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0.1.1. Let M be a smooth manifold with a vector bundle V. Recall that a flat

connection on V is a map

V:V Ve

satisfying the Leibniz rule, and such that the curvature [V, V] = 0. Dualizing

the connection map, we obtain a map

TyV = V.
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The flatness of the connection implies that this makes V' into a module over the
Lie algebra of vector fields. Equivalently, we obtain that V' is module over the
algebra Diffj; of differential operators on M.

This notion generalizes immediately to smooth algebraic varieties in charac-
teristic zero. On such a variety a D-module is defined as a module over the sheaf
of differential operators which is quasi-coherent as an O-module. The notion of
D-module on an algebraic variety thus generalizes the notion of vector bundle
with a flat connection, and encodes the data of a system of linear differential
equations with polynomial coefficients. The study of D-modules on smooth alge-
braic varieties is a very rich theory, with applications to numerous fields such as
representation theory. Many of the ideas from the differential geometry of vector
bundles with a flat connection carry over to this setting.

However, the above approach to D-modules presents a number of difficulties.
For example, one needs to consider sheaves with a flat connection on singular
schemes in addition to smooth ones. While the algebra of differential operators
is well-defined on a singular variety, the category of modules over it is not the
category that we are interested in (e.g., the algebra in question is not in general
Noetherian). In another direction, even for a smooth algebraic variety, it is not
clear how to define connections on objects that are not linear, e.g., sheaves of
categories.

0.1.2. Parallel transport. The idea of a better definition comes from another in-
terpretation of the notion of flat connection on a vector bundle in the context of

differential geometry, namely, that of parallel transport:

Given a vector bundle with a flat connection V on a smooth manifold M, and
a path v :[0,1] — M, we obtain an isomorphism

Iy = Vi) = Vi)

of the fibers of V' at the endpoints, which only depends on the homotopy class
of the path. We can rephrase this construction as follows. Let B C M be a
small ball inside M. Since the parallel transport isomorphism only depends on
the homotopy class of the path, and B is contractible, we obtain a coherent
identification of fibers of V'

Ve =V,
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for points x,y € B by considering paths inside B. So, roughly, the data of a
connection gives an identification of fibers at “nearby” points of the manifold.

Building on this idea, Grothendieck [Gr] gave a purely algebraic analogue of
the notion of parallel transport, using the theory of schemes (rather than just
varieties) in an essential way: he introduced the relation of infinitesimal close-
ness for R-points of a scheme X. Namely, two R-points x,y : Spec(R) — X
are infinitesimally close if the restrictions to Spec("“R) agree, where "R is the
quotient of R by its nilradical.

A crystal on X is by definition a quasi-coherent sheaf on X which is equivariant
with respect to the relation of infinitesimal closeness. More preciesly, a crystal
on X is a quasi-coherent sheaf F with the additional data of isomorphisms

2" (F) =y (%)

for any two infinitesimally close points z,y : Spec(R) — X satisfying a cocycle

condition.

Grothendieck showed that on a smooth algebraic variety, the abelian category
of crystals is equivalent to that of left modules over the ring of differential oper-
ators. In this way, crystals give a more fundamental definition of sheaves with a

flat connection.

A salient feature of the category of crystals is that Kashiwara’s lemma is built
into its definition: for a closed embedding of schemes ¢ : Z — X, the category
of crystals on Z is equivalent to the category of crystals on X, which are set-
theoretically supported on Z. This observation allows us to reduce the study
of crystals on schemes to the case of smooth schemes, by (locally) embedding a

given scheme into a smooth one.

0.1.3. In this paper, we develop the theory of crystals in the context of derived
algebraic geometry, where instead of ordinary rings one considers derived rings,
i.e., Fy ring spectra. Since we work over a field k of characteristic zero, we
shall use connective commutative DG k-algebras as our model of derived rings
(accordingly, we shall use the term “DG scheme” rather than “derived scheme”).
The key idea is that one should regard higher homotopy groups of a derived ring

as a generalization of nilpotent elements.
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Thus, following Simpson [Si], for a DG scheme X, we define its de Rham
prestack X4r to be the functor

Xqgr: R— X(red’dR)
on the category of derived rings R, where
red,clR — red(ﬂ_O(R))

is the reduced ring corresponding to the underlying classical ring of R. L.e., Xqr
is a prestack in the terminology of [GL:Stacks].

We define crystals on X as quasi-coherent sheaves on the prestack Xgr. See,
[Lul, Sect. 2| for the theory of quasi-coherent sheaves in prestacks, or [GL:QCoh,
Sect. 1.1] for a brief review.

The above definition does not coincide with one of Grothendieck mentioned
earlier: the latter specifies a map Spec(R) — X up to an equivalence relation,
and the former only a map Spec("**“R) — X. However, we will show that for X
which is eventually coconnective, i.e., if its structure ring has only finitely many
non-zero homotopy groups, the two definitions of a crystal are equivalent. !

0.1.4. Even though the category of crystals is equivalent to that of D-modules, it
offers a more flexible framework in which to develop the theory. The definition
immediately extends to non-smooth schemes, and the corresponding category
is well-behaved (for instance, the category of crystals on any scheme is locally
Noetherian).

Let f : X — Y be a map of DG schemes. We will construct the natural
pullback functor

f1: Crys(Y) — Crys(X).

In fact, we shall extend the assignment X +— Crys(X) to a functor from the
category DGSch®® to that of stable oco-categories. The latter will enable us to
define crystals not just on DG schemes, but on arbitrary prestacks.

IWhen X is not eventually coconnective, the two notions are different, and the correct one is the

one via Xggr.
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Furthermore, the notion of crystal immediately extends to a non-linear and
categorified setting. Namely, we can just as well define a crystal of schemes or a
crystal of categories over X.

0.2. Left crystals vs. right crystals.

0.2.1. Recall that on a smooth algebraic variety X, in addition to usual (i.e.,
left) D-modules, one can also consider the category of right D-modules. The two
categories are equivalent: the corresponding functor is given by tensoring with
the dualizing line bundle wx over the ring of functions. However, this equivalence
does not preserve the forgetful functor to quasi-coherent sheaves. For this reason,
we can consider an abstract category of D-modules, with two different realization
functors to quasi-coherent sheaves. In the left realization, the D-module pullback
functor becomes the x-pullback functor on quasi-coherent sheaves, and in the
right realization, it becomes the !-pullback functor.

It turns out that the “right” realization has several advantages over the “left”
one. Perhaps the main advantage is that the “right” realization endows the
category of D-modules with a t-structure with very favorable functorial proper-
ties. In particular, this t-structure becomes the perverse t-structure under the
Riemann-Hilbert correspondence.

0.2.2. One can then ask whether there are also “left” and “right” crystals on
arbitrary DG schemes. It turns out that indeed both categories are defined very
generally.

Left crystals are what we defined in Sect. 0.1.3. However, in order to define
right crystals, we need to replace the usual category of quasi-coherent sheaves
by its renormalized version, the category of ind-coherent sheaves introduced in
[IndCoh].

The category IndCoh(X) is well-behaved for (derived) schemes that are (al-
most) locally of finite type, so right crystals will only be defined on DG schemes,
and subsequently, on prestacks with this property.
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Let us recall from [IndCoh, Sect. 5] that for a map f : X — Y between DG
schemes, we have the !-pullback functor

f': IndCoh(Y) — IndCoh(X).

The assignment X +— IndCoh(X) is a functor from the category DGSch®? to
that of stable oo-categories and thus can be extended to a functor out of the

category of prestacks.

For a DG scheme X, we define the category of right crystals Crys"(X) as
IndCoh(X4r). We can also reformulate this definition a la Grothendieck by
saying that a right crystal on X is an object F € IndCoh(X), together with an
identification

(0.1) 2'(F) = y' ()

for every pair of infinitesimally close points x,y : Spec(R) — X satisfying (the
oo-category version of) the cocycle condition. It can be shown that, unlike in
the case of left crystals, this does give an equivalent definition of right crystals

without any coconnectivity assumptions.

0.2.3. Now that the category of right crystals is defined, we can ask whether it is
equivalent to that of left crystals. The answer also turns out to be “yes.” Namely,
for any DG scheme X almost of finite type, tensoring by the dualizing complex

wyx defines a functor
Tx : QCoh(X) — IndCoh(X)

that intertwines the x-pullback on quasi-coherent sheaves and the !-pullback on
ind-coherent sheaves.

Although the functor Tg is not an equivalence for an individual S unless S
is smooth, the totality of such maps for DG schemes mapping to the de Rham
prestack of X define an equivalence between left and right crystals.
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Thus, just as in the case of smooth varieties, to each DG scheme X we attach
the category Crys(X) equipped with two “realization” functors

Crys(X).

oblv, oblv’,

X

QCoh(X) IndCoh(X)

However, in the case of non-smooth schemes, the advantages of the t-structure
on Crys(X) that is associated with the “right” realization become even more
pronounced.

0.2.4. Historical remark. To the best of our knowledge, the approach to D-
modules via right crystals was first suggested by A. Beilinson in the early 90’s,
at the level of abelian categories.

For some time after that it was mistakenly believed that one cannot use left
crystals to define D-modules, because of the incompatibility of the t-structures.
However, it was explained by J. Lurie, that if one forgoes the t-structure and
defines the corresponding stable co-category right away, left crystals work just as

well.

0.3. The theory of crystals/D-modules. Let us explain the formal structure
of the theory, as developed in this paper, and its sequel [GR2].

0.3.1. To each prestack (locally almost of finite type) Y, we assign a stable oo-
category

Y ~ Crys(Y).
This category has two realization functors: a left realization functor to

QCoh(Y), and a right realization functor to IndCoh(Y) which are related via

the following commutative diagram
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Crys(Y

oblvy oblv\é

QCoh(Y) ——————— IndCoh(Y
where YTy is the functor QCoh(‘d) — IndCoh(Y) given by tensoring by the dual-

izing complex wy.
0.3.2. The assignment of Crys(Y) to Y is functorial in a number of ways. For a
map f: Y1 — Yo, there is a pullback functor
f1: Crys(Y2) — Crys(Y1)
which is functorial in f; i.e., this assignment gives a functor

Crys.PmStk (PreStk)°? — DGCatcont, -

The pullback functor on D-modules is compatible with the realization functors.

Namely, we have commutative diagrams

Crys(Y1) A Crys(Y2)

l l
oblv151 l loblvy2

QCoh(Y;) +L— QCoh(Ys)

and

;
Crys(Y1) <f— Crys(Y2)
oblvg1 l J{oblvg2
IndCoh(Y;) +— IndCoh(Yy).

Furthermore, this compatibility is itself functorial in f; i.e. we have a naturally

commutative diagram of functors

T
Crysp,esii

‘y&vl

QCOhPreStk IndCOh!PreStk
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0.3.3. The above portion of the theory is constructed in the present paper. lL.e.,

this paper is concerned with the assignment

Y~ Crys(Y)
and the operation of pullback. Thus, in this paper, we develop the local theory
of crystals/D-modules.

However, in addition to the functor ff, we expect to also have a pushforward
functor fyr «, and the two must satisfy various compatibility relations. The latter
will be carried out in [GR2]. However, let us indicate the main ingredients of the
combined theory:

0.3.4. For a schematic quasi-compact map between prestacks f : Y1 — Yo, there
is the de Rham pushforward functor
far,« : Crys(Y1) — Crys(Y2)
which is functorial in f. This assignment gives another functor
(Cryst*)preStkschiqc : PreStkgen-gc — DGCateont,
where PreStkgu,.qc is the non-full subcategory of PreStk obtained by restricting
1-morpisms to schematic quasi-compact maps.
Let Y = X be a DG scheme?. In this case, the forgetful functor
oblvy : Crys(Y) — IndCoh(Y)
admits a left adjoint, denoted
indy : IndCoh(Y) — Crys(Y),
and called the induction functor.
The induction functor is compatible with de Rham pushforward. Namely, we

have a commutative diagram

IndCoh

IndCoh (Y1) " TndCoh(Ys)

indg L l i indg2
JaR,

Crys(Y1) —— Crys(Y2).

2More generally, we can let Y be a prestack that admits deformation theory.
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This compatibility is itself functorial, i.e. we have a natural transformation of
functors

ind”
(IndCOh* ) PreStksch-qc > (CrySdR,* )PreStkSCh_qC .

0.3.5. In the case when f is proper, the functors (fqr «, f1) form an adjoint pair,
and if f is smooth, the functors (f7[~2n], fqr.«) form an adjoint pair for n the
relative dimension of f.

In general, the two functors are not adjoint, but they satisfy a base change
formula. As explained in [IndCoh, Sect. 5.1], a way to encode the functoriality
of the base change formula is to consider a category of correspondences. Namely,
let (PreStk)corr:all sch-qc be the oo-category whose objects are prestacks locally of
finite type and morphisms from Y; to Yo are given by correspondences

225y

/|
Yo

such that f is schematic and quasi-compact, and g arbitrary. Composition in this
category is given by taking Cartesian products of correspondences. A coherent
base change formula for the functors Crys' and Crysqg « is then a functor

CryS(PrCStk)corr:all,schch : (PreStk)Corr:allvsCh‘qC — DGcatCOnt

and an identification of the restriction to (PreStk)°P with CrySJerreStk’ and the

restriction to PreStkee-qc with (Cryst,*)preStksch_qc.

0.4. Twistings.

0.4.1. In addition to D-modules, it is often important to consider twisted D-
modules. For instance, in representation theory, the localization theorem of
Beilinson and Bernstein identifies the category of representations of a reduc-
tive Lie algebra g with fixed central character x with the category of twisted
D-modules on the flag variety G/B, with the twisting determined by .

In the case of smooth varieties, the theory of twistings and twisted D-modules
was introduced by Beilinson and Bernstein [BB]. Important examples of twistings
are given by complex tensor powers of line bundles. For a smooth variety X,
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twistings form a Picard groupoid, which can be described as follows. Let T be
the complex of sheaves, in degrees 1 and 2, given by

T:=0" - 0¥

where Q! is the sheaf of 1-forms on X, Q%% is the sheaf of closed 2-forms and
the map is the de Rham differential. Then the space of objects of the Picard
groupoid of twistings is given by H?(X,T) and, for a given object, the space of
isomorphisms is H!(X, 7).

0.4.2. The last two sections of this paper are concerned with developing the theory
of twistings and twisted crystals in the derived (and, in particular, non-smooth)
context. We give several equivalent reformulations of the notion of twisting and
show that they are equivalent to that defined in [BB] in the case of smooth

varieties.

For a prestack (almost locally of finite type) Y, we define a twisting to be a
Gm-gerbe on the de Rham prestack Yyqr with a trivialization of its pullback to Y.
A line bundle £ on Y gives a twisting which is the trivial gerbe on Y4gr, but the
trivialization on Y is given by L.

Given a twisting T, the category of T-twisted crystals on Y is defined as the
category of sheaves (ind-coherent or quasi-coherent) on Yqr twisted by the G,,-
gerbe given by T.

0.5. Contents. We now describe the contents of the paper, section-by-section.

0.5.1. In Section 1, for a prestack Y, we define the de Rham prestack Yqr and
establish some of its basic properties. Most importantly, we show that if Y is
locally almost of finite type then so is Y4r.

0.5.2. In Section 2, we define left crystals as quasi-coherent sheaves on the de
Rham prestack and, in the locally almost of finite type case, right crystals as ind-
coherent sheaves on the de Rham prestack. The latter is well-defined because,
as established in Section 1, for a prestack locally almost of finite type its de
Rham prestack is also locally almost of finite type. In this case, we show that
the categories of left and right crystals are equivalent. Furthermore, we prove a

version of Kashiwara’s lemma in this setting.
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0.5.3. In Section 3, we show that the category of crystals satisfies h-descent (and
in particular, fppf descent). We also introduce the infinitesimal groupoid of a
prestack Y as the Cech nerve of the natural map Y — Yqr. Specifically, the
infinitesimal groupoid of Y is given by

Y xY)h =Y

where (Y x Y) is the formal completion of Y x Y along the diagonal.

In much of Section 3, we specialize to the case that Y is an indscheme. Sheaves
on the infinitesimal groupoid of Y are sheaves on Y which are equivariant with
respect to the equivalence relation of infinitesimal closeness. In the case of ind-
coherent sheaves, this category is equivalent to right crystals. However, quasi-
coherent sheaves on the infinitesimal groupoid are, in general, not equivalent to
left crystals. We show that quasi-coherent sheaves on the infinitesimal groupoid
of Y are equivalent to left crystals if Y is an eventually coconnective DG scheme
or a classically formally smooth prestack. Thus, in particular, this equivalence
holds in the case of classical schemes.

We also define induction functors from QCoh(Y) and IndCoh(Y) to crystals on
Y. In the case of ind-coherent sheaves the induction functor is left adjoint to the
forgetful functor, and we have that the category of right crystals is equivalent to
the category of modules over the corresponding monad. The analogous result is
true for QCoh and left crystals in the case that Y is an eventually coconnective
DG scheme.

0.5.4. In Section 4, we show that the category of crystals has two natural
t-structures: one compatible with the left realization to QCoh and another
comaptible with the right realization to IndCoh. In the case of a quasi-compact
DG scheme, the two t-structures differ by a bounded amplitude.

We also show that for an affine DG scheme, the category of crystals is equivalent
to the derived category of its heart with respect to the right t-structure.

0.5.5. In Section 5 we relate the monad acting on IndCoh (resp., QCoh) on a DG
scheme, responsible for the category of right (resp., left) crystals, to the sheaf of
differential operators.
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As a result, we relate the category of crystals to the derived category of D-
modules.

0.5.6. In Section 6, we define the Picard groupoid of twistings on a prestack Y as
that of G,,-gerbes on the de Rham prestack Yqg which are trivialized on Y. We
then give several equivalent reformulations of this definition. For instance, using
a version of the exponential map, we show that the Picard groupoid of twistings is
equivalent to that of G,-gerbes on the de Rham prestack Yqg which are trivialized
on Y. In particular, this naturally makes twistings a k-linear Picard groupoid.

Furthermore, using the description of twistings in terms of G,-gerbes, we iden-

tify the oo-groupoid of twistings as

72 (Hanlh) x 14)) 2
H(Y)
where Hgr(Y') is the de Rham cohomology of Y, and H(Y) is the coherent coho-
mology of Y. In particular, for a smooth classical scheme, this shows that this
notion of twisting agrees with that defined in [BB].

Finally, we show that the category of twistings on a DG (ind)scheme X locally
of finite type can be identified with that of central extensions of its infinitesimal
groupoid.

0.5.7. In Section 7, we define the category of twisted crystals and establish its
basic properties. In particular, we show that most results about crystals carry
over to the twisted setting.

0.6. Conventions and notation. Our conventions follow closely those of [GR1].
Let us recall the most essential ones.

0.6.1. The ground field. Throughout the paper we will work over a fixed ground
field k of characteristic 0.
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0.6.2. co-categories. By an oco-category we shall always mean an (oo, 1)-category.
By a slight abuse of language, we will sometimes refer to “categories” when we
actually mean oo-categories. Our usage of co-categories is model independent,
but we have in mind their realization as quasi-categories. The basic reference for

oo-categories as quasi-categories is [Lu0].

We denote by co-Grpd the oo-category of co-groupoids, which is the same as
the category 8 of spaces in the notation of [Lu0].

For an oo-category C, and z,y € C, we shall denote by Mapsc(z,y) €
oo-Grpd the corresponding mapping space. By Homcg(z,y) we denote the set
mo(Mapsc(z,y)), i.e., what is denoted Hompc(z,y) in [Lu0].

A stable oco-category C is naturally enriched in spectra. In this case, for
x,y € C, we shall denote by Mapsc(z,y) the spectrum of maps from z to y. In
particular, we have that Mapsc(z,y) = Q®°Mapsc(z,y).

When working in a fixed oo-category C, for two objects x,y € C, we shall call
a point of Mapsg(z,y) an isomorphism what is in [Lu0] is called an equivalence.
Le., an isomorphism is a map that admits a homotopy inverse. We reserve the

word “equivalence” to mean a (homotopy) equivalence between co-categories.

0.6.3. DG categories. Our conventions regarding DG categories follow [IndCoh,
Sect. 0.6.4]. By a DG category we shall understand a presentable DG category
over k; in particular, all our DG categories will be assumed cocomplete. Unless
specified otherwise, we will only consider continuous functors between DG cate-
gories (i.e., exact functors that commute with direct sums, or equivalently, with
all colimits). In other words, we will be working in the category DGCatcont in
the notation of [GL:DG]. 3

We let Vect denote the DG category of complexes of k-vector spaces. The
category DGCat¢ont has a natural symmetric monoidal structure, for which Vect

is the unit.

30ne can replace DGCatcont by (the equivalent) (oo, 1)-category of stable presentable oco-

categories tensored over Vect, with colimit-preserving functors.
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For a DG category C equipped with a t-structure, we denote by C=" (resp.,
C=m C=™2™) the corresponding full subcategory of C spanned by objects z,
such that H'(z) = 0 for i > n (resp., i < m, (i > n) A (i < m)). The inclusion
C=" < C admits a right adjoint denoted by 7=", and similarly, for the other

categories.

There is a fully faithful functor from DGCatcont to that of stable co-categories
and continuous exact functors. A stable oco-category obtained in this way is
enriched over the category Vect. Thus, we shall often think of the spectrum
Mapsc(z,y) as an object of Vect; the former is obtained from the latter by the
Dold-Kan correspondence.

0.6.4. (Pre)stacks and DG schemes. Our conventions regarding (pre)stacks and
DG schemes follow [GL:Stacks|:

Let DGSch® denote the oo-category opposite to that of connective commuta-
tive DG algebras over k.

The category PreStk of prestacks is by definition that of all functors

(DGSch?T)°P — 50 -Grpd.

Let <*°DGSch* be the full subcategory of DGSch*! given by eventually co-
connective objects.

Recall that an eventually coconnective affine DG scheme S = Spec(A) is almost
of finite type if
e HY(A) is finite type over k.
e Each H'(A) is finitely generated as a module over H°(A).

Let <°DGSch?f denote the full subcategory of <*DGSch*! consisting of
schemes almost of finite type, and let PreStky.s be the category of all functors

<(DGSch)P 5 60-Grpd.

a

As explained in [GL:Stacks, Sect. 1.3.11], PreStky,s is naturally a subcategory
of PreStk via a suitable Kan extension.
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In order to apply the formalism of ind-coherent sheaves developed in [IndCoh],
we assume that the prestacks we consider are locally almost of finite type for
most of this paper. We will explicitly indicate when this is not the case.

0.6.5. Reduced rings. Let ("?Sch®®)°P < (DGSch*®)°P denote the category of
reduced discrete rings. The inclusion functor has a natural left adjoint

cl,red(_) . (DGSChaH)Op N (redschaﬁ)op
given by
S — H°(S)/nilp(H"(S))

where nilp(H"(S)) is the ideal of nilpotent elements in H(S).

0.7. Acknowledgments. We are grateful to Jacob Lurie for numerous helpful
discussions. His ideas have so strongly influenced this paper that it is even difficult
to pinpoint specific statements that we learned directly from him.

The research of D.G. is supported by NSF grant DMS-1063470.

1. THE DE RHAM PRESTACK

For a prestack Y, crystals are defined as sheaves (quasi-coherent or ind-
coherent) on the de Rham prestack Yqr of Y. In this section, we define the
functor Y — Y4r and establish a number of its basic properties.

Most importantly, we will show that if Y is locally almost of finite type, then so
is Yqr. In this case, we will also show that Y4gr is classical, i.e., it can be studied
entirely within the realm of “classical” algebraic geometry without reference to
derived rings.

As the reader might find this section particularly abstract, it might be a good

strategy to skip it on first pass, and return to it when necessary when assertions
established here are applied to crystals.

1.1. Definition and basic properties.
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1.1.1. Let Y be an object of PreStk. We define the de Rham prestack of Y,
Yar € PreStk as

(L.1) Yar(S) = Y(7°1S)

for S € DGSch?f,

1.1.2. More abstractly, we can rewrite

— lred
Yar = RKE,cagopanc, pagenat (7°7Y),

where ¢bredy .— y |7-edSChaff is the restriction of Y to reduced classical affine schemes,

and
RKE cagepef s pasehes

is the right Kan extension of a functor along the inclusion "¢#Sch* < DGSch?f.

1.1.3. The following (obvious) observation will be useful in the sequel.

Lemma 1.1.4. The functor dR : PreStk — PreStk commutes with limits and

colimits.

Proof. Follows from the fact that limits and colimits in
PreStk = Funct((DGSch®)°P 0o -Grpd)

are computed object-wise. O

As a consequence, we obtain:

Corollary 1.1.5. The functor dR : PreStk — PreStk is the left Kan extension
of the functor

dR|pggaer : DGSch™™ — PreStk

along DGSch*! < PreStk.

Proof. This is true for any colimit-preserving functor out of PreStk to an aribi-

trary oo-category. (|
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1.1.6. Furthermore, we have:

Lemma 1.1.7. The functor dR|pqgupat DGSch®® — PreStk is isomorphic to
the left Kan of the functor

AR | eagger : "“*Sch™® — PreStk

along "4Sch®® — DGSch?!.

Proof. For any target category D and any functor ® : DGSch*® — D, the map

LKErcagest o pasenst (Preagaper) — @
is an isomorphism if and only if the natural transformation

P(reds) - (S), S e DGSch?!

is an isomorphism. The latter is the case, by definition, for D = PreStk and ®
the functor S +— Syr. ([
1.1.8. Let C; C Csy be a pair of categories from the following list of full subcat-
egories of PreStk:

redSch?® Sch® DGSch®®, DGSchs.qe, DGSch, PreStk

(here the subscript “gs-qc” means “quasi-separated and quasi-compact”).

From Lemma 1.1.7 and Corollary 1.1.5 we obtain:

Corollary 1.1.9. The functor Co — PreStk given by dR|c, is isomorphic to the
left Kan extension along C; — Cay of the functor dR|c, : C1 — PreStk.

1.2. Relation between Y and Y4g.

1.2.1. The functor dR : PreStk — PreStk comes equipped with a natural trans-
formation

PdR - Id — dR,

i.e., for every Y € PreStk we have a canonical map

ParyY : J — Yar-
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1.2.2. Let Y*/Yqr be the Cech nerve of PdRr,y, regarded as a simplicial object of
PreStk. It is augmented by Yq4r.

Note that each Y¢/Yqg is the formal completion of Y along the main diagonal.
(We refer the reader to [GR1, Sect. 6.1.1], for our conventions regarding formal

completions).

We have a canonical map

(1.2) 1Y°/Yar| = Yar.

1.2.3. Classically formally smooth prestacks. We shall say that a prestack Y is
classically formally smooth, if for S € DGSch®®, the map
Maps(S,Y) — Maps(<-71S, Y)

induces a surjection on 7.

The following results from the definitions:
Lemma 1.2.4. IfY is classically formally smooth, the map

19°/Yar| — Yar

is an isomorphism in PreStk.
1.3. The locally almost of finite type case.

1.3.1. Recall that PreStk contains a full subcategory PreStki,s of prestacks lo-
cally almost of finite type, see [GL:Stacks, Sect. 1.3.9]. By definition, an object
Y € PreStk belongs to PreStky,g if:

e Y is convergent; i.e., for S € DGSch®?, the natural map

Maps(S,Y) — lig(z] Maps(="S, Y)

is an isomorphism, where ="S denotes th n-coconnective truncation of S.

e For every n, the restriction <Y := Yl<npagapat belongs to SnPreStkyg;

i.e., the functor

S +— Maps(S,Y), (S"DGSch*)°P — o0 -Grpd
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commutes with filtered colimits (equivaently, is a left Kan extension form
the full subcategory S”DGSchi’Ltﬂr < <"DGSch*h).
1.3.2. The following observation will play an important role in this paper.
Proposition 1.3.3. Assume that Y € PreStky.e. Then:
(a) Yar € PreStkyag.

(b) Yar is classical, i.e., belongs to the full subcategory “PreStk C PreStk.

1.3.4. Proof of point (a).
We need to verify two properties:
(i) Yqr is convergent;
(ii) Each truncation ="(Y4gr) is locally of finite type.

Property (i) follows tautologically; it is true for any Y € PreStk. To estab-
lish property (ii), we need to show that the functor Yqr takes filtered limits in
<"DGSch* to colimits in oo -Grpd. Since Y itself has this property, it suffices to
show that the functor

S s cbredg . DGSch* — DGSchaf

preserves filtered limits, which is evident.

1.3.5. Proof of point (b).

By Corollary 1.1.9, we need to prove that the colimit

colim  Sqr € PreStk
Se(Sch*) 1y

is classical. By part (a), the functor
(Schi™) y — (Sch®™) y

is cofinal; hence,

colim Sqr — colim Sqr
Se(Schiff) y Se(Schef)
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is an isomorphism.

Therefore, since the full subcategory “PreStk C PreStk is closed under colim-
its, we can assume without loss of generality that Y is a classical affine scheme of
finite type.

More generally, we will show that for X € DGSch* the prestack Xqg is
classical. Let i : X — Z be a closed embedding, where Z is a smooth classical
affine scheme of finite type. Let Y denote the formal completion Z% of Z along
X (see [GRI1, Sects. 6.1.1 or 6.5]). The map X — Y induces an isomorphism
X4r — Yar. Hence, it suffices to show that Yyg is classical.

Consider Y*/Yyg (see Sect. 1.2.2 above). Note that Y is formally smooth, since
Z is (see [GR1, Sect. 8.1]). In particular, Y is classically formally smooth. Since
the subcategory “PreStk C PreStk is closed under colimits and by Lemma 1.2.4,
it suffices to show that each term Y?/YyR is classical as a prestack.

Note that Y?/Yir is isomorphic to the formal completion of Z% along the
diagonally embedded copy of X. Hence, Y/ Yqg is classical by [GR1, Proposition
6.8.2].

g

1.3.6. From Proposition 1.3.3 we obtain:

Corollary 1.3.7. Let C; C Cs be any of the following full subcategories of
DGSch?f :
Schaff <**DGSchl DGSchil | Sch*, DGSch .
Then for Y € PreStkyg, the functor
(Cl)/HdR - (02)/%R

18 cofinal.

Proof. It suffices to prove the assertion for the inclusions
Schafl — Sch*? — DGSch?! .

For right arrow, the assertion follows from point (b) of Proposition 1.3.3, and for
the left arrow from point (a). O
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1.3.8. Now, consider the following full subcategories
(1.3) redgeha Schaf DGSch™ | DGSchyg, DGSchyag, PreStkiag .
of the categories appearing in Sect. 1.1.8.

Corollary 1.3.9. The restriction of the functor dR to PreStky.g 4s tsomorphic

to the left Kan extension of this functor to C, where C is one of the subcategories
in (1.3).

Proof. It suffices to prove the corollary for C = TedSch?tH. By Corollary 1.1.9, it
is enough to show that for Y € PreStkj,s, the functor
("’Sch") sy — (Sch™) py

is cofinal.

By Proposition 1.3.3(a), the functor
(Sch™) sy — (Sch®) y

is cofinal. Now, the assertion follows from the fact that the inclusion ’"e“lSch?tff —
Sch?tff admits a right adjoint. O

2. DEFINITION OF CRYSTALS

In this section we will define left crystals (for arbitrary objects of PreStk), and
right crystals for objects of PreStk,s. We will show that in the latter case, the
two theories are equivalent.

2.1. Left crystals.

2.1.1. For Y € PreStk we define

Crys'(Y) := QCoh(Yar).

Le.,

Crys'(Y) = lim QCoh(S).

Se (DGsch7ng Yop
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Informally, an object M € Crysl(’j) is an assignment of a quasi-coherent sheaf
Fs € QCoh(S) for every affine DG scheme S € DGSch®! with a map 741§ — Y,
as well as an isomorphism

f*(ffrg) ~Fq € QCOh(S,>

for every morphism f : S’ — S of affine DG schemes.

2.1.2. More functorially, let Crysh o, denote the functor (PreStk)® —
DGCateont defined as

Crysé’reStk = QCOh;reStk OdR7
where
QCohp gy : (PreStk)°? — DGCateont

is the functor which assigns to a prestack the corresponding category of quasi-
coherent sheaves [GL:QCoh, Sect. 1.1.5].

For a map f : Y1 — Yo in PreStk, let fT! denote the corresponding pullback
functor

Crysl(Hg) — Crysl(‘él).

By construction, if f induces an isomorphism of the underlying reduced clas-
sical prestacks “7¢?Y; — cbredy, then it induces an isomorphism of de Rham

prestacks Y1 qr — Y2,qar and in particular f” is an equivalence.

2.1.3. Recall that the functor QCohp g : (PreStk)°? — DGCateont is by defini-

tion the right Kan extension of the functor

QCohy ¢ : (DGSch*)P — DG Cateont

along (DGSch®)oP — (PreStk)P.

In particular, it takes colimits in PreStk to limits in DGCat¢ont. Therefore, by
Corollary 1.1.9, for Y € PreStk we obtain:

Corollary 2.1.4. Let C be any of the categories from the list of Sect. 1.1.8.
Then forY € PreStk, the functor

Crys' Y —  lim Cr sHx
() > fim O (X)

s an equivalence.
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Informally, this corollary says that the data of an object M € Crysl(’j) is
equivalent to that of Mg € Crys'(S) for every S € Cy, and for every f : S" — S,

an isomorphism

FHH M) ~ Mg € Crys'(S).

2.1.5. Recall the natural transformation pgr : Id — dR. It induces a natural

transformation

l. l *
oblv' : CrysPreStk — QCOhPreStk .

Le., for every Y € PreStk, we have a functor
(2.1) oblv}, : Crys'(Y) — QCoh(Y),

and for every morphism f : Y1 — Yo, a commutative diagram:

l

. oblvy1
Crys' (Y1) —— QCoh(Y1)
(2.2) il [r

. oblvi,
Crys'(Y2) ——= QCoh(Ys).
2.1.6. Recall the simplicial object Y®/Y4r of Sect. 1.2.2.

From Lemma 1.2.4 we obtain:
Lemma 2.1.7. IfY is classically formally smooth, then the functor
Crys(Y) — Tot(QCoh(Y*/Yar))
18 an equivalence.

Remark 2.1.8. Our definition of left crystals on Y is what in Grothendieck’s
terminology is quasi-coherent sheaves on the infinitesimal site of Y. The catego-
ry Tot(QCoh(Y®/Yqr)) is what in Grothendieck’s terminology is quasi-coherent
sheaves on the stratifying site of Y. Thus, Lemma 2.1.7 says that the two are e-
quivalent for classically formally smooth prestacks. We shall see in Sect. 3.4 that
the same is also true when Y is an eventually coconnective DG scheme locally
almost of finite type. However, the equivalence fails for DG schemes that are not

eventually coconnective (even ones that are locally almost of finite type).
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2.2. Left crystals on prestacks locally almost of finite type. For the rest
of this section, unless specified otherwise, we will restrict ourselves to the sub-
category PreStky.s C PreStk.

So, unless explicitly stated otherwise, by a prestack/DG scheme/affine DG
scheme, we shall mean one which is locally almost of finite type.

Let CryslpreStklaft denote the restriction of Crysh oy to PreStkjas C PreStk.

i

2.2.1. The next corollary says that we “do not need to know” about schemes

of infinite type or derived algebraic geometry in order to define Crysl(ld) for
Y € PreStky.s. In other words, to define crystals on a prestack locally almost of
finite type, we can stay within the world of classical affine schemes of finite type.

Indeed, from Corollary 1.3.7 we obtain:
Corollary 2.2.2. Let C be one of the full subcategories
Schif, <*DGSchl, DGSch?f | Schaft
of DGSch®®. Then for'Y € PreStky.g the natural functor

Crysl(Y) —  lim  QCoh(S)

SE(C/ydR)Op

1 an equivalence.

2.2.3. Recall that according to Corollary 2.1.4, the category Crysl(%) can be
recovered from the functor

Crysl : C/y — DGCateont
where C is any one of the categories

redgch®® Sch DGSch™, DGSchs.qe, DGSch C PreStk .

We now claim that the above categories can be also replaced by their full

subcategories in the list (1.3):

redQehal | Schalf DGSch | DGSchygy, DGSchyag, PreStkya; .
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Corollary 2.2.4. ForY € PreStky.g and C being one of the categories in (1.3),
the functor

! - !
Crys'(Y) — Xe%gz)op Crys'(X)

s an equivalence.

Proof. Follows from Corollary 1.3.9.
O

Informally, the above corollary says that an object M € Crysl(y) can be re-
covered from an assignment of Mg € Crys!(S) for every S € C 1y, and for every
f:S8"— S of an isomorphism

FHHMs) = Mg € Crys'().

2.2.5. Consider again the functor
oblvg : Crys'(Y) — QCoh(Y)
of (2.1). We have:

Lemma 2.2.6. For Y € PreStky.g, the functor oblvg 18 conservative.
The proof is deferred until Sect. 2.4.7.
2.3. Right crystals.

2.3.1. Recall that PreStky,s can be alternatively viewed as the category of all
functors
(°DGSch)°P 5 50-Grpd,

see [GL:Stacks, Sect. 1.3.11].

Furthermore, we have the functor
Ideoh!PreStklaft . (PreStkiag )°® — DGCateont

of [IndCoh, Sect. 10.1.2], which is defined as the right Kan extension of the

corresponding functor

IndCoh’ .. g  (“DGSchifi)* — DGCateon
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along
(S°DGSch2f )P — (PreStkyag )P

In particular, the functor IndCOh!PreStkm takes colimits in PreStkj,g to limits
in DGC&tcont.

2.3.2. We define the functor
Crysprestiy, © (PreStkiag)? — DGCateont

as the composite

I o !
Crysprestklaft = IndCOhPreStklaﬂ odR.

In the above formula, Proposition 1.3.3(a) is used to make sure that dR is
defined as a functor PreStkj,s — PreStkjas.

WM

Remark 2.3.3. In defining Crysp, gy, We “do not need to know” about schemes

of infinite type: we can define the endo-functor dR : PreStky,sy — PreStky.g
directly by the formula

Maps(S, Yar) = Maps("“4“ S, Y)

for S € <°DGSch .

2.3.4. For amap f : Y, — Yo in PreStky.g, we shall denote by f" the corre-
sponding functor Crys”(Y2) — Crys” (Y1).

If f induces an equivalence "¢y, — cbredy, then the map Y1.ar — Yo,ar is
an equivalence, and in particular, so is f1.

2.3.5. By definition, for Y € PreStkj,s, we have:

Crys"(Y) = lim IndCoh(S).

Se((<°°DGSch:§ft)/HdR)OP

Informally, an object M € Crys” (Y) is an assignment for every S € <°°DGSChZfEt
and a map "%%S — Y of an object Fg € IndCoh(S), and for every f: S — S of

an isomorphism

' (Fs) ~ Fgr € IndCoh(S").
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2.3.6. As in Sect. 2.2.1, we “do not need to know” about DG schemes in order
to recover Crys"(Y):

Corollary 2.3.7. For Y € PreStkyag, the functor

Crys"(Y) — lim IndCoh(S)
Se((SchifT) jy )P
18 an equivalence.
Proof. Follows readily from Corollary 1.3.7. (]

Informally, the above corollary says that an M € Crys"(Y) can be recovered
from an assignment for every S € Sch?tﬁ and a map "*S — Y of an object
Fs € IndCoh(S), and for every f : S’ — S of an isomorphism

f'(Fs) ~ Fg € IndCoh(S").

2.3.8. Furthermore, the analogue of Corollary 2.2.4 holds for right crystals as

well:

Corollary 2.3.9. Let C be any of the categories from (1.3). Then the functor

Crys"(Y) — Xegzcr/r;)op Crys"(X)

s an equivalence.
Proof. Follows from Corollary 1.3.9. O

Informally, this corollary says that we can recover an object M € Crys"(Y) from
an assignment of Mg € Crys"(S) for every S € Cy, and for every f: 5" — S of
an isomorphism

FIT(Ms) ~ Mg € Crys” ().

2.3.10. The natural transformation pggr : Id — dR induces a natural transforma-
tion
oblv" : Crys}",mStklaft — IndCohpresik,,, -

Le., for every Y € PreStkj.¢, we have a functor

oblvy : Crys"(Y) — IndCoh(Y),
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and for every morphism f :Y; — Yo, a commutative diagram:

oblv},

Crys" (Y1) —— IndCoh(Y;)
(2.3) f“T Tf’
oblvg2
Crys"(Y2) —— IndCoh(Y2).
We have:

Lemma 2.3.11. If'Y is classically formally smooth, then the functor
Crys"(Y) — Tot(IndCoh(Y*/Yar))

s an equivalence.

Proof. Same as that of Lemma 2.1.7, i.e. follows from Lemma 1.2.4. O

Lemma 2.3.12. For any ', the functor oblvy is conservative.

Proof. By Corollary 2.3.9 and the commutativity of (2.3), we can assume without
loss of generality that Y = X is an affine DG scheme locally almost of finite type.
Let ¢ : X — Z be a closed embedding of X into a smooth classical finite type
scheme Z, and let Y be the formal completion of Z along X. Let 'i denote the
resulting map X — Y.

Consider the commutative diagram

oblv?

Crys"(Y) — IndCoh(Y)

/iT,TJ( J/I,L'!

oblv’,

Crys"(X) — IndCoh(X).

In this diagram the left vertical arrow is an equivalence since 'igr : Xqr — Yar
is an isomorphism. The top horizontal arrow is conservative by Lemma 2.3.11,

since Y is formally smooth (and, in particular, classically formally smooth).

Hence, it remains to show that the functor /i' is conservative. This follows,
e.g., by combining [GR1, Proposition 7.4.5] and [IndCoh, Proposition 4.1.7(a)].

g
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2.4. Comparison of left and right crystals. We remind the reader that we
assume that all prestacks and DG schemes are locally almost of finite type.

2.4.1. Recall (see [IndCoh, Sect. 5.7.5]) that for any S € DGSchyg there is a

canonically defined functor
Ts : QCoh(S) — IndCoh(S),

given by tensoring with the duaizing sheaf wg € IndCoh(S), such that for f :
S1 — Sy, the diagram

T
QCoh(S;) —» IndCoh(S))

f*T Tf!

QCoh(Ss) —2 TndCoh(Sh)

canonically commutes. In fact, the above data upgrades to a natural transforma-

tion of functors

. * !
TpGSchyy, * QCOMpGgen,,, — MdCohpggen,y, »

and hence gives rise to a natural transformation

A % !
Tprestipg © QCONpresix,., — IndCohp egiy, s

[IndCoh, Sect. 10.3.3].

For an individual object Y € PreStkj.¢, we obtain a functor

Ty : QCoh(Y) — IndCoh(Y).

2.4.2. Applying T to Ygr for Y € PreStkj.s, we obtain a canonically defined
functor

(2.4) Ty, : Crys'(Y) — Crys"(Y),
making the diagram
l Tyar 7
Crys'(Y) —— Crys"(Y)
(25) oblvly l J{oblv@

QCoh(Y) —s IndCoh(Y)

commute.
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In fact we obtain a natural transformation

. l r
TPreStklaft 0 dR ° CrySPreStklaft — CrySPreStkIaft :

In particular, for f:Y; — Yo the diagram

T
Crys' (Y1) —24% Crys™(Yy)

sit] [

Ty
Crysl(‘ég) — 2dRy Crys"(Y2)
commutes.
2.4.3. We claim:

Proposition 2.4.4. For Y € PreStkyag, the functor (2.4) is an equivalence.

Proof. By Corollaries 2.2.4 and 2.3.9, the statement reduces to one saying that
Tx,p, : Crys'(X) — Crys"(X)

is an equivalence for an affine DG scheme X almost of finite type.

Let i : X — Z be a closed embedding, where Z is a smooth classical scheme,
and let Y be the formal completion of Z along X. Since Xgr — Ygr is an
isomorphism, the functors

fH: Crysl(Y) — Crys'(X) and f7" : Crys"(Y) — Crys"(X)

are both equivalences. Hence, it is enough to prove the assertion for Y.

Let Y*/Y4r be the Cech nerve of PreStkyg corresponding to the map

Par,y : Y — YgR.

Consider the commutative diagram

Crys(Y) Tran Crys"(Y)
TOt(TY./YdR)
Tot(QCoh(Y*/Ygr)) ———— Tot(IndCoh(Y*/Y4r)).
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By Lemmas 2.1.7 and 2.3.11, the vertical arrows in the diagram are equiva-
lences. Therefore, it suffices to show that for every 1,

Tyi vy, : QCoh(Y?/Yar) — IndCoh(Y?/Var)

is an equivalence.

Recall (also from the proof of Proposition 1.3.3) that Y/ Ygg is the completion
of the smooth classical scheme Z¢ along the diagonal copy of X. Let us denote

by U; C Z' the complementary open substack.

From [GR1, Propositions 7.1.3 and 7.4.5 and Diagram (7.16)], we obtain that
we have a map of “short exact sequences” of DG categories

0 —— QCoh(Y?/Yqr) —— QCoh(Z%) —— QCoh(U;) —— 0

YYi/Yde szi lTUZ-

0 —— IndCoh(Y?/Yyr) — IndCoh(Z?) —— IndCoh(U;) —— 0.
Now, the functors
Y, : QCoh(Z%) — IndCoh(Z") and Ty, : QCoh(U;) — IndCoh(U;)

are both equivalences, since Z* and U; are smooth:

Indeed, by [IndCoh, Proposition 9.3.3], for any S € DGSch,g, the functor Tg
is the dual of ¥g : IndCoh(S) — QCoh(S), and the latter is an equivalence if S
is smooth by [IndCoh, Lemma 1.1.6].

O

2.4.5. Proposition 2.4.4 allows us to identify left and right crystals for objects
Y € PreStkyag.

In other words, we can consider the category Crys(Y) equipped with two re-
alizations: “left” and “right”, which incarnate themselves as forgetful functors
oblvé and oblvy from Crys(Y) to QCoh(Y) and IndCoh(Y), respectively.



Crystals and D-Modules 91

The two forgetful functors are related by the commutative diagram

Crys(Y

oblvy oblvy

(2.6) QCoh(Y) ————— IndCoh(Y

For a morphism f:Y; — Yo we have a naturally defined functor
f1: Crys(Y2) — Crys(Yy),

which makes the following diagrams commute

Crys(Y1) <L Crys(Y2)

oblvfd1 J{ loblv{é2
QCoh(Y1) «+L— QCoh(Y»)

and

1
Crys(Y1) «1— Crys(¥a)
oblvg1 l J{oblvg2

TndCoh(Y,) «L— TndCoh(Ys).

2.4.6. In the sequel, we shall use symbols Crys(Y), Crys’(Y) and Crys!(Y) inter-
changeably with the former emphasizing that the statement is independent of
realization (left or right) we choose, and the latter two, when a choice of the

realization is important.

2.4.7. Proof of Lemma 2.2.6. Follows by combining Lemma 2.3.12 and Proposi-
tion 2.4.4.

g

2.5. Kashiwara’s lemma. A feature of the assignment Y — Crys(Y) is that
Kashiwara’s lemma becomes nearly tautological.

We will formulate and prove it for the incarnation of crystals as right crystals.
By Proposition 2.4.4, this implies the corresponding assertion for left crystals.
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However, one could easily write the same proof in the language of left crystals as

well.

2.5.1. Recall that a map ¢ : X — Z in PreStk is called a closed embedding if
it is such at the level of the underlying classical prestacks. I.e., if for every
S e (Schaﬁ)/z the base-changed map

Cl(S>Z<DC)—>S

is a closed embedding; in particular, (S x X) is a classical affine scheme.
Z
If X, Z € PreStkyag, it suffices to check the above condition for S € (Sch?tﬂ) /2

2.5.2. For i : X — Z a closed embedding of objects of PreStky,s, let j : Z — Z
be the complementary open embedding. The induced map

J 1 Zdr — ZdRr

is also an open embedding of prestacks. Consider the restriction functor

o

4T Crys™(2) — Crys™(2).

It follows from [IndCoh, Lemma 4.1.1], that the above functor admits a fully
faithful right adjoint, denoted jqr «, such that for every S € (DGSchag) /2, and
S: =5 x ZdR (j_s) S,

Zar

the natural transformation in the diagram

oblvi

IndCoh(S) +——= Crys"(2)
s Tome

T
° oblvy °

IndCoh(S) +—= Crys"(2)

arising by adjunction from the diagram

IndCoh(S) <% Crys”(2)

(js)ll lj* ”

T
o  Ooblvy °

IndCoh(S) +—= Crys"(2),

is an isomorphism.
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In particular, the natural transformation

-IndCoh

oblv} o jar .« = J, o oblv’

Z

is an isomorphism.

2.5.3. Let Crys”(Z)x denote the full subcategory of Crys"(Z) equal to ker(j7").

Clearly, an object M € Crys"(Z) belongs to Crys"(Z)y if and only if for every
S € DGSch,g, equipped with a map ¢S — Z, the corresponding object Fg €
IndCoh(S) lies in

IndCoh(S)Sig := ker <j's : IndCoh(S) — IndCoh(g’)) .

2.5.4. The functor Crys"(Z)yx < Crys"(X) admits a right adjoint, given by
M = Cone(M — jar.« 0 57" (M))[~1].
Hence, we can think of Crys"(Z)y as a co-localization of Crys"(Z).

2.5.5. Since the composite i o jyr . is zero, the functor i'" : Crys"(Z) —
Crys" (X) factors through the above co-localization:

Crys"(Z) — Crys"(2)x ity Crys" (X).

Kashiwara’s lemma says:

Proposition 2.5.6. The above functor
i Crys™(Z)x — Crys”(X)

s an equivalence.

Proof. Note that we have an isomorphism in PreStki,s:

colim S X Xgr =~ Xgr-
SG(DGSChaft)/ZdR ZdR

Furthermore, S” := S x Xggr identifies with the formal completion of S along
Z4R

Ted,clS % cl,redx_
clyredy,
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Hence, the category Crys”(X) can be described as

lim IndCoh(S™).
SE((DGSchatt) 2,5 )°P

By definition, the category Crys"(Z)y is given by

lim ker [ 7% : IndCoh(S) — IndCoh(S ) .
SE((DGSchatt) /2, )P <‘75 () (5)

Now, [GR1, Proposition 7.4.5] says that for any S as above, !-pullback gives

an equivalence
ker (jg : IndCoh(S) — Indcoh(§)> — IndCoh(S™),

as desired.

O

Remark 2.5.7. If we phrased the above proof in terms of left crystals instead
of right crystals, we would have used [GR1, Proposition 7.1.3] instead of [GR1,
Proposition 7.4.5].

3. DESCENT PROPERTIES OF CRYSTALS

In this section all prestacks, including DG schemes and DG indschemes are
assumed locally almost of finite type, unless explicitly stated otherwise.

The goal of this section is to establish a number of properties concerning the
behavior of crystals on DG schemes and DG indschemes. These properties in-
clude: an interpretation of crystals (right and left) via the infinitesimal groupoid;
h-descent; a monadic description of the category of crystals; induction functors

for right and left crystals.

3.1. The infinitesimal groupoid. In this subsection, we let X be a DG ind-
scheme locally almost of finite, see [GR1, Sect. 1.7.1].
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3.1.1. Consider the simplicial prestack X*/Xgg, i.e., the Cech nerve of the map
X — Xgr. As was remarked already, each X*/Xqg is the formal completion of X
along the main diagonal. In particular, all X?/Xqr also belong to DGindSchy,g.

We shall refer to
X x X=X

Xar
as the infinitesimal groupoid of X.

3.1.2. Consider the cosimplicial category IndCoh(X*®/X4R)-

Proposition 3.1.3. The functor
Crys"(X) — Tot(IndCoh(X*/X4r)),
defined by the augmentation, is an equivalence.

Remark 3.1.4. Note that by Lemma 2.3.11, the assertion of the proposition holds
also for X replaced any classically formally smooth object Y € PreStkyas.

Proof. 1t suffices to show that for any S € DGSch,s and a map S — Xggr, the
functor

IndCoh(S) — Tot <IndCoh(S X i)C'/.')CdR))

dR

is an equivalence.

Note that the simplicial prestack S x (X®/X4gr) is the Cech nerve of the map

dR
(3.1) S x X 8.

Xar

Note that S x X identifies with the formal completion of S x X along the map
Xar

redel s 5 § x X, where "4 S — X is the map corresponding to S — Xqg. In
particular, we obtain that the map in (3.1) is ind-proper (see [GR1, Sect. 2.7.4],

where the notion of ind-properness is introduced) and surjective.

Hence, our assertion follows from [GR1, Lemma 2.10.3].

3.2. Fppf and h-descent for crystals.



96 Dennis Gaitsgory and Nick Rozenblyum

3.2.1. Recall the h-topology on the category DGSch?{ | [IndCoh, Sect. 8.2]. It is

a
generated by Zariski covers and proper-surjective covers.

Consider the functor

. o r . aff yop
CrbeGSch:ﬁ = Crysprestkyn, [DGSHA (DGSchjg )°? — DGCat.

We will prove:

Proposition 3.2.2. The functor CryngS . Satisfies h-descent.
chis

Proof. We will show that Crysy GSchaf satisfies étale descent and proper-surjective
aft

descent.

The étale descent statement is clear: if S’ — S is an étale cover in DGSchl
then the corresponding map S’z — Sqr is a schematic, étale and surjective map
in PreStky,g. In particular, it is a cover for the fppf topology, and the statement
follows from the fppf descent for IndCoh, see [IndCoh, Corollary 10.4.5].

Thus, let S — S be a proper surjective map. Consider the bi-simplicial object
of PreStkj,s equal to

(S*/5)*/(Sqr"/Sar);
i.e., the term-wise infinitesimal groupoid of the Cech nerve of S’ — S. Namely,
it is the bi-simplicial object whose (p, q) simplices are given by the g-simplices of
Cech nerve of the map S'7/S — SizP/Sar; so * stands for the index ¢, and e for
the index p.

By Proposition 3.1.3, it is enough to show that the composite functor
(3.2) Crys"(S) := IndCoh(Sgr) — Tot (IndCoh((5"*/S)ar)) —
— Tot (IndCoh((S"/S)*/(S"/S)dR)) .

is an equivalence.

Note, however, that we have a canonical isomorphism of bi-simplicial objects
of PreStkyag

(57/8)"/(Sir"/Sar) = (S /Sar)* /(9" / Sar),
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where the latter is the term-wise Cech nerve of the map of cosimplicial objects

(5"/Sqr) — (S*/Sar)-

The map in (3.2) can be rewritten as

Crys"(S) := IndCoh(Sqr) — Tot (IndCoh(S*/S4r)) —
Tot (IndCoh((S™/Sgr)*/(S*/Sar))) -

Applying Proposition 3.1.3 again, we obtain that it suffices to show that for
every %, the map
IndCoh(S*/Sar) — Tot (IndCoh((S"/Sir)®/(S"/Sar)))

is an equivalence.

However, we note that the map
S"/Shr — S*/Sar
is ind-proper and surjective. Hence, the assertion follows from [GR1, Lemma
2.10.3].
a

a

3.2.3. Consider the fppf topology on the category DGSchag, induced from the
fppf topology on DGSch** (see [GL:Stacks, Sect. 2.2]). Note that every fppf

covering is in particular an h-covering. Therefore, we obtain,

Corollary 3.2.4. The functor CrysTDGS . Satisfies fppf descent.
Chaft

As in [IndCoh, Theorem 8.3.2], fppf descent is a combination of Nisnevich
descent and finite-flat descent®. In particular, we established fppf descent in the
proof of Proposition 3.2.2 without appealing to the fact that every fppf covering
is also an h-covering.

4This observation was explained to us by J. Lurie.
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3.2.5. Fppf (resp. h-) topology on DGSchag induces the fppf (resp. h-) topology

a

on the full subcategory
<°DGSch ¢ DGSch?d .
Proposition 3.2.2 implies:
Corollary 3.2.6. The functor
Crysopaganatt = CIYSprestkig [<ecnasenst * (S*DGSchif)*” — DGCat

on <°°DGSchzg satisfies h-descent and, in particular, fppf descent.

Thus by [Lu0, Corollary 6.2.3.5], we obtain:

Corollary 3.2.7. Let Y1 — Yo be a map in PreStky.s which is a surjection in
the h-topology. Then the natural map

Crys(Y2) — Tot(Crys(Y3/Y2))

18 an equivalence.
3.3. The induction functor for right crystals.

3.3.1. Let ps, p; denote the two projections

X x X=X.

Xar

Note that the maps p;, ¢ = s, are ind-proper. Hence, the functors pé admit
left adjoints, (p;)4¢° see [GR1, Corollary 2.8.3].

Proposition 3.3.2.
(a) The forgetful functor

oblvy : Crys(X) — IndCoh(X)
admits a left adjoint, to be denoted indy..

(b) We have a canonical isomorphism of functors

(pe) 4 o ().

o T
oblvy o indy ~
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(c) The adjoint pair
indYy : IndCoh(X) & Crys"(X) : oblvi,

is monadic, i.e., the natural functor from Crys™(X) to the category of modules in

IndCoh(X) over the monad oblvy. o indy is an equivalence.

Proof. By Proposition 3.1.3 and [Lu2, Theorem 6.2.4.2], it suffices to show that

the co-simplicial category

IndCoh(DC'/DCdR)
satisfies the Beck-Chevalley condition, i.e. for each n, the coface map
d® : IndCoh(X"™/Xqr) — IndCoh (X" /X 4R)

admits a left adjoint, to be denoted by t°, and for every map [m] — [n] in A, the
diagram

IndCoh(X™ /Xqr) <~ IndCoh(X™H /X ur)

| |

IndCoh(X" /Xur) <—— IndCoh (X" /Xar)

which, a priori, commutes up to a natural transformation, actually commutes.

In this case, the Beck-Chevalley condition amounts to the adjunction and base
change between x-pushforwards and !-pullbacks for ind-proper morphisms be-
tween DG indschemes, and is given by [GR1, Proposition 2.9.2].

g

Corollary 3.3.3. The category Crys"(X) is compactly generated.

Proof. The set of compact generators is obtained by applying ind?: to the compact
generators Coh(X) C IndCoh(X) (see [GR1, Corollary 2.4.4]). O

3.4. The induction functor and infinitesimal groupoid for left crystals.
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3.4.1. It follows from Lemma 1.2.4 that for a smooth classical scheme X, the
analogue of Proposition 3.1.3 holds for left crystals, i.e., the functor

(3.3) Crys!(X) = QCoh(X4r) — Tot (QCoh(X*®/X4r))

is an equivalence.

By Proposition 3.1.3, the analogous statement for right crystals is true for any
DG scheme X (and even a DG indscheme). However, this is not the case for left
crystals.

3.4.2. We claim:

Proposition 3.4.3. If a DG scheme X 1is eventually coconnective, then the func-

tor (3.3) is an equivalence.

Remark 3.4.4. One can show that the statement of the proposition holds for any
DG scheme X locally almost of finite type. But the proof is more involved. In
addition, Lemma 2.1.7, the statement of the proposition holds for any prestack
which is classically formally smooth.

Ezample 3.4.5. Consider the DG scheme X = Spec(k[a]), where « is in degree
-2. This is a good case to have in mind to produce counterexamples for assertions
involving Crys!(X).

Proof of Proposition 3.4.3. We have a commutative diagram of functors
Crys!(X) —— Tot (QCoh(X*/X4r))
rxl lTOt(Y)O JXar)
Crys"(X) —— Tot (IndCoh(X*/X4r)) -

with the left vertical map and the bottom horizontal map being equivalences.
Hence, we obtain that Crys'(X) is a retract of Tot (QCoh(X®/Xgr))-

Recall that if Z is an eventually coconnective DG scheme, the functor
Tz : QCoh(Z) — IndCoh(Z)

is fully faithful (see [IndCoh, Corollary 9.6.3]. Hence, by [GR1, Propositions 7.1.3
and 7.4.5], the same is true for the completion of an eventually coconnective DG
scheme along a Zariski-closed subset. Hence, the functors

Txi/xyn - QUoh(X'/Xqr) — IndCoh(X"/Xar)
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are fully faithful. Thus, the functor Tot(Y xe,x,,) in the above commutative
diagram is also fully faithful. But it is also essentially surjective since the identity
functor is its retract.

O

3.4.6. For a DG scheme X, define the functor
ind) : QCoh(X) — Crys'(X)
as
indy := (Yx,,) P oindy o Tx.
We claim:

Lemma 3.4.7. If X is an eventually coconnective DG scheme, the functors
(ind, oblvl) are adjoint.

Remark 3.4.8. The assertion of the lemma would be false if we dropped the
assumption that X be eventually coconnective. Indeed, in this case the functor
inle fails to preserve compactness.

Proof of Lemma 3.4.7. Recall (see [IndCoh, Sect. 9.6.6]) that for X eventually
coconnective, the functor Tx admits a right adjoint, denoted ZY¥; moreover, the
functor T x itself is fully faithful.

We obtain that the right adjoint to inle is given by
=% ooblvy 0 Tx,, ~ E% o Ty o oblvly ~ oblv!
=x 00Dblviy Xdar — =X X 0 0Oblvy = oblvy,

as required.

In the course of the proof of Lemma 3.4.7 we have also seen:
Lemma 3.4.9. The functor oblle is canonically isomorphic to

=V T
ExooblvyoTx,..
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3.4.10. We now claim:

Proposition 3.4.11. Let X be an eventually coconnective DG scheme. Then the
adjoint pair

indl, : QCoh(X) = Crys!(X) : oblv
is monadic, i.e., the natural functor from Crysl(X) to the category of modules in

QCoh(X) over the monad oblvly oind is an equivalence.

Proof. We need to show that the conditions of the Barr-Beck-Lurie theorem hold.
The functor oblvl is continuous, and hence commutes with all colimits. The
fact that oblvl is conservative is given by Lemma 2.2.6. g

4. t-STRUCTURES ON CRYSTALS

The category of crystals has two natural t-structures, which are compatible
with the left and right realizations respectively. One of the main advantages of
the right realization is that the t-structure compatible with it is much better
behaved.

In this section, we will define the two t-structures and prove some of their basic
properties. These include: results on left/right t-exactness and boundedness of
cohomological amplitude of the induction/forgetful functors; the left-completness
property of Crys of a DG scheme; relation to the derived category of the heart
of the t-structure.

4.1. The left t-structure. In this subsection, we do not make the assumption
that prestacks be locally almost of finite type.

4.1.1. Recall [GL:QCoh, Sec. 1.2.3] that for any prestack Z, the category
QCoh(Z) has a canonical t-structure characterized by the following condition: an
object F € QCoh(Z) belongs to QCoh(Z)=" if and only if for every S € DGSch*!
and a map ¢ : S — Z, we have

¢*(F) € QCoh(S)=".

In particular, taking Z = Yqr for some prestack Y, we obtain a canonical
t-structure on Crys'(Y), which we shall call the “left t-structure.”
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By definition, the functor
oblv! : Crys!(X) — QCoh(X)
is right t-exact for the left t-structure.

4.1.2. In general, the left t-structure is quite poorly behaved. However, we have

the following assertion:

Proposition 4.1.3. Let Y be a classically formally smooth prestack. Then
M € Crys'(Y)=" & oblvi(M) € QCoh(Y)=’.

Proof. We need to show that if M € Crys'(Y) is such that oblvi (M) €
QCoh(Y)=Y then M € Crys'(Y)=0. T.., we need to show that for every
S € DGSch*! and ¢ : S — Ygr, ¢*(M) € QCoh(S)=0.

Let Y*/Yqr be the Cech nerve of the map PdrY : 9 — Yar- By Lemma 1.2.4,
there exists a map ¢/ : S — Y and an isomorphism ¢ >~ pgr y o ¢'. The assertion
now follows from the fact that ¢ is right t-exact. O

4.2. The right t-structure. From this point until the end of this section we
reinstate the assumption that all prestacks are locally almost of finite type, unless

explicitly stated otherwise.

In this subsection we shall specialize to the case of DG schemes.

4.2.1. Let X be a DG scheme. Recall that the category IndCoh(X) has a natural
t-structure, compatible with filtered colimits, see [IndCoh, Sect. 1.2].

It is characterized by the property that an object of IndCoh(X) is con-
nective (i.e., lies in IndCoh(X)<%) if and only if its image under the functor
Ux : IndCoh(X) — QCoh(X) is connective.

4.2.2. We define the right t-structure on Crys”(X) by declaring that
M € Crys"(X)=Y < oblv (M) € IndCoh(X)=°.

In what follows, we shall refer to the right t-structure on Crys’(X) as “the” t-
structure on crystals. In other words, by default the t-structure we shall consider
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will be the right one. By construction, this t-structure is also compatible with
filtered colimits, since oblv'y is continuous.

4.2.3. We claim that the right t-structure on Crys”(X) is Zariski-local, i.e., an
object is connective/coconnective if and only if its restriction to a Zariski cover
has this property. Indeed, this follows from the corresponding property of the
t-structure on IndCoh(X), see [IndCoh, Corollaty 4.2.3].

4.2.4. The right t-structure and Kashiwara’s lemma. Let ¢ : X — Z be a closed
embedding of DG schemes. Let iggr . denote the functor Crys"(X) — Crys"(Z)
equal to the composition

/i]‘,r -1

Crys"(X) A Crys"(Z)x < Crys"(2),
which, by construction, is the left adjoint of it".
We have:
Proposition 4.2.5. The functor iqr . : Crys"(X) — Crys"(Z) is t-ezact.
Proof. Note that the full subcategory
Crys"(Z)x C Crys"(2)

is compatible with the t-structure, since it is the kernel of the functor j©", which
is t-exact (here j denotes the open embedding Z — X — 7).

Hence, it remains to show that the functor
it Crys™(Z)x — Crys™(X)

is t-exact.
Thus, we need to show that for M € Crys"(Z)x we have:
oblv’;(M) € IndCoh(Z)”° < oblvh (i (M)) € IndCoh(X)>°.
Recall the notation
IndCoh(Z)y := ker (j! : IndCoh(Z) — IndCoh(Z — X)) .

It suffices to show the following:
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Lemma 4.2.6. Leti: X — Z be a closed embedding. Then for F € IndCoh(Z) x
we have:

F € IndCoh(2)”° < i'(F) € IndCoh(X)>°.
O

Proof of Lemma 4.2.6. The = implication follows from the fact that i' is left

t-exact (being the right adjoint of the t-exact functor, namely, j"dCoh),

For the converse implication, note that the full subcategory
IndCoh(Z)x C IndCoh(Z)

is also compatible with the t-structure, since it is the kernel of the t-exact func-
tor j'. Furthermore, it follows from [IndCoh, Proposition 4.1.7(b)] that the t-
structure on IndCoh(Z)x is generated by the t-structure on

Coh(Z)x :=ker (5% : Coh(Z) — Coh(Z — X)).

Let F € IndCoh(Z)x be such that i'(F) € IndCoh(X)>°. We need to show
that J is right-orthogonal to (Coh(Z)x)=C. By assumption, F is right-orthogonal
to the essential image of Coh(X )< under

Coh(X) -2 Coh(Z)x — IndCoh(Z)x.

However, it is easy to see that every object of (Coh(Z)x)<" can be obtained as a
finite successive extension of objects in the essential image of Coh(X)=Y which
implies the required assertion.

O
Corollary 4.2.7. If a map X1 — X2 of DG schemes induces an isomorphism
cl,reXm N cl,redXQ,

then the corresponding t-structures on Crys"(X1) ~ Crys"(X2) coincide.



106 Dennis Gaitsgory and Nick Rozenblyum

4.2.8. Let X be a DG scheme. By construction, the forgetful functor oblv'y is
left t-exact. Hence, by adjunction, the functor ind’y is right t-exact.

We now claim:

Proposition 4.2.9. The functor ind’y is t-exact.

Proof. 1t suffices to show that the composition oblv'y o ind’y is left t-exact. We
deduce this from Proposition 3.3.2(b):

The functor pi, is left t-exact (e.g., by Lemma 4.2.6 applied to Ax : X —
X x X). The functor (p;)indCo! is left t-exact (in fact, t-exact) by [GR1, Lemma
2.7.11].

0

4.2.10. We now claim:
Proposition 4.2.11.
(a) If X is a smooth classical scheme, then oblv'y is t-exact.

(b) For a quasi-compact DG scheme X, the functor oblv'y is of bounded coho-
mological amplitude.

Proof. Let X be a smooth classical scheme. By the definition of the t-structure on
Crys"(X), the essential image of IndCoh(X )= under ind’ generates Crys"(X)=°
by taking colimits. Hence, in order to show that oblv’y is right t-exact, it suf-
fices to show the same for the functor oblv’y o ind’y. We will deduce this from
Proposition 3.3.2(b):

We can write

(X x X)% =~ colim X,

where X, X x X is the n-th infinitesimal neighborhood of the diagonal. Hence,
by [GR1, Equation (2.2)],

IndCoh !

()34 0 ply == colim (py © i )N o (ps 0 ).
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Now, each of the functors (p; o i, )N is t-exact by [GR1, Lemma 2.7.11], and
each of the functors (ps o in)! is t-exact because p; o i, : X, — X is finite and
flat.

Now, let X be a quasi-compact DG scheme, and let us show that oblv'y
is of bounded cohomological amplitude. The question readily reduces to the
case when X is affine, and let ¢ : X — Z be a closed embedding, where Z is
smooth. By Proposition 4.2.5 and point (a), it suffices to show that the functor
i' : IndCoh(Z) — IndCoh(X) is of bounded cohomological amplitude, but the
latter follows easily from the fact that Z is regular.

O
4.3. Right t-structure on crystals on indschemes.

4.3.1. Let X be a DG indscheme. Fix a presentation of X
(4.1) X = colim X,
«

as in [GR1, Prop. 1.7.6]. For each «, let i, denote the corresponding closed
embedding X, — X, and for each a; — a3 let 74, «, denote the closed embedding
Xa, = Xa,-

We have:
Crys"(X) ~ lim Crys"(X,),

where for a; — ao, the functor Crys"(X,,) — Crys"(X,,) is given by iL’f,aQ.

Hence, by [GL:DG, Sect. 1.3.3], we have that
Crys" (X) ~ colim Crys"(X,),
where for oy — o, the functor Crys"(Xq,) = Crys"(Xa,) is given by (ia;,as )dR -

In particular, for each «, we obtain a pair of adjoint functors

(ia)dr,« : Crys"(X) = Crys"(X) : ibr

[
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4.3.2. Recall from [GR1, Sect. 2.5] that IndCoh(X) has a natural t-structure
compatible with filtered colimits.

Using this t-structure on IndCoh(X), we can define the right t-structure on
Crys”"(X). Namely, we have

M € Crys"(X)2? < oblvi(M) € IndCoh(X)=°

Since oblv’. preserves colimits, this t-structure is compatible with filtered colim-
its. We can describe this t-structure more explicitly using the presentation (4.1),
in a way analogous to [GR1, Lemma 2.5.3] for the t-structure on IndCoh(X):

Lemma 4.3.3. Under the above circumstances, we have:

(a) An object F € Crys"(X) belongs to Crys’ (X)ZY if and only if for every a, the
object iy (F) € Crys"(X,) belongs to Crys"(Xq)=Y.

(b) The category Crys” (X)=0 is generated under colimits by the essential images
of the functors (iq)ar. (Crys’(X4)=0).

Proof. Point (a) follows from the definition and [GR1, Lemma 2.5.3(a)]. Point
(b) follows formally from point (a). O

4.3.4. Suppose that i : X — X is a closed embedding of a DG scheme into a DG
indscheme. By the exact same argument as in [GR1, Lemma 2.5.5], we have:

Lemma 4.3.5. The functor igr . is t-exact.

4.3.6. As an illustration of the behavior of the above t-structure on right crystals
over a DG indscheme, let us consider the following situation. Let i : X — Z
be a closed embedding of quasi-compact DG schemes. Let Y denote the formal
completion of X in Z, considered as an object of DGindSchy,g; let ‘i denote the

resulting map X — Y.

We claim:

Lemma 4.3.7. The equivalence Crys"(X) ~ Crys"(Y), induced by the isomor-
phism "igr : Xqr — Yar, 8 compatible with the t-structures.
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Proof 1. Follows from Proposition 4.2.5 and the fact that the equivalence
IndCoh(Y') ~ IndCoh(Z)y

of [GR1, Proposition 7.4.5] is compatible with the t-structures (see [GR1, Lemma

7.4.8]). O

Proof 2. From the commutative diagram
/Z-T,r
Crys"(X) <—— Crys"(Y)

oblvrxl loblv?

IndCoh(X) +—— IndCoh(Y).
we obtain that it suffices to show that for F € IndCoh(Y) we have

F € IndCoh(Y)>° & "i*(F) € IndCoh(X)>?,

which follows formally from [GR1, Lemma 7.4.8] and Lemma 4.2.6 (or can be
easily proved directly). O

4.4. Further properties of the left t-structure.

4.4.1. First, let us describe the relation between the left and the right t-structures
on crystals in the case of a smooth classical scheme.

Proposition 4.4.2. Let X be a smooth classical scheme of dimension n. Then
F e Crys'(X)=Y & F € Crys"(X)=".

Le., the left t-structure agrees with the right t-structure up to a shift by the di-

mension of X.

Proof. Recall that the two forgetful functors are related by the commutative
diagram
Crys(X).

oblle oblv’

QCoh(X)

IndCoh(X)

X
In the case that X is a smooth classical scheme of dimension n, the functior T x
is an equivalence and maps QCoh(X)=C isomorphically to IndCoh(X)<~". The
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assertion now follows from Proposition 4.1.3 and Proposition 4.2.11(a), combined
with the fact that oblv’y is conservative.

O

4.4.3. The next proposition compares the “left” and “right” t-structures on
Crys(X) for an arbitrary DG scheme X.

Proposition 4.4.4. Let X be quasi-compact. Then the identity functor
Crys!(X) — Crys"(X)

has bounded amplitude, i.e. the difference between the left and right t-structures

18 bounded.

Proof. Without loss of generality, we can assume that X is affine. Let Z be a
smooth classical scheme of dimension n; i : X — Z a closed embedding. We
claim that for M! € Crys!(X) and the corresponding object M" € Crys"(X) we
have

(4.2) M € (Crys'(X))=0 = M" € (Crys"(X))=? and
M" e (Crys"(X))=0 = M e (Crys'(X))=".

Let U <% Z denote the complementary open embedding. Let Y denote the
formal completion of X in Z; let i denote map Y — Z.

The map X — Y defines an isomorphism Xgr — Yggr, which allows to identify
Crys!(X) ~ Crys'(Y). Applying Proposition 4.1.3, we have:
(4.3) M e (Cryst(X))=Y & oblvi (M') € QCoh(Y)=?,
where the t-structure on QCoh(Y) is that of Sect. 4.1.1.

Consider the subcategory QCoh(Z)x C QCoh(X) which is by definition equal
to

ker(j* : QCoh(Z) — QCoh(U)).

This subcategory is compatible with the t-structure on QCoh(Z), since the func-
tor j* is t-exact.
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Recall (see [GR1, Proposition 7.1.3]) that the functor i* defines an equivalence
QCoh(Z)x — QCoh(Y).

Let  be the object of QCoh(Z)x corresponding to oblvi (M!) € QCoh(Y).
We have:
T z(F) ~ oblv(igr,«(M")).

Since the functor igr « is t-exact (Proposition 4.2.5), and since Tz shifts co-

homological degrees by [—n|, we have:

(4.4) M € (Crys" (X)<0 & F € (QCoh(Z)x)=".

Combining (4.3) and (4.4), the implications in (4.2) follow from the next as-

sertion:

Lemma 4.4.5. The equivalence i* : QCoh(Z)x ~ QCoh(Y) has the following
properties with respect to the t-structure on QCoh(Z)x inherited from QCoh(Z)
and the t-structure on QCoh(Y') of Sect. 4.1.1:

(a) If F € (QCoh(Z)x)=0 then i*(F) € QCoh(Y)=0.

(b) If i*(F) € QCoh(Y)=°, then F € (QCoh(Z)x)=".
O

Proof of Lemma 4.4.5. Point (a) follows from the fact that the functor i s right
t-exact.

To prove point (b), we note that the category QCoh(Y)=Y is generated under

<0

taking colimits by the essential image of QCoh(Z)=" under the functor i*, see

[GR1, Proposition 7.3.5]. Hence, it is sufficient to show the the functor
QCoh(Z) -5 QCoh(Y) ~ QCoh(Z)x

has cohomological amplitude bounded by n. However, the above functor is the
right adjoint to the embedding

QCoh(Z)x = QCoh(Z),

and is given by
F' +— Cone(F" — ji 0 j*(F))[-1].
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Now, j* is t-exact, and j, is of cohomological amplitude bounded by n — 1. This

implies the required assertion.

O

4.4.6. Let X be an arbitrary quasi-compact DG scheme. We have:

Proposition 4.4.7.

(a) The functor oblvl, : Crys(X) — QCoh(X) has bounded cohomological am-
plitude.

b) If X is eventually coconnective, the functor indy : QCoh(X) — Crys(X) has
X

cohomological amplitude bounded from above.

Proof. For point (a) we can assume that X is affine and find a closed embedding
i : X — Z, where Z is a smooth classical scheme. In this case, the assertion
follows from Proposition 4.2.5 and the fact that the functor

i* : QCoh(Z) — QCoh(X)

has a bounded cohomological amplitude.

Point (b) follows from point (a) by the (indk, oblv)-adjunction.
O
Remark 4.4.8. The assumption that X be eventually coconnective in point (b) is
essential; otherwise a counterexample can be provided by the DG scheme from

Example 3.4.5. In addition, is it easy to show that inle has a cohomological
amplitude bounded from below if and only if X is Gorenstein (see Lemma 4.6.12).

4.5. Left completeness.

4.5.1. Let X be an affine smooth classical scheme. We observe that in this case
the category Crys”(X) contains a canonical object

ind% (Ox),

which lies in the heart of the t-structure (see Proposition 4.2.9), and is projective,
i.e.,
HO(N) =0 = Homg,ys(x) (ind’ (0x),N) = 0.

Moreover, ind’% (Ox) is a compact generator of Crys”(X). This implies:
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Corollary 4.5.2. Let X be an affine smooth classical scheme. Then the category
Crys" (X)) is left-complete in its t-structure.

4.5.3. The above corollary implies left-completeness for any DG scheme X:

Corollary 4.5.4. For any DG scheme X, the category Crys"(X) is left-complete

in the “right” t-structure.

Proof. First, we note that the property of being left-complete is Zariski-local
(proved by the same argument as [GL:QCoh, Proposition 5.2.4]). Hence, we can
assume without loss of generality that X is affine. Choose a closed embedding
i : X — Z, where Z is a smooth classical scheme. Now the assertion follows
formally from the fact that the functor iqr . is continuous, fully faithful (by
Proposition 2.5.6), t-exact (by Proposition 4.2.5), and the fact that Crys"(Z) is
left-complete (by the previous corollary).

Here is an alternative argument:

By Corollary 4.2.7, we can assume that X is eventually coconnective. In
this case, the functor oblle commutes with limits, as it admits a left adjoint.
Moreover, by Lemma 2.2.6, oblle is conservative, and by Proposition 4.4.7 it
has bounded cohomological amplitude. Therefore, the fact that QCoh(X) is left-
complete in its t-structure implies the corresponding fact for Crys”(X).

g

Remark 4.5.5. The question of right completeness is not an issue: since our
t-structures are compatible with filtered colimits, right completeness is equiva-
lent to the t-structure being separated on the coconnective subcategory, which

is evident since oblv'y is left t-exact and conservative, and the t-structure on

IndCoh(X)™* = QCoh(X)™ has this property.

4.5.6. Combining Corollary 4.5.4 with Proposition 4.4.4, we obtain:

Corollary 4.5.7. For a quasi-compact DG scheme X, the category Crys(X) is
also left-complete in the “left” t-structure.

4.6. The “coarse” induction and forgetful functors.
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4.6.1. Let X be a DG scheme. Recall that the functor ¥y identifies the cate-
gory QCoh(X) with the left-completion of IndCoh(X) (see [IndCoh, Proposition
1.3.4]).

Since the category Crys” (X)) is left-complete in its t-structure, and the functor
ind'y is t-exact, by the universal property of left completions, we obtain:

Corollary 4.6.2. The functor ind'y canonically factors as

TndCoh(X) 2% QCoh(X) 2% Crys™(X).

4.6.3. We can also consider the functor
‘oblv’y : Crys"(X) — QCoh(X),

given by Ux o oblv'y, where ¥y : IndCoh(X) — QCoh(X) is the functor of
[IndCoh, Sect. 1.1.5].

It is clear that the functor ‘oblv’y has a finite cohomological amplitude. In-
deed, the follows from the corresponding fact for oblv’y and the fact that ¥x is
t-exact (see [IndCoh, Lemma 1.2.2]).

Proposition 4.6.4. The functor 'oblv’y is conservative.

Proof. The assertion is Zariski-local, so we can assume that X is affine. Choose
a closed embedding i : X — Z, where Z is a smooth classical affine scheme.

Let iQC™! - QCoh(Z) — QCoh(X) denote the right adjoint of i, : QCoh(X) —
QCoh(Z).% 1t is easy to see that we have a canonical isomorphism of functors

.1 . !
\IIX 01 X~ ZQCOh" o \Ifz.

Hence, for M € Crys"(Z), we have
‘oblv’y (it (M) ~ i€ ‘oblvl, (M)).

Applying Kashiwara’s lemma, the assertion of the proposition follows from the
next lemma:

1. . . .
QCohy! is continuous. This is because the

5Although this is irrelevant for us, we note that the i
functor 4. : QCoh(X) — QCoh(Z) sends compact objects to compacts (since Z is regular, any

coherent sheaf on it is perfect).
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Lemma 4.6.5. The functor i%°°M!' . QCoh(Z) — QCoh(X) is conservative when
restricted to QCoh(Z)x.

g

Proof of Lemma 4.6.5. We need to show that the essential image of the functor
ix : QCoh(X) — QCoh(Z) generates QCoh(Z)x.

First, we claim that QCoh(Z)x is generated by the subcategory of bound-
ed objects, denoted (QCoh(Z)x)®. This follows from the corresponding fac-
t for QCoh(Z) and the fact that the inclusion QCoh(Z)x — QCoh(Z) has
a right adjoint of bounded cohomological amplitude. By devissage, we obtain
that QCoh(Z)x is generated by (QCoh(Z)x)", and further by (QCoh(Z)x)¥ N
Coh(Z2).

However, it is clear that every object of (QCoh(Z)x)Y N Coh(Z) is a finite
extension of objects lying in the essential image of Coh(X)?.

g

Remark 4.6.6. In the case when X is eventually coconnective we will give a
cleaner proof of Proposition 4.6.4, below.

4.6.7. Assume now that X is eventually coconnective. Recall that in this case
the functor Ux admits a fully faithful left adjoint Zx (see [IndCoh, Proposition
1.5.3]).

We observe:

Lemma 4.6.8. There exists a canonical isomorphism 'ind ~ ind’ o Ex.

Proof. Follows from the isomorphisms ind’y ~ ‘indy o Ux and Ux o Ex ~

Tdgcon(x)- 0

Corollary 4.6.9. The functors ('ind’y,’oblv’y) form an adjoint pair.

Proof. Follows formally from Lemma 4.6.8 by adjunction. 0

Remark 4.6.10. The functors ('ind’y, oblv'y) are not adjoint unless X is eventu-

ally coconnective. Indeed, if X is not eventually coconnective, the functor ‘ind’y
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does not preserve compact objects: it sends Ox € QCoh(X) to a non-compact
object of Crys"(X).

Alternate proof of Proposition 4.6.4. By Corollary 4.6.9, the assertion of Propo-
sition 4.6.4 (in the eventually coconnective case) is equivalent to the fact that the
essential image of the functor 'ind’ generates Crys”(X). However, the latter is
tautological from the corresponding fact for ind'y.

O
4.6.11. Let X be an eventually coconnective DG scheme, and consider the pair
of adjoint functors
Ex : QCoh(X) = IndCoh(X) : ¥x

with Zx being fully faithful (see [IndCoh, Sect. 1.4]).

We have seen that the functor ind'y factors through the colocalization functor
Ux. However, it is not true in general that the functor oblv'’y factors through
Ex, l.e., that it takes values in QCoh(X), considered as a full subcategory of
IndCoh(X) via Ex.

In fact, the following holds:

Lemma 4.6.12 (Drinfeld). The functor oblv'’y factors through the essential im-
age of QCoh(X) under Zx if and only if X is Gorenstein.

Recall that a DG scheme X is said to be Gorenstein if:

(a) wx € Coh(X) (which is equivalent to X being eventually coconnective, see
[IndCoh, Proposition 9.6.11));

(b) When considered as a coherent sheaf, wx is a graded line bundle (which is
equivalent to wx € QCoh(X )P, see [IndCoh, Corollary 7.4.3]).

Proof. Suppose that oblv'y factors through QCoh(X). In particular, we obtain
that wy € Coh(X) lies in the essential image of Zx. Now the assertion follows
from [IndCoh, Lemma 1.5.8].
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For the opposite implication, we write oblv’y (M) as
T x (oblvh (M)) = oblvh (M) ® wy,

where the tensor product is understood in the sense of the action of QCoh(X)
on IndCoh(X), see [IndCoh, Sect. 1.4]. Recall also that the functor Zx is
tautologically compatible with the above action of QCoh(X). Hence, if wx,
being perfect, lies in the essential image of Zy, then so does oblvl (M) ® wx

g

4.7. Relation to the abelian category. In this subsection we let X be an
affine DG scheme. We will relate the category Crys"(X) to a more familiar
object.

4.7.1. Since the t-structure on Crys”(X) is compatible with filtered colimits, we
obtain that Crys"(X)Y is a Grothendieck abelian category.

Using the fact that Crys"(X) is right-complete in its structure, by reversal of
arrows in [Lu2, Theorem 1.3.2.2], we obtain a canonically defined t-exact functor

(4.5) D (Crys’"(X)@>Jr — Crys"(X)T,

where D(—)" denotes the eventually coconnective part of the derived category
of the abelian category.

4.7.2. We are going to prove:

Proposition 4.7.3. The functor (4.5) uniquely extends to an equivalence of
categories
D (Crysr(X)Q?) — Crys"(X).

The rest of this subsection is devoted to the proof of Proposition 4.7.3. Without
loss of generality, we can assume that X is classical.

4.7.4. Step 1. Assume first that X is a smooth classical scheme. In this case the
assertion is obvious from the fact that

ind’y (Ox)

is a compact projective generator for both categories.
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4.7.5. Step 2. Let us show that the functor
r Q + r +
D (Crys (X) ) — Crys" (X)

is an equivalence. For this, it suffices to show that every object M € Crys"(X)"
can be embedded in an injective object, i.e., an object J € Crys"(X)" such that

H(N) =0 = Homg,ye(x)(N, ) = 0.

Let i : X — Z be a closed embedding, where Z is a smooth classical scheme.
Choose an embedding iggr «(M) < g, where § is an injective object (in the same
sense) in Crys"(Z); it exists by Step 1.

Since the functor ind? is t-exact, we obtain that oblv’,(J) is an injective object
of QCoh(Z)¥. This implies that J := i7" (J) belongs to Crys”(X)¥ and has the
required property.

4.7.6. Step 3. We note that by Corollary 4.5.4, the category Crys” (X)) identifies
with the left completion of Crys"(X)*. Hence, it is enough to show that the
canonical embedding

D (Crys?"(X)@)+ <D (CrysT(X)Q?)
identifies D (Crys"(X)Y) with the left completion of D (Crys" (X)O)+.

For that it suffices to exhibit a generator P of Crys"(X)Y of bounded Eut
dimension.

Consider the object
P :=ind\(Ox).
It has the required property by Proposition 4.2.11(b).
O
Remark 4.7.7. A standard argument allows us to extend the statement of Propo-

sition 4.7.3 to the case when X is a quasi-compact DG scheme with an affine
diagonal.

Remark 4.7.8. Once we identify crystals with D-modules on smooth affine classi-
cal schemes, we will obtain many other properties of Crys”(X) on quasi-compact
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DG schemes: e.g., the fact that the abelian category Crys” (X )Q? is locally Noe-
therian® and that Crys”(X) has finite cohomological dimension with respect to
its t-structure. 7 Note that by Proposition 4.2.5, in order to establish both these
properties, it suffices to show them for smooth affine classical schemes.

5. RELATION TO D-MODULES

In this section we will relate the monads oblv’ o ind’ and oblvl oind to
the sheaf of differential operators. As a result we relate the category Crys” over
a DG scheme to the (derived) category of D-modules.

5.1. Crystals via an integral transform. In this subsection we let X be a DG

indscheme locally almost of finite type.

5.1.1. Recall that for X € DGindSchy,g, the category IndCoh(X) is dualizable
and canonically self-dual, see [GR1, Sect. 2.6].

Hence, for X,Y € DGindSch, the category Functcont(IndCoh(X),IndCoh(Y))
identifies with

IndCoh(X) ® IndCoh(Y) ~ IndCoh(X x Y).

Expilcitly, an object Q € IndCoh(X x Y) defines a functor Fg : IndCoh(X) —
IndCoh(Y) by

(5.1) F s (o)l o (Ay x idy) (F K Q),

where po : XxY — Y is the projection map and Ay is the diagonal map X — Xx X,

In particular, the endo-functor oblv’ o ind’ defines an object, denoted
v € IndCoh(X x X).

We will identify this object.

6By this we mean that Crysr(X)Qp is generated by its compact objects, and a subobject of a
compact one is compact.

"By this we mean that there exists N € N such that for n > N, Homcyysr(x) (M1, M2[n]) = 0 for
Ml, My € Crysr(X)O.
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5.1.2. Let ﬁx denote the map

X x X~ (X xX)y— X xX.

Xar

Proposition 5.1.3. There is a canonical isomorphism in IndCoh(X x X)

D ~ (A)™ " (w x ).
XdR

Proof. We begin with the following general observation.

Suppose that we have a functor F € Functeont(IndCoh(X), IndCoh(Y)) given
by a correspondence, i.e. we have a diagram

Z
N
X Y
of DG indschemes, and F := (g2)"4C°M o ¢} . Let
1:Z2—-XxY
be the induced product map.

Lemma 5.1.4. In the above situation, the functor

(g2)1n4C°h 6 g1 : TndCoh(X) — IndCoh(Y)

is given by the kernel Q = 4ol ().

Proof. We have a diagram, whose inner square is Cartesian

q1 Xidg
RSN

Z X*xZ — X

’LJ/ Jidx X1

X xy DXy ey
le
y.

For F € IndCoh(X), we have

(g2)14C%0 6 g1 (F) = (po) Ao o jIndCoh 6 (g1 x idy) (F Rl wy)
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By [GR1, Proposition 2.9.2],®
idCoh & (g1 X idg) (F R wy) =~ (Ay x idy)'(F KO ().

We apply this lemma to prove Proposition 5.1.3 as follows:

By Proposition 3.3.2(b), we have that the functor oblv?y oind? is given by the
correspondence

(X x 04

7 K
X X.

The assertion now follows from Lemma 5.1.4.

5.1.5. As a corollary of Proposition 5.1.3 we obtain:

Corollary 5.1.6. There exists a canonical isomorphism o(DY.) ~ D, where o
18 the transposition of factors acting on X x X.

5.2. Explicit formulas for other functors. In this subsection we let X be an
eventually coconnective quasi-compact DG scheme almost of finite type.

5.2.1. Recall that the category QCoh(X) is also compactly generated and self-
dual. Under the identifications
QCoh(X)" ~ QCoh(X) and IndCoh(X)" ~ IndCoh(X),

the dual of the functor Y x is the functor ¥x of [IndCoh, Sect. 1.1.5] (see [IndCoh,
Proposition 9.3.3] for the duality statement).

In particular, for C' € DGCatcont, we have

Functeont (QCoh(X), C') ~ QCoh(X) ® C/,

by a formula similar to (5.1).

8Stri(:tly speaking, the base change isomorphism was stated in [GR1, Proposition 2.9.2] only in
the case when the vertical arrow is ind-proper, which translates into ¢ being proper. For the

proof of Proposition 5.1.3 we will apply it in such a situation.
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5.2.2. Let C be any of the categories

QCoh(X xX) ~ QCoh(X)®QCoh(X), IndCoh(X xX) ~ IndCoh(X)®IndCoh(X),

QCoh(X) ® IndCoh(X) or IndCoh(X) ® QCoh(X).

Then C is a module over QCoh(X x X), and we define an endo-functor of C,
denoted

F— ?{X}
given by tensor product with the object
Cone(Oxxx — jx 03" (Oxxx))[—1],
where j is the open embedding X x X — X «— X x X.

Note that by [IndCoh, Proposition 4.1.7 and Corollary 4.4.3], for C =
IndCoh(X x X) this functor identifies with

(AX)}kndCoh ° (AX)!,
where we recall that A x denotes the map

X x X~ (XxX)5% =X xX.
Xar

5.2.3. We claim:
Proposition 5.2.4.
(a) The object of
QCoh(X) ® QCoh(X) ~ Functeont (QCoh(X), QCoh(X)),
corresponding to oblle o inle, s canonically identified with

(\Ifx(wx) & OX){X}

(b) The object of
QCoh(X) ® IndCoh(X) ~ Functeont (QCoh(X), IndCoh(X)),
corresponding to oblv'y o Tx, . o inle, is canonically identified with

(\I/X(wx) &wx){x}.
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(c) The object of
IndCoh(X) ® QCoh(X) ~ Functcont (IndCoh(X), QCoh(X)),
corresponding to oblle o (Yxyp) toind%, is canonically identified with

(wX X OX){X}'

(d) The object of
QCoh(X) X IndCoh(X) ~ Functeont (QCoh(X), IndCoh (X)),
corresponding to oblv'y o’ind’, is canonically identified with

(OX @wx){x}.

(e) The object of
IndCoh(X) X QCoh(X) ~ Functcont(IndCoh(X), QCoh(X)),
corresponding to 'oblv’y o ind’, is canonically identified with

(wx XV x(wx))(xy-

(f) The object of
QCoh(X x X) ~ Functcont (QCoh(X), QCoh(X)),
corresponding to 'oblv’y o'ind'y, is canonically identified with

(OX X \I’X(WX)){X}-

(g) The object of
QCoh(X x X) ~ Functcont(QCoh(X), QCoh(X)),
corresponding to 'oblv’y o Tx . o inle, is canonically identified with

(Wx (wx) WUy (wx))xy-

(h) The object of
QCoh(X x X) ~ Functcont(QCoh(X), QCoh(X)),
corresponding to oblvfx o (YTxyp) to’indY, is canonically identified with

(OX on){X}.

123



124 Dennis Gaitsgory and Nick Rozenblyum

Proof. Let C and D be objects of DGCatcont with C dualizable, so that
Functeont(C, D) ~ C¥ @ D.

Let F: C; — C and G : D — D; be continuous functors. Then the resulting
functor
Functeont (C, D) — Functeont (C1,D1)

is given by
(F¥®G):CY®D — CY ® D;.

With this in mind, we have:

Points (a) and (c) follow by combining Proposition 5.1.3, Lemma 3.4.9, and the
following assertion:

—_

Lemma 5.2.5. The unit of the adjunction Idqconx) — EY o Tx defines an
isomorphism

OX — Ev(wx).

Point (b) follows from Proposition 5.1.3 using indy ~ (Tx,,) "' oind% o Tx.

Point (d) follows from Proposition 5.1.3 using the isomorphism ‘ind’ ~ ind% o
EY and Lemma 5.2.5.

Point (e) follows from Proposition 5.1.3. Point (f) follows from point (d). Point
(g) follows from point (b).

Point (h) follows from point (d) using Lemma 3.4.9 and Lemma 5.2.5.

5.2.6. Let D, DIX_”/, Dgé_)l and D§ denote the objects of
QCoh(X) ® QCoh(X) ~ QCoh(X x X)
corresponding to the functors
oblvhoindly, ‘oblvi oYy, oindy, oblvko(Tx,,) 'o'ind and ‘oblv’o'ind,

respectively.

We have:
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Proposition 5.2.7. The objects D, ZDfX, Dfxﬁ‘r,, 'D}";” and D§ are related by
(i) DY ~ (Tx REY) (DY) € QCoh(X x X);
(i) (Vx RIdpdacon(x))(D%) =~ (Idgeonx) MY x) (DY) € QCoh(X) ® IndCoh(X);
(iii) D" = (Tx K ¥x)(Dy) € QCoh(X x X);

(iii") D™ =~ (Idgeonx) ®¥x o Tx)(Dy) ~ (0x K Ux(wx)) & Dl €
XxX

QCoh(X x X);

(iv) Dy = (B KEY)(Dy).

(v) D" ~ (2%, K Wx)(D%) € QCoh(X x X).

Proof. Point (i) follows from Lemma 3.4.9.

Point (ii) follows from the (tautological) isomorphism of functors

oblv’y oindy o Tx ~ oblv’y o Tx,, o indly =~ Tx o oblvly o ind.
Point (iii) is tautological.
Point (iii’) follows by combining points (ii) and (iii).
Point (iv) follows from Lemma 3.4.9.

Point (v) is tautological.

g

5.3. Behavior with respect to the t-structure. We continue to assume that

X is a quasi-compact DG scheme almost of finite type.

5.3.1. We note:

Lemma 5.3.2. The object D is bounded below, i.e., belongs to IndCoh(X x X)*.
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Proof. Follows from Proposition 5.1.3, using the fact that wx € IndCoh(X)™",
and the fact that the functor

F s Frxy, IndCoh(X x X) — IndCoh(X x X)

is right t-exact. ([

5.3.3. Assume now that X is eventually coconnective. We claim:

Proposition 5.3.4. The objects Db, D", D7 and D of QCoh(X x X)
are all eventually coconnective, i.e., belong to QCoh(X x X)*.

Proof. Follows from Proposition 5.2.4, using the fact that ¥x(wx),0x €
QCoh(X)™ and the fact that the functor

F s Fxy, QCOh(X x X) — QCoh(X x X)

is right t-exact. O

5.3.5. Finally, let us assume that X is a smooth classical scheme. We claim:

Proposition 5.3.6. The object D, € QCoh(X x X) lies in the heart of the
t-structure.

Proof. The assertion is Zariski-local, hence, we can assume that X is affine. It is

sufficient to show that
(p2)+(DY) € QCoh(X)

lies in the heart of the t-structure. We have,
(p2)« (DY) =~ oblvk o indk (Ox) ~ EY o (oblv’ o ind’) o Tx(Ox).

Now, the functor oblv'y o ind’ is t-exact (see Proposition 4.2.11), the functor

T x is an equivalence that shifts degrees by [n], and =¥ is the inverse of Tx. O

5.4. Relation to the sheaf of differential operators. In this subsection we
shall take X to be a smooth classical scheme. We are going to identify DZX with
the object of QCoh(X x X') underlying the classical sheaf of differential operators
Diff x.
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5.4.1. For any Q € QCoh(X x X)¥, which is set-theoretically supported on the
diagonal, and F1,Fs € QCoh(X)Q?, a datum of a map

(p2)«(p1(F1) ® Q) = T
is equivalent to that of a map

Q— Diﬁ‘X(ffl,g’Q).

Furthermore, this assignment is compatible with the monoidal structure on
QCoh(X x X)?, given by convolution and composition of differential operators.

5.4.2. Taking Q = DZX and ¥ = Fo = Oy, from the action of the monad oblle o
inle on Ox, we obtain the desired map
(5.2) Dl — Diffy,

compatible with the algebra structure.

We claim:

Lemma 5.4.3. The map (5.2) is an isomorphism of algebras.

Proof. Tt suffices to show that (5.2) is an isomorphism at the level of the under-
lying objects of QCoh(X x X). The latter follows, e.g., from the description of
DlX as a quasi-coherent sheaf given by Proposition 5.2.4. g

5.5. Relation between crystals and D-modules. Let X be a classical scheme
of finite type. We will show that the category Crys"(X) can be canonically
identified with the (derived) category D-mod"(X) of right D-modules on X.

Remark 5.5.1. The category D-mod”(X) satisfies Zariski descent. Therefore, in
what follows, by Proposition 3.2.2, it will suffice to establish a canonical equiva-
lence for affine schemes.

5.5.2. Let Z be a smooth classical affine scheme, and let 7 : X < Z be a closed
embedding. By the classical Kashiwara’s lemma and Proposition 2.5.6, in order

to construct an equivalence
Crys"(X) ~ D-mod" (X),

it suffices to do so for Z.
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Hence, we can assume that X itself is a smooth classical affine scheme. We shall
construct the equivalence in question together with the commutative diagram of

functors
Crys"(X) —— D-mod"(X)

oblv’, l J{

IndCoh(X) —%» QCoh(X),
where the right vertical arrow is the natural forgetful functor, and the functor
Ux is the equivalence of [IndCoh, Lemma 1.1.6].

By Proposition 2.4.4, constructing an equivalence Crys”(X) ~ D-mod" (X)) as
above is the same as constructing an equivalence between left crystals and left
D-modules together with the commutative diagram of functors

Crys!(X) D-mod!(X) .

(5.3) kx\\ /

QCoh(X)

5.5.3. By Propositions 4.7.3, 2.4.4 and 4.4.2, the category Crys'(X) identifies with
the derived category of the heart of its t-structure. The category D-mod’(X) is
by definition the derived category of D-mod!(X)%. Moreover, the vertical arrows
in diagram (5.3) are t-exact.

Hence, it suffices to construct the desired equivalence at the level of the corre-

sponding abelian categories
Crys'(X)¥ —— D-mod'(X)"

(5.4) obllel l

QCoh(X)¥ —9 QCoh(X)¥

5.5.4. The latter is a classical calculation, due to Grothendieck:
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Namely, one interprets Crys' (X )Q as the heart of the category of quasi-coherent
sheaves on the truncated simplicial object

P12

P13 P
(X x X x X)§ = (X x X)y p?X.
s 2

Le., explicitly, an object of Crys!(X)" is a quasi-coherent sheaf ¥ € QCoh(X)"
together with an isomorphism

¢ p3(F) = pi(T)
which restricts to the identity on the diagonal and satisfies the cocycle condition

Pi3(9) = Pia(®) o P33 ().

Below we give an alternative approach to establishing the equivalence in (5.4).

5.5.5. The abelian categories Crys!(X)® and D-mod!(X)" are given as modules
over the monads Mcrysl( X) and Mp_poq(x), respectively, acting on the category
QCoh(X)7.

By definition, Mp_y04(x) is given by the algebra of differential operators Diff x.
The monad Mcrysl (x) Is given by oblvfx o indfx. Now, the desired equivalence
follows from Lemma 5.4.3.

Remark 5.5.6. It follows from the construction that the equivalence
Crys!(X) — D-mod!(X)

is compatible with pull-back for maps f : ¥ — X between smooth classical
schemes.

6. TWISTINGS

In this section, we do not assume that the prestacks and DG schemes that we
consider are locally almost of finite type. We will reinstate this assumption in
Sect. 6.7.

6.1. Gerbes.
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6.1.1. Let pt /G,, be the classifying stack of the group G,,. In other words,
pt /G, is the algebraic stack that represents the functor which assigns to an
affine DG scheme S, the co-groupoid of line bundles on S.

In fact, since G,, is an abelian group, the stack pt /G,, has a natural abelian
group structure. The multiplication map on pt /G,, represents tensor product
of line bundles. This structure upgrades pt /G,, to a functor from affine DG

schemes to oo-Picard groupoids, i.e. connective spectra.

For our purposes, a G,-gerbe will be a presheaf § of pt /G,,-torsors, which
satisfies any of the following three (non-equivalent) conditions:

(i) G is locally non-empty in the étale topology °.
(ii) G is locally non-empty in the Zariski topology.
(iii) G is globally non-empty.

Specifically, let B"3V¢(pt /G,,,) be the classifying prestack of pt /G,,. It is given
by the geometric realization of the simplicial prestack
B"e(pt /G,y,) i=| -+ pt /Gy X Dt /Gy — pt /Gy T2 pt |.
Let B%(pt /G,,) (resp. B (pt /G,,)) be the Zariski (resp. étale) sheafification
of the prestack BV¢(pt /G,,).

The prestacks B (pt /G,,), B%*(pt /G,,) and B"*V¢(pt /G,,) represent G-
gerbes satisfying the above conditions (i), (ii), and (iii) respectively.
Let (Geg,,)pasenat Pe the functor
(DGSch®)°P — 00 -PicGrpd

that associates to an affine DG scheme S, the groupoid of G,,-gerbes, where we
consider any of the three notions of gerbe defined above.

Remark 6.1.2. While these three versions do not give equivalent notions of G-
gerbe, we will see shortly that they do lead to the same definition of twisting,
since the relevant gerbes will be those whose restrictions to ¢7¢%S are trivialized.

9By Toén’s theorem, this is equivalent to local non-emptyness in the fppf topology.
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6.1.3. We define the functor
(Geg,, )prestk : (PreStk)°? — oo -PicGrpd
as the right Kan extension of (Geg,, )pggaeet along

(DGSch?)°P < (PreStk)°P.

Le., for Y € PreStk,

GeGm (%) = lim GeGm (S)

Se(DGsch?;f )op

Equivalently,
Geg,, (¥) = Mapspyeguc (Y, B (pt /Gr))

for 7 = naive, Zar or et.

Thus, informally, a G,,-gerbe on Y is an assignment of a G,,-gerbe on every
S € DGSch®® mapping to Y, functorial in S.

For a subcategory C <C PreStk, let (Geg, )c denote the restriction
(Geg,, )Prestk|c-

6.2. The notion of twisting.

6.2.1. Let Y be a prestack. The Picard groupoid of twistings on Y defined as

Tw(Y) := ker (pgRy : Geg,, (Yar) — Geg,, (H)) ,

where Geg,, is understood in any of the three versions: naive, Zar or et. As we
shall see shortly (see Sect. 6.4), all three versions are equivalent.

Informally, a twisting 7 on Y is the following data: for every S € DGSch??
equipped with a map “7°4S — Y we specify an object G5 € Geg,, (S), which
behaves compatibly under the maps S; — S3. Additionally, for every extension
of the above map to a map S — Y we specify a trivialization of Gg, which also
behaves functorially with respect to maps S1 — Ss.
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Remark 6.2.2. When we write ker(A; — Ajz), where A; — Ay is a map in
oo -PicGrpd, we mean

A x {x*
1 A { }7
where the fiber product is taken in co-PicGrpd. IL.e., this the same as the con-

nective truncation of the fiber product taken in the category of all (i.e., not
necessarily connective) spectra.

6.2.3. Ezample. Let £ be a line bundle on Y. We define a twisting 7'(£) on Y
as follows: it assigns to every S € DGSch*® with a map “7¢4S — Y the trivial
Gm-gerbe. For a map S — Y, we trivialize the above gerbe by multiplying the
tautological trivialization by L.

6.2.4. It is clear that twistings form a functor

Twprestk : PreStk®® — co-PicGrpd.

For a morphism f: Y1 — Yo we let f* denote the corresponding functor

TW(IAQ) — TW(%l).

If C is a subcategory of PreStk (e.g., C = DGSch®! or DGSch), we let Twc
denote the restriction of Twp,esi to C°P.

6.2.5. By construction, the functor Twp.egic takes colimits in PreStk to limits in
00 -PicGrpd. Hence, from Corollary 1.1.5, we obtain:

Lemma 6.2.6. The functor Twpresie maps isomorphically to the right Kan ex-
tension of Twg along
C°P — PreStk°P

for C being one of the categories

DGSch®® DGSchygqe, DGSch.

Concretely, this lemma says that the map

Tw(Y) — lim Tw(S)
Se(DGSch*/’g)DP

is an isomorphism (and that DGSch®® can be replaced by DGSchgs e or DGSch.)
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Informally, this means that to specify a twisting on a prestack Y is equivalent
to specifying a compatible family of twistings on affine DG schemes S mapping
to Y.

6.3. Variant: other structure groups.

6.3.1. Let S be an affine DG scheme. Consider the Picard groupoid

Gl (8) := ker ((Geg,, () = Geg,, (7))

Let (Gegid)DGSChaﬁ denote the resulting functor

(DGSch)®? — oo -PicGrpd.

6.3.2. By definition, we can think of Gegid(S) as gerbes (in any of the three
versions of Sect. 6.1.1) with respect to the presheaf of abelian groups

(09)5" = ker(0F = O 1oug)-

6.3.3. In addition to G,,-gerbes, we can also consider G,-gerbes. We have the
functor

(Geg, ) pasenatt (DGSChaﬂ)Op — 00-PicGrpd

which assigns to an affine DG scheme S the groupoid of G,-gerbes on S.

Note that unlike the case of G,,-gerbes, the three notions of gerbes discussed
in Sect. 6.1.1 are equivalent for G,-gerbes. This is due to the fact that for an
affine DG scheme S,

H%ar(‘s? GG) = He?t(S7 Ga) = 0.

Thus, we have that (Geg,)pagaat iS represented by B?(G,), which is the
geometric realization of the corresponding simplicial prestack.
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6.3.4. By definition, for an affine DG scheme S, we have

Geg, (S) = B*(Maps(S,G,)) ~ BX(I'(S, 0g)).

In particular, viewed as a connective spectrum, Geg, (S) has a natural structure
of a module over the ground field k. This upgrades (Geg,)pggepat to a functor

(DGSch)®? — oo -PicGrpd,,

where co-PicGrpd,;, denotes the category of k-modules in connective spectra.
Note that by the Dold-Kan correspondence, we have

00 -PicGrpd;, ~ Vect=".

We define the functor
(Geg, )prestk : PreStk°® — oo -PicGrpd,,
as the right Kan extension of the functor (Geg, )pggepatt along

(DGSch®®)°P < PreStkoP .

6.3.5. As with G,,-gerbes, we can consider the Picard groupoid
Ge({}raed(s) := ker (GeGa(S) — Geg, (Cl,TedS)> ’

and let (Geé{:d)DGschaH denote the resulting functor

(DGSch)®? — oo -PicGrpd,, .

By definition, for an affine DG scheme S, Geg:d(S ) is given by gerbes for the

presheaf of connective spectra
Ogl"@d = ker(OS — Ocl,reds).

Explicitly,
red red
Gell“'(S) =~ BX((S, 04°%)).
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6.3.6. Recall from [GR1, Sect. 6.8.8] that the exponential map defines an iso-
morphism

exp : Oge‘i — (Ox)éwd.

Hence, we obtain:

Corollary 6.3.7. The exponential map defines an isomorphism of functors

d d
(6.1) exp : (Gegae ) DGSchaf — (Gegri ) DGSchat

for any of the three versions (naive, Zar or et) of (Geé:id)DGSChaH.

Thus, if we realize GeéTzd(S) as gerbes in the étale or Zariski topology, this
category has trivial mg and 7. In other words, any such gerbe on an affine DG
scheme is globally non-empty, and any automorphism is non-canonically isomor-
phic to identity.

6.3.8. The isomorphism (6.1) endows Gegid(S ), viewed as a connective spectrum,

with a structure of module over the ground field k. This upgrades (Geéiid)DGSChaH
to a functor
(DGSch)®? — oo -PicGrpdy, .

We define the functor

(Ge({}:id)PreStk : PreStk°® — oo -PicGrpd,,
as the right Kan extension of the functor (Geg:fl)DGSChaff along

(DGSch®T)°P sy PreStkoP

6.3.9. By definition, for Y € PreStk
Cel“N(Y) == lim  Ge[(S).

Se(DGSchii )op

Informally, for Y € PreStk, an object § € Gegjd(H) is an assignment for
every S € DGSché/‘g of an object Gg € Gegid(S), and for every S’ — S of an

isomorphism

f*(Ss) ~ Gg.

The following results from the definitions:
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Lemma 6.3.10. ForY € PreStk, the natural map
Gegjd(‘j) — ker (Ge@,m (Y) — Geg,, (d’de)>
18 an isomorphism, where

clyredy .__
Y= LKE(TCdSChaH)OPC—)(PreStk)OP (y"“edSchaH)'

6.4. Twistings: reformulations. We are going to show that the notion of
twisting can be formulated in terms of

d d
(Geg:; )Prestk, (Geg, )prestk OF (Geé{j’ )Prestk:

instead of (Geg,, )preStk-

6.4.1. Consider the functors

Tw/™, Tw,, Tw/"® : PreStk — co-PicGrpd

given by
Tw/md(%) = ker <p§R7y : Geérid(HdR) — Gegjd(yo ,
Twe(Y) := ker (pfm,g : Geg, (Yar) — GeGa(H))
and

Tfre4(y) = Ker (piny - Gefl(Yan) = Gef(9))

We have the following diagram of functors given by the exponential map and
the evident forgetful functors.

erp
Twémd s Ty/red

)

Tw, Tw

Proposition 6.4.2. The functors in (6.2) are equivalences.
Proof. The functor given by the exponential map is an equivalence by Sect. 6.3.6.

Let us show that the right vertical map in (6.2) is an equivalence. This is in
fact tautological:

Both functors are right Kan extensions under

(DGSch*)°P — (PreStk)°P,
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so it is enough to show that the map in question is an isomorphism when evaluated
on objects S € DGSch?f.

We have:
Tw/"4(S) = Gel[l(Sar)  x  {x} R
Gel ()
~ ker (Geg,, (San) —~ Geg,, (*"!(San))) x {x} =
ker(GeGm (S)—Geg,, (Cl”"edS))
= ker (Ge((;,m (Sar) — Geg,, (Cl’TedS)) X {*} >~

ker(GeGm (8)—Geg,, (Cl”"edS))
~ Geg, (Sar) X {*} = Tw(S).
Geg, (S)

€

The fact that the left vertical arrow in (6.2) is an equivalence is proved similarly.

g

6.4.3. As a consequence of Proposition 6.4.2, we obtain:

Corollary 6.4.4. The notions of twisting in all three versions: naive, Zar and

et are equivalent.

In addition:

Corollary 6.4.5. The functor Tw : (PreStk)°? — co-Grpd canonically upgrades
to a functor

(PreStk)°? — oo -PicGrpd,, .

6.4.6. Example. We can use the natural k-module structure on Tw to produce
additional examples of twistings. Let £ be a line bundle on Y, and let T'(£) be
the twisting of Sect. 6.2.3. Now, for a € k, the k-module structure on Tw(Y)
gives us a new twisting T'(£%%).

Remark 6.4.7. Note that it is not true that any twisting 7" on an affine DG scheme
X is trivial, even locally in the Zariski or étale topology. It is true that for any
S € DGSch*! with a map S — X4g, the corresponding G,,-gerbe on S can be
non-canonically trivialized; but such a trivialization can not necessarily be made
compatible for the different choices of S.
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An example of such a gerbe for a smooth classical X can be given by a choice
of a closed 2-form (see Sect. 6.5.4) which is not étale-locally exact.

Note, however, that the gerbes described in Example 6.4.6 are Zariski-locally
trivial, because of the corresponding property of line bundles.

6.4.8. Convergence. We now claim:

Proposition 6.4.9. The functor Tw : (DGrSchaﬁE)Op — 00-PicGrpd s conver-

gent. 19

Proof. We will show that the functor Tw(/fed is convergent. For this, it is enough

to show that the functors
S Ge(gfd(SdR) and Gegfd(S)
are convergent.
The convergence of Ge(gfd((—)dR) is obvious, as this functor only depends on

the underlying reduced classical scheme. Thus, it remains to prove the conver-
/red
gence of Geg " (—).

‘We have:

Gel“(S) = Geg, (S)  x  {x}.
GeGa (cl,'reds)

Hence, it is sufficient to show that the functor Geg, (—) is convergent. The latter
follows from the fact that

Geg, (—) = B*(Maps(—,G,)),

while G, is convergent, being a DG scheme.

We can reformulate Proposition 6.4.9 tautologically as follows:

Corollary 6.4.10. The functor Twprestk maps isomorphically to the right Kan
extension of

Twesepasen® = TWpasena [<copagenas

10gee Sect. 1.3.1, where the notion of convergence is recalled.
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along

(S°DGSch?)°P s (DGSch®T)°P s (PreStk)°P.

Remark 6.4.11. We can use Proposition 6.4.9 to show that the functor Geg,, is
also convergent (in any of the three versions).

6.4.12. Twistings in the locally almost of finite type case. Corollary 6.4.10 implies
that we “do not need to know” about DG schemes that are not locally almost of
finite type in order to know what twistings on Y € PreStk if Y is locally almost
of finite type.

Corollary 6.4.13.
(a) ForY € PreStkyag, the naturally defined map

Tw(Y) — lim Tw(S)
Se((<>°DGSch?fl) y)op

s an equivalence.

(b) The functor Twprestk,, maps isomorphically to the right Kan extension of

TWeoo along the inlcusions
<eoDGSchAf 9

(°DGSch)oP <y (DGSch?)°P s (PreStkyag )P

Proof. This is true for Tw replaced by any convergent prestack (DGSch®T)oP —
oo -Grpd. O

Remark 6.4.14. It follows from Remark 6.4.11 that the functor Geg,, (in any
of the three versions), viewed as a presheaf, belongs to PreStkj,s. Indeed, this
is evident in the naive version, since pt /G, belongs to PreStkj.g. For the Zar
and et versions, this follows from [GL:Stacks, Corollary 2.5.7] that says that the
condition of being locally of finite type in the context of n-connective prestacks

survives sheafification, once we restrict ourselves to truncated prestacks.

6.5. Identification of the Picard groupoid of twistings. We can use the
description of twistings in terms of G,-gerbes to give a cohomological description
of the groupoid of twistings.
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6.5.1. De Rham cohomology. Let Y be a prestack. Recall that the coherent co-
homology of Y is defined as

H(Y) :=T(Y,0y) = Mapsqcon(y) (Oy, Oy).
We define the de Rham cohomology of Y to be the coherent cohomology of Y4g;
ie.,
Har(4) == H(Yar) = Mapsqconyar) (OYar> OYar)-
Note that since QCoh(Yq4r) is a stable co-category, the Maps above gives a (not

necessarily connective) spectrum.
Let X be a smooth classical scheme. In this case, by Sect. 5.5, we have
Har(X) = MGPSD_modl(X)(OXa 0x).
In particular, our definition of de Rham cohomology agrees with the usual one

for smooth classical schemes.

6.5.2. Consider the functor B?(G,), which represents G,-gerbes. By definition,
for a prestack Y, we have an isomorphism of connective spectra:

Maps(Y, B(Ga)) = 7=° (Mapsqcany)(Oy, 0)[2]) = 7=°(H(Y)[2).

Thus by Proposition 6.4.2, we obtain:

Corollary 6.5.3. For a prestack Y, groupoid of twistings is given by

Tw(Y) ~ 752 (HdR(y> H>(<%) {*}> [2].

6.5.4. Now, suppose that X is a smooth classical scheme. In this case, we have
Har(X) ~T'(X,9°)
where 2° is the complex of de Rham differentials on X. The natural map
Har(X) — H(X)

is given by global sections of the projection map Q2* — Ox. Therefore, we have

T(x) 27 (HanlX) % {5)) 22 (R0 0)) 2

~ 752 (P(X, =2(Q° i 0))) 2.
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The complex 752(Q® x 0) identifies with the complex
Ox

Ql N QQ,CZ

where Q2 is the sheaf of closed 2-forms (placed in cohomological degree 2) and
the map is the de Rham differential.

Thus, we have that the Picard groupoid of twistings on X is given by
Tw(X) ~ 72 (P(X, ol - QQ’CZ)> 2].

In particular, our definition of twistings agrees with the notion of TDO of [BB]|
for smooth classical schemes.

6.6. Twisting and the infinitesimal groupoid.

6.6.1. Let
Y=y’
be a groupoid object in PreStk, and let Y* be the corresponding simplicial object.

Let us recall the notion of central extension of this groupoid object by G,,. (Here
Gy, can be replaced by any commutative group-object H € PreStk).

By definition, a central extension of Y = Y° by G,, is an object of Geg,, (|Y°]),
equipped with a trivialization of its restriction under

Yo - 1y°).

6.6.2. Informally, the data of such a central extension is a line bundle £ on Y!,
whose pullback under the degeneracy map Y° — Y! is trivialized, and such that
for the three maps

pL2,p23, 12 Y = Y,
we are given an isomorphism
P12(L) @ p53(L) ~ pi 5(L),

and such that the further coherence conditions are satisfied.
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6.6.3. For Y € PreStk consider its infinitesimal groupoid

4 x9=Y.

Yar

By definition, a twisting on Y gives rise to a central extension of its infinitesimal

groupoid by G,.

Conversely, from Lemma 1.2.4, we obtain:

Corollary 6.6.4. Assume that Yy is classically formally smooth. Then the above

functor
Tw(Y) — {Central extensions of the infinitesimal groupoid of Y by G,,}

s an equivalence.

6.7. Twistings on indschemes.

6.7.1. Let X be an object of DGindSchy,s;. We will show that the assertion of
Corollary 6.6.4 holds for X:

Proposition 6.7.2. The functor
Tw(X) — {Central extensions of the infinitesimal groupoid of X by G,,}

s an equivalence.

The rest of this subsection is devoted to the proof of Proposition 6.7.2.

6.7.3. Step 1. By Corollary 6.4.13(b), we have to show the following:

For every S € (DGSchgg)/de a datum of G,,-gerbe on S, equipped with a

trivialization of its pullback to S x X, is equivalent to that of a G,,-gerbe on
Xar
the simplicial prestack

5% =8 x (X*/Xar),

Xar

equipped with a trivialization over O-simplices, i.e., S x X.
Xar
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6.7.4. Step 2. Note that the simplicial prestack “-7°?(S*®) is constant with value
red.cl S Hence, by Lemma 6.3.7, we can consider G,-gerbes instead of G,,-gerbes.

Hence, it is enough to show that the map

MapsQCOh(S) (OS, OS) — Tot (MapSQCoh(S')(OS'7 OS.))

is an isomorphism in Vect.

6.7.5. Step 3. Note that for any X’ € DGindSchy,¢, the canonical map

Mapsqcon(x) (Oxr, Oxr) — Mapsuacon(x) (war, waxr)
is an isomorphism. This follows, e.g., from the corresponding assertion for DG

schemes, i.e., Lemma 5.2.5.

Hence, it is enough to show that the map

Mapspuqcon(s) (ws, ws) — Tot (MapslndCoh(S')(WS'aWS‘))

is an isomorphism.

6.7.6. Step 4. Note that S® identifies with the Cech nerve of the map

(6.3) S x X8

Xar
As in the proof of Proposition 3.1.3, all S* belong to DGindSch, and the mor-

phism (6.3) is ind-proper and surjective.

Now, the desired assertion follows from the descent for IndCoh under ind-
proper and surjective maps of DG indschemes, see [GR1, Lemma 2.10.3].

7. TWISTED CRYSTALS

In this section we will show how the data of a twisting gives a modification
of the categories of left and right crystals. The main results say that “not much

really changes.”

7.1. Twisted left crystals. In this subsection we do not assume that our DG

schemes and prestacks are locally almost of finite type.
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7.1.1. Let Y be a prestack. Consider the category PreStky, and the functor
QCohpggenss (DGSch)*” — DGCatcont -

The group-stack pt /G,, acts on QCoh via tensoring by line bundles.

Let G be a Gy,-gerbe on Y. Then G gives a twist of the functor QCohDGSCha/Ig
via the action of pt /G, on QCoh. This defines a functor

QCoh} asansy (DGSch)°P — DGCatcon -

7.1.2. In particular, if T is a twisting on Y, we obtain a functor

QCohf gy (DGSchi )P — DGCateont -

T . c .
Let QCOhDGSch?f; be its restriction along the map

(DGSch}y)° — (DGSchiy ).

T

By construction, QCohy, as

st is canonically isomorphic to QCOhDGSCh'f}g‘

7.1.3. More generally, we can consider the functor

QCohi 1 oy (PreStlkpy )P — DGCateons,

T

aff
DGSCh/‘ddR

which is the right Kan extension of QCoh along

(DGSchif, )P < (PreStky, . ).

The restriction QCoh, gy Iy of QCoh g A along
R
PreStk y — PreStk y .

is canonically isomorphic to QCohp gtk y

7.1.4. For a twisting T on a prestack Y, the category of T-twisted left crystals on
Y is defined as
Crys"!(4) := QCoh” (Yar).

Explicitly, we have

CrysDl(Y) = lim QCoh™(9).

Se(DGsc117ng Yop
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7.1.5. More generally, we define the functor

T,
CrysPreStk/ydR : (PreStk/ydR)Op — DGCatcont,

as the composite QCohgreStk/H o dR. The analogue of Corollary 2.1.4 holds for
dR

this functor.

7.1.6. We have a canonical natural transformation

T . T, T
oblv™": Clryspresﬂ(/ydR — QCOhPreStk/ng .

For an individual Y € PreStk /Yar» We denote the resulting functor
Crys"!(4') = QCoh™(¥')
by oblv(Y).

7.1.7. Let Crysg’rleStk/y denote the restriction of Crysg;LStk/ydR along PreStk y —
PreStk y . -

By a slight abuse of notation we shall use the same symbol oblv’* to denote

the resulting natural transformation

Tl
CrySPreStk/y - QCOhPreStk/H .

7.2. Twisted right crystals. At this point, we reinstate the assumption that
all DG schemes and prestacks are locally almost of finite type for the rest of the

paper.
7.2.1. Let Y be an object of PreStky,s, and let G be a G,,-gerbe on Y.

The action of QCohp,egy, ., on IndCohpresiy,;, (see [IndCoh, Sect. 10.3]) al-
lows to define the functor

IndCoh?Y

(PreStkiagt) /y : ((Prestklaft)/ld)op — DGCatcont,

with properties analogous to those of

IndCOh(PreStkIa&)/\é = IndCOhPreStkIaft ’(PreStkIaft)/\é .
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7.2.2. In particular, for T' € Tw(Y), we have the functor

Crys@:esm]aﬂ)/m : ((PreStkias) jy,,)*" — DGCateont,

and the natural transformations oblv’"
Tr
(PreStkiag)

Tr
(PreStkiast)

Crys — IndCOhaDreStklaft)

/Y94ar AKY:

and Crys y IndCohpresik, .z )

/Y

The analogues of Corollaries 2.3.7 and 2.3.9 and Lemmas 2.3.11 and 2.3.12
hold for Y’ € (PreStklaft)/ydR, with the same proofs.

7.3. Properties of twisted crystals. As was mentioned above, all DG schemes

and prestacks are assumed locally almost of finite type.

Let Y be a fixed object of PreStkyg, and T' € Tw(Y).

Remark 7.3.1. In general, results about crystals do not automatically hold for
twisted crystals. In some of our proofs, we needed to embed a given affine DG
scheme X into a smooth classical scheme Z. In the case of twisted crystals, the
problem is that we might not be able to find such a Z which also maps to Y (or
even 1de).

However, there is a large family of examples (which covers all the cases that
have appeared in applications so far), where the extension of the results is au-
tomatic: namely, when T is such that its restriction to any S € (DGSCth) Jy 18
locally trivial in the Zariski or étale topology (see also Remark 6.4.7). This is the
case for twistings of the form £®* for £ € Pic(Y) and a € k, and tensor products
thereof.

7.3.2. The analogues of Corollaries 2.2.2 and 2.2.4 and Lemma 2.1.7 hold for
twisted left crystals, with the same proofs.

Furthermore, Kashiwara’s lemma holds for both left and right twisted crystals,
also with the same proof.

Finally, note that there exists a canonical natural transformation

_ Tl T,r
(7.1) T Crys Preginug) P CryS Prestiag,) Sar
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Proposition 7.3.3. The natural transformation (7.1) is an equivalence.

Proof. The argument is the same as that of Proposition 2.4.4:

We do not need the smooth classical scheme Z to map to Y. Rather, we use the
fact that if Y is the completion of a smooth classical scheme Z along a Zariski-
closed subset, and G is a G,,-gerbe on Y, which is trivial over ¢"¢?Y | then the
functor

Ty : QCoh?(Y) — IndCoh?(Y)

is an equivalence. The latter follows from the corresponding fact in the non-
twisted situation (proved in the course of the proof of Proposition 2.4.4), since G

is (non-canonically) trivial.

O

As a corollary, we obtain that the analog of Lemma 2.2.6 holds in the twisted
case as well.

7.3.4. Hence, for Y € (PreStkyg)/y,, Wwe can regard crystals on Y’ as a single
category, Crys! ('), endowed with two forgetful functors

CrysT (
obl:/g,/ Yvy,
(7.2) QCoh” (Y') ——— IndCoh” (Y
‘d

For Y € (PreStkjag) sy, the above forgetful functors map to non-twisted

sheaves:

Crys? (

ob ly Yv

(7.3) QCoh(Y') ———— IndCoh(Y
‘d
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7.3.5. Let X € (DGindSchyat) 1y, - The analogue of Proposition 3.1.3 holds with
no change. In particular, we obtain a functor

ind}”" : IndCoh” (X)) — Crys™"(X)

left adjoint to oblvgg’r.

Similarly, the analogue of Proposition 3.4.3 holds in the present context as

well.

7.3.6. The following observation will be useful in the sequel:

Let X be an affine DG scheme (or an ind-affine DG indscheme) over Y4g.
Choose a trivialization of the resulting G,,-gerbe on X. This choice defines an
identification

IndCoh” (X) = IndCoh(X).

Lemma 7.3.7. The monad oblvg;’r ) ind%}’T, regarded as a functor (without the

monad structure)
a1 «
IndCoh(X) "~ IndCoh”(X) — IndCoh” (X) ~ IndCoh(X),

is non-canonically isomorphic to oblv’y o ind’y.

Proof. First, we observe that the analogue of Proposition 5.1.3 holds; namely, the
object of IndCoh(X x X) that defines the functor oblvg;’r o indg;’T is given by

(R ) lmacon (L ® (wx » X>>,

Xdr

where £ is the line bundle on X x X corresponding to 7" and « as in Sect. 6.6.1.
Xdr

By construction, £ is trivial when restricted to X «— X x X. Now, since X
Xar

is affine, this implies that £ can be trivialized on all of X x X.
Xdar

O

7.4. t-structures on twisted crystals. As in the previous subsection, let Y be
a fixed object of PreStkiap, and T € Tw(Y).
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74.1. If X is a DG scheme and G is a G,,-gerbe on it, the twisted categories
QCoh9(X) and IndCoh¥(X) have natural t-structures with properties analogous
to those of their usual counterparts QCoh(X) and IndCoh(X).

In particular, we have the “left” t-structure on CrysT’l(H’ ) for any Y €
(PreStkiaft) /y, - (This t-structure can be defined without the locally almost of
finite type assumption on either Y or Y'.)

The t-structure on twisted IndCoh on DG schemes allows us to define a t-
structure on IndCoh¥(X), where X is a DG indscheme. We can then define the
“right” t-structure on the category Crys?"(X).

7.4.2. We observe that Proposition 4.2.5 renders to the twisted context with no

change. We now claim:
Proposition 7.4.3. Let X be a quasi-compact DG scheme mapping to Yqr .

a) The functor ind%" is t-ezact.
X

(b) For a quasi-compact scheme X, the functor 0b1v§’r s of bounded cohomo-

logical amplitude.

Proof. The functor ind;F(’T is right t-exact, since its right adjoint oblvg’(’r is left
t-exact. By the definition of the “right” t-structure, the left t-exactness of indg;’r
is equivalent to the same property of the composition 0blv§’r o indj);’r.

The assertion is Zariski-local, so we can assume that X is affine. Now, the fact
that the functor oblv%}’r o indi’r is left t-exact follows from Lemma 7.3.7 and the

fact that the analogous assertion holds in the non-twisted case.

Since IndCoh” (X)=0 generates Crys”!(X)=0 via the functor indgp(’r, in order

" is bounded from above, it

to show that the cohomological amplitude of oblvgé’
suffices to show the same for oblvj;(’r o ind?r. Again, the assertion follows from

Lemma 7.3.7.
O
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7.4.4. We now claim:
Proposition 7.4.5. Let X be a quasi-compact DG scheme mapping to Yqr.

(a) The “left” and “right” t-structures on Crys! (X) differ by finite cohomological

amplitude.

(b) The functor oblv?l : Crys?(X) — QCoh(X) is of bounded cohomological

amplitude.!!

7.4.6. We shall first prove the following:

Let ¢ : X — Z be a closed embedding, where Z is a smooth classical scheme.
Let Y be the formal completion of Z along X.

Lemma 7.4.7. The functor
oblvi" : Crys”" (V) — IndCoh” (V)

18 t-exact.

Proof. As in the proof of Proposition 7.4.3, it suffices to show that the functor
oblvy”" o ind;”" : IndCoh” (V) — IndCoh” (Y)

is t-exact. The assertion is Zariski-local, so we can assume that X is affine. Now,
as in the proof of Proposition 7.4.3, the functor in question is non-canonically
isomorphic to the non-twisted version: oblvy- o indy-, and the latter is known to
be t-exact by Proposition 4.2.11(a).

O

7.4.8. Proof of Proposition 7.4.5. The assertion is Zariski-local, so we can assume
that X is affine and embed it into a smooth classical scheme Z. Let Y denote
the formal completion of X in Z. By definition, T" defines a G,,-gerbe G on Y.
Let /i denote the corresponding map X — Y.

To prove point (a), by Lemma 4.3.7 (whose 2nd proof is applicable in the
twisted case), we can replace X by Y, and it suffices to show that the discrepancy

11By point (a) this statement does not depend on which of the two t-structures we consider on
Crys” (X).
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between the two t-structures on Crys’ (Y') is finite. By Proposition 4.1.3 (applied
in the twisted case) and Lemma 7.4.7, it suffices to show that the functor

Ty : QCoh” (V) — IndCoh” (Y)

is of bounded cohomological amplidude. This is equivalent to the corresponding
fact for

Uy : QCoh(Y) — IndCoh(Y),

which in turn follows from the corresponding fact for Z.

Point (b) follows from the fact that the functor
'i* : QCoh™ (Y) — QCoh™ (X)
is of bounded amplitude, which is again equivalent to the corresponding fact for
'i* : QCoh(Y) — QCoh(X),

and the latter follows from the corresponding fact for Z.

7.4.9. The results concerning the “coarse” forgetful and induction functors, es-
tablished in Sect. 4.6 for untwisted crystals, render automatically to the twisted
situation.

7.4.10. Our current goal is to show:
Proposition 7.4.11. Let X be a quasi-compact DG scheme mapping to Yqr.

(a) The “right” t-structure on Crys™"(X) is left-complete.

(b) For X affine, the natural functor D(Crys?" (X))t — CrysD"(X)T, where
the heart is taken with respect to the “right” t-structure, uniquely extends to an

an equivalence

D(CrysT" (X)) = CrysT(X).
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7.4.12. Proof of Proposition 7.4.11(a). Again, the assertion is Zariski-local, and
we retain the setting of the proof of Proposition 7.4.5.

It suffices to exhibit a collection of objects
Pq € Crysl"(X)

that generate Crys”"(X) and that are of bounded Ext dimension, i.e., if for each
« there exists an integer k. such that

Homg, o7 () (Pa, M) = 0 if M € Crys” (X)<Fe.

We realize Crys’"(X) as Crys’"(Y). By Lemma 4.3.7 and Lemma 7.4.7, the
t-structure on Crys?""(X) o~ Crys”""(Y) is characterized by the property that

M e Crys™" (V)20 & oblv" (M) € IndCoh” (Y)=°.

We take P, to be of the form ind?"(F) for F € Coh® (Y)?. To prove the

required vanishing of Exts, we need to show that for M € CrysT’T(Y)<<0,

Homy, gconr (v (F, 0blvy” (M) = 0.

However, this follows from the fact that the category IndCohT(Y) has finite
cohomological dimension with respect to its t-structure:'? indeed, the category
in question in non-canonically equivalent to IndCoh(Y'), and the cohomological
dimension of the latter is bounded by that of IndCoh(Z).

7.4.13. Proof of Proposition 7.4.11(b). We keep the notations from the proof of
point (a).

As in the proof of Proposition 4.7.3, given what we have shown in point (a),
we only have to verify that for My, My € Crys” (X)¥ and any k > 0, the map

ExtF

CrysT(X)© <M1’ M2) - HomCrysT(X) (Ml’ Ma [k])

is an isomorphism.

12WWe refer the reader to the footnone in Remark 4.7.8 where we explain what we mean by this.
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For that it suffices to show that the category CrysT’T(X )QQ contains a pro-
projective generator of Crys’""(X), i.e., that there exists a filtered inverse family
with surjective maps P, € Crys”"(X)", such that the functor

co{lim Mapscyyorir (x)(Pas =)
is t-exact and conservative on Crys"" (X).

We take P, to be
ind;‘C’r(OXn) € CrysT" (V)Y ~ CrysT"(X)Y,

where X, is the n-th infinitesimal neighborhood of ¢"¢?X in Z. |
7.5. Other results.

7.5.1. Twisted crystals and twisted D-modules. Let X be a smooth classical
scheme. We have seen in Sect. 6.5.4 that the Picard category of twistings on
X is equivalent to that of TDO’s on X.

Given a twisting 7', and the corresponding TDO, denoted Diﬁ&, there exists

a canonical equivalence
CrysTH(X) ~ D-mod (X)),

which commutes with the forgetful functors to QCoh(X), and similarly for twisted
right crystals. The proof is either an elaboration of the strategy indicated in
Sect. 5.5.4, or one using Sect. 5.4.

7.5.2. The relation between twisted D-modules and modules over a TDO can be
extended to the case when instead of a smooth classical scheme X, we are dealing
with a formal completion Y of a DG scheme X inside a smooth classical scheme
Z.

This allows to prove:

Proposition 7.5.3. Let X be a quasi-compact DG scheme over Yyr.

(a) The abelian category Crys?"(X)" is locally Noetherian.

(b) Crys""(X) has finite cohomological dimension with respect to its t-structure.

(We refer the reader to the footnotes in Remark 4.7.8 where we explain what

we mean by the properties asserted in points (a) and (b) of the proposition.)
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