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Bases of q-Schur Module Aλ

Xingyu Dai, Fang Li∗, and Kefeng Liu

Abstract: In this paper, we construct the so-called q-Schur mod-
ules as left principal ideals of cyclotomic q-Schur algebras, and
prove that they are isomorphic to those cell modules defined in [3]
and [9] in any level r. After that, mainly, we prove that these q-
Schur modules are free and construct their bases. This result gives
new versions of some known results such as standard basis and the
branching theorem. With the help of this realization and the new
basis, we give a new proof of the Branch rule of Weyl modules
which was first discovered by Wada in [13].
Keywords: q-Schur module, cyclotomic q-Schur algebra, branch-
ing theorem.

1. Introduction

Weyl modules for a cyclotomic q-Schur algebra Sn,r have been investigated
recently in the context of cellular algebras (see [3]). These modules are
defined as quotient modules of certain permutation modules, that is, as cell
modules via cellular basis.

However, the classical theory [1] and the works [4],[5] in the case when
m = 1, 2 suggested that a construction as submodules without using cellular
basis should exist in the case of Iwahori-Hecke algebra. Following Dipper and
James’ work [2], when the level r equals to one, basis and structure appearing
in Hecke algebras can still be constructed in q-Schur algebras with a totally
different way.

This phenomenon needs a great change to stay valid in the case of
cyclotomic q-Schur algebras with large level, which is the inspiration
of this paper. We can solve the difficulties by constructing a series of
principal left ideals. Each single one is generated by a single element of the
cyclotomic q-Schur algebras, which we denote by zλ. The element zλ we
construct is ϕ1

λw · Twλ · yλ′ by the right Ariki-Koike algebra Hn,r-module
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structure, where the element yλ′ and morphism ϕdλw are defined in 2.3
and 2.4 respectively. i.e., q-Schur module Aλ is defined as Sn,r · ϕ1

λwTwλyλ′

(Definition 2.4). Then in Theorem 3.1, we prove that the Aµ as Sn,r · zµ
is exactly a realization of Weyl modules in the category of modules over
cyclotomic q-Schur algebras which is a generalization of Dipper and James’
work [2]. After that, we construct and prove a R-basis of the q-Schur
module Aµ in the main result as follows:
Theorem 3.5. Suppose that λ ∈ Λ+

n,r(m). Then the q-Schur module Aλ is

free as a R-module and {ϕ1A
µλ · zλ|A ∈ T

ss
µ (λ) and µ ∈ Λn,r(m)} ⊆ Aλ is a

basis.

Here µ is any multipartition (defined in Section 2.1) and A is its
semi-standard tableau (defined in Remark 3.3). This theorem is something
like “the half way” of the semi-standard basis that appeared in [3]. With
the help of this basis constructed, we can show a new version of the Branch
rule which happens in the category of modules over a cyclotomic q-Schur
algebra.

The paper is organised as follows. In Section 3, we construct some left
ideals {Aµ}, which are called q-Schur modules over the cyclotomic q-Schur
algebra RSn,r, and prove that these q-Schur modules are the same as Weyl
modules in [3]. After that, we clarify that these ideals are spanned by the
natural basis as {ϕ1A

µλ · zλ|µ ∈ Λn,r(m) and A∈ T ssµ (λ)}, just as a parallel
work of Dipper and James in [4]. In Section 4, by using of these new bases
in q-Schur modules, we construct their filtrations, as a new point of view to
the Branch rule in Wada’s work [13].

2. Prelimilaries

2.1. Some notations about tableaux

First, we state some notations following [11].
A composition λ of n is a finite sequence of non-negative integers

(λ1, λ2, . . . , λm) such that |λ| =
∑

i λi = n. There is a partial order �(resp.
�) within compositions of n as: we denote λ� µ (resp. λ� µ) when∑k

i=1 λi ≤
∑k

i=1 µi(resp.
∑k

i=1 λi ≥
∑k

i=1 µi) for all 1 ≤ k ≤ m. Moreover, if
a composition λ satisfies that λ1 ≥ λ2 ≥ · · ·λm, it is called a partition. For
later use, let Λ(n) (resp. Λ+(n)) denote the set of all compositions (resp. all
partitions) of n.
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Let Sn denote the symmetric group of all permutations of 1, . . . , n with
Coxeter generators si := (i, i+ 1), and Sλ the Young subgroup correspond-
ing to the composition λ of n, which is denoted by:

Sλ = Sa = S{1,...,a1} ×S{a1+1,...,a2} × · · · ×S{am−1+1,...,am},

where a = [a0, a1, . . . , am] with a0 = 0 and ai = λ1 + · · ·+ λi for all i =
1, . . . ,m. We denote by Dλ the set of distinguished representatives of right
Sλ-cosets and write Dλµ := Dλ ∩D−1

µ , which is the set of distinguished rep-
resentatives of double cosets Sλ \Sn/Sµ.

One can identify a composition λ with Young diagram and we say that
λ is the shape of the corresponding Young diagram. A λ-tableau is a filling
of the n boxes of the Young diagram of λ of the numbers 1, 2, . . . , n. Denote
the set of λ-tableaux by T (λ) and usually denote t as an element of T (λ).

If λ ∈ Λ(n), it is well-known that symmetric group Sn has a right group
action on T (λ), which is simply interchanging the components of a tableau
in T (λ).

For λ ∈ Λ(n), let λ′ be the dual partition of λ, i.e., λ′i := #{j;λj ≥ i}.
There is a unique element wλ ∈ Sn with the trivial intersection property in
(4.1) of [4]:

w−1
λ Sλwλ ∩Sλ′ = {1}.(2.1)

We can represent wλ with help of Young diagrams. For example,
represents λ = (3, 2), then wλ ∈ Sn is defined by the equation tλwλ = tλ,
where tλ (resp. tλ) is the λ-tableau obtained by putting the number
1, 2, . . . , n in order into the boxes from left to right down successive rows
(resp. columns). In the example,

t(3,2) =
1 2 3
4 5 , t(3,2) =

1 3 5
2 4 .

If we have a λ-tableau t here, we also can determine a unique element
d(t) ∈ Sn, such that tλ · d(t) = t.

Definition 2.1. [2] Suppose that t1 is a λ-tableau and t2 is a µ-tableau,
where both λ, µ ∈ Λ+(n). Let χ(t1, t2) be a n× n matrix whose entry in row
i and column j is the cardinality of following set:

{entries in the first i rows of t1} ∩ {entries in the first j columns of t2}.
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Remark 2.2. [2] If t1 and t′1 are λ-tableaux and t2 and t′2 are µ-tableaux
for λ and µ ∈ Λ+(n), then write χ(t1, t2) ≥ χ(t′1, t

′
2) if each entry in χ(t1, t2)

is not smaller than corresponding one in χ(t′1, t
′
2). Write χ(t1, t2) > χ(t′1, t

′
2)

if, in addition, χ(t1, t2) 6= χ(t′1, t
′
2).

The following properties are immediate from the definitions.

χ(t1w, t2w) = χ(t1, t2) for all w ∈ Sn.(2.2)

χ(t1w, t2) = χ(t1, t2) if w ∈ Sλ.(2.3)

χ(t1, t2w) = χ(t1, t2) if w ∈ Sµ′ .(2.4)

Let m = (m1, · · · ,mr) ∈ Zr>0 be a r-tuple of positive integers. Define a
subset of r-compositions of n as:

Λn,r(m) =

{
µ = (µ(1), · · · , µ(r))

∣∣∣∣∣ µ(k) = (µ
(k)
1 , · · · , µ(k)

mk) ∈ Zmk

≥0∑r
k=1

∑mk

i=1 µ
(k)
i = n

}
.

We denote by |µ(k)| =
∑mk

i=1 µ
(k)
i (resp. |µ| =

∑r
k=1 |µ(k)|) the size

of µ(k) (resp. the size of µ). We define the map ζ : Λn,r(m)→ Zr≥0

by ζ(µ) = (|µ(1)|, |µ(2)|, · · · , |µ(r)|) for µ ∈ Λn,r(m). Put Λ+
n,r(m) = {λ ∈

Λn,r(m)|λ(k)
1 ≥ λ(k)

2 ≥ · · · ≥ λ(k)
mk for any k = 1, · · · , r}.

Let λ′ := (λ(r)′, . . . , λ(1)′) denote the r-composition dual to λ. By con-
catenating the components of λ, the resulting composition of r will be
denoted by

λ̄ := λ(1) ∨ · · · ∨ λ(r).

We can also identify λ ∈ Λn,r(m) with a series of Young diagrams. For
example, λ = ((31), (21), (2)) is identified with(

, ,
)
.

Similarly, we can define two tableaux tλ and tλ in multi-composition
case. Let tλ (resp. tλ) be the λ-tableau obtained by setting the numbers
1, . . . , r in order into the boxes down successive rows (resp. columns) in the
first (resp. last) diagram of λ, then in the second (resp. second last) diagram
and so on. Due to the example above, we have

tλ = (
1 2 3
4 ,

5 6
7 , 8 9 ).

tλ = (
6 8 9
7 ,

3 5
4 , 1 2 ).
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Give the element wλ ∈ Sn by tλwλ = tλ corresponding to a r-partition
λ = (λ(1), . . . , λ(r)) of n. More precisely, if ti denote the i-th subtableau of
tλ, then define w(i) by tiw(i) = ti.

2.2. Ariki-Koike algebras and cyclotomic q-Schur algebras

Now recall the notion of the cyclotomic q-Schur algebra Sn,r from [3] and
the presentations of Sn,r by generators and fundamental relations given in
[14].

Let R be a commutative ring, and take parameters q,Q1, · · · , Qr ∈ R
such that q is invertible in R. The Ariki-Koike algebra Hn,r is the associa-
tive algebra with 1 over R generated by T0, T1, . . . , Tn−1 with the following
defining relations:

(T0 −Q1)(T0 −Q2) · · · (T0 −Qr) = 0,

(Ti − q)(Ti + q−1) = 0 (1 ≤ i ≤ n− 1),

T0T1T0T1 = T1T0T1T0,

TiTi+1Ti = Ti+1TiTi+1 (1 ≤ i ≤ n− 2),

TiTj = TjTi (|i− j| ≥ 2).

The subalgebra of Hn,r generated by T1, · · · , Tn−1 is isomorphic to the
Iwahori-Hecke algebra Hn (sometimes we write it H(Sn)) in [11]. For w ∈
Sn, denote by `(w) the length of w and by Tw the standard basis of Hn
corresponding to w.

For each r-composition λ = (λ(1), . . . , λ(r)), define [λ] := [a0, a1, . . . , ar]
such that a0 := 0 and ai :=

∑i
j=1 |λ(j)|. In the case of Iwahori-Hecke alge-

bras, we can define an element mλ ∈ Hn (resp. nλ ∈ Hn) as mλ :=
∑

w∈Sλ̄

Tw

(resp. nλ :=
∑

w∈Sλ̄

(−q)`(w)Tw) and wλ ∈ Sn is defined in the above subsec-

tion.

Definition 2.3. Let Hn,r be a cyclotomic Hecke algebra with genera-
tors {T0, T1, . . . , Tn−1}, and elements L1 = T0, Li = q−1Ti−1Li−1Ti−1 for
i = 2, · · · , n, and put π0 = 1, πa(x) = Πa

j=1(Lj − x) for any x ∈ R and any
positive integer a. Following [3], we can construct a series of numbers as
a = [λ] = [a0, a1, . . . , ar]. Define that

u+
a = πa1

(Q2) · · ·πar−1
(Qr) and u−a = πa1

(Qr−1) · · ·πar−1
(Q1),
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and, for λ ∈ Λn,r(m), define that

xλ := u+
[λ]mλ̄ = mλ̄u

+
[λ] and yλ := u−[λ]nλ̄ = nλ̄u

−
[λ].

Define the right ideal as Mλ := xλHn,r which is always called permuta-
tion module.

The cyclotomic q-Schur algebra Sn,r associated to Hn,r is defined by

RSn,r = RSΛn,r(m) = EndHn,r

( ⊕
µ∈Λn,r(m)

Mµ

)
.

In order to describe a presentation of RSn,r, we prepare some notations.
Put m =

∑r
k=1mk, and define a “dominant order in multipartitions”.

i.e., for λ, µ ∈ Λn,r(m) and 1 ≤ l ≤ r, 1 ≤ j ≤ ml,

λ� µ ⇔
l−1∑
i=1

|λ(i)|+
j∑

k=1

λ
(l)
k ≥

l−1∑
i=1

|µ(i)|+
j∑

k=1

µ
(l)
k .

For (i, k) ∈ Γ′(m) := Γ(m) \ {(mr, r)}, we define the elements E(i,k),
F(i,k) ∈ RSn,r [14] by:

E(i,k)(mµ · h) =


q
−µ(k)

i+1
+1
( ∑
x∈X

µ+α(i,k)
µ

q`(x)T∗x

)
h
µ
+(i,k)

mµ · h if µ + α(i,k) ∈ Λn,r(m),

0 if µ + α(i,k) /∈ Λn,r(m),

F(i,k)(mµ · h) =


q
−µ(k)

i
+1
( ∑
y∈X

µ−α(i,k)
µ

q`(x)T∗y

)
mµ · h if µ− α(i,k) ∈ Λn,r(m),

0 if µ− α(i,k) /∈ Λn,r(m),

for any µ ∈ Λn,r(m) and h ∈ Hn,r, where hµ+(i,k) ={
1 (i 6= mk),

LN+1 −Qk+1 (i = mk).
For λ ∈ Λn,r(m), we define the element 1λ ∈ RSn,r by

1λ(mµ · h) = δλµmλ · h

for µ ∈ Λn,r(m) and h ∈ Hn,r. In addition, we see that {1λ|λ ∈ Λn,r(m)} is
a set of pairwise orthogonal idempotents, and then 1 =

∑
λ∈Λn,r(m) 1λ.
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Definition 2.4. For any µ ∈ Λn,r(m) and m ∈ N, we now define a left
principal ideal of cyclotomic q-Schur algebra as in the case m = 1 in [2]:
Aµ , Sn,rϕ1

µωTwµyµ′ with ϕ1
µω ∈ HomHn,r(Hn,r,Mµ) is defined as

ϕ1
µω(h) := xµh for any h ∈ Hn,r. Meanwhile, the element Twµyµ′ acts on ϕ1

µω

induced by the right Hn,r-module structure of Mµ. From now on, the module
Aµ is called a q-Schur module, and denote the element ϕ1

µωTwµyµ′ ∈ Sn,r

by zµ.

Note that here we needs to put the restriction that µ ∈ Λn,r(m) since in
the last section, the results only make sense in this restricted situation.

Recall in [6] that the set of all [λ] forms a poset Λ[m, r] (where m =∑
i ai) which has the same set Λ(m, r) as all compositions of m with at

most r parts but with different order. Partial ordering on Λ[m, r] is given
by �: [ai] � [bi] if ai ≤ bi for all i = 1, . . . , r, while Λ(m, r) has the usual
dominance order �.

The following results will be useful in the sequel (see (2.8), (3.1), (3.4)
in [6]).

Lemma 2.5. [6] Let a, b ∈ Λ[m, r], and note H(Sn) as the Iwahori-Hecke
algebra associated with Sn.

u+
aHn,ru−b′ = 0 unless a � b ,(2.5)

u+
aH(Sn)u−a′ = H(Sa)va ,(2.6)

u+
aHn,ru−a′ = u+

aH(Sn)u−a′ ,(2.7)

vaHn,r is a free R-submodule with basis {vaTw|w ∈ Sn} ,(2.8)

where va := u+
a Twa

u−a′.

Definition 2.6. [12] For λ ∈ Λ+
n,r(m) and µ ∈ Λn,r(m), a λ-tableau of type

µ denoted as T is said to be semistandard if the following hold:
(i) the entries in each row of each component of T (k) of T are non-

decreasing;
(ii) the entries in each column of each component T (k) of T are strictly

increasing;
(iii) if (a, b, c) ∈ λ, and T (a, b, c) = (i, s) then s ≥ c.

Let T ssµ (λ) be the set of semistandard λ-tableau of type µ and denote
T ssΛ (λ) =

⋃
µ∈Λ

T ssµ (λ). Here we use Λ := Λn,r for convenience.



446 Xingyu Dai, Fang Li, and Kefeng Liu

The set

{ΨST |S, T ∈ T ssΛ (λ), λ ∈ Λ+(n, r)},(2.9)

which is called the semi-standard basis of cyclotomic q-Schur algebras in
[3], forms a cellular basis of Sn,r in the sense of [10]. Let S �λ

n,r be the
two sided ideal of Sn,r spanned by all ΨST , where S, T ∈ T ssΛ (µ) and µ� λ
(i.e., µ := shape(S) = shape(T ) � λ), where shape(T ) means the partition
corresponding to tableaux T .

In particular, let λ ∈ Λ+(n, r) be a multipartition and recall that T λ is
the unique semistandard λ-tableau of type λ (see [3] and [11]). From the
definition, one sees that ΨTλTλ can restrict to the identity map on Mλ, and
sometimes we denote it by Ψλ .

With above notations, we can define the “cell module” as a submodule
of Sn,r/S �λ

n,r :

W λ = Sn,rΨ̄λ, where Ψ̄λ := (S �λ
n,r + Ψλ)/S �λ

n,r .(2.10)

The module W λ is called a Weyl module in [3].

3. Main theorem and its proof

We now prove q-Schur module given above is isomorphic to those in [3] as
“cell modules” when λ ∈ Λ+

n,r(m). Recall the definitions given in 2.6. In
order to show the next main theorem, we need demonstrate some notations
and definitions which may be used in the procedure of proofs. Most of them
can be found in paper [3] and book [11]:

1) Std(λ), for a partition (resp. multipartition) λ:
It is the set consisting of all standard (semistandard) tableaux.

2) λ(t), for λ and µ are partitions (resp. multipartitions) and t is a
µ-tableau, which satisfies |λ| = |µ|:
It is a µ-tableau of type λ, which replace the components in t with its
row number in tλ.

3) mst, for s and t are λ-tableau and λ is a partition (resp. multipartition):
It is an element of Iwahori (resp. Cyclotomic) Hecke algebra, which is
mst := Td(s)−1 ·mλ · Td(t) (resp. mst := Td(s)−1 · xλ · Td(t)).
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4) mST , for S, T ∈ Tλ(µ) and λ, µ ∈ Λn,r(m):
It is an element of Iwahori (resp. Cyclotomic) Hecke algebra, which is
mST :=

∑
µ(s)=S
µ(t)=T

mst.

Theorem 3.1. For each λ ∈ Λ+
n,r(m), we have the following Sn,r-module

isomorphism:

Aλ ∼= W λ.

Proof. Consider the epimorphism:

θ : Sn,rΨλ −→ Sn,rzλ; hΨλ 7→ hzλ = hϕ1
λωTwλyλ′

= hϕ1
λ̄ω · Tw(1)···w(r)

yµ(1)′∨···∨µ(r)′ · v[µ].

Suppose that T ∈ T ssλ (µ) and S ∈ T ssν (µ) with µ ∈ Λn,r(m) and ν ∈
Λn,r(m). By the definition of ΨST in [3] and semistandard basis theorem [3]
(6.6), we trivially find that the set {ΨST |T ∈ T ssλ (µ), S ∈ T ssν (µ) with µ�

λ, µ ∈ Λ+
n,r(m), ν ∈ Λn,r(m)} is a R-basis of Sn,rΨλ. More precisely, we can

write this basis as

(3.1) {ΨTTλ |T ∈ T ssν (λ)} ∪ {ΨST |T ∈ T ssλ (µ) and S ∈ T ssν (µ) with µ� λ}.

Then, obviously, we have that

W λ ∼= Sn,rΨλ/(Sn,rΨλ ∩S �λ
n,r ).

We claim that, with µ� λ and λ ∈ Λ+
n,r(m), ν ∈ Λn,r(m), if θ(ΨST ) =

θ(ΨSTΨTλTλ) = ΨSTϕ
1
λωTwλyλ′ 6= 0 ,then µ = λ.

Consider the action on the unit of Hn,r:

ΨSTϕ
1
λωTwλyλ′(1) = mSTTwλyλ′

=
∑

t∈Std(µ)
λ(t)=T

mStTwλyλ′ =
∑

t∈Std(µ)
λ(t)=T

∑
s∈Std(µ)
ν(s)=S

mstTwλyλ′

=
∑
s,t

Td(s)xµTd(t)Twλyλ′

=
∑
s,t

Td(s)mµ̄u
+
[µ]Td(t)Twλu

−
[λ′]nλ̄′

= (∗).
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Recall that by Lemma 2.5, u+
aHn,ru−b′ = 0 unless a � b. ΨSTϕ

1
λωTwλyλ′ 6=

0 implies that for some s and t above, that Td(s)xµ̄u
+
[µ]Td(t)Twλu

−
[λ′]yλ̄′ 6=

0. Thus, this condition shows that [µ] � [λ]. On the other hand, with the
assumption in above claim, i.e., µ� λ, it is obvious that [µ] � [λ] by the
definition of [µ], [λ] and �, � . So [µ] = [λ]. Then we find

(∗) =
∑
s,t

[µ]=[λ]

Td(s)mµ̄u
+
[µ]Td(t)Twλu

−
[µ]′nλ̄′

=
∑
s,t

[µ]=[λ]
h′∈S[µ]

Td(s)mµ̄h
′v[µ]nλ̄′ by (2.6) and (2.7) in Lemma 2.5

=
∑
s,t

[µ]=[λ]
h′i∈S{|λi−1|+1,··· ,|λi|}

Td(s)mµ(1)∨···∨µ(r)h′1 · · ·h′mnλ(1)′∨···∨λ(r)′v[µ] by [8]

=
∑
s,t

[µ]=[λ]
h′i∈S{|λi−1|+1,··· ,|λi|}

Td(s)(mµ(1)h′1nλ(1)′) · · · (mµ(r)h′mnλ(r)′)v[µ] .

Since [λ] = [µ], the fact that this is non-zero implies, by [4] (4.1), λ(i) � µ(i)

for all i = 1, . . . , r. On the other hand, by [8] (1.6), µ� λ and [µ] = [λ] imply
µ(i) � λ(i), with 1 ≤ i ≤ r. Hence µ(i) = λ(i) for all i, and therefore, µ = λ.
This completes the proof of above claim.

By the claim and the display in (3.1), one sees that

kerθ = {ΨST | T ∈ T ssλ (µ) and S ∈ T ssν (µ) with µ� λ} = Sn,rΨλ ∩S �λ
n,r .

Therefore, Aλ ∼= W λ. �

Definition 3.2. [4] For w ∈ Sn and S ∈ Tλ(µ) with λ, µ ∈ Λ(n, r), define
a map

Sn × Tλ(µ) −→ Dλ (w, S) 7−→ wS(3.2)

where the element wS is defined by the row-standard λ-tableau tλwS for which
i belongs to the row a if the place occupied by i in tµw is occupied by a in S.

For example, S =
1 2 3
1 2 and tµw =

1 2 4
3 5 with µ = (3, 2) and λ = (2, 2, 1),

then tλwS =

1 3
2 5
4 .
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Remark 3.3. Let T ssλ (µ) be the set of all semi-standard µ-tableaux of type
λ, with λ and µ ∈ Λn,r(m). For any S ∈ T ssλ (µ), we define 1S := 1S̄. Since
S is a semi-standard µ-tableau of type λ, it implies that S̄ is a row-standard
µ̄-tableau of type λ̄, as in [7].

We compare the definition of semi-standard tableaux which appears in
[3] with that in [7]. Note that every entry in S is written as the symbol (i, j)
and is replaced by i+

∑j−1
k=1mk, for 1 ≤ i ≤ mj , 1 ≤ j ≤ n.

Then, by the definition above, we obtain the following consequence:

Lemma 3.4. Suppose that u ∈ Sr and w ∈ Sµ(1)′∨···∨µ(r)′ , with λ, µ ∈
Λn,r(m). Then ϕ1

λ̄ω
TuTw is a linear combination of terms ϕd

λ̄ω
(d ∈ Dλ̄) for

which χ(tλ̄d, tµ̄w(1) · · ·w(r)) = χ(tλ̄u, tµ̄w(1) · · ·w(r)).

Proof. The conclusion is ture when w = 1 since ϕ1
λ̄ω
Tu = ϕu

λ̄ω
for some u ∈

Sn. Below we assume that w 6= 1.
For some w′ ∈ Sn and some a = (i, i+ 1) ∈ Sµ(1)′∨···∨µ(r)′ , we have that

w = w′a, and without lose generality, we can set (i, i+ 1) ∈ Sµ(1)′ satisfying:

w′ = w′1 · · ·w′r, w = w1 · · ·wr with w′1(i, i+ 1) = w1,

wi = w′i for i = 2, · · · , r.

By induction on length `(w), we have ϕ1
λ̄ω
TuTw′ as a linear

combination of terms ϕd
λ̄ω

(d ∈ Dλ̄) for which χ(tλ̄d, tµ̄w(1) · · ·w(r)) =

χ(tλ̄u, tµ̄w(1) · · ·w(r)).
Consider

ϕ1
λ̄ωTuTw = ϕ1

λ̄ωTuTwTa =
∑

χ(tλ̄d,tµ̄w(1)···w(r))=χ(tλ̄u,tµ̄w(1)···w(r))

Cdϕ
d
λ̄ωTa.

By [2] or [4], we have
(3.3)

ϕdλ̄ωTa =


qϕd

λ̄ω
if i, i+ 1 belong to the same row of tλ̄d,

ϕda
λ̄ω

if the row index of i in tλ̄

is less than that of i+ 1,
qϕda

λ̄ω
+ (q − 1)ϕλ̄ϕ

d
λ̄ω

otherwise.

Then the proof is completed through checking the formula above case by
case. �

By the definition in Remark 3.3, we can show the following theorem on
basis, which is the main result in this paper.
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Theorem 3.5. Suppose that λ ∈ Λ+
n,r(m). Then the q-Schur module Aλ is

free as an R-module and {ϕ1A
µλ · zλ|A ∈ T

ss
µ (λ) and µ ∈ Λn,r(m)} ⊆ Aλ is a

basis.

Proof. With the help of Theorem 3.1, it is enough to show that {ϕ1A
µλzλ|A ∈

T ssµ (λ) and µ ∈ Λn,r(m)} ⊆ Aλ is R-linearly independent. We calculate the

action of the element ϕ1A
λµ · zµ on the unit of Hn,r,

ϕ1A
λµ · zµ(1) = ϕ1A

λµϕ
1
µωTwµyµ′(1)

= ϕ1A
λµ(xµ)Twµyµ′

= (
∑

d∈Sλ̄1ASµ̄

Td) · u+
[µ]Twµnµ̄′u

−
[µ′] by [7]

= (
∑

d∈Sλ̄1ASµ̄

Td) · Tw(1)···w(r)
u+

[µ]Tw[µ]
u−[µ′]nµ̄′

= ϕ1A
λ̄µ̄

(xµ̄) · Tw(1)···w(r)
v[µ]nµ(r)′∨···∨µ(1)′ by Lemma 2.5

= ϕ1A
λ̄µ̄

(xµ̄) · Tw(1)···w(r)
· nµ(1)′∨···∨µ(r)′ · v[µ] by [6]

= ϕ1A
λ̄µ̄

(xµ(1)∨···∨µ(r)Tw(1)···w(r)
nµ(1)′∨···∨µ(r)′) · v[µ]

= ϕ1A
λ̄µ̄
ϕ1
µ̄ω · Tw(1)···w(r)

nµ(1)′∨···∨µ(r)′(1) · v[µ]

Then, following from the calculation in [2], for A,B ∈ Tλ̄(µ̄), we write A ∼ B
if A and B are row equivalent (which has been defined in [3], i.e., if one
tableau A can be changed to B by a sequence of elementary row permuta-
tions.). Thus, Sλ̄1ASµ̄ =

⋃
B∼ASλ̄1B. In addition, if w ∈ Sn, we denote by

w the unique element of Sλw ∩Dλ for some λ ∈ Λ(n, r), i.e., the shortest
element in Sλw.

ϕ1A
λ̄µ̄
ϕ1
µ̄ω · Tw(1)···w(r)

nµ(1)′∨···∨µ(r)′

= (
∑
B∼A

ϕ1B
λ̄ω
Tw(1)···w(r)

)nµ(1)′∨···∨µ(r)′

= (
∑
B∼A

ϕ1
λ̄ωT1BTw(1)···w(r)

)nµ(1)′∨···∨µ(r)′

= (
∑
B∼A

qKBϕ1
λ̄ωT1Bw(1)···w(r)

+ sB) · nµ(1)′∨···∨µ(r)′ by [2]
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where KB is an integer and sB is a linear combination of terms ϕd
λ̄ω

for
which

χ(tλ̄1B, t
µ̄) > χ(tλ̄d, tµ̄w(1) · · ·w(r)).

Moreover, χ(tλ̄1A, t
µ̄) > χ(tλ̄1B, t

µ̄) = χ(tλ̄1Bw(1) · · ·w(r), t
µ̄1Bw(1) · · ·w(r))

if B ∼ A but B 6= A. Hence
(3.4)
ϕ1A
λ̄µ̄
ϕ1
µ̄ω · Tw(1)···w(r)

nµ(1)′∨···∨µ(r)′ = (qKϕ1
λ̄ωT1Aw(1)···w(r)

+ s) · nµ(1)′∨···∨µ(r)′

where K is an integer and s is a linear combination of terms ϕd
λ̄ω

with

χ(tλ̄1A, t
µ̄) > χ(tλ̄d, tµ̄w(1) · · ·w(r)).

Now suppose that
∑
A

cAϕ
1A
λ̄µ̄
ϕ1
µ̄ω · Tw(1)···w(r)

nµ(1)′∨···∨µ(r)′ = 0, where cA ∈

R and the sum is over A ∈ T ssλ (µ). Choose D ∈ T ssλ (µ) such that cA = 0

for all A with χ(tλ̄1A, t
µ̄) > χ(tλ̄1D, t

µ̄). If we can prove that cD = 0, it will
follow that every coefficient cA = 0, and then the proof is completed.

By (3.4), there exists an integer K and s ∈Mλ such that∑
A

cAϕ
1A
λ̄µ̄
ϕ1
µ̄ω · Tw(1)···w(r)

nµ(1)′∨···∨µ(r)′

= cDq
Kϕ1

λ̄ω
T1Dw(1)···w(r)

nµ(1)′∨···∨µ(r)′ + snµ(1)′∨···∨µ(r)′

where s is a linear combination of terms ϕd
λ̄ω

(d ∈ Dλ̄) for which

χ(tλ̄d, tµ̄w(1) · · ·w(r)) � χ(tλ̄1D, t
µ̄).(3.5)

Now, suppose

cDq
Kϕ1

λ̄ωT1Dw(1)···w(r)
nµ(1)′∨···∨µ(r)′ + snµ(1)′∨···∨µ(r)′ = 0

and by Lemma 3.4, ϕ1
λ̄ω
T1Dw(1)···w(r)

nµ(1)′∨···∨µ(r)′ is the linear com-

bination of terms ϕd
λ̄ω

(d ∈ Dλ̄) for which χ(tλ̄d, tµ̄w(1) · · ·w(r)) =

χ(tλ̄1Dw(1) · · ·w(r), t
µ̄w(1) · · ·w(r)) = χ(tλ̄1D, t

µ̄), while syµ(1)′∨···∨µ(r)′ is a

linear combination of terms ϕ1
λ̄ω

(d ∈ Dλ) for which χ(tλ̄, tµ̄) 6= χ(tλ̄1D, t
µ̄)

by (3.5). Therefore,

cDq
Kϕ1

λ̄ωT1Dw(1)···w(r)
nµ(1)′∨···∨µ(r)′ = 0.

But ϕ1
λ̄ω
T1Dw(1)···w(r)

nµ(1)′∨···∨µ(r)′ 6= 0, since the numbers strictly increase
down the columns for every component of D. Therefore, cD = 0, as we
claimed.
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Now, we have already known that the elements ϕ1A
λ̄µ̄
ϕ1
µ̄ω ·

Tw(1)···w(r)
nµ(1)′∨···∨µ(r)′ is linearly independent. It implies that

ϕ1A
λµϕ

1
µωTwµyµ′ = ϕ1A

λ̄µ̄
ϕ1
µ̄ω · Tw(1)···w(r)

nµ(1)′∨···∨µ(r)′ · v[µ] are R-linearly

independent, since by Lemma 2.5 it is trivial that a · v[µ] = 0 if and only if
a = 0 for any a ∈ H(Sr). �

It should be necessary to make a comparison of the basis of Aλ con-
structed here with that of W λ. Via the isomorphism given in Theorem 3.1,
we know indeed θ assigns the cellular basis element ΨST = ΨSTΨTλTλ to the
basis element ΨST · zλ = ΨST · ϕ1

λωTwλyλ′ , where T ∈ T ssλ (λ) = {T λ}, S ∈
T ssν (λ), ν ∈ Λn,r(m) and λ ∈ Λn,r(m)+. Following from the notations of
(5.8), (5.9) in [7], one shows that ϕ1S

µλ = ΨSTλ . Therefore,

θ : ΨSTλ + Sn,r 7→ ΨSTλzλ = ϕ1S
νλ · zλ.

4. Application to the Branch rule

In this section, by using this embedding and restriction functors introduced
in [13], we give a new proof of the Branch rule in a cyclotomic q-Schur
algebra of rank n to one of rank n+ 1.

From now on, throughout this paper, we argue under the following set-
ting, most of them are from [13]:

m = (m1, · · · ,mr) such that mk ≥ n+ 1 for all k = 1, · · · , r,
m′ = (m1, · · · ,mr−1,mr − 1),

Sn+1,r = RSn+1,r(Λn+1,r(m)),

Sn,r = RSn,r(Λn,r(m
′)).

We will omit the subscript R if there is no risk to cause confusion.
Define the injective map

γ : Λn,r(m
′)→ Λn+1,r(m),

(λ(1), · · · , λ(r−1), λ(r)) 7→ (λ(1), · · · , λ(r−1), λ̂(r)),

where λ̂(r) = (λ
(1)
1 , · · · , λ(r)

mr−1, 1). Put Λγn+1,r(m) = Imγ, we have

Λγn+1,r(m) = {µ = (µ(1), · · · , µ(r)) ∈ Λn+1,r(m)|µ(r)
mr

= 1},

where it is defined that µ(i) = (µ
(i)
1 , · · · , µ(r)

mi) ∈ Zmi

>0 for 1 ≤ i ≤ r.
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For λ ∈ Λ+
n+1,r, and T ∈ T ssΛ (λ), let T \ (n+ 1) be the standard tableau

obtained by removing the node x such that T (x) = n+ 1, and denote the
shape of T \ (n+ 1) by Shape(T \ (n+ 1)). Note that x here is a removable
node of λ, and that Shape(T \ (n+ 1)) = λ \ x.

Proposition 4.1. [13]( Wada inclusion) There exists an algebra homomor-
phism ι : Sn,r → Sn+1,r such that

E
(l)
(i,k) 7→ E

(l)
(i,k)ξ, F

(l)
(i,k) 7→ F

(l)
(i,k)ξ, 1λ 7→ 1γ(λ)(4.1)

for (i, k) ∈ Γ′(m′), l ≥ 1, λ ∈ Λn,r(m
′), where ξ =

∑
λ∈Λγn+1,r(m) 1λ is an

idempotent of Sn+1,r. In particular, we have that ι(1Sn,r
) = ξ, and that

ι(Sn,r) ( ξSn+1,rξ, where 1Sn,r
is the unit element of Sn,r. Moreover, ι

is injective.

Define a restriction functor Resn+1
n : Sn+1,r-mod→ Sn,r-mod by

Resn+1
n = HomSn+1,r

(Sn+1,rξ,−) ∼= ξSn+1,r ⊗Sn+1,r
−.

Recall that, for λ ∈ Λ+
n+1,r, the q-Schur module Aλ of Sn+1,r has an free

R-basis {ϕ1A
µλzλ|A ∈ T

ss
µ (λ), µ ∈ Λn+1,r(m)}. From the definition, we have

that

Resn+1
n (Aλ) = ξAλ.

Thus, Resn+1
n (Aλ) has an free R-basis {ϕ1A

µλzλ|A ∈ T
ss
µ (λ), µ ∈ Λγn+1,r(m)}.

The following notations are from [8].
For a partition λ = (λ1, · · · , λm) of n, we identify the boxes in the Young

diagram N (λ) with its position coordinates. Thus,

N (λ) = {(i, j) ∈ Z+ × Z+|j ≤ λi}.

The elements of N (λ) will be called nodes. A node of the form (i, λi) (resp.
(i, λi + 1)) is called removable (resp. addable) if i = m or λi > λi+1 for i 6= m
(resp. (i, λi) = (0, 1) for λ1 = · · · = λm = 1 or i = 1 or λi−1 > λi if i 6= 1).

Let λ = (λ(1), · · · , λ(r)) be an r-partition. Then its N (λ) is the union of
N (λ(k)), 1 ≤ k ≤ r. i.e., a set of nodes

N (λ) = {(i, j, k)|i, j ∈ Z+, j ≤ λ(k)
i , 1 ≤ k ≤ r}.
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A node of N (λ) is said to be removable (resp. addable) if it is a removable
(resp. addable) node of N (λ(k)) for some k. Denote by Rλ the set of all
removable nodes of N (λ). Then N = #Rλ =

∑r
i=1 #Rλ(i) .

A partial ordering “ � ” on Rλ will be fixed from top to bottom and
from left to right, that is, it satisfies that

(i, j, k) � (i′, j′, k′) if k < k′, or if k = k′ and i < i′.

Then, we have Rλ = {n1, · · · , nN}, with the property that ni � nj for i > j.
Let jn, n ∈ Rλ, be the number at the node n in tλ. For example, for λ =(
(31), (22), (1)

)
, Rλ = {(1, 3, 1), (2, 1, 1), (2, 2, 2), (1, 1, 3)}.

Also, we define a partial order � on Z>0 × {1, . . . , r} by

(i, k) � (i′, k′) if (i, 1, k) � (i′, 1, k′).

In the next proposition, we use the basis {ϕ1A
µλzλ}µ∈Λγn+1,r(m),A∈T ssµ (λ) in

q-Schur modules instead of the cellular basis in Weyl modules. By using
already existing formulae, we can easily reach the following consequence:

Proposition 4.2. Let λ ∈ Λ+
n+1,r, µ ∈ Λγn+1,r(m), A ∈ T ssµ (λ). For (i, k) ∈

Γ′(m′), we have the following

E(i,k) · ϕ1A
µλzλ =

∑
B∈T ssµ+α(i,k)

(λ)

shape(B\(mr,r))Dshape(A\(mr,r))

rBϕ
1B
µ+α(i,k),λ

zλ (rB ∈ R);(4.2)

F(i,k) · ϕ1A
µλzλ =

∑
B∈T ssµ−α(i,k)

(λ)

shape(B\(mr,r))Dshape(A\(mr,r))

rBϕ
1B
µ−α(i,k),λ

zλ (rB ∈ R).(4.3)

Proof. Following from the notations of (5.8), (5.9) in [7], one shows that
ϕ1A
µλ = ΨATλ . On the other hand, by a general theory of cellular algebras

together with Wada’s paper [13] (Proposition 3.3), it implies for (i, k) ∈
Γ′(m′),
(4.4)

E(i,k) · ϕ1A
µλ ≡

∑
B∈T ssµ+α(i,k)

(λ)

shape(B\(mr,r))Dshape(A\(mr,r))

rBϕ
1B
µ+α(i,k),λ

mod S Bλ
n+1,r,

where rB ∈ R.
By definitions, zλ := ϕ1

λωTwyλ′ and S Bλ
n+1,r is linearly generated by ΨST

for S, T ∈ TΛ(ν) with ν B λ. It follows that S Bλ
n+1,r · zλ = 0. On the other
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hand, suppose that there exists some S, T ∈ T ssΛ (ν) such that ΨST zλ 6= 0,
which means λ = ν due to the proof of Theorem 3.1. This contradicts the
fact ν B λ. Finally, we obtain the consequence of the first statement after
multiplying the element zλ on the two sides of (4.4).

The case for F(i,k) with (i, k) ∈ Γ′(m′) can be proved similarly with the
above proof in the case for E(i,k). �

We denote the removable nodes set asRλ = {n1, · · · , nN}, with the prop-
erty that ni � nj for i > j. By Theorem 3.5, let RMi be an R-submodule of
Resn+1

n (Aλ) spanned by

{ϕ1A
µλzλ|A ∈ T

γ
Λ (λ) ∩ T ssΛ (λ) such that A(nj) = (mr, r) for some j ≥ i},

where we put T γΛ (λ) :=
⋃
µ∈Λγn+1,r(m) Tµ(λ). When there is no confusion

about R, we also denote RMi as Mi. Then we have a filtration of R-module

Resn+1
n (Aλ) = M1 ⊃M2 ⊃ · · · ⊃Mk ⊃Mk+1 = 0.

For λ ∈ Λ+
n+1,r and a removable node x of λ, define the semi-standard

tableau T λx ∈ T ssΛ (λ) by

T λx (a, b, c) =

{
(a.c) if (a, b, c) 6= x,
(mr, r) if (a, b, c) = x.

(4.5)

We see that T λx ∈ T
γ

Λ (λ) ∩ T ssΛ (λ), and T λx \ (mr, r) = T λ\x, where the
tableau T λ\x notes the unique element in the set T ssλ\x(λ \ x).

From the definition, Mi/Mi+1 has an free R-basis

{ϕ1A
γ(µ)λzλ +Mi+1|A ∈ T γΛ (λ) ∩ T ssΛ (λ) such that A(ni) = (mr, r)

and µ ∈ Λn,r(m)}.

For A ∈ T γΛ (λ) ∩ T ssΛ (λ) such that A(ni) = (mr, r), we have Shape(A \
(mr, r)) = λ \ ni by the definition. Note that λ \ nj � λ \ ni if and only if
nj ≺ ni (i.e., j > i). Then, by Proposition 4.2, we see that {Mi} is a filtra-
tion of Sn,r-module.

Now, we use the main result in Section 3 to give a new proof of the
Branch rule of Weyl modules in [13].

Theorem 4.3. [13] Assume that R is a field. For any λ ∈ Λ+
n+1,r(m),

let n1, · · · , nk be the removable nodes of N (λ) counted from top to bottom,
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and define Mt as above for 1 ≤ t ≤ k. Then, we have a filtration of Sn,1-
submodule for Aλ:

0 = Mk+1 ⊂Mk ⊂ · · · ⊂M1 = Aλ

with the sections of Weyl modules (or q-Schur modules): Mt/Mt−1
∼= W λ\nt.

Proof. First of all we set µ̂ := γ(µ), and consider the weight decomposition of
Sn,r-module Mi/Mi+1 =

⊕
µ∈Λn,r(m)

µ(Mi/Mi+1) =
⊕

µ∈Λn,r(m)

1µ ·Mi/Mi+1 =⊕
µ∈Λn,r(m)

1µ̂(Mi/Mi+1), where 1µ̂(Mi/Mi+1) is generated by

{ϕ1A
µ̂λzλ +Mi+1|A ∈ T γΛ (λ) ∩ T ssΛ (λ) such that A(ni) = (mr, r)}.

Since A \ (mr, r) ∈ T ssµ (λ \ ni), we can find that µ(Mi/Mi+1) 6= 0 only if
λ� µ̂, which implies that λ \ ni � µ.

Let ni = (a, b, c). Note that E(j,l) · ϕ1A
µ̂λzλ is a linear combination of

{ϕ1B
µ̂+α(j,l),λ

zλ|B ∈ T ssµ̂+α(j,l)
(λ)} and that T ssµ̂+α(j,l)

(λ) = ∅ unless λ� µ̂+
α(j,l).

We have T λni ∈ T
ss
τ (λ) in the case of τ := λ̂ \ ni, i.e., τ = λ− (α(a,c) +

α(a+1,c) + · · ·+ α(mr−1,r)).

If (j, l) � (a, c), we have E(j,l) · ϕ1A
τλzλ = 0 since λ 4 τ +

α(j,l) for any A ∈ T ssτ (λ).
If (j, l) � (a, c), for any S ∈ T ssτ+α(j,l)

(λ) together with the definition of

semi-standard tableaux, we can easily check that S
(
(a′, b′, c′)

)
� (j, l) for

any (a′, b′, c′) ∈ λ satisfying (a′, c′) � (j, l). This implies that

|S \ (mr, r)| 6= |λ \ ni| for any S ∈ T ssτ+α(j,l)
(λ),(4.6)

since (a, c) � (j, l) and T λni
(
(a, b, c)

)
= (mr, r) � (j, l). From now on, we note

the tableau T λni as X.
Thus, Proposition 4.2 together with (4.6) implies that

E(j,l) · ϕ1X
τλ · zλ = 0 ∈Mi+1 for any (j, l) ∈ Γ′(m′).

Thus, ϕ1X
τλ · zλ +Mi+1 is a highest weight vector of weight λ \ ni of Sn,r-

module in sense of [14]. Moreover, since the Weyl modules are simple mod-
ules in category of KSn,r-modules, due to the universality of Weyl modules
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in [14], we have an KSn,r-isomorphism:

θ
λ\ni
K : KAλ\ni → KSn,r · (ϕ1X

τλ · zλ) + KMi+1.(4.7)

Note that θ
λ\ni
K is determined by θ

λ\ni
K (ϕ1

λ\niλ\ni · zλ\ni) = ϕ1X
τλ · zλ + KMi+1.

We see that θ
λ\ni
A is a restriction of θ

λ\ni
K which assigns the submod-

ule AAλ\ni onto the submodule ASn,r · (ϕ1X
τλ · zλ) + AMi+1. Then, we find

that θ
λ\ni
A is an isomorphism of ASn,r-modules. Furthermore, by the argu-

ment of specialization to any arbitrary commutative ring, it follows that

θ
λ\ni
R := θ

λ\ni
A ⊗A R is an isomorphism for the algebra RSn,r.

R is assumed to be a field. Since W λ\ni ∼= Aλ\ni ∼= RSn,r · (ϕ1X
τλ · zλ) +

RMi+1, which is a RSn,r-submodule of Mi/Mi+1, we finally reach the con-
sequence by comparing the dimensions of Aλ\ni and Mi/Mi+1. �
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