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On Character Sheaves and Characters of
Reductive Groups at Unipotent Classes
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Abstract: With a view to determining character values of finite
reductive groups at unipotent elements, we prove a number of
results concerning inner products of generalised Gelfand-Graev
characters with characteristic functions of character sheaves, here
called Lusztig functions. These are used to determine projections
of generalised Gelfand-Graev characters to the space of unipotent
characters, and to the space of characters with a given wave front
set. Such projections are expressed largely in terms of Weyl group
data. We show how the values of characters at their unipotent
support or wave front set are determined by such data. In some
exceptional groups we show that the projection of a generalised
Gelfand-Graev character to a family with the same wave front set
is (up to sign) the dual of a Mellin transform. Using these results,
in certain cases we are able to determine roots of unity which relate
almost characters to the characteristic functions. In particular we
show how to compute the values of all unipotent characters at all
unipotent classes for the exceptional groups of type G, Fy, Eg,
2F¢, E; and Fg by a method different from that of [L86] [K2]; we
therefore require weaker restrictions on p and ¢q. We also provide
an appendix which gives a complete list of the cuspidal character
sheaves on all quasi-simple groups.

Keywords: Reductive group, character sheaf, Gelfand-Graev.

1. Introduction

Let G be a connected reductive algebraic group over a field of positive
characteristic p. We shall generally assume that p is “sufficiently large”,
which will often mean “larger than the Coxeter number of the associated
Weyl group”. Let F' be a Frobenius morphism defining a rational structure
on G over the finite extension F, of the finite field [, with p elements. We
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shall be be concerned with the irreducible characters of the finite group of
fixed points G¥" over the field Q,, where £ is a prime different from p. The
purpose of this work is to contribute to the determination of the values of
the irreducible characters of G at unipotent elements of G, In addition,
we include, as an appendix ( a classification of the cuspidal character
sheaves for quasi simple groups G, which is complete up to a small number
of ambiguities. This classification is essentially due to Lusztig [L85], but we
provide a list, conveniently arranged, of cuspidal character sheaves for each
isogeny type of quasi-simple group. Specifically, we give a discussion of the
series of classical type in Appendix and tables for the exceptional groups
in Appendix §C]

The irreducible characters of GI" are partitioned into subsets in various
ways. The cuspidal character sheaves on Levi subgroups of G lead to a clas-
sification into “Harish-Chandra type” series, whose constituents are labelled
by (twisted) characters of an appropriate Coxeter group. Each character of
G! has a wave front set and a unipotent support, both of which are (geo-
metric) unipotent conjugacy classes of G, and belongs to a ‘Lusztig series’.
The Lusztig series are further partitioned into families. Our results relate
principally to certain classes of characters which are described in terms of
these partitions.

The notion of determination of a value requires explanation. Lusztig has
shown that the space C(G') of class functions on G has an orthonor-
mal basis consisting of the characteristic functions of F-invariant simple
G-equivariant perverse sheaves on (. Such functions will be referred to as
Lusztig functions, and we consider their values known by the work of Lusztig
IL85]. Further, it was shown in [S1},[S2, [S3| [S4], Bl (W] that with certain qual-
ifications, the Lusztig functions coincide with ‘almost characters’ (see §6)) up
to multiplication by a root of unity. Since the transition from almost charac-
ters to irreducible characters is known, it follows that determination of this
root of unity implies the determination of the values of certain characters.

Our main results are as follows.

In §2| we complement [DLM3] by giving an expression for the character-
istic function of an arbitrary unipotent class in terms of duals of generalised
Gelfand-Graev characters, and as a consequence deduce some results con-
cerning the support of these duals. The special cases of the regular and
subregular classes are spelled out explicitly. We also give a formula for the
value of any irreducible character at any element of its unipotent support.
In §3, we provide some background on character sheaves and families, and
define Lusztig series and the wave front set in a way suitable for our purpose.
In we determine the multiplicity of an irreducible character y of G in
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the Mellin transform I', of the generalised Gelfand-Graev characters, when
¢ is in the principal series, in terms of the Lusztig series of x. This is applied
to special cases such as subregular y, where explicit formulae may be given.

Section [4] provides a general study of the restriction to the unipotent
set of Lusztig functions, which are defined as characteristic functions of F-
stable character sheaves, and applications to the determination of various
multiplicities. The restriction to GE . of the Lusztig function x E,.on (sce
is given (Theorem and Lemma in terms of Weyl group data and
Green functions. This is applied in Theorem to give the inner product
of a Lusztig function with a generalised Gelfand-Graev character. These
results are applied to prove vanishing theorems for inner products, and in
Corollary [4.1§] to give an explicit expression for the projection of I, to the
space spanned by the characters with given wave front set in terms of Weyl
group data. In §5|this is applied to show that when the wave front set above
is the support of ¢, then the projection to the unipotent characters of the
above projection is precisely a Lusztig function, up to sign. This explains
phenomena which had been observed in several examples earlier. We also
show how the inner product of any irreducible character with I', may be
expressed in terms of its inner products with Lusztig functions.

Section [0] treats a special situation which applies in the cases when G
is of type Ga, Fy or FEg. In this situation, we are able to determine the root
of unity which relates the almost characters to the Lusztig functions, by an
analysis which uses the Mellin transforms (see Definition of the charac-
ters in a family. Specifically we compute (¢f. Theorem the projection of
a generalised Gelfand-Graev character to the space space spanned by a fam-
ily with the same wave front set. In the last paragraph of it is explained
how this permits the computation of character values.

Finally, as mentioned above, in Appendices [A][B] and [C] we present a
complete classification of the cuspidal character sheaves on all quasi-simple
groups G.

2. Characteristic functions and generalised Gelfand-Graev
Characters.

We maintain the notation of [DLM3]|, which we now briefly review. Con-
sider pairs ¢ = (C,(), where C is a unipotent class of G and ( is a G-
equivariant irreducible Q-local system on C; C' is said to be the support
of the pair and may also be written C,. Set a, = |A(u)| for u € C, where
A(u) = Cg(u)/C&(u). Each such pair belongs to a cuspidal pair on a Levi
subgroup L of G, and all pairs belonging to a given cuspidal system form
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a block Z; we also denote L by Lz. When 7 is F-stable we may choose the
cuspidal data to be F-stable and we let ny, = (—1)semisimple Fy-rank of L

Suppose X is an algebraic variety over Fq, with an F,-structure embod-
ied in the Frobenius morphism F : X — X. If x is a complex of Q,-sheaves
on X and we are given an isomorphism ¢ : F*y — x, then this data per-
mits the definition (see [DLM3| §2]) of a function ¢, : X — Qy, called the
characteristic function of the pair y, ¢, where as usual, X" denotes the set
of F-stable points of X. For an F-stable pair ¢+, we denote by ), the charac-
teristic function of ¢ and by X, the characteristic function of the correspond-
ing intersection cohomology complex. Writing ¢, = %(codim C —dim Zy,), we
define the normalisations )N)L =q¢“), and A?L = ¢ X, of Y, and Z, respectively.
Define a partial order on pairs by stipulating ¢ < k if the pairs are in the
same block and C, C C,. We have X, = Y w<y Pr, Vi for some Py, € Zql;
we deﬁn(i P, =0 W~hen~ Kk £ t, and the normalised version fjm =q“ P,
so that X, =", ., Pe, Ve-

The fixed point set C¥ splits into G¥-classes indexed by the set
HY(F, A(u)) of F-classes in A(u), where u is any (chosen) element of C'*".
For a € A(u) we denote by u, a representative of the Gf-class defined by
the F-class of a, and denote by I',, the Generalised Gelfand-Graev char-
acter attached to the Gf-class of u,. We let T', = ZaeA(u) V.(ug)Ty, and

define the normalisation T', = a;1¢zT,, where (7 is the fourth root of unity
attached by Lusztig to a block Z (see [L92bl, 7.2]). Finally we denote by D (or
Dg when appropriate) the Alvis-Curtis duality operation on C(Gf") and by
f = f* the operation on Laurent polynomials in q such that f*(q) = f(¢7!).
Note that we refer to the I', as the ‘Mellin transforms’ of the I';,_; this should
not be confused with the ‘Mellin transforms’ defined in Definition [6.3] below.

For 7 an F-stable block the sets (),),ezr, (X.),ezr and (T',),czr are three
bases of the same space Cz(G!") of unipotently supported class functions.
This space is stable under Alvis-Curtis duality and two such spaces attached
to different blocks are orthogonal.

Let x(») be the normalised characteristic function of the class in GF of
an element x, i.e., the function whose value is zero outside this class and
|Ca(2)¥| on the class. The following result is a variation on [Gl, Lemma 2.5,
Cor 2.6], which we shall require below.
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Theorem 2.1. Let u be a rational unipotent element. Then the normalised
characteristic function of the G -class of u is given by

(2.2) X(u) = ZTZLICZ Z yL Z cql(ﬁ(]}")’l)le“7
LELF >
yELF

where I runs over the rational blocks and P is the matriz whose (¢,7y) entry
is the polynomial P, .

Note that the sum in the theorem is over those blocks which contain a
local system whose support is the class of u.

Proof. We shall find coefficients m, , such that the set of functions (f, =
>, muyDLy) is the basis of the space Cuni(GT) of unipotently sup-
ported class functions dual to the basis ()),) for the usual inner product

(f,f )ar on class functions. It will then follow that x(,) =), V(u)f, =
S, Vi(u) ¥, m,, DL

The coefficients m,, are determined by the equations
> mW<DF7,yA>GF =J,). By orthogonality of the spaces Cz(GF)
for different blocks, we have m, , = 0 unless ¢ and ~y are in the same block.
For any total order extending < the matrix P“, is upper unitriangular,
thus invertible; using y)\ —Znez Pn )\X where P/ < are the entries of
the matrix ﬁ_l, we get (DT, D\ )ar =3 Pl;)\<DF , X Vgr if A and
~ are in the same block Z, and the inner product is 0 otherwise So
by [DLM3| proof of 6.2] we get (DI, V\)ar =3, Pl nL,a.(7 P,
and the equations for the m,,, when ¢ and 7 are in a block Z, are
Z m, 717LICL,YCI Do P;A pPr = =0, As Y PPy, is the (v, A) entry of
PP 1 this can be ertten in matrlx terms as follows, M being the matrix
with entries m, 4:

M a PP~ =, (o,

where [ is the unit matrix. Hence

My = a5 'L G (P(PY) ™).y,

as stated. O
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Scholium 2.3. For any rational unipotent element u the (virtual) character
D¢gTy, is supported by unipotent classes greater than or equal to the class of
U.

Proof. Let C be the geometric class of u. The statement is equivalent to the
analogous support property for the functions Dg(T",) for all ¢« supported by
C'. Using the triangular shape of the matrices (131;)\) and (ﬁ,’;/\) it follows
from the proof of Theorem that <DF7,3~)>\>GF is zero unless v < A,
Since the characteristic function of the GF-class of a unipotent element w is
a linear combination of Y, with A running over pairs with support C, the

result follows. O

The last statement is also a consequence of the following result.

Corollary 2.4. With notation as in Theorem |2.1}, we have

(2.5) Xw= >, AT Y c(u,va)Daly,,

{CCGlueC} acA(C)

where C' runs over the unipotent classes, A(C) = A(v) for v € C and v, €
CT corresponds to a € A(C), and

c(u,va) = Y iz G Vr(u) P(P) ™ Vr(va),

TepPr

and Yz (u) denotes the column vector with entries Y,(u) where ¢ runs over

7.

Proof. We substitute the relation I'y =3~ c 4, Vy(va)Iw, into equation
(2.2) and rearrange. O

Scholium follows from the above statement by simply inverting the
equation for ().

Now we specialise Theorem to the case of a regular unipotent class;
let I'Z be the orthogonal projection of I', onto the space Cz(GF') and write
cz(u) for the common value of ¢, for ¢ € Z whose support contains u:

Corollary 2.6. Ifu is a rational reqular unipotent element, then

Xw) = D ", Crq* ™ DIL,
T

where the sum is over the reqular blocks (those blocks containing a pair whose
support is the regular unipotent class).
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Proof. Since the matrix Pis unitriangular and the diagonal blocks attached
to local systems with a given support are identity submatrices, formula
reduces to:

X(u) = ZULICI Z jJVL(u)aL_lDFL.
7

{LteZ¥|C,5u}
Now substitute the value I'Z = > (eTF|C, 5} Y. (u)a; T, given in [DLM3,
lemma 6.3] to obtain the result. ]

The corresponding result for subregular elements is

Corollary 2.7. If u is a rational subregular unipotent element

X = > Mg ™MDIE+ (¢ =q) > Ni(w)V.,(v)DI]],

T {te€Z|C,Du and
L is standard}

where v is any reqular rational unipotent element, 11 is the pair in I labelled

via the Springer correspondence by the trivial representation, and where
“standard” has the sense of [DLMS3, proposition 7.1].

The sum above may be restricted to the blocks which contain a local
system supported by the subregular class.

Proof. Let ¢« be a pair with subregular support; [DLM3] proposition 7.1]

states (once a misprint g for ¢~! is corrected in (i)) that if ¢ is standard then
—1 .
~ q ify=u

vy = _and otherwise P, y = ¢, . In the first case we can
0, otherwise

L q
0 1
P so that it is upper unitriangular and ¢ indexes the last line. 1;he lower
right block of P(P*)~! in the two respective cases is then (1 O q) or

0 1
(1)-
Using these values, formula [2.2] reduces to:

arrange the matrix P so that it is upper unitriangular and the lower right

corner, indexed by ¢ and ¢y, is . In the second case we can arrange

Vi (u) V(u), _
X(u) = ZULICI( Z La DT, + Z ;—(q '—¢)Dr,).
z {LeZ¥|C,u} ¢ {L€Z|C,5u and “
¢ is standard}

The first term in the sum can be transformed as in Corollary If we
take into account that there is at most one regularly supported local system
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in a block (see [DLM2, 1.10]), which in this case we take to be ¢y, then
DIrf =Y, (v)a;' DI, which yields a,; ! DT, = Y, (v)DI' since Y, (v) is a
root of unity because A(v) is commutative. The second term is now as in
the statement of the corollary . O

We now look at the leading term in the formula (2.2), i.e., the term
indexed by < such that u is in the support of ~.

Theorem 2.8. (cf. [Gl, §2.4]) If v is a rational unipotent element and v a
rational pair such that C, > v, we have

DI, (v) = [A()|I(Ca()*) iz ta™ Vulw),
where I denotes the block of ¢.

Proof. Assume that v is a rational unipotent element in the same geometric
class as u. Since in the only terms which do not vanish are those where
C, 3 u, thus C, 3 v, and since DI'y(v) = 0 when v > ¢ and since the diagonal
blocks in P pertaining to pairs with the same support are identity matrices,
we get

(2.9) X)) = [Car (W0, ) = > _m.lz Y Vi(u)a; ' DT, (v).
T LELF

We now use the orthogonality relation [DLM3| (4.2)] for the ), which can
be written

D AT V() Yy (u) = 6,4,
@

where (u) runs over the rational classes contained in C,. Multiplying both
sides of the rightmost equation in (2.9) by |A(u)¥|7'Yy(u) and summing
over (u) we get

[A@) 71 Y5(0)|Car (v)] = nLo¢z¢* a5 DL (v),

whenever C, > v, whence the theorem. O

The following corollary, which may be found in [Gl 2.4(a)], is also a direct
consequence of the formulas in the proof of Theorem [2.1]

Corollary 2.10. Let ¢ and v be two pairs with same support; then

0 ife#y

(DL, Yy )gr = _ .
o anL ;e ift=y€T
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Proof. By Theorem [2.8] we have

(DL, Yy)ar =IGI7H Y DLL(0)Ys(0) =

vE(supp ) ¥

IGTT Y AW@AW) T Car (0)lne Gz ta Vu(0) Y5 (),

vE(supp ) ¥
where 7 is the block containing ¢. The last sum reduces to
Y G e V(ua) Yy (ua)
acA(v)

where u, is a representative of the rational conjugacy class in C, parame-
terised by a, given the choice of v € C,. Applying the orthogonality formula
[DLMS3,, (4.2)], we obtain the result. O

Remark 2.11. If we apply the above theorem to a regular unipotent ele-
ment we recover formula [DLM2] 2.1].

Let us now compute the value of an irreducible character on its “unipotent
support” (see Definition [3.5)). The following proposition generalises [DLMI],
3.15.4].

Proposition 2.12. Let x be an irreducible character and v a rational
unipotent element such that { x, DTy )gr = 0 for any u in a conjugacy class
strictly larger than the conjugacy class of v, then

X() =D m. G ¢ (x, DIY gr
A

Proof. We have x(v) = (X, X(v) )ar- By Theorem this is equal to

ZULICEI Z yb(v)Za;l(ﬁ(P*)_l)L,WUODF7>GF-
T

LETF y>u

In this formula, if ¢ € Z yields a non-zero summand, then C, 3 v and as
v > t, the inner product in the sum is zero unless v = ¢. Hence we have

x()=>7 nLICfl Y oerr 37L(v)a;1<x, DT, )gr, which can be written

Y oGt (et Y V()DL er,
7

LETF

which completes the proof. [l
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3. Character sheaves, wave front set, Lusztig series and
Families

We begin with some background.

3.1. Character sheaves

These arise as follows. Our notation is similar to that in [L92b] and [AA],
with some significant departures. Let L be a Levi subgroup of G and let ¢f, :=
(C,€) be a cuspidal local system in L/Z%(L), where C is a conjugacy class
of the latter group and ¢ is a local system on C. Let S be a Kummer local
system on the torus L/[L, L]. We may then form the local system .y X S on
L/Z°L) x L/[L, L]. The pullback of this local system under the map L —
L/Z°(L) x L/[L, L] is supported on ¥ := Z°(L)C, and we denote it by ¢, ®
S, where (1, and S are respectively the pullbacks of ¢ and S. The intersection
complex extension IC(¢, ® §)[dim X] is then a cuspidal character sheaf [L85]
3.12] [L84b), 2.5], and it is known [L12] that this intersection complex is clean,
and that therefore is supported on ¥, and is equal to ¢, ® S[dim X] there.

We may now form the induced character sheaf (cf. [L85, (8.1.2),
p. 237]), referred to as K in loc. cit.,, but which we shall also write
Ind€ ((1p, ® S)[dim X]). Lusztig has shown [L.84b] 3.4] that End(Ind€ (1, ®
S)[dimX])) ~ A, a finite dimensional Q,-algebra, isomorphic to a twisted
group algebra of Wg(L,,,S), the subgroup of the relative Weyl group
Wea (L) = Ng(L)/L which fixes the Kummer system S on L, as well as the
cuspidal pair ¢y, described above.

It follows that

(3.1) K =Indf (1, ® S)[dim X)) ~ & perr(ay A 5.8 @ Ve,

where Irr(A) denotes the set of irreducible characters of A, and for each
E € Irr(A), A, s is an irreducible character sheaf on G and Vg is a Q-
representation of A, with character E. Generally, the data L, (y, and S will
be fixed, and when there is no risk of confusion, we write Ag for A, s E.

Remark 3.2. We shall denote character sheaves by Ag, but will some-
times need to refer to the associated cuspidal data. In that case, we write
(L, ., S)(E) = (L(E), t.(E),S(E)) for the relevant data.
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3.2. Characteristic functions

Now suppose that L and > above are F-stable. The stabiliser
{wF € Wg(L)F | F*u* (i, ® S) ~ (1, ® §)} is a subcoset Wg (L, S)w F <
g

Wea(L)F. Now for E such that there is an isomorphism F*Ap — Ap, we
have an associated characteristic function xgg : G! — Qy, defined as an
alternating sum on the cohomology of Ag in the usual way.

In the above situation, there is an isomorphism ¢¢ : F*w]K — K, which
permutes the canonical decomposition . Note that F*w] acts on this
decomposition as F* ® F*wj. Thus for each E € Irr(A) such that F*wjE ~
E, ¢g restricts to ¢p @ op € End(Ap ® Vg), and hence for each choice of
og defines ¢ : F*Ap — Ag. The associated characteristic function xg 4, :
GI — Q, is what we refer to as a Lusztig function. The various Lusztig
functions, suitably normalised, form an orthonormal basis of the space of
class functions on G¥'. For further details, see [L85, 10.4, 10.6].

3.3. Families, Lusztig series and the wave front set

The set G of character sheaves on G is partitioned into families: G =
H£7C(A}£,c, where £ is a Kummer system on a fixed maximal torus T of
G and c is a family in the group W (L) (see [L85, 16.7 and 17.4] for this
partition and the definition of two-sided cells and families in this group),
two such pairs being considered equivalent if they are conjugate under the
Weyl group. Now it is shown in [L92b, Thm. 10.7] that

Proposition 3.3. Given a family (L,c) there is a unique unipotent class
C, called the unipotent support of the family, such that for any character
sheaf Ap € GLC, its stalk at g = su € G (Jordan decomposition) is zero if
dim(u) > dim C and u ¢ C, and there exists u € C' such that the stalk at u
is nonzero for some Ap € Gz,c-

The last statement is a consequence of [L92bl (g) page 172].

The Lusztig functions correspond to the F-stable sheaves in the F'-stable
families (L,c), and we may therefore identify the set of Lusztig functions
with G and consequently have a partition of this set as

Gl = H(c,c):p(z:,c)z(z,c)Gf,c,

and the spaces spanned by the distinct GE . are orthogonal.
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Correspondingly, there is a partition (cf. [L92Dh, 11.1]) of the irreducible
characters, whose parts we call again families:

Ir G = Hige):r(c.e)=(c.0) I GrF(&C)'

These partitions, both of characters and of character sheaves, are defined by
the blocks of the matrix (p, xg.¢, )gr. This allows us to identify families
of irreducible characters and families of character sheaves. Thus specifically,
(P, XE, 65 )ar 7 0 only if both p and Ag belong to the family parameterised
by the pair (£, c).

Definition 3.4. The (Lusztig) series of an irreducible character p (resp.
character sheaf Ap) is said to be the Kummer local system L on T if p €
Irr(GF) o (resp. Ap € Gre).

We say that p (resp. Ag or XE,,) is unipotent if its series L is equal
to the trivial sheaf Q.

Note that the Kummer system £ on the maximal torus T of G corre-
sponds to a semisimple element s € G*, the group dual to G. We may there-
fore write (s, c) for the family (£, ¢), and for s € G*I" we denote by £(GT, )
the Lusztig series U, Irr(GF) s,c of irreducible characters. The unipotent char-
acters correspond to s = 1, or equivalently £ = Q,.

Let x be an irreducible character of GF'. Lusztig has shown [L92b] 11.2]
that the following definitions make sense.

Definition 3.5. (i) The wave front set wf(x) of x is the largest unipotent
class C such that x is a component of the corresponding generalised
Gelfand-Graev representation I, for some u € CF.

(ii) The unipotent support of x is the largest unipotent class C' such that
x has a non zero value on some element with unipotent part in CF.

In the above, “largest” means that for any class of higher dimension,
or of same dimension as C' but different from C', the multiplicity (resp. the
value) is 0.

Remark 3.6. Proposition[2.12|applies in particular to any irreducible char-
acter xy whose unipotent support is the class (v). For in that case, if (u) > (v),
then by Scholium DT, is supported on unipotent classes (u') with
(u") > (u) > (v), and x vanishes on such classes, whence (x, DTy )gr = 0.



On Character Sheaves and Characters of Reductive Groups... 471

Given a family ¢ of Wg (L), let ¢ ® € denote the family defined by the
property that ¢ € ¢ if and only if ¢ ® € € ¢ ® €, where ¢ is the alternating
character of W restricted to Wg(£). With this notation, Lusztig [L92b] has
proved the following properties of the sets defined above.

Proposition 3.7. Let x € Irr(GF)(L,C) be an irreducible character and let
C be its unipotent support and C' its wave front set. Then

(i) There exists u € CF such that x(u) # 0.
(ii) C is the wave front set of the Alvis-Curtis dual of x.
(iii) C” is the unipotent support of (L,c® €).

Proof. (i) is [L92bl Thm. 11.2(v)], (ii) is [LI92b, Thm. 11.2(iv)]. (iii) is [L92b),
Thm. 11.2(i) and (iii)], taking into account [L92b, 11.1]. O

One would expect that in the situation of Proposition C is the
unipotent support of (£, c); that is, any character y € Irr(GF)(ﬁyc) has the
same unipotent support, and this support is the unipotent support of (L, c).
We shall not require this in the current work. It would be a consequence of
the assertion that if x € Irr(GF)(ﬁac) then the Alvis-Curtis dual Dy of x is
in Irr(G*) (£ cge)- If G has connected center this last fact follows from [L84)
6.14].

In view of the properties we make the following definition.

Definition 3.8. The wave front set of a family (L, c) is the unipotent sup-
port of (L,c® €); equivalently, it is the common wave front set of all char-
acters in Trr(GF) pe. If Ap € Gr.o we shall denote by wf(E) the wave front
set of its family and supp(FE) the unipotent support of its family.

The following explicit description of the map between families and their
wave front set may be found in [L92D, 10.5, 10.6]. Let (£,c) be a family,
and let s € G* be a semi-simple element corresponding to L. Let us write
W'(s) ~ Wg(L) for the Weyl group of the not necessarily connected group
Cg+(s). The Weyl group of the identity component is denoted by W (s).
Let E be a special representation of ¢ ® ¢; by definition, its restriction to
W (s) is a sum of special representations; let Ej be one of these and con-
sider jl‘/’VV(S) (E7). This is an irreducible representation of W, and its Springer
correspondent is supported by a unipotent class which is independent of the
choice of F; and is the unipotent support of (£,c® ¢) i.e. the wave front
set of (L, ¢).
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Conversely, given a unipotent class C, we obtain Lusztig families having
C as wave front set as follows. First note, that for a sufficiently large power
F™ of F, since the generalised Gelfand-Graev characters of GF™ form a
basis of the space of unipotently supported class functions, each unipotent
class is the wave front set of some irreducible character, hence of some family
(L, c). Accordingly, if E’ is the Springer correspondent of the pair (C,Qy),
then using the above description of the wave front set, we see that there is
always an s such that the j-restriction of E' to W(s) is a non zero special
representation E of W (s). For any such s this E defines a family of W (s),
and hence families ¢ of W(s). The class C' is now the wave front set of any
character in one of the families (s,¢ ® €).

Definition 3.9. We say that a character is reqular (resp. subregular) if its
wave front set is the reqular (resp. a subregular) class.

Given the above description of the wave front set, we may characterise
the subregular characters in a Lusztig series as follows.

Lemma 3.10. Let G be simply connected. For any s the subreqular charac-
ters in the Lusztig series E(GF | s) are precisely the characters in the family
(s,d), where ¢ is a family of W'(s) whose restriction to W (s) contains one
of the characters € ® r; where r; is the reflection representation of the i-th
irreducible component of W (s).

Proof. A case-by-case check (see for example table [DLM3], 4.1]) shows that
when W is irreducible, the trivial local system on the unique subregular class
C' corresponds to the reflection representation, a special character of W (for
this last fact the reflection representation is alone in its family in simply laced
types by [L79]; for the other types one may use the description in [L'79b]).
It follows that in general the components of the reflection representation
correspond to the trivial system on the various subregular classes.

But the restriction to W (s) of the reflection representation is the sum
of the r; and (rank(W) —rank(W(s))) times the identity; hence the j-
restriction of the reflection representation is the sum of the r;, and the
result follows. O

3.4. Multiplicities in generalised Gelfand-Graev representations
Let Z be the principal block, attached to the cuspidal pair (T, ¢o), where ¢ is

the pair (1,Q,). The aim of this subsection is to compute some multiplicities
of characters in I', for ¢ € 7.
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For s € (G*)F', denote by wiF the type of a maximally split torus of
the centraliser of s. For a W (s)-class function f on W(s)wiF we define a
class function in £(G',s) by Ry := m DoyeW (s)yuwr F f(y)R%y (0), where
R%y () is the Deligne-Lusztig character where for y € WF' we denote by T,
an F-stable torus such that (T, F) is G-conjugate to (T,y) and 6 € Irr(T})
corresponds to s € G*F'.

Proposition 3.11. For . in the principal block Z, the projection of I', onto
E(GT,s) is, with notation as above

(3.12) 0 ) PlRresttr, . (59
yeLr

where @ € Irr(W)F is the Springer correspondent of ~ and o~ and € are
preferred extensions to WF, in particular E(vF) = e(v) (see [L85, 17.2]).

Proof. Lusztig’s formulas [L92bl §7.5 (b) and p.176 (b), proof of 11.2], suit-
ably modified for the non-split case may be applied to give [DLM3, Propo-
sition 6.1] which, applied to the principal block yields

T, = a,Q%(EZrQ),

where Zr is the function on WF' given by Zr(y) =y — ]T5|, @Z(y) =
ZvelF o~ (y )Pw, and Q€ is the map which sends the function f to
\W\ Y pewr FWRE (X1g,w)- But X5y = Ty e (try 0 is the
characteristic functlon of the identity (see [DLM3 Definition 3.1(iii) and
Proposition 3.2]). It follows that

B, Y Go9wEs,0).

YELF yEW F,0€lrr(TF)

b IW\

Identifying characters with elements of the dual group, the inner sum can
be written

Y. (B @R ().

yEW F teT*v

Let x be an irreducible character in the series £(G*', s). Then in the expan-
sion of the inner product (T, x )gr, only the summands where (y,t) is W-
conjugate to some (o, s) could be non zero, and if (y,t) = (yo,s) we have
Yo € W(s)wy F. Further, a term (i, ® €)(y) RS (t) depends only on the W-
conjugacy class of (y,t). Since the number of pz;irs (y,t) conjugate to (yo, s)
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W] : / : W (s
I8 1Gm o o)] and the number of pairs (y/, s) conjugate to (yo, s) is G ol

we get

a, ~ =
<FL7X>GF = ‘W(8)| Z (¢7®a(y)PL,’y<R%y/ (S)7X>GF’
YEIF y eW (s)wi F

whence the proposition follows, given the definition of Ry. 0

Proposition 3.13. Let x € £(GF,s) have wave front set C, and let v be
in the principal block. Then

(Breswr . (@es,x)ar =0
unless dimsuppt < dim C' or suppt = C.

Proof. Assume <RR€S%ZW1F(E®5)’ X)ar #0 and let (s,c¢) be the family
of x, which is also (see section the family of some component 1 of
Res%é)wl (@, ®€). For a unipotent class C, let us denote by 3¢ the dimen-
sion of the variety of Borel subgroups containing an element of C'. By [L92bl,
Corollary 10.9 (i)] applied with E' = ¢ ® €, we have SBeupp, > a(c® ). We
also know by part (h) of the proof of [L92b, Thm. 10.7] that a(c ® €) = S
where C' is the class C(s,c® ¢) as in [L92b, 10.5], that is (see the beginning
of section |3|) C' is the wave front set of all characters in the family c. So if
<RReSVW{;£)w1F(¢:®g)’X>GF # 0 then dimsupp ¢ < dim C. Moreover by [L92b]

Corollary 10.9(ii)], if equality pertains, then supp¢ = C. O

Using the above propositions we now prove

Corollary 3.14. The assumptions and notation being as in the above
proposition, let v be a pair in the principal block.

(i) If x € E(GF, s) has wave front set supp . then
< FLJ X >GF = aL< RRGS%@)WIF(@T@@’ X >GF

(ii) If v has subreqular support, x € E(GF,s) is reqular, and G has con-
nected centre, then

a,(q+ (Res%@)wlF 0, 1d)w(syw, ) if L is standard

(FL7X>GF = {

a, Res%f;)wlF o 1 ) w (sywr 7 otherwise.
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When x is subregular, in the notation of Lemma we can write (i)
above as

a, Y (Restio (B @8) EDw(syunr{ R X )ar
E

where E runs over the wy F-invariant characters of W (s) which are in the
family .

Proof. We first prove (i). If supp ¢ is the wave front set of y, by Proposition
we know that the v in (3.12) giving rise to a nonzero scalar product
with x must have support smaller than supp¢. On the other hand F], is
0 unless the support of « is greater than that of +; then since the diagonal
blocks of P, are the identity, only the term in the formula survives.

We now prove (ii). If ¢ has subregular support then (see proof of Corol-
lary [2.7) apart from P, =1 the only other non-zero P’f occurs when ¢ is
standard and v is_ the trivial local system on the regular class, in which
case p, = Id and P, = ¢q. Moreover, since the centre of G is connected, the
regular character of the series s is equal to Rs. This gives the result. ]

In case the centre of G is connected, any regular character is orthogonal to
Cz(GT) for all non principal Z since the only local system on the regular
class is the trivial one. This leads to the following result.

Proposition 3.15. Assume that the centre of G is connected. Let s be
a semisimple element of (G*)F' and let x, denote the regular character of
E(GT,s). Then for any subregular rational unipotent element u we have

<FU7XS>GF:qzy’y +ZyL ReSW wlFSOMId> W (s)wi F>»
v

where the first sum is over the standard pairs with subregular support in the
principal block and the second sum is over all pairs in the principal block
with subregular support.

Proof. By the orthogonality relations for the ), (see for example [DLM3],
4.2]) we have

(3.16) Ty =AW ()T,

whence the result, by Corollary [3.14{(ii) and the above remark. O
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In the particular case where there is only one pair in the principal block
with subregular support, the above formula becomes

(Fua Xs >GF =q+ <R€S%(FS)U)IF ?a Id >W(s)w1F7

where 7 is the reflection representation of W.
4. Restriction of character sheaves to the unipotent set.

In [DLM3] the interrelationships among various bases of the space Cyni(GT)
of unipotently supported functions is discussed, and Lusztig induction and
restriction were described in these terms. In this section we discuss the
restriction of the characteristic function of an arbitrary Frobenius-stable
character sheaf to the unipotent set of G¥', and in particular give a formula
for its inner product with the generalised Gelfand-Graev character I',,. Such
characteristic functions are referred to as Lusztig functions (see .

We begin by describing the restriction of the Lusztig functions x4,
to the unipotent set GI .. It is known by |L86, pp. 151] that when the
local system ¢, as in has unipotent support, then Wg (L, t1,) = Wg (L),
and that the implied cocycle is trivial, so that A ~ Q,Wg(L,S) and the
Lusztig functions in the corresponding block can be indexed by characters
of Wg(L,S).

Theorem 4.1. Let xg,4, be a Lusztig function with associated cuspidal
data (L, 1, S) as in §3.1 and §3.4 Then

(i) If vf, has support which is not a unipotent class, then the restriction
XE.¢plGF, 18 zero.

(ii) If vf, has unipotent support, then E € Irr A =TIrr Wg(L,S). In this
case, we have

im supp tr We(L).F =
(42)  wpesler, = (CDIeQS (male @l (B)),

where E is a suitable extension of E and QS is the map from
C(Wa(L).F) to Cz(p)(GF) defined by QS ($x) = X, (see [DLM3, Def.
3.1]). Here Z(E) is the block corresponding to the unipotently supported
cuspidal local system (j,.

Proof. The first part is in [L85, Th. 8.5]. We therefore assume that i,
has unipotent support, so that A = Q,Wg(L,S). Then for any element
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w € Wg(L,S), we have an isomorphism ¢, : F*(ww;)*K — K, and, for
each E such that F*w]E ~ F, an associated characteristic function xg ¢, -
Moreover those E € Irt W (L, S) which are fixed by F*wj are precisely the
same as those fixed by F*(ww;)*. Following Lusztig [L85 §10.4], for the
characteristic functions, for each w € Wg (L, S), we have

XEbow = D, ElwwiF)xpgs,,
Eai; F*E=E

where E is a suitable extension of E to Wg (L, S).wy F. Inverting this relation
using the orthogonality of characters of cosets, we obtain as in [L85l formula

(10.4.5)]

XBgs = Wa@L,S)|™' Y E(wwiF)xkg,,-
weWe(L,S)

But again by [L85 Th. 8.5] (or [DLM3], Prop. 3.2]) the restriction of xx g, .,
to the unipotent set is (—1)dmsuPPQS = (the sign comes from the fact
that the perverse sheaf is shifted from the intersection cohomology complex
by dimsuppty,), and by [DLM3|, Def. 3.1(iii)] we have ngl = Q% (Vuw,),

where v, denotes the normalised characteristic function of the class of vF
in Wg(L).F. It follows that

ResGE (xpo,) = (CDIPu (WG, S B)Q% (uw)-
vEWG (L,S). ww, F

But by Frobenius’ formula for induced characters,

— ~ We(L).F =
Wa@S) Y By, =dy S p(B),
vEWe (L,S). ww F

and the result follows. O

Remark 4.3. Theorem shows that given a Lusztig function x g ¢, with
non-zero restriction to the unipotent set, its restriction lies in Cz(f) for a well
defined block Z(FE), which corresponds to the cuspidal local system ¢f,(E),
which has unipotent support.

4.1. Wave front set and character sheaves

In order to better understand the restriction to the unipotent set of a Lusztig
function, we shall need the following information concerning the Lusztig
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functions which have non-trivial inner product with a given irreducible char-
acter.

Definition 4.4. With notation as in Theorem[{.1], we define n.(E) by

We(L).F = im supp ¢ ~
IndWc;EL?S).wlF(E) = (_1)d PP Z N (E)Pr-
KEL(E)

Note that n.(E) depends on the extension E which itself depends on
the chosen isomorphism ¢.

Remark 4.5. (i) For any F-stable character sheaf Ap, the scalars
n.(E) are defined by which implicitly involves the triple
(L(E),wL.(E),S(E)) as described in Remark and assumes that
ti,(E) has unipotent support, as is the case when the restriction of
XE.,¢5 to the unipotent set of GI" is non-zero by Theorem |4.1|(i). When-
ever we use the notation n,(E) we shall take this as understood.

(ii) The n, are algebraic integers. They will figure prominently in the rest
of this work.

The following key result generalises Proposition [3.13] which deals only
with the principal block. Recall that in [DLM3], 3.6] we defined an involution
t+— ¢ on a block Z and a sign ¢, on Z by ¢, ® € = €,p; where ¢ is defined on
Wa(L)F by e(wF) = e(w). We have €, = 1 when G is split (that is, F acts
trivially on W).

Lemma 4.6. Let Ag be a character sheaf in ch, and suppose that Xg 4,
has non-zero restriction to the unipotent set. Let C' be the wave front set of
(L,c¢) and C" its unipotent support. If ng(E) # 0, then

(i) either the support of k is C', or it has dimension smaller than dim(C").

(i) either the support of & is C, or it has dimension smaller than dim(C').

Proof. By Theorem and Definition [4.4] we have

(4.7) Resggni XE,bp = Z Ny (E) X
KEL(E)

The assertion (i) is now immediate from the definition of the support, since
the transition matrix between the bases X, and ), is unitriangular.
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We now apply the duality functor D to (4.7), bearing in mind that
duality commutes with restriction to the unipotent set and [DLM3], 3.14
(ii)], obtaining
(4.8) ResGr D(Xpop) = Y nu(E)iL(m)ends-

KREZ(E)

Now Xg,¢, is a linear combination of characters in the same family:

XE,¢E = Z mpp7
pelrr(GF) . .

whence

D(xgg,)= Y, myD(p),
pelrr(GF) .

where all the D(p) have unipotent support C, since all the p have wave front
set C. Again using the fact that the transition matrix between the bases X,
and Y, is triangular, this means that the restriction to the unipotent set of
D(XE,¢,) is a linear combination of X, with the support of ¢ either equal to
C or having smaller dimension. Comparing with we obtain (ii). ]

4.2. Inner product with Generalised Gelfand-Graev characters

We begin with the following general expression for the Mellin transform T,
in terms of Lusztig functions. Note that since the Lusztig functions form an
orthonormal basis of C(GF"), it suffices for this purpose to compute the inner
product of I', with an arbitrary Lusztig function x g 4,. Moreover such an
inner product is evidently zero unless the restriction of x4, to GE . is non-
zero, in which case Ap determines a unipotently supported cuspidal local
system ¢, (E), a corresponding block Z(E) and a unipotent class wf(E), viz.
its wave front set (see Definition [3.8)).

The following result is related to Proposition [3.11

Theorgm 4.9. Lett € I", a block with cuspidal datum (L, 1) and suppose
Ap € G, In terms of the integers n.(E) of Definition we have

0 if Resggi(XE@E) =0o0rZ(E)#1

ng(E)e P

LK

(410) (LuXBge)Gr = 9 ncrr,vss
dim(supp(x)) <dim(wE(E))
or supp(k)=wi(E)

otherwise.
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Similarly
(4.11)
0 if ResSr (Xppp) =0 or Z(E) £1
(D(L)), XB.pp )Gr = { 1, > P n>t and nH(E)]BL’; otherwise.

dim(supp(x))<dim(supp(E))
or supp(k)=supp(E)

Proof. Using equation (4.7]) we get

(T0XBos )ar = (T, Res@r (Xmo))ar = Y, ns(BE)(T,,
KEL(E)

=

Jar

In the proof of [DLM3|, 6.2] one finds the equation nre.(T,, Xi)gr =
nLaLCI_ZLJS;':N which by the definition of I', can be written <FL,X~,%>GF
en .

Changing the variable from x to & in the equation above and substitut-
ing, we obtain the condition on supp(k) comes from Lemma (ii) and
the condition x > ¢ from the fact that P, , is upper triangular.

For formula since duality commutes with restriction to the unipo-
tent set, the function~D(I‘L) is also unipotently supported so we have the
same equation with T', replaced by D(I',). We then use [DLM3| 3.14(ii)]
which states that D(X,) = nrexXz and proceed in the same way, using (1)

instead of [4.6{(ii). O

Corollary 4.12. With notation as in Theorem if dim(supp(c)) >
dim(wf(FE)) then

4.13) (T, 5 /G =
( ) < vy XE,¢ >G 0 otherwise.

- {n;(E)sL if supp(t) = wi(E) and I(E) =T,

and if dim(supp(¢)) > dim(supp(FE)) then
(4.14)
~ {nLnL(E) if supp(t) = supp(E) and Z(F) =1Z,

D)), =
(D) XE¢s Jar 0 otherwise.

Proof. The condition on the first case of equation m (resp. equation [4.14])
is such that there is only one summand satisfying the conditions in the sum

on the right side of (4.10) (resp. of (4.11))), and it corresponds to x = ¢. In
the second case, there is no x satisfying those conditions. 0

We next prove the “Mellin transform” of the statement in Theorem
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Corollary 4.15. Let Ag be a character sheaf such that Resgi XE,¢n 7 0.

Let C be a unipotent class in G and u € CF¥'. Then, again in terms of the

integers n.(E) of Definition 4.4, we have

(4.16) N

<F'LL7 XE,br >GF = CE(IE') Z yb(u) Z nl%(E)gl‘ﬁPL:'
{t€Z(E)|supp(+)=C?} weZ(BYF, k>1 and

dim(supp(x))<dim(wE(E))
or supp(k)=wi(E)

Proof. Using and the definition I', = \A(u)]CI_Iﬁ, we have

LePF

where Z(¢) is the block to which ¢ belongs. The corollary now follows imme-
diately from Theorem O

The next corollary gives the multiplicity of a Lusztig function in a gen-
eralised Gelfand-Graev character corresponding to a unipotent element of
its wave front set.

Corollary 4.17. Maintain the notation of Corollary[{.15 and assume that
u € wf(E)E. Then

(T, XBpp Jar = C7 ' > ni(E)e, Y. (u),

{t€Z(E)|supp(v)=wi(£)}

Proof. We use the relation to compute the left side. Since u € wf(FE),
it follows that in the outer sum all the ¢ have support wf(E), and hence in the
inner sum of , there is just one summand, viz. the term corresponding
to k = t. The result follows. O

The next result is a consequence of Corollary

Corollary 4.18. Given a wunipotent class C, let wa(c)(GF) (resp.
Csupp(c)(GF)) be the space of class functions on GY which has basis the
irreducible characters p € Irr(GF)(AC) where C' is the wavefront of (L,c)
(resp the support of (L, c)). Write Projyscy (resp. Projsupp(cy) for the pro-
jection onto this space with respect to the complement spanned by the other
irreducible characters. If & € IF (a block with cuspidal datum (L,.y)) has
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support C, then we have

Projuc) Lr = ex > 14 (E)XE.dp-
{Age(@F|T(E)=1

and wi(E)=C}

and
Projsupp(C) D(Tx) =L Z nﬁ(E)XE7¢E'

{Age(@F|z(m)=1

and supp(E)=C}

Proof. Observe first that since the Lusztig functions form an orthonormal
basis of the space of class functions on G, we have

Projutcy Tw = . (TayXBon )G XE.6s-
(Elwi(E)=C}

Now, since we have supp(x) = wf(£) for the £ in the sum, we can apply
and we get the stated value for Projy¢c) I's-

The proof for Projg,pnc) D(T',) proceeds similarly, using [4.14] instead of
13l

5. Lusztig series and unipotent characters

Recall (Definition the definition of the Lusztig series of an irreducible
character or character sheaf. We shall require the following two statements
concerning the series to which a character sheaf belongs. This series is defined

as above by a Kummer local system 7 on a maximal torus T of G [L85]
2.10].

Lemma 5.1. (i) Suppose (L, 1, S) is a triple as in §5.1 Let Ts be the
lift to T of S and let To be the Lusztig series of the cuspidal triple
(L, t1,,Qy). Then the Lusztig series of any character sheaf Ap induced

from (L, i, S) is To® Ts.

(ii) Suppose Ap and Ap are respectively character sheaves induced from
(L, 1, S) and (L, 1, S’). If Ag and Ag: are in the same Lusztig series,
then S and S’ are conjugate under Wg(L).

Proof. The statement (i) may be found in [L.85, 17.9]. Given this, the hypoth-
esis of (ii) implies that for some w € Wg (L), To® Ts: = (To ® Ts)™. But To
is stable under Wg (L) since Wg (L, t1,) = Wg (L) (see beginning of section
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. It follows that To ® Ts: = To ® (Ts)™. As Tp is a Kummer system, we
may multiply by its inverse, obtaining the result. U

Lemma 5.2. Maintain the notation of Lemmal5.1}; in particular, To is the
Lusztig series of the cuspidal triple (L, ty,, Qp).

(i) If v, is unipotently supported, then either Ty is trivial, or else it cor-
responds to an element tog € L™ whose centraliser is not the whole of
L*.

(i) If ¢, is unipotently supported and Ag is a unipotent character sheaf
induced from (L,ur,,S), then both Ty and S are trivial Kummer sys-
tems.

Proof. The first statement is verified by a case by case check, using the
classification of cuspidal character sheaves given in the Appendix below.
Note that the restriction that the characteristic be good is necessary for the
truth of the assertion (i).

To see (ii), note that by Lemma (i), the Lusztig series of Ap is a
Kummer system which corresponds to the element tys € T*, the torus dual
to T, where ty is as given, and s corresponds to S. Since S is trivial on
[L,L], s is centralised by L*. Now Ag is unipotent precisely when tps = 1;
but by (i), if ¢y # 1, then ¢y is not centralised by L*, whence tgs # 1. Thus
if Ag is unipotent, tg = s = 1. O

The restriction to the unipotent set is simpler for unipotent character
sheaves:

Lemma 5.3. Let Ag be a unipotent character sheaf induced from (L, 1, S).
If ¢ is such that E of(z'i) 1s the preferred extension, then we have

XEbplar, =

uni

{0, if i, does not have unipotent support

(_Ddimsupp LL)EK otherwise, where p,, = E.

Proof. The fact that the restriction is 0 if ¢f, does not have unipotent support
results from [4.1](i).

If we now assume that ¢4, is unipotently supported then by Lemma (ii)
both S and 7; of Lemma [5.1](i) are trivial.

Further, by [L84bl 9.2], since ¢j is unipotently supported, then
Wa (L, ) = We(L). Formula reduces thus to the statement of the
lemma, taking in account that the preferred extension takes rational val-
ues. U
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Denote by Proj,,,,; the projection onto the space spanned by the unipotent
characters of Gf' with respect to the complement spanned by the other
characters, that is, the orthogonal projection onto £ LGF ,1).

The next result shows that a certain projection of T', is precisely a Lusztig
function. We say that a block Z is in the unipotent Lusztig series if its
cuspidal datum is (L,:,) and the Lusztig series of a character sheaf with
cuspidal datum (L, r,,Q,) is the unipotent series (79 = Q, in the language

of Lemma .

Proposition 5.4. Let k € Z be a pair with support the unipotent class C,
and assume (L, 1) is the cuspidal data of . Then

_ (—1)dimsuwpping N p o if T s in the unipotent
P10j i Projye(cy(I) = Lusztig series,
0 otherwise
where Ag is the character sheaf with cuspidal data (L, 1, Q) determined by

E = p; € Ir(Wg (L, Q) = Irr(Wg(L)).

Similarly, we have

(_1)dimsuppLLnLXE’¢E
Pl“Ojum-PTOjsupp(c)(D(fn)): if T .is m the wunipotent
Lusztig series,
0 otherwise

where Ag is determined by E := ¢, € Irr(Wg(L)).

Proof. In the formula for Projyg(,) 1:,@ in Corollary for any F in the
right-hand side, Proj,,;(xE,¢,) is either xg 4, or zero, according as Ag is
unipotent or not. In the first case, by Lemma[5.3|there is just one E for which
nz(E) # 0, namely E = p, and for this £, we have ng(E) = (—1)dimsuppu,

This completes the computation of Proj,; Projys(cy(I's)-
The computation of Proj,n; Projgupp(c)(D(I's)) proceeds similarly. [

Corollary 5.5. Let Ap be a unipotent character sheaf with cuspidal
data (L,ur,, Q) determined by E := ¢ € Ir(Wg(L)). Then D(xE.¢,) =
ERNLXE ¢, Where Ap: is the unipotent character sheaf with same cuspidal
datum determined by E' = ¢, € Irr(Wg(L)).
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Proof. The statement follows by comparing the dual of the first expression
given in [5.4] with the second expression, given that the dual of a family of
unipotent characters with wavefront C is a family of unipotent characters
with support C. We prove this latter fact.

By Proposition [3.7(iii), if C is the wavefront of a family (£,c), then
it is the support of the family (£,c® ¢). Since for E € Irr(W) we have
D(REg) = Rpge (notation as in the second paragraph of subsection and
a unipotent character is in a family (Qy,c) if and only if it has non-zero
multiplicity in Rg for some F in that family, it follows that the dual of the
family (Qy, c) is the family (Qy, ¢ ® €). O

Fix the datum (L,:r,,S) as described in Given an element 6 =
> Beln(We(L,s)) CBE of the character ring of Wg(L, S) over Qy, define

X6 = Z CEXE,$g-
Echir(We(L,S))

We shall now generalise Corollary to the case of characters not
necessarily in the principal series.

Proposition 5.6. Let p € Irr(GF) have wave front set C, and let k be a
pair with support C in the block T, which has cuspidal datum (L,ty,). Then

(i) All Lusztig functions xg.g, satisfying (p, Xe.¢én )G (T, XEés )GF #
0, arise from a single datum (L, ty,,S) as in .

(ii) With (L, v, S) as in (i), we have

(Tr,p)ar = eu(Ps XgegWamr - )Gr.

Wa(L,8).w F PR
Proof. We first prove (i). If {( p, Xg.¢, )ar # 0 then C = wf(p) = wf(£) and
from Corollary @kl) if further <meE,¢E Yar # 0 then Z(E) =Z. Thus
the part (L, LL)I of the cuspidal datum for Ag is determined by the block
Z. Furthermore, (p, XE,¢, )ar # 0 implies that the Lusztig series of A is
determined by, and equal to, that of p, so that by Lemma [5.1] the Kummer
system S in the datum for Ag is also determined by the stated conditions.

We now prove (ii). Assume that p € Irr(GF)7.. Then p may be
expressed as

p= D P XBee )G XE G-

XEa‘i)EeG'I;l,C
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It follows using Corollary that

(Tup)ar = Y (pxBos)ar(Ta Xme, Jar

XE, ¢p eGg'.c

= > {pXBgs )arna(E)ex,

XE,op eGi’,c

(5.7)

where by (i) the sum is restricted to those E with a given cuspidal datum.

Hence the above sum is over FE € Irr(Wg(L,S).w1 F), and by Frobenius
. . We(L).F ~
reciprocity, nz(E) = (E, ReSWZEL?S).wlF Pk ) We (L,S).wy - Thus

(53)

We(L).F -
(Tupdar =2c D (pXEoe)Gr{ERe IS o $5 ) Wa(L.8) 0
XE,¢E€G$,C
and the proof is complete. ]

6. Character values, projections, generalised Gelfand-Graev
characters and families.

6.1. The setup

In this section we are interested in the projection of Gelfand-Graev char-
acters onto the space of unipotent characters and in the value of unipotent
characters; since unipotent characters factor through the adjoint group, we
assume G adjoint in this section.

We shall explore the following particular situation (cf. [L12b]). We con-
sider a family F = (£, c) of unipotent characters, so that £ = Q, and c is
a family in W (see Definition and beginning of section . The wave
front set of such a family is called a special unipotent class (u). We suppose
that

(6.1)
(i) The group G attached to F (see below) is A(u).
(

ii) At most one of the local systems on (u) is not in the principal block.

Note that

e In general the group G attached to F is a certain canonical quotient
A(u) defined in [L84] after 13.1.2]; see also [L12b]. Thus condition (i)
amounts to stipulating that A(u) = A(u).
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e Since G has connected centre, it is always possible to choose w in its
geometric class such that F' acts trivially on A(u), see [T| Prop. 2.4].
We shall assume this property for the rest of this section, and hence
label the rational classes contained in (u) as (ug), where g runs over a
set of representatives of the conjugacy classes of A(u).

Applying the discussion after Definition [3.8 to the particular case of the
unipotent series, one sees that there is a unique family with wavefront (u).
Indeed, (u) is defined by the fact that the Springer correspondent of the
special character of the family is the local system ((u), Q).

Remark 6.2. The assumptions are satisfied by all special unipotent
classes in groups of type Ga, Fy or Eg such that A(u) = A(u) (that is, most
special classes). In fact for these groups all local systems are in the principal
block except one on the subregular class in type G2 (A(u) = Syms), on the
class Fy(a3) in type Fy (A(u) = Symy), and on the class Eg(a7) (in the
Bala-Carter notation) in type Eg (A(u) = Syms). Assumptions are
also satisfied in groups of type Eg and E7 where all local systems are in the
principal block.

In the next subsection, we shall define Mellin transforms of the irre-
ducible characters in F, and show that in the cases covered by Remark
the orthogonal projection of I'y, onto the family F is one of these Mellin
transforms. A consequence of the proof will be the determination of all the
values of the characters in JF at unipotent classes in the cases of Remark
[6.2} then, any unipotent irreducible character x is either in F or else it is in
the principal series in the sense of character sheaves. In the latter case, the
values of x on the unipotent set are given by Green functions, and may be
determined algorithmically.

Thus a consequence of the results of this section is the determination
of all the values of all unipotent irreducible characters of Gf' at unipotent
classes for G a group of type Ga, Fy, Fs, 2Eg, E7 and Fg.

6.2. Families, Fourier transform and almost characters

We assume henceforth that G is quasi-simple (or equivalently that W is
irreducible). We give the basic facts concerning the Fourier transform of
unipotent characters, following [DMI1], §3, Ch. VII] and [DM2], 4.4]. With
each family F of unipotent irreducible characters of G, there is associated
a finite group G. The unipotent characters in the family F are parameterised
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by
M(G) = {(z,x) |z € G, x € Irr(Cg(x))}/G,

where the action of G is by simultaneous conjugation. Since the characters
we consider are unipotent and we assume W to be irreducible, it follows
that F' fixes each F-stable family pointwise. Consequently, despite the fact
that in general Lusztig considers a more complicated set than M(G) using
an automorphism of G induced by F', we do not have to deal with this more
general situation here.

To describe Lusztig’s Fourier transform matrix we shall also require a
sign A, ) defined by Lusztig; we will be more explicit about its value when
needed. For the moment we note that

e If G issplit, A(, ) = 1 except for the “exceptional” families in types E7
and Fg (those containing unipotent characters attached to irrational
representations of the Hecke algebra).

e If G is nonsplit, A(, ) depends only on F (and not the particular
(x, x) considered); we will therefore denote it by Ax.

We write p(,,) for the unipotent character parameterised by (z,x).
There are two other bases of the space Cr spanned by the p(, ) which
play an important role.

Definition 6.3. (¢f. [DM2, 4.4]). Let M'(G) :={(x,y) €Gx G |xy =
yx}/G; note that M(G) and M'(G) have the same cardinality.

(i) For a representative (x,y) of M'(G) (see above) define the Mellin
transform

H(zy) = Z X(y)p(z,x)
x€lrr(Cg(z))

(ii) We define another basis { R(y ) }(x,x)em(g) of Cr, the almost charac-
ters, by the property that p ) = AF erhr(cg(x)) X() Ry, except
in exceptional families of E7 and Eg where we have G = 7Z/2 and if €
1s the non-trivial character of G the above formula must be modified
to read: i) = €(%) 3o\ etr(Co(2)) X () Riy,y) (this takes into account
Lusztig’s Ay ) in this case).

Definition (ii) above follows Lusztig [L84] 4.24.1 and 13.6]. Note that in
loc. cit.
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e If ¢ is the family in the group W corresponding to F (see the beginning
of section E, Lusztig parameterises the preferred extensions E of
characters of ¢ by some elements z z € M(G).

e When (2, x') = x then R, ,) is equal to the function Ry of subsec-
tion [3.41

Clearly knowledge of the values of all the irreducible characters in F on
a given class C' is equivalent to knowledge of the values on C' of the almost
characters or of the Mellin transforms.

The following result is proved by Shoji (see [SI, Th. 5.7] and [S2, Th.
3.2 and Th. 4.1]). In rough language, it says that the Lusztig functions are,
up to multiplication by a scalar which is a root of unity, equal to the almost
characters of GI".

Proposition 6.4. As above, let F be a family with associated group G. The
Lusztig functions in F may, just as the irreducible characters, be labelled
by pairs (z,¢) € M(G). Write X(,¢) for the Lusztig function corresponding
to (z,¢) € M(G). Then for (G, F) with connected centre and p sufficiently
large the following is true. For each (x,¢) € M(G), there is an algebraic
number (g of absolute value 1 such that x(; ¢y = CFR(z ¢)-

We have written (r to emphasise the dependency on F'; this number of
course a priori depends also on (x, ¢). The condition “sufficiently large” for
p above is “almost good”, which means good for exceptional groups, and no
condition imposed for classical groups.

We shall now prove

Theorem 6.5. Maintain the assumption that is G quasi-simple. Suppose
that we are in the setting of [6.1); in particular F is a family of unipotent
characters of G and (u) is its wave front set. Then:

(i) Any local system on (u) is the (shifted) restriction of a character sheaf
lying in the unipotent Lusztig series.

(ii) For any g € A(u), we have Projz(I'y,) = ArD(pg,1)) except for
the exceptional families of E7r and Eg where we have Projz(T'y,) =
(9)D((g,1))-

(iii) If there is a pair k € T with support (u) where T is a non-principal
block with cuspidal datum (L,y1,), the root of unity (g of Proposition
attached to k is equal to (z(—1)TmswPPieyy
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Proof. In the bijection of [L12c, Th. 2.4 (b)] between unipotent character
sheaves of F and M(G), the shifted restriction to the class (u) of the char-
acter sheaf with label (1, x) is the local system corresponding to y, so that
all local systems on (u) appear in this bijection, whence (i).

Now consider the case when all local systems on (u) are in the prin-
cipal block. Then by [SI, 2.18], for all F-invariant E € Irr(WW) we have
XE,6s = (—1)"™ G Rz when op in subsection has been chosen such
that it defines the extension E, in particular (p = (—1)rkG By Propo-
sition 5.4} and the definition of & above Lemma [4.0] if ¥ = ¢, we have
Projz(T'x) = QHEHRE@;E (here we use the fact that (z =1 for the prin-
cipal block and that dimsupp:r, = rank G in Proposition . This can
be written as Projz(I'x) = D(axRjz) since the Alvis-Curtis dual of Rz is
Ry = exRp= (see [[84, 6.8.6]). By [L12B, Cor. 0.5], if & = ((u), ) then E
is parameterised by (1,x) € M(G), hence we have Projz(I'x) = D(axR(1y))-
By [3.16] we have

Fug = a;l Z ¢(g)r((u),d))
Pelrr(A(u))

Applying Proj r to both sides of this relation, and using the above we obtain

(6.6) Projz(Tu,) =D( > ¢(g9)Ray)-
Yelrr(A(u))

By (ii), the right side of is equal to AxD(ji(g,1)) except in the
exceptional families of F7 and Eg where it is €(g) D(p(g,1)-

In the case where there is a pair x = ((u),n) not in the principal
block but in a block Z with cuspidal data (L,:r,) then Proposition
using Corollary becomes Projz(Ty) = ax(; ' (—1)3mS PPy D(xp4,)
where Ap is determined by E = ¢,. As explained in the beginning of
the proof, the character sheaf Ap has label (1,7). Now applying Proposi-
tionwe get Proj z(T'y) = a,(; ' (—1)dimsupp “CnLlrD(R( ), and writing
C(=¢ Cp(—1)dmsuppiepy e obtain

Projz(Tu,) = D( > %(9)Rap) + n9)D(Ra )

Pelrr(A(u))

YF#n
=D( > g HRay) + (€~ Dnlg " )D(Ra,y)
Yelrr(A(u))

= ArD(pgn)) + (¢ = Dnlg )D(Ra ),
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where p is the Mellin transform as explained in the case where all local
systems were in the principal block (here we use the fact that we are not in
an exceptional family).

But the left hand side is a proper character of G¥', and since H(g,1) 18
a proper character and Ry, has rational coefficients in the basis of char-
acters, it is immediate that ( = 1. Case by case inspection shows that
if there is a single pair with support (u) not in the principal block, then
A(u) € {Symg, Symy,, Syms} or A(u) ~ (Z/2Z)* with k> 2 (that is, since
we assume G adjoint, A(u) # Z/27); indeed, for adjoint exceptional groups,
both local systems are in the principal block when G = A(u) = Z/2Z; for
adjoint classical groups, if G = A(u) = Z /27, one checks that the only pair
(x,x) € M(G) which parameterises a local system which is not in the prin-
cipal block has x # 1 hence by [L12c, Th. 2.4 (b)] does not correspond to a
local system on (u).

In the non-abelian case A(u) € {Syms, Symy, Syms}, the formula in
[DMT] for the Fourier transform shows that the coefficient of p(, ) in R )
is non-zero for any y if y is a 3-cycle. If { = —1, not all of the negative terms
can be cancelled in the right side of the above equation.

In the abelian case A(u) = (Z/27)* with k > 1, if ¢ = —1 the coefficient
of py,y) In R ) has a denominator 2F=1 with k as above. Hence in both
cases we conclude that ¢ =1 and Projz(T'y,) = D(k(g,1))- O

The statement (ii) of Theoremproves implicitly that AzD(s(g,1)) (resp.
€(9)D(1(g,1))) is an actual character. We remark that this is also a conse-
quence of the result [L84] 6.20] of Lusztig.

6.3. Values of unipotent characters at unipotent elements, and
concluding remarks

In the three groups covered by Remark [6.2] as well as in groups of type Eg,
2Fs and E7, all the families of unipotent characters other than one family
F satisfying the assumptions of Theorem are in the principal series, i.e.
are of the form (Qy, c). Hence their values at unipotent elements are given
by Green functions, which may be taken as known by Lusztig’s algorithm.
Thus to determine all values of all unipotent characters in Irr(GF) at
unipotent elements, it suffices to determine the values of the characters in F.
But by Proposition for this it suffices to determine the root of unity (g,
since the values of the Lusztig functions x(, 4) ((7,¢) € M(F)) are known.
Hence in these cases, Theorem (ii) completes the determination of the
values of unipotent characters at unipotent classes. The constant (r was
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already determined by Lusztig [L86), 8.6] and implicitely by Kawanaka [K2|
4.2.2], using different methods which each yield different restrictions on the
applicable values of p and gq.

We remark finally that empirically, the values of the Mellin transforms
(z,y) at unipotent classes appear to be “simpler” than the values of the
irreducible characters, when expressed as polynomials in g. This remark is
based on computations in the exceptional groups, and currently we have no
theoretical justification for it.

Appendix A. Classification of cuspidal character sheaves

Let G be a connected reductive algebraic group over an algebraically closed
field of characteristic p (we allow p = 0).

We summarise here the classification of cuspidal character sheaves on G,
which is essentially due to Lusztig (see [L85]). In particular we give a list,
conveniently arranged, of cuspidal character sheaves for each isogeny type
of quasi-simple group.

As explained in[3.1], a cuspidal character sheaf A is the perverse extension
of an irreducible cuspidal local system whose support is the inverse image
in G of a conjugacy class of G/Zg, where Zg is the centre of G. If x is in
the support of A then by [L84D| 2.8] the group C&(x)/Zg is unipotent; in
particular if sz, is the Jordan decomposition of x the semi-simple part
is isolated. The class of z,, is distinguished in C&(z;s) and Zg/Zg injects
into Ag(z) = Cg(z)/C&(x). By the cleanness of cuspidal character sheaves
(see [L12]) A vanishes outside the support of &.

As explained in a cuspidal character sheaf has a “Lusztig series”,
parameterised by the conjugacy class of some semi-simple element s of the
Langlands dual group G* to G; the sheaf further defines a label inside a
family attached to the group W’(s) = Wa-(s). Specifically, the group W'(s)
is of the form W (s) x Q where W (s) = W(C.(s)) and where Q ~ Ag-(s);
a family of W'(s) with a label attached to a cuspidal character sheaf is
determined by an -stable family of W (s); if the small finite group giving
rise to the labels of this last family is G, the group giving rise to the labels
of the family of W'(s) is G x Q (see |L85, 17.1-17.8]). There is at most
one family in a given group W (s) arising as above ([L84, Chapter 8]). The
labels for the cuspidal character sheaves in the family are pairs (z, x) taken
up to G x Q-conjugacy where x € G x Q and y € Irr(Cgua(z)). We will call
cuspidal labels the labels which can be labels for cuspidal character sheaves.
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To each irreducible local system on the class of x is associated a central
character, coming from the action of Zg on fibres; it is also the restriction
to Zg of the character of Ag(su) associated to the local system.

We will use the following facts

e The cuspidal character sheaves on a direct product of groups are the
external tensor product of cuspidal character sheaves on each compo-
nent ([L85, 17.11]).

e The cuspidal character sheaves on G are obtained from those on G /Z¢g
by inverse image and tensoring by a local system S of rank 1 on G
which is the inverse image of a Kummer system on the abelianisation
G/[G, G]. The effect on the Lusztig series of tensoring by S is to multi-
ply the semi-simple element of G* by the central element corresponding
to S (see Lemma[5.1] or [L85, 17.9, 17.10]).

e Let G 55 G be a surjective morphism with a finite central kernel; then,
given an irreducible cuspidal local system S on G, the direct image
€ is a local system if £ is ker m-invariant (equivalently its central
character vanishes on ker 7); in this latter case, the components of m,&
are irreducible cuspidal local systems and all cuspidal local systems
on G are obtained this way [L84b, 2.10]. If x is in the support of &,
the direct image 7. corresponds to the induction through the natural
morphism Ag(z) — Ag(w(z)). If G* <~ G* is the dual map, and £’ is
a component of 7, with Lusztig series s, then the Lusztig series of £
is 7(s) |L85L 17.16].

The above facts in principle reduce the classification to the case of quasi-
simple and simply connected groups. But in practice the list is much easier to
use if the classification is given for each isogeny type of quasi-simple group,
and this is what we will do.

We assume now G quasi-simple. We use the additional facts

e The central character associated to a cuspidal character sheaf deter-
mines the part “element of 2" of its label [L85] 23.0].

e For z € Zg, the associated translation operator ¢, preserves the Lusztig
series [L85, 17.17.2] and acts on the part “character of 2" of the label
as follows: if the label of A is (z,x) and the central character of A is
faithful, and o, is the character of €2 determined by z, then the label
of t1Ais (z, xo,) [L85, 23.1 (c)].
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To describe cuspidal character sheaves whose support contains x, we
give in order a description of z, of x, and of Ag(x) (often it is sufficient
for this to describe Cg(zs), Ag(zs) and the class of x, in Cg(zs)?), and
finally describe the associated character of Ag(z). Note that the class of z,,
is determined by the class of x5 and the fact that the class of x supports
a cuspidal local system if and only if the class of z, in Cg(zs)° supports a
cuspidal local system (see [L84bl 2.10]).

We also need the following

Lemma A.1. Let 7: G — G be surjective morphism with central kernel;
let z € G and let x = w(Z); there is then an exact sequence

1 — kermr/(kerm N Cg(7)°) = Ag(Z) & Ag(z) 5 ker,

where T is induced by ™ and where, if g € Cg(x) is both a representative
of g€ Ag(x) and the image of § € G, we define n(g) = z where z is the
element defined by 9% = 2. The map T is surjective when x is unipotent.

If in addition the G- conjugacy class of x affords a cuspidal local system
then (kerm N Cg(2)°) =1,

Proof. We first observe that the formula for 7(g) gives a well-defined element
z € ker m, whence a morphism Cg(x) — ker m compatible with the quotient
by Cg(x)° and whose kernel is by definition the image of Cg (Z), whence an
exact sequence

Aa(®) 5 Ag(z) L ker.

As 1(Cg(2)°) = Ca(x)°, the kernel of 7 is kerm/kerm N Cg(2)°. If x is
unipotent, taking the semi-simple parts on both sides of the equality 9% = Zz
we find z = 1.

When the class of & affords a cuspidal local system the group C (2)° is
unipotent which implies that ker 7 N Cg (Z)° = 1, whence the result. O

We use Lemma as follows: given a local system &£ on the class of &
lifting a local system on the class of z, or equivalently a representation of
Ag(Z) factoring through a representation p of T(Ag (%)), then m.& corre-
sponds to the induced of p to Ag(x). We will use two special cases: if the
image of 7 is trivial, then 7,(€) is irreducible; if the image of 7 is of prime
cardinality r then either 7,& is irreducible or has r irreducible components
(depending whether p is invariant or not by Ag(x)).
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Appendix B. Classical groups

In a classical Weyl group, the groups G attached to families are of the form
(Z/27Z)™, and the labels in a family are in bijection with Lusztig’s “symbols”
(pairs of increasing sequences of natural integers taken up to shift, see [L84,
Chapter 4]); we will call cuspidal a symbol corresponding to a cuspidal label.

A useful preliminary is the description of cuspidal symbols for
W(B,) and W(D,). For W(B,) where n =d?+d the only cuspi-
dal symbol is ({0,1,...,2d},0); It corresponds to the label (x,x)=
(-1,1,-1,1,...),(=1,-1,-1,~1,...)) in M(G) where G = (Z/2Z)?. For
W (D,,) with n = (d + 1)? the only cuspidal symbol is ({0, 1,...,2d + 1},0);
G and (x,x) are as above.

Type An—l

The only group of type A,,_1 which affords cuspidal character sheaves is G =
SL,, when p does not divide n. There are n¢(n) such sheaves, parameterised
by the pairs (z,x) where z € Zg and x is an injective character of y €
Irr(Zg). The cuspidal local system associated to (z, x) has support zC where
C is the regular unipotent class, and x can be identified to the character of
Ag(x) = Zg where x € zC associated to the local system. These character
sheaves are all in the Lusztig series defined by a quasi-isolated s € G* such
that W’ (s) contains a Coxeter element of W (G*); we have W(s) =1 and
Q =W/(s) is in bijection with Irr(Zg). Then z € Zg corresponds to ¢ €
Irr(2) and x to a generator x € €, and (z,() is the label in M(Q) of the
considered sheaf (see [L85] 18.5]).

Types B,, and C,, for p = 2

The description is the same in both cases; there are cuspidal character
sheaves only when n/2 is a triangular number, in which case there is
one [L85 22.2]. Its support is the class of a unipotent x, of Jordan type
(in Spy,, see|lLS, 2.7]) given by (4,8,12,...); this partition has d parts
where n = d(d + 1). We have Ag(z,) = (Z/2Z)? and the local system cor-
responds to the character (—1,1,—1,1,...). The symbol (in the sense of
[LS, 2.7 and 1.2¢]) of the local system is ({0,4,...,4d},0) when d is odd
and (0,{2,...,2+4(d —1)}) when d is even. The Lusztig series is Q, (the
unipotent series) and the label is the cuspidal symbol of W (B,,) (see. [L85),
22.4, 22.6]).
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Type C,, for p # 2

It is useful to first describe the cuspidal local systems with unipotent sup-
port. For 2 there exists such a system when n is an even triangular num-
ber. For C;°¢ there is also such a system for n an odd triangular number,
which has a nontrivial central character. In each case the support is described
by the Jordan type (2,4,6,...,2d) where n =d(d+1)/2 and Ag(z,) =
(Z./27)%1; the local system corresponds to the character (—1,1,—1,1,...)
of Ag(z,) and the symbol of the local system is ({0,2,4,...,2d},0) if d is
even and (0,{1,3,5,...,2d 4+ 1}) otherwise (see [L84bl 11.5 and 12.4]).

Case Cf‘bd = PSp,,,. PSp,, affords cuspidal local systems if and only if
n is even and of the form n = N7 + Ny where N7 and Ny are triangular
numbers (of the same parity). If Nj # Ny there exists a unique cuspidal
local system with support the class of  where Cg(x5s) >~ Spay;, xZ/?2 8p, N, -
If N1 = N> there are two cuspidal local systems on the class of z where
O (xs) ~ (Span, X%/?*Spyn,) x Z/27Z; the non-trivial element of Ag(zs)
exchanges the two Sp components, and the two local systems correspond
to the two characters of Ag(zs) (see [L85, 23.2(a)]; by [L84b, 2.10] the
local system corresponds to a unipotently supported cuspidal local system
on Cg(ws)?, of central character IdXId when N; and Ny are even, and
of central character ¢ Ke when N; and Ny are odd). If Ny =¢(t+1)/2
and No = r(r +1)/2 with t,r > 0, then the Lusztig series is given by s €
Spiny,, . such that Cg-(s) ~ Spiny 4 x%/?* Spin, ., where if ¢ # r (mod 2)
we have 4A = (t+r+1)? and 8B+ 1= (t —r)? and if t = (mod 2) we
have 4A = (t — r)? and 8B = (t + 7+ 2)(t +7) (see [L92, p. 976] and L85
23.16]). The above describes a unique element s if ¢t # r and two (central)
elements if ¢ = r. The label is given by the cuspidal symbol of the group
W(s) ~W(Da) x W(Byp) (with the convention that W (D) is the trivial
group).

Case C}° = Sp,,,. Again we must have n = Ny + Ny where Ny and N
are triangular numbers. If n is even and N7 # N» there are two local cuspidal
systems, inverse images of the one in C2, where the semi-simple part of the
support is respectively xs and x5z, where z is the non-trivial element of ZG.
If N3 = Nj the element z, is conjugate to x5z, and Cg(zs) is connected,
which leads to a single local system. If N3 Z Ny (mod 2) there are also two
cuspidal local systems, with a nontrivial central character (see [L85 23.2
(b)]). In every case one can index the cuspidal local systems by ordered
pairs (N1, N2); we have Cg(xs) =~ Spay, X Spay,- If t,r, A, B are defined by



On Character Sheaves and Characters of Reductive Groups... 497

the same formula as in the previous subsection, the Lusztig series is given
by an element s such that Cg«(s) ~ O24 X SO4p41. The group Q is thus
727 excepted if N; = Ny (the element of € part of the label corresponds
to the semisimple part x4 or x5z of the support of the local system). The
part “in W(s)” of the label is the cuspidal symbol of the group W (s) ~
W(DA) X W(BQB)

Type B, for p # 2

It is useful to first describe the cuspidal local systems with unipotent sup-
port. For B24 there is a (unique) such system when 2n + 1 is a square (see
[L84b, 13.4]). For B¢, there is an additional system for 2n + 1 a triangu-
lar number, with a nontrivial central character |[L84b, 14.6]. In the first
case the Jordan type of the support is (1,3,5,...) and if d is the number
of parts of this partition then Aso(x,) = (Z/27)%! [L84b, 10.6]; the local
system corresponds to the character (—1,1,—1,...) of this group. We have
n = d? and the symbol (in the sense of [L84b| 13.4]) of the local system is
({0,2,4,...,2d — 2},0). In the second case the Jordan type of the support
is (1,5,9,...) or (3,7,11,...). We have Ag(z,) = (Z/2Z)¢ where d is the
number of parts of the Jordan type (see [L84b, 10.6] and Lemma [A.1]).

Case Bfld = SO2p,4+1. We must have 2n + 1 = Nj + No where N; is an
even square and N an odd square. There is one cuspidal local system,
unipotently supported, when N1 = 0, and two cuspidal local systems if Ny #
0 (see |L85, 23.2(c)]); in this last case we have Cg(zs) ~ On, X SOp,. Let
Ni =12 and Ny = t?; then the Lusztig series is defined by s of centraliser

Sp((r+t)2—1)/2 X Sp((r—t)2—1)/2-

Case B;° = Sping,, ;. Concerning systems coming from B (with a
trivial central character) if N; and Na as above are distinct and both
nonzero, the preimages xs and zsz are conjugate and we have a single
local system. If N3 =0 there are two systems, one with unipotent sup-
port, the other translated by the non-trivial element of the centre. When
the central character is nontrivial (see [L85, 23.2 (e)]), we must have
2n+1= Ny + No where N; is an even triangular numbers and Ny an
odd triangular number. Each such pair gives rise to two cuspidal com-
plexes. When N; # 0 and Ny # 1, they share the same support, the class
of © where Cg(z;) ~ Spiny, x*/?2Spiny, (vs and .2 are conjugate);
Spiny, has two central characters which restrict to a nontrivial charac-
ter of Zg, corresponding to the two local systems. If No =1 we have
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Ca(xs) ~ Spiny, and if Ny =0 one of them is unipotently supported and
the other translated by the non-trivial element of the centre. Let {r,t} be
positive integers such that {Ni, No} = {r(r+1)/2,t(t +1)/2}. If r have
t different parity, let ¢ be the even one. Then we must have r=t+1
(mod 4) (for Ny + N3 to be odd), and we let A= (r+t+3)(r+¢t—1)/16
and B=(r—t—1)(r—t+1)/8. If r and ¢ have same parity we must
have r =t+2 (mod 4) and we let A= (r—t—2)(r —t+2)/16 and B =
(r+t)(r+t+2)/8. The Lusztig series (see [L92, 1.11]) is then defined by
s € G* such that Cg«(s) ~ ((Spag X GLp X Spaa)/(Z/27)) x Z/27 where
the nontrivial element of Ag«(s) exchanges the two Sp components and
induces the transpose inverse automorphism of the GL component.

Type D,, for p =2

There is at most one cuspidal character sheaf, and it occurs when n is an even
square [L85 22.3]. The support is unipotent of Jordan type (2,6, 10,...,4d —
2); this partition has d parts where n = d? (see [LS, 3.3 and 1.2¢]); we have
Ag(wy) ~ (Z/27)%" and the symbol in the sense of loc. cit. of the local
system is ({0,4,...,4d},0). The Lusztig series is Q, (unipotent series) and
the label is the cuspidal symbol of W (D,,) (see [L85, 22.7]).

Type D,, for p # 2

It is useful to first describe the cuspidal local systems with unipotent sup-
port. For D24 there is such a system exactly when 2n is a square and n/2
is even. For SOg,,, there an additional system when 2n is a square and n/2
is odd, with a nontrivial central character. For Spin,, = D;° there is addi-
tionally a system when 2n is a triangular number, attached to each of the
two central characters which are nontrivial on an element of the kernel of
Spiny,, — SOay,. If 2n = d? the support z,, has Jordan type (1,3,5,...,2d —
1), we have Ago(z,) = (Z/22)4! (JL84H), 10.6]) and the symbol in the sense
of [L84bl 13.4] of the local system is (0,2,4,...,2d —2,0). If 4n = d(d + 1)
with d odd (resp. even), the Jordan type of the support is (1,5,9,...,2d — 1)
(resp. (3,7,11,...,2d — 1)), (see [LS, 4.9]). In these latter cases Ag(x,) is
a nonsplit central extension by Z/2 of Ago(xy) = (Z/QZ)[%} and the two
cuspidal local systems correspond to the two characters of degree 2T of
this group ([L84bl 14.3, 14.4])(note that d =0 or 3 (mod 4), thus [%] is
odd). Note also that when n is even the unipotently supported cuspidal local
system are the preimage of those of % Spin,,, .
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Case Dj;d = PSO3,. PSO, affords cuspidal local systems if and only if
n is a multiple of 4 and 2n = Ny + Ny where (N7, N2) is an unordered pair of
even squares. If N7 or Ny is zero it affords one cuspidal system, otherwise if
N and N, are nonzero and distinct there are two cuspidal systems. If N1 =
N3 # 0 there are 4 cuspidal systems (see [L85) 23.2 (c)]). These systems all
have the same support, the class of 2 where Cg(z5)° ~ SOy, xZ/?2 S0y, . If
Nj or Ny is zero then x4 = 1, otherwise if N1 # Ny we have Ag(zs) = Z/27Z,
acting by the outer automorphism on both factors, and if Ny = Ny £ 0 we
have Ag(zs) ~ Z /27 x 7./27 where the second factor Z/27 exchanges the
two SOy, factors of Cg(xs)°.

The Lusztig series is defined by s such that Cg-(s) affords the double
cover Spiny,: X Sping,: where a > 0 and b > 0 are given by Ny = (a + b)?
and Ny = (a — b)? (see [L92], 1.12] or [L8F, 23.19 (c2)]). There are as many
such semi-simple classes as cuspidal local systems, and each system lies in a
different series. The label of a cuspidal system is the cuspidal symbol of the
group W(Dgz2) x W (D).

Case SOg3,,. SO0., affords cuspidal local systems if and only if 2n = N; +
Ny where Ny and Ny are even squares. If n = 0 (mod 4) the cuspidal systems
are a preimage from D2 and have a trivial central character (using Lemma
[AD). If n =2 (mod 4) they have a nontrivial central character (see [L85,
23.2 (d) and 23.19 (d))).

A description which covers both cases is as follows: for each ordered pair
(N1, N2) there is a cuspidal system if N3 =0 or Ny =0 and two cuspidal
systems otherwise. The supports are the class of x such that Cg(xs)° ~
SOn, x SOp,: there are two such classes if N; # Ny (which is always the
case if n =2 (mod 4)), that we parameterise repectively by (N1, Na) and
(Ng, N1), and only one class if N3 = Na. If Nj and Ny are nonzero Ag(xs) is
7,/2 acting by the simultaneous exterior automorphism of both components.
If N1 # Ny the translation by the centre exchanges N; and Ny (exchanging
the supports). If N3 = Ny, the centre acts trivially (then n =0 (mod 4)).
We have x4 = 1 if N; = 0 and x5 a nontrivial central element if No = 0. The
Lusztig series is described by s such that Cg.(s) ~ SOagq2 X SO where a
and b are defined by the same formulae as in the PSOs,, case excepted that
b dmay have an arbitrary sign. Note that if N = 2 (mod 4), a and b must be
odd. There is two such classes excepted if a = +b, that is Ny = 0 or Ny = 0.
If @ and b are nonzero we have Ag-(s) ~ Z/27 acting by the simultaneous
exterior automorphism of SOg,2 and SOqp:.

Case %SpinZn. There exist cuspidal systems with a non-trivial central
character (see [L85, 23.2 (f)]) if and only if n > 6 is odd, of the form 2n =
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N7 + Ny where N7 and Ny are even triangular numbers. For each such non
ordered pair (N1, No) there are two cuspidal local systems if Ny # Ny and
four otherwise (see [L85, 23.2 (f)]). If N7 and Ny are non zero the systems
have all support the class of x where Cg(x)° is isogenous to SOy, x SOy, .
If Ny =0 one of the two systems has unipotent support and the other is
translated by the nontrivial element of the centre. In any case the action
of the centre is free on the 2 or 4 systems. Let N} = T(TTH and Ng = @
with r,¢ > 0. Then r and t are equal to 0 or 3 (mod 4).

If r #¢ (mod 4) the Lusztig series is defined by s such that Cg-(s)° is

isogenous to

SO(r+t+1)2 x GL (r—t)2—1 X SO(r+t+1)2 3
B 8 3

if r=1t (mod 4) the Lusztig series is defined by s such that Cg-(s)° is
isogenous to

SO(,_M x GL (r+t)(r+t+2) X SO(r,t)z
8 8 8

(see [L85, 23.19 (f)]). There is a unique such class, with Ag-(s) ~ Z/27Z
acting by interchanging the two SO components.

The other cuspidal local systems have a trivial central character and
come from PSOg,, (we use here Lemma . Then 2n = N; + Ny with NV
and No even squares. There is one cuspidal local system for each unordered
pair such that N1 # Ny and two systems when N1 = Ny. The support is the
class of x where Cg(x5)° is isogenous to SOy, x SOp,. If N7 or Ny is zero
then x4 = 1, otherwise if Ny # Ny then Ag(zs) = {1} and if Ny = Ny #0
then Ag(xs) ~ Z/27 acting by the exchange of the two SO factors. The
Lusztig series is defined by s such that Cg-(s) is isogenous to SOg42 X SOqp2
where a and b are defined as in the PSO case; there is a unique such class.
If a and b are distinct (equivalently N; and N2 non zero), the centraliser
Cg~(s) is connected. If N; =0 (that is a = b) the group Ag-(s) is Z/2,
acting by exchanging the two components.

Case Spin,,,. There are cuspidal local systems coming from SOg, or
PSOg,, (see Lemma only if n is even. As above, let 2n = N; + N5 where
N7 and Ny are even squares. For each ordered pair (N7, No) with nonzero
N7 and N, there is a unique cuspidal local system. It comes from PSOs,, if
n =0 (mod 4) and from SOg, if n =2 (mod 4). If N; = 0 or if Ny = 0 there
are two systems, each with the semisimple part of the support central. The
lusztig series is defined by s such that Cg.(s) ~ SOgq42 xZ/2Z. 802, where
Ny = (a+b)? and Ny = (a — b)? with @ € NO and b € Z. The group Ag-(s)
is trivial if N7 = Ns, is of order 2 if N7 and Ny are distinct nonzero and is
of order 4 if Ny or Ns is zero.
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We now look at systems coming from %Spingn and not from PSOy,
(see Lemma : they exist if n > 6 is even, of the form 2n = Ny + N»
where N7 and N» are even triangular numbers. For each ordered pair
(N1, N32), if Ny and Ny are non zero there are two cuspidal local system
with support the class of = such that Cg(xz,) affords Spiny, x Spiny, as
a double cover; there are two such classes if Ny # No and only one if
N7 = Ns. The cases N; = 0 and Ny = 0 correspond to 4 cuspidal local sys-
tems with semisimple part of the support each one of the 4 central ele-
ments. The Lusztig series is defined by s such that, if Ny = L;l) and

Ny = (H‘l) , then Cg+(5)° ~ (SO (rii12 X GL (o ¢)2 1 X So(z+t+1)2 )/{=£1} or
(SO (s> 2 % GLM X SO (_i2 ,>2 /8{j:1} dependlng on the values of r and

(mod 4) (as in the case of & Spln) If N1 # Ny there is a single such class;
the group Ag-(s) is noncychc of order 4 generated by two elements x and
2’ where z acts by the simultaneous outer automorphism of both SO com-
ponents and 7’ acts by exchanging the two SO components and doing the
outer automorphism on the GL component. If N7 = N», there are two such
classes; the group Ag-(s) is of order 2 acting by the outer automorphism of
GL.

Finally we look at the cuspidal local systems whose central character is
injective on ZG (see [L85, 23.2 (e)]): they exist only if n is odd, in which
case ZG has two injective characters. For each of these and for each ordered
pair (N1, N2) of even triangular numbers such that 2n = Ny 4+ Na there are
two cuspidal local systems (note that N; # Na and that N; and Ny are non-
consecutive triangular numbers since n is odd). The 4 complexes attached

o (N1,N3) and (Na, N1) are obtained from each other by translating by
the various elements of the centre. If N; > 0 and Ny > 0 the two systems
attached to (Np, Na) have support the class of z such that Cg(zs) affords
Spiny, X Spiny;, as a double cover. If N1 = 0 one of the systems has unipo-
tent support, the other as well as the two systems parameterised by (N3, 0)
are deduced by translation by the centre.

The Lusztig series of a cuspidal local system parameterised by

(N1, N3) is defined by s such that, if lew and NQZ@,

then CG ( ) (SO(r+t+l)2 x GL (r—)2—1 X SO(r+i+1)2 )/{il} or
(SO (on2 t)z x GL (r40(tein) X SO(T ,)2)/{11}8 depending “on the values of
r and t (mod 4) as ‘in the previous case (see [L92), 1.12] or [L85 23.19 (e2)];
note that r # ¢ since N1 # Ny and that |r —t| # 1 since N7 and Ny are
not consecutive). We have Ag-«(s) ~ Z/4Z where the generator acts by
exchanging the two SO components and twisting the GL components, its
square twisting the two SO components.
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Appendix C. Exceptional groups

In the following tables the labels for the cuspidal local systems are, as in
IL85], elements of M(G) for some groups G. We fix notations for the labels
(z,x) in these groups as follows: in &, with n=2,3,4,5, we let g; for
i=2,3,4,5 denote an i-cycle; g5 denotes the product of two commuting
transpositions and gg is an element of order 6 of &5. We denote by 6, 62
(resp. i, —i, resp. —6, —0?) the injective characters of Z/37Z (resp. Z/4Z, resp.
Z/6Z). Finally, when Cg(x) is a Coxeter group (which for instance happens
when G = &4 and z € {1, g2, g5}) we denote by ¢ the sign character of this
group.

The semi-simple part of the support of the cuspidal local system will be
specified by giving the isomorphism type of its centraliser (if needed stating
also the number of such conjugacy classes) or by an explicit description. In
the case when this centraliser is a product of quasisimple groups with cyclic
center, amalgamated by part of their center, we denote z; a generator of the
center of the i-th factor in order to describe the amalgamation.

It is proved in [L12] that all cuspidal local systems are “clean” in the
sense of Lusztig. In bad characteristic we could not find the classification in
the litterature but the reader can check that our tables are complete by using
the knowledge of unipotently supported cuspidal local systems, of isolated
semi-simple elements and the argument [L84b, 2.10.1] of Lusztig.

The parameterisation by labels in families of character sheaves has been
worked out in [L85], [S1] ar [S2] except in a few cases marked by “7?” in
the tables. We have completed this parameterisation so that in every case
we have:

Property (x). (see [S1], 6.2], [S2, 4.6] and [Os]) The eigenvalue of Shintani
(“twisting” operator of Shoji) on the local system parameterised by (z,x) is

x(@)/x(1).

In the cases marked “?7”, it is unknown whether the multiplicity prop-
erty given in [L85] 17.8.3] holds.
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