abelian extensions.

Theorem 1. Let L1, L2 be a pair of finite abelian extensions of K. Then

X(L1, L2/K) 'X(L1 ∩ L2/K).

In particular, L1, L2 satisfies the multinorm principle iff L1 ∩ L2 satisfies the
norm principle.

This result does not extend to non-abelian extensions. In fact, the con-
clusion of the theorem fails for all of the pairs of extensions constructed in
Proposition 12 of [4]. For example, if K = Q, L1 = Q(

√
−1, 4
√

2), and L2 =

Q(
√
−1,

√
7
√

2), then X(L1 ∩ L2/K) = {1}, but X(L1, L2/K) ' Z/2Z.
We begin in §2 and §3 by giving descriptions of the first and second

obstructions respectively. Then we apply these descriptions in the special
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case where L1, L2 is a pair of abelian extensions of K to prove Theorem 1
in §4. Finally, §5 contains several examples and applications related to our
analysis of the multinorm principle.

Remark. Earlier versions of this paper contained additional sufficient
conditions for the multinorm principle to hold for n-tuples of exten-
sions (see https://sites.google.com/site/timothypollio/papers). By general-
izing the proof of Proposition 15 in [7], we were able to show that the
multinorm principle holds for n-tuples of finite separable extensions whose
Galois closures are linearly disjoint as a family and for pairs of Galois exten-
sions with cyclic intersection. Meanwhile, Demarche and Wei obtained sim-
ilar results which they describe in [4]. Their argument is similar to ours and
their results are slightly stronger, so we decided to omit these results from
the final version of this paper.

If L1 and L2 are finite abelian extensions of a global field K, then they
satisfy the hypotheses of Theorem 6 in [4]. Let T be the multinorm torus (cf.
[7]) associated to the pair L1, L2/K, and let S be the norm torus associated
to L1 ∩ L2/K. Then according to [4],X2

ω(T̂ ) 'X2
ω(Ŝ). This does not imply

our Theorem 1 since X2
ω(T̂ ) depends on the defect of weak approximation

for T as well as on X(T ). However, we can combine this statement with
Theorem 1 to get a result for weak approximation. Let A(T ) denote the
defect of weak approximation for T .

Corollary 2. If L1 and L2 are finite abelian extensions of K, and S and
T are as above, then

|A(T )| = |A(S)|.

In particular, weak approximation holds for T iff weak approximation holds
for S.

2. The First Obstruction

Fix a separable closure Ks of K. We will only consider extensions of K
which are contained in Ks. Our analysis of the first obstruction begins with
the following observation.

Lemma 3. Let L1, L2 be a pair of finite extensions of K, let L = L1L2, and
let

g : X(L/K)→X(L1/K)×X(L2/K)



550 Timothy P. Pollio

be the map defined by

xN(L×) 7→
(
xN(L×1 ), xN(L×2 )

)
.

Then X1(L1, L2/K) is isomorphic to a quotient of Coker(g).

Proof. It is clear that Im(g) ⊂ Ker(f), so the claim follows from the first
isomorphism theorem. �

In this section, we give several results which can be used to compute
Coker(g) when L1 and L2 are Galois extensions of K. More generally, if F
and L are Galois extensions of K with L ⊂ F , we will describe the map

h : X(F/K) =
K× ∩N(JF )

N(F×)
→ K× ∩N(JL)

N(L×)
= X(L/K)

defined by
xN(F×) 7→ xN(L×).

Given a finite group G and a G-module A, we let Ĥ i(G,A) denote the
ith Tate cohomology group of A, and let Cor, Def, and Rsd denote the
corestriction, deflation(cf. [8]), and residuation (cf. [5]) maps. We consider
Z as a G-module with trivial action. Let Hi(G,A) denote the ith homology
group of A, and identify Hi(G,A) with Ĥ−i−1(G,A) for i ≥ 1 (cf. [3, Ch
IV, §6]). If ϕ : G→ H is a group homomorphism, then ϕ induces a map of
standard complexes which induces a map of homology groups

ϕ∗ : Hi(G,Z)→ Hi(H,Z)

(cf. [3, p. 99]). When A = Z, the corestriction and residuation maps can both
be interpreted as induced maps in this sense.

Proposition 4. Let i ≥ 1 and identify Hi(−,Z) with Ĥ−i−1(−,Z).

1) If G′ is a subgroup of G and ι : G′ → G is the canonical inclusion map,
then

CorGG′ : Hi(G
′,Z)→ Hi(G,Z)

is equal to ι∗.

2) If H is a quotient of G and π : G→ H is the canonical projection map,
then

RsdGH : Hi(G,Z)→ Hi(H,Z)

is equal to π∗.
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Proof. This follows from the definitions of the corestriction and residuation
maps given in [3, p. 99] and [5]. �

Let G = Gal(F/K) and H = Gal(L/K). For each valuation v of K, let Hv

and Gv be the decomposition groups of compatible fixed extensions of v to L
and F respectively. Let ιvG : Gv → G and ιvH : Hv → H denote the canoncial
inclusion maps, and let π : G→ H and πv : Gv → Hv denote the canonical
projection maps. We note that ιvH ◦ πv = π ◦ ιvG, and that the construction
of induced maps is functorial so the following is a consequence of Proposition
4.

Corollary 5. For i ≥ 1 and A = Z,

CorGGv = (ιvG)∗, CorHHv = (ιvH)∗, RsdGH = π∗ and RsdG
v

Hv = πv∗ .

Moreover, the diagram

H2(Gv,Z)
CorGGv−−−−→ H2(G,Z)

RsdGv

Hv

y RsdG
H

y
H2(Hv,Z)

CorHHv−−−−→ H2(H,Z)

commutes.

Lemma 6. The diagram

(1)

⊕
vH2(Gv,Z)

∑
v CorGGv−−−−−−→ H2(G,Z)

(RsdGv

Hv)
y RsdG

H

y⊕
vH2(Hv,Z)

∑
v CorHHv−−−−−−→ H2(H,Z)

commutes. Let

γF =
∑
v

CorGGv and γL =
∑
v

CorHHv .

Then h can be identified with the map

RF/L : Coker(γF )→ Coker(γL)

induced by RsdGH .
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Corollary 7. g can be identified with the map

RL/L1
×RL/L2

: Coker(γL)→ Coker(γL1
)× Coker(γL2

).

Proof of Lemma 6. Both parts of the lemma are proved in [5, §4]. For com-
pleteness, we reproduce the argument here. The reader may find it helpful
to consult the properties of the deflation and residuation maps described in
[7, §3] and to compare the following with the proof of proposition 5 of [7].

Let CL and CF denote the idele class groups of L and F respectively, and
identify H with the quotient G/Gal(F/L). Since the Gal(F/L)-fixed points
of

(2) 1→ F× → JF → CF → 1

form the short exact sequence

(3) 1→ L× → JL → CL → 1,

we have the following commutative diagram with exact rows coming from
the long exact sequences in cohomology corresponding to the short exact
sequences (2) and (3).
(4)
Ĥ−1(G, JF )

αF−−−−→ Ĥ−1(G,CF ) −−−−→ Ĥ0(G,F×)
κF−−−−→ Ĥ0(G, JF )yDefGH

yDefGH
yDefGH

yDefGH

Ĥ−1(H,JL)
αL−−−−→ Ĥ−1(H,CL) −−−−→ Ĥ0(H,L×)

κL−−−−→ Ĥ0(H,JL).

Recall that

X(L/K) =
K× ∩NL/K(JL)

NL/K(L×)
= Ker

(
K×

NL/K(L×)
→ JK

NL/K(JL)

)
= Ker(κL).

Similarly, X(F/K) = Ker(κF ), so we can identify h with the deflation map

DefGH : Ker(κF )→ Ker(κL).

Using (4) we identify this with the map

D : Coker(αF )→ Coker(αL)

induced by
DefGH : Ĥ−1(G,CF )→ Ĥ−1(H,CL).
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Next, we apply the isomorphisms

ΦG : Ĥ−1(G,CF ) ' Ĥ−3(G,Z) = H2(G,Z)

and

ΨG : Ĥ−1(G, JF ) '
⊕
v

Ĥ−1(Gv, F×v ) '
⊕
v

Ĥ−3(Gv,Z) =
⊕
v

H2(Gv,Z)

(cf. [3, Chapter 7]), together with the the corresponding isomorphisms
for H, to the groups in the left half of (4). The discussion in [3, p. 198] tells
us that the diagrams

Ĥ−1(G, JL)
αL−−−−→ Ĥ−1(G,CL)

ΨG

y ΦG

y⊕
vH2(Gv,Z)

γL−−−−→ H2(G,Z)

and

Ĥ−1(H,JF )
αF−−−−→ Ĥ−1(H,CF )

ΨH

y ΦH

y⊕
vH2(Hv,Z)

γF−−−−→ H2(H,Z)

commute, and Theorem 1 in [5] tells us that

Ĥ−1(G,CF ) −−−−→
ΦG

H2(G,Z)yDefGH RsdG

H

y
Ĥ−1(H,CL)

ΦH−−−−→ H2(H,Z)

commutes, so these isomorphisms transform

Ĥ−1(G, JF )
αF−−−−→ Ĥ−1(G,CF )yDefGH

Ĥ−1(H,JL)
αL−−−−→ Ĥ−1(H,CL)

into

⊕
vH2(Gv,Z)

γF−−−−→ H2(G,Z)

RsdG
H

y⊕
vH2(Hv,Z)

γL−−−−→ H2(H,Z)

Thus, we can identify D with RL/F . Finally, Corollary 5 tells us that (1) is
commutative. �

Next we give modified versions of Lemma 6 and Corollary 7 which are
more useful for computations by using two different descriptions of the Schur
multiplier H2(−,Z).



554 Timothy P. Pollio

Let G be a finite group. Following [2, I.3], we define M(G) to be the
group given by the Schur-Hopf formula,

M(G) :=
R ∩ [F, F ]

[R,F ]
,

where
1→ R→ F → G→ 1

is any free presentation of G. As discussed in loc. cit., the isomorphism
class of M(G) is independent of the choice of free presentation, and M(−)
becomes a functor from groups to abelian groups once we choose a fixed free
presentation for each group G.

Lemma 8. For each finite group G there is an isomorphism H2(G,Z) '
M(G). These isomorphisms can be chosen such that for all homomorphisms
of finite groups ϕ : G→ H, the natural diagram

H2(G,Z)
ϕ∗−−−−→ H2(H,Z)

'
y '

y
M(G)

M(ϕ)−−−−→ M(H)

commutes.

Proof. This follows from Proposition 5.5 of [2, p. 51]. �

Lemma 9. The diagram

(5)

⊕
vM(Gv)

∑
v M(ιvG)

−−−−−−→ M(G)

(M(πv))

y M(π)

y⊕
vM(Hv)

∑
v M(ιvH)

−−−−−−→ M(H)

commutes. Let

δF :=
∑
v

M(ιvG) and δL :=
∑
v

M(ιvH).

Then h can be identified with the map

SF/L : Coker(δF )→ Coker(δL)

induced by M(π).
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Proof. We obtain (5) by applying Lemmas 4 and 8 to (1). This proves the
commutivity of (5) and allows us to identify RF/L with SF/L. �

Corollary 10. g can be identified with the map

SL/L1
× SL/L2

: Coker(δL)→ Coker(δL1
)× Coker(δL2

).

The exterior square of a finite abelian group G is defined as

G ∧G := G⊗G/〈g ⊗ g|g ∈ G〉.

Lemma 11. If G is abelian, then M(G) is naturally isomorphic to G ∧G.
That is, for every homomorphism of finite abelian groups ϕ : G→ H there is
a commutative diagram of the form

M(G)
M(ϕ)−−−−→ M(H)

'
y '

y
G ∧G ϕ∧ϕ−−−−→ H ∧H

where ϕ ∧ ϕ is the map induced by ϕ⊗ ϕ.

Proof. This follows from 4.5 and 4.7 in [2, I.4]. �

Lemma 12. The diagram

(6)

⊕
v G

v ∧Gv
∑

v ι
v
G∧ιvG−−−−−−→ G ∧G

(πv∧πv)

y π∧π
y⊕

vH
v ∧Hv

∑
v ι

v
H∧ιvH−−−−−−→ H ∧H

commutes. Let

εF :=
∑
v

ιvG ∧ ιvG and εL :=
∑
v

ιvH ∧ ιvH .

Then h can be identified with the map

TF/L : Coker(εF )→ Coker(εL)

induced by π ∧ π.
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Proof. We obtain (6) by applying Lemma 11 to (5). This proves the commu-
tivity of (6) and allows us to identify SF/L with TF/L. �

Corollary 13. g can be identified with the map

TL/L1
× TL/L2

: Coker(εL)→ Coker(εL1
)× Coker(εL2

).

3. The Second Obstruction

We begin this section by constructing an exact sequence that contains the
map

f : X(L1/K)×X(L2/K)→X(L1, L2/K)

defined by (
xN(L×1 ), yN(L×2 )

)
7→ xy−1N(L×1 )N(L×2 ).

Proposition 14. If L1, L2 is a pair of finite extensions of K, then there is
an exact sequence of the form

(7) 1→ K× ∩N(JL1
) ∩N(JL2

)

N(L×1 ) ∩N(L×2 )
→X(L1/K)×X(L2/K)

f→

X(L1, L2/K)→ JK
K× (N(JL1

) ∩N(JL2
))
→

JK
K×N(JL1

)
× JK
K×N(JL2

)
→ JK

K×N(JL1
)N(JL2

)
→ 1.

We can think of this as a generalization of Proposition 1 in [7]. The proof
of Proposition 14 uses the following elementary lemma.

Lemma 15. Let A be an abelian group with subgroups B and C. The
sequence

1 −→ A
A∩ B

ϕ−→ A
B
× A
C

ψ−→ A
BC
−→ 1,

where ϕ and ψ are defined by

ϕ(xA ∩ B) = (xB, xC) and ψ(xB, yC) = xy−1BC,

is exact.
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Proof of Proposition 14. We obtain the commutative diagram

1 −−−→ K×

N(L×1 )∩N(L×2 )
−−−→ K×

N(L×1 )
× K×

N(L×2 )
−−−→ K×

N(L×1 )N(L×2 )
−−−→ 1y y y

1 −−−→ JK

N(JL1 )∩N(JL2 ) −−−→
JK

N(JL1 ) ×
JK

N(JL2 ) −−−→
JK

N(JL1 )N(JL2 ) −−−→ 1

by applying Lemma 15 twice. The top row corresponds to A = K×, B =
N(L×1 ), and C = N(L×2 ), while the bottom row corresponds to A = JK , B =
N(JL1

), and C = N(JL2
). The vertical maps are induced by the inclusion

K× → JK . Applying the snake lemma to this diagram gives (7). �
It follows from the exactness of (7) that

(8) X2(L1, L2/K) ' K×N(JL1
) ∩K×N(JL2

)

K×(N(JL1
) ∩N(JL2

))
.

We give an upper bound for the order of X2(L1, L2/K) by using class
field theory to estimate the order of this quotient. For a global field F , we
let CF denote the idele class group of F .

Lemma 16. Let L1, L2 be a pair of finite extensions ofK, and let L = L1L2.
If Mi is the maximal abelian subextension of Li/K, and M is the maximal
abelian subextension of L/K, then

|X2(L1, L2/K)| ≤ [M : K]

[M1M2 : K]
.

In particular, if M = M1M2, then the second obstruction is trivial.

Proof. Clearly N(JL) ≤ N(JL1
) ∩N(JL2

), so it follows from (8) that
X2(L1, L2/K) is isomorphic to a quotient of

(9)
K×N(JL1

) ∩K×N(JL2
)

K×N(JL)
' N(CL1

) ∩N(CL2
)

N(CL)
.

According to [3, Exercise 8],

N(CL) = N(CM ), N(CLi
) = N(CMi

),

by [1, p. 55],
N(CM1

) ∩N(CM2
) = N(CM1M2

),
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and by [3, p. 172 Theorem 5.1 B],

[CK : N(CM )] = [M : K] and [CK : N(CM1M2
)] = [M1M2 : K],

so

|X2(L1, L2/K)| ≤
∣∣∣∣N(CL1

) ∩N(CL2
)

N(CL)

∣∣∣∣ =

∣∣∣∣N(CM1M2
)

N(CM )

∣∣∣∣ =
[M : K]

[M1M2 : K]
.

�

Another approach to the second obstruction is to consider the map

ϕ : JL1
/L×1 NL/L1

(JL)× JL2
/L×2 NL/L2

(JL) −→ JK/K
×NL/K(JL)

induced by the product of norm maps NL1/K and NL2/K as in [6] and [7].

Lemma 17. If ϕ is injective, then

(10) K× ∩N(JL1
)N(JL2

) = (K× ∩N(JL))N(L×1 )N(L×2 ).

In particular, X2(L1, L2/K) = {1}.

Proof. See the proof of Lemma 3 in [7]. �

Corollary 18. If L1 ⊂ L2 and ϕ is injective, then the natural map

X(L2/K)→X(L1/K)

is surjective.

Proof. In this case, (10) takes the form

K× ∩N(JL1
) = (K× ∩N(JL2

))N(L×1 ).

�

Lemma 3 of [7] says that ϕ is a bijection if L1, L2 is a pair of linearly
disjoint Galois extensions of K. This result can be strengthened as follows.

Lemma 19. Let L1, L2 be a pair of Galois extensions of K, let L = L1L2

and E = L1 ∩ L2, and let (−)ab denote the abelianization functor. ϕ is injec-
tive iff the natural map Gal(L/E)ab → Gal(L/K)ab is injective. In particular,
ϕ is injective whenever L1 and L2 are both abelian extensions of K.
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Proof. We can factor ϕ as

JL1
/L×1 NL/L1

(JL)× JL2
/L×2 NL/L2

(JL)
ϕ0−→ JE/E

×NL/E(JL)
NE/K−→

JK/K
×NL/K(JL),

where ϕ0 is induced by the product of the norm maps NL1/E and NL2/E .
L1, L2 is a pair of linearly disjoint Galois extensions of E, so ϕ0 is an iso-
morphism. It follows that ϕ is injective iff NE/K is injective. Since the Tate
isomorphisms commute with corestriction [3, p. 197], there is a commutative
diagram

JE/E
×NL/E(JL)

NE/K−−−−→ JK/K
×NL/K(JL)y' y'

Gal(L/E)ab −−−−→ Gal(L/K)ab

and the claim follows. �

4. Proof of Theorem 1

Let L1, L2 be a pair of finite abelian extensions of K, let L = L1L2, and let
E = L1 ∩ L2. We begin the proof of Theorem 1 by computing Coker(g).

Lemma 20.
Coker(g) 'X(E/K).

Let G, Gi, and GE denote the Galois groups Gal(L/K), Gal(Li/K), and
Gal(E/K) respectively, and let Gv, Gvi , and G

v
E denote the decomposition

groups of (compatible) fixed extensions of v to the fields L, Li, and E.
Let πi : G→ Gi, ρ : G→ GE , ρi : Gi → GE , and ρvi : Gvi → GvE denote the
canonical projection maps, and let ιv : Gv → G, ιvi : Gvi → Gi, and ιvE : GvE →
GE denote the canonical inclusion maps.

By Lemma 12 and Corollary 13 there are commutative diagrams

(11)

⊕
v G

v ∧Gv εL−−−−→ G ∧Gy πi∧πi

y⊕
v G

v
i ∧Gvi

εLi−−−−→ Gi ∧Gi

Li

y ρi∧ρi
y⊕

v G
v
E ∧GvE

εE−−−−→ GE ∧GE
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for i = 1, 2 where

εL =
∑
v

ιv ∧ ιv, εLi
=
∑
v

ιvi ∧ ιvi ,

εE =
∑
v

ιvE ∧ ιvE , and Li =
⊕
v

(ρvi ∧ ρvi ) ,

and we can identify g with the map

T : Coker(εL)→ Coker(εL1
)× Coker(εL2

)

induced by the map

T0 : G ∧G→ (G1 ∧G1)× (G2 ∧G2)

defined by

T0(a ∧ b) =

(
π1(a) ∧ π1(b), π2(a) ∧ π2(b)

)
for a, b ∈ G.

We start by analyzing T0. Given subsets A and B of an abelian group
C, we let A ∧B denote the set of all sums in C ∧ C of the form

∑
i ai ∧ bi

with ai ∈ A and bi ∈ B. Let µ be a fixed section of ρ and define a section µ1

of ρ1 by µ1 = π1 ◦ µ.

Lemma 21.(
µ1(GE) ∧Ker(ρ1), 0

)
= T0

(
µ(GE) ∧Gal(L/L2)

)
,

(
Ker(ρ1) ∧ µ1(GE), 0

)
= T0

(
Gal(L/L2) ∧ µ(GE)

)
,

and (
Ker(ρ1) ∧Ker(ρ1), 0

)
= T0

(
Gal(L/L2) ∧Gal(L/L2)

)
.

Proof. Direct computation. We note that π1(Gal(L/L2)) = Gal(L1/E) =
Ker(ρ1), π2(Gal(L/L2)) = 1, π1(µ(GE)) = µ1(GE), and that g1 ∧ g2 = 0
whenever g2 = 1. �

These identities allow us to compute the cokernel of T0.
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Lemma 22.

Coker(T0) ' GE ∧GE .

Proof. Since Coker(T0) andGE ∧GE are finite groups, it suffices to construct
a surjective homomorphism from each to the other. We define a surjective
homomorphism

P0 : (G1 ∧G1)× (G2 ∧G2)→ GE ∧GE

by

P0(a ∧ b, 0) = ρ1(a) ∧ ρ1(b) and P0(0, c ∧ d) = −ρ2(c) ∧ ρ2(d)

for a, b ∈ G1 and c, d ∈ G2. P0 ◦ T0 = 0, so P0 induces a surjective homomor-
phism

P : Coker(T0)→ GE ∧GE .

To get a homomorphism in the other direction, we first define a set map

S0 : GE ×GE → Coker(T0)

by

S0(e, f) =

(
µ1(e) ∧ µ1(f), 0

)
+ Im(T0)

for e, f ∈ GE . If e1, e2 ∈ GE , then µ1(e1e2)µ1(e1)−1µ1(e2)−1 ∈ Ker(ρ1), so it
follows from Lemma 21 that

S0(e1e2, f)− S0(e1, f)− S0(e2, f) =

(
µ1(e1e2)µ1(e1)−1µ1(e2)−1 ∧ µ1(f), 0

)
+ Im(T0) = 0.

A similar calculation can be done for the second argument, so S0 is bilinear
and induces a homomorphism S : GE ∧GE → Coker(T0). It remains to show
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that S is surjective. Since π2 ∧ π2 is surjective, we have

Coker(T0) =

(
G1 ∧G1, 0

)
+ Im(T0),

and it suffices to show that(
g1 ∧ g2, 0

)
+ Im(T0) =

(
(µ1 ◦ ρ1)(g1) ∧ (µ1 ◦ ρ1)(g2), 0

)
+ Im(T0)

for all g1, g2 ∈ G1. Since

(µ1 ◦ ρ1)(gi)g
−1
i ∈ Ker(ρ1),

for i = 1, 2, this follows from Lemma 21. �

Proof of Lemma 20. Since g can be identified with T and X(E/K) can be
identified with Coker(εE), it suffices to prove that Coker(T ) ' Coker(εE). P
induces a homomorphism

P : Coker(T )→ Coker(εE)

which must be surjective since P is surjective. Since the maps Li in (11) are
surjective, and since P is injective, a short diagram chase shows that P must
also be injective. �

Proof of Theorem 1. By Lemma 16, X2(L1, L2/K) = {1}, so
X(L1, L2/K) = X1(L1, L2/K). According to Lemmas 3 and 20,
X(L1, L2/K) is isomorphic to a quotient of X(E/K). Since both of
these groups are finite, it suffices to show that X(E/K) is isomorphic to a
quotient of X(L1, L2/K). Consider the map

j : X(L/K)→X(L,E/K) = X(E/K)

defined by

xN(L×) 7→ xN(E×).

L,E is a pair of abelian extensions of K, so Lemma 19 and Corollary 18
guarantee that j is surjective. j factors through X(L1, L2/K), so X(E/K)
is a homomorphic image of X(L1, L2/K). �
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5. Examples and Discussion

In this section we describe several applications of the methods developed in
the previous sections and discuss some problems related to the multinorm
principle.

Example 1. If L1, L2 is a linearly disjoint pair of finite Galois extensions
of a global field K, then we can recover the main theorem of [7] by using
the results from §2 and §3 to prove that X(L1, L2/K) = {1}. To prove that
X1(L1, L2/K) = {1}, it suffices to show that

g : X(L/K)→X(L1/K)×X(L2/K)

is surjective. Let G = Gal(L/K), Gi = Gal(Li/K), and let πi : G→ Gi be
the natural projection map. By Corollary 10 it suffices to show that

(12) M(π1)×M(π2) : M(G)→M(G1)×M(G2)

is surjective. Let ιi : Gi → G be the monomorphism corresponding to the
natural identification

Gi = Gal(Li/K) ' Gal(L/L3−i) ≤ G.

Then πi ◦ ιi = idGi
and π3−i ◦ ιi is the trivial homomorphism, so M(πi) ◦

M(ιi) = idM(Gi) whileM(π3−i) ◦M(ιi) is the zero map, and the surjectivity
of (12) follows.

If Mi and M denote the maximal abelian subextensions of Li/K and
L1L2/K respectively, thenM = M1M2, so X2(L1, L2/K) = {1} by Lemma
16.

Example 2. In light of Theorem 1, it is natural to ask what can be said
about the multinorm principle for n-tuples of abelian extensions. Unfortu-
nately, the conclusion of Theorem 1 can fail for n ≥ 3. That is, there are
n-tuples of abelian extensions which do not satisfy the multinorm principle
even though their intersection satisfies the norm principle. For example, if
K = Q, L1 = Q(

√
13), L2 = Q(

√
17), and L3 = Q(

√
13 · 17) are the exten-

sions from Example 2 in [7], then

X(L1, L2, L3/K) :=
K× ∩N(JL1

)N(JL2
)N(JL3

)

N(L×1 )N(L×2 )N(L×3 )
' Z/2Z
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even though L1 ∩ L2 ∩ L3 = K. (So L1 ∩ L2 ∩ L3/K trivially satisfies the
norm principle.)

One of the key ingredients in our proof of Theorem 1 is the fact that the
map

f : X(L1/K)×X(L2/K)→X(L1, L2/K)

defined in §1 is surjective for every pair of abelian extensions. We can define
analogous maps for n ≥ 3, but we cannot get surjectivity for all families of
extensions. For example, the map

X(L1/K)×X(L2/K)×X(L3/K)→X(L1, L2, L3/K)

defined by(
xN(L×1 ), yN(L×2 ), zN(L×3 )

)
7→ xyzN(L×1 )N(L×2 )N(L×3 )

is not surjective for the extensions in Example 2 since each individual exten-
sion satisfies the norm principle and all of the groups X(Li/K) are trivial.
It does not help to add other Tate-Shafarevich groups to the domain. For
example, the natural mapX(L1L2/K)→X(L1, L2, L3/K) factors through
X(L1/K), so incorporating it into the definition above does not enlarge the
image.

Another generalization of f is the map

f3 : X(L1/K)×X(L2, L3/K)→X(L1, L2, L3/K)

defined by

(xN(L×1 ), yN(L×2 )N(L×3 )) 7→ xy−1N(L×1 )N(L×2 )N(L×3 ).

We can construct an exact sequence analogous to (7) that contains f3 by
adapting the proof of Proposition 14, but this is rarely sufficient to compute
X(L1, L2, L3/K). The domain is trivial for the extensions of Example 2, so
f3 can also fail to be surjective.

Example 3. If L1, L2 is a pair of finite extensions of a global field K, let us
say that L1, L2 satisfies the intersection principle if

K× ∩N(JL1
) ∩N(JL2

) = N(L×1 ) ∩N(L×).
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The obstruction to this local-global principle is given by

X∩(L1, L2/K) :=
K× ∩N(JL1

) ∩N(JL2
)

N(L×1 ) ∩N(L×)
.

This group naturally arises as the first nontrivial term in (7), and we can
truncate (7) to obtain the short exact sequence
(13)

1→X∩(L1, L2/K)→X(L1/K)×X(L2/K)→X1(L1, L2/K)→ 1.

One possibility this suggests is that we may be able to learn about the
first obstruction indirectly by studying the intersection problem. On the
other hand, we can use (13) to determine if the intersection principle holds
whenever we understandX1(L1, L2/K). In particular, we have the following
corollaries to the main theorem of [7] and Theorem 1 of this paper.

Corollary 23. If L1, L2 is a pair of finite separable extensions of K with
linearly disjoint Galois closures, then

X∩(L1, L2/K) 'X(L1/K)×X(L2/K).

Corollary 24. If L1, L2 is a pair of finite abelian extensions of K, then

|X∩(L1, L2/K)| = |X(L1/K)||X(L2/K)|
|X(L1 ∩ L2/K)|

.

Example 4. The map ϕ defined in §3 may fail to be injective even if
E = L1 ∩ L2 is a cyclic extension ofK. LetK = Q, L1 = Q(i, 21/4), and L2 =
Q(
√

2,
√

3). Then L = Q(i, 21/4,
√

3) and E = Q(
√

2). Let G = Gal(L/K),
let H = Gal(L/E), let τ ∈ H be the automorphism defined by complex con-
jugation, and let σ ∈ G be the automorphism which sends 21/4 to i21/4

and fixes i and
√

3. Then H = Hab and [σ, τ ] is a non-trivial element of
Ker(Hab → Gab), so it follows from Lemma 19 that ϕ is not injective.
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