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Bases of ¢-Schur Module A"

XINGYU DAI1, FanG Li*, AND KEFENG LiU

Abstract: In this paper, we construct the so-called ¢-Schur mod-
ules as left principal ideals of cyclotomic ¢-Schur algebras, and
prove that they are isomorphic to those cell modules defined in [3]
and [9] in any level r. After that, mainly, we prove that these g¢-
Schur modules are free and construct their bases. This result gives
new versions of some known results such as standard basis and the
branching theorem. With the help of this realization and the new
basis, we give a new proof of the Branch rule of Weyl modules
which was first discovered by Wada in [13].

Keywords: ¢-Schur module, cyclotomic g-Schur algebra, branch-
ing theorem.

1. Introduction

Weyl modules for a cyclotomic g-Schur algebra .77, , have been investigated
recently in the context of cellular algebras (see [3]). These modules are
defined as quotient modules of certain permutation modules, that is, as cell
modules via cellular basis.

However, the classical theory [I] and the works [4],[5] in the case when
m = 1, 2 suggested that a construction as submodules without using cellular
basis should exist in the case of Iwahori-Hecke algebra. Following Dipper and
James’ work [2], when the level r equals to one, basis and structure appearing
in Hecke algebras can still be constructed in g-Schur algebras with a totally
different way.

This phenomenon needs a great change to stay valid in the case of
cyclotomic ¢-Schur algebras with large level, which is the inspiration
of this paper. We can solve the difficulties by constructing a series of
principal left ideals. Each single one is generated by a single element of the
cyclotomic g-Schur algebras, which we denote by z). The element z) we
construct is cp}\w - Tw, - yn by the right Ariki-Koike algebra #H,, ,-module
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structure, where the element g, and morphism cp‘/(w are defined in
and respectively. i.e., g-Schur module A is defined as g ‘P%\wwa?/X
(Definition . Then in Theorem 3.1, we prove that the A" as .7, , - 2,
is exactly a realization of Weyl modules in the category of modules over
cyclotomic ¢g-Schur algebras which is a generalization of Dipper and James’
work [2]. After that, we construct and prove a R-basis of the g¢-Schur
module A" in the main result as follows:

Theorem 3.5. Suppose that X € A;},(m). Then the q-Schur module AN s
{Tee as a R-module and {cpbg\ 2\lA e T5(N) and p € Apy(m)} C AN s a

asis.

Here p is any multipartition (defined in Section 2.1) and A is its
semi-standard tableau (defined in Remark . This theorem is something
like “the half way” of the semi-standard basis that appeared in [3]. With
the help of this basis constructed, we can show a new version of the Branch
rule which happens in the category of modules over a cyclotomic g-Schur
algebra.

The paper is organised as follows. In Section 3, we construct some left
ideals { A"}, which are called g-Schur modules over the cyclotomic g-Schur
algebra r.7), », and prove that these g-Schur modules are the same as Weyl
modules in [3]. After that, we clarify that these ideals are spanned by the
natural basis as {gollj)‘\ 2x|p € Apr(m) and A€ T7°(N)}, just as a parallel
work of Dipper and James in [4]. In Section 4, by using of these new bases
in ¢g-Schur modules, we construct their filtrations, as a new point of view to
the Branch rule in Wada’s work [13].

2. Prelimilaries
2.1. Some notations about tableaux

First, we state some notations following [11].

A composition A of n is a finite sequence of non-negative integers
(A1, A2, ..., Ap) such that |A| = >, \; = n. There is a partial order <J(resp.
>>) within compositions of n as: we denote A <Jpu (resp. A>p) when
Zle i < Zle pi(resp. Zle i > Zle ;) for all 1 < k < m. Moreover, if
a composition \ satisfies that Ay > A9 > --- \,,,, it is called a partition. For
later use, let A(n) (resp. AT (n)) denote the set of all compositions (resp. all
partitions) of n.
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Let &,, denote the symmetric group of all permutations of 1,...,n with
Coxeter generators s; := (i,7 + 1), and &) the Young subgroup correspond-
ing to the composition A of n, which is denoted by:

6)\ = Ga = 6{17."@1} X 6{a1+1,...7a2} X oo X 6{am71+17_._7am},

where a = [ag,a1,...,an,] with ag=0 and a; =X\ +---+ \; for all i =
1,...,m. We denote by Z, the set of distinguished representatives of right
G -cosets and write I, 1= Z)\ N .@;1, which is the set of distinguished rep-
resentatives of double cosets Gy \ 6,,/6,.

One can identify a composition A with Young diagram and we say that
A is the shape of the corresponding Young diagram. A A-tableau is a filling
of the n boxes of the Young diagram of A of the numbers 1,2, ..., n. Denote
the set of A-tableaux by 7 (A) and usually denote t as an element of 7 (\).

If A € A(n), it is well-known that symmetric group &,, has a right group
action on 7 ()\), which is simply interchanging the components of a tableau
in T(X\).

For A € A(n), let X' be the dual partition of A, i.e., A, := #{j; \; > i}.
There is a unique element wy € &,, with the trivial intersection property in
(4.1) of [4]:

(2.1) w;16,\w>\06,\/ ={1}.

We can represent wy with help of Young diagrams. For example, B}j
represents A = (3,2), then wy € &,, is defined by the equation t‘wy = t,
where t* (resp. ty) is the A-tableau obtained by putting the number
1,2,...,n in order into the boxes from left to right down successive rows
(resp. columns). In the example,

(@2 BB g, =B

If we have a A-tableau t here, we also can determine a unique element
d(t) € &, such that t* - d(t) = t.

Definition 2.1. [2] Suppose that t; is a A-tableau and tz is a p-tableau,
where both A, p € AT (n). Let x(t1,t2) be a n X n matriz whose entry in row

1 and column j is the cardinality of following set:

{entries in the first i rows of t1} N {entries in the first j columns of t2}.
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Remark 2.2. [2] If t; and t| are A\-tableauz and ty and t, are p-tableaux
for X and p € AT (n), then write x(t1, t2) > x (¥}, 1) if each entry in x(t1,t2)
is not smaller than corresponding one in x(t,t,). Write x(t1,t2) > x(t],t5)
if, in addition, x(t1,t2) # x (4], £,).

The following properties are immediate from the definitions.

(2.2) x(tw, bw) = x(t,t2) forall we G,.
x(hw,t2) = x(ti,t2) if we &),
(2.4) X(fl, wi) = X(tl,tQ) if we 6“/
Let m = (mq,---,m,) € ZL, be a r-tuple of positive integers. Define a

subset of r-compositions of n as:

pl? = (ﬂgk),-~-,u57'§2)€Z?5 }
Zk IZZ 1“7,

We denote by || =37 ufk) (resp. |u| = >25h_; ™)) the size

of p®) (resp. the size of u). We define the map (:A, (m) — Z5,
by C(p) = (| [u®],- [u™]) for pe Ayy(m). Put Af (m)={re
A @) A > AP > > A o any k=1, 1)

Let X := (A0 . A1) denote the r-composition dual to A. By con-
catenating the components of A, the resulting composition of r will be
denoted by

)= )\(1)\/...\/)\(”‘

We can also identify A € A,, »(m) with a series of Young diagrams. For
example, A = ((31),(21), (2)) is identified with

(Bjj, 5 ).

Similarly, we can define two tableaux t* and tj in multi-composition
case. Let t* (resp. ty) be the A-tableau obtained by setting the numbers
1,...,r in order into the boxes down successive rows (resp. columns) in the
first (resp. last) diagram of A, then in the second (resp. second last) diagram
and so on. Due to the example above, we have

5 G
¢ — (@ B sm).

= O B am).
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Give the element wy € &,, by wy = corresponding to a r-partition
A= ()\(1), e )\(T)) of n. More precisely, if £ denote the i-th subtableau of
t*, then define w(;) by tiw(i) =t;.

2.2. Ariki-Koike algebras and cyclotomic g-Schur algebras

Now recall the notion of the cyclotomic ¢-Schur algebra .}, , from [3] and
the presentations of .7, , by generators and fundamental relations given in
[14].

Let R be a commutative ring, and take parameters ¢,Q1, -+ ,Q, € R
such that ¢ is invertible in R. The Ariki-Koike algebra H,, , is the associa-
tive algebra with 1 over R generated by Ty, T4, ..., T,—1 with the following
defining relations:

(To — Q1)(To — Q2) - -- (To — Q) =0,

(T;—q)(Ti+q~ ") =0 (1<i<n-—1),
ToThToTh = ThToTi To,

LT T =T T (1<i<n—-2),
LTy = T;Ti (li —jl =2).

The subalgebra of H,,, generated by T7,---,T;,_1 is isomorphic to the
Twahori-Hecke algebra H,, (sometimes we write it H(S,,)) in [11]. For w €
Sy, denote by ¢(w) the length of w and by T, the standard basis of H,,
corresponding to w.

For each r-composition A\ = AW X)) define [A] = [ao, a1, . . ., ar]
such that ag := 0 and a; :==37;_; IAU)|. In the case of Iwahori-Hecke alge-

bras, we can define an element my € H,, (resp. ny € Hy) as my := Y, Ty,
weG 5

(resp. ny := > (—¢)"™T,) and wy € &, is defined in the above subsec-
weS5
tion.

Definition 2.3. Let H,, be a cyclotomic Hecke algebra with genera-
tors {Ty,Ty,...,Th_1}, and elements Ly =Ty, L; = ¢ Ty 1L; 1T;_1 for
i=2,--+,n, and put mg = 1, my(x) = H?:1(Lj —x) for any x € R and any
positive integer a. Following [3], we can construct a series of numbers as
a = [\ =[ao,a1,...,a,]. Define that

u?: = 7TCLl(Q2) o Tany (QT) and Ug = Tq, (Qrfl) o Ta, (Ql)v
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and, for A € Ay, »(m), define that
Ty = u[t\]m;\ = m;\u[t\] and yy = u[;\]nX = n;\u[;\].

Define the right ideal as M> := T Hn,r which is always called permuta-
tion module.

The cyclotomic g-Schur algebra .7, , associated to H,, is defined by
RS ngr = R, (M) = Endm,r( Q% Mu)
KEAR,»(m)

In order to describe a presentation of g.#}, ., we prepare some notations.
Put m = )"} _, my, and define a “dominant order in multipartitions”.
ie, for \,peAy,(m)and 1 <1 <r, 1 <5 <my,

-1 J -1 J
Ao SOPOTEITAY > SO Yl
=1 k=1 i=1 k=1

For (i,k) € T'(m) :=T'(m) \ {(m,,r)}, we define the elements E;y),
Fliry € RS nyr [14] by:

e
g i ( > q[(“")T;)hi(i e i o+ o gy € Apr(m),
E( iy (my - h) = IGXT%.&)
0 if p+ o ) € An,r(m),
7/4(.k)+1 £(x) p* i
q M ( b q Ty>’m,;,-h 1f,u,7a<i,k) € Ap,r(m),
F(i,k)(mu ~h) = yeXZ_a(i’k)
0 if p— A4, k) & An,r(m),

for any p € Ay p(m) and h € Hnr, where h

n
+(i,k)
Lni1 = Qp+1 (0= my).
For A € A, »(m), we define the element 1) € .7, , by

1)\(mu -h) = 5>\Mm)\ -h

for p € Ay, »(m) and h € H,, . In addition, we see that {1)|A € A, »(m)} is
a set of pairwise orthogonal idempotents, and then 1 =}, Ao () 1.
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Definition 2.4. For any p € A, (m) and m € N, we now define a left
principal ideal of cyclotomic q-Schur algebra as in the case m =1 in [2]:
Ar & Snr T, Y with ), € Homyy, (Hpr, M") is defined as
@}M(h) := xyuh for any h € Hy . Meanwhile, the element Ty, Yy, acts on <p}1M
induced by the right H,, .-module structure of M*". From now on, the module
A is called a g-Schur module, and denote the element ‘P;lmTw,Lyu’ € Snr

by z,.

Note that here we needs to put the restriction that p € A, ,(m) since in
the last section, the results only make sense in this restricted situation.

Recall in [0] that the set of all [A] forms a poset Alm,r] (where m =
>, a;) which has the same set A(m,r) as all compositions of m with at
most 7 parts but with different order. Partial ordering on A[m,r| is given
by =<: [a;] <X [bi] if a; < b; for all i =1,...,r, while A(m,r) has the usual
dominance order <.

The following results will be useful in the sequel (see (2.8), (3.1), (3.4)
in [6]).

Lemma 2.5. [6] Let a,b e Alm,r], and note H(S,,) as the Twahori-Hecke
algebra associated with S,,.

uZHn,ru;, =0 unless a = b,
ufH(Gn)uy = H(Sa)va ,
Ug Moty = ug H(Gn)uy

VaHn,r is a free R-submodule with basis {veTy|w € &y},

~ /~~ —~
x® 3 O Ot
— ~— — ~—

where vg = Ut Ty, Uy -

Definition 2.6. [12] For A € A} .(m) and p € Ay (m), a A-tableau of type
u denoted as T is said to be semistandard if the following hold:

(i) the entries in each row of each component of T® of T are non-
decreasing;

(ii) the entries in each column of each component T®) of T are strictly
increasing;

(iii) if (a,b,¢) € A\, and T'(a,b,c) = (i,s) then s > c.
Let 7;550\) be the set of semistandard A-tableau of type p and denote

TN = U T;°(N\). Here we use A := A, for convenience.
HEA
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The set
(29) {\IIST|S¢T € 7755()‘)7 A€ A+(n,r)},

which is called the semi-standard basis of cyclotomic ¢-Schur algebras in
3], forms a cellular basis of .%,, in the sense of [I0]. Let .7} be the
two sided ideal of .7, , spanned by all Wgr, where S, T € T5°(p) and p > A
(i.e., u := shape(S) = shape(T) > A), where shape(T") means the partition
corresponding to tableaux T

In particular, let A € A*(n,7) be a multipartition and recall that 77 is
the unique semistandard A-tableau of type A (see [3] and [11]). From the
definition, one sees that Wrapa can restrict to the identity map on M), and
sometimes we denote it by U, .

With above notations, we can define the “cell module” as a submodule

of S/ ST
(2.10) W*=.7,,T\,  where Uy = (S} + 1)) /ST
The module W? is called a Weyl module in [3].

3. Main theorem and its proof

We now prove ¢-Schur module given above is isomorphic to those in [3] as
“cell modules” when A € A .(m). Recall the definitions given in In
order to show the next main theorem, we need demonstrate some notations
and definitions which may be used in the procedure of proofs. Most of them
can be found in paper [3] and book [11]:

1) Std(\), for a partition (resp. multipartition) A:
It is the set consisting of all standard (semistandard) tableaux.

2) A(t), for A and p are partitions (resp. multipartitions) and t is a
p-tableau, which satisfies |A| = |u:
It is a p-tableau of type A, which replace the components in t with its
row number in ¢*.

3) must, for s and t are A-tableau and A is a partition (resp. multipartition):
It is an element of Iwahori (resp. Cyclotomic) Hecke algebra, which is
Mgt 1= Td(s)—l NI Td(t) (resp. Mgy := Td(5)71 TN\ Td(t))
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4) mgr, for S,T € T\() and A, p € Ay r(m):
It is an element of Iwahori (resp. Cyclotomic) Hecke algebra, which is

msr =Y, Met.
u(s)=S
w()=T

Theorem 3.1. For each X € A} ,(m), we have the following .7, ,-module
isomorphism:

AN = WA,
Proof. Consider the epimorphism:
0: S,V — Sz AUy = hzy = hcp}\wTwAyX
- h(p%\w ' Tw(l)"'ww)y,u(l)'v---Vu(T)’ * U]

Suppose that T € 7%(u) and S € T7°(u) with p€ Ay,(m) and v e
Ay, (m). By the definition of ¥g7 in [3] and semistandard basis theorem [3]
(6.6), we trivially find that the set {Wor|T € T5°(n), S € T7%(n) with p >
A€ A (m),v € Ay, (m)} is a R-basis of .7}, ,¥. More precisely, we can
write this basis as

B-1) {rp [T € T2 (M)} U{Vsr|T € T () and S € 1,7 (p) with pu > A}
Then, obviously, we have that
WA= .7, 0, /(S Un NI,
We claim that, with 4> X and A € A} (m), v € Ay (m), if 0(Ps7) =

9(\I/ST\I/TAT/\) = \I/ST@%\wkayX # 0 ,then p = A.
Consider the action on the unit of H,, ,:

UsrereTuwyn (1) = msrTu,yx

= Z msLw,Yr = Z Z Mgt T, Yn
teStd(u) teStd(p) seStd(u)
A()=T AO=T v(s)=8

= ZTd(s)qud(t)wayk’
s,t

= ZTd(s)mﬂui}Td(t)wau[;\,]n;,
s,t

= (%).
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Recall that by Lemma uf Hprtty, = 0 unless a < b. Vsros Twyn #
0 implies that for some s and t above, that Td(s)xﬂui]Td(t)kau[},}y;\, #
0. Thus, this condition shows that [u] =< [A\]. On the other hand, with the
assumption in above claim, i.e., p> A, it is obvious that [u] = [A] by the

definition of [u], [A\] and >, = . So [u] = [A]. Then we find

(*) = Zt: Td(s)mﬂua;}Td(t)wau@],n;\,
S,
[1]=([A]
= Z Tysymph'vyns, by (2.6) and (2.7) in Lemma [2.5]
s,t
[u1=[A]
h' e
= Z Ta(s)yMurycyur By - - - By naonyeayae vy by (8]
5t
(1]=([A]
S VTR NPV
= Z Td(s) (mu(nh/ln/\u)/) cee (m“(»«) h;nn)\(m/)v[u]
s,t
(u]=([A]

RIES (Ix;_11+1, 171}

Since [\] = [u], the fact that this is non-zero implies, by [4] (4.1), A(®) > (%)
foralli =1,...,r. On the other hand, by [§] (1.6), x> X and [u] = [A] imply
£ > A0 with 1 < <r. Hence pd = A% for all i, and therefore, 1 = \.
This completes the proof of above claim.

By the claim and the display in , one sees that

ket = {Wgr | T € T*(p) and S € T;2*(p) with > A} = .7, U, NI
Therefore, A* = W2, O

Definition 3.2. [J] For w € &,, and S € Ty(n) with X\, u € A(n,r), define
a map

(3.2) S x Ta(pn) — Dy (w,S) — wg

where the element wg is defined by the row-standard A-tableau t wg for which
i belongs to the row a if the place occupied by i in t*w is occupied by a in S.

For example, S = and t'w = with p = (3,2) and A = (2,2,1),

2|5
then trwg =4I .
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Remark 3.3. Let 7,0°(p) be the set of all semi-standard pi-tableaux of type
A, with X and p € Ay r(m). For any S € T%(n), we define 1g := 15. Since
S is a semi-standard p-tableau of type A, it implies that S is a row-standard
fi-tableau of type X, as in [7].

We compare the definition of semi-standard tableaux which appears in
[3] with that in [7]. Note that every entry in S is written as the symbol (i, j)
and is replaced by i + Zi;ll my, for 1 <i<mj, 1 <j<n.

Then, by the definition above, we obtain the following consequence:

Lemma 3.4. Suppose that u€ &, and w € S v s with A\, p €
Ay r(m). Then cp%\wTuTw is a linear combination of terms @%\lw (d € Z5) for
which x(t*d, tFwey - wiry)) = X (Eu, trwgy - - w)).

Proof. The conclusion is ture when w = 1 since gp%\wTu = ¢, for some u €
&,,. Below we assume that w # 1.

For some v’ € &,, and some a = (i,i + 1) € S,y .y s We have that
w = w'a, and without lose generality, we can set (i,i + 1) € &,y satisfying:

w=wl-w, w=w--w, with wj(i,i+1) = wi,

!
w; = w;

i fori=2--. 1

By induction on length /¢(w), we have @%\wTuTwr as a linear
con}binziution of terms gpg‘\w (d € 75) for which X(tkd,tﬂw(l)---w(r)):
x(tru, thwey - wy)-

Consider

1 1 d
@j\wTuTw = (pj\wTuTwTa = Cd@j\wTa-
XA tPwey - wry ) =x (P way - w())

By [2] or [4], we have

(3.3) ,
qcpf—\lw if 7,7 + 1 belong to the same row of tA\d,
(pnga _ w‘;{i if the row index of ¢ il"l A
is less than that of 7 + 1,
qg&%& + (¢ — 1)4,0;\90% otherwise.

Then the proof is completed through checking the formula above case by
case. U

By the definition in Remark we can show the following theorem on
basis, which is the main result in this paper.
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Theorem 3.5. Suppose that X € A, (m). Then the q-Schur module AN is
free as an R-module and {4,0‘13 ~2\A€TH(A) and p € Apr(m)} C AN s a
basis.

Proof. With the help of Theorem it is enough to show that {gpi‘)‘\zﬂA €
T:°(A) and p € Ay (m)} C A% is R-linearly independent. We calculate the
action of the element @}\Z -z, on the unit of H,, -,

1A 1A
oxn 1) = oxi P Tw,yw (1)

= Wf\z(ﬁu)Twuyu’

_ - —

= (D, T ufTunpuy, by [
d€65146,

_ + —

= Z ) 'Tw(l)"'w(r)u[u]Tw[ur]u[u’]nﬁ/
de&5146,

= cp%\z(:z:ﬂ) o1y V[ ) 1\ oo D)7 by Lemma 2.5

= 90}\2(:”11) Ty Oy "Vl by [6]

14
= o5 (T v eeovu Towgsy iy T ey 1) * VUl

1a, 1
= PapPhw” Ty =iy vy (1) - 0y

Then, following from the calculation in [2], for A, B € T5(i1), we write A ~ B
if A and B are row equivalent (which has been defined in [3], i.e., if one
tableau A can be changed to B by a sequence of elementary row permuta-
tions.). Thus, 65146, = Up..4 ©515. In addition, if w € &,,, we denote by
w the unique element of G \w N Z) for some \ € A(n,r), i.e., the shortest
element in Gw.

1a,,1
807 —(P_w : TW(1)'“’11}(7.) n'u,(l)/\/...\/ﬂ(r)/
AT H

— E 1p
- ( @;\wTw(l)---w(r))nu(l)/\/‘..\/u(r)/

B~A

}: 1
= ( (P;\MTIBTw(l)“-w(T))n,u(l)’v---Vu“)’

B~A
_ Kp l Ti b 2
= (D "o Tpwg g T SB) - u@nve v y [2]

B~A
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where Kp is an integer and sp is a linear combination of terms go§w for
which

Xt 1, 87) > x (P d, tFwy -+ w(,y).
Moreover, X(tj‘lA, tﬁ) > X(tj‘lB, tﬁ) = X(tj‘le(l) CW(r), t’ale(l) s w(T))

if B~ A but B # A. Hence
(3.4)

Ta, 1 K 1
@Xg@ﬁw . Tw(l).‘.w(,,,)nﬂ(l)/\/...\/u(r)/ = (q (p;\leAw(m_”w(T) + 5) . n/,t(l)/\/..-\/“('r')/
where K is an integer and s is a linear combination of terms (p;—i\w with
XV LA, ) > X (¥, gy -y,

Now suppose that > CA‘P}\?LSO,IM Ty wiey My = 0, where cyq €

A
R and the sum is over A € 7%(u). Choose D € T%(u) such that cq4 =0
for all A with x(t*14,t") > x(t*1p,t#). If we can prove that cp = 0, it will

follow that every coefficient ¢4 = 0, and then the proof is completed.
By (3.4), there exists an integer K and s € M* such that

A .l
Z CAQDj\ﬂgoﬂw : Tw(l)"'w(r)nl,b(D/V“'\/},L(T)/
o
=Cpq SOZ\wTW#m/V...Wm/ + LM RVARVINGY
where s is a linear combination of terms gpiw(d € 95) for which

(3.5) XA, tPwy - - wiy) # X (P 1p, 7).

Now, suppose
K 1 _
cpq (pf\wTIDw(l)--w(r) N eypr + SNy =0

and by Lemma @}MTmnu(wvmwml is the linear com-
bination of terms gof—l\w (de Zy) for W}_1ich X(t’\d,tﬂw(l) Cw()) =
X(tAlpw(l) © Wiy, t“w(l) s w(T)) = X(tle, t“), while §yu<1>/v--~vu<j>/ is a
linear combination of terms @i (d € ) for which x(t*, ) # x(t*1p, t*)
by (3.5)). Therefore,

K 1 _
cpq QOS\UJTilpw(l)"'W(T»)TLN(I)/\/"'\/,U‘(M/ =0.

1 . . .
But SowailDw(l)mw(r)”u<1>’v~~~\/u<r>’ # 0, since the numbers strictly increase
down the columns for every component of D. Therefore, cp =0, as we

claimed.
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Now, we have already known that the elements cp/\ SOW'

Tw(1> w( STy V;N)/ is linearly independent. It implies that
1a

cp)\ugonTwuyu SO;M . w<1) Wy MWy ()7 Ul are R-linearly

independent, smce y Lemma [2.5] it is trivial that a - vy, = 0 if and only if

a =0 for any a € H(S,). O

It should be necessary to make a comparison of the basis of A" con-
structed here with that of W*. Via the isomorphism given in Theorem
we know indeed 6 assigns the cellular basis element W gy = WgrWpapa to the
basis element Vgp -2\ = Ygr - goinwAyX, where T € T%(X\) = {T*}, S ¢
T55(N),v € Apr(m) and X € A, ,(m)". Following from the notations of
(5.8), (5.9) in [7], one shows that cpbi = Wgps. Therefore,

0 : Weps + yn,r — WUgpazy = gOllli © 2\
4. Application to the Branch rule

In this section, by using this embedding and restriction functors introduced
n [13], we give a new proof of the Branch rule in a cyclotomic g-Schur
algebra of rank n to one of rank n + 1.

From now on, throughout this paper, we argue under the following set-
ting, most of them are from [13]:

m = (my,---,m,) such that my >n+1forallk=1,---r
m' = (mq,---,my_1,my — 1),

Int1r = R nt10(Ang1,r(m)),

Fnr = Ry (Apy(m')).

We will omit the subscript R if there is no risk to cause confusion.
Define the injective map

v An,r<m1) - An-i—l,r(m)a
()\(1), .. 7)\(7"*1)7 /\(T)) — (/\(1)7 ... ’)\(Tfl),/)\\(T)%

where A(") = ()\gl), e ,/\(r) ,1). Put A}, (m) = Tm, we have
A m) = (= (Y, i) € Ao (m) ) = 13,

where it is defined that pu(") = (u(i), ,,u%)) € ZLjfor 1 <i<r.
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For A € A:_H’T, and T' € Tg%(N), let T'\ (n + 1) be the standard tableau
obtained by removing the node x such that T(x) = n + 1, and denote the
shape of T'\ (n + 1) by Shape(T"\ (n + 1)). Note that x here is a removable
node of A\, and that Shape(T \ (n+1)) = A\ z.

Proposition 4.1. [13/(Wada inclusion) There exists an algebra homomor-
phism v : Sy — S pp1, such that

& FOym Fipé Lol

0 ®
41)  EY B! O

(3,k) (3,k)

for (i,k) eT'(m/), 1>1, A€ Ay, (m)), where § = ZAEA”H
idempotent of Si1,. In particular, we have that (1, ) = ¢, and that
(S r) © ESny1,,€, where 1y, is the unit element of S/, . Moreover, ¢

18 injective.

(m) 1\ is an

Define a restriction functor Resﬁ‘H : Snt1,,-mod— 7, -mod by

1 Iav)
ReSZJr = Hom%H»l,r (ynJrlJ'g’ 7) = éyn+1,r ®yn+1,7* -

Recall that, for A € A: 41, the ¢-Schur module A* of Fn+1,r has an free
R-basis {goi’j\z)\]A € 7;°(\), € Apy1,-(m)}. From the definition, we have
that

Res"t1(AY) = AN

Thus, Res ™ (A") has an free R-basis {QO}S\Z)\]A €T3 N, p €A, (m)}.
The following notations are from [§].
For a partition A = (A1, -+, \,) of n, we identify the boxes in the Young
diagram N'(X) with its position coordinates. Thus,

NN =A{G5) e 2" x Z7|j < Ai}-

The elements of A (\) will be called nodes. A node of the form (i, \;) (resp.
(i, A\; + 1)) is called removable (resp. addable) if i = m or \; > \j41 fori #=m
(resp. (i,Ai) = (0,1) for Ay =---= A, =1lori=1or \j_1 > A\ if i #1).

Let A= (AM ... A(") be an r-partition. Then its A’()\) is the union of
NAFY 1 <k <r. ie., aset of nodes

N ={(,jk)i,jezt,j < P 1<k<r}
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A node of N()) is said to be removable (resp. addable) if it is a removable
(resp. addable) node of N (A*)) for some k. Denote by R, the set of all
removable nodes of N'(A). Then N = #Ry => 1| #Ryo.

A partial ordering “ > 7 on Ry will be fixed from top to bottom and
from left to right, that is, it satisfies that

(i,5,k) = (i', 5 k) if k <K', orif k = k' and i < 7.

Then, we have Ry = {ny,--- ,ny}, with the property that n; > n; for i > j.
Let j,, n € Ry, be the number at the node n in t). For example, for A\ =
((31)7 (22)7 (1))7 Ry = {(17 3, 1)7 (27 L, 1)7 (27 2, 2)7 (17 L, 3)}

Also, we define a partial order = on Z~¢ x {1,...,7} by

(i, k) = (@', k") if (i,1,k) = (', 1, k).

In the next proposition, we use the basis {SO,ILKZ/\};LGAZ,H,T(m),AerS(A) in
g-Schur modules instead of the cellular basis in Weyl modules. By using

already existing formulae, we can easily reach the following consequence:

Proposition 4.2. Let A€ A}, ., pe A, (m), AeT(N). For (i, k) €
I(m'), we have the following

(4-2) E(i,k) ' 90;1[/4\2/\ = Z rBSO,lllia(i,k)z)‘Z)\ (TB < R);
BeT a1
shape(B\ (m..,r))>shape( A\ (m,r))

(43) F(ka) . gOiLiZ)\ = Z TB(P};ia“’k),)\z)\ (TB € R)
BeTi )
shape(B\(my 1) shape( A\ (m, )

Proof. Following from the notations of (5.8), (5.9) in [7], one shows that
cpb’; = W p». On the other hand, by a general theory of cellular algebras
together with Wada’s paper [13] (Proposition 3.3), it implies for (i,k) €
I(m'),

(4.4)

1a 1 A
E(z,k) : SON)\ = Z TBSO,U‘iOA(iTk)M\ mod ynb—l—l,r?
BET 0, ()

krto k)
shape(B\(m..,r))>shape(A\(m.,r))

where rg € R.
By definitions, z) := w}\wTwa and an_;\u is linearly generated by Vg

for S, T € Tpa(v) with v > A. It follows that ynb—l-)\l,r -zy = 0. On the other
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hand, suppose that there exists some S,T € T7%(v) such that Wgrzy # 0,
which means A = v due to the proof of Theorem This contradicts the
fact v > A. Finally, we obtain the consequence of the first statement after
multiplying the element z) on the two sides of .

The case for F{; ;) with (i, k) € T'(m’) can be proved similarly with the
above proof in the case for E; 1. O

We denote the removable nodes set as Ry = {ny,--- ,ny}, with the prop-
erty that n; = n; for ¢ > j. By Theorem let gM; be an R-submodule of
Res” ™! (A*) spanned by

{goL‘)‘\ZA\A € T)(A\) N T*(X) such that A(n;) = (my,r) for some j > i},

where we put T, (\) := Uueaz., ) Tu(A). When there is no confusion
about R, we also denote pM; as M;. Then we have a filtration of R-module

Resp ™ (AY) = My D My D -+ D My D Myyy = 0.

For A € A: +1, and a removable node z of X, define the semi-standard
tableau T € T25(\) by

A _ [ (ac) if (a,b,¢) # =,
(4.5) Tz (CL, b, C) - { (mr,r) if (a, b, C) — 7.
We see that T € T/ (A\)NT5(N), and T)\ (m,,r) = TA\*, where the
tableau T*\* notes the unique element in the set )\S\Sz()\ \ z).
From the definition, M;/M;;1 has an free R-basis

{‘Pi/(;u),\z,\ + Mia|A € Ty (A) N TR%(A) such that A(n;) = (my,7)
and p € Ay (m)}.

For Ae TJ(A)NTgE(A) such that A(n;) = (m,,r), we have Shape(A \
(my,7)) = A\ n; by the definition. Note that A\ n; > A\ n; if and only if
n; <n; (i.e., j > ¢). Then, by Proposition we see that {M;} is a filtra-
tion of .7, ,-module.

Now, we use the main result in Section 3 to give a new proof of the
Branch rule of Weyl modules in [13].

Theorem 4.3. [13] Assume that R is a field. For any \ € A:;H’T(m),
let ny,--- ,ng be the removable nodes of N'(\) counted from top to bottom,
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and define My as above for 1 <t < k. Then, we have a filtration of 7, 1-
submodule for A:

with the sections of Weyl modules (or q-Schur modules): My /M;_1 = WA\

Proof. First of all we set i := (), and consider the weight decomposition of
Ymr—module Mi/Mi—H = @ M(Mi/Mi—I—l) = @ 1M . Mi/Mi-i-l =
HEAy - (m) HEA; - (m)
@  1a(M;/M;y1), where 15(M;/M; 1) is generated by
HEA, ,(m)

{efaon+ Mipa|d € TN N TR°(A) such that A(n;) = (myr)}.

Since A\ (my,7) € T;*(A\n;), we can find that ,(M;/M;1) # 0 only if
A D> 11, which implies that A\ n; > p.

Let n; = (a,b,c). Note that E;) ~g0%3‘\zA is a linear combination of
{5t ag oA B € T35, (M) and that 725, (A) =0 unless A>Ji+
RIFOR -

We have T} € T°%(\) in the case of 7:= A\ n;, Le, 7=A— () +
Qla+1,c) +oeet a(mr—l,r))'

If  (j,0) = (a,c), we ‘have E) ~g0l‘/{z)\ =0 since NPT+
ajy for any A € T5(N).

If (j,1) = (a,c), for any S € T, () together with the definition of
semi-standard tableaux, we can easily check that S((a’,V,)) = (j,1) for
any (a’,V/,c) € X satisfying (a’, ') = (4,1). This implies that

(4.6) [S\ (me,r)| # [A\ ng| for any S € T2, (),
since (a, ¢) = (j,1) and Ty ((a,b,¢)) = (my,r) = (j,1). From now on, we note
the tableau T} as X.

Thus, Proposition together with (4.6) implies that

By @i 22 =0 € My for any (j,1) € IT'(m).
Thus, SOii\( - Zx + M1 is a highest weight vector of weight A\ n; of .7, -

module in sense of [I4]. Moreover, since the Weyl modules are simple mod-
ules in category of .7, ,-modules, due to the universality of Weyl modules
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in [I4], we have an x.#, ,-isomorphism:

7)o AN S e T (01 2 + M
Note that «9,)5\“"’ is determined by 02\‘” (cp%\\ni)\\ni “Za\n,) = 5071_’/\( czy+ kM.

We see that Gj\ni is a restriction of 9,)%\“”’ which assigns the submod-

ule 4AM\™ onto the submodule AT (gpi’)f -z)x) + AM; 1. Then, we find
that 9?‘4\"" is an isomorphism of 4.7}, ,-modules. Furthermore, by the argu-
ment of specialization to any arbitrary commutative ring, it follows that
9;\% b= 02\'” ®.4 R is an isomorphism for the algebra r.7, ,.

R is assumed to be a field. Since WA\ = AN o~ RS (cpi))f -2\ +
rM;t1, which is a p.%, ,-submodule of M;/M;, 1, we finally reach the con-
sequence by comparing the dimensions of AM\™ and M; J M. O
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