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Abstract: We examine the asymptotic behavior of holomorphic curves

on bounded symmetric domains in their Harish-Chandra realizations

exiting at smooth points of the boundary, showing that such a holo-

morphic curve is aysmptotically totally geodesic at a generic point of

its boundary and that furthermore the norm of the second fundamen-

tal form is bounded by a constant multiple of the Euclidean distance

to the boundary.
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In the study of germs of holomorphic isometries up to normalizing constants

in Mok [Mo5] between bounded domains with respect to the Bergman metric,

denoted by f : (Ω1;x1) → (Ω2;x2), it was established that the graphs of such

germs of holomorphic maps extend algebraically provided that the Bergman ker-

nelsKΩi(z, w) are rational in (z, w) for i = 1, 2. This applies especially to the case
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where Ω1 � CN1 and Ω2 � CN2 are bounded symmetric domains in their Harish-

Chandra realizations, in which case it was also established that the algebraic

extension of the germ Graph(f) restricts on Ω1 ×Ω2 to the graph of a holomor-

phic isometric embedding. When Ω1 is irreducible and is of rank ≥ 2 it follows

from the proof of Hermitian metric rigidity in Mok [Mo1] that f is necessar-

ily totally geodesic, as observed in Clozel-Ullmo [CU]. It remains to understand

the case where Ω1 is of rank 1, i.e., Ω1 = Bn ⊂ Cn, n ≥ 1, is the complex unit

ball. Restricting holomorphic isometries to complex 1-dimensional slices of Bn by

complex affine lines, one obtains totally geodesic holomorphic curves which are

isometric copies of the Poincaré disk, thus holomorphic isometries of the Poincaré

disk into bounded symmetric domains are fundamental for the further study of

holomorphic isometries between bounded symmetric domains. Non-standard ex-

amples of holomorphic isometric embeddings of the Poincaré disk into polydisks

and Siegel upper half-planes were found in Mok [Mo5,§3, p.1647ff.], and a system-

atic study of the boundary behavior of arbitrary holomorphic isometric copies of

the Poincaré disk on bounded symmetric domains was undertaken in Mok [Mo4]

and Mok-Ng [MN1], where one makes use of structural equations concerning

Gauss curvatures to study the asymptotic behavior of the second fundamental

form as a variable point on the isometrically embedded Poincaré disk approaches

a general boundary point.

While examining the asymptotic behavior of isometric copies of Poincaré

disks, it was found that holomorphic curves defined on a neighborhood of a

boundary point b ∈ ∂Ω of a bounded symmetric domain (in its Harish-Chandra

realization) already exhibit interesting asymptotic properties. Since ∂Ω decom-

poses into strata under the action of Aut(Ω), one has to study the asymptotic

behavior depending on the stratum of ∂Ω where the boundary point b lies. In

this article we will study the asymptotic behavior in the simplest case, where the

holomorphic curve on Ω concerned exits the bounded symmetric domain Ω at a

smooth point of ∂Ω. Let D � C be the unit disk and denote by b0 ∈ ∂D a bound-

ary point. Let U be an open neighborhood of b0 on C of the form U = D(b0; ε)

for some ε > 0, i.e., U is the Euclidean disk of radius ε centered at b0. Let

Ω � Cn be a bounded symmetric domain in its Harish-Chandra realization, and

f : U → CN be a holomorphic embedding such that f(U ∩ D) ⊂ Ω and such
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that f(U ∩ ∂D) ⊂ Reg(∂Ω), the smooth part of ∂Ω. We will show that f is

asymptotically totally geodesic at z ∈ U ∩D as the variable point z approaches

the boundary circle. We give a more precise estimate of the second fundamental

form, and show that its norm decreases at least at the rate of the Euclidean

distance δ to the boundary circle. In what follows D � C is the unit disk and

‖·‖ denotes the norm on tensors naturally induced by the Kähler-Einstein metric

g on Ω. Our principal result is the following Main Theorem.

Main Theorem. Let Ω � CN be a bounded symmetric domain in its Harish-

Chandra realization, and let f : U → CN be a holomorphic embedding such that

f(U ∩ D) ⊂ Ω and such that f(U ∩ ∂D) ⊂ ∂Ω. Suppose for any b ∈ U ∩ ∂D,

f(b) is a smooth point of ∂Ω. Denote by σ(z) the second fundamental form at

z = f(w) of the (locally closed) complex submanifold S := f(U ∩D) ⊂ Ω at f(z)

with respect to the Kähler-Einstein metric g on Ω. Then, for a general point

b ∈ U ∩ ∂D, the second fundamental form σ
(
f(w)

)
is asymptotically zero at b,

i.e., lim
w∈U∩D,w→b

‖σ(f(w))‖ = 0. More precisely, for any neighborhood U0 of b in

CN such that U0 � U , there is a positive constant C depending on U0 such that

‖σ(f(w))‖ ≤ Cδ(w) for any w ∈ U0 ∩ Ω.

§1 Classification of irreducible bounded symmetric domains

We start with a description of the classification of irreducible bounded sym-

metric domains Ω. For more details we refer the reader to Wolf [Wo] and Mok

[Mo2]. In what follows M(p, q;C) denotes the complex vector space of p-by-q

matrices Z with complex coefficients, and Zt denotes the transpose of the ma-

trix Z. The set of irreducible bounded symmetric domains breaks down into four

classical series and two exceptional domains, as follows. We have

Irreducible Classical Symmetric Domains

DI
p,q :=

{
Z ∈M(p, q;C) : I − ZtZ > 0

}
, p, q ≥ 1;

DII
n :=

{
Z ∈ DI

n,n : Zt = −Z}
, n ≥ 2;

DIII
n :=

{
Z ∈ DI

n,n : Zt = Z
}
, n ≥ 1;

DIV
n :=

⎧⎨
⎩(z1, . . . , zN ) ∈ CN : ‖z‖2 < 2 ; ‖z‖2 < 1 +

∣∣∣∣∣ 1

2

N∑
i=1

z2i

∣∣∣∣∣
2
⎫⎬
⎭ , n ≥ 3 .
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Exceptional Domains

DV , of type E6, dimC

(
DV

)
= 16 ;

DV I , of type E7, dimC

(
DV I

)
= 27 .

The duplications in the listing are as follows: DI
p,q
∼= DI

q,p; D
I
1,1
∼= DII

2
∼= DIII

1
∼=

D, the unit disk; DII
3
∼= DI

3,1
∼= B3, the 3-dimensional unit ball; DIII

2
∼= DIV

3 ;

DI
2,2
∼= DIV

4 and DII
4
∼= DIV

6 . The Harish-Chandra embedding (cf. Wolf [Wo],

Mok [Mo2]) gives a canonical realization of every bounded symmetric domain as

a bounded convex circular domain in a complex vector space. The description of

the irreducible classical bounded symmetric domains Ω � CN in the above gives

precisely the Harish-Chandra realizations of these domains.

Denote by G0 = Aut0(Ω) the identity component of the automorphism

group of Ω. We say that Ω is of type g if the Lie algebra of the complexification

GC of G0 is of type g according to the classification theory of simple complex

Lie algebras in terms of Dynkin diagrams. The indices in the subscripts in the

classical cases are subject to the same restrictions as in the above. We have

(1) DI
p,q is of type An, n = p+ q − 1;

(2) DII
n is of type Dn;

(3) DIII
n is of type Cn;

(4) DIV
n is of type Dk+1 when n = 2k is even, and of type Bk+1 when n = 2k+1

is odd;

(5) DV is of type E6;

(6) DV I is of type E7.

§2 The Kähler-Einstein metric along a minimal disk

For the geometry of bounded symmetric domains, there is the important

notion of maximal polydisks. We have

Polydisk Theorem (cf. Wolf [Wo, p.280]). Let Ω be a bounded symmetric

domain of rank r, and g be a Kähler metric on Ω invariant under the identity

component G0 = Aut0(Ω) of the automorphism group Aut(Ω) of Ω. Then, there

exists an r-dimensional totally-geodesic complex submanifold Π0 biholomorphic to

the polydisk Dr. Moreover, G0 acts transitively on the space of all such polydisks,

and Ω =
⋃ {γΠ0 : γ ∈ K}, where K ⊂ G0 is the isotropy subgroup at 0 ∈ Ω.
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Any Π := γΠ0 ⊂ Ω in the Polydisk Theorem is called a maximal polydisk

of Ω. Thus, any η ∈ T (Ω) is tangent to a maximal polydisk Π ⊂ Ω.

For the purpose of studying holomorphic curves on bounded symmetric do-

mains we will need to make use of calculations with respect to appropriate coor-

dinate systems. For notational simplicity we will assume for the time being that

Ω � CN is an irreducible bounded symmetric domain, in which case any Kähler

metric g invariant under G0 must already be Kähler-Einstein. Pick a maximal

polydisk Π ⊂ Ω and denote by H ⊂ G0 the Lie subgroup of automorphisms

which fix Π as a subset. Then, the restriction map ρ : H → Aut(Π) is surjective

(by Moore’s Restricted Root Theorem, cf. Wolf [Wo]). In other words, H re-

stricts to the full automorphism group of the maximal polydisk Π. In particular,

all factor disks of Π ∼= Dr are of constant Gaussian curvature −κ for the same

constant κ > 0. By a minimal disk on Ω we mean a factor disk in any maximal

polydisk Π ⊂ Ω, noting that from the above G0 acts transitively on the space of

all minimal disks on Ω. We normalize the choice of the canonical Kähler-Einstein

metric g so that minimal disks are of Gauss curvature −1.
Let K ⊂ G0 be the isotropy subgroup at 0 ∈ Ω. Write GC for the complexi-

fication of G0, g
C for the (complex) Lie algebra of GC, g0 ⊂ gC for the (real) Lie

algebra of G0, which is a noncompact real form of gC, and k ⊂ g0 for the Lie alge-

bra of K. Fix a Cartan subalgebra h of k, hC := h⊗R C ⊂ k⊗R C := kC. hC ⊂ gC

being also a Cartan subalgebra of gC, we denote by Δ ⊂ √−1h� the set of all roots
of gC, and by Δ+

0 ⊂ Δ the subset of all positive noncompact roots. Let μ ∈ Δ+
0

be the highest root, H := {ρ ∈ Δ : μ− ρ ∈ Δ}, and N := {ρ ∈ Δ+
0 : μ− ρ /∈ Δ}.

Write p := Card(H) and q := Card(N), 1 + p + q = N . For a root ϕ ∈ Δ we

denote by gϕ ⊂ gC the root space associated to ϕ, i.e., the complex 1-dimensional

space of root vectors belonging to ϕ. For a root ρ ∈ Δ+
0 we will write eρ for a

vector belonging to ρ of unit length with respect to the canonical Kähler-Einstein

metric g, when we consider gρ ⊂ m+ and identify m+ canonically with T0(Ω).

Let P � GC be the maximal parabolic subgroup of GC containing K (and

hence its complexification KC). By the Borel embedding β : Ω ∼= G0/K ↪→
GC/P := M , the bounded symmetric domain Ω is realized as an open subset

of its compact dual M , e.g., the type-I domain DI
p,q as an open subset of its

compact dual G(p, q), the Grassmannian manifold of p-planes in Cp+q. The
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Harish-Chandra embedding gives an open embedding Ω � CN , where CN can be

canonically identified with a Zariski open subset of the compact dual M , giving

Ω � CN ⊂ M . On the irreducible Hermitian symmetric manifold M of the

compact type a minimal rational curve is a rational curve of degree 1 with respect

to the positive generator of H2(M,Z) ∼= Z. A non-zero (1,0)-vector tangent to

a minimal rational curve is called a minimal rational tangent. For the highest

root μ ∈ Δ+
0 , the root spaces gμ resp. g−μ generate a 3-dimensional complex

Lie algebra gC[μ] = gμ + g−μ + [gμ, g−μ] isomorphic to sl(2,C) corresponding

to a Lie subgroup GC[μ] ⊂ GC such that GC[μ] ∼= PSL(2,C) and such that

the GC[μ]−orbit C of 0 = eP ∈ M is a minimal rational curve on M . The

intersection C ∩ Ω is the orbit of a real form G0[μ] ⊂ GC[μ] such that G0[μ] is

isomorphic to PSU(1, 1). Moreover, C ∩ Ω = G0[μ] · 0 is a minimal disk on Ω.

For a general reference cf. Wolf [Wo]. Regarding tangents to minimal disks we

have the following result from Mok [Mo1].

Lemma 1. Let Ω � CN ⊂ M be the Harish-Chandra realization Ω � CN of

an irreducible bounded symmetric domain Ω together with the Borel embedding

Ω ⊂ M into its dual Hermitian symmetric space M of the compact type. Let

S ⊂ PT (Ω) be the subset consisting of projectivizations of non-zero vectors η

tangent to minimal disks, and C ⊂ PT (M) be the set of projectivizations of

minimal rational tangents. Then S = C ∩PT (Ω). As a consequence, denoting by

Sx ⊂ PTx(Ω) the fiber of π : S → Ω over x ∈ Ω, in terms of trivializations of

PT (Ω) given by Harish-Chandra coordinates we have S = S0×Ω ⊂ PT0(Ω)×Ω =

PT (Ω).

We note that the last statement follows from S = C ∩ PT (Ω). In fact,

S ⊂ PT (M) is invariant under GC, the identity component of the automorphism

group of M , hence it is in particular invariant under the abelian Lie subgroup

M+ := exp(m+) ⊂ GC corresponding to the abelian subalgebra m+ ⊂ gC in

the Harish-Chandra decomposition gC = m+ ⊕ kC ⊕m−, where m+ is the direct

sum of gρ, ρ ∈ Δ+
0 , and m− = m+. From the construction of the Harish-

Chandra embedding M+ ⊂ GC preserves CN , and M+ acts as the group of

Euclidean translations when restricted to CN . Thus, from S = C ∩ PT (Ω) it

follows that the fiber Sx of S over x ∈ Ω is identified with S0 via the Euclidean

translation τx : CN → CN defined by τx(z) = z + x. We denote by τ̃x ∈ GC
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the unique automorphism which restricts to τx on CN . Noting that the minimal

rational curves C passing through 0 ∈ Ω ⊂ M are compactifications of complex

1-dimensional linear subspaces Cη, [η] ∈ S0, we write C = Cη. For x ∈ CN ,

a minimal rational curve C ′ passing through x is the closure of a complex 1-

dimensional affine line L ⊂ CN . Thus L = τx(Cη) = Cη+ x, and C ′ = τ̃x(Cη) =

τx(Cη) = L = Cη + x ⊂M . In particular, for x ∈ Ω, minimal disks on Ω passing

through x are of the form L ∩ Ω for a certain class of complex 1-dimensional

affine linear subspaces L ⊂ CN passing through the point.

Making use of orthonormal bases consisting of root vectors as in the above

we have the following preparatory lemma about the expression of the Kähler-

Einstein metric g along a minimal disk.

Lemma 2. Choose an orthonormal basis {ek}Nk=1 of T0(Ω) ∼= CN consisting of

root vectors of unit length such that e1 belongs to the highest root μ, ek belongs

to some root ρ ∈ H for 2 ≤ k ≤ p + 1, and e� belongs to some root ρ ∈ N for

p+ 2 ≤ � ≤ N . Then, e1 is a minimal rational tangent at 0. Moreover, writing

D0 := Ce1 ∩Ω for the minimal disk tangent to e1 and expressing in terms of the

Euclidean coordinates (z1, · · · , zN ) corresponding to the choice of orthonormal

basis {ek}Nk=1, for any point z ∈ D0, the matrix
(
gij(z)

)N
i,j=1

representing the

Kähler-Einstein metric g at z ∈ D0 is a diagonal matrix.

Proof. The fact that e1 is a minimal rational tangent and D0 ⊂ Ω is a minimal

disk is in Wolf [Wo] (cf. Lemma 1 here and the paragraph following it). Let

H ∈ h and consider the real 1-parameter subgroup exp(RH) ⊂ exp(h) ⊂ K.

The 1-parameter group exp(RH) acts as a group of unitary transformations on

CN ∼= T0(Ω) fixing Ω as a set, and we will use the same notation to denote

both the unitary transformations and the automorphisms of Ω which are the

restrictions of the unitary transformations to Ω. We also write etH for exp(tH).

Recall that the set of all roots Δ lie in
√−1h∗. For any ρ ∈ Δ+

0 , gρ is an

eigenspace of ad(H), and, writing H ′ = −√−1H, we have etH(vρ) = eρ(H
′)itvρ

for any vρ ∈ gρ, noting that ρ(H ′) = −√−1ρ(H) ∈ R since Δ ⊂ √−1h∗. If

H ∈ h such that μ(H) = 0, then etH(vμ) = vμ for any vμ ∈ gμ. In particular,

exp(tH) fixes every point z on the minimal disk D0 = Ce1∩Ω. Since exp(h) ⊂ K

acts as a group of isometries on Ω, for any x ∈ D0 and for any ξ, η ∈ Tx(Ω),

we must have g(ξ, η) = g
(
etHξ, etHη

)
. Let now ρ, τ ∈ Δ+

0 be distinct positive
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noncompact roots. If now we choose ξ = eρ = ei and η = eτ = ej , at x ∈ D0 we

must have

gij(x) = g(eρ, eτ ) = g
(
etHeρ, etHeτ

)
= g

(
eρ(H

′)iteρ, eτ(H
′)iteτ

)
= e(ρ(H

′)−τ(H′))itg(eρ, eτ ) = e(ρ(H
′)−τ(H′))itgij(x) ,

for every t ∈ R, and we will be able to complete the proof of Lemma 1 if we can

verify

(�) Given any ρ, τ ∈ Δ+
0 there existsH ∈ h such that μ(H) = 0 and ρ(H) 
= τ(H) ,

since (�) obviously implies that gij(x) = 0 for every x ∈ D0 and for i 
= j. To

verify (�) note first of all that there exists a central element H0 ∈
√−1h ⊂ h⊗RC

such that [H0, v] = v for any v ∈ T0(Ω), so that, given any H ∈ h, replacing

H by H� := H − μ(H)H0 we obtain H� ∈ h such that μ(H�) = 0. Finally, to

verity (�) it remains to show that given any ρ, τ ∈ Δ+
0 , there exists H ∈ Δ+

0 such

that τ(H) 
= ρ(H) (hence also τ(H�) 
= ρ(H�)), which is obvious since Δ+
0 spans√−1h∗ over R. The proof of Lemma 1 is complete. �

As will be seen later on, for practical purposes it is more convenient to do

computations on a domain of type A, D or E, in which case all the roots are of

equal length. For that reason it is convenient to identify an irreducible bounded

symmetric domain of type B or of type C as a complex submanifold of another

irreducible bounded symmetric domain of type A, D or E. More precisely, we

have

Lemma 3. Let Ω′ � CN
′
be an irreducible bounded symmetric domain in its

Harish-Chandra realization. Then, Ω0 can be embedded into an irreducible bounded

symmetric domain Ω � CN of type A, D or E as a totally geodesic complex sub-

manifold such that Ω0 is the intersection of Ω with a complex vector subspace of

CN .

Proof. According to the classification given in §1, Ω is of type A, D or E, except

in the case of DIII
n , n ≥ 3, which is of type Cn, and in the case of DIV

n , when

n = 2k + 1 is odd, which is of type Bk+1. Clearly DIII
n ⊂ DI

n,n, which is of

type A2n−1 from the inclusion Ms(n;C) ⊂ M(n, n;C), where Ms(n;C) stands
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for the complex vector space of symmetric n-by-n matrices with complex en-

tries. Furthermore DIV
2k+1 ⊂ DIV

2k+2, which is of type Dk+2, when (z1, · · · , zn) is
identified with (z1, · · · , zn, 0). Clearly each of the embeddings DIII

n ⊂ DI
n,n and

DIV
2k+1 ⊂ DIV

2k+2 is given by the intersection of the ambient domains by complex

vector subspace. Denote by (Ω′,Ω) a pair of bounded symmetric domains which

is either (DIV
2k+1, D

IV
2k+2), k ≥ 2 or (DIII

n , DI
n,n), n ≥ 3, and by ν : Ω′ → Ω the

standard embedding. To prove Lemma 3 it remains to check that the embedding

ν : Ω′ → Ω is totally geodesic. To see this, denoting by G′0 the identity compo-

nent of the automorphism group of Ω′ and by K ′ ⊂ G′0 the isotropy subgroup

at 0 ∈ Ω′ ⊂ Ω, the holomorphic embedding ν : Ω′ ∼= G′0/K
′ → G0/K ∼= Ω

is equivariant with respect to a group homomorphism ϕ : G′0 → G0, and to

check total geodesy it suffices to check the second fundamental form at the point

0 ∈ Ω′ ⊂ Ω. But since Ω is invariant under the symmetric z → −z at the

origin, the Riemann-Christoffel symbols of (Ω, g) with respect to the canonical

Kähler-Einstein metric g vanish at 0, and the second fundamental form of the

linear section ν(Ω′) = Ω ∩ T0(Ω′) is necessarily zero at 0 ∈ Ω′ ⊂ Ω, proving that

ν : Ω′ → Ω is indeed totally geodesic. The proof of Lemma 3 is complete. �
For the purpose of computing the canonical Kähler-Einstein metric in terms

of Euclidean coordinates, it is convenient to make use of totally geodesic Her-

mitian symmetric manifolds of rank 1, i.e., those isomorphic to Bn. We have in

particular the following lemma which explains why it is convenient to work with

domains of type A, D or E, where all roots are of equal length.

Lemma 4. Suppose Ω � CN , Ω = G0/K in standard notation, is an irreducible

bounded symmetric domain in its Harish-Chandra realization equipped with the

canonical Kähler-Einstein metric g such that minimal disks are of Gauss curva-

ture −1. Suppose ρ, τ ∈ Δ+
0 , ρ 
= τ , are of maximal length and ρ − τ is a root.

Then, Dρ,τ := (gρ ⊕ gτ ) ∩ Ω is a totally geodesic complex submanifold isomet-

rically biholomorphic to the complex unit 2-ball B2 equipped with the canonical

Kähler-Einstein metric h of constant holomorphic sectional curvature −1.
Proof. We collect here some basic facts about maximal polydisks in the proof

of the Polydisk Theorem stated in the above and refer the reader to Wolf [Wo].

Suppose the irreducible bounded symmetric domain Ω is of rank r. Let Π ∼= Dr

be a standard maximal polydisk passing through 0 ∈ Ω constructed from root
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spaces, as follows. A set of roots Φ ⊂ Δ+
0 is said to be strongly orthogonal if and

only if ρ± τ /∈ Δ for any ρ, τ ∈ Φ. Let ρ1 = μ ∈ Δ+
0 be the highest root, and, for

k ≥ 0, let ρk+1 be inductively the highest root (with respect to some choice of a

lexicographic ordering) in Δ+
0 strongly orthogonal to {ρ1, · · · , ρk}, if the set of

such roots is non-empty. Then, the maximal set Ψ of strongly orthogonal roots

constructed this way is of cardinality r, and the maximal polydisk Π is the orbit

of 0 under the group G0[Ψ] which is the direct product of G0[ρ], ρ ∈ Ψ. As a

consequence, T0(Π) is spanned by root spaces gρ, ρ ∈ Ψ. Moreover, all roots in

Ψ are of maximal length, so that R (eρ, eρ; eρ, eρ) = −1 for any ρ ∈ Ψ. Recall

that Ω =
⋃ {γΠ : γ ∈ K}, so that any vector η ∈ T0(Ω) is equivalent under the

action of the isotropy group K ⊂ G0 to a vector in T0(Π).

From the preceding discussion it follows that for any η ∈ T0(Ω) of unit

length with respect to g, we have −1 ≤ Rηηηη ≤ − 1
r , r = rank(Ω), and equality

holds if and only if η is a minimal rational tangent, in which case Ω ∩ Cη is a

minimal disk on Ω. Let eρ ∈ gρ, eτ ∈ gτ be unit vectors, and write ξ = aeρ+beτ ,

|a|2 + |b|2 = 1. Since ρ and τ are positive noncompact roots of maximal length

we have R(eρ, eρ; eρ, eρ) = R(eτ , eτ ; eτ , eτ ) = −1. In particular, Dρ := Ω ∩ Ceρ

and Dτ := Ω ∩ Ceτ are minimal disks on Ω. In the expansion for Rξξξξ we get

(1)
Rξξξξ = |a|4R(eρ, eρ; eρ, eρ) + 4|a|2|b|2R(eρ, eρ; eτ , eτ ) + |b|4R(eτ , eτ ; eτ , eτ )

= −(|a|4 + 2|a|2|b|2 + |b|4) = −(|a|2 + |b|2)2 = −1 .

Here in the expansion for Rξξξξ we use the fact that R(eρ, eρ; eτ , eτ ) = − 1
2 since

ρ− τ is a root, and that all other terms in the expansion such as R(eρ, eρ; eρ, eτ )

and R(eρ, eτ ; eρ, eτ ) are zero. To see the latter statement, taking e−ρ resp. e−τ
to be eρ resp. eτ and denoting by B the (complex bilinear) Killing form on

g, for some real number c we have R(eρ, eρ; eρ, eτ ) = cB([eρ, eρ], [eρ, eτ ]) =

cB(Hρ, Nρ,−τeρ−τ ) , where Hρ := [eρ, e−ρ] belongs to the Cartan subalgebra

h ⊂ g and Nρ,−τ is some real constant, from which it follows readily that

R(eρ, eρ; eρ, eτ ) = 0 . Similarly, we have R(eρ, eτ ; eρ, eτ ) = cB([eρ, eτ ], [eτ , eρ]) =

cB
(
Nρ,−τeρ−τ , Nτ,−ρeτ−ρ

)
= 0 , since the root spaces are mutually orthogonal

on g with respect to the Hermitian bilinear form B(·, ·) induced by the Killing

form B. (Alternatively, one can check the curvature identities R(eρ, eρ; eρ, eτ ) =

R(eρ, eτ ; eρ, eτ ) = 0 from curvature inequalities on Hermitian symmetric spaces
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as in Mok-Zhong [MZ]). As to the former statement that R(eρ, eρ; eτ , eτ ) = − 1
2

we have R(eρ, eρ; eρ, eρ) = cB(Hρ, Hρ) while

R(eρ, eρ; eτ , eτ ) = R(eρ, eτ ; eτ , eρ) = cB([eρ, eτ ], [eρ, eτ ])

= cB(Nρ,−τeρ−τ , Nρ,−τeρ−τ ) = cN2
ρ,−τB(eρ−τ , eρ−τ ) .

On the other hand, since the maximal (−τ)-chain associated to the root ρ ∈ Δ

is given by (ρ, ρ − τ), we have N2
ρ,−τ = 1

2 B(Hρ−τ , Hρ−τ ) (cf. Helgason [Hel],

p.176). Since all roots are of equal length, it follows by comparing curvature

formulas above that R(eρ, eρ; eτ , eτ ) = − 1
2 R(eρ, eρ; eρ, eρ) = − 1

2 , completing

the proof of the curvature identity (1).

From (1) it follows that any ξ ∈ gρ ⊕ gτ is a minimal rational tangent.

Since Dρ,τ = (gρ ⊕ gτ ) ∩ Ω ⊂ Ω is the intersection of Ω with a vector subspace,

for any x ∈ Dρ,τ , the tangent space Tx(Dρ,τ ) is identified with T0(Dρ,τ ) in the

trivialization T (Ω) = T0(Ω) × Ω. Hence, by Lemma 1, for any x ∈ Dρ,τ , any

ξ(x) ∈ Tx(Dρ,τ ) is a minimal rational tangent. Let σ be the second fundamental

form of Dρ,τ in Ω with respect to the canonical Kähler-Einstein metric g on Ω.

Since any ξ(x) ∈ Tx(Dρ,τ ) is tangent to a minimal disk lying on Dρ,τ it follows

that σ
(
ξ(x), ξ(x)

)
= 0 for any ξ(x) ∈ Tx(Dρ,τ ). By polarization we conclude

that σ ≡ 0 on Dρ,τ . As a consequence Dρ,τ ⊂ Ω is a totally geodesic complex

submanifold. Since
(
Dρ,τ ; g

∣∣
Dρ,τ

)
is of constant holomorphic sectional curvature

−1 it must be of rank 1 and hence isometrically biholomorphic to the complex

unit 2-ball B2 equipped with the canonical Kähler-Einstein metric h of constant

holomorphic sectional curvature −1. The proof of Lemma 4 is complete. �

Using Lemma 4 and adopting the notation of Lemma 2, we have the following

explicit description of the canonical Kähler-Einstein metric along a minimal disk.

Lemma 5. Let Ω � CN be an irreducible bounded symmetric domain of type A,

D or E in its Harish-Chandra realization, Ω = G0/K, equipped with the canonical

Kähler-Einstein metric such that minimal disks on Ω are of Gauss curvature −1.
Fix a Cartan subalgebra h ⊂ k and let {ek}Nk=1 be a basis of T0(Ω) ∼= CN consisting

of root vectors of unit length, with e1 belonging to the highest root vector μ ∈ Δ+
0 ,

ek belonging to some root ρ ∈ H for 2 ≤ k ≤ p+1, and e� belonging to some root

τ ∈ N for p+ 2 ≤ � ≤ N . Write D0 := Ce1 ∩Ω, which is a minimal disk. Then,
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for (z1, 0, · · · , 0) ∈ D0 we have

g11 =
2

(1− |z1|2)2 ; gkk =
2

1− |z1|2 for 2 ≤ k ≤ p+ 1;

g�� = 2 for p+ 2 ≤ � ≤ N ; gij = 0 for i 
= j, 1 ≤ i, j ≤ N .

Proof. Since e1 belongs to a highest root μ, it is a minimal rational tangent, so

that D0 = C∩Ω is a minimal disk on (Ω, g). By Lemma 2 the metric tensor g is

diagonalized along the minimal disk D0 when one uses a basis consisting of root

vectors of unit length. Thus,

(1) gij = 0 for i 
= j, 1 ≤ i, j ≤ N .

Since all roots are of the same length for Ω of type A, D or E and since μ−τ ∈ Δ+
0

by assumption, by Lemma 2 Dμ,τ := (gμ + gτ ) ∩ Ω ⊂ Ω is a totally geodesic

complex submanifold such that
(
Dμ,τ ; g|Dμ,τ

)
is a totally geodesic submanifold of

(Ω, g) isomorphic to the complex unit 2-ball
(
B2, h

)
equipped with the canonical

Kähler-Einstein metric of constant holomorphic sectional curvature −1. As is

well-known, on
(
B2, h

)
the metric tensor

(
hij

)
along the minimal disk B1 ⊂ B2,

B1 × {0}, is given by

(2) h11 =
2

(1− |z1|2)2 ; h22 =
2

1− |z1|2 ; h12 = h21 = 0 .

On the other hand, if μ− τ /∈ Δ+
0 , then μ and τ are strongly orthogonal to each

other, and Dμ,τ := (gμ+gτ )∩Ω is again a totally geodesic complex submanifold

isomorphic to the bidisk
(
D2, s

)
=

(
D, ds2D

) × (
D, ds2D

)
, where ds2D denotes

the Poincaré metric of constant Gaussian curvature −1 on the unit disk D. On(
D2, s

)
we have

(3) s11 =
2

(1− |z1|2)2 ; s22 = 2; s12 = s21 = 0 .

The proof of Lemma 5 is complete. �

§3 Asymptotic behavior of the second fundamental form along a holo-

morphic curve exiting along smooth points of ∂Ω
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(3.1) For the study of holomorphic curves on a bounded symmetric domain Ω

in its Harish-Chandra realization exiting along Reg(∂Ω), the smooth part of an

irreducible bounded symmetric domain Ω, we will first prove a transversality

statement. For its proof we will need to make use of some bounded exhaustion

function on Ω which extends to a smooth function on a neighborhood of Ω arising

from Herman [Her] in the description of Ω as the unit ball with respect to some

Banach norm.

Lemma 6. Let Ω � CN be a bounded symmetric domain in its Harish-Chandra

realization. Then, there exists a convex bounded exhaustion function ρ defined

on a neighborhood of Ω such that for any smooth boundary point b ∈ ∂Ω, ρ is

defined and smooth on some neighborhood Ub of b in CN .

Proof. By the Herman Convexity Theorem (Herman [Her], cf. Wolf [Wo]),

Ω � CN can be identified as the unit ball in T0(Ω) ∼= CN with respect to the

Hermann norm ‖ · ‖H . Define ρ(z) = ‖z‖H − 1 for z ∈ CN . Then, ρ is in fact

defined everywhere on CN , and its restriction to Ω is a bounded convex exhaus-

tion function on Ω. In particular, ρ is a bounded plurisubharmonic exhaustion

function on Ω. Now, the norm ‖z‖H is smooth on a neighborhood of z ∈ CN if

and only if the level sets of ρ are smooth real hypersurfaces on a neighborhood

of z, which holds true for z = b ∈ ∂Ω a smooth point of ∂Ω. �

We are ready to formulate and prove the transversality statement.

Lemma 7. For the unit disk D let b0 ∈ ∂D, U be an open neighborhood of b0 of

the form U = D(b0; ε) for some ε > 0, f : U → CN be a holomorphic embedding

such that f(U ∩D) ⊂ Ω, f(U ∩ ∂D) ⊂ ∂Ω. Suppose for any b ∈ U ∩ ∂D, f(b) is

actually a smooth point of ∂Ω. Then, for a general point b ∈ U ∩ ∂D, ∂f(b) is

transversal to the complex tangent space Tf(b)(∂Ω) ∼= Cn−1.

Proof. We argue by contradiction. Consider the function ϕ(w) = ρ(f(w)) defined

on U . We have ϕ(w) < 0 for w ∈ U ∩D and ϕ(w) = 0 for z ∈ U ∩ ∂D. Suppose

df(w) ∈ T 1,0
f(w)(∂Ω) for any w ∈ U ∩ ∂D. For a general point b ∈ U ∩ ∂D, i.e., for

all b on the circular arc U ∩ ∂D except for a discrete subset of the latter, there

exists εb > 0 such that, writing Ub = D(b; εb), the smooth function ϕ vanishes

along Ub ∩ ∂D exactly to the order k ≥ 1 (where a priori the integer k depends

on b).
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Write ψ = |w|2 − 1 < 0 on D. Then on Ub we have −ϕ = (−ψ)kh where h

is smooth and positive on Ub, i.e., ϕ = (−1)k−1ψkh. We have

(1)
0 ≤ √−1∂∂ϕ = (−1)k−1h

√−1∂∂(ψk) + (−1)k−1ψk
√−1∂∂h

+ (−1)k−1
√−1∂(ψk) ∧ ∂h+ (−1)k−1

√−1∂h ∧ ∂(ψk)

Noting that

√−1∂∂(ψk) = √−1∂(kψk−1∂ψ) = k(k − 1)ψk−2
√−1∂ψ ∧ ∂ψ + kψk−1(

√−1∂∂ψ)
= k(k − 1)ψk−2

√−1∂ψ ∧ ∂ψ +O(|ψ|k−1) ,(2)

substituting (2) into (1) we have

0 ≤ √−1∂∂ϕ = (−1)k−1k(k − 1)hψk−2
√−1∂ψ ∧ ∂ψ +O(|ψ|k−1)

= −k(k − 1)h(−ψ)k−2
√−1∂ψ ∧ ∂ψ +O(|ψ|k−1) .(3)

Since |dψ| 
= 0 on a neighborhood of the unit circle the right hand side is strictly

negative at w ∈ U ∩D sufficiently close to b and, we have reached a contradiction

unless k = 1, as desired. �

For the proof of the Main Theorem we will need the following lemma which

describes the complex tangent space at a smooth boundary point of an irreducible

bounded symmetric domain Ω � CN . In what follows for a smooth point y ∈ ∂Ω,
T 1,0
y (∂Ω) ⊂ Ty(C

N ) stands for the complex vector subspace of (1,0)-vectors tan-

gent to ∂Ω, where the holomorphic tangent space Ty(C
N ) is canonically identified

with the complex vector space T 1,0
y (CN ) of complexified tangent vectors of type

(1,0).

Lemma 8. In the notation of Lemma 7, for a general point b ∈ U ∩ ∂D, we

have f∗g(w) =
(

2
(1−|w|2)2 + s(w)

)
|dw|2 on Ub ∩D, where Ub = D(b; εb) ⊂ U for

some εb > 0, and s is a smooth function defined on a neighborhood of Ub.

Proof. We start by describing a potential function for the canonical Kähler-

Einstein metric g on the irreducible bounded symmetric domain Ω, recalling that

g is normalized so that minimal disks on Ω are of Gauss curvature −1. Consider
the Bergman metric ds2Ω on Ω, noting that g = Ads2Ω for some constant A > 0.
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Denote by ωΩ the Kähler form of (Ω, ds2Ω), and by KΩ(z, z
′) the Bergman kernel

on Ω, which can be described as follows (cf. Faraut-Korányi [FK, pp.76-77]).

We have KΩ(z, z
′) = CΩ

h(z,ζ)m , where CΩ > 0, m is a positive integer and h is a

polynomial in (z1, · · · , zN ; z′1, · · · , z′N ) with the following property (cf. Faraut-

Korányi [FK, pp.76-77]). Let Π ∼= Dr be a maximal polydisk on Ω passing

through 0. We may choose Harish-Chandra coordinates such that Π is exactly

the unit polydisk Dr × {0}. For z ∈ Ω, there exists γ ∈ K = Aut0(Ω) such that

γ(z) = (a1, · · · , ar) ∈ Π and we have

h(z, z) = (1− |a1|2)× · · · × (1− |ar|2) .

The function τ(z) = −h(z, z) is in fact a defining function for U ∩ Ω, vanishing

exactly to the order 1 along U∩∂D. (As an example, we have τ(z) = det
(
I−ZtZ)

in the case of a type-1 domain Ω = DI
p,q.) Then, ωΩ(z) =

√−1∂∂ logK(z, z) =

−m√−1∂∂ log h(z, z). Restricting ds2Ω to a minimal disk of Ω, e.g., to any of the

coordinate disks of Π, we see that minimal disks are of Gauss curvature − 2
m on

Ω. By the normalization on g that minimal disks are of Gauss curvature −1 it

follows that the Kähler form ωg is given by ωg = −m
2 ω

2
Ω = −2√−1∂∂ log h(z, z).

Thus −2 log h(z, z) = −2 log(−τ) is a potential function for g on Ω.

The Poincaré metric ds2D on D is given by ds2D = 2|dw|2
(1−|w|2)2 , and the as-

sociated Kähler form ωD is given by ωD =
√−1∂∂(−2 log(1 − |w|2)). Write

ϕ(w) = −2 log(1 − |w|2). We have f∗ωg = −2√−1∂∂ log(−τ(f(w))). From the

transversality result given in Lemma 7, choosing b ∈ ∂D generic and εb > 0

sufficiently small, −τ(f(w)) vanishes exactly to the order 1 on a neighborhood

of Ub ∩ D on ∂D (where Ub = D(b, εb)), and τ(f(w)) = (1 − |w|2)χ(w) where

χ is a smooth positive function defined on some neighborhood of Ub. It follows

that f∗ωg =
√−1∂∂ϕ+√−1∂∂ logχ =

(
2

(1−|w|2)2 + s(w)
)
(
√−1dw∧dw), where

s = ∂2 logχ
∂w∂w , and Lemma 8 follows. �

We proceed to describe complex tangent spaces T 1,0
y (∂Ω) for y ∈ Reg(∂Ω).

Lemma 9. Let Ω � CN be an irreducible bounded symmetric domain in its

Harish-Chandra realization. Let α ∈ T0(Ω) be a minimal rational tangent at the

origin 0 ∈ CN and write Dα for the minimal disk passing through 0 and tangent

to α. Suppose y ∈ ∂Dα. Then, y ∈ ∂Ω is a smooth boundary point and the
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complex tangent space T 1,0
y (∂Ω) ⊂ Ty(C

N ) is the orthogonal complement of Cα

a with respect to the Euclidean metric. (Here Ty(C
N ) is identified with CN in

terms of the standard trivialization of T (CN ) given by the Euclidean coordinates,

and Cα ⊂ CN is regarded thus as a vector subspace of Ty(C
N ).)

Proof. We will use notations as those in Lemma 2. Let μ ∈ Δ+
0 be the highest

root. Modulo the action of the isotropy subgroup it suffices to consider the

case where α ∈ gμ. Denote by Kα ⊂ K the subgroup consisting of γ ∈ K

such that dγ(α) = α. Since K acts on CN as linear transformations so that

γ(z) = dγ(0)(z) for any z ∈ CN , where we identify T0(C
N ) with CN canonically,

we must have γ(y) = y for any y ∈ Kα. As a consequence, the complex tangent

space T 1,0
y (∂Ω) ⊂ Ty(C

N ) is a complex hyperplane invariant under Kα. Let now

V ⊂ Ty(C
N ) be the orthogonal complement of α (which is identified as a tangent

vector at y by Euclidean translation). To prove Lemma 8 it remains to show that

V = T 1,0
y (∂Ω). Suppose otherwise. Then, W := V ∩ T 1,0

y (∂Ω) ⊂ Ty(C
N ) is of

codimension 1 in T 1,0
y (∂Ω), and the orthogonal complement E ofW in V is given

by Cη, where η = α+β for some non-zero β ∈ V , and E = Cη is invariant under

Kα. Expressing β =
∑
ρ∈Θ bρeρ, bρ 
= 0, where the summation is performed over

a non-empty set of Θ ⊂ Δ+
0 −{μ}. Fixing ρ ∈ Θ, by the proof of Lemma 2 there

exists some H ∈ h such that α(H) = 0 and ρ(H) 
= 0. Then, exp(RH) ⊂ Kα

and etH(η), η = α + β, is of the form α + β′(t), where β′(t) 
= β for t ∈ R non-

zero and sufficiently small. Hence, E is not invariant under exp(RH), a plain

contradiction. Thus, V = T 1,0
y (∂Ω) and the proof of Lemma 9 is complete. �

(3.2) Reduction of the proof of Main Theorem in the irreducible case We are

now ready to give a proof of Main Theorem. Since the proof is long it will be

given in three separate subsections, starting in this subsection with a reduction

of the proof. Only one system of numbering of equations will be used throughout

the proof of Main Theorem. We have the following reduction of the proof of Main

Theorem in the case where Ω is an irreducible bounded symmetric domain.

Proposition 1. Let Ω � CN be an irreducible bounded symmetric domain. Let

g be the canonical Kähler-Einstein metric on Ω normalized so that minimal disks

are of constant Gauss curvature −1. In the notation of Main Theorem, for

w ∈ U ∩D denote by η(w) ∈ Tf(w)(Ω) a (1, 0)−vector of unit length with respect
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to g. Then, to prove Main Theorem it suffices to prove that, as w approaches a

general point b ∈ U ∩ ∂D

(†) R
η(w)η(w)η(w)η(w)

= −1 +O(δ(w)2)

Furthermore, (†) is satisfied provided that we have a decomposition η(w) =

α(w) + ζ(w), where α is a minimal rational tangent at f(w) ∈ Ω, and ζ(w) ∈
Tf(w)(Ω) satisfies R

(
α(w), ζ(w); ν, ν′

)
= 0, such that ‖ζ(w)‖ = O(δ(w)).

Proof of Proposition 1. Write r = rank(Ω). For any unit tangent vector η of

type (1,0) on (Ω, g), we have

(1) −1 ≤ Rηηηη ≤ − 1

r
,

and equality holds if and only if η is a minimal rational tangent. Consider now

the Hermitian Riemann surface (U ∩D, f∗g). On the one hand, for w ∈ U ∩∂D,

writing η = η(w) for a unit tangent vector proportional to df
(
∂
∂w )

)
(w), we have

(2) Gauss curvature(U ∩D, f∗g) = R
η(w)η(w)η(w)η(w)

− ∥∥σ(f(w))∥∥2
.

On the other hand, as w ∈ U ∩ D approaches a general point, by Lemma 8,

f∗g =
(

2
(1−|w|2)2 + s(w)

)
|dw|2 for w ∈ U ∩ D near b, where s(w) is a smooth

function defined on some neighborhood of Ub, where Ub = D(b; εb) � U for some

εb > 0. Thus, writing ds2D = 2
(1−|w|2)2 for the Poincaré metric on D of constant

Gauss curvature −1, we have f∗g = u ds2D, where u is a smooth function defined

on a neighborhood of Ub, and h(w) = 1+O
(
δ(w)2

)
on Ub. Write f∗g = h |dw|2,

so that h = 2u
(1−|w|2)2 . Noting the curvature formula

(3) (Gauss curvature (U ∩D, f∗g)) · √−1dw ∧ dw = −√−1∂∂ log h ,

we have on Ub

(4) Gauss curvature (U ∩D, f∗g) ·
∥∥∥∥ ∂

∂w

∥∥∥∥2

f∗g
=

−2
(1− |w|2)2 +O(1) ,

Noting that
∥∥ ∂
∂w

∥∥2

f∗g =
2u

(1−|w|2)2 = 2(1+O(δ(w)2))

(1−|w|2)2 , and writing log h = −2 log(1−
|w|2) + log(2u), we conclude that

(5) Gauss curvature (U ∩D, f∗g) = −1 +O
(
δ(w)2

)
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on Ub. Combining (1), (2) and (5), to prove Main Theorem it suffices to show

that

(†) R
η(w)η(w)η(w)η(w)

= −1 +O(δ(w))2 .

We proceed to give a reformulation of (†). Let Π ⊂ Ω be a maximal polydisk,

Π ∼= Dr, passing through 0 ∈ Ω. Any vector η ∈ T (Ω) is equivalent under the

G0 = Aut0(Ω) to some ξ ∈ T0(Π) ⊂ T0(Ω) (cf. the Polydisk Theorem), which

can be chosen to be ξ = (ξ1, · · · , ξr) in terms of the Euclidean coordinates on

Π ∼= Dr, where ξk(w) is real, 1 ≤ k ≤ r, and ξ1 ≥ · · · ≥ ξr ≥ 0. We call

ξ = (ξ1, · · · , ξr) the normal form of η under G0. For w ∈ U ∩ D we write

ηw = (ξ1(w), · · · , ξr(w)) ∈ T0(Π) for the normal form of η(w) ∈ Tf(w)(Ω) under

G0. Thus, writing
√
2α = (1, 0, . . . , 0) we have ηw =

√
1− (c(w))2 α+ ζw, where√

2ζw = (0, ξ2(w), . . . , ξr(w)), and c(w) := ‖ζw‖ =
√|ξ2|2 + · · ·+ |ξr|2, where

‖ · ‖ denotes ‖ · ‖g. Clearly R
(
α, ζw; ν, ν′

)
= 0 for any ν, ν′ ∈ T0(Ω). As a

consequence we have

(6)

Rηwηwηwηw =
(
1− (c(w))2

)2
Rαααα +Rζwζwζwζw = −1 + 2‖ζw‖2 +O

(‖ζw‖4) .

Thus, to prove (†) it is sufficient to show

(†)′ ‖ζw‖ = O(δ(w)) on Ub ∩D ,

which is equivalent to the last statement ‖ζ(w)‖ = O(δ(w)) in the statement of

Proposition 1. �

Since by assumption f(b) ∈ Reg(∂Ω), regarding Ω canonically as an open

subset of T0(Ω) the normal form of f(b) under the action on T0(Ω) of the

isotropy group K ⊂ G0 at 0 is given by (1, a2, . . . , ar) ∈ Reg(∂Π), where

1 > a2 ≥ · · · ≥ ar ≥ 0. In other words, there exists γ ∈ K such that

γ(f(b)) = (1, a2, . . . , ar) ∈ Reg(∂Π). There exists an automorphism χ0 in

Aut0(Π) such that χ0(1, a2, . . . , ar) = (1, 0, . . . , 0). The automorphism χ0 of Π

extends to an automorphism χ of Ω, and χ◦γ gives an automorphism χ of Ω such

that (χ ◦ γ)(f(b)) = χ(γ(f(b)) = (1, 0, . . . , 0). For the proof of Main Theorem,

without loss of generality we may assume that f(b) = (1, 0, . . . , 0) ∈ Reg(∂Π).

Recall that a maximal polydisk Π ⊂ Ω can be constructed as follows. Writing

Ω = G0/K as before and fixing a Cartan subalgebra h ⊂ k, we have a maximal set
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Ψ of strongly orthogonal positive noncompact roots ψi ∈ Ψ, 1 ≤ i ≤ r, and Π ⊂ Ω

is the totally geodesic complex submanifold passing through 0 = eK such that

T0(Π) = gψ1⊕· · ·⊕gψr , where for a root ρ with respect to the Cartan subalgebra

h, gρ ⊂ gC denotes the (complex 1-dimensional) root subspace belonging to ρ.

In what follows we choose Euclidean coordinates (z1, · · · , zN ) on CN , such that

a point (z1, · · · , zr) ∈ Π corresponds to (z1, · · · , zr, 0, · · · , 0) ∈ CN , and such

that, writing ei := ∂
∂zi

for 1 ≤ i ≤ n. each ei is a root vector belonging to

some noncompact positive root ρ with respect to the Cartan subalgebra h. Write

y = (1, 0, · · · , 0). Denote by ρ the defining function of Ω given by ρ(z) = ‖z‖H−1

as in Lemma 7 which is smooth on a neighborhood of y. Choosing b ∈ U ∩ ∂D
to be a general point, by Lemma 7 we know that

(7) dρ(y)

(
df

(
∂

∂w

))

= 0 .

By Lemma 9, T 1,0(∂Ω) is the orthogonal complement of e1 in Ty(∂Ω) ∼= CN . It

follows hence from (7) that, writing f(z) = (f1(z), · · · , fn(z)), we have

(8) f ′1(b) 
= 0 .

We are going to deduce (†) from (8). To illustrate the idea we will consider first

of all the very special case where Ω is a polydisk.

(3.3) Proof of Main Theorem of the special case of polydisks In the notation of

Main Theorem we assume now that Ω = Π = Dr is a polydisk. In the statement

of Proposition 1 in (3.2), we assume that Ω is irreducible. The assumption was

made so that we have only one type of minimal disks, which are all equivalent

to one another under G0 = Aut0(Ω), and the canonical Kähler-Einstein metric

can be normalized so that all minimal disks are of constant Gauss curvature

−1. In the general case, there is a type of minimal disk arising from each of the

irreducible factors, and a normalization of the canonical Kähler-Einstein metric

so that all types of minimal disks are of constant Gauss curvature−1 is not always
possible. However, if all the factors are identical, then this remains possible, as

is in the case where Ω is a polydisk Π ∼= Dr. In this section we will deal with

the case of polydisks. Then, for w ∈ U ∩D we have f ′(w) = (f ′1(w), · · · , f ′r(w)).
The Kähler-Einstein metric g on Π is given by

(9) g|Π =
2|dz1|2

(1− |z1|2)2 + · · ·+ 2|dzr|2
(1− |zr|2)2 .
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Thus,

(10)

∥∥∥∥df
(
∂

∂w

)∥∥∥∥2

=
2|f ′1(w)|2

(1− |f1(w)|2)2 + · · ·+ 2|f ′r(w)|2
(1− |fr(w)|2)2 .

In what follows we will write f ′(w) to mean the tangent vector df
(
∂
∂w

)
at the

point w ∈ U . The k-th term on the right-hand side of (10) is given by

(11)
2|f ′k(w)|2

(1− |fk(w)|2)2 =
∂2

∂w∂w
(−2 log(1− |fk|2)) .

From S = f(U ∩D) ⊂ Π ⊂ Ω and f(U ∩ ∂D) ⊂ ∂Π and f(b) = (1, 0, · · · , 0) it

follows readily, shrinking the neighborhood U of b if necessary, we have f1(U) ∩
∂D ⊂ ∂Ω while fk(U ∩D) � D. Hence 1− |f1|2 = (1− |w|2)s for some smooth

function s defined on U , hence the potential function −2 log(1 − |fk|2) equals

− log(1−|z1|2)+log s while for 2 ≤ k ≤ r the potential function −2 log(1−|fk|2)
is a smooth function defined on U . It follows from (8) that

(12)
2|f ′1(w)|2

(1− |f1(w)|2)2 =
2

(1− |w|2)2 +O(1);
2|f ′k(w)|2

(1− |fk(w)|2)2 = O(1) for 2 ≤ k ≤ r

on a neighborhood of b. Hence, for w ∈ U ∩ D, the tangent vector f ′(w) is

equivalent under the action of Aut(Π) to a vector (ξ1(w), · · · , ξr(w)) ∈ T0(Π)

where

(13) |ξ1(w)|2 =
1

2δ(w)2
+O(1); |ξk(w)|2 = O(1) for 2 ≤ k ≤ r .

It follows that the tangent vector f ′(w) is equivalent under Aut(Π) to a non-zero

multiple of the tangent vector 1√
2
(μ1(w), · · · , μr(w)) ∈ T0(Π), where μk are real

and nonnegative for 1 ≤ k ≤ n, and furthermore

(14) μ1(w) = 1 +O(δ(w)), μk(w) = O(δ(w)) ,

(Here in μ1(w) = 1 + O(δ(w)) the term O(δ(w)) is necessarily nonpositive, but

the sign of the term is irrelevant to us.) It follows that, in the notation used in

formulating the condition (†) in the above, we have

(15) R
η(w)η(w)η(w)η(w)

= −1 +O
(
δ(w)2

)
,
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verifying (†) in the special case where S = f(U ∩D) lies on a maximal polydisk.

(3.4) Proof of Main Theorem in the general case For the general case of the

proof of Main Theorem, we will instead verify (†)′, which implies (†), as explained
in the above. We note that in the very special case where f(U ∩ D) lies on a

maximal polydisk above, (12) implies that (†)′ is satisfied.
For the general case we first make some observations. By Lemma 3, every

irreducible bounded symmetric domain Ω0 can be embedded as a totally geodesic

complex submanifold of an irreducible bounded symmetric domain Ω = G0/K

where G0 is a noncompact real form of a Lie group of type A, D or E, so that all

roots of g are of equal length. From now on we assume for notational simplicity

that Ω is irreducible, and for the proof of Main Theorem in the irreducible case

without loss of generality we will assume that Ω = G0/K is of type A, D or E,

in which case, fixing a Cartan subalgebra h ⊂ k, every noncompact positive root

ρ ∈ Δ+
0 is necessarily a minimal rational tangent. Choose now an orthonormal

basis of T0(Ω) consisting of roots of unit length belonging to noncompact positive

roots ρ ∈ Δ+
0 , and use Euclidean coordinates (z1, · · · , zN ) on CN arising from

such a choice of an orthonormal basis {eρ : ρ ∈ Δ+
0 }, Ω ⊂ CN ∼= T0(Ω). As

explained, for the proof of Main Theorem without loss of generality we may

assume that f(b) = (1, 0, · · · , 0) = e1. For w ∈ U ∩ D we can make use of the

Polydisk Theorem to find a maximal polydisk Πw ⊂ Ω passing through 0 and

containing the point f(w). (Πw ⊂ Ω is not necessarily unique.) However, the

tangent vector f ′(w) ∈ Tf(w)(Ω) is not necessarily tangent to Πw, and, to verify

the condition (†)′ it is necessary also to consider the component of the tangent

vector f ′(w) normal to Πw. As w approaches b ∈ U ∩D for the purpose of doing

estimates we will slightly modify the procedure. We will move the point f(w)

to the minimal disk D0 = Ce1 ∩ Ω on which metric calculations are easier, by

Lemma 5.

If we identify Ω naturally as an open subset of T0(Ω) ∼= CN , then, for

w ∈ U ∩D, f(w) ∈ Ω is both a point on the bounded symmetric domain Ω and a

vector on T0(Ω). The vector η(w) := f ′(w), which is a tangent vector of type (1,0)

at f(w), will then be referred to as the velocity vector at w. Recall the maximal

polydisk Π ⊂ Ω given by Π = (gψ1 ⊕ · · · gψr ) ∩ Ω, where Ψ = {ψ1, · · · , ψr} is a

maximal strongly orthogonal set of positive noncompact roots and ψ1 = μ is the
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highest root. By the Polydisk Theorem, given any w ∈ U ∩D, there exists some

γ = γw ∈ K such that γ(f(w)) = (a1(w), · · · , ar(w)) ∈ Π, where ak(w) is real

and nonnegative, and 1 ≥ a1(w) ≥ a2(w) ≥ · · · ≥ ar(w) ≥ 0. With the latter

specifications each ak(w), 1 ≤ k ≤ r, is uniquely determined.

Suppose wi ∈ U ∩D, 1 ≤ i <∞, is a sequence converging to b and we write

γi for γwi . Then, γi(f(wi)) = (a1(wi), · · · , ar(wi)). We write N+ = {1, 2, · · · , }
for the set of positive natural numbers. From the compactness of K and the

boundedness of {(a1(wi), · · · , ar(wi)) : 1 ≤ i < ∞} it follows that for some

increasing function τ : N+ → N+, the subsequence γτ(i) of γi converges to some

γ∞ ∈ K and the subsequence (a1(wτ(i)), · · · , ar(wτ(i))) of (a1(wi), · · · , ar(wi))
converges to some p ∈ Π, where p = (c1, · · · , cr), 1 ≥ c1 ≥ c2 ≥ · · · cr ≥ 0, and

we have γ∞(f(b)) = p. But since f(b) = (1, 0, · · · , 0) is already in normal form,

and the normal form of a tangent vector ξ ∈ T0(Ω) is uniquely determined, we

must have c1 = 1 and ck = 0 for 2 ≤ k ≤ r. Thus γτ(i) converges to (1, 0, · · · , 0).
Since this holds true for any choice of τ : N+ → N+ for which both γτ(i) and

(a1(wτ(i)), · · · , ar(wτ(i))) are convergent, it follows that in fact the normal forms

(a1(w), · · · , ar(w)) of f(w) must converge to (1, 0, · · · , 0) as w converges to b.

(Write h : T0(Ω) → Rr for the mapping which assigns to any tangent vector

ξ ∈ T0(Ω) its normal form h(ξ) ∈ Rr. The preceding elementary arguments show

precisely that h is continuous.)

We are now ready to proceed with the proof of Main Theorem.

Proof of Main Theorem. Let Ω � CN be a bounded symmetric domain of rank

r. For notational simplicity we will assume that Ω is irreducible. At the end of

the proof we will explain the minor changes that need to be made to carry the

proof over to the reducible case. From the embedding Π ⊂ Ω we have naturally

a monomorphism of Lie groups Φ : Aut0(Π) → Aut0(Ω) = G0. In what follows

for any λ ∈ Aut0(Π) ∼= Aut(D)r the same symbol λ will also be used to denote

Φ(λ) ∈ G0. For w ∈ U ∩D let λ = λw be defined by

(16) λ(z1, · · · , zr) =
(
z1,

z2 − a2(w)
1− a2(w)z2 , · · · ,

z2 − a2(w)
1− a2(w)zr

)

For w0 ∈ U ∩D consider hw0 : U ∩D → Ω defined by

(17) hw0(w) = λw0(γw0(f(w))) .
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Then,

(18) hw0
(w0) = (a1(w), 0, · · · , 0) ∈ Π ;

(19) h′w0
(w) = dλw0((γw0(f(w))

(
(γw0(f

′(w))
)
.

Here (γw0(f(w)) = γw0(f(w)) is a point on Ω while γw0(f
′(w)) = (γw0 ◦ f)′(w)

is a tangent vector at (γw0(f(w)). Denote by 〈·, ·〉e the Euclidean inner product

on CN and by ‖ · ‖e the Euclidean norm. The mapping f : U ∩ D → CN

verifies the transversality condition at b as is given in Lemma 7, which, under

the normalization f(b) = (1, 0, · · · , 0), is given by
〈
f(b), f ′(b)

〉
e

= 0, which is

equivalently f ′1(b) 
= 0. Since γw0 ∈ K is a unitary transformation, we have

(20)
〈
γw0(f(w)), γw0(f

′(w))
〉
e
=

〈
f(w), f ′(w)

〉
e
,

which is equal to f ′1(b) 
= 0 at w = b. We have

(21)
〈
hw0(w), h

′
w0

(w)
〉
e
=

〈
λw0(γw0(f(w)) , dλw0((γw0(f(w)))

(
(γw0(f

′(w))
)〉

e
.

Since λw0 , when regarded as automorphisms of Ω, converges to the identity

map idΩ in the Lie group G0, shrinking U if necessary there exists some open

neighborhood Ω� � CN of Ω such that λw0 is defined and holomorphic on Ω�

whenever w0 ∈ U , and such that dλw0(w) converges uniformly on Ω� to the

identity map on TΩ� as w0 converges to b. We may also assume without loss of

generality that

(22)
∣∣〈f(w), f ′(w)〉

e

∣∣ > 1

2
|f ′1(b)| > 0 for all w ∈ U .

Given any ε > 0, shrinking U further if necessary, we may assume that

(23)
∥∥dλ′w0

(w)(η)− η∥∥
e
< ε‖η‖e

for every w0 ∈ U ∩D, every w ∈ Ω′ and every η ∈ Tw(Ω′). It follows that
(24)〈
λw0(γw0(f(w)) , dλw0(γw0(f(w)))(γw0(f

′(w))
〉
e
−〈

γw0(f(w)), γw0(f
′(w))

〉
e
→ 0
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uniformly in w ∈ U as w0 ∈ U ∩ D approaches b. It follows from (20), (22)

and (24) that, shrinking the open neighborhood U of b further if necessary and

substituting at w = w0 we have

(25) |〈hw0(w0), h′w0
(w0)

〉
e

∣∣ > 1

4
|f ′1(b)| > 0

for every w0 ∈ U ∩D.

Finally we combine (18) and (25) to get an estimate on the normal form of

a vector ηw ∈ T0(Ω) of unit length with respect to g which is equivalent under

the action of the holomorphic isometry group G0 to the velocity vector h′w(w) ∈
Thw(w)(Ω) as w approaches b. Here by (18), we have hw(w) = (a1(w), 0, · · · , 0),
which lies on the minimal disk D0, which allows us by Lemma 5 to describe the

metric tensor
(
gij

)
(a1(w), 0, · · · , 0). Since h′w(w) is uniformly bounded in the

Euclidean norm for w ∈ U ∩D, we conclude from (25) and Lemma 5 that h′w(w)
is equivalent under G0 to a non-zero multiple of a vector ξw ∈ T0(Ω) of the form

ξw =
⊕
ρ∈Δ+

0

aρeρ; where aμ =
1

δ(w)
,

aρ = O

(
1√
δ(w)

)
whenever μ− ρ ∈ D, and

aτ = O(1) whenever τ 
= μ and μ− τ /∈ D .(26)

For the case where Ω is irreducible to prove Main Theorem it remains to deduce

(†)′ from (26). In the notation of Lemma 2, H stands for the set of all noncom-

pact positive roots ρ such that μ − ρ is a root, and N stands for the set of all

noncompact positive roots τ such that ρ 
= μ and μ− τ is not a root. Write now

H :=
⊕ {gρ : ρ ∈ H}, and N :=

⊕ {gρ : ρ ∈ N}. We have T0(Ω) = Ceμ⊕H⊕N .

From (26) we deduce that

(27) ηw =
1√

1 +O(δ(w))

(
eμ +

⊕
ρ∈H

(
O(

√
δ(w)

)
eρ +

⊕
τ∈N

O(δ(w))eτ

)
.

It follows already from (27) that ηw converges to the minimal rational tangent

eμ = α at 0 ∈ Ω as w approaches b.
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Recall the inclusions Ω � CN ⊂ M which incorporate the Harish-Chandra

realization Ω � CN and the Borel embedding Ω ⊂M of the bounded symmetric

domain Ω. Let π0 : T0(Ω) − {0} → PT0(Ω) be the natural projection. For a

subvariety E ⊂ PT0(Ω) we write Ẽ for its affinization π−1(E). Consider now

the variety of minimal rational tangents C0 ⊂ PT0(M) = PT0(Ω). C0 agrees with

the highest weight orbit W0 ⊂ PT0(M) of the isotropy representation of KC (cf.

Hwang-Mok [HM, p.360ff.]). On the other hand, given a highest weight μ ∈ Δ+
0 ,

for α = eμ ∈ W̃0, writing C̃0 = W̃0 = KCα, by considering the differential

of the map Φ : KC → T0(Ω) given by Φ(γ) = dγ(α) it follows readily that

Tα(C̃0) = Cα +H. (Alternatively, the same statement can be deduced from the

Grothendieck decomposition TM |C ∼= O(2)⊕O(1)p⊕Oq of the tangent bundle TM
over a minimal ration curve C passing through 0 with T0(C) = Cα (cf. [HM, loc.

cit.]) and from the general fact that T0(C̃0) = Pα, where Pα is the positive part

of the Grothendieck decomposition of T (M)|C at 0 ∈ C (cf. [HM, pp.224-225]).)

Thus, in a neighborhood of α, the complex manifold C̃0 can be parametrized

by Uε := {ξ ∈ Cα+H : ‖ξ‖ < ε} for some ε > 0, given by ϕ(ξ) = ξ + ζ(ξ),

where ζ(ξ) is orthogonal to Cα+H (i.e., ζ(ξ) ∈ N ) for every ξ ∈ Uε, and where

ϕ(ξ) ≤ C‖ξ‖2 for some positive constant C and for every ξ ∈ Uε. (Actually, ϕ(ξ)

is a quadratic map in ξ, thus defined on all of the tangent space Cα + H, cf.

[HM, p.377], but we will not use the latter fact.). Given this, rewriting in (27)

the unit vector ηw as

(28) ηw =
α+ ξw + χw√

1 + ‖ξw‖2 + ‖χw‖2
,

where ξw ∈ H and χw ∈ N , we deduce from (27) that

(29) ηw =
(α+ ξw + ϕ(ξw)) + (χw − ϕ(ξw))√

1 + ‖ξw‖2 + ‖χw‖2
:= αw +

χw − ϕ(ξw)√
1 + ‖ξw‖2 + ‖χw‖2

,

where αw ∈ C̃0 from the definition of ϕ. Thus, ηw = αw + ζw, where ζw ∈ N ,

and it follows from (27) that

‖ζw‖ ≤ ‖χw‖+ ‖ϕ(ξw)‖ ≤ ‖χw‖+ C‖ξw‖2

= O(δ(w)) +
(
O
(√

δ(w)
))2

= O(δ(w)) .(30)
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From now on we write H = Hα and N = Nα. From the discussion above it

follows that Nα = (Cα+H)
⊥
, i.e., Nα is the orthogonal complement of Cα+Hα

in T0(Ω) with respect to the metric g, equivalently with respect to the Euclidean

metric. The highest weight orbit W ⊂ PT0(Ω) is in fact the K-orbit of [α] which

turns out to be complex-analytic. (It is the unique complex-analytic K-orbit

by the Borel-Weil Theorem). For any α′ ∈ C̃0, regarding α′ as a highest weight

vector with respect to some choice of a Cartan subalgebra h′ ⊂ k, and we have

likewise Tα′(C̃0) = Cα′ +Hα′ and Nα′ = (Cα′ +Hα′)
⊥
, where Hα′ resp. Nα′ is

defined in analogy to Hα resp. Nα.

From (30) we have ηw = αw + ζw, where αw ∈ C̃0, ζw ∈ Nα, and ‖ζw‖ =

O(δ(w)). However, to verify (†)′ we have to prove instead ηw = α′w + ζ ′w where

α′w ∈ C̃0, ζ ′w ∈ Nα′
w

and ‖ζ ′w‖ = O(δ(w)). We claim that this is indeed the

case. To this end denote by p : N → C̃0 the (smooth) normal bundle of C̃0 as

a Riemannian submanifold of T0(Ω) − {0}, Thus, over β ∈ C̃0 we have Nβ =

Tβ(C̃0)⊥ = Nβ . Thus, N ⊂ C̃0 × T0(Ω) by definition. The canonical projection

of C̃0 × T0(Ω) onto the second factor T0(Ω) restricts to a mapping on N which

we denote by q : N → T0(Ω). Consider the mapping Φ : N → T0(Ω) defined

by Φ(n) = p(n) + q(n). Clearly, Φ is an open embedding of some neighborhood

U of the zero section Z ∼= C̃0 in N onto a neighborhood U of C̃0 in T0(Ω). Φ is

indeed the exponential map of the normal bundle N in the sense of Riemannian

geometry, and the open neighborhoods U ⊃ Z and U ⊃ C̃0 can be chosen such

that, if χ ∈ U , u ∈ U and χ = Φ(u), then p(u) ∈ C̃0 is the unique point on C̃0
closest to χ. From now on Φ will stand for the diffeomorphism Φ|U : U → U .
Since ηw is of unit length, when ζw is sufficiently small, using the exponential

map Φ we can write ηw = αw + ζw = α′w + ζ ′w, where α
′
w = p(Φ−1(ηw)) ∈ C̃0

and ζw ∈ Nα′
w
. From ηw = αw + ζw we see that the Euclidean distance of ηw

to C̃0 is of order O(δ(w)). Since ‖ζ ′w‖ realizes the latter minimal distance, we

have also ‖ζ ′w‖ = O(δ(w)). We have therefore verified (†)′ in the case where Ω is

irreducible, and completed the proof of Main Theorem in the irreducible case.

Finally, we observe that the proof also applies to the case where Ω is re-

ducible. Writing Ω = Ω1 × · · · ×Ωm, m ≥ 2, for the decomposition of Ω into the

Cartesian product of irreducible bounded symmetric domains Ω�, 1 ≤ � ≤ m,

the nonsingular part Reg(∂Ω) of the boundary of Ω � CN in its Harish-Chandra
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realization is given by the disjoint union Reg(∂Ω) =
(
Reg(∂Ω1)×Ω2×· · ·×Ωm

)∪
· · ·∪(

Reg(Ω1)×· · ·×Ωm−1×∂Ωm
)
. In the notation as in the statement of Main

Theorem, suppose f : U → Ω is a holomorphic curve such that f(U∩D) ⊂ Ω and

f(U ∩ ∂D) ⊂ ∂Ω, and such that f(b) ∈ Reg(∂Ω) for a general point b ∈ U ∩ ∂Ω.
Because of the decomposition of Reg(∂Ω) as given in the above, shrinking U if

necessary without loss of generality we may assume that f(U ∩ ∂D) lies on one

of the m connected components of Reg(∂Ω) as given in the above. Renaming

and reshuffling the factor domains Ωk, 1 ≤ k ≤ m, we may assume f(U ∩ ∂D) ⊂
Reg(∂Ω1)×Ω2× · · · ×Ωm. The arguments for the proof of Main Theorem carry

over almost verbatim with the following minor modification, viz., we normalize

the Kähler-Einstein metric so that the Gauss curvature of a minimal disk D on

Ω1 is of Gauss curvature −1. The holomorphic map f = (f1, · · · , fm), where

for 1 ≤ k ≤ m, we have fk : U → Ωk. Focusing at points converging to a

general point b ∈ U where f is an embedding on a neighborhood of b and com-

posing with an automorphism of Ω we may assume without loss of generality

that f(b) = ((1, 0, . . . , 0); 0; . . . ; 0). Then f�(w) = O(δ(w)) for 2 ≤ � ≤ m. For

the rest of the arguments, writing fk = (f1k , . . . , f
Nk

k ) with respect to the Eu-

clidean coordinates on Ωk � CNk , we have (f j� )
′(w) = O(1) for 2 ≤ � ≤ m and

1 ≤ j ≤ m�, from which it follows, in analogy to the case of the polydisk as given

in (12), we have df�
(
∂
∂w

)
= O(1) as w approaches b. The arguments leading

to the curvature formula (†) carry over when we apply the arguments for the

irreducible case to the factor f1 and the arguments for the case of the polydisk

to the other components f�, 2 ≤ � ≤ m. Here we note that in dealing with f1,

for the argument analogous to the reduction of (†) to (†)′ we need only to argue

with the variety of minimal rational tangents C0(Ω1) of Ω. The other varieties

of minimal rational tangents Ω�, 1 ≤ � ≤ m are irrelevant. The proof of Main

Theorem is complete. �

Remarks

In the statement of Main Theorem, in place of a canonical Kähler-Einstein metric

we may take g to be any Aut(Ω)-invariant Kähler-Einstein metric g, i.e. g =

π∗1g1 + · · · + π∗mgm where, for 1 ≤ k ≤ m, gk is a canonical Kähler-Einstein

metric on Ωk, which is uniquely determined up to a positive scalar constant, and

where πk : Ω→ Ωk are the canonical projections. The proof is identical.
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(3.5) Concluding Remarks One of the original motivations for proving Main

Theorem was to study asymptotic behavior of holomorphic isometric embeddings

of the Poincaré disk into bounded symmetric domains, whose graphs extend by

Mok [Mo5] to affine-algebraic subvarieties. For such mappings Main Theorem

implies that, in the case where the general boundary point is a regular point of

∂Ω, the isometric embedding is necessarily asymptotically totally geodesic at a

general boundary point, and ‖σ‖2 must vanish precisely to the order 2, i.e., it is

of the first kind in the terminology of Mok [Mo4].

Another motivation was the study of holomorphic measure-preserving maps

from an irreducible bounded symmetric domain to a Cartesian product of the

same domain, in the sense of Clozel-Ullmo [CU], to which we refer the reader

for definitions, in relation to the determination of commutants of certain mod-

ular correspondences of quotients X := Ω/Γ of irreducible bounded symmetric

domains by torsion-free lattices. In [CU] the authors derived germs of holomor-

phic measure-preserving maps from such commutants and reduced the problem

essentially to a problem in complex differential geometry. The latter problem

was solved in the case of the unit disk Ω = D in [CU], in the case of higher-

dimensional complex unit balls Ω = Bn, n ≥ 2, in Mok [Mo3, 5] and in the case

where Ω is of rank ≥ 2 by Mok-Ng [MN2]. As a consequence, the following result

(Theorem 1.1.2 of Mok-Ng [MN2]) on holomorphic measure-preserving maps was

established.

Theorem (Mok-Ng [MN2]). Let Ω � Cn be an irreducible bounded symmetric

domain, and Γ ⊂ Aut(Ω) be a torsion-free lattice. Write X := Ω/Γ and let

Y ⊂ X ×X be a measure-preserving algebraic correspondence with respect to the

canonical measure dμΩ on Ω. Then, Y is necessarily a modular correspondence.

In the case of Ω = Bn, n ≥ 2, a stronger statement was established in Mok

[Mo3] using Alexander’s Theorem, where we actually proved that the graph of

the germ of a holomorphic measure-preserving map f = (f1, · · · , fp) : (Ω; 0) →
(Ω; 0)×· · ·×(Ω; 0), where each fk is of maximal rank for 1 ≤ k ≤ p, is necessarily

totally geodesic in Ω× (Ω× · · · ×Ω). The same statement for Ω of rank ≥ 2 was

established in Mok-Ng [MN2] by means of an Alexander-type theorem, where a

germ of holomorphic map on CN at b ∈ Reg(∂Ω) mapping Ω into Ω and ∂Ω into
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∂Ω was shown to be necessarily the restriction of an automorphism γ ∈ Aut(Ω).

On the other hand, in the case of the unit disk D, in which case a holomorphic

measure-preserving map is nothing other than a holomorphic isometry (up to

a normalizing constant), examples of Mok [Mo5] show that the same statement

fails, and in Clozel-Ullmo [CU] the theorem above for Ω = D was established by

proving that Graph(f) extends to an affine-algebraic variety in C × Cp and by

making use of the underlying action of Γ on Ω. Main Theorem in the current

article shows that for any irreducible bounded symmetric domain, the germ of

map f as in the above arising from commutants of certain modular correspon-

dences must be asymptotically totally geodesic when restricted to minimal disks

passing through b if b is chosen generically. (In the case of the unit disk D one

only requires the special and much simpler case of Main Theorem for polydisks as

was given in (3.3).) Coupled with the underlying action of Γ on Ω this shows that

f is necessarily itself totally geodesic, since the behavior of f (after extension)

on a fundamental domain of Ω is recaptured by the asymptotic behavior of f as

the base point x ∈ Ω approaches a general regular boundary point b ∈ Reg(Ω)

owing to Γ-equivariance. Main Theorem therefore gives a uniform proof of the

above theorem without resorting to Alexander-type extension theorems.
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