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Abstract: We consider ind-varieties obtained as direct limits of chains of
embeddings X, S @Zn—;l Xm o Xm+1 @31 ..., where each X,, is a
grassmannian or an isotropic grassmannian (possibly mixing grassmannians
and isotropic grassmannians), and the embeddings ¢y, are linear in the sense
that they induce isomorphisms of Picard groups. We prove that any such
ind-variety is isomorphic to one of certain standard ind-grassmannians and
that the latter are pairwise non-isomorphic ind-varieties.

Keywords: grassmannian, ind-variety, linear morphism of algebraic vari-

eties.

1. INTRODUCTION

The Barth—Van de Ven—-Tyurin—Sato Theorem claims that any finite rank vec-
tor bundle on the infinite complex projective space P° is isomorphic to a direct
sum of line bundles. For rank two bundles this theorem has been proved by Barth
and Van de Ven in [BV], and in the general case the theorem has been proved by
Tyurin in [T] and Sato in [S1]. In the last decade we have studied more general
ind-varieties for which the result holds true [PT1], [PT2] [DP].
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This study has naturally led us to the problem of constructing non-isomorphic
ind-varieties arising as direct limits of given classes of embeddings of projec-
tive varieties. In the present note we address a classification problem along
those lines: we consider linear embeddings of grassmannians, i.e. embeddings
1: X1 < X9 of a grassmannian X into a grassmannian Xy satisfying the condi-
tion i*Ox, (1) ~ Ox, (1), and determine how many non-isomorphic ind-varieties
can be obtained from such embeddings. Moreover, we consider also orthogonal
and symplectic grassmannians (i.e. isotropic grassmannians arising from non-
degenerate orthogonal or symplectic forms) and define a linear ind-grassmannian
as an ind-variety arising as the direct limit hgl X, of any chain of linear embed-

dings
Xi—=>Xo—= ... Xy = Xpg1— ...

of grassmannians, some or all of them orthogonal or symplectic.

Our main result (Theorem 2, see Section 5) states that each linear ind-
grassmannian is isomorphic (as an ind-variety) to one of the standard ind-
grassmannians introduced in [DiP]. In particular, any linear ind-grassmannian
is a homogeneous space of one of the three classical ind-groups SL(o0), O(0),
Sp(oc). We also prove in Theorem 2 that the standard ind-grassmannians are
pairwise non-isomorphic. To make the note self-contained, we do not rely on the
article [DiP], but introduce (in Section 4 below) the standard ind-grassmannians

in terms of explicit chains of embeddings.

The main tool we use in Theorem 2 is Theorem 1 (see Section 3) which describes

linear morphisms of grassmannians, as well as isotropic grassmannians.

In the related paper [PT3] we return to the original question of extending the
generality of the Barth-Van de Ven- Tyurin-Sato theorem. There we give the list
of linear ind-grassmannians on which a bundle of finite rank is isomorphic to a
direct sum of line bundles.
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2. PRELIMINARIES

2.1. Notation and conventions. Recall that N = {0,1,2,...}. We set
Zy = {1,2,3,...}. All vector spaces and algebraic varieties are defined over an
algebraically closed field F of characteristic 0. The superscript * indicates dual
space or dual vector bundle as well as inverse image. If X is a projective variety
with Picard group isomorphic to Z, then Ox (1) stands for the ample generator
of the Picard group.

By G(k,V), 1 < k < dimV, we denote the grassmannian of k-dimensional
subspaces of a finite-dimensional vector space V. For k = 1, G(k,V) = P(V).
Furthermore, Og1y(1) = /\kSg(ky), where Sg(x,1) is the tautological bundle
on G(k,V), and PicG(k,V) = ZOg,v)(1).

In what follows we will consider, both symmetric and symplectic, quadratic
forms ® on V. Under the assumption that ® is fixed, we set Wt = {v €
V| ®(v,w) = 0 for any w € W} for any subspace W C V. Recall that W is
isotropic (or ®-isotropic) if W c W+,

2.2. Linear morphisms.

Definition 2.1. We call a morphism ¢ : X — Y of algebraic varieties (or ind-
varieties) linear if ¢ induces an epimorphism of Picard groups ¢* : PicY — Pic X.

In this paper we focus on linear embeddings ¢ : X — Y of grassmannians or
isotropic grassmannians. In this case ¢ is linear iff ¢*Oy (1) = Ox(1). By a
projective space on, or in, a variety (or ind-variety) X we understand a linearly
embedded subvariety Y of X isomorphic to a projective space. Note that the
Pliicker embedding G(k, V) — IP’(HO(Og(ky)(l))*) is a linear morphism.

By a quadric on X of dimension m > 3 we understand a linearly embedded
subvariety Y of X isomorphic to a smooth m-dimensional quadric. By a quadric
on X of dimension 2 we understand the image of an embedding i : P! x P! < X
such that *Ox (1) >~ Op1(1) ¥ Op1(1). By a quadric on X of dimension 1, or
a conic on X, we understand the image of an embedding i : P! < X such
that i*Ox(1) ~ Opi1(2). Given a quadric @, we set Pg = P(H(Oq(1))*) for
m > 3, and respectively Pg = P(H?(Op1 (1) K Op1(1))*), Pg = P(H°(Og(2))*)
for m = 2,1. Then @ is canonically embedded into Pg.
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2.3. Orthogonal grassmannians.

Let ® € S?V* be a non-degenerate symmetric form on V. For dimV >
3and 1 < k < [9Y] the orthogonal grassmannian GO(k,V) is defined as
the subvariety of G(k,V) consisting of ®-isotropic k-dimensional subspaces of
V. Unless dimV = 2n, k = n, GO(k,V) is a smooth irreducible variety. For
dimV = 2n, k = n, GO(k,V) is smooth and has two irreducible components,
both of which are isomorphic to GO(n — 1, V') where dim V' = 2n — 1.

The orthogonal grassmannian GO(k, V') has the following dimension:

2kn — 3 1 for 1<k <n,di —9
dim GO(k, V) = { fin = 3k(3k + 1) or 1<k <n,dimV =2,
k(2n+1) — 3k@Bk+1)for 1 <k <n,dimV =2n+1.
Moreover, for any V and 1 < k < [7(“‘;1‘/]7 k +# W 1,

where the sheaf Ogo,1)(1) posesses the following property: if ¢ : GO(k, V) —
G(k,V) is the tautological embedding, then

Ocov)(1) for 1 <k < [9pV] 1,

Ocow.v)(2) for k = [4Y].

In what follows we will think of GO(n — 1,V) for dimV = 2n as a variety
of isotropic flags rather than as an orthogonal grassmannian. In addition, we

t* Ocr,v)(1) = {

exclude the case dimV = 2n, k = n from consideration. More precisely, when
writing GO(k, V') below we assume that dim V' > 7 and k # w, k # W -1

For k <n = [d’%v] on GO(k, V) there is a single family of maximal projective
spaces of dimension k with base PO, (k, V). There is also a family of (dim V —2k)-
dimensional maximal quadrics not contained in projective spaces on GO(k, V).
We denote the base of this family by QOg(k, V). In addition, for & < [42V] — 2
there is a family of 4-dimensional maximal quadrics not contained in projective
spaces on GO(k, V). We denote the base of this family by QO,(k,V).

For k = n on GO(k,V) there is a single family of maximal projective s-
paces of dimension [92Y=1] with irreducible base POq(k,V). Furthermore, if
dimV =2n+1and 1 < k < n, on GO(k,V) there is a single family of maxi-
mal projective spaces of dimension n — k with irreducible base POg(k, V). The
varieties POq(k, V'), POg(k,V), QOg(k,V) and QO.(k,V) are described by the

following lemma.
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Lemma 2.2. (i) If 1 < k < n —1, then each k-dimensional projective space on
GO(k,V) is of the form
(1) {Vk S GO(k’, V)’ Vk C Vk+1} ~ P(Vk*Jrl)
for a fixed (k + 1)-dimensional isotropic subspace Viiq1. Consequently, for k #
% — 2, POu(k,V) is isomorphic to GO(k + 1,V).

(11) If 1 < k <n—1, then POg(k,V) is isomorphic to the variety of isotropic
(k—1,n)-flags in V', and for any point (Vy_1 C V,,) € POg(k,V') the correspond-
ing projective space on GO(k,V') is

(2) {Vik e GO(k, V)| Vjpu1 C Vi, C Viu} 2 P(Vi/ Vi)

(iii) If k = n, then POy(n,V) is isomorphic to GO(n,V'), and for any point
Vi, € GO(n, V) the corresponding projective space on GO(n, V) is

(3) (V! € GO, V)| dim(V/ N V,) =n — 1} = B(V/V,,).

() If 1 < k <mn, then QOg(k,V) is isomorphic to GO(k—1,V), and for any
point Vi,_1 € GO(k — 1,V) the corresponding quadric on GO(k, V) is

(4) {Vi € GO(k, V)|V, D Vi1 } = GO(1, Vi1 /Viey).

(v) QO(k,V) is isomorphic to the variety of isotropic (k — 2,k + 2)-flags in
V, and for any point (Vy—o C Viya) € QO (k, V) the corresponding quadric on
GO(k,V) is

(5) {Vik € GO(k,V)|Vi_o C V} C Viuo}.

(vi) Any mazimal quadric on GO(k, V') is either of the form (4) or (5), or lies
in a projective space on GO(k, V).

Proof. We leave the proof of (i)-(v) to the reader and give an outline of the proof
of (vi). Let @ be a quadric on GO(k, V) and let G be the variety of projective
planes in Pg. In G there is a dense open subset U = {P? € G | P?N(Q is a conic},
and if P2NQ = C then Pc = P? € U. In what follows, by a slight abuse of
notation, we will indicate this latter fact by writing C € U.

Let F' be the variety of (1, k)-isotropic flags in V' with projections P(V) ik
F 2 GO(k,V). For any C € U set K¢ := pry ' (C), K¢ = pri(K¢) and let
po = prllkc . Ko — Ko be the projection. There are three possibilities:
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(a) there exists a dense open subset U’ in U such that, for any C € U’, p¢
is an isomorphism and K¢ is a quadratic cone with vertex S = P(Vj,_1(C)) for
some subspace Vj_1(C) in V,

(b) there exists a dense open subset U’ in U such that, for any C' € U’, po
is an isomorphism and K¢ is a quadratic cone with vertex S = P(V},_5(C)) for
some subspace Vi_o(C) in V,

(c) for any C' € U, p¢ is a double covering and K¢ = P(Vj41(C)) for some
subspace Vi41(C) of V.

Using the fact that U and U’ are dense subsets in G, one easily checks the
following facts. In case (a) the space Vj_1 = Vi_1(C) does not depend on the
conic C € U’ and Q C GO(1,Vi:,/Vi—1) € QOp(k,V). In case (b) the space
Vi—a = Vik_2(C) does not depend on the conic C' € U’ and @ is contained in
a quadric @ given by formula (5), i.e @ € QO,(k,V). In case (c) the space
Vir1 = Vik11(C) does not depend on the conic C' € U, so that Q C P(V}7,|) C
GO(k,V). O

In what follows we will sometimes write P¥ for a maximal projective space on
GO(k,V) of the form (1) or (3), and Pg_k for a maximal projective space on
GO(k,V) of the form (2). We will also write Qgimv*% for a maximal quadric
on GO(k, V) of the form (4), and Q§ for a maximal quadric of the form (5).

Lemma 2.3. Let1 <k <n.

1) The intersection of any two distinct projective spaces Pk and (P respec-
« «
tively, ]P’g_k and (Pg_k)') on GO(k,V) is either empty or equals a point.
i) The intersection of any projective space PE and any quadric Q™ V=2F op
o B
GO(k,V) is empty, equals a point, or equals a projective line. The intersection
of any two distinct quadrics Qgimv_% and (Qgimv_%)’ on GO(k,V) is either
empty or equals a point.

(iii) Assume k < n — 1. Then the intersection of any two distinct projective
spaces P’Oi and Pg_k on GO(k,V) is empty, equals a point, or equals a projective
line.

(iv) Assume k < n — 1. Then Pk N Pg_k = {Vi} if and only if Pk =
PV ), ngk = P(V,,/Vi—1) for a configuration of isotropic vector subspaces
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Va1, Vi1, Vi of V' satisfying

Vici CVe CVyy Vi1 NV, =V

Proof. Exercise. O

Lemma 2.4. (i) Let P! be a projective line on GO(k,V), x € P! be a fized point
in GO(k,V), and C C GO(k — 1,V) be an irreducible curve such that, for any
Vi—1 € C, the quadric GO(1, Vit | /Vi_1) on GO(k, V) contains = and intersects
PL. Then C is a projective line on GO(k — 1,V).

(ii) Assume 1 < k < n —1. Let P! be a projective line on GO(k,V), z ¢ P!
be a fized point in GO(k,V), and C C GO(k+1,V) be an irreducible curve such
that, for any Viy1 € C, the projective space P(V)r ) on GO(k,V') contains x and
intersects P1. Then C is a projective line on GO(k + 1,V).

Proof. (i) Assume k < n and let
(6) P! = (Vi € V|Up_1 C Vi C Ups1}

for a fixed isotropic flag Up_; C Ugy1 in V. Next, let + = Wj. Since for
any Vi_1 € C, the quadric GO(l,VkL_l/Vk_l) contains the point x, we have
Vi_1 C Wi, and consequently

Span( UGCVk_l) = W;.

Vie—1
The condition that the quadric GO(1, V- | /Vi_1) intersects P! shows that
(7) Vie1 C Vi CUgyr, U C Vg
for some Vj, € P'. In particular,

Wi, C Upsr.

Note that Uy_; ¢ W as otherwise € P'. Therefore Wy_o = Wj N Up_y
is a (k — 2)-dimensional subspace of Wj. Now (7) implies that C = {Vj_; €
GOk —1,V)| Wi_a C Vi1 C Wi}, i.e. C is a projective line on GO(k — 1,V).

We leave the case k = n to the reader.

(ii) Formula (6) holds also in this case. Furthermore,

N Vi1 =W, ==
Vk+1€C +
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For any Vi1 € C, the condition that P(V ;) intersects P! yields V}, such that
Uk—1 C Vi C Viqa.

Therefore U1 C Wy. Now if Uxyy € C, then for any Vi1 € C, P(V)7))
intersects P! in x, contrary to the assumption that z ¢ P'. Hence, Uy, & C
and one checks that C' = {Vj41 C V|Wy C Vi1 C Wiyo}, where Wiio =
Span(Wy, Uky1) is a (k + 2)-dimensional subspace of V. This means that C' is a
projective line on GO(k + 1,V).

g

2.4. Symplectic grassmannians.
Let now ® € A2V* be a non-degenerate symplectic form on V, dim V' = 2n.

Assume 1 < k < n. Recall that the k-th symplectic grassmannian GS(k,V)
is the smooth irreducible subvariety of G(k,V) consisting of ®-isotropic k-
dimensional subspaces of V. It is well known that

1
(8) dim GS(k,V) = 2kn — 5/{:(3k —1).
It is also known that PicGS(k,V) = ZOgsk,y)(1) and Oggpyv)(l) =
i*Ogr,v)(1), where i : GS(k,V) < G(k,V) is the tautological embedding.

One can see that, for 1 < k < n — 1, there are two families of maximal
projective spaces on GS(k, V') of respective dimensions k and 2n — 2k + 1, with
bases PSq(k,V) and PSg(k, V). For k = n there is a single family PSg(n, V') of
maximal projective lines on GS(k, V).

Lemma 2.5. (i) Let 1 <k <n—1. Then PS,(k,V) is isomorphic to GS(k +
1,V), and for any point Vi1 € GS(k + 1,V) the corresponding projective space
on GS(k,V) is

(9) {Vk S GS(]C, V)‘ Vi C Vk+1} ~ P(Vk*Jrl).

(11) Let 1 < k < n. Then PSg(k,V) is isomorphic to GS(k — 1,V), and for
any point Vi_1 € GS(k—1,V) the corresponding projective space on GS(k,V') is
(10) (Ve € GS(k,V) | Vi1 C Vi C ViR Y = P(ViE | /Vila).

(iii) If k = n, then any mazimal projective space on GS(n,V) is a projective
line.
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Proof. Exercise. O

In what follows we will sometimes write IP’Q for a maximal projective space
on GS(k,V) of the form (9), and IP’%”_%H for a maximal projective space on
GS(k,V) of the form (10) (despite the fact that we use the same notation as in
the orthogonal case, we will carefully distinguish between the two cases).

Lemma 2.6. LetdimV =2n,n>2, and 1 <k <n —1.
(i) The intersection of any two distinct projective spaces PE and (PE) (re-

spectively, IP’%”J]“JFI and (P%”f%ﬂ)’) on GS(k,V) is either empty or equals a

point.

(ii) The intersection of any two distinct projective spaces PX and Pg”f%ﬂ on
GS(k,V) is either empty or equals a projective line.

(iii) The spaces PE and IP%"_%H intersect in a projective line if and only if
Pt = P(V,), ]P’Z,"*Ql€+1 = P(Vit | /Vi—1) for a flag Vike—1 C Vi1 of isotropic
subspaces of V.. Then PE N IP’%”_%H =P(Viy1/Vi—1).

Proof. Exercise. O

Lemma 2.7. (i) Assume 2 < k < n. Let P! be a projective line on GS(k,V),
x & P be a fized point in GS(k,V), and C C GS(k—1,V) be an irreducible curve
such that, for any Vi_1 € C, the projective space P(Vi: | /Vi_1) on GS(k,V)

contains = and intersects PL. Then C is a projective line on GS(k —1,V).

(ii) Assume 1 < k <mn — 1. Let P be a projective line on GS(k,V), z ¢ P!
be a fized point in GS(k,V), and C C GS(k+1,V) be an irreducible curve such
that, for any Vi1 € C, the projective space P(V)%, ) on GS(k,V) contains x and
intersects PL. Then C is a projective line on GS(k + 1,V).

Proof. Very similar to the proof of Lemma 2.4. O
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3. LINEAR EMBEDDINGS OF GRASSMANNIANS

In this section we study linear embeddings of grassmannians and isotropic

grassmannians.
We start with the following general lemma whose proof we leave to the reader.

Lemma 3.1. Any non-constant morphism of grassmannians (respectively, or-
thogonal or symplectic grassmannians) is finite.

Definition 3.2. Let X, X’ be grassmannians. An embedding ¢’ : X — X’
is a standard extension, if there are isomorphisms ix,¢xs and an embedding
0 : Gk, V)= G, V') for dim V' > dim V, k' > k, such that the diagram

(11) xo L x
lz‘x lix/
Gk, V)= G(K, V")
is commutative and ¢ is given by the formula
(12) o Vi Ve W

for some fixed isomorphism V' ~ V @ W and a fixed subspace W C W of

dimension k' — k.

It is easy to see that a standard extension is a linear embedding. Furthermore,
if P? is a projective space on G(k,V), then the inclusion P4 — G(k,V) is a
standard extension.
Example 3.3. Let V' =Va W, X = Gn—kV*), X' =Gk, V"), W C 1474
be a fixed subspace of dimension ¥’ — k, £ : V' — V be any autorphism. Then the
morphism

X=Gn—-kV")~Gk, V)= GK,V)=X
Vo = Vo= e(Vip) e W

is a standard extension. Here ix is the isomorphism G(n —k,V*) ~ G(k,V) and
ix is the automorphism of X’ induced by the automorphism ! @ idy;, of V'

Remark 3.4. Note that, for a standard extension ¢’ : X — X’ the dimensions of
V and V' are fixed by the respective isomorphism classes of X and X', however,
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the choice between k and dim V — k, respectively, ¥ and dim V' — k/, in diagram
(11) is made by the morphism ¢’. Furthermore, if V.V’ k, k' are chosen, fixing
a standard extension ¢ : G(k, V) — G(K', V') for which ig vy and iggy vy are
automorphisms is equivalent to fixing some linear algebraic data. More precisely,
given such a standard extension ¢ : G(k,V) — G(k', V'), we can recover W by

the f la W = N Vi). Set U :=S U Vi)). Then W Cc U
¢ lormuia VkeG(k,V)(p( k). Se pan(vkec(k,vfp( k) o

is a flag in V" and ¢ determines a surjective linear operator ¢ : U — V with kernel
W, such that (i) 71 (Vi) = ¢(V},) for any k-dimensional subspace Vi, € G(k, V). It
is easy to check that fixing the standard extension ¢ is equivalent to fixing the
triple (W, U, p).

In what follows we will write somewhat informally ¢ : G(k,V) < G(K',V’)
for a general standard extension, while we will speak about a strict standard
extension when ig;, 1) and ig(; vy are automorphisms. Given a strict standard
extension ¢ : G(k,V) < G(K', V'), the isomorphism V' ~ V @& W can always be
changed so that ¢ is given simply by formula (12).

We now give a similar definition of a standard extension of isotropic grassman-

nians (cf. [DP] and [PT1, section 3]).

Definition 3.5. An embedding ¢ : GO(k,V) — GO(K', V') is a standard exten-
sion if ¢ is given by formula (12) for some orthogonal isomorphism V' ~ V & W
and a fixed isotropic subspace W of W. A standard extension of symplectic
grassmannians is defined in the same way by replacing GO with GS, and the
orthogonal isomorphism V/ ~ V @& W by a symplectic isomorphism V' ~ V & W.

Under an orthogonal isomorphism (respectively, symplectic isomorphism) we
mean an isomorphism of vector spaces together with an isomorphism of forms
O ~dP <f>, where ® is a fixed symmetric (respectively, symplectic) form on V,
®' is a fixed (respectively, symplectic) form on V', and & is a fixed symmetric
(respectively, symplectic) form on w.

Remark 3.6. A standard extension of isotropic grassmannians can be defined
as follows: consider a flag of subspaces W C U of V', where W is isotropic and
there is a surjective linear operator ¢ : U — V with kernel W, such that the form
©*® coincides with the form induced on U by the form @’. This datum defines
an embedding GO(k, V) — GO(K', V') (respectively, GS(k,V) — GS(k',V')) by
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the formula

o: Vi () ') cUcC V' for Vi€ GOE,V) (resp., Vi € GS(k,V)).

Furthermore,
where V), runs over GO(k, V') (respectively, GS(k,V')) and the intersection and

the union are taken in V.

Remark 3.7. Let ¢ : G(k, V) — G(K', V') be a strict standard extension (respec-
tively, ¢ : GO(k,V) — GO(K',V') or ¢ : GS(k,V) — GS(K',V') be a standard
extension). Then

(14) K>k and dimV' —kK >dimV —k>0
(respectively,

1 1
(15) K >k and idimV/—k/ZEdimV—kEO).

Indeed, Definition 3.2 implies k' —k = dim W > 0. Next, from dim W < dim W=
dim V' — dim V it follows that dimV’ — k' = dimV — k + (dim W — dim W) >
dimV — k. This proves (14). As for (15), from Definition 3.5 we have k¥’ — k =
dim W > 0. Furthermore, as V}, is ®-isotropic, Vi := Vj, @ W is ®’-isotropic and
W is @—isotropic, we have k < %dim V, K< %dim V' 0<dmW < %dimW =
1(dim V' ~dim V). This implies 1 dim V'~ = L dim V —k+1 dim W —dim W >
$dimV —k > 0.

Definition 3.8. (a) Let V" be an isotropic subspace of V. For Z; 3 k < dim V",
we call the natural inclusions G(k, V") — GO(k,V) and G(dim V" — k, V"*) —
GO(k,V) (respectively, G(k,V") — GS(k,V) and G(dim V" — k, V")
GS(k,V)) isotropic extensions.

(b) A combination of isotropic and standard extensions is an embedding of the

form
/

GOk, V) <5 Gk, V) & G, U) S Go,U) & GO, V')
(respectively,
GS(k, V) <5 Gk, V) S GULUY S GS(L,U) &GS, V7)),

where t is the tautological embedding, ¢’ and ¢” are standard extensions and 7

is an isotropic extension.
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Note that a combination of isotropic and standard extensions is always given
by one of the formulas Vj — Vi ®W or Vi, — VkL @ W for an appropriately chosen
orthogonal (respectively, symplectic) isomorphism V’ ~ V & W and an isotropic
subspace W C W. Here L refers to the orthogonal (respectively, symplectic)
structure on V. Furthermore, one easily proves the following lemma.

Lemma 3.9. A composition of combinations of isotropic and standard extensions

is a combination of isotropic and standard extensions.

Remark 3.10. Let ¢ : X — X’ be a standard extension, where X and X' are
both grassmannians or, respectively, isotropic grassmannians of the same type. It
is easy to see that, if X and X’ are not (isomorphic to) projective spaces, then ¢’
does not factor through an embedding of a projective space into X’. If X and X’
are isotropic, then ¢’ is not a combination of isotropic and standard extensions.

Theorem 1. Let X ~ G(k,V), X' ~ G(K',V'), or X = GO(k,V), X' =
GO(K', V"), or X =GS(k,V), X' =GS(K, V"), and let ¢ : X — X' be a linear
morphism. If X = GO(k,V), X' = GO(K', V"), assume in addition that either
<[4V 3 and K <[40V 3 or that [Y] — g/ < [40V] k< 2 and
both dim V' and dim V' are odd. Then some of the following statements holds:
(i) ¢ is a standard extension;

(i) X and X' are isotropic grassmannians and ¢ is a combination of isotropic
and standard extensions;

(iii) @ factors through a projective space on X' or, in case X' = GO(K', V'),
through a mazimal quadric Qgimv’_%l.

Proof. We first consider in detail the case of symplectic grassmannians. The proof
goes by induction on k. For k = 1 the symplectic grassmannian GS(1,V’) equals
P(V), hence the linear morphism ¢ maps it isomorphically onto a projective space

in X’. Therefore statement (iii) holds trivially in this case.

Assume now that k& > 2 and the assertion holds for k — 1 and any k' > 1. Set
n:=3dimV, n = $dimV’, Y3 := GS(k — 1,V). Let Z := {(Vj_1,2) € Y5 X
X|z e P(ViE,/Ve1)} 2 Y3 be the family of projective spaces P%, ¢ = 2n—2k+2,
on X ~ GS(k,V). Since ¢ is a linear morphism, p(P(V;-,/Vi_1)) is a projective
space on X' for any Vi1 € Y. Therefore we obtain a family 7 = {(Vik—1,2) €
Vi x X'| 2 € o(P(Vit,/Vi-1))} 2 Yj of g-dimensional projective spaces on X'.
We claim that
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a) all spaces of the family p : Z — Y3 lie in the spaces of the family with base
B
= GS(K' +1,V’) (this is possible only if £ <n — 1),

or

(b) all spaces of the family p: Z — Y3 lie in the spaces of the family with base
Vi = GS(K —1,V).

Indeed, comsider the varieties ¥, = {(Vai-1,Vi,,) € Yp X
Yol oVt /Vic)  © P((Viy)")} and 25 = {(Vie, Vi) €
Yg x Vg o(P(Vit,/Vke1) € P(Vig,/Vi—1)} with natural projections

Ys 25, By and Ys i 23 £ V3. By construction, X, is a closed

subset of Y3 x Y and p, is a projective morphism. Hence, W, = po(Xs) is a
closed subset of Yz. By a similar reason, Wp := pg(X3) is a closed subset of
Yj3. Since any space of the family Z — Y3 lies in at least one maximal space on
X', it follows that W, U Wp = Ys. However, Y3 is irreducible, therefore either
Wo = Y3 (ie. case (a) holds), or W3 = Y3 (i.e. case (b) holds).

We now consider the cases (a) and (b) separately.

In the case (a), by Lemma 2.6,(i), each space of the family p : Z — Y lies

in a unique space P((V},)*) of the family with base Y,. This means that

Da @ 2o — Y3 is a bijective morphism, hence an isomorphism as Yjp is a smooth
variety. Therefore, there is a well defined morphism

(16) Vo = qa opg1 Y3 =GS(k-1,V) = Y, =GS(K +1,V').

Moreover, there is a commutative diagram

Yr

/\ /\
\X/

where I is the variety of isotropic (k—1, k)-flags in V, I"), is the variety of isotropic

(17)

(k', k' + 1)-flags in V', and or, p1, p2, p1 and Py are the induced projections.

Assume that ¢, is not a constant map. We first show that ¢, is linear. Fix
Vit1 € GS(k+1,V) and a subspace Vj_o of Vj,41. Consider the projective plane
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P% := P((Vkt1/Vik—2)*) on X. The points on P3 are k-dimensional subspaces
U C V such that Vi,_9 C U C Viy1. According to Lemma 2.5,(i), any Uy defines
a projective space P(U}) on Y3, and also a projective line P((Uy/Vi—2)*) on Yj.
Fix Uy and denote the projective line P((Uy/Vi—2)*) by P%,ﬂ. Furthermore, fix
a projective line }P’}( in IP%{ and consider the rational curve Pk := {(Vi4_1,V}) €
| Vi1 € P%,ﬂ, Vi € PL} on I'. Diagram (17) yields a commutative diagram

p1 |p% pzlﬂ»%

(18) Pl, L Pl

Walp%i N #rle N #let,
p p
palPl) ~— @l — ).
Since ¢ : X — X' is linear, 4,0\1%( : PL — ¢(P%) is an isomorphism. Furthermore,
pghp% is an isomorphism by construction. Therefore, pZ’sor(JP’% ) and (pphp% are

isomorphisms.

We claim now that p; ]P% and p; ’sor(JP’% y are also isomorphisms. Indeed, for py ]P%
this holds by construction. Consider ﬁl’sﬂr(ﬁ’% ). As o(P%) is a projective line in
X', the subspaces of V' corresponding to the points of cp(IP’}() lie in some &’ + 1-
dimensional subspace V), of V. This implies in view of Lemma 2.6,(i) that,
for any two distinct points V},,V/7 € p(P%), the projective spaces P(V’ =V
and P(V/i/V}1) on Y have V}, 41 as unique common point. Note that, for each
Vi € o(P%), JP’(V’,J‘/VR’,) is the isomorphic image under p; of the projective space
Py H(V}), and that py *(V{,)Ner(PL) is a single point. Hence, either p; (¢r(Ph)) =
gpa(IP’%/B) equals the point V, 41, OF ]51]%(1@% ) is an isomorphism. However, the
former case is impossible since <pa|[%ﬁ is a non-constant, hence finite morphism

by Lemma 3.1. Thus ﬁllw(]p%) is an isomorphism.

Diagram (18) implies now that cpahp%/ is also an isomorphism. To show that
B

©q 1s linear it suffices to prove that ¢, (}P’%,ﬁ) is a projective line on Y. This latter

fact follows directly from Lemma 2.7,(ii) applied to the following data: P! = ]P’%,ﬁ,
x=¢(Span( U Vi_q)),C = @a(IP’%,B).

Vi—1€P?

Note next that the diagram (17) allows to reconstruct ¢ from ¢,. Indeed,
for any Vj, € X the projective space P(V*) = py (pgl(Vk.)) is mapped via @, to
the unique projective space P( kf,J‘ /V},) which contains ¢, (PX~1). The original
morphism ¢ is precisely the map assigning V/, to V;, € X.
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We are now ready to apply the induction assumption to ¢,. Since @, is linear
we conclude that there are the following three possibilities: (a.1) ¢, is a standard
extension, or (a.2) ¢, factors through an isotropic extension, or (a.3) ¢, factors
through a morphism to a projective space in Y.

(a.1) In this case we have a fixed isomorphism V' ~ V & W and ¢, is given by
the formula

(19) Vici = Vi @ W

for an isotropic subspace W of 144 (see Remark 3.4). Therefore, for any Vj, €
X, the space Pk~ = P(V) on Y3 is embedded by ¢, in the projective space
PE+L = P((V;, ® W)*) on Y. Since P(V;¥) = p1(py '(Vi)), diagram (17) implies
that @a(P(V;)) C PE™V 721 = 5y (5,1 (V])), where V], = o(V4). We have
thus shown that ¢, (IP(V}*)) lies in the intersection of maximal projective spaces
from the distinct families PS, (k' + 1,V’) and PSg(k’ + 1,V’) on Y/. Hence,
by Lemma 2.6,(ii), £ — 1 = dimpo(P(V})) < 1, i.e. k = 2. Therefore, X ~
GS(2,V), Y =P(V), and ¢, is an embedding of P(V') into Y,,. Then ¢, (P(V))
lies in a unique maximal projective space P((V},,,)*) for an isotropic subspace

*

Viiyo of V. This yields a monomorphism j : V' < (V},,,)*. Now the above
reconstruction of ¢ via ¢, shows that ¢ decomposes as

(20)
X =GS(2,V) 5 G2, V) D G2, (Viye)) = G, Vi) & GS(H, V') = X,

where ¢ is the tautological embedding, the embedding j is induced by the
monomorphism j, and the embedding 7 is induced by the embedding of V/, 4o in
V'. Hence, ¢ is a combination of isotropic and standard extensions. One checks
that as a consequence ¢, is also a combination of isotropic and standard exten-
sions. However, this contradicts to Remark 3.10, and we conclude that case (a.1)
is impossible.

(a.2) In this case @, is given by one of the formulas

(21) Vk—l — Vk_l oW
or
(22) Vi1 = ij__l oW,

where L refers to the symplectic structure on V. If ¢, is given by (21), then for an
arbitrary Vi, € X, oo (P(Vy)) C P((Vi, @ W)*). Assume that dim ¢, (P(V})) > 1.
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Then by Lemma 2.6,(ii), ¢a(P(VY)) ¢ P(o(Vi)* /¢(Vi)), where the symbol 1/
refers to the symplectic structure on V’. On the other hand, in view of diagram
(17), @a(P(V})) C P(o(Vi)* /o(Vi)). This implies k& = 2. Therefore, ¢, is a
combination of isotropic and standard extensions of the form

Yy =P(V) 8 GULU) S GS(1,T) 8 GS(K +1,V!) =Y,

(see Definition 3.8). Then using diagram (17) it is easy to check that ¢ is given
by the formula
Vi VoW

and is a combination of isotropic and standard extensions of the form
X=GS2, V)5 ae V)5 Gu+1,U) S GSU+1,0) 5 GS(K, V') = X.

If ¢ is given by (22), then for an arbitrary Vi € X, ¢o(P(V})) = P((Vit @
W)Y /(Vi- @ W)). In view of the diagram (17) ¢ is given in this case by the
formula

Vi VoW
and is a combination of isotropic and standard extensions of the form

X =GS(k, V)5 Gk, V)= G@2n -k V) S G+ 1,U) L GSU+1,0)

1

& GS(K, V') = X,

In this way, (ii) holds under the assumption (a.2).

(a.3) Here ¢, factors through a morphism to some projective space P* in
Y., and we may assume without loss of generality that P® is maximal. If
P = }P’(V’i//Vk’,) for some V), € X', then in view of diagram (17) ¢ is the con-
stant map Vi + V},, contrary to the linearity of . Hence, P* = P((V, ,)")
for some isotropic subspace V}, 4o Of V', On the other hand, diagram(17)
implies that the projective space P(V}*) = pi(py L(Vk)) is mapped via ¢, to
the projective space IP’(V,;,L/VIC’,) = p1(py (V}))) for VI, = ©(Vi). Thus,
0a(P(V)) € P(Vio)*) NP(VL"/V}). By Lemma 2.6,(ii) this implies k = 2.
Hence, X = GS(2,V), Y3 = P(V) and, since ¢, is linear, it is an embedding
P(V) < P((V}1,5)*) corresponding to a monomorphism j : V' < (V[ ,)*. The
above mentioned reconstruction of ¢ from ¢, shows now that ¢ decomposes as

X =GS2,V) 5 G2,V) D G2, (Viye)) = GK, Viiis) S GS(H, V') = X,
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where ¢ is the tautological embedding, j is the standard extension corresponding
to the monomorphism 7, and 7 is an isotropic extension corresponding to an em-
bedding of an isotropic subspace V, 4o in V. This means that ¢ is a combination
of isotropic and standard extensions, i.e. statement (ii) holds.

To complete case (a) it remains to consider the possibility that ¢, is a constant
map, i.e. 9a(Yg) = {V},,,} for some V|, ; C V'. Then diagram (17) implies that
©(X) lies in the projective space P((V'p41)*) on X', i.e. (iii) holds.

We now proceed to the case (b). In this case, by Lemma 2.6,(i) each space
of the family p : Z — Y3 lies in a unique projective space P(Vi7 |/Vir—1) of
the family with base Yé. This means that pg : ¥g — Y3 is a bijective morphism,

hence an isomorphism as Y} is a smooth variety. Therefore, there is a well-defined

morphism
(23) ©8 = qp opg1 P Yp=GS(k-1,V) = Y;=GS(K' - 1,V"),
and a commutative diagram similar to (17)

¥r

/
(24) r I
N N
Y3 X Y} X/,
N X
"y @

where ¢, T, p1, ps, are as in (17), I} is the variety of isotropic (k" — 1, k)-flags
in V', and ¢r, p| and p, are the induced projections.

Assume that ¢g is a non-constant morphism. Then ¢g is linear, and the proof
is similar to that of the linearity of ¢,. Indeed, consider the diagram analogous
to (18) with ¢4, p1, P2 replaced respectively by g, pl, p). By essentially the same
argument as above, this is a commutative diagram of isomorphisms. The fact
that 4,05(]?%,6) is a projective line on Yy follows from Lemma 2.7,(i) for the data

Pl = p(P%), z = (S U Vi), C = pp(Py).
#(Px), & =¢(Span( U Vi), € = ¢s(Py,)

The morphism g maps a projective space P(V}*) to a unique projective space,
and thus reconstructs ¢ in an obvious way.
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Now, by the induction assumption, (b.1) ¢ is a standard extension, or (b.2)
¢p is a combination of isotropic and standard extensions, or (b.3) ¢g factors
through a linear morphism into some projective space P® in YB/' Consider these
three cases (b.1)-(b.3).

(b.1) In this case pg is a standard extension. Using the reconstruction of ¢ via

g mentioned above, one immediately sees that ¢ is also a standard extension.

(b.2) In this case yg is a combination of isotropic and standard extensions,
and, using the reconstruction of ¢ via g, the reader will check that ¢ also is a

combination of isotropic and standard extensions.

(b.3) In this case ¢z factors through a linear morphism of Y3 into some maximal
projective space P* on V4. Then P* = Pj := P(V’$_2/Vk’,_2) for some V/, , C V',
or P* = P$, := G(k' —1,V},) for some isotropic subspace V), C V'. The second
case is clearly impossible because it would imply that ¢ maps X into the single
point V}/,, contrary to linearity of ¢. Hence, P* = P3.

Fix Vj, € X and set V}, := (V). Diagram (24) shows that the projective space
P(V}) = pi(py* (Vi) is embedded by g into the intersection of the maximal
projective spaces 3 and PE 1= P((V],_,)*) = p’l(p’Q_l(Vé,)) in Y3. By Lemma
2.6,(ii) this implies k = 2, i.e. X = GS(2,V), Y3 =P(V), and g : P(V) —
Pg =PV’ iy V/,_,) is a linear embedding induced by a certain monomorphism

f:vV— V’i/_Q/Vk’,_Q. Diagram (24) shows now that ¢ is the composition
X =GS(2,V) 5 GS(2, Vi oVl _,) & GS(K, V') = X/,

where ¢ is induced by f and ¢ is the standard extension corresponding to the flag
Vo C V' _y in V. Being a composition of standard extensions, ¢ is itself a

standard extension, i.e. (i) holds.

To complete the proof in the symplectic case it remains to consider the possi-
bility the ¢4 is a constant morphism. Let pg(Y3) = {V},_;} for some V}, ; C V"
Then ¢(X) lies in the projective space P(V’ﬁ_l/Vé,_l) on X', ie. (iii) holds.

We now briefly outline the changes needed in the proof for the orthogonal
case. The main idea is to replace the family of projective spaces PSg(k,V) by
the family of maximal quadrics QOg(k,V) on X. Note first that the image of
a quadric Qgim V=2k under a linear morphism is either a quadric or a projective
space. Using this and the additional conditions imposed on k, k', dim V, dim V"’
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we show that ¢ induces a well defined linear morphism of the form

(25) 0o : Q0s(k, V) =GO(k—1,V) = GO(K' + 1,V")
or
(26) wp: Q0p(k, V) =GOk —1,V) = GO(K — 1,V').

The above conditions ensure that ¢ does not map maximal quadrics of the form

Qgim V=2F into maximal quadrics of the form Q5

The linearity of ¢, and ¢g, provided that they are non-constant morphisms,
is proved by arguments similar to the above using Lemma 2.4 instead of Lemma
2.7. The rest of the proof goes along the same lines as in the symplectic case.
When working with maximal quadrics Qgim V=2k 6n GO(k, V) instead of maximal
projective spaces }P’Z"_%H on GS(k,V), one uses Lemmas 2.2,(iv) and 2.3,(ii)
instead of Lemmas 2.5,(ii) and 2.6, (ii).

Finally, we leave the case X ~ G(k,V) and X' ~ G(K',V’) entirely to the
reader. 4

Corollary 3.11. Let X ~ G(k,V), X' ~ G(K',V"), or X = GO(k,V), X' =
GO(K, V"), or X =GS(k,V), X' =GS(K,V'), and let ¢ : X — X' be a linear
morphism. If X = GO(k,V), X' = GO(K',V'), assume in addition that either
k< [4mV) 3 gnd & < [9mV] 3, or that [90V) g/ < [d0V] k<2 and
both dim V' and dim V' are odd. Then ¢ is an embedding unless it factors through
a projective space on X' or through a mazimal quadric when X' = GO(K',V').

Corollary 3.12. Let X ~ G(k,V), X' ~ G(K',V"), or X = GO(k,V), X' =
GO(K',n), or X = GS(k, V), X' = GS(K',V'), and let ¢ : X — X' be a linear
embedding. If X = GO(k,V), X' = GO(K',V'), assume in addition that either
k< [42V) 3 gnd K < [9V] 3, or that [48Y7) — g/ < [40V] k<2 and
both dimV and dim V' are odd. Then some of the following statements holds:
(i) ¢ is a standard extension;

(i1)) X and X' are isotropic grassmannians and ¢ is a combination of isotropic
and standard extensions;

(11i) ¢ factors through a projective space on X' or, in case X' = GO(K', V'),

through a mazimal quadric Qgim V2K

Remark 3.13. Note that if X ~ G(k,V), X' ~ G(K',V’') and ¢ : X — X' is
an embedding, the statement of Corollary 3.12 simplifies as follows: ¢ is either a
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standard extension, or factors through a projective space on X’ (cf. Proposition
3.1 in [PT1)).

Remark 3.14. If X = GS(k,V), X' = GS(I2Y V') and ¢ : X — X' is a

dimV

5. This follows easily from Lemmas 2.5,(iii) and

linear morphism, then k£ =

3.1.

We will also need the following partial extension of Theorem 1.

Proposition 3.15. Let dimV = 2n > 10, dimV’ = 2n/ and ¢ : X =
GO(n —2,V) - X' = GO(n' — 2,V’) be a linear embedding. Then some of
the following statements holds:

(i) ¢ is a standard extension;

(i) X and X' are isotropic grassmannians and ¢ is a combination of isotropic
and standard extensions;

(i11) ¢ factors through a projective space on X', through a mazimal quadric
nglv’_%,, or through the grassmannian G(n' —2,V!) C X' for a mazimal
isotropic subspace V!, of V'.

Proof. Considering the image of the family QOg(n — 2, V) under ¢, we see simi-
larly to the proof of Theorem 1, that at least one of the following morphisms

(27) ¢a 1 Q0g(n—2,V) =GO(n—3,V) = POy(n' —2,V’),
(28) g Q0p(n—2,V)=GO(n—3,V) = GO(n' —3,V'),
(29) @y Q0p(n —2,V) =GO(n—3,V) = QO,(n —2,V')

must be well defined.

Assume that ¢, is well defined. Then one sees that an obvious analog of
diagram (17) applies also in the case we consider here. Set V!, , := ¢(V,_2)
for Vo € X. Note that p,*(Vy,_a) = P(V;*,)is mapped under ¢r into
p’gl(VA,_Q) ~ P! x P! Since n > 5, this map is a constant map. Hence ¢,
maps the projective space P(V,*_,) into a point. Lemma 3.1 implies now that
¢q is a constant map. i.e. po(QOg(n —2,V)) = {V/,_,} for some V!, | C V'
Then the analog of diagram (17) implies that ¢(X) lies in the projective space
P((V!,_1)*) on X', i.e. statement (iii) holds.
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Next, if ¢ is well defined, then one applies Theorem 1 to ¢ and recovers ¢
from ¢g as in the proof of Theorem 1.

In the remainder of the proof we assume that ¢, is well defined. We start by
constructing a diagram analogous to (17):

/\ /\
\X/

By definition, I is a fixed connected component of the variety of isotropic (n —

(30)

2,n)-flags in V, and I' is a fixed connected component of the variety of isotropic
(n' —2,n/)-flags in V. Next, we define Y. For this we fix codimension 1 subspace
V in V such that the symmetric form ®[; is non-degenerate, and set Y :=
GO(n —1,V). Similarly we define Y’ as GO(n/ —1,V’). The projections w1, 2,
7}, mh are as follows: 71 : (Vu—o C V) = VN V, 7y (Ve C Vo) = Vo, 7 ¢
V!, ,cV!)y= VNV 7. (V! ,C V)V , To define the morphisms
¢y and op, consider a point V, NV € Y. By construction, the fibre 771 (V, N'V)
is isomorphic to the grassmannian G(n — 2,V,,) which is isomorphically mapped
onto mo(G(n — 2,V,)). The composition G(n — 2,V,) 3 m(G(n — 2,V},)) SN
x4 a (n" —2,V"), where t is the tautological embedding, is a linear embedding
of grassmannians, hence by Theorem 1 it is either a standard extension or factors
through an embedding into a projective space. In both cases one sees that there
is a unique isotropic subspace V!, of V' such that (pom)(G(n—2,V;,)) C G(n' —
2,V",). Define now ¢y : Y — Y by setting ¢y (V,NV) = V/,NV". The morphism
¢p : I — I is then recovered by the commutativity of diagram (30).

Assume now that the morphism @y is finite. Consider a point V,,_o € X and
set V!, , = ¢(Vy—2). By diagram (30) the projective line P' := 7y (15 ' (Vy—2))
on Y is mapped into the projective line P'* := 7} (x5 *(V/,_,)) on Y”. Since the
morphism ¢y |p1 is finite, it follows that this morphism is surjective. This implies
that the morphism ¢ : T' — I maps fibres of 7y onto fibres of 7.

Next, fix a point V,-3 € GO(n — 3,V). The maximal quadric
GO(1,V;-5/V,—3) is mapped by ¢ onto the quadric Qi corresponding to
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the isotropic flag ¢~(V,,—3). Consequently, according to the above stat-
ed property of ¢p the variety m, '(GO(1,V.t,/V,_3)) is mapped by g
onto the variety W’Q_I(Qi). Hence 71(my H(GO(1, V.t 5/Vi_3))) is mapped
by ¢y onto wi(n'y 1(Q§)). However, one can check that the variety
m1(my (GO, Vit 5/Vi_3))) is isomorphic to P3, while the variety 7} (W’z_l(Q%))
is 5-dimensional. This is a contradiction.

Hence ¢y is not finite, and Lemma 3.1 implies that ¢y is a constant map.
Set V!, = ¢y (Y). Then diagram (30) yields that p(X) C 71'5(71’/1_1(‘/721_2)) =
G(n' —2,V!,), and statement (iii) holds. 0

4. LINEAR IND-GRASSMANNIANS

Recall that an ind-variety is the direct limit X = li_nr>1Xm of a chain of mor-

phisms of algebraic varieties
(31) X1 B X, 8. x e x, T

Note that the direct limit of the chain (31) does not change if we replace the
sequence {X,,}m>1 by a subsequence {X;, }m>1 and the morphisms ¢, by the
compositions @;,, := @;,..1—10...0 @i, 410 @;,,. Let X be the direct limit of (31)
and X’ be the direct limit of a chain

(32) X| A Xy BT xl ey P

A morphism of ind-varieties f : X — X’ is a map from ﬁ_I)Ian to limX/ induced
by a collection of morphisms of algebraic varieties { f,, : X, — XZLM }m>1 such
that vy, © fm = fm+1 0 @m for all m > 1. The identity morphism idx is a
morphism which induces the identity as a set-theoretic map from X to X. A
morphism f : X — X’ is an isomorphism if there exists a morphism g : X’ — X
such that gof =idx and f o g = idx.

In what follows we only consider chains (31) such that X,, are complete al-
gebraic varieties, nh_}n;o (dim X,,) = oo, and the morphisms ¢,, are embeddings.
We call such ind-varieties locally complete. Furthermore, we call a morphism
f:X= liLan —- X' = hng;z of locally complete ind-varieties an embedding if

all morphisms f,, : X, = X}, , m > 1, are embeddings.

m’
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Definition 4.1. A linear ind-grassmannian is an ind-variety X obtained as a
direct limit of a chain of embeddings

2] Pm+1

P1 (%25 m—1 Pm
Xi—=>Xo—=... = X, = X1 —

where each X, is a grassmannian or an isotropic grassmannian, lim (dim X,,) =
n—oo

oo, and all embeddings ¢,,, are linear morphisms.

Note that Definition 4.1 allows for a ”mixture” of all three types of grassmanni-
ans (usual grassmannians, orthogonal grassmannians, symplectic grassmannians).
Note also that when considering orthogonal grassmannians we restrict ourselves
to connected orthogonal grassmannians with Picard group isomorphic to Z, see
2.3.

We now define certain standard grassmannians and isotropic grassmannians.

Definition 4.2. Fix an infinite chain of vector spaces
Vg C Vi Coee TV, CTVopyy C o
of dimensions n,,, My < Nypt1-
a) For an integer k, 1 < k < nq, set G(k) := li_I)nG(k, Vi, ) where
Gk, Vo) = G(k, Vi) = .. = G(k, Vi, ) = G(k, Vi) = -
is the chain of canonical inclusions of grassmannians.

b) For a sequence of integers 1 < kj < ko < ... such that ky,, < n,,, lim (n, —

m—r0o0
km) = 00, set G(o0) := 1i_r>nG(k:m,Vnm) where
G(k1,Vny) = G(k2, Vi) = .. = Gk, Vi) = G(Bmg1, Vi) <= -
is an arbitrary chain of standard extensions of grassmannians.

c) Assume that V,  are endowed with compatible non-degenerate symmet-
ric (respectively, symplectic) forms ®,,. In the symplectic case %nm € Zy.
For an integer k, 1 < k <[], set GO(k,00) := li_I)nGO(k,Vnm) (respective-
ly, GS(k, 00) := li_I)nGS(k, Vi) where

GOk, V) = GOk, Vyy) = ... = GO(k, Vy,,) = GOk, Vy,iy) = oo
(respectively,

GS(k,Vp,) = GS(k,Vp,) = ... = GS(k,Vp,,) = GS(k, Vi, ) = )
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is the chain of canonical inclusions of isotropic grassmannians.

d) For a sequence of integers 1 < ki < kz < ... such that k, < ["],

1i_r>n ([%] — k) = o0, set GO(oc0,00) = lgnGO(km,Vnm) (respectively,
GS(00,0) = liLnGS(k:m,Vnm)) where
(33)

GO(k1, Vi) = GO(ka, Vp,) = ... = GO(kn, Vi) = GO(kmtt1, Vi) = -

(respectively,
(34)
GS(k1,Vp,) = GS(k2, Viy) = ... = GS(km, Vi) = GS (ks Vi) = -2)

is an arbitrary chain of standard extensions of isotropic grassmannians.

e) In the symplectic case, consider a sequence of integers 1 < k1 < ko < ... such
that k,, < g, n}gnoo(%" — km) =k € N, and set GS(00, k) := 1i_r>nGS(km,Vnm)
for any chain of standard extensions (34). In the orthogonal case, assume
first that dimV,,, are even. Then set GO%(c0,k) = liglGO(km,Vnm) for a
chain (33) where k, < “g, nlgnoo(%” —km) = k € N, £k > 2. Final-
ly, consider the orthogonal case under the assumption that dimV;,  are odd.
Then set GO!(co, k) = liglGO(k:m,Vnm) for a chain (33) where k,, < ["g],
%gnoo(["Tm] —km)=keN.

The infinite projective space P> is defined as the ind-variety G(1). Note that
P> ~ GS(1). When writing GO°(co, k) below we automatically assume k # 1.

Lemma 4.3. All standard ind-grassmannians G(o0o), GO(00,0), GS(o0, o0),
G(k), GO(k,00), GS(k,0), GO°(00,k), GO (00, k), GS(c0,k), are well de-
fined. In other words, a standard grassmannian does not depend, up to an iso-
morphism of ind-varieties, on the specific chain of standard embeddings used in
its definition.

Proof. We consider only G(oco). All other cases are similar. Let two chains of
strict standard extensions

G(k1, Vi) & Glka, Vi) S .. 785" G, Vi, ) 25 Gksn, V,

Pm+1
Nm+1 )

/

G, Vi ) B Gk 1, Vi,

G, Vi) 55 Gy, V) 37 e

/7n+1) — ..,
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such that

lim k,, = lim k), = lim (n, — ky) = lim (n), — k) = oo,
m—r0o0 m—0o0 m—0o0 m—0o0

be given. We will show that their respective direct limits G(oco) and G'(o0) are

isomorphic as ind-varieties.

For this, we have to construct two infinite subsequences {is}s>1 and {js}s>1
of Z and two sets of morphisms f = {fs : G(ki,, Vp,,) — G(k; VI ) 1, 8 =
° s Js -

{gm : G(K;, V., ) = G(ki,1y, Vn, ) }m>1 such that they determine morphisms
Js

Migi1
of ind-varieties f : G(co) — G'(00),g : G'(00) = G(00) with gof = idg o)
and f o g = idg/(o0)- Assume that the desired subsequences {is}s>1, {js}s>1 and
morphisms fj, g; are constructed for 1 <! < s— 1, and that these morphisms are
strict standard extensions. Denote for short k :=k;,, n:=n;, V :=V,, k' =
Ki,n'=n, V=V, G=GkV), G =Gk V), f=f GG, k=
Kig o= nlsH, V =Va G:=Gk V), ¢ = ¢, : G G. Without loss of
generality that we assume that k> K. By Remark 3.4, f is given by a triple
(W, Uy, f), where Wy C Uy is a flag in V'. Respectively, ¢ is given by a triple
(W, Uy, @), where W, C Uy, is a flag in V.

For the induction step we will now find a strict standard extension g := g :
G’ < G such that go f = ©. Indeed, consider the exact triples 0 — Wy — Uy £>
V-0 0-—=W,—=U, 2,V = 0. Since both f and ¢ are epimorphisms,
and dimU, > dimU; as k > K/, it follows that there exists a (non-unique)
epimorphism ey : U, — Uy such that ¢ = f oey. Then ey|w is a well-defined
epimorphism W, — Wy. Putting W, := kerey, we have the exact triple 0 —
Wy — U, == Uy — 0. Next, set U} := Wy V' andﬁxanembeddingi:U;%V
such that i|y, = id. Then W, C Ug := i(Uy) is a flag in V' equipped with an
isomorphism g : Uy/W, ~ V'. The corresponding strict standard extension
g: G’ — G satisfies the property go f = p, as claimed. O

Note furthermore that the standard ind-grassmannians introduced above are
isomorphic to certain ind-varieties introduced in [DiP]. More precisely, let V be a
countable-dimensional vector space with basis {v1, ..., vy, ...} and let W CVbea
subspace generated by a subset of {v1,...,vp,...}. Then G(W, V) is by definition
the set of subspaces ECV satisfying the following two conditions:

(i) Span({v1, ..., vn, ...} N E) is of finite codimension in E;
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(ii) there exists a finite-dimensional subspace U C V such that W cE+U,
ECW+U, dim(ENnU) =dim(W n0).
Then it is easy to see (a much stronger result is proved in [DiP]) that G(W, V)
has a natural structure of an ind-variety such that G (W, XN/) is the direct limit of

a chain of standard extensions of grassmannians. Moreover,
G(W,V) = G(min{dim W, codims W}).

Similarly, in the isotropic case (i.e. in the case when W is equipped with
an appropriate non-degenerate quadratic form) the standard isotropic ind-
grassmannians introduced in this paper represent all isomorphism classes of ind-
varieties G (W, V) introduced in [DiP] (in this case W is an isotropic subspace of
V) and satisfying Pic G(W, V) ~ Z.

5. CLASSIFICATION OF LINEAR IND-GRASSMANNIANS

In this section we prove the following main result of the note.

Theorem 2. FEvery linear ind-grassmannian is isomorphic as an ind-variety
to one of the standard ind-grassmannians G(k) for k > 1, G(o0), GO(k,o0)
for k> 1, GO%(c0, k) for k > 2, GO(c0, k) for k > 0, GO(oc0,00), GS(k, )
for k > 2, GS(oo,k) for k > 0, GS(0c0,0), and the latter are pairwise non-

isomorphic.

Proof. Let a linear ind-grassmannian X be given as the direct limit of a chain of

embeddings

©1 P2 Pm—1 Pm Pm+1
Xi—=>Xo—=- = X, > Xne1 — ...,

where X,, are grassmannians, possibly orthogonal or symplectic, such that
lim (dim X,,,) = oo. Then, for infinitely many m, X,, will be a grassmanni-
gn_: O?)r an orthogonal grassmannian, or a symplectic grassmannian. Therefore,
without loss of generality, we can assume that all X,, are of one of the above

three types.

Suppose first that all X,,, are grassmannians. Then we have the following two
options: for infinitely many m, the embedding ¢, : X, = X;,+1 factors through
an embedding of a projective space into X,,+1, i.e. there exists a commutative
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diagram of embeddings

Xm Xm+1

~N 7

Pim,

or this is not the case. In the first case X ~ lim P/» hence X ~ P*. In
the second case, by deleting some first embedding: we can assume that none of
the embeddings ¢, : X, — X1 factors through an embedding of a projec-
tive space into X;,+1. Then, Corollary 3.12 implies that all embeddings ¢,, are
standard extensions, hence X is isomorphic to G(k) or G(oc0).

In the symplectic case, the reader will argue in a similar way that Corollary
3.12 implies that X is either isomorphic to G(k) or G(oo) (this happens when
all ¢, are combinations of isotropic and standard extensions or factor through
projective spaces), or to one of the standard symplectic ind-grassmannians.

The orthogonal case is similar but has some special features. First, if all
morphisms ¢,, factor through respective quadrics Q;im Vmt1=2km+1 o he needs to
prove that the direct limit of any chain of linear embeddings

Qr—Qo— ... =Qp—Qmi1=— ... ,

where %gnoo dim @,,, = 00, is isomorphic either to P> or to GO(1, c0). This is an
exercise which we leave to the reader. Second, in the orthogonal case one applies
Corollary 3.12 when [42Vm] — k> 3 for infinitely many m (in this case one
can assume without loss of generality that [42Vm] —k, > 3 for all m). The case
gn]

when [ — km < 2 for infinitely many m needs special attention. In the

latter case one assumes without loss of generality that [%] — ky, is constant
and then applies Theorem 1 when dim V,, is odd for all m, and Proposition 3.15

when dim V;, is even for all m (in the latter case 42Vm — k,, =2 for all m).
The first claim of Theorem 2 is now proved.
The claim that the standard ind-grassmannians are pairwise non-isomorphic

follows from Lemmas 5.1, 5.2 and 5.4 below. O

In what follows we will sometimes write GO(oco, k) meaning GO(c0, k) or
GO!(c0,k). This allows the simultaneous consideration of GOY(co,k) and
GO(o0, k).
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Lemma 5.1. (i) Let k, k' € Z,U{oc}, k #k'. Then G(k) # G(K'), GO(k,o0) #
GO(K',0), GO(k, ) # GO(K', o).

(ii) Let k > 2. Then GO%(c0, k) % GO(00, k).
(i11) Let k, k' € NU{oo}, k # k. Then GO(00, k) £ GO(o0, k'), GS(00, k) 2
GS(o0, k).

(iv) Let k € NU{oo}, K € Zy U{oo}, k#Kk'. Then GO(o0, k) % GO(K, 00),
GS(o0, k) 2 GS(K, 00).

Proof. In (i), (iii) and (iv) we only consider the symplectic case and leave the
other cases to the reader.

(i) Let & > k’. Assume that k € Z; and that X := GS(k,00) and X’ :=
GS(k',0) are isomorphic. This implies that there exist subsequences {is}s>1

and {js}s>1 of Z4 and a chain of linear embeddings

(35)
e GS(, Vi) 53 GSWH VY ) 5 GS (Vi) GS(RL VY,
Js s

Js+1

)
such that the compositions gs o fs and fs11 o g5 are standard extensions and the
direct limit of the chain (35) is isomorphic to both X and X'. According to
Corollary 3.12, we can assume without loss of generality that all embeddings fs
and g5 are standard extensions, or factor through isotropic extensions, or factor
through embeddings to projective spaces.

In the first case, since GS(k, Vy,, ) <§> GS(K',V!, ) is a standard extension, it
Js
follows from (14) that k' > k, contrary to the assumption.
In the third case both X and X’ are isomorphic to P*>°. On the other hand,

Remark 3.10 implies that X is not isomorphic to P> as k > 1.

t
Consider now the second case. Here f; factorizes as fs : GS(k,Vy, ) —

Gk, Vn,,) <f%5 GS(K', V!, ), where t is the tautological embedding and fs is an
Js
isotropic extension followed by a standard extension. The composition
(36) Gk, Vo, ) &3 GSW. VL, ) <5 GV ),
; Js Js

t being the tautological embedding, is a standard extension or factors through
a projective space. The latter assumption leads to the same contradiction as
in the above considered third case, so we must assume that (36) is a standard
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extension. The existence of a standard extension G (k, V;,, ) = G(K', V!, ) implies
Js

k' >k, k' —k<n} —n;,ork<nl —Fk, k+k >n; (see Remark 3.7). Since

for n;, large enough, both pairs of inequalities contradict our assumption that

k > k', we conclude that the second case is also impossible.

We have now shown that all three cases lead to contradictions, hence (i) follows
for k € Z. The argument for k = oo is very similar.

(ii) The maximal quadrics on GO%(oc0, k) not lying in projective spaces have
dimension 2k, while the maximal quadrics on GO!(oco, k) not lying in projective
spaces have dimension 2k + 1, see Lemma 2.2. This imlies that GO°(0o, k)
GO'(o0, k).

(iii) Let Z4+ 2 k > k’. Assume that X := GS(k,00) and X’ := GS(k’, 00) are
isomorphic. As above, this implies that there exists a chain of linear embeddings
(35) such that the compositions gs o fs and fs41 o gs are standard extensions and
the direct limit of the chain (35) is isomorphic to both X and X’. Without loss of
generality we can assume that all embeddings f,; and g5 are standard extensions,
or factor through isotropic extensions, or factor through embeddings to projective
spaces.

In the first case we have a standard extension

A 1
R GS(5dimVyy — K.V, ),
Js

1
GS(§ dimV,, —k, Vy,.) :
Js
and (15) gives k < K/, contrary to the assumption.

The arguments in the second and third case are similar to the respective ar-

guments in (i).
The proof is finished for k < oo. The case k = oo is similar.
(iv) The argument is practically the same as in (i).

O

Lemma 5.2. For any k, k' € Z; U {cc},k” € NU {oo} the following assertions
hold.

(i) G(k) % GS(K',00), unless k =k =1, G(k) 2 GO(K', 00),
(i1) G(k) # GO(o0, k"), G(k) # GS(oo, k").
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Proof. Again we consider only the symplectic case and leave the orthogonal case

to the reader.

(i) We have to prove that G(k) %2 GS(k’,00), unless k = k' = 1. The case
K =1, k > k', is already considered in Lemma 5.1,(i), so we can assume k #
1, K #1, k#£K.

Let G(k) (respectively, GS(k’,00)) be given as the direct limit of a chain of
strict standard extensions

Gk, Vi) = Gk, Viy) = ... = G(k, Vo) = Gk, Vi) = oo

(respectively,

Pm—1 Pm+1
).

GS(K, V) S GS(H V) S 78 GSW, vy, ) S5 GS(, v, RIG

Suppose that G(k) ~ GS(k’,00). This means that there exist two infinite
subsequences {is}s>1 and {js}s>1 of Z; and two sets of morphisms f = {fs :
G(k’ Vnis) - GS(I{I/, VTQ’. )}8217 g = {gs : GS(klvVé’, ) - G(k‘, Vi
determine morphisms of ind-varieties f : G(k) HJSGS(k:’,oo),g : GS(K',00) —

is41 ) }le which

G(k) with go f= ldG(k) and f o g = idGS(k/,oo)'

Set V = V, o G = GkV), V' =V, , GS = GSK.,V'), V' =
o s _ ~js 5 o
v, GS:=GSK,V'), g:=gs:GS = G, f:=fo1:G—=GS, ¢ =

Js+1

i, GS — GS. Note that  is a standard extension and ¢ = f o g by construc-

tion.

Consider the composition F : G <i> GS <y G(K', V') where i is the tautological
embedding.

The morphism F' is a linear embedding, hence, by Corollary 3.12, we may

assume without loss of generality that

(a) F' is a standard extension,
or

(b) F factors through an embedding into a projective space.
Consider these two cases.

(a) By Remark 3.6, ¢ is given by a triple (W, U, ¢) where W, C U, is a flag
in V’. Furthermore, without loss of generality we may assume that F is given by
a triple (Wy, Uy, F) for a flag W; C Uy in V. Since p(G'S) = fog(GS) C F(G),
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the following chain of inclusions holds:
WrCW,CU,CUrcV.

Therefore we have an embedding U, /W, < Ur/W,, and a projection Up/Wp —
Ur/W,,. However, since ¢ is a standard extension, the fixed symplectic form P’
on V' induces a nondegenerate form on U,/W,,, while it induces the zero form on
Ur/Wp as f(G) C GS. This contradiction shows that the case (a) is impossible.

(b) By assumption, F : G Jy a5 <& G(K', V') decomposes as G < P <
G(K, 1% ). Without loss of generality we assume that P” is a maximal projective
space on G(k', V'), and consider the two possible cases: P" = {Vj C V'|Vjv_1 C
Vi C V]j_l} and P" = {Viy C V' |Viy C Vjyy1} for some fixed subspaces Viy_;
and Vi, of V', Viy_; being isotropic.

In the former case any Vi € G(K,V’) such that Viy_; C Vi C V,j_l is
isotropic, i.e. Vir € GS NP". In other words,

GSNP" =P(Vir_y/ Vi),

where the intersection is taken in G(k’,V’). This means that ¢ factors through
a projective subspace of GS, which contradicts Remark 3.10. Hence, the former
case is impossible.

In the latter case it is easy to check that, for n;‘s+ , = dim V' > 2, the subspace

Vivi1 C V' is necessarily isotropic. Then GS NP = P((Vkr41)*), and we are led

to a contradiction as in the former case.

(ii) The proof is analogous to the proof of (i) and we leave it to the reader. [

Lemma 5.3. Let 1 <k <n=[dimV/2] and ¢ : GO(k,V) — GO(K', V"), Vj —
Vi @ W, be a standard extension. Let two mazimal projective spaces PE and
IP’Z_’f intersect in a point. Then there exist maximal projective spaces }P’Z/ and
Py, /= [dimV’/2], on GO(K', V') such that p(Pk) C P, o(P3~*) c PR,
and P¥ N ]P’g,_k/ is a point.

Proof. The projective spaces PF and Pg*k determine a configuration
Vi—1, Vit1, Vi as in Lemma 2.3,(iv). The subspaces Vi_1 @ W, Vi1 @ W, V, & W
of V' form the configuration which determines the desired projective spaces ]P”;l
and P} V. O
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Lemma 5.4. (i) GO(k,00) % GS(k',00) for k, k' € Z4 U {o0}.
(i) GO(k,00) % GS(00, k') for k € Zy U{oc}, k' € NU {oo}.
(iii) GO(o0, k) 2 GS(K',00) for k € NU{cc}, k' € Z4 U {c0}.
(iv) GO(o0, k) # GS(c0, k') for k, k' € NU {o0}.
Proof. We consider in detail only the case of GO(o0,00) and GS(0c0, ). Let

P? for ¢ > 2 be a projective space on GO(o0, 00) (respectively, GS(oo, 0)). We
now explain how to label P4 as P& or ]P’%. Fix an arbitrary chain of standard

extensions
(37)
GO(k1, V) = GO(k2, Vpy) = .. = GO (K, Vi) = GOkt Vi) = -
(respectively,
(38)
GS(k1, Vi) = GS(ky, V) = o == GS(kpy, Vi) = GS( ;n+1’vn’m+1) —...)
such that
lim k,, = lim (ny, — k) = o0
m—r0o0 m—r0o0
(respectively,
. /AT A VN
sl = (P ~ Fin) = €0)
and liglGO(km, Vo) = GO(oco,00) (respectively, liLnGS(k;n, Vi ) =

GS(00,00)). Without loss of generality we assume that all n,, in (37) are odd.

Consider some n,, such that P! C GO(kp,V,, ) (respectively, P? C
GS(k;,, V) and choose a maximal projective space P™ on GO(k,, Vy,,) (re-
spectively, GS(ky,, Vi, ) such that P? C P". The projective space P is either of
type Pf, or P, and we label P? according to the label of P". Lemma 2.3,(i),(iii)
(respectively, Lemma 2.6,(i),(ii)) implies that this labeling is well defined as long
as the chain (37) (respectively, (38)) is fixed. Moreover, using Theorem 1 and
Lemma 5.2 one can verify that the labelings P and IP’% are intrinsic to the ind-
variety GO(oo,00) (respectively, GS(oo,0)), i.e. do not depend on the choice
of chain (37) (respectively, (38)) satisfying the above conditions.

Let now P>* — GO(o0,00) (respectively, P> — GS(0c0,00)) be a linear
embedding. We call its image an infinite projective space P> on GO(o0,0)
(respectively, GS(oc0,00)). We say that P> = P if P> = 11_1)11?’3 for some
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projective spaces P& on GO(o0o,00) (respectively, GS(c0,00)). In a similar way
we define P on GO(o0, 00) (respectively, GS(oc, 00)).

Next, we observe that Lemma 5.3 implies that on GO(00, 00) there are pairs
of maximal infinite projective spaces P5° and P%o such that Po° N P‘/’f is a point.

To complete the proof, we observe that on GS(oco,00) any two maximal infi-
nite projective spaces PS5 and P%o intersect in a projective line whenever their
intersection is non-empty. This follows from Lemma 2.6. More precisely, an in-
finite projective space Py’ (respectively, P3°) is maximal on GS(00,00) if and
only if, for any chain (38) the intersections Pg® N GS(k;,, V,, ;) are maximal
projective spaces in GS(k;,, V; ) for large enough m. This is a consequence of
Lemma 2.3,(i). Now Lemma 2.3,(iii) implies the assertion that maximal projec-
tive spaces Pg’ and P%O intersect in a projective line whenever their intersection

is non-empty.

Since the intersection properties of maximal infinite projective spaces P3° and

7 on GO(oo,00) and GS(o0, 00) are intrinsic to the geometry of GO(oo, 00)
and GS(o0,00), we conclude that GO(o0, 00) and GS(oo, 00) are non-isomorphic
ind-varieties.

The arguments in all other cases are similar. One either shows that on one
of the ind-varieties in question there are maximal projective spaces which do
not exist on the other, or shows that the intersection properties of maximal
projective spaces are different on both ind-varieties. For instance, on GO(k, o0)
there are maximal projective spaces IP”; and Pz which intersect in a point, while
on GS(k, c0) two maximal projective spaces PX and P73 intersect in a projective
line or do not intersect at all. We leave the details to the reader.

]
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