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Abstract: We consider ind-varieties obtained as direct limits of chains of

embeddings X1
ϕ1
↪→ · · · ϕm−1

↪→ Xm
ϕm
↪→ Xm+1

ϕm+1
↪→ . . . , where each Xm is a

grassmannian or an isotropic grassmannian (possibly mixing grassmannians

and isotropic grassmannians), and the embeddings ϕm are linear in the sense

that they induce isomorphisms of Picard groups. We prove that any such

ind-variety is isomorphic to one of certain standard ind-grassmannians and

that the latter are pairwise non-isomorphic ind-varieties.

Keywords: grassmannian, ind-variety, linear morphism of algebraic vari-

eties.

1. Introduction

The Barth–Van de Ven–Tyurin–Sato Theorem claims that any finite rank vec-

tor bundle on the infinite complex projective space P∞ is isomorphic to a direct

sum of line bundles. For rank two bundles this theorem has been proved by Barth

and Van de Ven in [BV], and in the general case the theorem has been proved by

Tyurin in [T] and Sato in [S1]. In the last decade we have studied more general

ind-varieties for which the result holds true [PT1], [PT2] [DP].
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This study has naturally led us to the problem of constructing non-isomorphic

ind-varieties arising as direct limits of given classes of embeddings of projec-

tive varieties. In the present note we address a classification problem along

those lines: we consider linear embeddings of grassmannians, i.e. embeddings

i : X1 ↪→ X2 of a grassmannian X1 into a grassmannian X2 satisfying the condi-

tion i∗OX2(1) � OX1(1), and determine how many non-isomorphic ind-varieties

can be obtained from such embeddings. Moreover, we consider also orthogonal

and symplectic grassmannians (i.e. isotropic grassmannians arising from non-

degenerate orthogonal or symplectic forms) and define a linear ind-grassmannian

as an ind-variety arising as the direct limit lim−→ Xn of any chain of linear embed-

dings

X1 ↪→ X2 ↪→ . . . ↪→ Xm ↪→ Xm+1 ↪→ . . .

of grassmannians, some or all of them orthogonal or symplectic.

Our main result (Theorem 2, see Section 5) states that each linear ind-

grassmannian is isomorphic (as an ind-variety) to one of the standard ind-

grassmannians introduced in [DiP]. In particular, any linear ind-grassmannian

is a homogeneous space of one of the three classical ind-groups SL(∞), O(∞),

Sp(∞). We also prove in Theorem 2 that the standard ind-grassmannians are

pairwise non-isomorphic. To make the note self-contained, we do not rely on the

article [DiP], but introduce (in Section 4 below) the standard ind-grassmannians

in terms of explicit chains of embeddings.

The main tool we use in Theorem 2 is Theorem 1 (see Section 3) which describes

linear morphisms of grassmannians, as well as isotropic grassmannians.

In the related paper [PT3] we return to the original question of extending the

generality of the Barth-Van de Ven- Tyurin-Sato theorem. There we give the list

of linear ind-grassmannians on which a bundle of finite rank is isomorphic to a

direct sum of line bundles.
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2. Preliminaries

2.1. Notation and conventions. Recall that N = {0, 1, 2, ...}. We set

Z+ = {1, 2, 3, ...}. All vector spaces and algebraic varieties are defined over an

algebraically closed field F of characteristic 0. The superscript ∗ indicates dual
space or dual vector bundle as well as inverse image. If X is a projective variety

with Picard group isomorphic to Z, then OX(1) stands for the ample generator

of the Picard group.

By G(k, V ), 1 ≤ k ≤ dimV, we denote the grassmannian of k-dimensional

subspaces of a finite-dimensional vector space V . For k = 1, G(k, V ) = P(V ).

Furthermore, OG(k,V )(1) ∼= ∧kS∗G(k,V ), where SG(k,V ) is the tautological bundle
on G(k, V ), and PicG(k, V ) ∼= ZOG(k,V )(1).

In what follows we will consider, both symmetric and symplectic, quadratic

forms Φ on V . Under the assumption that Φ is fixed, we set W⊥ := {v ∈
V | Φ(v, w) = 0 for any w ∈ W} for any subspace W ⊂ V . Recall that W is

isotropic (or Φ-isotropic) if W ⊂W⊥.

2.2. Linear morphisms.

Definition 2.1. We call a morphism ϕ : X → Y of algebraic varieties (or ind-

varieties) linear if ϕ induces an epimorphism of Picard groups ϕ∗ : PicY → PicX.

In this paper we focus on linear embeddings ϕ : X → Y of grassmannians or

isotropic grassmannians. In this case ϕ is linear iff ϕ∗OY (1) ∼= OX(1). By a

projective space on, or in, a variety (or ind-variety) X we understand a linearly

embedded subvariety Y of X isomorphic to a projective space. Note that the

Plücker embedding G(k, V ) ↪→ P(H0(OG(k,V )(1))
∗) is a linear morphism.

By a quadric on X of dimension m ≥ 3 we understand a linearly embedded

subvariety Y of X isomorphic to a smooth m-dimensional quadric. By a quadric

on X of dimension 2 we understand the image of an embedding i : P1 × P
1 ↪→ X

such that i∗OX(1) � OP1(1) � OP1(1). By a quadric on X of dimension 1, or

a conic on X, we understand the image of an embedding i : P
1 ↪→ X such

that i∗OX(1) � OP1(2). Given a quadric Q, we set PQ = P(H0(OQ(1))
∗) for

m ≥ 3, and respectively PQ = P(H0(OP1(1) � OP1(1))
∗), PQ = P(H0(OQ(2))

∗)
for m = 2, 1. Then Q is canonically embedded into PQ.
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2.3. Orthogonal grassmannians.

Let Φ ∈ S2V ∗ be a non-degenerate symmetric form on V . For dimV ≥
3 and 1 ≤ k ≤ [dimV

2 ], the orthogonal grassmannian GO(k, V ) is defined as

the subvariety of G(k, V ) consisting of Φ-isotropic k-dimensional subspaces of

V . Unless dimV = 2n, k = n, GO(k, V ) is a smooth irreducible variety. For

dimV = 2n, k = n, GO(k, V ) is smooth and has two irreducible components,

both of which are isomorphic to GO(n− 1, V ′) where dimV ′ = 2n− 1.

The orthogonal grassmannian GO(k, V ) has the following dimension:

dimGO(k, V ) =
{2kn− 1

2k(3k + 1) for 1 ≤ k ≤ n, dimV = 2n,

k(2n+ 1)− 1
2k(3k + 1) for 1 ≤ k ≤ n, dimV = 2n+ 1.

Moreover, for any V and 1 ≤ k ≤ [dimV
2 ], k �= dimV

2 − 1,

PicGO(k, V ) = ZOGO(k,V )(1),

where the sheaf OGO(k,V )(1) posesses the following property: if t : GO(k, V ) ↪→
G(k, V ) is the tautological embedding, then

t∗OG(k,V )(1) ∼=
{OGO(k,V )(1) for 1 ≤ k ≤ [dimV

2 ]− 1,

OGO(k,V )(2) for k = [dimV
2 ].

In what follows we will think of GO(n − 1, V ) for dimV = 2n as a variety

of isotropic flags rather than as an orthogonal grassmannian. In addition, we

exclude the case dimV = 2n, k = n from consideration. More precisely, when

writing GO(k, V ) below we assume that dimV ≥ 7 and k �= dimV
2 , k �= dimV

2 − 1.
For k < n = [dimV

2 ] on GO(k, V ) there is a single family of maximal projective

spaces of dimension k with base POα(k, V ). There is also a family of (dimV −2k)-
dimensional maximal quadrics not contained in projective spaces on GO(k, V ).

We denote the base of this family by QOβ(k, V ). In addition, for k ≤ [dimV
2 ]− 2

there is a family of 4-dimensional maximal quadrics not contained in projective

spaces on GO(k, V ). We denote the base of this family by QOγ(k, V ).

For k = n on GO(k, V ) there is a single family of maximal projective s-

paces of dimension [dimV−1
2 ] with irreducible base POα(k, V ). Furthermore, if

dimV = 2n + 1 and 1 ≤ k ≤ n, on GO(k, V ) there is a single family of maxi-

mal projective spaces of dimension n − k with irreducible base POβ(k, V ). The

varieties POα(k, V ), POβ(k, V ), QOβ(k, V ) and QOγ(k, V ) are described by the

following lemma.
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Lemma 2.2. (i) If 1 ≤ k ≤ n − 1, then each k-dimensional projective space on

GO(k, V ) is of the form

(1) {Vk ∈ GO(k, V )| Vk ⊂ Vk+1} � P(V ∗k+1)

for a fixed (k + 1)-dimensional isotropic subspace Vk+1. Consequently, for k �=
dimV
2 − 2, POα(k, V ) is isomorphic to GO(k + 1, V ).

(ii) If 1 ≤ k ≤ n− 1, then POβ(k, V ) is isomorphic to the variety of isotropic

(k−1, n)-flags in V , and for any point (Vk−1 ⊂ Vn) ∈ POβ(k, V ) the correspond-

ing projective space on GO(k, V ) is

(2) {Vk ∈ GO(k, V )| Vk−1 ⊂ Vk ⊂ Vn} � P(Vn/Vk−1).

(iii) If k = n, then POα(n, V ) is isomorphic to GO(n, V ), and for any point

Vn ∈ GO(n, V ) the corresponding projective space on GO(n, V ) is

(3) {V ′n ∈ GO(n, V )| dim(V ′n ∩ Vn) = n− 1} � P(V/Vn).

(iv) If 1 ≤ k ≤ n, then QOβ(k, V ) is isomorphic to GO(k− 1, V ), and for any

point Vk−1 ∈ GO(k − 1, V ) the corresponding quadric on GO(k, V ) is

(4) {Vk ∈ GO(k, V )|Vk ⊃ Vk−1} � GO(1, V ⊥k−1/Vk−1).

(v) QOγ(k, V ) is isomorphic to the variety of isotropic (k − 2, k + 2)-flags in

V , and for any point (Vk−2 ⊂ Vk+2) ∈ QOγ(k, V ) the corresponding quadric on

GO(k, V ) is

(5) {Vk ∈ GO(k, V )|Vk−2 ⊂ Vk ⊂ Vk+2}.

(vi) Any maximal quadric on GO(k, V ) is either of the form (4) or (5), or lies

in a projective space on GO(k, V ).

Proof. We leave the proof of (i)-(v) to the reader and give an outline of the proof

of (vi). Let Q be a quadric on GO(k, V ) and let G be the variety of projective

planes in PQ. In G there is a dense open subset U = {P2 ∈ G | P2∩Q is a conic},
and if P2 ∩ Q = C then PC = P

2 ∈ U . In what follows, by a slight abuse of

notation, we will indicate this latter fact by writing C ∈ U .
Let F be the variety of (1, k)-isotropic flags in V with projections P(V )

pr1←
F

pr2→ GO(k, V ). For any C ∈ U set K̃C := pr−12 (C), KC := pr1(K̃C) and let

pC := pr1|K̃C
: K̃C → KC be the projection. There are three possibilities:
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(a) there exists a dense open subset U ′ in U such that, for any C ∈ U ′, pC
is an isomorphism and KC is a quadratic cone with vertex S = P(Vk−1(C)) for
some subspace Vk−1(C) in V ,

(b) there exists a dense open subset U ′ in U such that, for any C ∈ U ′, pC
is an isomorphism and KC is a quadratic cone with vertex S = P(Vk−2(C)) for
some subspace Vk−2(C) in V ,

(c) for any C ∈ U , pC is a double covering and KC = P(Vk+1(C)) for some

subspace Vk+1(C) of V .

Using the fact that U and U ′ are dense subsets in G, one easily checks the

following facts. In case (a) the space Vk−1 = Vk−1(C) does not depend on the

conic C ∈ U ′ and Q ⊂ GO(1, V ⊥k−1/Vk−1) ∈ QOβ(k, V ). In case (b) the space

Vk−2 = Vk−2(C) does not depend on the conic C ∈ U ′ and Q is contained in

a quadric Q̄ given by formula (5), i.e Q̄ ∈ QOγ(k, V ). In case (c) the space

Vk+1 = Vk+1(C) does not depend on the conic C ∈ U , so that Q ⊂ P(V ∗k+1) ⊂
GO(k, V ). �

In what follows we will sometimes write Pk
α for a maximal projective space on

GO(k, V ) of the form (1) or (3), and P
n−k
β for a maximal projective space on

GO(k, V ) of the form (2). We will also write QdimV−2k
β for a maximal quadric

on GO(k, V ) of the form (4), and Q4
γ for a maximal quadric of the form (5).

Lemma 2.3. Let 1 ≤ k ≤ n.

(i) The intersection of any two distinct projective spaces Pk
α and (Pk

α)
′ (respec-

tively, Pn−k
β and (Pn−k

β )′) on GO(k, V ) is either empty or equals a point.

(ii) The intersection of any projective space P
k
α and any quadric QdimV−2k

β on

GO(k, V ) is empty, equals a point, or equals a projective line. The intersection

of any two distinct quadrics QdimV−2k
β and (QdimV−2k

β )′ on GO(k, V ) is either

empty or equals a point.

(iii) Assume k ≤ n − 1. Then the intersection of any two distinct projective

spaces P
k
α and P

n−k
β on GO(k, V ) is empty, equals a point, or equals a projective

line.

(iv) Assume k ≤ n − 1. Then P
k
α ∩ P

n−k
β = {Vk} if and only if P

k
α =

P(V ∗k+1), P
n−k
β = P(Vn/Vk−1) for a configuration of isotropic vector subspaces
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Vk+1, Vk−1, Vn of V satisfying

Vk−1 ⊂ Vk ⊂ Vn, Vk+1 ∩ Vn = Vk.

Proof. Exercise. �

Lemma 2.4. (i) Let P1 be a projective line on GO(k, V ), x �∈ P
1 be a fixed point

in GO(k, V ), and C ⊂ GO(k − 1, V ) be an irreducible curve such that, for any

Vk−1 ∈ C, the quadric GO(1, V ⊥k−1/Vk−1) on GO(k, V ) contains x and intersects

P
1. Then C is a projective line on GO(k − 1, V ).

(ii) Assume 1 ≤ k ≤ n − 1. Let P1 be a projective line on GO(k, V ), x �∈ P
1

be a fixed point in GO(k, V ), and C ⊂ GO(k+1, V ) be an irreducible curve such

that, for any Vk+1 ∈ C, the projective space P(V ∗k+1) on GO(k, V ) contains x and

intersects P
1. Then C is a projective line on GO(k + 1, V ).

Proof. (i) Assume k < n and let

(6) P
1 = {Vk ∈ V |Uk−1 ⊂ Vk ⊂ Uk+1}

for a fixed isotropic flag Uk−1 ⊂ Uk+1 in V . Next, let x = Wk. Since for

any Vk−1 ∈ C, the quadric GO(1, V ⊥k−1/Vk−1) contains the point x, we have
Vk−1 ⊂Wk, and consequently

Span( ∪
Vk−1∈C

Vk−1) =Wk.

The condition that the quadric GO(1, V ⊥k−1/Vk−1) intersects P
1 shows that

(7) Vk−1 ⊂ Vk ⊂ Uk+1, Uk−1 ⊂ Vk

for some Vk ∈ P
1. In particular,

Wk ⊂ Uk+1.

Note that Uk−1 �⊂ Wk as otherwise x ∈ P
1. Therefore Wk−2 := Wk ∩ Uk−1

is a (k − 2)-dimensional subspace of Wk. Now (7) implies that C = {Vk−1 ∈
GO(k − 1, V )| Wk−2 ⊂ Vk−1 ⊂Wk}, i.e. C is a projective line on GO(k − 1, V ).

We leave the case k = n to the reader.

(ii) Formula (6) holds also in this case. Furthermore,

∩
Vk+1∈C

Vk+1 =Wk = x.
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For any Vk+1 ∈ C, the condition that P(V ∗k+1) intersects P1 yields Vk such that
Uk−1 ⊂ Vk ⊂ Vk+1.

Therefore Uk−1 ⊂ Wk. Now if Uk+1 ∈ C, then for any Vk+1 ∈ C, P(V ∗k+1)
intersects P

1 in x, contrary to the assumption that x �∈ P
1. Hence, Uk+1 �∈ C

and one checks that C = {Vk+1 ⊂ V |Wk ⊂ Vk+1 ⊂ Wk+2}, where Wk+2 :=

Span(Wk, Uk+1) is a (k + 2)-dimensional subspace of V . This means that C is a

projective line on GO(k + 1, V ).

�

2.4. Symplectic grassmannians.

Let now Φ ∈ ∧2V ∗ be a non-degenerate symplectic form on V , dimV = 2n.

Assume 1 ≤ k ≤ n. Recall that the k-th symplectic grassmannian GS(k, V )

is the smooth irreducible subvariety of G(k, V ) consisting of Φ-isotropic k-

dimensional subspaces of V . It is well known that

(8) dimGS(k, V ) = 2kn− 1

2
k(3k − 1).

It is also known that PicGS(k, V ) = ZOGS(k,V )(1) and OGS(k,V )(1) =

i∗OG(k,V )(1), where i : GS(k, V ) ↪→ G(k, V ) is the tautological embedding.

One can see that, for 1 ≤ k ≤ n − 1, there are two families of maximal

projective spaces on GS(k, V ) of respective dimensions k and 2n − 2k + 1, with

bases PSα(k, V ) and PSβ(k, V ). For k = n there is a single family PSβ(n, V ) of

maximal projective lines on GS(k, V ).

Lemma 2.5. (i) Let 1 ≤ k ≤ n − 1. Then PSα(k, V ) is isomorphic to GS(k +

1, V ), and for any point Vk+1 ∈ GS(k + 1, V ) the corresponding projective space

on GS(k, V ) is

(9) {Vk ∈ GS(k, V )| Vk ⊂ Vk+1} � P(V ∗k+1).

(ii) Let 1 ≤ k ≤ n. Then PSβ(k, V ) is isomorphic to GS(k − 1, V ), and for

any point Vk−1 ∈ GS(k− 1, V ) the corresponding projective space on GS(k, V ) is

(10) {Vk ∈ GS(k, V ) | Vk−1 ⊂ Vk ⊂ V ⊥k−1} � P(V ⊥k−1/Vk−1).

(iii) If k = n, then any maximal projective space on GS(n, V ) is a projective

line.
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Proof. Exercise. �

In what follows we will sometimes write P
k
α for a maximal projective space

on GS(k, V ) of the form (9), and P
2n−2k+1
β for a maximal projective space on

GS(k, V ) of the form (10) (despite the fact that we use the same notation as in

the orthogonal case, we will carefully distinguish between the two cases).

Lemma 2.6. Let dimV = 2n, n ≥ 2, and 1 ≤ k ≤ n− 1.

(i) The intersection of any two distinct projective spaces P
k
α and (Pk

α)
′ (re-

spectively, P
2n−2k+1
β and (P2n−2k+1β )′) on GS(k, V ) is either empty or equals a

point.

(ii) The intersection of any two distinct projective spaces P
k
α and P

2n−2k+1
β on

GS(k, V ) is either empty or equals a projective line.

(iii) The spaces P
k
α and P

2n−2k+1
β intersect in a projective line if and only if

P
k
α = P(V ∗k+1), P

2n−2k+1
β = P(V ⊥k−1/Vk−1) for a flag Vk−1 ⊂ Vk+1 of isotropic

subspaces of V . Then P
k
α ∩ P

2n−2k+1
β = P(Vk+1/Vk−1).

Proof. Exercise. �

Lemma 2.7. (i) Assume 2 ≤ k ≤ n. Let P1 be a projective line on GS(k, V ),

x �∈ P
1 be a fixed point in GS(k, V ), and C ⊂ GS(k−1, V ) be an irreducible curve

such that, for any Vk−1 ∈ C, the projective space P(V ⊥k−1/Vk−1) on GS(k, V )

contains x and intersects P
1. Then C is a projective line on GS(k − 1, V ).

(ii) Assume 1 ≤ k ≤ n − 1. Let P1 be a projective line on GS(k, V ), x �∈ P
1

be a fixed point in GS(k, V ), and C ⊂ GS(k + 1, V ) be an irreducible curve such

that, for any Vk+1 ∈ C, the projective space P(V ∗k+1) on GS(k, V ) contains x and

intersects P
1. Then C is a projective line on GS(k + 1, V ).

Proof. Very similar to the proof of Lemma 2.4. �
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3. Linear embeddings of grassmannians

In this section we study linear embeddings of grassmannians and isotropic

grassmannians.

We start with the following general lemma whose proof we leave to the reader.

Lemma 3.1. Any non-constant morphism of grassmannians (respectively, or-

thogonal or symplectic grassmannians) is finite.

Definition 3.2. Let X,X ′ be grassmannians. An embedding ϕ′ : X ↪→ X ′

is a standard extension, if there are isomorphisms iX , iX′ and an embedding

ϕ : G(k, V ) ↪→ G(k′, V ′) for dimV ′ ≥ dimV, k′ ≥ k, such that the diagram

(11) X � � ϕ′
��

iX
��

X ′

iX′
��

G(k, V ) �
� ϕ

�� G(k′, V ′)

is commutative and ϕ is given by the formula

(12) ϕ : Vk �→ Vk ⊕W
for some fixed isomorphism V ′ � V ⊕ Ŵ and a fixed subspace W ⊂ Ŵ of

dimension k′ − k.

It is easy to see that a standard extension is a linear embedding. Furthermore,

if Pq is a projective space on G(k, V ), then the inclusion P
q ↪→ G(k, V ) is a

standard extension.

Example 3.3. Let V ′ = V ⊕ Ŵ , X = G(n − k, V ∗), X ′ = G(k′, V ′), W ⊂ Ŵ

be a fixed subspace of dimension k′− k, ε : V → V be any autorphism. Then the

morphism

X = G(n− k, V ∗) � G(k, V )→ G(k′, V ′) = X ′,

Vn−k �→ V ∗n−k �→ ε(V ∗n−k)⊕W
is a standard extension. Here iX is the isomorphism G(n− k, V ∗) � G(k, V ) and

iX′ is the automorphism of X ′ induced by the automorphism ε−1 ⊕ idŴ of V ′.

Remark 3.4. Note that, for a standard extension ϕ′ : X → X ′ the dimensions of
V and V ′ are fixed by the respective isomorphism classes of X and X ′, however,
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the choice between k and dimV − k, respectively, k′ and dimV ′− k′, in diagram
(11) is made by the morphism ϕ′. Furthermore, if V, V ′, k, k′ are chosen, fixing
a standard extension ϕ : G(k, V ) → G(k′, V ′) for which iG(k,V ) and iG(k′,V ′) are
automorphisms is equivalent to fixing some linear algebraic data. More precisely,

given such a standard extension ϕ : G(k, V ) ↪→ G(k′, V ′), we can recover W by

the formula W = ∩
Vk∈G(k,V )

ϕ(Vk). Set U := Span( ∪
Vk∈G(k,V )

ϕ(Vk)). Then W ⊂ U

is a flag in V ′ and ϕ determines a surjective linear operator ϕ : U → V with kernel

W , such that (i)−1(Vk) = ϕ(Vk) for any k-dimensional subspace Vk ∈ G(k, V ). It
is easy to check that fixing the standard extension ϕ is equivalent to fixing the

triple (W,U,ϕ).

In what follows we will write somewhat informally ϕ : G(k, V ) ↪→ G(k′, V ′)
for a general standard extension, while we will speak about a strict standard

extension when iG(k,V ) and iG(k′,V ′) are automorphisms. Given a strict standard

extension ϕ : G(k, V ) ↪→ G(k′, V ′), the isomorphism V ′ � V ⊕ Ŵ can always be

changed so that ϕ is given simply by formula (12).

We now give a similar definition of a standard extension of isotropic grassman-

nians (cf. [DP] and [PT1, section 3]).

Definition 3.5. An embedding ϕ : GO(k, V ) ↪→ GO(k′, V ′) is a standard exten-

sion if ϕ is given by formula (12) for some orthogonal isomorphism V ′ � V ⊕ Ŵ
and a fixed isotropic subspace W of Ŵ . A standard extension of symplectic

grassmannians is defined in the same way by replacing GO with GS, and the

orthogonal isomorphism V ′ � V ⊕ Ŵ by a symplectic isomorphism V ′ � V ⊕ Ŵ .

Under an orthogonal isomorphism (respectively, symplectic isomorphism) we

mean an isomorphism of vector spaces together with an isomorphism of forms

Φ′ � Φ⊕ Φ̂, where Φ is a fixed symmetric (respectively, symplectic) form on V ,

Φ′ is a fixed (respectively, symplectic) form on V ′, and Φ̂ is a fixed symmetric

(respectively, symplectic) form on Ŵ .

Remark 3.6. A standard extension of isotropic grassmannians can be defined

as follows: consider a flag of subspaces W ⊂ U of V ′, where W is isotropic and

there is a surjective linear operator ϕ : U → V with kernelW , such that the form

ϕ∗Φ coincides with the form induced on U by the form Φ′. This datum defines

an embedding GO(k, V )→ GO(k′, V ′) (respectively, GS(k, V )→ GS(k′, V ′)) by
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the formula

ϕ : Vk �→ (ϕ)−1(Vk) ⊂ U ⊂ V ′ for Vk ∈ GO(k, V ) (resp., Vk ∈ GS(k, V )).
Furthermore,

(13) W = ∩ϕ(Vk), U = Span(∪ϕ(Vk)),
where Vk runs over GO(k, V ) (respectively, GS(k, V )) and the intersection and

the union are taken in V ′.

Remark 3.7. Let ϕ : G(k, V )→ G(k′, V ′) be a strict standard extension (respec-
tively, ϕ : GO(k, V ) → GO(k′, V ′) or ϕ : GS(k, V ) → GS(k′, V ′) be a standard
extension). Then

(14) k′ ≥ k and dimV ′ − k′ ≥ dimV − k ≥ 0

(respectively,

(15) k′ ≥ k and
1

2
dimV ′ − k′ ≥ 1

2
dimV − k ≥ 0).

Indeed, Definition 3.2 implies k′−k = dimW ≥ 0. Next, from dimW ≤ dim Ŵ =

dimV ′ − dimV it follows that dimV ′ − k′ = dimV − k + (dim Ŵ − dimW ) ≥
dimV − k. This proves (14). As for (15), from Definition 3.5 we have k′ − k =

dimW ≥ 0. Furthermore, as Vk is Φ-isotropic, Vk′ := Vk ⊕W is Φ′-isotropic and
W is Φ̂-isotropic, we have k ≤ 1

2 dimV, k′ ≤ 1
2 dimV ′, 0 ≤ dimW ≤ 1

2 dim Ŵ =
1
2(dimV ′−dimV ). This implies 12 dimV ′−k′ = 1

2 dimV −k+ 1
2 dim Ŵ−dimW ≥

1
2 dimV − k ≥ 0.

Definition 3.8. (a) Let V ′′ be an isotropic subspace of V . For Z+ � k ≤ dimV ′′,
we call the natural inclusions G(k, V ′′) ↪→ GO(k, V ) and G(dimV ′′ − k, V ′′∗) ↪→
GO(k, V ) (respectively, G(k, V ′′) ↪→ GS(k, V ) and G(dimV ′′ − k, V ′′∗) ↪→
GS(k, V )) isotropic extensions.

(b) A combination of isotropic and standard extensions is an embedding of the

form

GO(k, V )
t
↪→ G(k, V )

ϕ′
↪→ G(l, U)

τ
↪→ GO(l, Ũ)

ϕ′′
↪→ GO(k′, V ′)

(respectively,

GS(k, V )
t
↪→ G(k, V )

ϕ′
↪→ G(l, U)

τ
↪→ GS(l, Ũ)

ϕ′′
↪→ GS(k′, V ′)),

where t is the tautological embedding, ϕ′ and ϕ′′ are standard extensions and τ
is an isotropic extension.
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Note that a combination of isotropic and standard extensions is always given

by one of the formulas Vk �→ Vk⊕W or Vk �→ V ⊥k ⊕W for an appropriately chosen

orthogonal (respectively, symplectic) isomorphism V ′ � V ⊕ Ŵ and an isotropic

subspace W ⊂ Ŵ . Here ⊥ refers to the orthogonal (respectively, symplectic)

structure on V . Furthermore, one easily proves the following lemma.

Lemma 3.9. A composition of combinations of isotropic and standard extensions

is a combination of isotropic and standard extensions.

Remark 3.10. Let ϕ′ : X → X ′ be a standard extension, where X and X ′ are
both grassmannians or, respectively, isotropic grassmannians of the same type. It

is easy to see that, if X and X ′ are not (isomorphic to) projective spaces, then ϕ′

does not factor through an embedding of a projective space into X ′. If X and X ′

are isotropic, then ϕ′ is not a combination of isotropic and standard extensions.

Theorem 1. Let X � G(k, V ), X ′ � G(k′, V ′), or X = GO(k, V ), X ′ =
GO(k′, V ′), or X = GS(k, V ), X ′ = GS(k′, V ′), and let ϕ : X → X ′ be a linear

morphism. If X = GO(k, V ), X ′ = GO(k′, V ′), assume in addition that either

k ≤ [dimV
2 ] − 3 and k′ ≤ [dimV ′

2 ] − 3, or that [dimV ′
2 ] − k′ ≤ [dimV

2 ] − k ≤ 2 and

both dimV and dimV ′ are odd. Then some of the following statements holds:

(i) ϕ is a standard extension;

(ii) X and X ′ are isotropic grassmannians and ϕ is a combination of isotropic

and standard extensions;

(iii) ϕ factors through a projective space on X ′ or, in case X ′ = GO(k′, V ′),
through a maximal quadric QdimV ′−2k′

β .

Proof. We first consider in detail the case of symplectic grassmannians. The proof

goes by induction on k. For k = 1 the symplectic grassmannian GS(1, V ) equals

P(V ), hence the linear morphism ϕmaps it isomorphically onto a projective space

in X ′. Therefore statement (iii) holds trivially in this case.

Assume now that k ≥ 2 and the assertion holds for k − 1 and any k′ ≥ 1. Set

n := 1
2 dimV , n′ := 1

2 dimV ′, Yβ := GS(k − 1, V ). Let Z := {(Vk−1, x) ∈ Yβ ×
X| x ∈ P(V ⊥k−1/Vk−1)}

p→ Yβ be the family of projective spaces P
q
β , q = 2n−2k+2,

on X � GS(k, V ). Since ϕ is a linear morphism, ϕ(P(V ⊥k−1/Vk−1)) is a projective
space on X ′ for any Vk−1 ∈ Yβ . Therefore we obtain a family Z̃ := {(Vk−1, x) ∈
Yβ ×X ′| x ∈ ϕ(P(V ⊥k−1/Vk−1))}

p̃→ Yβ of q-dimensional projective spaces on X
′.

We claim that
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(a) all spaces of the family p̃ : Z̃ → Yβ lie in the spaces of the family with base

Y ′α := GS(k′ + 1, V ′) (this is possible only if k ≤ n− 1),

or

(b) all spaces of the family p̃ : Z̃ → Yβ lie in the spaces of the family with base

Y ′β := GS(k′ − 1, V ′).

Indeed, consider the varieties Σα := {(Vk−1, V ′k′+1) ∈ Yβ ×
Y ′α| ϕ(P(V ⊥k−1/Vk−1)) ⊂ P((V ′k′+1)

∗)} and Σβ := {(Vk−1, V ′k′−1) ∈
Yβ × Y ′β | ϕ(P(V ⊥k−1/Vk−1) ⊂ P(V ⊥k′−1/Vk′−1)} with natural projections

Yβ
pα← Σα

qα→ Y ′α and Yβ
pβ← Σβ

qβ→ Y ′β . By construction, Σα is a closed

subset of Yβ × Y ′α and pα is a projective morphism. Hence, Wα := pα(Σα) is a

closed subset of Yβ . By a similar reason, Wβ := pβ(Σβ) is a closed subset of

Yβ . Since any space of the family Z̃ → Yβ lies in at least one maximal space on

X ′, it follows that Wα ∪Wβ = Yβ . However, Yβ is irreducible, therefore either

Wα = Yβ (i.e. case (a) holds), or Wβ = Yβ (i.e. case (b) holds).

We now consider the cases (a) and (b) separately.

In the case (a), by Lemma 2.6,(i), each space of the family p̃ : Z̃ → Yβ lies

in a unique space P((V ′k′+1)
∗) of the family with base Y ′α. This means that

pα : Σα → Yβ is a bijective morphism, hence an isomorphism as Yβ is a smooth

variety. Therefore, there is a well defined morphism

(16) ϕα := qα ◦ p−1α : Yβ = GS(k − 1, V )→ Y ′α = GS(k′ + 1, V ′).

Moreover, there is a commutative diagram

(17) Γ
ϕΓ ��

p1

����
��
��
�� p2

���
��

��
��

� Γ′α
p̄1

����
��
��
� p̄2

���
��

��
��

�

Yβ

���
��

��
��

�
X

���
��

��
��

��
Y ′α X ′,

ϕα

��

		��������
ϕ

��



									

where Γ is the variety of isotropic (k−1, k)-flags in V , Γ′α is the variety of isotropic
(k′, k′ + 1)-flags in V ′, and ϕΓ, p1, p2, p̄1 and p̄2 are the induced projections.

Assume that ϕα is not a constant map. We first show that ϕα is linear. Fix

Vk+1 ∈ GS(k+1, V ) and a subspace Vk−2 of Vk+1. Consider the projective plane
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P
2
X := P((Vk+1/Vk−2)∗) on X. The points on P

2
X are k-dimensional subspaces

Uk ⊂ V such that Vk−2 ⊂ Uk ⊂ Vk+1. According to Lemma 2.5,(i), any Uk defines

a projective space P(U∗k ) on Yβ , and also a projective line P((Uk/Vk−2)∗) on Yβ .
Fix Uk and denote the projective line P((Uk/Vk−2)∗) by P

1
Yβ
. Furthermore, fix

a projective line P
1
X in P

2
X and consider the rational curve P

1
Γ := {(Vk−1, Vk) ∈

Γ| Vk−1 ∈ P
1
Yβ
, Vk ∈ P

1
X} on Γ. Diagram (17) yields a commutative diagram

(18) P
1
Yβ

ϕα|
P
1
Yβ ��

P
1
Γ

p2|
P
1
Γ ��

ϕΓ|P1
Γ
��

p1|
P
1
Γ�� P

1
X

ϕ|
P
1
X

��
ϕα(P

1
Yβ
) ϕΓ(P

1
Γ)

p̄2|ϕΓ(P1Γ) ��
p̄1|ϕΓ(P1Γ)�� ϕ(P1X).

Since ϕ : X → X ′ is linear, ϕ|
P1X

: P1X → ϕ(P1X) is an isomorphism. Furthermore,

p2|P1Γ is an isomorphism by construction. Therefore, p̄2|ϕΓ(P1Γ) and ϕΓ|P1Γ are

isomorphisms.

We claim now that p1|P1Γ and p̄1|ϕΓ(P1Γ) are also isomorphisms. Indeed, for p1|P1Γ
this holds by construction. Consider p̄1|ϕΓ(P1Γ). As ϕ(P

1
X) is a projective line in

X ′, the subspaces of V ′ corresponding to the points of ϕ(P1X) lie in some k
′ + 1-

dimensional subspace V ′k′+1 of V
′. This implies in view of Lemma 2.6,(i) that,

for any two distinct points V ′k′ , V
′′
k′ ∈ ϕ(P1X), the projective spaces P(V ′⊥k′/V ′k′)

and P(V ′′k′
⊥/V ′′k′) on Y

′
α have V ′k′+1 as unique common point. Note that, for each

V ′k′ ∈ ϕ(P1X), P(V ′k′⊥/V ′k′) is the isomorphic image under p̄1 of the projective space
p̄−12 (V ′k′), and that p̄

−1
2 (V ′k′)∩ϕΓ(P1Γ) is a single point. Hence, either p̄1(ϕΓ(P1Γ)) =

ϕα(P
1
Yβ
) equals the point V ′k′+1, or p̄1|ϕΓ(P1Γ) is an isomorphism. However, the

former case is impossible since ϕα|P1Yβ is a non-constant, hence finite morphism

by Lemma 3.1. Thus p̄1|ϕΓ(P1Γ) is an isomorphism.
Diagram (18) implies now that ϕα|P1Yβ is also an isomorphism. To show that

ϕα is linear it suffices to prove that ϕα(P
1
Yβ
) is a projective line on Y ′α. This latter

fact follows directly from Lemma 2.7,(ii) applied to the following data: P1 = P
1
Yβ
,

x = ϕ(Span( ∪
Vk−1∈P1

Vk−1)), C = ϕα(P
1
Yβ
).

Note next that the diagram (17) allows to reconstruct ϕ from ϕα. Indeed,

for any Vk ∈ X the projective space P(V ∗k ) = p1(p
−1
2 (Vk)) is mapped via ϕα to

the unique projective space P(V ′k′
⊥/V ′k′) which contains ϕα(P

k−1
α ). The original

morphism ϕ is precisely the map assigning V ′k′ to Vk ∈ X.
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We are now ready to apply the induction assumption to ϕα. Since ϕα is linear

we conclude that there are the following three possibilities: (a.1) ϕα is a standard

extension, or (a.2) ϕα factors through an isotropic extension, or (a.3) ϕα factors

through a morphism to a projective space in Yα.

(a.1) In this case we have a fixed isomorphism V ′ � V ⊕ Ŵ and ϕα is given by

the formula

(19) Vk−1 �→ Vk−1 ⊕W
for an isotropic subspace W of Ŵ (see Remark 3.4). Therefore, for any Vk ∈
X, the space P

k−1
α = P(V ∗k ) on Yβ is embedded by ϕα in the projective space

P
k′+1
α = P((Vk ⊕W )∗) on Y ′α. Since P(V ∗k ) = p1(p

−1
2 (Vk)), diagram (17) implies

that ϕα(P(V
∗
k )) ⊂ P

dimV ′−2k′−1
β = p̄1(p̄

−1
2 (V ′k′)), where V

′
k′ := ϕ(Vk). We have

thus shown that ϕα(P(V
∗
k )) lies in the intersection of maximal projective spaces

from the distinct families PSα(k
′ + 1, V ′) and PSβ(k

′ + 1, V ′) on Y ′α. Hence,

by Lemma 2.6,(ii), k − 1 = dimϕα(P(V
∗
k )) ≤ 1, i.e. k = 2. Therefore, X �

GS(2, V ), Yβ = P(V ), and ϕα is an embedding of P(V ) into Y
′
α. Then ϕα(P(V ))

lies in a unique maximal projective space P((V ′k′+2)
∗) for an isotropic subspace

V ′k′+2 of V
′. This yields a monomorphism j : V ↪→ (V ′k′+2)

∗. Now the above

reconstruction of ϕ via ϕα shows that ϕ decomposes as

(20)

X = GS(2, V )
t
↪→ G(2, V )

j̃
↪→ G(2, (V ′k′+2)

∗) � G(k′, V ′k′+2)
τ
↪→ GS(k′, V ′) = X ′,

where t is the tautological embedding, the embedding j̃ is induced by the

monomorphism j, and the embedding τ is induced by the embedding of V ′k′+2 in
V ′. Hence, ϕ is a combination of isotropic and standard extensions. One checks

that as a consequence ϕα is also a combination of isotropic and standard exten-

sions. However, this contradicts to Remark 3.10, and we conclude that case (a.1)

is impossible.

(a.2) In this case ϕα is given by one of the formulas

(21) Vk−1 �→ Vk−1 ⊕W
or

(22) Vk−1 �→ V ⊥k−1 ⊕W,
where ⊥ refers to the symplectic structure on V . If ϕα is given by (21), then for an

arbitrary Vk ∈ X, ϕα(P(V
∗
k )) ⊂ P((Vk ⊕W )∗). Assume that dimϕα(P(V

∗
k )) > 1.
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Then by Lemma 2.6,(ii), ϕα(P(V
∗
k )) �⊂ P(ϕ(Vk)

⊥′/ϕ(Vk)), where the symbol ⊥′
refers to the symplectic structure on V ′. On the other hand, in view of diagram

(17), ϕα(P(V
∗
k )) ⊂ P(ϕ(Vk)

⊥′/ϕ(Vk)). This implies k = 2. Therefore, ϕα is a

combination of isotropic and standard extensions of the form

Yβ = P(V )
ϕ′α
↪→ G(l, U)

τα
↪→ GS(l, Ũ)

ϕ′′α
↪→ GS(k′ + 1, V ′) = Y ′α

(see Definition 3.8). Then using diagram (17) it is easy to check that ϕ is given

by the formula

Vk �→ Vk ⊕W
and is a combination of isotropic and standard extensions of the form

X = GS(2, V )
t
↪→ G(2, V )

ϕ′
↪→ G(l + 1, U)

τ
↪→ GS(l + 1, Ũ)

ϕ′′
↪→ GS(k′, V ′) = X ′.

If ϕα is given by (22), then for an arbitrary Vk ∈ X, ϕα(P(V
∗
k )) = P((V ⊥k ⊕

W )⊥′/(V ⊥k ⊕W )). In view of the diagram (17) ϕ is given in this case by the

formula

Vk �→ V ⊥k ⊕W
and is a combination of isotropic and standard extensions of the form

X = GS(k, V )
t
↪→ G(k, V )

⊥� G(2n− k, V ) ϕ′
↪→ G(l + 1, U)

τ
↪→ GS(l + 1, Ũ)

ϕ′′
↪→ GS(k′, V ′) = X ′.

In this way, (ii) holds under the assumption (a.2).

(a.3) Here ϕα factors through a morphism to some projective space P
s in

Y ′α, and we may assume without loss of generality that P
s is maximal. If

P
s = P(V ′⊥k′/V ′k′) for some V

′
k′ ∈ X ′, then in view of diagram (17) ϕ is the con-

stant map Vk �→ V ′k′ , contrary to the linearity of ϕ. Hence, Ps = P((V ′k′+2)
∗)

for some isotropic subspace V ′k′+2 of V ′. On the other hand, diagram(17)

implies that the projective space P(V ∗k ) = p1(p
−1
2 (Vk)) is mapped via ϕα to

the projective space P(V ′k′
⊥/V ′k′) = p̄1(p̄

−1
2 (V ′k′)) for V ′k′ = ϕ(Vk). Thus,

ϕα(P(V
∗
k )) ⊂ P((V ′k′+2)

∗) ∩ P(V ′k′
⊥/V ′k′). By Lemma 2.6,(ii) this implies k = 2.

Hence, X = GS(2, V ), Yβ = P(V ) and, since ϕα is linear, it is an embedding

P(V ) ↪→ P((V ′k′+2)
∗) corresponding to a monomorphism j : V ↪→ (V ′k′+2)

∗. The
above mentioned reconstruction of ϕ from ϕα shows now that ϕ decomposes as

X = GS(2, V )
t
↪→ G(2, V )

j̃
↪→ G(2, (V ′k′+2)

∗) � G(k′, V ′k′+2)
τ
↪→ GS(k′, V ′) = X ′,
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where t is the tautological embedding, j̃ is the standard extension corresponding

to the monomorphism j, and τ is an isotropic extension corresponding to an em-

bedding of an isotropic subspace V ′k′+2 in V
′. This means that ϕ is a combination

of isotropic and standard extensions, i.e. statement (ii) holds.

To complete case (a) it remains to consider the possibility that ϕα is a constant

map, i.e. ϕα(Yβ) = {V ′k′+1} for some V ′k′+1 ⊂ V ′. Then diagram (17) implies that

ϕ(X) lies in the projective space P((V ′k′+1)∗) on X ′, i.e. (iii) holds.

We now proceed to the case (b). In this case, by Lemma 2.6,(i) each space

of the family p̃ : Z̃ → Yβ lies in a unique projective space P(V ⊥k′−1/Vk′−1) of
the family with base Y ′β . This means that pβ : Σβ → Yβ is a bijective morphism,

hence an isomorphism as Yβ is a smooth variety. Therefore, there is a well-defined

morphism

(23) ϕβ := qβ ◦ p−1β : Yβ = GS(k − 1, V )→ Y ′β = GS(k′ − 1, V ′),

and a commutative diagram similar to (17)

(24) Γ
ϕΓ ��

p1

��














p2

���
��

��
��

��
Γ′β

p′1

����
��
��
� p′2

�
��

��
��

�

Yβ

���
��

��
��

�
X

���
��

��
��

��
Y ′β X ′,

ϕβ

��

		
ϕ

��



���������

where ϕ, Γ, p1, p2, are as in (17), Γ
′
β is the variety of isotropic (k

′ − 1, k′)-flags
in V ′, and ϕΓ, p′1 and p′2 are the induced projections.

Assume that ϕβ is a non-constant morphism. Then ϕβ is linear, and the proof

is similar to that of the linearity of ϕα. Indeed, consider the diagram analogous

to (18) with ϕα, p̄1, p̄2 replaced respectively by ϕβ , p
′
1, p

′
2. By essentially the same

argument as above, this is a commutative diagram of isomorphisms. The fact

that ϕβ(P
1
Yβ
) is a projective line on Y ′β follows from Lemma 2.7,(i) for the data

P
1 = ϕ(P1X), x = ϕ(Span( ∪

Vk−1∈P1
Vk−1)), C = ϕβ(P

1
Yβ
).

The morphism ϕβ maps a projective space P(V
∗
k ) to a unique projective space,

and thus reconstructs ϕ in an obvious way.
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Now, by the induction assumption, (b.1) ϕβ is a standard extension, or (b.2)

ϕβ is a combination of isotropic and standard extensions, or (b.3) ϕβ factors

through a linear morphism into some projective space P
s in Y ′β . Consider these

three cases (b.1)-(b.3).

(b.1) In this case ϕβ is a standard extension. Using the reconstruction of ϕ via

ϕβ mentioned above, one immediately sees that ϕ is also a standard extension.

(b.2) In this case ϕβ is a combination of isotropic and standard extensions,

and, using the reconstruction of ϕ via ϕβ , the reader will check that ϕ also is a

combination of isotropic and standard extensions.

(b.3) In this case ϕβ factors through a linear morphism of Yβ into some maximal

projective space Ps on Y ′β . Then P
s = P

s
β := P(V ′⊥k′−2/V ′k′−2) for some V

′
k′−2 ⊂ V ′,

or Ps = P
s
α := G(k′ − 1, V ′k′) for some isotropic subspace V

′
k′ ⊂ V ′. The second

case is clearly impossible because it would imply that ϕ maps X into the single

point V ′k′ , contrary to linearity of ϕ. Hence, P
s = P

s
β .

Fix Vk ∈ X and set V ′k′ := ϕ(Vk). Diagram (24) shows that the projective space

P(V ∗k ) = p1(p
−1
2 (Vk)) is embedded by ϕβ into the intersection of the maximal

projective spaces Ps
β and P

k′−1
α := P((V ′k′−1)

∗) = p′1(p′
−1
2 (V ′k′)) in Y

′
β . By Lemma

2.6,(ii) this implies k = 2, i.e. X = GS(2, V ), Yβ = P(V ), and ϕβ : P(V ) →
P
s
β = P(V ′⊥k′−2/V ′k′−2) is a linear embedding induced by a certain monomorphism
f : V → V ′⊥k′−2/V ′k′−2. Diagram (24) shows now that ϕ is the composition

X = GS(2, V )
i→ GS(2, V ′⊥k′−2/V

′
k′−2)

ϕ̃
↪→ GS(k′, V ′) = X ′,

where i is induced by f and ϕ̃ is the standard extension corresponding to the flag

V ′k′−2 ⊂ V ′⊥k′−2 in V ′. Being a composition of standard extensions, ϕ is itself a

standard extension, i.e. (i) holds.

To complete the proof in the symplectic case it remains to consider the possi-

bility the ϕβ is a constant morphism. Let ϕβ(Yβ) = {V ′k′−1} for some V ′k′−1 ⊂ V ′.
Then ϕ(X) lies in the projective space P(V ′⊥k′−1/V ′k′−1) on X

′, i.e. (iii) holds.

We now briefly outline the changes needed in the proof for the orthogonal

case. The main idea is to replace the family of projective spaces PSβ(k, V ) by

the family of maximal quadrics QOβ(k, V ) on X. Note first that the image of

a quadric QdimV−2k
β under a linear morphism is either a quadric or a projective

space. Using this and the additional conditions imposed on k, k′, dimV, dimV ′
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we show that ϕ induces a well defined linear morphism of the form

(25) ϕα : QOβ(k, V ) = GO(k − 1, V )→ GO(k′ + 1, V ′)

or

(26) ϕβ : QOβ(k, V ) = GO(k − 1, V )→ GO(k′ − 1, V ′).

The above conditions ensure that ϕ does not map maximal quadrics of the form

QdimV−2k
β into maximal quadrics of the form Q4

γ .

The linearity of ϕα and ϕβ , provided that they are non-constant morphisms,

is proved by arguments similar to the above using Lemma 2.4 instead of Lemma

2.7. The rest of the proof goes along the same lines as in the symplectic case.

When working with maximal quadrics QdimV−2k
β on GO(k, V ) instead of maximal

projective spaces P
2n−2k+1
β on GS(k, V ), one uses Lemmas 2.2,(iv) and 2.3,(ii)

instead of Lemmas 2.5,(ii) and 2.6,(ii).

Finally, we leave the case X � G(k, V ) and X ′ � G(k′, V ′) entirely to the

reader. �

Corollary 3.11. Let X � G(k, V ), X ′ � G(k′, V ′), or X = GO(k, V ), X ′ =
GO(k′, V ′), or X = GS(k, V ), X ′ = GS(k′, V ′), and let ϕ : X → X ′ be a linear

morphism. If X = GO(k, V ), X ′ = GO(k′, V ′), assume in addition that either

k ≤ [dimV
2 ] − 3 and k′ ≤ [dimV ′

2 ] − 3, or that [dimV ′
2 ] − k′ ≤ [dimV

2 ] − k ≤ 2 and

both dimV and dimV ′ are odd. Then ϕ is an embedding unless it factors through

a projective space on X ′ or through a maximal quadric when X ′ = GO(k′, V ′).

Corollary 3.12. Let X � G(k, V ), X ′ � G(k′, V ′), or X = GO(k, V ), X ′ =
GO(k′, h′), or X = GS(k, V ), X ′ = GS(k′, V ′), and let ϕ : X → X ′ be a linear

embedding. If X = GO(k, V ), X ′ = GO(k′, V ′), assume in addition that either

k ≤ [dimV
2 ] − 3 and k′ ≤ [dimV ′

2 ] − 3, or that [dimV ′
2 ] − k′ ≤ [dimV

2 ] − k ≤ 2 and

both dimV and dimV ′ are odd. Then some of the following statements holds:

(i) ϕ is a standard extension;

(ii) X and X ′ are isotropic grassmannians and ϕ is a combination of isotropic

and standard extensions;

(iii) ϕ factors through a projective space on X ′ or, in case X ′ = GO(k′, V ′),
through a maximal quadric QdimV ′−2k′

β .

Remark 3.13. Note that if X � G(k, V ), X ′ � G(k′, V ′) and ϕ : X → X ′ is
an embedding, the statement of Corollary 3.12 simplifies as follows: ϕ is either a



Linear Ind-Grassmannians 309

standard extension, or factors through a projective space on X ′ (cf. Proposition
3.1 in [PT1]).

Remark 3.14. If X = GS(k, V ), X ′ = GS(dimV ′
2 , V ′) and ϕ : X → X ′ is a

linear morphism, then k = dimV
2 . This follows easily from Lemmas 2.5,(iii) and

3.1.

We will also need the following partial extension of Theorem 1.

Proposition 3.15. Let dimV = 2n ≥ 10, dimV ′ = 2n′ and ϕ : X =

GO(n − 2, V ) → X ′ = GO(n′ − 2, V ′) be a linear embedding. Then some of

the following statements holds:

(i) ϕ is a standard extension;

(ii) X and X ′ are isotropic grassmannians and ϕ is a combination of isotropic

and standard extensions;

(iii) ϕ factors through a projective space on X ′, through a maximal quadric

QdimV ′−2k′
β , or through the grassmannian G(n′ − 2, V ′n′) ⊂ X ′ for a maximal

isotropic subspace V ′n′ of V
′.

Proof. Considering the image of the family QOβ(n− 2, V ) under ϕ, we see simi-

larly to the proof of Theorem 1, that at least one of the following morphisms

(27) ϕα : QOβ(n− 2, V ) = GO(n− 3, V )→ POα(n
′ − 2, V ′),

(28) ϕβ : QOβ(n− 2, V ) = GO(n− 3, V )→ GO(n′ − 3, V ′),

(29) ϕγ : QOβ(n− 2, V ) = GO(n− 3, V )→ QOγ(n
′ − 2, V ′)

must be well defined.

Assume that ϕα is well defined. Then one sees that an obvious analog of

diagram (17) applies also in the case we consider here. Set V ′n′−2 := ϕ(Vn−2)
for Vn−2 ∈ X. Note that p−12 (Vn−2) = P(V ∗n−2)is mapped under ϕΓ into

p′−12 (V ′n′−2) � P
1 × P

1. Since n ≥ 5, this map is a constant map. Hence ϕα

maps the projective space P(V ∗n−2) into a point. Lemma 3.1 implies now that

ϕα is a constant map. i.e. ϕα(QOβ(n − 2, V )) = {V ′n′−1} for some V ′n′−1 ⊂ V ′.
Then the analog of diagram (17) implies that ϕ(X) lies in the projective space

P((V ′n′−1)
∗) on X ′, i.e. statement (iii) holds.
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Next, if ϕβ is well defined, then one applies Theorem 1 to ϕβ and recovers ϕ

from ϕβ as in the proof of Theorem 1.

In the remainder of the proof we assume that ϕγ is well defined. We start by

constructing a diagram analogous to (17):

(30) Γ̄
ϕΓ̄ ��

π1

����
��
��
�� π2

�
��

��
��

� Γ̄′
π′1

����
��
��
�� π′2

���
��

��
��

�

Y

���
��

��
��

� X

���
��

��
��

��
Y ′ X ′.

ϕY

��

		���������
ϕ

��



									

By definition, Γ̄ is a fixed connected component of the variety of isotropic (n −
2, n)-flags in V , and Γ̄′ is a fixed connected component of the variety of isotropic
(n′− 2, n′)-flags in V . Next, we define Y . For this we fix codimension 1 subspace
Ṽ in V such that the symmetric form Φ|Ṽ is non-degenerate, and set Y :=

GO(n− 1, Ṽ ). Similarly we define Y ′ as GO(n′ − 1, Ṽ ′). The projections π1, π2,
π′1, π′2 are as follows: π1 : (Vn−2 ⊂ Vn) �→ Vn ∩ Ṽ , π2 : (Vn−2 ⊂ Vn) �→ Vn−2, π′1 :
(V ′n′−2 ⊂ V ′n′) �→ V ′n′ ∩ Ṽ ′, π′2 : (V ′n′−2 ⊂ V ′n′) �→ V ′n′−2. To define the morphisms
ϕY and ϕΓ̄, consider a point Vn ∩ Ṽ ∈ Y . By construction, the fibre π−11 (Vn ∩ Ṽ )
is isomorphic to the grassmannian G(n− 2, Vn) which is isomorphically mapped

onto π2(G(n − 2, Vn)). The composition G(n − 2, Vn)
π2→ π2(G(n − 2, Vn))

ϕ
↪→

X ′
t
↪→ G(n′− 2, V ′), where t is the tautological embedding, is a linear embedding

of grassmannians, hence by Theorem 1 it is either a standard extension or factors

through an embedding into a projective space. In both cases one sees that there

is a unique isotropic subspace V ′n′ of V
′ such that (ϕ◦π2)(G(n−2, Vn)) ⊂ G(n′−

2, V ′n′). Define now ϕY : Y → Y ′ by setting ϕY (Vn∩Ṽ ) = V ′n′∩Ṽ ′. The morphism
ϕΓ̄ : Γ̄→ Γ̄′ is then recovered by the commutativity of diagram (30).

Assume now that the morphism ϕY is finite. Consider a point Vn−2 ∈ X and

set V ′n′−2 = ϕ(Vn−2). By diagram (30) the projective line P
1 := π1(π

−1
2 (Vn−2))

on Y is mapped into the projective line P
′1 := π′1(π′

−1
2 (V ′n′−2)) on Y

′. Since the
morphism ϕY |P1 is finite, it follows that this morphism is surjective. This implies

that the morphism ϕΓ̄ : Γ̄→ Γ̄′ maps fibres of π2 onto fibres of π′2.

Next, fix a point Vn−3 ∈ GO(n − 3, V ). The maximal quadric

GO(1, V ⊥n−3/Vn−3) is mapped by ϕ onto the quadric Q4
γ corresponding to
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the isotropic flag ϕγ(Vn−3). Consequently, according to the above stat-

ed property of ϕΓ̄ the variety π−12 (GO(1, V ⊥n−3/Vn−3)) is mapped by ϕΓ̄
onto the variety π′−12 (Q4

γ). Hence π1(π
−1
2 (GO(1, V ⊥n−3/Vn−3))) is mapped

by ϕY onto π′1(π′
−1
2 (Q4

γ)). However, one can check that the variety

π1(π
−1
2 (GO(1, V ⊥n−3/Vn−3))) is isomorphic to P

3, while the variety π′1(π′
−1
2 (Q4

γ))

is 5-dimensional. This is a contradiction.

Hence ϕY is not finite, and Lemma 3.1 implies that ϕY is a constant map.

Set V ′n′ = ϕY (Y ). Then diagram (30) yields that ϕ(X) ⊂ π′2(π′
−1
1 (V ′n′−2)) =

G(n′ − 2, V ′n′), and statement (iii) holds. �

4. Linear ind-grassmannians

Recall that an ind-variety is the direct limit X = lim−→Xm of a chain of mor-

phisms of algebraic varieties

(31) X1
ϕ1→ X2

ϕ2→ · · · ϕm−1→ Xm
ϕm→ Xm+1

ϕm+1→ . . . .

Note that the direct limit of the chain (31) does not change if we replace the

sequence {Xm}m≥1 by a subsequence {Xim}m≥1 and the morphisms ϕm by the

compositions ϕ̃im := ϕim+1−1 ◦ ... ◦ϕim+1 ◦ϕim . Let X be the direct limit of (31)

and X′ be the direct limit of a chain

(32) X ′1
ϕ′1→ X ′2

ϕ′2→ · · · ϕ
′
m−1→ X ′m

ϕ′m→ X ′m+1
ϕ′m+1→ . . . .

A morphism of ind-varieties f : X→ X′ is a map from lim→ Xn to lim→ X ′n induced
by a collection of morphisms of algebraic varieties {fm : Xm → Ynm}m≥1 such
that ψnm ◦ fm = fm+1 ◦ ϕm for all m ≥ 1. The identity morphism idX is a

morphism which induces the identity as a set-theoretic map from X to X. A

morphism f : X→ X′ is an isomorphism if there exists a morphism g : X′ → X

such that g ◦ f = idX and f ◦ g = idX′ .

In what follows we only consider chains (31) such that Xm are complete al-

gebraic varieties, lim
n→∞(dimXn) = ∞, and the morphisms ϕm are embeddings.

We call such ind-varieties locally complete. Furthermore, we call a morphism

f : X = lim→ Xn → X′ = lim→ X ′n of locally complete ind-varieties an embedding if

all morphisms fm : Xm → X ′nm
, m ≥ 1, are embeddings.
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Definition 4.1. A linear ind-grassmannian is an ind-variety X obtained as a

direct limit of a chain of embeddings

X1
ϕ1
↪→ X2

ϕ2
↪→ . . .

ϕm−1
↪→ Xm

ϕm
↪→ Xm+1

ϕm+1
↪→ . . .

where each Xm is a grassmannian or an isotropic grassmannian, lim
n→∞(dimXn) =

∞, and all embeddings ϕm are linear morphisms.

Note that Definition 4.1 allows for a ”mixture” of all three types of grassmanni-

ans (usual grassmannians, orthogonal grassmannians, symplectic grassmannians).

Note also that when considering orthogonal grassmannians we restrict ourselves

to connected orthogonal grassmannians with Picard group isomorphic to Z, see

2.3.

We now define certain standard grassmannians and isotropic grassmannians.

Definition 4.2. Fix an infinite chain of vector spaces

Vn1 ⊂ Vn2 ⊂ ... ⊂ Vnm ⊂ Vnm+1 ⊂ ...

of dimensions nm, nm < nm+1.

a) For an integer k, 1 ≤ k < n1, set G(k) := lim→ G(k, Vnm) where

G(k, Vn1) ↪→ G(k, Vn2) ↪→ ... ↪→ G(k, Vnm) ↪→ G(k, Vnm+1) ↪→ ...

is the chain of canonical inclusions of grassmannians.

b) For a sequence of integers 1 ≤ k1 < k2 < ... such that km < nm, lim
m→∞(nm−

km) =∞, set G(∞) := lim→ G(km, Vnm) where

G(k1, Vn1) ↪→ G(k2, Vn2) ↪→ ... ↪→ G(km, Vnm) ↪→ G(km+1, Vnm+1) ↪→ ...

is an arbitrary chain of standard extensions of grassmannians.

c) Assume that Vnm are endowed with compatible non-degenerate symmet-

ric (respectively, symplectic) forms Φm. In the symplectic case 1
2nm ∈ Z+.

For an integer k, 1 ≤ k ≤ [n12 ], set GO(k,∞) := lim→ GO(k, Vnm) (respective-

ly, GS(k,∞) := lim→ GS(k, Vnm)) where

GO(k, Vn1) ↪→ GO(k, Vn2) ↪→ ... ↪→ GO(k, Vnm) ↪→ GO(k, Vnm+1) ↪→ ...

(respectively,

GS(k, Vn1) ↪→ GS(k, Vn2) ↪→ ... ↪→ GS(k, Vnm) ↪→ GS(k, Vnm+1) ↪→ ...)
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is the chain of canonical inclusions of isotropic grassmannians.

d) For a sequence of integers 1 ≤ k1 < k2 < ... such that km < [nm
2 ],

lim
m→∞([

nm
2 ] − km) = ∞, set GO(∞,∞) = lim→ GO(km, Vnm) (respectively,

GS(∞,∞) := lim→ GS(km, Vnm)) where

(33)

GO(k1, Vn1) ↪→ GO(k2, Vn2) ↪→ ... ↪→ GO(km, Vnm) ↪→ GO(km+1, Vnm+1) ↪→ ...

(respectively,

(34)

GS(k1, Vn1) ↪→ GS(k2, Vn2) ↪→ ... ↪→ GS(km, Vnm) ↪→ GS(km+1, Vnm+1) ↪→ ...)

is an arbitrary chain of standard extensions of isotropic grassmannians.

e) In the symplectic case, consider a sequence of integers 1 ≤ k1 < k2 < ... such

that km < nm
2 , lim

m→∞(
nm
2 − km) = k ∈ N, and set GS(∞, k) := lim→ GS(km, Vnm)

for any chain of standard extensions (34). In the orthogonal case, assume

first that dimVnm are even. Then set GO0(∞, k) := lim→ GO(km, Vnm) for a

chain (33) where km < nm
2 , lim

m→∞(
nm
2 − km) = k ∈ N, k ≥ 2. Final-

ly, consider the orthogonal case under the assumption that dimVnm are odd.

Then set GO1(∞, k) := lim→ GO(km, Vnm) for a chain (33) where km < [nm
2 ],

lim
m→∞([

nm
2 ]− km) = k ∈ N.

The infinite projective space P∞ is defined as the ind-variety G(1). Note that

P∞ � GS(1). When writing GO0(∞, k) below we automatically assume k �= 1.

Lemma 4.3. All standard ind-grassmannians G(∞), GO(∞,∞), GS(∞,∞),

G(k), GO(k,∞), GS(k,∞), GO0(∞, k), GO1(∞, k), GS(∞, k), are well de-

fined. In other words, a standard grassmannian does not depend, up to an iso-

morphism of ind-varieties, on the specific chain of standard embeddings used in

its definition.

Proof. We consider only G(∞). All other cases are similar. Let two chains of

strict standard extensions

G(k1, Vn1)
ϕ1
↪→ G(k2, Vn2)

ϕ2
↪→ ...

ϕm−1
↪→ G(km, Vnm)

ϕm
↪→ G(km+1, Vnm+1)

ϕm+1
↪→ ...,

G(k′1, Vn′1)
ϕ′1
↪→ G(k′2, Vn′2)

ϕ′2
↪→ ...

ϕ′m−1
↪→ G(k′m, Vn′m)

ϕ′m
↪→ G(k′m+1, Vn′m+1

)
ϕ′m+1
↪→ ...,
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such that

lim
m→∞km = lim

m→∞k
′
m = lim

m→∞(nm − km) = lim
m→∞(n

′
m − k′m) =∞,

be given. We will show that their respective direct limits G(∞) and G′(∞) are

isomorphic as ind-varieties.

For this, we have to construct two infinite subsequences {is}s≥1 and {js}s≥1
of Z+ and two sets of morphisms f = {fs : G(kis , Vnis

) → G(k′js , V
′
n′js
)}s≥1, g =

{gm : G(k′js , V
′
n′js
) → G(kis+1 , Vnis+1

)}m≥1 such that they determine morphisms

of ind-varieties f : G(∞) → G′(∞),g : G′(∞) → G(∞) with g ◦ f = idG(∞)

and f ◦ g = idG′(∞). Assume that the desired subsequences {is}s≥1, {js}s≥1 and
morphisms fl, gl are constructed for 1 ≤ l ≤ s− 1, and that these morphisms are
strict standard extensions. Denote for short k := kis , n := nis , V := Vn, k

′ :=
k′js , n

′ := n′js , V
′ := V ′n′ , G := G(k, V ), G′ := G(k′, V ′), f := fs : G ↪→ G′, k̃ :=

kis+1 , ñ := nis+1 , Ṽ := Vñ, G̃ := G(k̃, Ṽ ), ϕ := ϕis : G ↪→ G̃. Without loss of

generality that we assume that k̃ > k′. By Remark 3.4, f is given by a triple

(Wf , Uf , f), where Wf ⊂ Uf is a flag in V
′. Respectively, ϕ is given by a triple

(Wϕ, Uϕ, ϕ), where Wϕ ⊂ Uϕ is a flag in Ṽ .

For the induction step we will now find a strict standard extension g := gs :

G′ ↪→ G̃ such that g ◦ f = ϕ. Indeed, consider the exact triples 0→Wf → Uf

f−→
V → 0, 0 → Wϕ → Uϕ

ϕ−→ V → 0. Since both f and ϕ are epimorphisms,

and dimUϕ > dimUf as k̃ > k′, it follows that there exists a (non-unique)

epimorphism εU : Uϕ � Uf such that ϕ = f ◦ εU . Then εU |W is a well-defined

epimorphism Wϕ � Wf . Putting Wg := ker εU , we have the exact triple 0 →
Wg → Uϕ

εU−→ Uf → 0. Next, set U ′g :=Wg⊕V ′ and fix an embedding i : U ′g ↪→ Ṽ

such that i|Uf
= id. Then Wg ⊂ Ug := i(U ′g) is a flag in Ṽ equipped with an

isomorphism g : Ug/Wg � V ′. The corresponding strict standard extension

g : G′ ↪→ G̃ satisfies the property g ◦ f = ϕ, as claimed. �

Note furthermore that the standard ind-grassmannians introduced above are

isomorphic to certain ind-varieties introduced in [DiP]. More precisely, let Ṽ be a

countable-dimensional vector space with basis {v1, ..., vn, ...} and let W̃ ⊂ Ṽ be a

subspace generated by a subset of {v1, ..., vn, ...}. Then G(W̃ , Ṽ ) is by definition

the set of subspaces Ẽ ⊂ Ṽ satisfying the following two conditions:

(i) Span({v1, ..., vn, ...} ∩ Ẽ) is of finite codimension in Ẽ;
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(ii) there exists a finite-dimensional subspace Ũ ⊂ Ṽ such that W̃ ⊂ Ẽ + Ũ ,

Ẽ ⊂ W̃ + Ũ , dim(Ẽ ∩ Ũ) = dim(W̃ ∩ Ũ).
Then it is easy to see (a much stronger result is proved in [DiP]) that G(W̃ , Ṽ )

has a natural structure of an ind-variety such that G(W̃ , Ṽ ) is the direct limit of

a chain of standard extensions of grassmannians. Moreover,

G(W̃ , Ṽ ) ∼= G(min{dim W̃ , codim
˜V
W̃}).

Similarly, in the isotropic case (i.e. in the case when W̃ is equipped with

an appropriate non-degenerate quadratic form) the standard isotropic ind-

grassmannians introduced in this paper represent all isomorphism classes of ind-

varieties G(W̃ , Ṽ ) introduced in [DiP] (in this case W̃ is an isotropic subspace of

Ṽ ) and satisfying PicG(W̃ , Ṽ ) � Z.

5. Classification of linear ind-grassmannians

In this section we prove the following main result of the note.

Theorem 2. Every linear ind-grassmannian is isomorphic as an ind-variety

to one of the standard ind-grassmannians G(k) for k ≥ 1, G(∞), GO(k,∞)

for k ≥ 1, GO0(∞, k) for k ≥ 2, GO1(∞, k) for k ≥ 0, GO(∞,∞), GS(k,∞)

for k ≥ 2, GS(∞, k) for k ≥ 0, GS(∞,∞), and the latter are pairwise non-

isomorphic.

Proof. Let a linear ind-grassmannian X be given as the direct limit of a chain of

embeddings

X1
ϕ1
↪→ X2

ϕ2
↪→ · · · ϕm−1

↪→ Xm
ϕm
↪→ Xm+1

ϕm+1
↪→ . . . ,

where Xm are grassmannians, possibly orthogonal or symplectic, such that

lim
m→∞(dimXm) = ∞. Then, for infinitely many m, Xm will be a grassmanni-

an, or an orthogonal grassmannian, or a symplectic grassmannian. Therefore,

without loss of generality, we can assume that all Xm are of one of the above

three types.

Suppose first that all Xm are grassmannians. Then we have the following two

options: for infinitely many m, the embedding ϕm : Xm → Xm+1 factors through

an embedding of a projective space into Xm+1, i.e. there exists a commutative
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diagram of embeddings

Xm
ϕm ��

���
��

��
��

�
Xm+1

P
jm ,

����������

or this is not the case. In the first case X � lim→ P
jm , hence X � P∞. In

the second case, by deleting some first embeddings we can assume that none of

the embeddings ϕm : Xm → Xm+1 factors through an embedding of a projec-

tive space into Xm+1. Then, Corollary 3.12 implies that all embeddings ϕm are

standard extensions, hence X is isomorphic to G(k) or G(∞).

In the symplectic case, the reader will argue in a similar way that Corollary

3.12 implies that X is either isomorphic to G(k) or G(∞) (this happens when

all ϕm are combinations of isotropic and standard extensions or factor through

projective spaces), or to one of the standard symplectic ind-grassmannians.

The orthogonal case is similar but has some special features. First, if all

morphisms ϕm factor through respective quadrics Q
dimVm+1−2km+1

β , one needs to

prove that the direct limit of any chain of linear embeddings

Q1↪→Q2↪→ . . . ↪→Qm↪→Qm+1↪→ . . . ,

where lim
m→∞ dimQm =∞, is isomorphic either to P∞ or to GO(1,∞). This is an

exercise which we leave to the reader. Second, in the orthogonal case one applies

Corollary 3.12 when [dimVm
2 ] − km ≥ 3 for infinitely many m (in this case one

can assume without loss of generality that [dimVm
2 ]− km ≥ 3 for all m). The case

when [dimVm
2 ] − km ≤ 2 for infinitely many m needs special attention. In the

latter case one assumes without loss of generality that [dimVm
2 ] − km is constant

and then applies Theorem 1 when dimVm is odd for all m, and Proposition 3.15

when dimVm is even for all m (in the latter case dimVm
2 − km = 2 for all m).

The first claim of Theorem 2 is now proved.

The claim that the standard ind-grassmannians are pairwise non-isomorphic

follows from Lemmas 5.1, 5.2 and 5.4 below. �

In what follows we will sometimes write GO(∞, k) meaning GO0(∞, k) or
GO1(∞, k). This allows the simultaneous consideration of GO0(∞, k) and

GO1(∞, k).
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Lemma 5.1. (i) Let k, k′ ∈ Z+∪{∞}, k �= k′. Then G(k) �� G(k′), GO(k,∞) ��
GO(k′,∞), GO(k,∞) �� GO(k′,∞).

(ii) Let k ≥ 2. Then GO0(∞, k) �� GO1(∞, k).
(iii) Let k, k′ ∈ N ∪ {∞}, k �= k′. Then GO(∞, k) �� GO(∞, k′), GS(∞, k) ��

GS(∞, k′).
(iv) Let k ∈ N∪ {∞}, k′ ∈ Z+ ∪ {∞}, k �= k′. Then GO(∞, k) �� GO(k′,∞),

GS(∞, k) �� GS(k′,∞).

Proof. In (i), (iii) and (iv) we only consider the symplectic case and leave the

other cases to the reader.

(i) Let k > k′. Assume that k ∈ Z+ and that X := GS(k,∞) and X′ :=
GS(k′,∞) are isomorphic. This implies that there exist subsequences {is}s≥1
and {js}s≥1 of Z+ and a chain of linear embeddings

(35)

... ↪→ GS(k, Vnis
)

fs
↪→ GS(k′, V ′n′js

)
gs
↪→ GS(k, Vnis+1

)
fs+1
↪→ GS(k′, V ′n′js+1

)
gs+1
↪→ ... ,

such that the compositions gs ◦ fs and fs+1 ◦ gs are standard extensions and the
direct limit of the chain (35) is isomorphic to both X and X′. According to

Corollary 3.12, we can assume without loss of generality that all embeddings fs

and gs are standard extensions, or factor through isotropic extensions, or factor

through embeddings to projective spaces.

In the first case, since GS(k, Vnis
)

fs
↪→ GS(k′, V ′n′js

) is a standard extension, it

follows from (14) that k′ ≥ k, contrary to the assumption.

In the third case both X and X′ are isomorphic to P∞. On the other hand,
Remark 3.10 implies that X is not isomorphic to P∞ as k > 1.

Consider now the second case. Here fs factorizes as fs : GS(k, Vnis
)

t
↪→

G(k, Vnis
)

f̃s
↪→ GS(k′, V ′n′js

), where t is the tautological embedding and f̃s is an

isotropic extension followed by a standard extension. The composition

(36) G(k, Vnis
)

f̃s
↪→ GS(k′, V ′n′js

)
t̃
↪→ G(k′, V ′n′js

),

t̃ being the tautological embedding, is a standard extension or factors through

a projective space. The latter assumption leads to the same contradiction as

in the above considered third case, so we must assume that (36) is a standard
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extension. The existence of a standard extension G(k, Vnis
) ↪→ G(k′, V ′n′js

) implies

k′ ≥ k, k′ − k ≤ n′js − nis , or k ≤ n′js − k′, k + k′ ≥ nis (see Remark 3.7). Since

for nis large enough, both pairs of inequalities contradict our assumption that

k > k′, we conclude that the second case is also impossible.

We have now shown that all three cases lead to contradictions, hence (i) follows

for k ∈ Z+. The argument for k =∞ is very similar.

(ii) The maximal quadrics on GO0(∞, k) not lying in projective spaces have
dimension 2k, while the maximal quadrics on GO1(∞, k) not lying in projective
spaces have dimension 2k + 1, see Lemma 2.2. This imlies that GO0(∞, k) ��
GO1(∞, k).
(iii) Let Z+ � k > k′. Assume that X := GS(k,∞) and X′ := GS(k′,∞) are

isomorphic. As above, this implies that there exists a chain of linear embeddings

(35) such that the compositions gs ◦ fs and fs+1 ◦ gs are standard extensions and
the direct limit of the chain (35) is isomorphic to both X and X′. Without loss of

generality we can assume that all embeddings fs and gs are standard extensions,

or factor through isotropic extensions, or factor through embeddings to projective

spaces.

In the first case we have a standard extension

GS(
1

2
dimVnis

− k, Vnis
)

fs
↪→ GS(

1

2
dimV ′n′js

− k′, V ′n′js ),

and (15) gives k ≤ k′, contrary to the assumption.

The arguments in the second and third case are similar to the respective ar-

guments in (i).

The proof is finished for k <∞. The case k =∞ is similar.

(iv) The argument is practically the same as in (i).

�

Lemma 5.2. For any k, k′ ∈ Z+ ∪ {∞}, k′′ ∈ N ∪ {∞} the following assertions

hold.

(i) G(k) �� GS(k′,∞), unless k = k′ = 1, G(k) �� GO(k′,∞),

(ii) G(k) �� GO(∞, k′′), G(k) �� GS(∞, k′′).



Linear Ind-Grassmannians 319

Proof. Again we consider only the symplectic case and leave the orthogonal case

to the reader.

(i) We have to prove that G(k) �� GS(k′,∞), unless k = k′ = 1. The case

k′ = 1, k > k′, is already considered in Lemma 5.1,(i), so we can assume k �=
1, k′ �= 1, k �= k′.

Let G(k) (respectively, GS(k′,∞)) be given as the direct limit of a chain of

strict standard extensions

G(k, Vn1) ↪→ G(k, Vn2) ↪→ ... ↪→ G(k, Vnm) ↪→ G(k, Vnm+1) ↪→ ...

(respectively,

GS(k′, V ′n′1)
ϕ1
↪→ GS(k′, V ′n′2)

ϕ2
↪→ ...

ϕm−1
↪→ GS(k′, V ′n′m)

ϕm
↪→ GS(k′, V ′n′m+1

)
ϕm+1
↪→ ...).

Suppose that G(k) � GS(k′,∞). This means that there exist two infinite

subsequences {is}s≥1 and {js}s≥1 of Z+ and two sets of morphisms f = {fs :
G(k, Vnis

)→ GS(k′, V ′n′js
)}s≥1, g = {gs : GS(k′, V ′n′js ) → G(k, Vnis+1

)}m≥1 which
determine morphisms of ind-varieties f : G(k) → GS(k′,∞),g : GS(k′,∞) →
G(k) with g ◦ f = idG(k) and f ◦ g = idGS(k′,∞).

Set Ṽ := Vnis+1
, G̃ := G(k, Ṽ ), V ′ := V ′n′js

, GS := GS(k′, V ′), Ṽ ′ :=

V ′n′js+1
, G̃S := GS(k′, Ṽ ′), g := gs : GS ↪→ G̃, f := fs+1 : G̃ ↪→ G̃S, ϕ :=

ϕis : GS ↪→ G̃S. Note that ϕ is a standard extension and ϕ = f ◦ g by construc-
tion.

Consider the composition F : G̃
f
↪→ G̃S

i
↪→ G(k′, Ṽ ′) where i is the tautological

embedding.

The morphism F is a linear embedding, hence, by Corollary 3.12, we may

assume without loss of generality that

(a) F is a standard extension,

or

(b) F factors through an embedding into a projective space.

Consider these two cases.

(a) By Remark 3.6, ϕ is given by a triple (Wϕ, Uϕ, ϕ) where Wϕ ⊂ Uϕ is a flag

in Ṽ ′. Furthermore, without loss of generality we may assume that F is given by

a triple (Wf , Uf , F ) for a flag Wf ⊂ Uf in Ṽ
′. Since ϕ(GS) = f ◦ g(GS) ⊂ F (G̃),
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the following chain of inclusions holds:

WF ⊂Wϕ ⊂ Uϕ ⊂ UF ⊂ Ṽ ′.

Therefore we have an embedding Uϕ/Wϕ ↪→ UF /Wϕ and a projection UF /WF �
UF /Wϕ. However, since ϕ is a standard extension, the fixed symplectic form Φ̃′

on Ṽ ′ induces a nondegenerate form on Uϕ/Wϕ, while it induces the zero form on

UF /WF as f(G̃) ⊂ G̃S. This contradiction shows that the case (a) is impossible.

(b) By assumption, F : G̃
f
↪→ G̃S

i
↪→ G(k′, Ṽ ′) decomposes as G̃ ↪→ P

r ↪→
G(k′, Ṽ ′). Without loss of generality we assume that Pr is a maximal projective

space on G(k′, Ṽ ′), and consider the two possible cases: Pr = {Vk′ ⊂ Ṽ ′|Vk′−1 ⊂
Vk′ ⊂ V ⊥k′−1} and P

r = {Vk′ ⊂ Ṽ ′ |Vk′ ⊂ Vk′+1} for some fixed subspaces Vk′−1
and Vk′+1 of Ṽ

′, Vk′−1 being isotropic.

In the former case any Vk′ ∈ G(k′, Ṽ ′) such that Vk′−1 ⊂ Vk′ ⊂ V ⊥k′−1 is

isotropic, i.e. Vk′ ∈ G̃S ∩ P
r. In other words,

G̃S ∩ P
r = P(V ⊥k′−1/Vk′−1),

where the intersection is taken in G(k′, Ṽ ′). This means that ϕ factors through

a projective subspace of G̃S, which contradicts Remark 3.10. Hence, the former

case is impossible.

In the latter case it is easy to check that, for n′js+1 = dim Ṽ ′ > 2, the subspace

Vk′+1 ⊂ Ṽ ′ is necessarily isotropic. Then G̃S ∩ P
r = P((Vk′+1)

∗), and we are led
to a contradiction as in the former case.

(ii) The proof is analogous to the proof of (i) and we leave it to the reader. �

Lemma 5.3. Let 1 ≤ k < n = [dimV/2] and ϕ : GO(k, V )→ GO(k′, V ′), Vk �→
Vk ⊕ W , be a standard extension. Let two maximal projective spaces P

k
α and

P
n−k
β intersect in a point. Then there exist maximal projective spaces P

k′
α and

P
n′−k′
β , n′ = [dimV ′/2], on GO(k′, V ′) such that ϕ(Pk

α) ⊂ P
k′
α , ϕ(P

n−k
β ) ⊂ P

n′−k′
β ,

and P
k′
α ∩ P

n′−k′
β is a point.

Proof. The projective spaces P
k
α and P

n−k
β determine a configuration

Vk−1, Vk+1, Vn as in Lemma 2.3,(iv). The subspaces Vk−1⊕W,Vk+1⊕W,Vn⊕W
of V ′ form the configuration which determines the desired projective spaces Pk′

α

and P
n′−k′
β . �
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Lemma 5.4. (i) GO(k,∞) �� GS(k′,∞) for k, k′ ∈ Z+ ∪ {∞}.
(ii) GO(k,∞) �� GS(∞, k′) for k ∈ Z+ ∪ {∞}, k′ ∈ N ∪ {∞}.
(iii) GO(∞, k) �� GS(k′,∞) for k ∈ N ∪ {∞}, k′ ∈ Z+ ∪ {∞}.
(iv) GO(∞, k) �� GS(∞, k′) for k, k′ ∈ N ∪ {∞}.

Proof. We consider in detail only the case of GO(∞,∞) and GS(∞,∞). Let

P
q for q ≥ 2 be a projective space on GO(∞,∞) (respectively, GS(∞,∞)). We

now explain how to label Pq as P
q
α or P

q
β . Fix an arbitrary chain of standard

extensions

(37)

GO(k1, Vn1) ↪→ GO(k2, Vn2) ↪→ ... ↪→ GO(km, Vnm) ↪→ GO(km+1, Vnm+1) ↪→ ...

(respectively,

(38)

GS(k′1, Vn′1) ↪→ GS(k′2, Vn′2) ↪→ ... ↪→ GS(k′m, Vn′m) ↪→ GS(k′m+1, Vn′m+1
) ↪→ ...)

such that

lim
m→∞km = lim

m→∞(nm − km) =∞
(respectively,

lim
m→∞k

′
m = lim

m→∞(n
′
m − k′m) =∞)

and lim→ GO(km, Vnm) = GO(∞,∞) (respectively, lim→ GS(k′m, Vn′m) =

GS(∞,∞)). Without loss of generality we assume that all nm in (37) are odd.

Consider some nm such that P
q ⊂ GO(km, Vnm) (respectively, P

q ⊂
GS(k′m, Vn′m)) and choose a maximal projective space P

r on GO(km, Vnm) (re-

spectively, GS(k′m, Vn′m) such that P
q ⊂ P

r. The projective space P
r is either of

type P
r
α or Pr

β , and we label P
q according to the label of Pr. Lemma 2.3,(i),(iii)

(respectively, Lemma 2.6,(i),(ii)) implies that this labeling is well defined as long

as the chain (37) (respectively, (38)) is fixed. Moreover, using Theorem 1 and

Lemma 5.2 one can verify that the labelings Pq
α and P

q
β are intrinsic to the ind-

variety GO(∞,∞) (respectively, GS(∞,∞)), i.e. do not depend on the choice

of chain (37) (respectively, (38)) satisfying the above conditions.

Let now P∞ ↪→ GO(∞,∞) (respectively, P∞ ↪→ GS(∞,∞)) be a linear

embedding. We call its image an infinite projective space P∞ on GO(∞,∞)

(respectively, GS(∞,∞)). We say that P∞ = P∞α if P∞ = lim→ P
q
α for some
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projective spaces Pq
α on GO(∞,∞) (respectively, GS(∞,∞)). In a similar way

we define P∞β on GO(∞,∞) (respectively, GS(∞,∞)).

Next, we observe that Lemma 5.3 implies that on GO(∞,∞) there are pairs

of maximal infinite projective spaces P∞α and P∞β such that P∞α ∩P∞β is a point.

To complete the proof, we observe that on GS(∞,∞) any two maximal infi-

nite projective spaces P∞α and P∞β intersect in a projective line whenever their

intersection is non-empty. This follows from Lemma 2.6. More precisely, an in-

finite projective space P∞α (respectively, P∞β ) is maximal on GS(∞,∞) if and

only if, for any chain (38) the intersections P∞α ∩ GS(k′m, Vn′mj) are maximal

projective spaces in GS(k′m, Vn′m) for large enough m. This is a consequence of
Lemma 2.3,(i). Now Lemma 2.3,(iii) implies the assertion that maximal projec-

tive spaces P∞α and P∞β intersect in a projective line whenever their intersection

is non-empty.

Since the intersection properties of maximal infinite projective spaces P∞α and

P∞β on GO(∞,∞) and GS(∞,∞) are intrinsic to the geometry of GO(∞,∞)

and GS(∞,∞), we conclude that GO(∞,∞) and GS(∞,∞) are non-isomorphic

ind-varieties.

The arguments in all other cases are similar. One either shows that on one

of the ind-varieties in question there are maximal projective spaces which do

not exist on the other, or shows that the intersection properties of maximal

projective spaces are different on both ind-varieties. For instance, on GO(k,∞)

there are maximal projective spaces Pk
α and P∞β which intersect in a point, while

on GS(k,∞) two maximal projective spaces Pk
α and P∞β intersect in a projective

line or do not intersect at all. We leave the details to the reader.

�
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