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Introduction

0.1. Flat connections, D-modules and crystals.

0.1.1. Let M be a smooth manifold with a vector bundle V . Recall that a flat

connection on V is a map

∇ : V → V ⊗ Ω1
M

satisfying the Leibniz rule, and such that the curvature [∇,∇] = 0. Dualizing

the connection map, we obtain a map

TM ⊗ V → V.
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The flatness of the connection implies that this makes V into a module over the

Lie algebra of vector fields. Equivalently, we obtain that V is module over the

algebra DiffM of differential operators on M .

This notion generalizes immediately to smooth algebraic varieties in charac-

teristic zero. On such a variety a D-module is defined as a module over the sheaf

of differential operators which is quasi-coherent as an O-module. The notion of

D-module on an algebraic variety thus generalizes the notion of vector bundle

with a flat connection, and encodes the data of a system of linear differential

equations with polynomial coefficients. The study of D-modules on smooth alge-

braic varieties is a very rich theory, with applications to numerous fields such as

representation theory. Many of the ideas from the differential geometry of vector

bundles with a flat connection carry over to this setting.

However, the above approach to D-modules presents a number of difficulties.

For example, one needs to consider sheaves with a flat connection on singular

schemes in addition to smooth ones. While the algebra of differential operators

is well-defined on a singular variety, the category of modules over it is not the

category that we are interested in (e.g., the algebra in question is not in general

Noetherian). In another direction, even for a smooth algebraic variety, it is not

clear how to define connections on objects that are not linear, e.g., sheaves of

categories.

0.1.2. Parallel transport. The idea of a better definition comes from another in-

terpretation of the notion of flat connection on a vector bundle in the context of

differential geometry, namely, that of parallel transport:

Given a vector bundle with a flat connection V on a smooth manifold M , and

a path γ : [0, 1]→M , we obtain an isomorphism

Πγ : Vγ(0) ≃ Vγ(1)

of the fibers of V at the endpoints, which only depends on the homotopy class

of the path. We can rephrase this construction as follows. Let B ⊂ M be a

small ball inside M . Since the parallel transport isomorphism only depends on

the homotopy class of the path, and B is contractible, we obtain a coherent

identification of fibers of V

Vx ≃ Vy
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for points x, y ∈ B by considering paths inside B. So, roughly, the data of a

connection gives an identification of fibers at “nearby” points of the manifold.

Building on this idea, Grothendieck [Gr] gave a purely algebraic analogue of

the notion of parallel transport, using the theory of schemes (rather than just

varieties) in an essential way: he introduced the relation of infinitesimal close-

ness for R-points of a scheme X. Namely, two R-points x, y : Spec(R) → X

are infinitesimally close if the restrictions to Spec(redR) agree, where redR is the

quotient of R by its nilradical.

A crystal onX is by definition a quasi-coherent sheaf onX which is equivariant

with respect to the relation of infinitesimal closeness. More preciesly, a crystal

on X is a quasi-coherent sheaf F with the additional data of isomorphisms

x∗(F) ≃ y∗(F)

for any two infinitesimally close points x, y : Spec(R) → X satisfying a cocycle

condition.

Grothendieck showed that on a smooth algebraic variety, the abelian category

of crystals is equivalent to that of left modules over the ring of differential oper-

ators. In this way, crystals give a more fundamental definition of sheaves with a

flat connection.

A salient feature of the category of crystals is that Kashiwara’s lemma is built

into its definition: for a closed embedding of schemes i : Z → X, the category

of crystals on Z is equivalent to the category of crystals on X, which are set-

theoretically supported on Z. This observation allows us to reduce the study

of crystals on schemes to the case of smooth schemes, by (locally) embedding a

given scheme into a smooth one.

0.1.3. In this paper, we develop the theory of crystals in the context of derived

algebraic geometry, where instead of ordinary rings one considers derived rings,

i.e., E∞ ring spectra. Since we work over a field k of characteristic zero, we

shall use connective commutative DG k-algebras as our model of derived rings

(accordingly, we shall use the term “DG scheme” rather than “derived scheme”).

The key idea is that one should regard higher homotopy groups of a derived ring

as a generalization of nilpotent elements.
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Thus, following Simpson [Si], for a DG scheme X, we define its de Rham

prestack XdR to be the functor

XdR : R 7→ X(red,clR)

on the category of derived rings R, where

red,clR := red(π0(R))

is the reduced ring corresponding to the underlying classical ring of R. I.e., XdR

is a prestack in the terminology of [GL:Stacks].

We define crystals on X as quasi-coherent sheaves on the prestack XdR. See,

[Lu1, Sect. 2] for the theory of quasi-coherent sheaves in prestacks, or [GL:QCoh,

Sect. 1.1] for a brief review.

The above definition does not coincide with one of Grothendieck mentioned

earlier: the latter specifies a map Spec(R) → X up to an equivalence relation,

and the former only a map Spec(red,clR)→ X. However, we will show that for X

which is eventually coconnective, i.e., if its structure ring has only finitely many

non-zero homotopy groups, the two definitions of a crystal are equivalent. 1

0.1.4. Even though the category of crystals is equivalent to that of D-modules, it

offers a more flexible framework in which to develop the theory. The definition

immediately extends to non-smooth schemes, and the corresponding category

is well-behaved (for instance, the category of crystals on any scheme is locally

Noetherian).

Let f : X → Y be a map of DG schemes. We will construct the natural

pullback functor

f † : Crys(Y )→ Crys(X).

In fact, we shall extend the assignment X 7→ Crys(X) to a functor from the

category DGSchop to that of stable ∞-categories. The latter will enable us to

define crystals not just on DG schemes, but on arbitrary prestacks.

1When X is not eventually coconnective, the two notions are different, and the correct one is the

one via XdR.
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Furthermore, the notion of crystal immediately extends to a non-linear and

categorified setting. Namely, we can just as well define a crystal of schemes or a

crystal of categories over X.

0.2. Left crystals vs. right crystals.

0.2.1. Recall that on a smooth algebraic variety X, in addition to usual (i.e.,

left) D-modules, one can also consider the category of right D-modules. The two

categories are equivalent: the corresponding functor is given by tensoring with

the dualizing line bundle ωX over the ring of functions. However, this equivalence

does not preserve the forgetful functor to quasi-coherent sheaves. For this reason,

we can consider an abstract category of D-modules, with two different realization

functors to quasi-coherent sheaves. In the left realization, the D-module pullback

functor becomes the ∗-pullback functor on quasi-coherent sheaves, and in the

right realization, it becomes the !-pullback functor.

It turns out that the “right” realization has several advantages over the “left”

one. Perhaps the main advantage is that the “right” realization endows the

category of D-modules with a t-structure with very favorable functorial proper-

ties. In particular, this t-structure becomes the perverse t-structure under the

Riemann-Hilbert correspondence.

0.2.2. One can then ask whether there are also “left” and “right” crystals on

arbitrary DG schemes. It turns out that indeed both categories are defined very

generally.

Left crystals are what we defined in Sect. 0.1.3. However, in order to define

right crystals, we need to replace the usual category of quasi-coherent sheaves

by its renormalized version, the category of ind-coherent sheaves introduced in

[IndCoh].

The category IndCoh(X) is well-behaved for (derived) schemes that are (al-

most) locally of finite type, so right crystals will only be defined on DG schemes,

and subsequently, on prestacks with this property.
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Let us recall from [IndCoh, Sect. 5] that for a map f : X → Y between DG

schemes, we have the !-pullback functor

f ! : IndCoh(Y )→ IndCoh(X).

The assignment X 7→ IndCoh(X) is a functor from the category DGSchop to

that of stable ∞-categories and thus can be extended to a functor out of the

category of prestacks.

For a DG scheme X, we define the category of right crystals Crysr(X) as

IndCoh(XdR). We can also reformulate this definition à la Grothendieck by

saying that a right crystal on X is an object F ∈ IndCoh(X), together with an

identification

(0.1) x!(F) ≃ y!(F)

for every pair of infinitesimally close points x, y : Spec(R) → X satisfying (the

∞-category version of) the cocycle condition. It can be shown that, unlike in

the case of left crystals, this does give an equivalent definition of right crystals

without any coconnectivity assumptions.

0.2.3. Now that the category of right crystals is defined, we can ask whether it is

equivalent to that of left crystals. The answer also turns out to be “yes.” Namely,

for any DG scheme X almost of finite type, tensoring by the dualizing complex

ωX defines a functor

ΥX : QCoh(X)→ IndCoh(X)

that intertwines the ∗-pullback on quasi-coherent sheaves and the !-pullback on

ind-coherent sheaves.

Although the functor ΥS is not an equivalence for an individual S unless S

is smooth, the totality of such maps for DG schemes mapping to the de Rham

prestack of X define an equivalence between left and right crystals.
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Thus, just as in the case of smooth varieties, to each DG scheme X we attach

the category Crys(X) equipped with two “realization” functors

QCoh(X) IndCoh(X)

Crys(X).

oblvl
X

����
��
��
��
��
�

oblvr
X

��?
??

??
??

??
??

ΥX //

However, in the case of non-smooth schemes, the advantages of the t-structure

on Crys(X) that is associated with the “right” realization become even more

pronounced.

0.2.4. Historical remark. To the best of our knowledge, the approach to D-

modules via right crystals was first suggested by A. Beilinson in the early 90’s,

at the level of abelian categories.

For some time after that it was mistakenly believed that one cannot use left

crystals to define D-modules, because of the incompatibility of the t-structures.

However, it was explained by J. Lurie, that if one forgoes the t-structure and

defines the corresponding stable∞-category right away, left crystals work just as

well.

0.3. The theory of crystals/D-modules. Let us explain the formal structure

of the theory, as developed in this paper, and its sequel [GR2].

0.3.1. To each prestack (locally almost of finite type) Y, we assign a stable ∞-

category

Y Crys(Y).

This category has two realization functors: a left realization functor to

QCoh(Y), and a right realization functor to IndCoh(Y) which are related via

the following commutative diagram
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QCoh(Y) IndCoh(Y)

Crys(Y).

oblvl
Y

����
��
��
��
��
�

oblvr
Y

��?
??

??
??

??
??

ΥY //

where ΥY is the functor QCoh(Y) → IndCoh(Y) given by tensoring by the dual-

izing complex ωY.

0.3.2. The assignment of Crys(Y) to Y is functorial in a number of ways. For a

map f : Y1 → Y2, there is a pullback functor

f † : Crys(Y2)→ Crys(Y1)

which is functorial in f ; i.e., this assignment gives a functor

Crys†PreStk : (PreStk)op → DGCatcont .

The pullback functor on D-modules is compatible with the realization functors.

Namely, we have commutative diagrams

Crys(Y1)
f†
←−−−− Crys(Y2)

oblvl
Y1

y yoblvl
Y2

QCoh(Y1)
f∗
←−−−− QCoh(Y2)

and

Crys(Y1)
f†
←−−−− Crys(Y2)

oblvr
Y1

y yoblvr
Y2

IndCoh(Y1)
f !

←−−−− IndCoh(Y2).

Furthermore, this compatibility is itself functorial in f ; i.e. we have a naturally

commutative diagram of functors

Crys†PreStk
oblvr

''NN
NNN

NNN
NNN

oblvl

xxqqq
qqq

qqq
qq

QCoh∗PreStk
Υ // IndCoh!PreStk

.



Crystals and D-Modules 67

0.3.3. The above portion of the theory is constructed in the present paper. I.e.,

this paper is concerned with the assignment

Y Crys(Y)

and the operation of pullback. Thus, in this paper, we develop the local theory

of crystals/D-modules.

However, in addition to the functor f †, we expect to also have a pushforward

functor fdR,∗, and the two must satisfy various compatibility relations. The latter

will be carried out in [GR2]. However, let us indicate the main ingredients of the

combined theory:

0.3.4. For a schematic quasi-compact map between prestacks f : Y1 → Y2, there

is the de Rham pushforward functor

fdR,∗ : Crys(Y1)→ Crys(Y2)

which is functorial in f . This assignment gives another functor

(CrysdR,∗)PreStksch-qc : PreStksch-qc → DGCatcont,

where PreStksch-qc is the non-full subcategory of PreStk obtained by restricting

1-morpisms to schematic quasi-compact maps.

Let Y = X be a DG scheme2. In this case, the forgetful functor

oblvr
Y : Crys(Y)→ IndCoh(Y)

admits a left adjoint, denoted

indr
Y : IndCoh(Y)→ Crys(Y),

and called the induction functor.

The induction functor is compatible with de Rham pushforward. Namely, we

have a commutative diagram

IndCoh(Y1)
f IndCoh
∗ //

indr
Y1

��

IndCoh(Y2)

indr
Y2

��
Crys(Y1)

fdR,∗ // Crys(Y2).

2More generally, we can let Y be a prestack that admits deformation theory.



68 Dennis Gaitsgory and Nick Rozenblyum

This compatibility is itself functorial, i.e. we have a natural transformation of

functors

(IndCoh∗)PreStksch-qc
indr

// (CrysdR,∗)PreStksch-qc .

0.3.5. In the case when f is proper, the functors (fdR,∗, f
†) form an adjoint pair,

and if f is smooth, the functors (f †[−2n], fdR,∗) form an adjoint pair for n the

relative dimension of f .

In general, the two functors are not adjoint, but they satisfy a base change

formula. As explained in [IndCoh, Sect. 5.1], a way to encode the functoriality

of the base change formula is to consider a category of correspondences. Namely,

let (PreStk)corr:all,sch-qc be the ∞-category whose objects are prestacks locally of

finite type and morphisms from Y1 to Y2 are given by correspondences

Z

f
��

g
// Y1

Y2

such that f is schematic and quasi-compact, and g arbitrary. Composition in this

category is given by taking Cartesian products of correspondences. A coherent

base change formula for the functors Crys† and CrysdR,∗ is then a functor

Crys(PreStk)corr:all,sch-qc : (PreStk)corr:all,sch-qc → DGCatcont

and an identification of the restriction to (PreStk)op with Crys†PreStk, and the

restriction to PreStksch-qc with (CrysdR,∗)PreStksch-qc .

0.4. Twistings.

0.4.1. In addition to D-modules, it is often important to consider twisted D-

modules. For instance, in representation theory, the localization theorem of

Beilinson and Bernstein identifies the category of representations of a reduc-

tive Lie algebra g with fixed central character χ with the category of twisted

D-modules on the flag variety G/B, with the twisting determined by χ.

In the case of smooth varieties, the theory of twistings and twisted D-modules

was introduced by Beilinson and Bernstein [BB]. Important examples of twistings

are given by complex tensor powers of line bundles. For a smooth variety X,
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twistings form a Picard groupoid, which can be described as follows. Let T be

the complex of sheaves, in degrees 1 and 2, given by

T := Ω1 → Ω2,cl

where Ω1 is the sheaf of 1-forms on X, Ω2,cl is the sheaf of closed 2-forms and

the map is the de Rham differential. Then the space of objects of the Picard

groupoid of twistings is given by H2(X,T) and, for a given object, the space of

isomorphisms is H1(X,T).

0.4.2. The last two sections of this paper are concerned with developing the theory

of twistings and twisted crystals in the derived (and, in particular, non-smooth)

context. We give several equivalent reformulations of the notion of twisting and

show that they are equivalent to that defined in [BB] in the case of smooth

varieties.

For a prestack (almost locally of finite type) Y, we define a twisting to be a

Gm-gerbe on the de Rham prestack YdR with a trivialization of its pullback to Y.

A line bundle L on Y gives a twisting which is the trivial gerbe on YdR, but the

trivialization on Y is given by L.

Given a twisting T , the category of T -twisted crystals on Y is defined as the

category of sheaves (ind-coherent or quasi-coherent) on YdR twisted by the Gm-

gerbe given by T .

0.5. Contents. We now describe the contents of the paper, section-by-section.

0.5.1. In Section 1, for a prestack Y, we define the de Rham prestack YdR and

establish some of its basic properties. Most importantly, we show that if Y is

locally almost of finite type then so is YdR.

0.5.2. In Section 2, we define left crystals as quasi-coherent sheaves on the de

Rham prestack and, in the locally almost of finite type case, right crystals as ind-

coherent sheaves on the de Rham prestack. The latter is well-defined because,

as established in Section 1, for a prestack locally almost of finite type its de

Rham prestack is also locally almost of finite type. In this case, we show that

the categories of left and right crystals are equivalent. Furthermore, we prove a

version of Kashiwara’s lemma in this setting.
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0.5.3. In Section 3, we show that the category of crystals satisfies h-descent (and

in particular, fppf descent). We also introduce the infinitesimal groupoid of a

prestack Y as the Čech nerve of the natural map Y → YdR. Specifically, the

infinitesimal groupoid of Y is given by

(Y× Y)∧Y ⇒ Y

where (Y× Y)∧Y is the formal completion of Y× Y along the diagonal.

In much of Section 3, we specialize to the case that Y is an indscheme. Sheaves

on the infinitesimal groupoid of Y are sheaves on Y which are equivariant with

respect to the equivalence relation of infinitesimal closeness. In the case of ind-

coherent sheaves, this category is equivalent to right crystals. However, quasi-

coherent sheaves on the infinitesimal groupoid are, in general, not equivalent to

left crystals. We show that quasi-coherent sheaves on the infinitesimal groupoid

of Y are equivalent to left crystals if Y is an eventually coconnective DG scheme

or a classically formally smooth prestack. Thus, in particular, this equivalence

holds in the case of classical schemes.

We also define induction functors from QCoh(Y) and IndCoh(Y) to crystals on

Y. In the case of ind-coherent sheaves the induction functor is left adjoint to the

forgetful functor, and we have that the category of right crystals is equivalent to

the category of modules over the corresponding monad. The analogous result is

true for QCoh and left crystals in the case that Y is an eventually coconnective

DG scheme.

0.5.4. In Section 4, we show that the category of crystals has two natural

t-structures: one compatible with the left realization to QCoh and another

comaptible with the right realization to IndCoh. In the case of a quasi-compact

DG scheme, the two t-structures differ by a bounded amplitude.

We also show that for an affine DG scheme, the category of crystals is equivalent

to the derived category of its heart with respect to the right t-structure.

0.5.5. In Section 5 we relate the monad acting on IndCoh (resp., QCoh) on a DG

scheme, responsible for the category of right (resp., left) crystals, to the sheaf of

differential operators.
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As a result, we relate the category of crystals to the derived category of D-

modules.

0.5.6. In Section 6, we define the Picard groupoid of twistings on a prestack Y as

that of Gm-gerbes on the de Rham prestack YdR which are trivialized on Y. We

then give several equivalent reformulations of this definition. For instance, using

a version of the exponential map, we show that the Picard groupoid of twistings is

equivalent to that of Ga-gerbes on the de Rham prestack YdR which are trivialized

on Y. In particular, this naturally makes twistings a k-linear Picard groupoid.

Furthermore, using the description of twistings in terms of Ga-gerbes, we iden-

tify the ∞-groupoid of twistings as

τ≤2

(
HdR(Y) ×

H(Y)
{∗}

)
[2]

where HdR(Y ) is the de Rham cohomology of Y, and H(Y) is the coherent coho-

mology of Y . In particular, for a smooth classical scheme, this shows that this

notion of twisting agrees with that defined in [BB].

Finally, we show that the category of twistings on a DG (ind)scheme X locally

of finite type can be identified with that of central extensions of its infinitesimal

groupoid.

0.5.7. In Section 7, we define the category of twisted crystals and establish its

basic properties. In particular, we show that most results about crystals carry

over to the twisted setting.

0.6. Conventions and notation. Our conventions follow closely those of [GR1].

Let us recall the most essential ones.

0.6.1. The ground field. Throughout the paper we will work over a fixed ground

field k of characteristic 0.
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0.6.2. ∞-categories. By an∞-category we shall always mean an (∞, 1)-category.

By a slight abuse of language, we will sometimes refer to “categories” when we

actually mean ∞-categories. Our usage of ∞-categories is model independent,

but we have in mind their realization as quasi-categories. The basic reference for

∞-categories as quasi-categories is [Lu0].

We denote by ∞ -Grpd the ∞-category of ∞-groupoids, which is the same as

the category S of spaces in the notation of [Lu0].

For an ∞-category C, and x, y ∈ C, we shall denote by MapsC(x, y) ∈
∞ -Grpd the corresponding mapping space. By HomC(x, y) we denote the set

π0(MapsC(x, y)), i.e., what is denoted HomhC(x, y) in [Lu0].

A stable ∞-category C is naturally enriched in spectra. In this case, for

x, y ∈ C, we shall denote by MapsC(x, y) the spectrum of maps from x to y. In

particular, we have that MapsC(x, y) = Ω∞MapsC(x, y).

When working in a fixed ∞-category C, for two objects x, y ∈ C, we shall call

a point of MapsC(x, y) an isomorphism what is in [Lu0] is called an equivalence.

I.e., an isomorphism is a map that admits a homotopy inverse. We reserve the

word “equivalence” to mean a (homotopy) equivalence between ∞-categories.

0.6.3. DG categories. Our conventions regarding DG categories follow [IndCoh,

Sect. 0.6.4]. By a DG category we shall understand a presentable DG category

over k; in particular, all our DG categories will be assumed cocomplete. Unless

specified otherwise, we will only consider continuous functors between DG cate-

gories (i.e., exact functors that commute with direct sums, or equivalently, with

all colimits). In other words, we will be working in the category DGCatcont in

the notation of [GL:DG]. 3

We let Vect denote the DG category of complexes of k-vector spaces. The

category DGCatcont has a natural symmetric monoidal structure, for which Vect

is the unit.

3One can replace DGCatcont by (the equivalent) (∞, 1)-category of stable presentable ∞-

categories tensored over Vect, with colimit-preserving functors.
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For a DG category C equipped with a t-structure, we denote by C≤n (resp.,

C≥m, C≤n,≥m) the corresponding full subcategory of C spanned by objects x,

such that H i(x) = 0 for i > n (resp., i < m, (i > n) ∧ (i < m)). The inclusion

C≤n ↪→ C admits a right adjoint denoted by τ≤n, and similarly, for the other

categories.

There is a fully faithful functor from DGCatcont to that of stable ∞-categories

and continuous exact functors. A stable ∞-category obtained in this way is

enriched over the category Vect. Thus, we shall often think of the spectrum

MapsC(x, y) as an object of Vect; the former is obtained from the latter by the

Dold-Kan correspondence.

0.6.4. (Pre)stacks and DG schemes. Our conventions regarding (pre)stacks and

DG schemes follow [GL:Stacks]:

Let DGSchaff denote the ∞-category opposite to that of connective commuta-

tive DG algebras over k.

The category PreStk of prestacks is by definition that of all functors

(DGSchaff)op →∞ -Grpd .

Let <∞DGSchaff be the full subcategory of DGSchaff given by eventually co-

connective objects.

Recall that an eventually coconnective affine DG scheme S = Spec(A) is almost

of finite type if

• H0(A) is finite type over k.

• Each H i(A) is finitely generated as a module over H0(A).

Let <∞DGSchaffaft denote the full subcategory of <∞DGSchaff consisting of

schemes almost of finite type, and let PreStklaft be the category of all functors

<∞(DGSchaffaft)
op →∞ -Grpd .

As explained in [GL:Stacks, Sect. 1.3.11], PreStklaft is naturally a subcategory

of PreStk via a suitable Kan extension.
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In order to apply the formalism of ind-coherent sheaves developed in [IndCoh],

we assume that the prestacks we consider are locally almost of finite type for

most of this paper. We will explicitly indicate when this is not the case.

0.6.5. Reduced rings. Let (redSchaff)op ⊂ (DGSchaff)op denote the category of

reduced discrete rings. The inclusion functor has a natural left adjoint

cl,red(−) : (DGSchaff)op → (redSchaff)op

given by

S 7→ H0(S)/nilp(H0(S))

where nilp(H0(S)) is the ideal of nilpotent elements in H0(S).

0.7. Acknowledgments. We are grateful to Jacob Lurie for numerous helpful

discussions. His ideas have so strongly influenced this paper that it is even difficult

to pinpoint specific statements that we learned directly from him.

The research of D.G. is supported by NSF grant DMS-1063470.

1. The de Rham prestack

For a prestack Y, crystals are defined as sheaves (quasi-coherent or ind-

coherent) on the de Rham prestack YdR of Y. In this section, we define the

functor Y 7→ YdR and establish a number of its basic properties.

Most importantly, we will show that if Y is locally almost of finite type, then so

is YdR. In this case, we will also show that YdR is classical, i.e., it can be studied

entirely within the realm of “classical” algebraic geometry without reference to

derived rings.

As the reader might find this section particularly abstract, it might be a good

strategy to skip it on first pass, and return to it when necessary when assertions

established here are applied to crystals.

1.1. Definition and basic properties.
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1.1.1. Let Y be an object of PreStk. We define the de Rham prestack of Y,

YdR ∈ PreStk as

(1.1) YdR(S) := Y(cl,redS)

for S ∈ DGSchaff .

1.1.2. More abstractly, we can rewrite

YdR := RKEredSchaff ↪→DGSchaff (
cl,redY),

where cl,redY := Y|redSchaff is the restriction of Y to reduced classical affine schemes,

and

RKEredSchaff ↪→DGSchaff

is the right Kan extension of a functor along the inclusion redSchaff ↪→ DGSchaff .

1.1.3. The following (obvious) observation will be useful in the sequel.

Lemma 1.1.4. The functor dR : PreStk → PreStk commutes with limits and

colimits.

Proof. Follows from the fact that limits and colimits in

PreStk = Funct((DGSchaff)op,∞ -Grpd)

are computed object-wise. �

As a consequence, we obtain:

Corollary 1.1.5. The functor dR : PreStk → PreStk is the left Kan extension

of the functor

dR|DGSchaff : DGSchaff → PreStk

along DGSchaff ↪→ PreStk.

Proof. This is true for any colimit-preserving functor out of PreStk to an aribi-

trary ∞-category. �
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1.1.6. Furthermore, we have:

Lemma 1.1.7. The functor dR|DGSchaff : DGSchaff → PreStk is isomorphic to

the left Kan of the functor

dR|redSchaff : redSchaff → PreStk

along redSchaff ↪→ DGSchaff .

Proof. For any target category D and any functor Φ : DGSchaff → D, the map

LKEredSchaff ↪→DGSchaff (Φ|redSchaff )→ Φ

is an isomorphism if and only if the natural transformation

Φ(cl,redS)→ Φ(S), S ∈ DGSchaff

is an isomorphism. The latter is the case, by definition, for D = PreStk and Φ

the functor S 7→ SdR. �

1.1.8. Let C1 ⊂ C2 be a pair of categories from the following list of full subcat-

egories of PreStk:

redSchaff , Schaff , DGSchaff , DGSchqs-qc, DGSch, PreStk

(here the subscript “qs-qc” means “quasi-separated and quasi-compact”).

From Lemma 1.1.7 and Corollary 1.1.5 we obtain:

Corollary 1.1.9. The functor C2 → PreStk given by dR|C2 is isomorphic to the

left Kan extension along C1 ↪→ C2 of the functor dR|C1 : C1 → PreStk.

1.2. Relation between Y and YdR.

1.2.1. The functor dR : PreStk → PreStk comes equipped with a natural trans-

formation

pdR : Id→ dR,

i.e., for every Y ∈ PreStk we have a canonical map

pdR,Y : Y→ YdR.
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1.2.2. Let Y•/YdR be the Čech nerve of pdR,Y, regarded as a simplicial object of

PreStk. It is augmented by YdR.

Note that each Yi/YdR is the formal completion of Yi along the main diagonal.

(We refer the reader to [GR1, Sect. 6.1.1], for our conventions regarding formal

completions).

We have a canonical map

(1.2) |Y•/YdR| → YdR.

1.2.3. Classically formally smooth prestacks. We shall say that a prestack Y is

classically formally smooth, if for S ∈ DGSchaff , the map

Maps(S,Y)→ Maps(cl,redS,Y)

induces a surjection on π0.

The following results from the definitions:

Lemma 1.2.4. If Y is classically formally smooth, the map

|Y•/YdR| → YdR

is an isomorphism in PreStk.

1.3. The locally almost of finite type case.

1.3.1. Recall that PreStk contains a full subcategory PreStklaft of prestacks lo-

cally almost of finite type, see [GL:Stacks, Sect. 1.3.9]. By definition, an object

Y ∈ PreStk belongs to PreStklaft if:

• Y is convergent ; i.e., for S ∈ DGSchaff , the natural map

Maps(S,Y)→ lim
n≥0

Maps(≤nS,Y)

is an isomorphism, where ≤nS denotes th n-coconnective truncation of S.

• For every n, the restriction ≤nY := Y|≤nDGSchaff belongs to ≤nPreStklft;

i.e., the functor

S 7→ Maps(S,Y), (≤nDGSchaff)op →∞ -Grpd
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commutes with filtered colimits (equivaently, is a left Kan extension form

the full subcategory ≤nDGSchaffft ↪→ ≤nDGSchaff).

1.3.2. The following observation will play an important role in this paper.

Proposition 1.3.3. Assume that Y ∈ PreStklaft. Then:

(a) YdR ∈ PreStklaft.

(b) YdR is classical, i.e., belongs to the full subcategory clPreStk ⊂ PreStk.

1.3.4. Proof of point (a).

We need to verify two properties:

(i) YdR is convergent;

(ii) Each truncation ≤n(YdR) is locally of finite type.

Property (i) follows tautologically; it is true for any Y ∈ PreStk. To estab-

lish property (ii), we need to show that the functor YdR takes filtered limits in
≤nDGSchaff to colimits in ∞ -Grpd. Since Y itself has this property, it suffices to

show that the functor

S 7→ cl,redS : DGSchaff → DGSchaff

preserves filtered limits, which is evident.

�

1.3.5. Proof of point (b).

By Corollary 1.1.9, we need to prove that the colimit

colim
S∈(Schaff)/Y

SdR ∈ PreStk

is classical. By part (a), the functor

(Schaffft )/Y → (Schaff)/Y

is cofinal; hence,

colim
S∈(Schaffft )/Y

SdR → colim
S∈(Schaff)/Y

SdR
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is an isomorphism.

Therefore, since the full subcategory clPreStk ⊂ PreStk is closed under colim-

its, we can assume without loss of generality that Y is a classical affine scheme of

finite type.

More generally, we will show that for X ∈ DGSchaffaft, the prestack XdR is

classical. Let i : X ↪→ Z be a closed embedding, where Z is a smooth classical

affine scheme of finite type. Let Y denote the formal completion Z∧
X of Z along

X (see [GR1, Sects. 6.1.1 or 6.5]). The map X → Y induces an isomorphism

XdR → YdR. Hence, it suffices to show that YdR is classical.

Consider Y •/YdR (see Sect. 1.2.2 above). Note that Y is formally smooth, since

Z is (see [GR1, Sect. 8.1]). In particular, Y is classically formally smooth. Since

the subcategory clPreStk ⊂ PreStk is closed under colimits and by Lemma 1.2.4,

it suffices to show that each term Y i/YdR is classical as a prestack.

Note that Y i/YdR is isomorphic to the formal completion of Zi along the

diagonally embedded copy of X. Hence, Y i/YdR is classical by [GR1, Proposition

6.8.2].

�

1.3.6. From Proposition 1.3.3 we obtain:

Corollary 1.3.7. Let C1 ⊂ C2 be any of the following full subcategories of

DGSchaff :

Schaffft ,
<∞DGSchaffaft, DGSchaffaft, Sch

aff , DGSchaff .

Then for Y ∈ PreStklaft, the functor

(C1)/YdR
→ (C2)/YdR

is cofinal.

Proof. It suffices to prove the assertion for the inclusions

Schaffft ↪→ Schaff ↪→ DGSchaff .

For right arrow, the assertion follows from point (b) of Proposition 1.3.3, and for

the left arrow from point (a). �
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1.3.8. Now, consider the following full subcategories

(1.3) redSchaffft , Sch
aff
ft , DGSchaffaft, DGSchaft, DGSchlaft, PreStklaft .

of the categories appearing in Sect. 1.1.8.

Corollary 1.3.9. The restriction of the functor dR to PreStklaft is isomorphic

to the left Kan extension of this functor to C, where C is one of the subcategories

in (1.3).

Proof. It suffices to prove the corollary for C = redSchaffft . By Corollary 1.1.9, it

is enough to show that for Y ∈ PreStklaft, the functor

(redSchaffft )/Y → (Schaff)/Y

is cofinal.

By Proposition 1.3.3(a), the functor

(Schaffft )/Y → (Schaff)/Y

is cofinal. Now, the assertion follows from the fact that the inclusion redSchaffft ↪→
Schaffft admits a right adjoint. �

2. Definition of crystals

In this section we will define left crystals (for arbitrary objects of PreStk), and

right crystals for objects of PreStklaft. We will show that in the latter case, the

two theories are equivalent.

2.1. Left crystals.

2.1.1. For Y ∈ PreStk we define

Crysl(Y) := QCoh(YdR).

I.e.,

Crysl(Y) = lim
S∈(DGSchaff/YdR

)op
QCoh(S).
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Informally, an object M ∈ Crysl(Y) is an assignment of a quasi-coherent sheaf

FS ∈ QCoh(S) for every affine DG scheme S ∈ DGSchaff with a map red,clS → Y,

as well as an isomorphism

f∗(FS) ≃ FS′ ∈ QCoh(S′)

for every morphism f : S′ → S of affine DG schemes.

2.1.2. More functorially, let CryslPreStk denote the functor (PreStk)op →
DGCatcont defined as

CryslPreStk := QCoh∗PreStk ◦dR,

where

QCoh∗PreStk : (PreStk)op → DGCatcont

is the functor which assigns to a prestack the corresponding category of quasi-

coherent sheaves [GL:QCoh, Sect. 1.1.5].

For a map f : Y1 → Y2 in PreStk, let f †,l denote the corresponding pullback

functor

Crysl(Y2)→ Crysl(Y1).

By construction, if f induces an isomorphism of the underlying reduced clas-

sical prestacks cl,redY1 → cl,redY2, then it induces an isomorphism of de Rham

prestacks Y1,dR → Y2,dR and in particular f †,l is an equivalence.

2.1.3. Recall that the functor QCoh∗PreStk : (PreStk)op → DGCatcont is by defini-

tion the right Kan extension of the functor

QCoh∗
DGSchaff

: (DGSchaff)op → DGCatcont

along (DGSchaff)op ↪→ (PreStk)op.

In particular, it takes colimits in PreStk to limits in DGCatcont. Therefore, by

Corollary 1.1.9, for Y ∈ PreStk we obtain:

Corollary 2.1.4. Let C be any of the categories from the list of Sect. 1.1.8.

Then for Y ∈ PreStk, the functor

Crysl(Y)→ lim
X∈(C/Y)

op
Crysl(X)

is an equivalence.
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Informally, this corollary says that the data of an object M ∈ Crysl(Y) is

equivalent to that of MS ∈ Crysl(S) for every S ∈ C/Y, and for every f : S′ → S,

an isomorphism

f †,l(MS) ≃MS′ ∈ Crysl(S′).

2.1.5. Recall the natural transformation pdR : Id → dR. It induces a natural

transformation

oblvl : CryslPreStk → QCoh∗PreStk .

I.e., for every Y ∈ PreStk, we have a functor

(2.1) oblvl
Y : Crysl(Y)→ QCoh(Y),

and for every morphism f : Y1 → Y2, a commutative diagram:

(2.2)

Crysl(Y1)
oblvl

Y1−−−−→ QCoh(Y1)

f†,l
x xf∗

Crysl(Y2)
oblvl

Y2−−−−→ QCoh(Y2).

2.1.6. Recall the simplicial object Y•/YdR of Sect. 1.2.2.

From Lemma 1.2.4 we obtain:

Lemma 2.1.7. If Y is classically formally smooth, then the functor

Crysl(Y)→ Tot(QCoh(Y•/YdR))

is an equivalence.

Remark 2.1.8. Our definition of left crystals on Y is what in Grothendieck’s

terminology is quasi-coherent sheaves on the infinitesimal site of Y. The catego-

ry Tot(QCoh(Y•/YdR)) is what in Grothendieck’s terminology is quasi-coherent

sheaves on the stratifying site of Y. Thus, Lemma 2.1.7 says that the two are e-

quivalent for classically formally smooth prestacks. We shall see in Sect. 3.4 that

the same is also true when Y is an eventually coconnective DG scheme locally

almost of finite type. However, the equivalence fails for DG schemes that are not

eventually coconnective (even ones that are locally almost of finite type).
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2.2. Left crystals on prestacks locally almost of finite type. For the rest

of this section, unless specified otherwise, we will restrict ourselves to the sub-

category PreStklaft ⊂ PreStk.

So, unless explicitly stated otherwise, by a prestack/DG scheme/affine DG

scheme, we shall mean one which is locally almost of finite type.

Let CryslPreStklaft denote the restriction of CryslPreStk to PreStklaft ⊂ PreStk.

2.2.1. The next corollary says that we “do not need to know” about schemes

of infinite type or derived algebraic geometry in order to define Crysl(Y) for

Y ∈ PreStklaft. In other words, to define crystals on a prestack locally almost of

finite type, we can stay within the world of classical affine schemes of finite type.

Indeed, from Corollary 1.3.7 we obtain:

Corollary 2.2.2. Let C be one of the full subcategories

Schaffft ,
<∞DGSchaffaft, DGSchaffaft, Sch

aff

of DGSchaff . Then for Y ∈ PreStklaft the natural functor

Crysl(Y)→ lim
S∈(C/YdR

)op
QCoh(S)

is an equivalence.

2.2.3. Recall that according to Corollary 2.1.4, the category Crysl(Y) can be

recovered from the functor

Crysl : C/Y → DGCatcont

where C is any one of the categories

redSchaff , Schaff , DGSchaff , DGSchqs-qc, DGSch ⊂ PreStk .

We now claim that the above categories can be also replaced by their full

subcategories in the list (1.3):

redSchaffft , Sch
aff
ft , DGSchaffaft, DGSchaft, DGSchlaft, PreStklaft .
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Corollary 2.2.4. For Y ∈ PreStklaft and C being one of the categories in (1.3),

the functor

Crysl(Y)→ lim
X∈(C/Y)

op
Crysl(X)

is an equivalence.

Proof. Follows from Corollary 1.3.9.

�

Informally, the above corollary says that an object M ∈ Crysl(Y) can be re-

covered from an assignment of MS ∈ Crysl(S) for every S ∈ C/Y, and for every

f : S′ → S of an isomorphism

f †,l(MS) ≃MS′ ∈ Crysl(S′).

2.2.5. Consider again the functor

oblvl
Y : Crysl(Y)→ QCoh(Y)

of (2.1). We have:

Lemma 2.2.6. For Y ∈ PreStklaft, the functor oblvl
Y is conservative.

The proof is deferred until Sect. 2.4.7.

2.3. Right crystals.

2.3.1. Recall that PreStklaft can be alternatively viewed as the category of all

functors

(<∞DGSchaffaft)
op →∞ -Grpd,

see [GL:Stacks, Sect. 1.3.11].

Furthermore, we have the functor

IndCoh!PreStklaft : (PreStklaft)
op → DGCatcont

of [IndCoh, Sect. 10.1.2], which is defined as the right Kan extension of the

corresponding functor

IndCoh!<∞DGSchaffaft
: (<∞DGSchaffaft)

op → DGCatcont
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along

(<∞DGSchaffaft)
op → (PreStklaft)

op.

In particular, the functor IndCoh!PreStklaft takes colimits in PreStklaft to limits

in DGCatcont.

2.3.2. We define the functor

CrysrPreStklaft : (PreStklaft)
op → DGCatcont

as the composite

CrysrPreStklaft := IndCoh!PreStklaft ◦dR.

In the above formula, Proposition 1.3.3(a) is used to make sure that dR is

defined as a functor PreStklaft → PreStklaft.

Remark 2.3.3. In defining CrysrPreStklaft we “do not need to know” about schemes

of infinite type: we can define the endo-functor dR : PreStklaft → PreStklaft

directly by the formula

Maps(S,YdR) = Maps(red,clS,Y)

for S ∈ <∞DGSchaffaft.

2.3.4. For a map f : Y1 → Y2 in PreStklaft, we shall denote by f †,r the corre-

sponding functor Crysr(Y2)→ Crysr(Y1).

If f induces an equivalence cl,redY1 → cl,redY2, then the map Y1,dR → Y2,dR is

an equivalence, and in particular, so is f †,r.

2.3.5. By definition, for Y ∈ PreStklaft, we have:

Crysr(Y) = lim
S∈((<∞DGSchaffaft)/YdR )op

IndCoh(S).

Informally, an objectM ∈ Crysr(Y) is an assignment for every S ∈ <∞DGSchaffaft
and a map red,clS → Y of an object FS ∈ IndCoh(S), and for every f : S′ → S of

an isomorphism

f !(FS) ≃ FS′ ∈ IndCoh(S′).
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2.3.6. As in Sect. 2.2.1, we “do not need to know” about DG schemes in order

to recover Crysr(Y):

Corollary 2.3.7. For Y ∈ PreStklaft, the functor

Crysr(Y)→ lim
S∈((Schaffft )/YdR )op

IndCoh(S)

is an equivalence.

Proof. Follows readily from Corollary 1.3.7. �

Informally, the above corollary says that an M ∈ Crysr(Y) can be recovered

from an assignment for every S ∈ Schaffft and a map red,clS → Y of an object

FS ∈ IndCoh(S), and for every f : S′ → S of an isomorphism

f !(FS) ≃ FS′ ∈ IndCoh(S′).

2.3.8. Furthermore, the analogue of Corollary 2.2.4 holds for right crystals as

well:

Corollary 2.3.9. Let C be any of the categories from (1.3). Then the functor

Crysr(Y)→ lim
X∈(C/Y)

op
Crysr(X)

is an equivalence.

Proof. Follows from Corollary 1.3.9. �

Informally, this corollary says that we can recover an objectM ∈ Crysr(Y) from

an assignment of MS ∈ Crysr(S) for every S ∈ C/Y, and for every f : S′ → S of

an isomorphism

f †,r(MS) ≃MS′ ∈ Crysr(S′).

2.3.10. The natural transformation pdR : Id→ dR induces a natural transforma-

tion

oblvr : CrysrPreStklaft → IndCohPreStklaft .

I.e., for every Y ∈ PreStklaft, we have a functor

oblvr
Y : Crysr(Y)→ IndCoh(Y),
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and for every morphism f : Y1 → Y2, a commutative diagram:

(2.3)

Crysr(Y1)
oblvr

Y1−−−−→ IndCoh(Y1)

f†,r
x xf !

Crysr(Y2)
oblvr

Y2−−−−→ IndCoh(Y2).

We have:

Lemma 2.3.11. If Y is classically formally smooth, then the functor

Crysr(Y)→ Tot(IndCoh(Y•/YdR))

is an equivalence.

Proof. Same as that of Lemma 2.1.7, i.e. follows from Lemma 1.2.4. �

Lemma 2.3.12. For any Y, the functor oblvr
Y is conservative.

Proof. By Corollary 2.3.9 and the commutativity of (2.3), we can assume without

loss of generality that Y = X is an affine DG scheme locally almost of finite type.

Let i : X → Z be a closed embedding of X into a smooth classical finite type

scheme Z, and let Y be the formal completion of Z along X. Let ′i denote the

resulting map X → Y .

Consider the commutative diagram

Crysr(Y )
oblvr

Y−−−−→ IndCoh(Y )

′i†,r

y y′i!

Crysr(X)
oblvr

X−−−−→ IndCoh(X).

In this diagram the left vertical arrow is an equivalence since ′idR : XdR → YdR

is an isomorphism. The top horizontal arrow is conservative by Lemma 2.3.11,

since Y is formally smooth (and, in particular, classically formally smooth).

Hence, it remains to show that the functor ′i! is conservative. This follows,

e.g., by combining [GR1, Proposition 7.4.5] and [IndCoh, Proposition 4.1.7(a)].

�
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2.4. Comparison of left and right crystals. We remind the reader that we

assume that all prestacks and DG schemes are locally almost of finite type.

2.4.1. Recall (see [IndCoh, Sect. 5.7.5]) that for any S ∈ DGSchaft there is a

canonically defined functor

ΥS : QCoh(S)→ IndCoh(S),

given by tensoring with the duaizing sheaf ωS ∈ IndCoh(S), such that for f :

S1 → S2, the diagram

QCoh(S1)
ΥS1−−−−→ IndCoh(S1)

f∗
x xf !

QCoh(S2)
ΥS2−−−−→ IndCoh(S2)

canonically commutes. In fact, the above data upgrades to a natural transforma-

tion of functors

ΥDGSchaft : QCoh∗DGSchaft
→ IndCoh!DGSchaft

,

and hence gives rise to a natural transformation

ΥPreStklaft : QCoh∗PreStklaft → IndCoh!PreStklaft ,

[IndCoh, Sect. 10.3.3].

For an individual object Y ∈ PreStklaft, we obtain a functor

ΥY : QCoh(Y)→ IndCoh(Y).

2.4.2. Applying Υ to YdR for Y ∈ PreStklaft, we obtain a canonically defined

functor

(2.4) ΥYdR
: Crysl(Y)→ Crysr(Y),

making the diagram

(2.5)

Crysl(Y)
ΥYdR−−−−→ Crysr(Y)

oblvl
Y

y yoblvr
Y

QCoh(Y)
ΥY−−−−→ IndCoh(Y)

commute.
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In fact we obtain a natural transformation

ΥPreStklaft ◦ dR : CryslPreStklaft → CrysrPreStklaft .

In particular, for f : Y1 → Y2 the diagram

Crysl(Y1)
ΥY1dR−−−−→ Crysr(Y1)

f†,l
x xf†,r

Crysl(Y2)
ΥY2dR−−−−→ Crysr(Y2)

commutes.

2.4.3. We claim:

Proposition 2.4.4. For Y ∈ PreStklaft, the functor (2.4) is an equivalence.

Proof. By Corollaries 2.2.4 and 2.3.9, the statement reduces to one saying that

ΥXdR
: Crysl(X)→ Crysr(X)

is an equivalence for an affine DG scheme X almost of finite type.

Let i : X ↪→ Z be a closed embedding, where Z is a smooth classical scheme,

and let Y be the formal completion of Z along X. Since XdR → YdR is an

isomorphism, the functors

f †,l : Crysl(Y )→ Crysl(X) and f †,r : Crysr(Y )→ Crysr(X)

are both equivalences. Hence, it is enough to prove the assertion for Y .

Let Y •/YdR be the Čech nerve of PreStklaft corresponding to the map

pdR,Y : Y → YdR.

Consider the commutative diagram

Crysl(Y )
ΥYdR−−−−→ Crysr(Y )y y

Tot(QCoh(Y •/YdR))
Tot(ΥY •/YdR )
−−−−−−−−−→ Tot(IndCoh(Y •/YdR)).
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By Lemmas 2.1.7 and 2.3.11, the vertical arrows in the diagram are equiva-

lences. Therefore, it suffices to show that for every i,

ΥY i/YdR
: QCoh(Y i/YdR)→ IndCoh(Y i/YdR)

is an equivalence.

Recall (also from the proof of Proposition 1.3.3) that Y i/YdR is the completion

of the smooth classical scheme Zi along the diagonal copy of X. Let us denote

by Ui ⊂ Zi the complementary open substack.

From [GR1, Propositions 7.1.3 and 7.4.5 and Diagram (7.16)], we obtain that

we have a map of “short exact sequences” of DG categories

0 −−−−→ QCoh(Y i/YdR) −−−−→ QCoh(Zi) −−−−→ QCoh(Ui) −−−−→ 0

ΥY i/YdR

y yΥZi

yΥUi

0 −−−−→ IndCoh(Y i/YdR) −−−−→ IndCoh(Zi) −−−−→ IndCoh(Ui) −−−−→ 0.

Now, the functors

ΥZi : QCoh(Zi)→ IndCoh(Zi) and ΥUi : QCoh(Ui)→ IndCoh(Ui)

are both equivalences, since Zi and Ui are smooth:

Indeed, by [IndCoh, Proposition 9.3.3], for any S ∈ DGSchaft, the functor ΥS

is the dual of ΨS : IndCoh(S) → QCoh(S), and the latter is an equivalence if S

is smooth by [IndCoh, Lemma 1.1.6].

�

2.4.5. Proposition 2.4.4 allows us to identify left and right crystals for objects

Y ∈ PreStklaft.

In other words, we can consider the category Crys(Y) equipped with two re-

alizations: “left” and “right”, which incarnate themselves as forgetful functors

oblvl
Y and oblvr

Y from Crys(Y) to QCoh(Y) and IndCoh(Y), respectively.
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The two forgetful functors are related by the commutative diagram

QCoh(Y) IndCoh(Y)

Crys(Y).

oblvl
Y

����
��
��
��
��
�

oblvr
Y

��?
??

??
??

??
??

ΥY

//(2.6)

For a morphism f : Y1 → Y2 we have a naturally defined functor

f † : Crys(Y2)→ Crys(Y1),

which makes the following diagrams commute

Crys(Y1)
f†
←−−−− Crys(Y2)

oblvl
Y1

y yoblvl
Y2

QCoh(Y1)
f∗
←−−−− QCoh(Y2)

and

Crys(Y1)
f†
←−−−− Crys(Y2)

oblvr
Y1

y yoblvr
Y2

IndCoh(Y1)
f !

←−−−− IndCoh(Y2).

2.4.6. In the sequel, we shall use symbols Crys(Y), Crysr(Y) and Crysl(Y) inter-

changeably with the former emphasizing that the statement is independent of

realization (left or right) we choose, and the latter two, when a choice of the

realization is important.

2.4.7. Proof of Lemma 2.2.6. Follows by combining Lemma 2.3.12 and Proposi-

tion 2.4.4.

�

2.5. Kashiwara’s lemma. A feature of the assignment Y 7→ Crys(Y) is that

Kashiwara’s lemma becomes nearly tautological.

We will formulate and prove it for the incarnation of crystals as right crystals.

By Proposition 2.4.4, this implies the corresponding assertion for left crystals.
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However, one could easily write the same proof in the language of left crystals as

well.

2.5.1. Recall that a map i : X → Z in PreStk is called a closed embedding if

it is such at the level of the underlying classical prestacks. I.e., if for every

S ∈ (Schaff)/Z the base-changed map

cl(S ×
Z
X)→ S

is a closed embedding; in particular, cl(S ×
Z
X) is a classical affine scheme.

If X,Z ∈ PreStklaft, it suffices to check the above condition for S ∈ (Schaffft )/Z.

2.5.2. For i : X ↪→ Z a closed embedding of objects of PreStklaft, let j :
◦
Z ↪→ Z

be the complementary open embedding. The induced map

j :
◦
ZdR → ZdR

is also an open embedding of prestacks. Consider the restriction functor

j†,r : Crysr(Z)→ Crysr(
◦
Z).

It follows from [IndCoh, Lemma 4.1.1], that the above functor admits a fully

faithful right adjoint, denoted jdR,∗, such that for every S ∈ (DGSchaft)/ZdR
and

◦
S := S ×

ZdR

◦
ZdR

jS
↪→ S,

the natural transformation in the diagram

IndCoh(S)
oblvr

Z←−−−− Crysr(Z)

(jS)
IndCoh
∗

x xjdR,∗

IndCoh(
◦
S)

oblvr
◦
S←−−−− Crysr(

◦
Z)

arising by adjunction from the diagram

IndCoh(S)
oblvr

Z←−−−− Crysr(Z)

(jS)
!

y yj†,r

IndCoh(
◦
S)

oblvr
◦
S←−−−− Crysr(

◦
Z),

is an isomorphism.
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In particular, the natural transformation

oblvr
Z ◦ jdR,∗ → jIndCoh

∗ ◦ oblvr
◦
Z

is an isomorphism.

2.5.3. Let Crysr(Z)X denote the full subcategory of Crysr(Z) equal to ker(j†,r).

Clearly, an object M ∈ Crysr(Z) belongs to Crysr(Z)X if and only if for every

S ∈ DGSchaft, equipped with a map cl,redS → Z, the corresponding object FS ∈
IndCoh(S) lies in

IndCoh(S)
S−

◦
S
:= ker

(
j!S : IndCoh(S)→ IndCoh(

◦
S)

)
.

2.5.4. The functor Crysr(Z)X ↪→ Crysr(X) admits a right adjoint, given by

M 7→ Cone(M→ jdR,∗ ◦ j†,r(M))[−1].

Hence, we can think of Crysr(Z)X as a co-localization of Crysr(Z).

2.5.5. Since the composite i†,r ◦ jdR,∗ is zero, the functor i†,r : Crysr(Z) →
Crysr(X) factors through the above co-localization:

Crysr(Z)→ Crysr(Z)X
′i†,r−→ Crysr(X).

Kashiwara’s lemma says:

Proposition 2.5.6. The above functor

′i†,r : Crysr(Z)X → Crysr(X)

is an equivalence.

Proof. Note that we have an isomorphism in PreStklaft:

colim
S∈(DGSchaft)/ZdR

S ×
ZdR

XdR ≃ XdR.

Furthermore, S∧ := S ×
ZdR

XdR identifies with the formal completion of S along

red,clS ×
cl,redZ

cl,redX.



94 Dennis Gaitsgory and Nick Rozenblyum

Hence, the category Crysr(X) can be described as

lim
S∈((DGSchaft)/ZdR

)op
IndCoh(S∧).

By definition, the category Crysr(Z)X is given by

lim
S∈((DGSchaft)/ZdR

)op
ker

(
j!S : IndCoh(S)→ IndCoh(

◦
S)

)
.

Now, [GR1, Proposition 7.4.5] says that for any S as above, !-pullback gives

an equivalence

ker

(
j!S : IndCoh(S)→ IndCoh(

◦
S)

)
→ IndCoh(S∧),

as desired.

�

Remark 2.5.7. If we phrased the above proof in terms of left crystals instead

of right crystals, we would have used [GR1, Proposition 7.1.3] instead of [GR1,

Proposition 7.4.5].

3. Descent properties of crystals

In this section all prestacks, including DG schemes and DG indschemes are

assumed locally almost of finite type, unless explicitly stated otherwise.

The goal of this section is to establish a number of properties concerning the

behavior of crystals on DG schemes and DG indschemes. These properties in-

clude: an interpretation of crystals (right and left) via the infinitesimal groupoid;

h-descent; a monadic description of the category of crystals; induction functors

for right and left crystals.

3.1. The infinitesimal groupoid. In this subsection, we let X be a DG ind-

scheme locally almost of finite, see [GR1, Sect. 1.7.1].
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3.1.1. Consider the simplicial prestack X•/XdR, i.e., the Čech nerve of the map

X→ XdR. As was remarked already, each Xi/XdR is the formal completion of Xi

along the main diagonal. In particular, all Xi/XdR also belong to DGindSchlaft.

We shall refer to

X ×
XdR

X⇒ X

as the infinitesimal groupoid of X.

3.1.2. Consider the cosimplicial category IndCoh(X•/XdR).

Proposition 3.1.3. The functor

Crysr(X)→ Tot(IndCoh(X•/XdR)),

defined by the augmentation, is an equivalence.

Remark 3.1.4. Note that by Lemma 2.3.11, the assertion of the proposition holds

also for X replaced any classically formally smooth object Y ∈ PreStklaft.

Proof. It suffices to show that for any S ∈ DGSchaft and a map S → XdR, the

functor

IndCoh(S)→ Tot

(
IndCoh(S ×

XdR

X•/XdR)

)
is an equivalence.

Note that the simplicial prestack S ×
XdR

(X•/XdR) is the Čech nerve of the map

(3.1) S ×
XdR

X→ S.

Note that S ×
XdR

X identifies with the formal completion of S×X along the map

red,clS → S × X, where red,clS → X is the map corresponding to S → XdR. In

particular, we obtain that the map in (3.1) is ind-proper (see [GR1, Sect. 2.7.4],

where the notion of ind-properness is introduced) and surjective.

Hence, our assertion follows from [GR1, Lemma 2.10.3].

�

3.2. Fppf and h-descent for crystals.
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3.2.1. Recall the h-topology on the category DGSchaffaft, [IndCoh, Sect. 8.2]. It is

generated by Zariski covers and proper-surjective covers.

Consider the functor

Crysr
DGSchaffaft

:= CrysrPreStklaft |DGSchaffaft
: (DGSchaffaft)

op → DGCat .

We will prove:

Proposition 3.2.2. The functor Crysr
DGSchaffaft

satisfies h-descent.

Proof. We will show that Crysr
DGSchaffaft

satisfies étale descent and proper-surjective

descent.

The étale descent statement is clear: if S′ → S is an étale cover in DGSchaffaft
then the corresponding map S′

dR → SdR is a schematic, étale and surjective map

in PreStklaft. In particular, it is a cover for the fppf topology, and the statement

follows from the fppf descent for IndCoh, see [IndCoh, Corollary 10.4.5].

Thus, let S′ → S be a proper surjective map. Consider the bi-simplicial object

of PreStklaft equal to

(S′•/S)⋆/(S′
dR

•/SdR),

i.e., the term-wise infinitesimal groupoid of the Čech nerve of S′ → S. Namely,

it is the bi-simplicial object whose (p, q) simplices are given by the q-simplices of

Cech nerve of the map S′p/S → S′
dR

p/SdR; so ⋆ stands for the index q, and • for
the index p.

By Proposition 3.1.3, it is enough to show that the composite functor

(3.2) Crysr(S) := IndCoh(SdR)→ Tot
(
IndCoh((S′•/S)dR)

)
→

→ Tot
(
IndCoh((S′•/S)⋆/(S′•/S)dR)

)
.

is an equivalence.

Note, however, that we have a canonical isomorphism of bi-simplicial objects

of PreStklaft

(S′•/S)⋆/(S′
dR

•/SdR) ≃ (S′⋆/S′
dR)

•/(S⋆/SdR),
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where the latter is the term-wise Čech nerve of the map of cosimplicial objects

(S′⋆/S′
dR)→ (S⋆/SdR).

The map in (3.2) can be rewritten as

Crysr(S) := IndCoh(SdR)→ Tot (IndCoh(S•/SdR))→

Tot
(
IndCoh((S′⋆/S′

dR)
•/(S⋆/SdR))

)
.

Applying Proposition 3.1.3 again, we obtain that it suffices to show that for

every i, the map

IndCoh(Si/SdR)→ Tot
(
IndCoh((S′i/S′

dR)
•/(Si/SdR))

)
is an equivalence.

However, we note that the map

S′i/S′
dR → Si/SdR

is ind-proper and surjective. Hence, the assertion follows from [GR1, Lemma

2.10.3].

�

3.2.3. Consider the fppf topology on the category DGSchaffaft, induced from the

fppf topology on DGSchaff (see [GL:Stacks, Sect. 2.2]). Note that every fppf

covering is in particular an h-covering. Therefore, we obtain,

Corollary 3.2.4. The functor Crysr
DGSchaffaft

satisfies fppf descent.

As in [IndCoh, Theorem 8.3.2], fppf descent is a combination of Nisnevich

descent and finite-flat descent4. In particular, we established fppf descent in the

proof of Proposition 3.2.2 without appealing to the fact that every fppf covering

is also an h-covering.

4This observation was explained to us by J. Lurie.
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3.2.5. Fppf (resp. h-) topology on DGSchaffaft induces the fppf (resp. h-) topology

on the full subcategory

<∞DGSchaffaft ⊂ DGSchaffaft .

Proposition 3.2.2 implies:

Corollary 3.2.6. The functor

Crysr<∞DGSchaffaft
:= CrysrPreStklaft |<∞DGSchaffaft

: (<∞DGSchaffaft)
op → DGCat

on <∞DGSchaffaft satisfies h-descent and, in particular, fppf descent.

Thus by [Lu0, Corollary 6.2.3.5], we obtain:

Corollary 3.2.7. Let Y1 → Y2 be a map in PreStklaft which is a surjection in

the h-topology. Then the natural map

Crys(Y2)→ Tot(Crys(Y•
1/Y2))

is an equivalence.

3.3. The induction functor for right crystals.

3.3.1. Let ps, pt denote the two projections

X ×
XdR

X⇒ X.

Note that the maps pi, i = s, t are ind-proper. Hence, the functors p!i admit

left adjoints, (pi)
IndCoh
∗ , see [GR1, Corollary 2.8.3].

Proposition 3.3.2.

(a) The forgetful functor

oblvr
X : Crys(X)→ IndCoh(X)

admits a left adjoint, to be denoted indr
X.

(b) We have a canonical isomorphism of functors

oblvr
X ◦ indr

X ≃ (pt)
IndCoh
∗ ◦ (ps)!.
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(c) The adjoint pair

indr
X : IndCoh(X)� Crysr(X) : oblvr

X

is monadic, i.e., the natural functor from Crysr(X) to the category of modules in

IndCoh(X) over the monad oblvr
X ◦ indr

X is an equivalence.

Proof. By Proposition 3.1.3 and [Lu2, Theorem 6.2.4.2], it suffices to show that

the co-simplicial category

IndCoh(X•/XdR)

satisfies the Beck-Chevalley condition, i.e. for each n, the coface map

d0 : IndCoh(Xn/XdR)→ IndCoh(Xn+1/XdR)

admits a left adjoint, to be denoted by t0, and for every map [m]→ [n] in ∆, the

diagram

IndCoh(Xm/XdR)

��

IndCoh(Xm+1/XdR)
t0oo

��
IndCoh(Xn/XdR) IndCoh(Xn+1/XdR)

t0oo

which, a priori, commutes up to a natural transformation, actually commutes.

In this case, the Beck-Chevalley condition amounts to the adjunction and base

change between ∗-pushforwards and !-pullbacks for ind-proper morphisms be-

tween DG indschemes, and is given by [GR1, Proposition 2.9.2].

�

Corollary 3.3.3. The category Crysr(X) is compactly generated.

Proof. The set of compact generators is obtained by applying indr
X to the compact

generators Coh(X) ⊂ IndCoh(X) (see [GR1, Corollary 2.4.4]). �

3.4. The induction functor and infinitesimal groupoid for left crystals.
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3.4.1. It follows from Lemma 1.2.4 that for a smooth classical scheme X, the

analogue of Proposition 3.1.3 holds for left crystals, i.e., the functor

(3.3) Crysl(X) = QCoh(XdR)→ Tot (QCoh(X•/XdR))

is an equivalence.

By Proposition 3.1.3, the analogous statement for right crystals is true for any

DG scheme X (and even a DG indscheme). However, this is not the case for left

crystals.

3.4.2. We claim:

Proposition 3.4.3. If a DG scheme X is eventually coconnective, then the func-

tor (3.3) is an equivalence.

Remark 3.4.4. One can show that the statement of the proposition holds for any

DG scheme X locally almost of finite type. But the proof is more involved. In

addition, Lemma 2.1.7, the statement of the proposition holds for any prestack

which is classically formally smooth.

Example 3.4.5. Consider the DG scheme X = Spec(k[α]), where α is in degree

-2. This is a good case to have in mind to produce counterexamples for assertions

involving Crysl(X).

Proof of Proposition 3.4.3. We have a commutative diagram of functors

Crysl(X) −−−−→ Tot (QCoh(X•/XdR))

ΥX

y yTot(ΥX•/XdR
)

Crysr(X) −−−−→ Tot (IndCoh(X•/XdR)) .

with the left vertical map and the bottom horizontal map being equivalences.

Hence, we obtain that Crysl(X) is a retract of Tot (QCoh(X•/XdR)).

Recall that if Z is an eventually coconnective DG scheme, the functor

ΥZ : QCoh(Z)→ IndCoh(Z)

is fully faithful (see [IndCoh, Corollary 9.6.3]. Hence, by [GR1, Propositions 7.1.3

and 7.4.5], the same is true for the completion of an eventually coconnective DG

scheme along a Zariski-closed subset. Hence, the functors

ΥXi/XdR
: QCoh(Xi/XdR)→ IndCoh(Xi/XdR)
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are fully faithful. Thus, the functor Tot(ΥX•/XdR
) in the above commutative

diagram is also fully faithful. But it is also essentially surjective since the identity

functor is its retract.

�

3.4.6. For a DG scheme X, define the functor

indl
X : QCoh(X)→ Crysl(X)

as

indl
X := (ΥXdR

)−1 ◦ indr
X ◦ΥX .

We claim:

Lemma 3.4.7. If X is an eventually coconnective DG scheme, the functors

(indl
X ,oblvl

X) are adjoint.

Remark 3.4.8. The assertion of the lemma would be false if we dropped the

assumption that X be eventually coconnective. Indeed, in this case the functor

indl
X fails to preserve compactness.

Proof of Lemma 3.4.7. Recall (see [IndCoh, Sect. 9.6.6]) that for X eventually

coconnective, the functor ΥX admits a right adjoint, denoted Ξ∨
X ; moreover, the

functor ΥX itself is fully faithful.

We obtain that the right adjoint to indl
X is given by

Ξ∨
X ◦ oblvr

X ◦ΥXdR
≃ Ξ∨

X ◦ΥX ◦ oblvl
X ≃ oblvl

X ,

as required.

�

In the course of the proof of Lemma 3.4.7 we have also seen:

Lemma 3.4.9. The functor oblvl
X is canonically isomorphic to

Ξ∨
X ◦ oblvr

X ◦ΥXdR
.
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3.4.10. We now claim:

Proposition 3.4.11. Let X be an eventually coconnective DG scheme. Then the

adjoint pair

indl
X : QCoh(X)� Crysl(X) : oblvl

X

is monadic, i.e., the natural functor from Crysl(X) to the category of modules in

QCoh(X) over the monad oblvl
X ◦ indl

X is an equivalence.

Proof. We need to show that the conditions of the Barr-Beck-Lurie theorem hold.

The functor oblvl
X is continuous, and hence commutes with all colimits. The

fact that oblvl
X is conservative is given by Lemma 2.2.6. �

4. t-structures on crystals

The category of crystals has two natural t-structures, which are compatible

with the left and right realizations respectively. One of the main advantages of

the right realization is that the t-structure compatible with it is much better

behaved.

In this section, we will define the two t-structures and prove some of their basic

properties. These include: results on left/right t-exactness and boundedness of

cohomological amplitude of the induction/forgetful functors; the left-completness

property of Crys of a DG scheme; relation to the derived category of the heart

of the t-structure.

4.1. The left t-structure. In this subsection, we do not make the assumption

that prestacks be locally almost of finite type.

4.1.1. Recall [GL:QCoh, Sec. 1.2.3] that for any prestack Z, the category

QCoh(Z) has a canonical t-structure characterized by the following condition: an

object F ∈ QCoh(Z) belongs to QCoh(Z)≤0 if and only if for every S ∈ DGSchaff

and a map ϕ : S → Z, we have

ϕ∗(F) ∈ QCoh(S)≤0.

In particular, taking Z = YdR for some prestack Y, we obtain a canonical

t-structure on Crysl(Y), which we shall call the “left t-structure.”
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By definition, the functor

oblvl : Crysl(X)→ QCoh(X)

is right t-exact for the left t-structure.

4.1.2. In general, the left t-structure is quite poorly behaved. However, we have

the following assertion:

Proposition 4.1.3. Let Y be a classically formally smooth prestack. Then

M ∈ Crysl(Y)≤0 ⇔ oblvl
Y(M) ∈ QCoh(Y)≤0.

Proof. We need to show that if M ∈ Crysl(Y) is such that oblvl
X(M) ∈

QCoh(Y)≤0 then M ∈ Crysl(Y)≤0. I.e., we need to show that for every

S ∈ DGSchaff and ϕ : S → YdR, ϕ
∗(M) ∈ QCoh(S)≤0.

Let Y•/YdR be the Čech nerve of the map pdR,Y : Y → YdR. By Lemma 1.2.4,

there exists a map ϕ′ : S → Y and an isomorphism ϕ ≃ pdR,Y ◦ ϕ′. The assertion

now follows from the fact that ϕ′∗ is right t-exact. �

4.2. The right t-structure. From this point until the end of this section we

reinstate the assumption that all prestacks are locally almost of finite type, unless

explicitly stated otherwise.

In this subsection we shall specialize to the case of DG schemes.

4.2.1. Let X be a DG scheme. Recall that the category IndCoh(X) has a natural

t-structure, compatible with filtered colimits, see [IndCoh, Sect. 1.2].

It is characterized by the property that an object of IndCoh(X) is con-

nective (i.e., lies in IndCoh(X)≤0) if and only if its image under the functor

ΨX : IndCoh(X)→ QCoh(X) is connective.

4.2.2. We define the right t-structure on Crysr(X) by declaring that

M ∈ Crysr(X)≥0 ⇔ oblvr
X(M) ∈ IndCoh(X)≥0.

In what follows, we shall refer to the right t-structure on Crysr(X) as “the” t-

structure on crystals. In other words, by default the t-structure we shall consider



104 Dennis Gaitsgory and Nick Rozenblyum

will be the right one. By construction, this t-structure is also compatible with

filtered colimits, since oblvr
X is continuous.

4.2.3. We claim that the right t-structure on Crysr(X) is Zariski-local, i.e., an

object is connective/coconnective if and only if its restriction to a Zariski cover

has this property. Indeed, this follows from the corresponding property of the

t-structure on IndCoh(X), see [IndCoh, Corollaty 4.2.3].

4.2.4. The right t-structure and Kashiwara’s lemma. Let i : X → Z be a closed

embedding of DG schemes. Let idR,∗ denote the functor Crysr(X) → Crysr(Z)

equal to the composition

Crysr(X)
(′i†,r)−1

−→ Crysr(Z)X ↪→ Crysr(Z),

which, by construction, is the left adjoint of i†,r.

We have:

Proposition 4.2.5. The functor idR,∗ : Crys
r(X)→ Crysr(Z) is t-exact.

Proof. Note that the full subcategory

Crysr(Z)X ⊂ Crysr(Z)

is compatible with the t-structure, since it is the kernel of the functor j†,r, which

is t-exact (here j denotes the open embedding Z −X ↪→ Z).

Hence, it remains to show that the functor

′i†,r : Crysr(Z)X → Crysr(X)

is t-exact.

Thus, we need to show that for M ∈ Crysr(Z)X we have:

oblvr
Z(M) ∈ IndCoh(Z)>0 ⇔ oblvr

X(i†,r(M)) ∈ IndCoh(X)>0.

Recall the notation

IndCoh(Z)X := ker
(
j! : IndCoh(Z)→ IndCoh(Z −X)

)
.

It suffices to show the following:
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Lemma 4.2.6. Let i : X → Z be a closed embedding. Then for F ∈ IndCoh(Z)X

we have:

F ∈ IndCoh(Z)>0 ⇔ i!(F) ∈ IndCoh(X)>0.

�

Proof of Lemma 4.2.6. The ⇒ implication follows from the fact that i! is left

t-exact (being the right adjoint of the t-exact functor, namely, iIndCoh
∗ ).

For the converse implication, note that the full subcategory

IndCoh(Z)X ⊂ IndCoh(Z)

is also compatible with the t-structure, since it is the kernel of the t-exact func-

tor j!. Furthermore, it follows from [IndCoh, Proposition 4.1.7(b)] that the t-

structure on IndCoh(Z)X is generated by the t-structure on

Coh(Z)X := ker (j∗ : Coh(Z)→ Coh(Z −X)) .

Let F ∈ IndCoh(Z)X be such that i!(F) ∈ IndCoh(X)>0. We need to show

that F is right-orthogonal to (Coh(Z)X)≤0. By assumption, F is right-orthogonal

to the essential image of Coh(X)≤0 under

Coh(X)
i∗−→ Coh(Z)X → IndCoh(Z)X .

However, it is easy to see that every object of (Coh(Z)X)≤0 can be obtained as a

finite successive extension of objects in the essential image of Coh(X)≤0, which

implies the required assertion.

�

Corollary 4.2.7. If a map X1 → X2 of DG schemes induces an isomorphism

cl,redX1 → cl,redX2,

then the corresponding t-structures on Crysr(X1) ≃ Crysr(X2) coincide.
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4.2.8. Let X be a DG scheme. By construction, the forgetful functor oblvr
X is

left t-exact. Hence, by adjunction, the functor indr
X is right t-exact.

We now claim:

Proposition 4.2.9. The functor indr
X is t-exact.

Proof. It suffices to show that the composition oblvr
X ◦ indr

X is left t-exact. We

deduce this from Proposition 3.3.2(b):

The functor p!s is left t-exact (e.g., by Lemma 4.2.6 applied to ∆X : X →
X ×X). The functor (pt)

IndCoh
∗ is left t-exact (in fact, t-exact) by [GR1, Lemma

2.7.11].

�

4.2.10. We now claim:

Proposition 4.2.11.

(a) If X is a smooth classical scheme, then oblvr
X is t-exact.

(b) For a quasi-compact DG scheme X, the functor oblvr
X is of bounded coho-

mological amplitude.

Proof. LetX be a smooth classical scheme. By the definition of the t-structure on

Crysr(X), the essential image of IndCoh(X)≤0 under indr
X generates Crysr(X)≤0

by taking colimits. Hence, in order to show that oblvr
X is right t-exact, it suf-

fices to show the same for the functor oblvr
X ◦ indr

X . We will deduce this from

Proposition 3.3.2(b):

We can write

(X ×X)∧X ≃ colim
n

Xn,

whereXn
in→ X×X is the n-th infinitesimal neighborhood of the diagonal. Hence,

by [GR1, Equation (2.2)],

(pt)
IndCoh
∗ ◦ p!s ≃ colim

n
(pt ◦ in)IndCoh

∗ ◦ (ps ◦ in)!.
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Now, each of the functors (pt ◦ in)IndCoh
∗ is t-exact by [GR1, Lemma 2.7.11], and

each of the functors (ps ◦ in)! is t-exact because ps ◦ in : Xn → X is finite and

flat.

Now, let X be a quasi-compact DG scheme, and let us show that oblvr
X

is of bounded cohomological amplitude. The question readily reduces to the

case when X is affine, and let i : X ↪→ Z be a closed embedding, where Z is

smooth. By Proposition 4.2.5 and point (a), it suffices to show that the functor

i! : IndCoh(Z) → IndCoh(X) is of bounded cohomological amplitude, but the

latter follows easily from the fact that Z is regular.

�

4.3. Right t-structure on crystals on indschemes.

4.3.1. Let X be a DG indscheme. Fix a presentation of X

(4.1) X = colim
α

Xα

as in [GR1, Prop. 1.7.6]. For each α, let iα denote the corresponding closed

embedding Xα → X, and for each α1 → α2 let iα1,α2 denote the closed embedding

Xα1 → Xα2 .

We have:

Crysr(X) ≃ lim
α

Crysr(Xα),

where for α1 → α2, the functor Crysr(Xα2)→ Crysr(Xα1) is given by i†,rα1,α2 .

Hence, by [GL:DG, Sect. 1.3.3], we have that

Crysr(X) ≃ colim
α

Crysr(Xα),

where for α1 → α2, the functor Crys
r(Xα1)→ Crysr(Xα2) is given by (iα1,α2)dR,∗.

In particular, for each α, we obtain a pair of adjoint functors

(iα)dR,∗ : Crys
r(X)� Crysr(X) : i†,rα .
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4.3.2. Recall from [GR1, Sect. 2.5] that IndCoh(X) has a natural t-structure

compatible with filtered colimits.

Using this t-structure on IndCoh(X), we can define the right t-structure on

Crysr(X). Namely, we have

M ∈ Crysr(X)≥0 ⇔ oblvr
X(M) ∈ IndCoh(X)≥0

Since oblvr
X preserves colimits, this t-structure is compatible with filtered colim-

its. We can describe this t-structure more explicitly using the presentation (4.1),

in a way analogous to [GR1, Lemma 2.5.3] for the t-structure on IndCoh(X):

Lemma 4.3.3. Under the above circumstances, we have:

(a) An object F ∈ Crysr(X) belongs to Crysr(X)≥0 if and only if for every α, the

object i†,rα (F) ∈ Crysr(Xα) belongs to Crysr(Xα)
≥0.

(b) The category Crysr(X)≤0 is generated under colimits by the essential images

of the functors (iα)dR,∗
(
Crysr(Xα)

≤0
)
.

Proof. Point (a) follows from the definition and [GR1, Lemma 2.5.3(a)]. Point

(b) follows formally from point (a). �

4.3.4. Suppose that i : X → X is a closed embedding of a DG scheme into a DG

indscheme. By the exact same argument as in [GR1, Lemma 2.5.5], we have:

Lemma 4.3.5. The functor idR,∗ is t-exact.

4.3.6. As an illustration of the behavior of the above t-structure on right crystals

over a DG indscheme, let us consider the following situation. Let i : X → Z

be a closed embedding of quasi-compact DG schemes. Let Y denote the formal

completion of X in Z, considered as an object of DGindSchlaft; let
′i denote the

resulting map X → Y .

We claim:

Lemma 4.3.7. The equivalence Crysr(X) ≃ Crysr(Y ), induced by the isomor-

phism ′idR : XdR → YdR, is compatible with the t-structures.
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Proof 1. Follows from Proposition 4.2.5 and the fact that the equivalence

IndCoh(Y ) ≃ IndCoh(Z)Y

of [GR1, Proposition 7.4.5] is compatible with the t-structures (see [GR1, Lemma

7.4.8]). �

Proof 2. From the commutative diagram

Crysr(X)
′i†,r←−−−− Crysr(Y )

oblvr
X

y yoblvr
Y

IndCoh(X)
′i!←−−−− IndCoh(Y ).

we obtain that it suffices to show that for F ∈ IndCoh(Y ) we have

F ∈ IndCoh(Y )>0 ⇔ ′i!(F) ∈ IndCoh(X)>0,

which follows formally from [GR1, Lemma 7.4.8] and Lemma 4.2.6 (or can be

easily proved directly). �

4.4. Further properties of the left t-structure.

4.4.1. First, let us describe the relation between the left and the right t-structures

on crystals in the case of a smooth classical scheme.

Proposition 4.4.2. Let X be a smooth classical scheme of dimension n. Then

F ∈ Crysl(X)≤0 ⇔ F ∈ Crysr(X)≤−n.

I.e., the left t-structure agrees with the right t-structure up to a shift by the di-

mension of X.

Proof. Recall that the two forgetful functors are related by the commutative

diagram

QCoh(X) IndCoh(X)

Crys(X).

oblvl
X

����
��
��
��
��
�

oblvr
X

��?
??

??
??

??
??

ΥX

//

In the case that X is a smooth classical scheme of dimension n, the functior ΥX

is an equivalence and maps QCoh(X)≤0 isomorphically to IndCoh(X)≤−n. The
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assertion now follows from Proposition 4.1.3 and Proposition 4.2.11(a), combined

with the fact that oblvr
X is conservative.

�

4.4.3. The next proposition compares the “left” and “right” t-structures on

Crys(X) for an arbitrary DG scheme X.

Proposition 4.4.4. Let X be quasi-compact. Then the identity functor

Crysl(X)→ Crysr(X)

has bounded amplitude, i.e. the difference between the left and right t-structures

is bounded.

Proof. Without loss of generality, we can assume that X is affine. Let Z be a

smooth classical scheme of dimension n; i : X ↪→ Z a closed embedding. We

claim that for Ml ∈ Crysl(X) and the corresponding object Mr ∈ Crysr(X) we

have

(4.2) Ml ∈ (Crysl(X))≤0 ⇒ Mr ∈ (Crysr(X))≤0 and

Mr ∈ (Crysr(X))≤0 ⇒ Ml ∈ (Crysl(X))≤n.

Let U
j
↪→ Z denote the complementary open embedding. Let Y denote the

formal completion of X in Z; let î denote map Y → Z.

The map X → Y defines an isomorphism XdR → YdR, which allows to identify

Crysl(X) ≃ Crysl(Y ). Applying Proposition 4.1.3, we have:

(4.3) Ml ∈ (Crysl(X))≤0 ⇔ oblvl
Y (M

l) ∈ QCoh(Y )≤0,

where the t-structure on QCoh(Y ) is that of Sect. 4.1.1.

Consider the subcategory QCoh(Z)X ⊂ QCoh(X) which is by definition equal

to

ker(j∗ : QCoh(Z)→ QCoh(U)).

This subcategory is compatible with the t-structure on QCoh(Z), since the func-

tor j∗ is t-exact.
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Recall (see [GR1, Proposition 7.1.3]) that the functor î∗ defines an equivalence

QCoh(Z)X → QCoh(Y ).

Let F be the object of QCoh(Z)X corresponding to oblvl
Y (M

l) ∈ QCoh(Y ).

We have:

ΥZ(F) ≃ oblvr
Z(idR,∗(M

r)).

Since the functor idR,∗ is t-exact (Proposition 4.2.5), and since ΥZ shifts co-

homological degrees by [−n], we have:

(4.4) Mr ∈ (Crysr(X))≤0 ⇔ F ∈ (QCoh(Z)X)≤n.

Combining (4.3) and (4.4), the implications in (4.2) follow from the next as-

sertion:

Lemma 4.4.5. The equivalence î∗ : QCoh(Z)X ≃ QCoh(Y ) has the following

properties with respect to the t-structure on QCoh(Z)X inherited from QCoh(Z)

and the t-structure on QCoh(Y ) of Sect. 4.1.1:

(a) If F ∈ (QCoh(Z)X)≤0 then î∗(F) ∈ QCoh(Y )≤0.

(b) If î∗(F) ∈ QCoh(Y )≤0, then F ∈ (QCoh(Z)X)≤n.

�

Proof of Lemma 4.4.5. Point (a) follows from the fact that the functor î∗ is right

t-exact.

To prove point (b), we note that the category QCoh(Y )≤0 is generated under

taking colimits by the essential image of QCoh(Z)≤0 under the functor î∗, see

[GR1, Proposition 7.3.5]. Hence, it is sufficient to show the the functor

QCoh(Z)
î∗−→ QCoh(Y ) ≃ QCoh(Z)X

has cohomological amplitude bounded by n. However, the above functor is the

right adjoint to the embedding

QCoh(Z)X ↪→ QCoh(Z),

and is given by

F′ 7→ Cone(F′ → j∗ ◦ j∗(F′))[−1].
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Now, j∗ is t-exact, and j∗ is of cohomological amplitude bounded by n− 1. This

implies the required assertion.

�

4.4.6. Let X be an arbitrary quasi-compact DG scheme. We have:

Proposition 4.4.7.

(a) The functor oblvl
X : Crys(X) → QCoh(X) has bounded cohomological am-

plitude.

(b) If X is eventually coconnective, the functor indl
X : QCoh(X)→ Crys(X) has

cohomological amplitude bounded from above.

Proof. For point (a) we can assume that X is affine and find a closed embedding

i : X ↪→ Z, where Z is a smooth classical scheme. In this case, the assertion

follows from Proposition 4.2.5 and the fact that the functor

i∗ : QCoh(Z)→ QCoh(X)

has a bounded cohomological amplitude.

Point (b) follows from point (a) by the (indl
X ,oblvl

X)-adjunction.

�

Remark 4.4.8. The assumption that X be eventually coconnective in point (b) is

essential; otherwise a counterexample can be provided by the DG scheme from

Example 3.4.5. In addition, is it easy to show that indl
X has a cohomological

amplitude bounded from below if and only if X is Gorenstein (see Lemma 4.6.12).

4.5. Left completeness.

4.5.1. Let X be an affine smooth classical scheme. We observe that in this case

the category Crysr(X) contains a canonical object

indr
X(OX),

which lies in the heart of the t-structure (see Proposition 4.2.9), and is projective,

i.e.,

H0(N) = 0 ⇒ HomCrysr(X)(ind
r
X(OX),N) = 0.

Moreover, indr
X(OX) is a compact generator of Crysr(X). This implies:
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Corollary 4.5.2. Let X be an affine smooth classical scheme. Then the category

Crysr(X) is left-complete in its t-structure.

4.5.3. The above corollary implies left-completeness for any DG scheme X:

Corollary 4.5.4. For any DG scheme X, the category Crysr(X) is left-complete

in the “right” t-structure.

Proof. First, we note that the property of being left-complete is Zariski-local

(proved by the same argument as [GL:QCoh, Proposition 5.2.4]). Hence, we can

assume without loss of generality that X is affine. Choose a closed embedding

i : X ↪→ Z, where Z is a smooth classical scheme. Now the assertion follows

formally from the fact that the functor idR,∗ is continuous, fully faithful (by

Proposition 2.5.6), t-exact (by Proposition 4.2.5), and the fact that Crysr(Z) is

left-complete (by the previous corollary).

Here is an alternative argument:

By Corollary 4.2.7, we can assume that X is eventually coconnective. In

this case, the functor oblvl
X commutes with limits, as it admits a left adjoint.

Moreover, by Lemma 2.2.6, oblvl
X is conservative, and by Proposition 4.4.7 it

has bounded cohomological amplitude. Therefore, the fact that QCoh(X) is left-

complete in its t-structure implies the corresponding fact for Crysr(X).

�

Remark 4.5.5. The question of right completeness is not an issue: since our

t-structures are compatible with filtered colimits, right completeness is equiva-

lent to the t-structure being separated on the coconnective subcategory, which

is evident since oblvr
X is left t-exact and conservative, and the t-structure on

IndCoh(X)+
ΨX≃ QCoh(X)+ has this property.

4.5.6. Combining Corollary 4.5.4 with Proposition 4.4.4, we obtain:

Corollary 4.5.7. For a quasi-compact DG scheme X, the category Crys(X) is

also left-complete in the “left” t-structure.

4.6. The “coarse” induction and forgetful functors.
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4.6.1. Let X be a DG scheme. Recall that the functor ΨX identifies the cate-

gory QCoh(X) with the left-completion of IndCoh(X) (see [IndCoh, Proposition

1.3.4]).

Since the category Crysr(X) is left-complete in its t-structure, and the functor

indr
X is t-exact, by the universal property of left completions, we obtain:

Corollary 4.6.2. The functor indr
X canonically factors as

IndCoh(X)
ΨX−→ QCoh(X)

′indr
X−→ Crysr(X).

4.6.3. We can also consider the functor

′oblvr
X : Crysr(X)→ QCoh(X),

given by ΨX ◦ oblvr
X , where ΨX : IndCoh(X) → QCoh(X) is the functor of

[IndCoh, Sect. 1.1.5].

It is clear that the functor ′oblvr
X has a finite cohomological amplitude. In-

deed, the follows from the corresponding fact for oblvr
X and the fact that ΨX is

t-exact (see [IndCoh, Lemma 1.2.2]).

Proposition 4.6.4. The functor ′oblvr
X is conservative.

Proof. The assertion is Zariski-local, so we can assume that X is affine. Choose

a closed embedding i : X → Z, where Z is a smooth classical affine scheme.

Let iQCoh,! : QCoh(Z)→ QCoh(X) denote the right adjoint of i∗ : QCoh(X)→
QCoh(Z).5 It is easy to see that we have a canonical isomorphism of functors

ΨX ◦ i! ≃ iQCoh,! ◦ΨZ .

Hence, for M ∈ Crysr(Z), we have

′oblvr
X(i†,r(M)) ≃ iQCoh,!(′oblvr

Z(M)).

Applying Kashiwara’s lemma, the assertion of the proposition follows from the

next lemma:

5Although this is irrelevant for us, we note that the iQCoh,! is continuous. This is because the

functor i∗ : QCoh(X) → QCoh(Z) sends compact objects to compacts (since Z is regular, any

coherent sheaf on it is perfect).
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Lemma 4.6.5. The functor iQCoh,! : QCoh(Z)→ QCoh(X) is conservative when

restricted to QCoh(Z)X .

�

Proof of Lemma 4.6.5. We need to show that the essential image of the functor

i∗ : QCoh(X)→ QCoh(Z) generates QCoh(Z)X .

First, we claim that QCoh(Z)X is generated by the subcategory of bound-

ed objects, denoted (QCoh(Z)X)b. This follows from the corresponding fac-

t for QCoh(Z) and the fact that the inclusion QCoh(Z)X ↪→ QCoh(Z) has

a right adjoint of bounded cohomological amplitude. By devissage, we obtain

that QCoh(Z)X is generated by (QCoh(Z)X)♡, and further by (QCoh(Z)X)♡ ∩
Coh(Z).

However, it is clear that every object of (QCoh(Z)X)♡ ∩ Coh(Z) is a finite

extension of objects lying in the essential image of Coh(X)♡.

�

Remark 4.6.6. In the case when X is eventually coconnective we will give a

cleaner proof of Proposition 4.6.4, below.

4.6.7. Assume now that X is eventually coconnective. Recall that in this case

the functor ΨX admits a fully faithful left adjoint ΞX (see [IndCoh, Proposition

1.5.3]).

We observe:

Lemma 4.6.8. There exists a canonical isomorphism ′indr
X ≃ indr

X ◦ ΞX .

Proof. Follows from the isomorphisms indr
X ≃ ′indr

X ◦ ΨX and ΨX ◦ ΞX ≃
IdQCoh(X). �

Corollary 4.6.9. The functors (′indr
X , ′oblvr

X) form an adjoint pair.

Proof. Follows formally from Lemma 4.6.8 by adjunction. �

Remark 4.6.10. The functors (′indr
X , ′oblvr

X) are not adjoint unless X is eventu-

ally coconnective. Indeed, if X is not eventually coconnective, the functor ′indr
X
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does not preserve compact objects: it sends OX ∈ QCoh(X) to a non-compact

object of Crysr(X).

Alternate proof of Proposition 4.6.4. By Corollary 4.6.9, the assertion of Propo-

sition 4.6.4 (in the eventually coconnective case) is equivalent to the fact that the

essential image of the functor ′indr
X generates Crysr(X). However, the latter is

tautological from the corresponding fact for indr
X .

�

4.6.11. Let X be an eventually coconnective DG scheme, and consider the pair

of adjoint functors

ΞX : QCoh(X)� IndCoh(X) : ΨX

with ΞX being fully faithful (see [IndCoh, Sect. 1.4]).

We have seen that the functor indr
X factors through the colocalization functor

ΨX . However, it is not true in general that the functor oblvr
X factors through

ΞX , i.e., that it takes values in QCoh(X), considered as a full subcategory of

IndCoh(X) via ΞX .

In fact, the following holds:

Lemma 4.6.12 (Drinfeld). The functor oblvr
X factors through the essential im-

age of QCoh(X) under ΞX if and only if X is Gorenstein.

Recall that a DG scheme X is said to be Gorenstein if:

(a) ωX ∈ Coh(X) (which is equivalent to X being eventually coconnective, see

[IndCoh, Proposition 9.6.11]);

(b) When considered as a coherent sheaf, ωX is a graded line bundle (which is

equivalent to ωX ∈ QCoh(X)perf , see [IndCoh, Corollary 7.4.3]).

Proof. Suppose that oblvr
X factors through QCoh(X). In particular, we obtain

that ωX ∈ Coh(X) lies in the essential image of ΞX . Now the assertion follows

from [IndCoh, Lemma 1.5.8].
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For the opposite implication, we write oblvr
X(M) as

ΥX(oblvl
X(M)) = oblvl

X(M)⊗ ωX ,

where the tensor product is understood in the sense of the action of QCoh(X)

on IndCoh(X), see [IndCoh, Sect. 1.4]. Recall also that the functor ΞX is

tautologically compatible with the above action of QCoh(X). Hence, if ωX ,

being perfect, lies in the essential image of ΞX , then so does oblvl
X(M)⊗ ωX

�

4.7. Relation to the abelian category. In this subsection we let X be an

affine DG scheme. We will relate the category Crysr(X) to a more familiar

object.

4.7.1. Since the t-structure on Crysr(X) is compatible with filtered colimits, we

obtain that Crysr(X)♡ is a Grothendieck abelian category.

Using the fact that Crysr(X) is right-complete in its structure, by reversal of

arrows in [Lu2, Theorem 1.3.2.2], we obtain a canonically defined t-exact functor

(4.5) D
(
Crysr(X)♡

)+
→ Crysr(X)+,

where D(−)+ denotes the eventually coconnective part of the derived category

of the abelian category.

4.7.2. We are going to prove:

Proposition 4.7.3. The functor (4.5) uniquely extends to an equivalence of

categories

D
(
Crysr(X)♡

)
→ Crysr(X).

The rest of this subsection is devoted to the proof of Proposition 4.7.3. Without

loss of generality, we can assume that X is classical.

4.7.4. Step 1. Assume first that X is a smooth classical scheme. In this case the

assertion is obvious from the fact that

indr
X(OX)

is a compact projective generator for both categories.
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4.7.5. Step 2. Let us show that the functor

D
(
Crysr(X)♡

)+
→ Crysr(X)+

is an equivalence. For this, it suffices to show that every object M ∈ Crysr(X)♡

can be embedded in an injective object, i.e., an object I ∈ Crysr(X)♡ such that

H0(N) = 0 ⇒ HomCrysr(X)(N, I) = 0.

Let i : X ↪→ Z be a closed embedding, where Z is a smooth classical scheme.

Choose an embedding idR,∗(M) ↪→ J, where J is an injective object (in the same

sense) in Crysr(Z); it exists by Step 1.

Since the functor indr
Z is t-exact, we obtain that oblvr

Z(J) is an injective object

of QCoh(Z)♡. This implies that I := i†,r(J) belongs to Crysr(X)♡ and has the

required property.

4.7.6. Step 3. We note that by Corollary 4.5.4, the category Crysr(X) identifies

with the left completion of Crysr(X)+. Hence, it is enough to show that the

canonical embedding

D
(
Crysr(X)♡

)+
↪→ D

(
Crysr(X)♡

)
identifies D

(
Crysr(X)♡

)
with the left completion of D

(
Crysr(X)♡

)+
.

For that it suffices to exhibit a generator P of Crysr(X)♡ of bounded Ext

dimension.

Consider the object

P := indr
X(OX).

It has the required property by Proposition 4.2.11(b).

�

Remark 4.7.7. A standard argument allows us to extend the statement of Propo-

sition 4.7.3 to the case when X is a quasi-compact DG scheme with an affine

diagonal.

Remark 4.7.8. Once we identify crystals with D-modules on smooth affine classi-

cal schemes, we will obtain many other properties of Crysr(X) on quasi-compact
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DG schemes: e.g., the fact that the abelian category Crysr(X)♡ is locally Noe-

therian6 and that Crysr(X) has finite cohomological dimension with respect to

its t-structure. 7 Note that by Proposition 4.2.5, in order to establish both these

properties, it suffices to show them for smooth affine classical schemes.

5. Relation to D-modules

In this section we will relate the monads oblvr
X ◦ indr

X and oblvl
X ◦ indl

X to

the sheaf of differential operators. As a result we relate the category Crysr over

a DG scheme to the (derived) category of D-modules.

5.1. Crystals via an integral transform. In this subsection we let X be a DG

indscheme locally almost of finite type.

5.1.1. Recall that for X ∈ DGindSchlaft, the category IndCoh(X) is dualizable

and canonically self-dual, see [GR1, Sect. 2.6].

Hence, for X,Y ∈ DGindSch, the category Functcont(IndCoh(X), IndCoh(Y))

identifies with

IndCoh(X)⊗ IndCoh(Y) ≃ IndCoh(X× Y).

Expilcitly, an object Q ∈ IndCoh(X × Y) defines a functor FQ : IndCoh(X) →
IndCoh(Y) by

(5.1) F 7→ (p2)
IndCoh
∗ ◦ (∆X × idY)

!(F � Q),

where p2 : X×Y→ Y is the projection map and ∆X is the diagonal map X→ X×X,

In particular, the endo-functor oblvr
X ◦ indr

X defines an object, denoted

Dr
X ∈ IndCoh(X× X).

We will identify this object.

6By this we mean that Crysr(X)♡ is generated by its compact objects, and a subobject of a

compact one is compact.
7By this we mean that there exists N ∈ N such that for n > N , HomCrysr(X)(M1,M2[n]) = 0 for

M1,M2 ∈ Crysr(X)♡.
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5.1.2. Let ∆̂X denote the map

X ×
XdR

X ≃ (X× X)∧X → X× X.

Proposition 5.1.3. There is a canonical isomorphism in IndCoh(X× X)

Dr
X ≃ (∆̂X)

IndCoh
∗ (ωX ×

XdR

X).

Proof. We begin with the following general observation.

Suppose that we have a functor F ∈ Functcont(IndCoh(X), IndCoh(Y)) given

by a correspondence, i.e. we have a diagram

Z
q2

��>
>>

>>
>>

>
q1

����
��
��
��

X Y

of DG indschemes, and F := (q2)
IndCoh
∗ ◦ q!1. Let

i : Z→ X× Y

be the induced product map.

Lemma 5.1.4. In the above situation, the functor

(q2)
IndCoh
∗ ◦ q!1 : IndCoh(X)→ IndCoh(Y)

is given by the kernel Q = iIndCoh
∗ (ωZ).

Proof. We have a diagram, whose inner square is Cartesian

Z
q1×idZ−−−−→ X× Z −−−−→ X

i

y yidX ×i

X× Y
∆X×idY−−−−−→ X× X× Y

p2

y
Y.

For F ∈ IndCoh(X), we have

(q2)
IndCoh
∗ ◦ q!1(F) ≃ (p2)

IndCoh
∗ ◦ iIndCoh

∗ ◦ (q1 × idZ)
!(F � ωZ)
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By [GR1, Proposition 2.9.2],8

iIndCoh
∗ ◦ (q1 × idZ)

!(F � ωZ) ≃ (∆X × idY)
!(F � iIndCoh

∗ (ωZ)).

�

We apply this lemma to prove Proposition 5.1.3 as follows:

By Proposition 3.3.2(b), we have that the functor oblvr
X ◦ indr

X is given by the

correspondence

(X× X)∧X
pt

$$I
II

II
II

IIps

{{vv
vv
vv
vv
v

X X.

The assertion now follows from Lemma 5.1.4.

�

5.1.5. As a corollary of Proposition 5.1.3 we obtain:

Corollary 5.1.6. There exists a canonical isomorphism σ(Dr
X) ≃ Dr

X, where σ

is the transposition of factors acting on X× X.

5.2. Explicit formulas for other functors. In this subsection we let X be an

eventually coconnective quasi-compact DG scheme almost of finite type.

5.2.1. Recall that the category QCoh(X) is also compactly generated and self-

dual. Under the identifications

QCoh(X)∨ ≃ QCoh(X) and IndCoh(X)∨ ≃ IndCoh(X),

the dual of the functor ΥX is the functor ΨX of [IndCoh, Sect. 1.1.5] (see [IndCoh,

Proposition 9.3.3] for the duality statement).

In particular, for C′ ∈ DGCatcont, we have

Functcont(QCoh(X),C′) ≃ QCoh(X)⊗C′,

by a formula similar to (5.1).

8Strictly speaking, the base change isomorphism was stated in [GR1, Proposition 2.9.2] only in

the case when the vertical arrow is ind-proper, which translates into i being proper. For the

proof of Proposition 5.1.3 we will apply it in such a situation.
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5.2.2. Let C be any of the categories

QCoh(X×X) ≃ QCoh(X)⊗QCoh(X), IndCoh(X×X) ≃ IndCoh(X)⊗IndCoh(X),

QCoh(X)⊗ IndCoh(X) or IndCoh(X)⊗QCoh(X).

Then C is a module over QCoh(X ×X), and we define an endo-functor of C,

denoted

F 7→ F{X}

given by tensor product with the object

Cone(OX×X → j∗ ◦ j∗(OX×X))[−1],

where j is the open embedding X ×X −X ↪→ X ×X.

Note that by [IndCoh, Proposition 4.1.7 and Corollary 4.4.3], for C =

IndCoh(X ×X) this functor identifies with

(∆̂X)IndCoh
∗ ◦ (∆̂X)!,

where we recall that ∆̂X denotes the map

X ×
XdR

X ≃ (X ×X)∧X → X ×X.

5.2.3. We claim:

Proposition 5.2.4.

(a) The object of

QCoh(X)⊗QCoh(X) ≃ Functcont(QCoh(X),QCoh(X)),

corresponding to oblvl
X ◦ indl

X , is canonically identified with

(ΨX(ωX)� OX){X}.

(b) The object of

QCoh(X)⊗ IndCoh(X) ≃ Functcont(QCoh(X), IndCoh(X)),

corresponding to oblvr
X ◦ΥXdR

◦ indl
X , is canonically identified with

(ΨX(ωX)� ωX){X}.
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(c) The object of

IndCoh(X)⊗QCoh(X) ≃ Functcont(IndCoh(X),QCoh(X)),

corresponding to oblvl
X ◦ (ΥXdR

)−1 ◦ indr
X , is canonically identified with

(ωX � OX){X}.

(d) The object of

QCoh(X)� IndCoh(X) ≃ Functcont(QCoh(X), IndCoh(X)),

corresponding to oblvr
X ◦ ′indr

X , is canonically identified with

(OX � ωX){X}.

(e) The object of

IndCoh(X)�QCoh(X) ≃ Functcont(IndCoh(X),QCoh(X)),

corresponding to ′oblvr
X ◦ indr

X , is canonically identified with

(ωX �ΨX(ωX)){X}.

(f) The object of

QCoh(X ×X) ≃ Functcont(QCoh(X),QCoh(X)),

corresponding to ′oblvr
X ◦ ′indr

X , is canonically identified with

(OX �ΨX(ωX)){X}.

(g) The object of

QCoh(X ×X) ≃ Functcont(QCoh(X),QCoh(X)),

corresponding to ′oblvr
X ◦ΥXdR

◦ indl
X , is canonically identified with

(ΨX(ωX)�ΨX(ωX)){X}.

(h) The object of

QCoh(X ×X) ≃ Functcont(QCoh(X),QCoh(X)),

corresponding to oblvl
X ◦ (ΥXdR

)−1 ◦ ′indr
X , is canonically identified with

(OX � OX){X}.
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Proof. Let C and D be objects of DGCatcont with C dualizable, so that

Functcont(C,D) ≃ C∨ ⊗D.

Let F : C1 → C and G : D → D1 be continuous functors. Then the resulting

functor

Functcont(C,D)→ Functcont(C1,D1)

is given by

(F∨ ⊗ G) : C∨ ⊗D→ C∨
1 ⊗D1.

With this in mind, we have:

Points (a) and (c) follow by combining Proposition 5.1.3, Lemma 3.4.9, and the

following assertion:

Lemma 5.2.5. The unit of the adjunction IdQCoh(X) → Ξ∨
X ◦ ΥX defines an

isomorphism

OX → Ξ∨(ωX).

Point (b) follows from Proposition 5.1.3 using indl
X ≃ (ΥXdR

)−1 ◦ indr
X ◦ΥX .

Point (d) follows from Proposition 5.1.3 using the isomorphism ′indr
X ≃ indr

X ◦
Ξ∨
X and Lemma 5.2.5.

Point (e) follows from Proposition 5.1.3. Point (f) follows from point (d). Point

(g) follows from point (b).

Point (h) follows from point (d) using Lemma 3.4.9 and Lemma 5.2.5.

�

5.2.6. Let Dl
X , Dl→r′

X , Dr′→l
X and Dr′

X denote the objects of

QCoh(X)⊗QCoh(X) ≃ QCoh(X ×X)

corresponding to the functors

oblvl
X◦indl

X , ′oblvr
X◦ΥXdR

◦indl
X , oblvl

X◦(ΥXdR
)−1◦′indr

X and ′oblvr
X◦′indr

X ,

respectively.

We have:
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Proposition 5.2.7. The objects Dr
X , Dl

X , Dl→r′
X , Dr′→l

X and Dr′
X are related by

(i) Dl
X ≃ (ΨX � Ξ∨

X)(Dr
X) ∈ QCoh(X ×X);

(ii) (ΨX � IdIndCoh(X))(D
r
X) ≃ (IdQCoh(X)�ΥX)(Dl

X) ∈ QCoh(X)⊗ IndCoh(X);

(iii) Dl→r′
X ≃ (ΨX �ΨX)(Dr

X) ∈ QCoh(X ×X);

(iii’) Dl→r′
X ≃ (IdQCoh(X)�ΨX ◦ ΥX)(Dl

X) ≃ (OX � ΨX(ωX)) ⊗
OX×X

Dl
X ∈

QCoh(X ×X);

(iv) Dr′→l
X ≃ (Ξ∨

X � Ξ∨
X)(Dr

X).

(v) Dr′ ≃ (Ξ∨
X �ΨX)(Dr

X) ∈ QCoh(X ×X).

Proof. Point (i) follows from Lemma 3.4.9.

Point (ii) follows from the (tautological) isomorphism of functors

oblvr
X ◦ indr

X ◦ΥX ≃ oblvr
X ◦ΥXdR

◦ indl
X ≃ ΥX ◦ oblvl

X ◦ indl
X .

Point (iii) is tautological.

Point (iii’) follows by combining points (ii) and (iii).

Point (iv) follows from Lemma 3.4.9.

Point (v) is tautological.

�

5.3. Behavior with respect to the t-structure. We continue to assume that

X is a quasi-compact DG scheme almost of finite type.

5.3.1. We note:

Lemma 5.3.2. The object Dr
X is bounded below, i.e., belongs to IndCoh(X×X)+.
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Proof. Follows from Proposition 5.1.3, using the fact that ωX ∈ IndCoh(X)+,

and the fact that the functor

F 7→ F{X}, IndCoh(X ×X)→ IndCoh(X ×X)

is right t-exact. �

5.3.3. Assume now that X is eventually coconnective. We claim:

Proposition 5.3.4. The objects Dl
X , Dl→r′

X , Dr′→l
X and Dr′

X of QCoh(X × X)

are all eventually coconnective, i.e., belong to QCoh(X ×X)+.

Proof. Follows from Proposition 5.2.4, using the fact that ΨX(ωX),OX ∈
QCoh(X)+ and the fact that the functor

F 7→ F{X}, QCoh(X ×X)→ QCoh(X ×X)

is right t-exact. �

5.3.5. Finally, let us assume that X is a smooth classical scheme. We claim:

Proposition 5.3.6. The object Dl
X ∈ QCoh(X × X) lies in the heart of the

t-structure.

Proof. The assertion is Zariski-local, hence, we can assume that X is affine. It is

sufficient to show that

(p2)∗(D
l
X) ∈ QCoh(X)

lies in the heart of the t-structure. We have,

(p2)∗(D
l
X) ≃ oblvl

X ◦ indl
X(OX) ≃ Ξ∨

X ◦ (oblvr
X ◦ indr

X) ◦ΥX(OX).

Now, the functor oblvr
X ◦ indr

X is t-exact (see Proposition 4.2.11), the functor

ΥX is an equivalence that shifts degrees by [n], and Ξ∨
X is the inverse of ΥX . �

5.4. Relation to the sheaf of differential operators. In this subsection we

shall take X to be a smooth classical scheme. We are going to identify Dl
X with

the object of QCoh(X×X) underlying the classical sheaf of differential operators

DiffX .
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5.4.1. For any Q ∈ QCoh(X ×X)♡, which is set-theoretically supported on the

diagonal, and F1,F2 ∈ QCoh(X)♡, a datum of a map

(p2)∗(p
∗
1(F1)⊗ Q)→ F2

is equivalent to that of a map

Q→ DiffX(F1,F2).

Furthermore, this assignment is compatible with the monoidal structure on

QCoh(X ×X)♡, given by convolution and composition of differential operators.

5.4.2. Taking Q = Dl
X and F1 = F2 = OX , from the action of the monad oblvl

X ◦
indl

X on OX , we obtain the desired map

(5.2) Dl
X → DiffX ,

compatible with the algebra structure.

We claim:

Lemma 5.4.3. The map (5.2) is an isomorphism of algebras.

Proof. It suffices to show that (5.2) is an isomorphism at the level of the under-

lying objects of QCoh(X ×X). The latter follows, e.g., from the description of

Dl
X as a quasi-coherent sheaf given by Proposition 5.2.4. �

5.5. Relation between crystals and D-modules. LetX be a classical scheme

of finite type. We will show that the category Crysr(X) can be canonically

identified with the (derived) category D-modr(X) of right D-modules on X.

Remark 5.5.1. The category D-modr(X) satisfies Zariski descent. Therefore, in

what follows, by Proposition 3.2.2, it will suffice to establish a canonical equiva-

lence for affine schemes.

5.5.2. Let Z be a smooth classical affine scheme, and let i : X ↪→ Z be a closed

embedding. By the classical Kashiwara’s lemma and Proposition 2.5.6, in order

to construct an equivalence

Crysr(X) ≃ D-modr(X),

it suffices to do so for Z.
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Hence, we can assume thatX itself is a smooth classical affine scheme. We shall

construct the equivalence in question together with the commutative diagram of

functors

Crysr(X) −−−−→ D-modr(X)

oblvr
X

y y
IndCoh(X)

ΨX−−−−→ QCoh(X),

where the right vertical arrow is the natural forgetful functor, and the functor

ΨX is the equivalence of [IndCoh, Lemma 1.1.6].

By Proposition 2.4.4, constructing an equivalence Crysr(X) ≃ D-modr(X) as

above is the same as constructing an equivalence between left crystals and left

D-modules together with the commutative diagram of functors

Crysl(X) //

oblvl
X &&MM

MMM
MMM

MMM
D-modl(X)

wwppp
ppp

ppp
pp

QCoh(X)

.

(5.3)

5.5.3. By Propositions 4.7.3, 2.4.4 and 4.4.2, the category Crysl(X) identifies with

the derived category of the heart of its t-structure. The category D-modl(X) is

by definition the derived category of D-modl(X)♡. Moreover, the vertical arrows

in diagram (5.3) are t-exact.

Hence, it suffices to construct the desired equivalence at the level of the corre-

sponding abelian categories

(5.4)

Crysl(X)♡ −−−−→ D-modl(X)♡

oblvl
X

y y
QCoh(X)♡

Id−−−−→ QCoh(X)♡

5.5.4. The latter is a classical calculation, due to Grothendieck:
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Namely, one interprets Crysl(X)♡ as the heart of the category of quasi-coherent

sheaves on the truncated simplicial object

(X ×X ×X)∧X

p12 //
p13 //
p23 //

(X ×X)∧X

p1 //

p2
// X .

I.e., explicitly, an object of Crysl(X)♡ is a quasi-coherent sheaf F ∈ QCoh(X)♡

together with an isomorphism

ϕ : p∗2(F)
∼→ p∗1(F)

which restricts to the identity on the diagonal and satisfies the cocycle condition

p∗13(ϕ) = p∗12(ϕ) ◦ p∗23(ϕ).

Below we give an alternative approach to establishing the equivalence in (5.4).

5.5.5. The abelian categories Crysl(X)♡ and D-modl(X)♡ are given as modules

over the monads MCrysl(X) and MD-mod(X), respectively, acting on the category

QCoh(X)♡.

By definition, MD-mod(X) is given by the algebra of differential operators DiffX .

The monad MCrysl(X) is given by oblvl
X ◦ indl

X . Now, the desired equivalence

follows from Lemma 5.4.3.

Remark 5.5.6. It follows from the construction that the equivalence

Crysl(X)→ D-modl(X)

is compatible with pull-back for maps f : Y → X between smooth classical

schemes.

6. Twistings

In this section, we do not assume that the prestacks and DG schemes that we

consider are locally almost of finite type. We will reinstate this assumption in

Sect. 6.7.

6.1. Gerbes.
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6.1.1. Let pt /Gm be the classifying stack of the group Gm. In other words,

pt /Gm is the algebraic stack that represents the functor which assigns to an

affine DG scheme S, the ∞-groupoid of line bundles on S.

In fact, since Gm is an abelian group, the stack pt /Gm has a natural abelian

group structure. The multiplication map on pt /Gm represents tensor product

of line bundles. This structure upgrades pt /Gm to a functor from affine DG

schemes to ∞-Picard groupoids, i.e. connective spectra.

For our purposes, a Gm-gerbe will be a presheaf G of pt /Gm-torsors, which

satisfies any of the following three (non-equivalent) conditions:

(i) G is locally non-empty in the étale topology 9.

(ii) G is locally non-empty in the Zariski topology.

(iii) G is globally non-empty.

Specifically, let Bnaive(pt /Gm) be the classifying prestack of pt /Gm. It is given

by the geometric realization of the simplicial prestack

Bnaive(pt /Gm) :=
∣∣∣ · · · pt /Gm × pt /Gm //

//
//
pt /Gm

//
// pt

∣∣∣ .
Let BZar(pt /Gm) (resp. Bet(pt /Gm)) be the Zariski (resp. étale) sheafification

of the prestack Bnaive(pt /Gm).

The prestacks Bet(pt /Gm), BZar(pt /Gm) and Bnaive(pt /Gm) represent Gm-

gerbes satisfying the above conditions (i), (ii), and (iii) respectively.

Let (GeGm)DGSchaff be the functor

(DGSchaff)op →∞ -PicGrpd

that associates to an affine DG scheme S, the groupoid of Gm-gerbes, where we

consider any of the three notions of gerbe defined above.

Remark 6.1.2. While these three versions do not give equivalent notions of Gm-

gerbe, we will see shortly that they do lead to the same definition of twisting,

since the relevant gerbes will be those whose restrictions to cl,redS are trivialized.

9By Toën’s theorem, this is equivalent to local non-emptyness in the fppf topology.
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6.1.3. We define the functor

(GeGm)PreStk : (PreStk)op →∞ -PicGrpd

as the right Kan extension of (GeGm)DGSchaff along

(DGSchaff)op ↪→ (PreStk)op.

I.e., for Y ∈ PreStk,

GeGm(Y) := lim
S∈(DGSchaff/Y)

op
GeGm(S).

Equivalently,

GeGm(Y) = MapsPreStk(Y, B
?(pt /Gm))

for ? = naive, Zar or et.

Thus, informally, a Gm-gerbe on Y is an assignment of a Gm-gerbe on every

S ∈ DGSchaff mapping to Y, functorial in S.

For a subcategory C ⊂ PreStk, let (GeGm)C denote the restriction

(GeGm)PreStk|C.

6.2. The notion of twisting.

6.2.1. Let Y be a prestack. The Picard groupoid of twistings on Y defined as

Tw(Y) := ker
(
p∗dR,Y : GeGm(YdR)→ GeGm(Y)

)
,

where GeGm is understood in any of the three versions: naive, Zar or et. As we

shall see shortly (see Sect. 6.4), all three versions are equivalent.

Informally, a twisting T on Y is the following data: for every S ∈ DGSchaff

equipped with a map cl,redS → Y we specify an object GS ∈ GeGm(S), which

behaves compatibly under the maps S1 → S2. Additionally, for every extension

of the above map to a map S → Y we specify a trivialization of GS , which also

behaves functorially with respect to maps S1 → S2.
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Remark 6.2.2. When we write ker(A1 → A2), where A1 → A2 is a map in

∞ -PicGrpd, we mean

A1 ×
A2

{∗},

where the fiber product is taken in ∞ -PicGrpd. I.e., this the same as the con-

nective truncation of the fiber product taken in the category of all (i.e., not

necessarily connective) spectra.

6.2.3. Example. Let L be a line bundle on Y. We define a twisting T (L) on Y

as follows: it assigns to every S ∈ DGSchaff with a map cl,redS → Y the trivial

Gm-gerbe. For a map S → Y, we trivialize the above gerbe by multiplying the

tautological trivialization by L.

6.2.4. It is clear that twistings form a functor

TwPreStk : PreStkop →∞ -PicGrpd .

For a morphism f : Y1 → Y2 we let f∗ denote the corresponding functor

Tw(Y2)→ Tw(Y1).

If C is a subcategory of PreStk (e.g., C = DGSchaff or DGSch), we let TwC

denote the restriction of TwPreStk to Cop.

6.2.5. By construction, the functor TwPreStk takes colimits in PreStk to limits in

∞ -PicGrpd. Hence, from Corollary 1.1.5, we obtain:

Lemma 6.2.6. The functor TwPreStk maps isomorphically to the right Kan ex-

tension of TwC along

Cop ↪→ PreStkop

for C being one of the categories

DGSchaff , DGSchqs-qc, DGSch .

Concretely, this lemma says that the map

Tw(Y)→ lim
S∈(DGSchaff/Y)

op
Tw(S)

is an isomorphism (and that DGSchaff can be replaced by DGSchqs-qc or DGSch.)
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Informally, this means that to specify a twisting on a prestack Y is equivalent

to specifying a compatible family of twistings on affine DG schemes S mapping

to Y.

6.3. Variant: other structure groups.

6.3.1. Let S be an affine DG scheme. Consider the Picard groupoid

Ge
/red
Gm

(S) := ker
(
GeGm(S)→ GeGm(

cl,redS)
)
.

Let (Ge
/red
Gm

)DGSchaff denote the resulting functor

(DGSch)op →∞ -PicGrpd .

6.3.2. By definition, we can think of Ge
/red
Gm

(S) as gerbes (in any of the three

versions of Sect. 6.1.1) with respect to the presheaf of abelian groups

(O×)
/red
S := ker(O×

S → O×
cl,redS

).

6.3.3. In addition to Gm-gerbes, we can also consider Ga-gerbes. We have the

functor

(GeGa)DGSchaff : (DGSchaff)op →∞ -PicGrpd

which assigns to an affine DG scheme S the groupoid of Ga-gerbes on S.

Note that unlike the case of Gm-gerbes, the three notions of gerbes discussed

in Sect. 6.1.1 are equivalent for Ga-gerbes. This is due to the fact that for an

affine DG scheme S,

H2
Zar(S,Ga) = H2

et(S,Ga) = 0.

Thus, we have that (GeGa)DGSchaff is represented by B2(Ga), which is the

geometric realization of the corresponding simplicial prestack.
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6.3.4. By definition, for an affine DG scheme S, we have

GeGa(S) = B2(Maps(S,Ga)) ≃ B2(Γ(S,OS)).

In particular, viewed as a connective spectrum, GeGa(S) has a natural structure

of a module over the ground field k. This upgrades (GeGa)DGSchaff to a functor

(DGSch)op →∞ -PicGrpdk,

where ∞ -PicGrpdk denotes the category of k-modules in connective spectra.

Note that by the Dold-Kan correspondence, we have

∞ -PicGrpdk ≃ Vect≤0 .

We define the functor

(GeGa)PreStk : PreStkop →∞ -PicGrpdk

as the right Kan extension of the functor (GeGa)DGSchaff along

(DGSchaff)op ↪→ PreStkop .

6.3.5. As with Gm-gerbes, we can consider the Picard groupoid

Ge
/red
Ga

(S) := ker
(
GeGa(S)→ GeGa(

cl,redS)
)
,

and let (Ge
/red
Ga

)DGSchaff denote the resulting functor

(DGSch)op →∞ -PicGrpdk .

By definition, for an affine DG scheme S, Ge
/red
Ga

(S) is given by gerbes for the

presheaf of connective spectra

O
/red
S := ker(OS → Ocl,redS).

Explicitly,

Ge
/red
Ga

(S) ≃ B2(Γ(S,O
/red
S )).
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6.3.6. Recall from [GR1, Sect. 6.8.8] that the exponential map defines an iso-

morphism

exp : O
/red
S → (O×)

/red
S .

Hence, we obtain:

Corollary 6.3.7. The exponential map defines an isomorphism of functors

(6.1) exp : (Ge
/red
Ga

)DGSchaff → (Ge
/red
Gm

)DGSchaff

for any of the three versions (naive, Zar or et) of (Ge
/red
Gm

)DGSchaff .

Thus, if we realize Ge
/red
Gm

(S) as gerbes in the étale or Zariski topology, this

category has trivial π0 and π1. In other words, any such gerbe on an affine DG

scheme is globally non-empty, and any automorphism is non-canonically isomor-

phic to identity.

6.3.8. The isomorphism (6.1) endows Ge
/red
Gm

(S), viewed as a connective spectrum,

with a structure of module over the ground field k. This upgrades (Ge
/red
Gm

)DGSchaff

to a functor

(DGSch)op →∞ -PicGrpdk .

We define the functor

(Ge
/red
Gm

)PreStk : PreStkop →∞ -PicGrpdk

as the right Kan extension of the functor (Ge
/red
Gm

)DGSchaff along

(DGSchaff)op ↪→ PreStkop .

6.3.9. By definition, for Y ∈ PreStk

Ge
/red
Gm

(Y) := lim
S∈(DGSchaff/Y)

op
Ge

/red
Gm

(S).

Informally, for Y ∈ PreStk, an object G ∈ Ge
/red
Gm

(Y) is an assignment for

every S ∈ DGSchaff/Y of an object GS ∈ Ge
/red
Gm

(S), and for every S′ → S of an

isomorphism

f∗(GS) ≃ GS′ .

The following results from the definitions:
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Lemma 6.3.10. For Y ∈ PreStk, the natural map

Ge
/red
Gm

(Y)→ ker
(
GeGm(Y)→ GeGm(

cl,redY)
)

is an isomorphism, where

cl,redY := LKE(redSchaff)op↪→(PreStk)op(Y|redSchaff ).

6.4. Twistings: reformulations. We are going to show that the notion of

twisting can be formulated in terms of

(Ge
/red
Gm

)PreStk, (GeGa)PreStk or (Ge
/red
Ga

)PreStk,

instead of (GeGm)PreStk.

6.4.1. Consider the functors

Tw/red,Twa,Tw
/red
a : PreStkop →∞ -PicGrpd

given by

Tw/red(Y) := ker
(
p∗dR,Y : Ge

/red
Gm

(YdR)→ Ge
/red
Gm

(Y)
)
,

Twa(Y) := ker
(
p∗dR,Y : GeGa(YdR)→ GeGa(Y)

)
and

Tw/red
a (Y) := ker

(
p∗dR,Y : Ge

/red
Ga

(YdR)→ Ge
/red
Ga

(Y)
)
.

We have the following diagram of functors given by the exponential map and

the evident forgetful functors.

Tw
/red
a

exp
//

��

Tw/red

��
Twa Tw

(6.2)

Proposition 6.4.2. The functors in (6.2) are equivalences.

Proof. The functor given by the exponential map is an equivalence by Sect. 6.3.6.

Let us show that the right vertical map in (6.2) is an equivalence. This is in

fact tautological:

Both functors are right Kan extensions under

(DGSchaff)op → (PreStk)op,
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so it is enough to show that the map in question is an isomorphism when evaluated

on objects S ∈ DGSchaff .

We have:

Tw/red(S) = Ge
/red
Gm

(SdR) ×
Ge

/red
Gm

(S)

{∗} Lemma 6.3.10≃

≃ ker
(
GeGm(SdR)→ GeGm(

cl,red(SdR))
)

×
ker(GeGm (S)→GeGm (cl,redS))

{∗} =

= ker
(
GeGm(SdR)→ GeGm(

cl,redS)
)

×
ker(GeGm (S)→GeGm (cl,redS))

{∗} ≃

≃ GeGm(SdR) ×
GeGm (S)

{∗} = Tw(S).

The fact that the left vertical arrow in (6.2) is an equivalence is proved similarly.

�

6.4.3. As a consequence of Proposition 6.4.2, we obtain:

Corollary 6.4.4. The notions of twisting in all three versions: naive, Zar and

et are equivalent.

In addition:

Corollary 6.4.5. The functor Tw : (PreStk)op →∞ -Grpd canonically upgrades

to a functor

(PreStk)op →∞ -PicGrpdk .

6.4.6. Example. We can use the natural k-module structure on Tw to produce

additional examples of twistings. Let L be a line bundle on Y, and let T (L) be

the twisting of Sect. 6.2.3. Now, for a ∈ k, the k-module structure on Tw(Y)

gives us a new twisting T (L⊗a).

Remark 6.4.7. Note that it is not true that any twisting T on an affine DG scheme

X is trivial, even locally in the Zariski or étale topology. It is true that for any

S ∈ DGSchaff with a map S → XdR, the corresponding Gm-gerbe on S can be

non-canonically trivialized; but such a trivialization can not necessarily be made

compatible for the different choices of S.
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An example of such a gerbe for a smooth classical X can be given by a choice

of a closed 2-form (see Sect. 6.5.4) which is not étale-locally exact.

Note, however, that the gerbes described in Example 6.4.6 are Zariski-locally

trivial, because of the corresponding property of line bundles.

6.4.8. Convergence. We now claim:

Proposition 6.4.9. The functor Tw : (DGSchaff)op → ∞ -PicGrpd is conver-

gent.10

Proof. We will show that the functor Tw
/red
a is convergent. For this, it is enough

to show that the functors

S 7→ Ge
/red
Ga

(SdR) and Ge
/red
Ga

(S)

are convergent.

The convergence of Ge
/red
Ga

((−)dR) is obvious, as this functor only depends on

the underlying reduced classical scheme. Thus, it remains to prove the conver-

gence of Ge
/red
Ga

(−).

We have:

Ge
/red
Ga

(S) = GeGa(S) ×
GeGa (

cl,redS)
{∗}.

Hence, it is sufficient to show that the functor GeGa(−) is convergent. The latter
follows from the fact that

GeGa(−) = B2(Maps(−,Ga)),

while Ga is convergent, being a DG scheme.

�

We can reformulate Proposition 6.4.9 tautologically as follows:

Corollary 6.4.10. The functor TwPreStk maps isomorphically to the right Kan

extension of

Tw<∞DGSchaff := TwDGSchaff |<∞DGSchaff

10See Sect. 1.3.1, where the notion of convergence is recalled.
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along

(<∞DGSchaff)op ↪→ (DGSchaff)op ↪→ (PreStk)op.

Remark 6.4.11. We can use Proposition 6.4.9 to show that the functor GeGm is

also convergent (in any of the three versions).

6.4.12. Twistings in the locally almost of finite type case. Corollary 6.4.10 implies

that we “do not need to know” about DG schemes that are not locally almost of

finite type in order to know what twistings on Y ∈ PreStk if Y is locally almost

of finite type.

Corollary 6.4.13.

(a) For Y ∈ PreStklaft, the naturally defined map

Tw(Y)→ lim
S∈((<∞DGSchaffaft)/Y)

op
Tw(S)

is an equivalence.

(b) The functor TwPreStklaft maps isomorphically to the right Kan extension of

Tw<∞DGSchaffaft
along the inlcusions

(<∞DGSchaffaft)
op ↪→ (DGSchaffaft)

op ↪→ (PreStklaft)
op.

Proof. This is true for Tw replaced by any convergent prestack (DGSchaff)op →
∞ -Grpd. �

Remark 6.4.14. It follows from Remark 6.4.11 that the functor GeGm (in any

of the three versions), viewed as a presheaf, belongs to PreStklaft. Indeed, this

is evident in the naive version, since pt /Gm belongs to PreStklaft. For the Zar

and et versions, this follows from [GL:Stacks, Corollary 2.5.7] that says that the

condition of being locally of finite type in the context of n-connective prestacks

survives sheafification, once we restrict ourselves to truncated prestacks.

6.5. Identification of the Picard groupoid of twistings. We can use the

description of twistings in terms of Ga-gerbes to give a cohomological description

of the groupoid of twistings.
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6.5.1. De Rham cohomology. Let Y be a prestack. Recall that the coherent co-

homology of Y is defined as

H(Y) := Γ(Y,OY) = MapsQCoh(Y)(OY,OY).

We define the de Rham cohomology of Y to be the coherent cohomology of YdR;

i.e.,

HdR(Y) := H(YdR) = MapsQCoh(YdR)(OYdR
,OYdR

).

Note that since QCoh(YdR) is a stable ∞-category, the Maps above gives a (not

necessarily connective) spectrum.

Let X be a smooth classical scheme. In this case, by Sect. 5.5, we have

HdR(X) = MapsD-modl(X)(OX ,OX).

In particular, our definition of de Rham cohomology agrees with the usual one

for smooth classical schemes.

6.5.2. Consider the functor B2(Ga), which represents Ga-gerbes. By definition,

for a prestack Y, we have an isomorphism of connective spectra:

Maps(Y, B2(Ga)) ≃ τ≤0
(
MapsQCoh(Y)(OY,OY)[2]

)
≃ τ≤0(H(Y)[2]).

Thus by Proposition 6.4.2, we obtain:

Corollary 6.5.3. For a prestack Y, groupoid of twistings is given by

Tw(Y) ≃ τ≤2

(
HdR(Y) ×

H(Y)
{∗}

)
[2].

6.5.4. Now, suppose that X is a smooth classical scheme. In this case, we have

HdR(X) ≃ Γ(X,Ω•)

where Ω• is the complex of de Rham differentials on X. The natural map

HdR(X)→ H(X)

is given by global sections of the projection map Ω• → OX . Therefore, we have

Tw(X) ≃ τ≤2

(
HdR(X) ×

H(X)
{∗}

)
[2] ≃ τ≤2

(
Γ(X,Ω• ×

OX

0)

)
[2] ≃

≃ τ≤2

(
Γ(X, τ≤2(Ω• ×

OX

0))

)
[2].
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The complex τ≤2(Ω• ×
OX

0) identifies with the complex

Ω1 → Ω2,cl

where Ω2,cl is the sheaf of closed 2-forms (placed in cohomological degree 2) and

the map is the de Rham differential.

Thus, we have that the Picard groupoid of twistings on X is given by

Tw(X) ≃ τ≤2
(
Γ(X,Ω1 → Ω2,cl)

)
[2].

In particular, our definition of twistings agrees with the notion of TDO of [BB]

for smooth classical schemes.

6.6. Twisting and the infinitesimal groupoid.

6.6.1. Let

Y1 ⇒ Y0

be a groupoid object in PreStk, and let Y• be the corresponding simplicial object.

Let us recall the notion of central extension of this groupoid object by Gm. (Here

Gm can be replaced by any commutative group-object H ∈ PreStk).

By definition, a central extension of Y1 ⇒ Y0 by Gm is an object of GeGm(|Y•|),
equipped with a trivialization of its restriction under

Y0 → |Y•|.

6.6.2. Informally, the data of such a central extension is a line bundle L on Y1,

whose pullback under the degeneracy map Y0 → Y1 is trivialized, and such that

for the three maps

p1,2, p2,3, p1,2 : Y
2 → Y1,

we are given an isomorphism

p∗1,2(L)⊗ p∗2,3(L) ≃ p∗1,3(L),

and such that the further coherence conditions are satisfied.
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6.6.3. For Y ∈ PreStk consider its infinitesimal groupoid

Y ×
YdR

Y⇒ Y.

By definition, a twisting on Y gives rise to a central extension of its infinitesimal

groupoid by Gm.

Conversely, from Lemma 1.2.4, we obtain:

Corollary 6.6.4. Assume that Y is classically formally smooth. Then the above

functor

Tw(Y)→ {Central extensions of the infinitesimal groupoid of Y by Gm}

is an equivalence.

6.7. Twistings on indschemes.

6.7.1. Let X be an object of DGindSchlaft. We will show that the assertion of

Corollary 6.6.4 holds for X:

Proposition 6.7.2. The functor

Tw(X)→ {Central extensions of the infinitesimal groupoid of X by Gm}

is an equivalence.

The rest of this subsection is devoted to the proof of Proposition 6.7.2.

6.7.3. Step 1. By Corollary 6.4.13(b), we have to show the following:

For every S ∈ (DGSchaffaft)/XdR
a datum of Gm-gerbe on S, equipped with a

trivialization of its pullback to S ×
XdR

X, is equivalent to that of a Gm-gerbe on

the simplicial prestack

S• := S ×
XdR

(X•/XdR),

equipped with a trivialization over 0-simplices, i.e., S ×
XdR

X.
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6.7.4. Step 2. Note that the simplicial prestack cl,red(S•) is constant with value
red,clS. Hence, by Lemma 6.3.7, we can consider Ga-gerbes instead of Gm-gerbes.

Hence, it is enough to show that the map

MapsQCoh(S)(OS ,OS)→ Tot
(
MapsQCoh(S•)(OS• ,OS•)

)
is an isomorphism in Vect.

6.7.5. Step 3. Note that for any X′ ∈ DGindSchlaft, the canonical map

MapsQCoh(X′)(OX′ ,OX′)→MapsIndCoh(X′)(ωX′ , ωX′)

is an isomorphism. This follows, e.g., from the corresponding assertion for DG

schemes, i.e., Lemma 5.2.5.

Hence, it is enough to show that the map

MapsIndCoh(S)(ωS , ωS)→ Tot
(
MapsIndCoh(S•)(ωS• , ωS•)

)
is an isomorphism.

6.7.6. Step 4. Note that S• identifies with the Čech nerve of the map

(6.3) S ×
XdR

X→ S.

As in the proof of Proposition 3.1.3, all Si belong to DGindSch, and the mor-

phism (6.3) is ind-proper and surjective.

Now, the desired assertion follows from the descent for IndCoh under ind-

proper and surjective maps of DG indschemes, see [GR1, Lemma 2.10.3].

7. Twisted crystals

In this section we will show how the data of a twisting gives a modification

of the categories of left and right crystals. The main results say that “not much

really changes.”

7.1. Twisted left crystals. In this subsection we do not assume that our DG

schemes and prestacks are locally almost of finite type.
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7.1.1. Let Y be a prestack. Consider the category PreStk/Y, and the functor

QCohDGSchaff/Y
: (DGSchaff/Y )

op → DGCatcont .

The group-stack pt /Gm acts on QCoh via tensoring by line bundles.

Let G be a Gm-gerbe on Y. Then G gives a twist of the functor QCohDGSchaff/Y

via the action of pt /Gm on QCoh. This defines a functor

QCohG
DGSchaff/Y

: (DGSchaff/Y )
op → DGCatcont .

7.1.2. In particular, if T is a twisting on Y, we obtain a functor

QCohT
DGSchaff/YdR

: (DGSchaff/YdR
)op → DGCatcont .

Let QCohT
DGSchaff/Y

be its restriction along the map

(DGSchaff/Y )
op → (DGSchaff/YdR

)op.

By construction, QCohT
DGSchaff/Y

is canonically isomorphic to QCohDGSchaff/Y
.

7.1.3. More generally, we can consider the functor

QCohTPreStk/YdR
: (PreStk/YdR

)op → DGCatcont,

which is the right Kan extension of QCohT
DGSchaff/YdR

along

(DGSchaff/YdR
)op ↪→ (PreStk/YdR

)op.

The restriction QCohTPreStk/Y of QCohTPreStk/YdR
along

PreStk/Y → PreStk/YdR

is canonically isomorphic to QCohPreStk/Y .

7.1.4. For a twisting T on a prestack Y, the category of T -twisted left crystals on

Y is defined as

CrysT,l(Y) := QCohT (YdR).

Explicitly, we have

CrysT,l(Y) = lim
S∈(DGSchaff/YdR

)op
QCohT (S).
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7.1.5. More generally, we define the functor

CrysT,lPreStk/YdR
: (PreStk/YdR

)op → DGCatcont,

as the composite QCohTPreStk/YdR
◦ dR. The analogue of Corollary 2.1.4 holds for

this functor.

7.1.6. We have a canonical natural transformation

oblvT,l : CrysT,lPreStk/YdR
→ QCohTPreStk/YdR

.

For an individual Y′ ∈ PreStk/YdR
, we denote the resulting functor

CrysT,l(Y′)→ QCohT (Y′)

by oblvT,l(Y′).

7.1.7. Let CrysT,lPreStk/Y
denote the restriction of CrysT,lPreStk/YdR

along PreStk/Y →
PreStk/YdR

.

By a slight abuse of notation we shall use the same symbol oblvT,l to denote

the resulting natural transformation

CrysT,lPreStk/Y
→ QCohPreStk/Y .

7.2. Twisted right crystals. At this point, we reinstate the assumption that

all DG schemes and prestacks are locally almost of finite type for the rest of the

paper.

7.2.1. Let Y be an object of PreStklaft, and let G be a Gm-gerbe on Y.

The action of QCohPreStklaft on IndCohPreStklaft (see [IndCoh, Sect. 10.3]) al-

lows to define the functor

IndCohG(PreStklaft)/Y
: ((PreStklaft)/Y)

op → DGCatcont,

with properties analogous to those of

IndCoh(PreStklaft)/Y := IndCohPreStklaft |(PreStklaft)/Y .
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7.2.2. In particular, for T ∈ Tw(Y), we have the functor

CrysT,r(PreStklaft)/YdR
: ((PreStklaft)/YdR

)op → DGCatcont,

and the natural transformations oblvT,l

CrysT,r(PreStklaft)/YdR
→ IndCohT(PreStklaft)/YdR

and CrysT,r(PreStklaft)/Y
→ IndCoh(PreStklaft)/Y .

The analogues of Corollaries 2.3.7 and 2.3.9 and Lemmas 2.3.11 and 2.3.12

hold for Y′ ∈ (PreStklaft)/YdR
, with the same proofs.

7.3. Properties of twisted crystals. As was mentioned above, all DG schemes

and prestacks are assumed locally almost of finite type.

Let Y be a fixed object of PreStklaft, and T ∈ Tw(Y).

Remark 7.3.1. In general, results about crystals do not automatically hold for

twisted crystals. In some of our proofs, we needed to embed a given affine DG

scheme X into a smooth classical scheme Z. In the case of twisted crystals, the

problem is that we might not be able to find such a Z which also maps to Y (or

even YdR).

However, there is a large family of examples (which covers all the cases that

have appeared in applications so far), where the extension of the results is au-

tomatic: namely, when T is such that its restriction to any S ∈ (DGSchaffaft)/Y is

locally trivial in the Zariski or étale topology (see also Remark 6.4.7). This is the

case for twistings of the form L⊗a for L ∈ Pic(Y) and a ∈ k, and tensor products

thereof.

7.3.2. The analogues of Corollaries 2.2.2 and 2.2.4 and Lemma 2.1.7 hold for

twisted left crystals, with the same proofs.

Furthermore, Kashiwara’s lemma holds for both left and right twisted crystals,

also with the same proof.

Finally, note that there exists a canonical natural transformation

(7.1) Υ : CrysT,l(PreStklaft)/YdR
→ CrysT,r(PreStklaft)/YdR

.
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Proposition 7.3.3. The natural transformation (7.1) is an equivalence.

Proof. The argument is the same as that of Proposition 2.4.4:

We do not need the smooth classical scheme Z to map to Y. Rather, we use the

fact that if Y is the completion of a smooth classical scheme Z along a Zariski-

closed subset, and G is a Gm-gerbe on Y , which is trivial over cl,redY , then the

functor

ΥY : QCohG(Y )→ IndCohG(Y )

is an equivalence. The latter follows from the corresponding fact in the non-

twisted situation (proved in the course of the proof of Proposition 2.4.4), since G

is (non-canonically) trivial.

�

As a corollary, we obtain that the analog of Lemma 2.2.6 holds in the twisted

case as well.

7.3.4. Hence, for Y′ ∈ (PreStklaft)/YdR
we can regard crystals on Y′ as a single

category, CrysT (Y′), endowed with two forgetful functors

QCohT (Y′) IndCohT (Y′)

CrysT (Y′).

oblvT,l

Y′

����
��
��
��
��
�

oblvT,r

Y′

��?
??

??
??

??
??

ΥY′
//(7.2)

For Y′ ∈ (PreStklaft)/Y, the above forgetful functors map to non-twisted

sheaves:

QCoh(Y′) IndCoh(Y′)

CrysT (Y′).

oblvT,l

Y′

����
��
��
��
��
�

oblvT,r

Y′

��?
??

??
??

??
??

ΥY′
//(7.3)
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7.3.5. Let X ∈ (DGindSchlaft)/YdR
. The analogue of Proposition 3.1.3 holds with

no change. In particular, we obtain a functor

indT,r
X : IndCohT (X)→ CrysT,r(X)

left adjoint to oblvT,r
X .

Similarly, the analogue of Proposition 3.4.3 holds in the present context as

well.

7.3.6. The following observation will be useful in the sequel:

Let X be an affine DG scheme (or an ind-affine DG indscheme) over YdR.

Choose a trivialization of the resulting Gm-gerbe on X. This choice defines an

identification

IndCohT (X)
α≃ IndCoh(X).

Lemma 7.3.7. The monad oblvT,r
X ◦ indT,r

X , regarded as a functor (without the

monad structure)

IndCoh(X)
α−1

≃ IndCohT (X)→ IndCohT (X)
α≃ IndCoh(X),

is non-canonically isomorphic to oblvr
X ◦ indr

X .

Proof. First, we observe that the analogue of Proposition 5.1.3 holds; namely, the

object of IndCoh(X ×X) that defines the functor oblvT,r
X ◦ indT,r

X is given by

(∆̂X)IndCoh
∗

(
L⊗ (ωX ×

XdR

X)

)
,

where L is the line bundle on X ×
XdR

X corresponding to T and α as in Sect. 6.6.1.

By construction, L is trivial when restricted to X ↪→ X ×
XdR

X. Now, since X

is affine, this implies that L can be trivialized on all of X ×
XdR

X.

�

7.4. t-structures on twisted crystals. As in the previous subsection, let Y be

a fixed object of PreStklaft, and T ∈ Tw(Y).
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7.4.1. If X is a DG scheme and G is a Gm-gerbe on it, the twisted categories

QCohG(X) and IndCohG(X) have natural t-structures with properties analogous

to those of their usual counterparts QCoh(X) and IndCoh(X).

In particular, we have the “left” t-structure on CrysT,l(Y′) for any Y′ ∈
(PreStklaft)/YdR

. (This t-structure can be defined without the locally almost of

finite type assumption on either Y or Y′.)

The t-structure on twisted IndCoh on DG schemes allows us to define a t-

structure on IndCohG(X), where X is a DG indscheme. We can then define the

“right” t-structure on the category CrysT,r(X).

7.4.2. We observe that Proposition 4.2.5 renders to the twisted context with no

change. We now claim:

Proposition 7.4.3. Let X be a quasi-compact DG scheme mapping to YdR.

(a) The functor indT,r
X is t-exact.

(b) For a quasi-compact scheme X, the functor oblvT,r
X is of bounded cohomo-

logical amplitude.

Proof. The functor indT,r
X is right t-exact, since its right adjoint oblvT,r

X is left

t-exact. By the definition of the “right” t-structure, the left t-exactness of indT,r
X

is equivalent to the same property of the composition oblvT,r
X ◦ indT,r

X .

The assertion is Zariski-local, so we can assume that X is affine. Now, the fact

that the functor oblvT,r
X ◦ ind

T,r
X is left t-exact follows from Lemma 7.3.7 and the

fact that the analogous assertion holds in the non-twisted case.

Since IndCohT (X)≤0 generates CrysT,l(X)≤0 via the functor indT,r
X , in order

to show that the cohomological amplitude of oblvT,r
X is bounded from above, it

suffices to show the same for oblvT,r
X ◦ indT,r

X . Again, the assertion follows from

Lemma 7.3.7.

�
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7.4.4. We now claim:

Proposition 7.4.5. Let X be a quasi-compact DG scheme mapping to YdR.

(a) The “left” and “right” t-structures on CrysT (X) differ by finite cohomological

amplitude.

(b) The functor oblvT,l
X : CrysT (X) → QCoh(X) is of bounded cohomological

amplitude.11

7.4.6. We shall first prove the following:

Let i : X → Z be a closed embedding, where Z is a smooth classical scheme.

Let Y be the formal completion of Z along X.

Lemma 7.4.7. The functor

oblvT,r
Y : CrysT,r(Y )→ IndCohT (Y )

is t-exact.

Proof. As in the proof of Proposition 7.4.3, it suffices to show that the functor

oblvT,r
Y ◦ indT,r

Y : IndCohT (Y )→ IndCohT (Y )

is t-exact. The assertion is Zariski-local, so we can assume that X is affine. Now,

as in the proof of Proposition 7.4.3, the functor in question is non-canonically

isomorphic to the non-twisted version: oblvr
Y ◦ indr

Y , and the latter is known to

be t-exact by Proposition 4.2.11(a).

�

7.4.8. Proof of Proposition 7.4.5. The assertion is Zariski-local, so we can assume

that X is affine and embed it into a smooth classical scheme Z. Let Y denote

the formal completion of X in Z. By definition, T defines a Gm-gerbe G on Y .

Let ′i denote the corresponding map X → Y .

To prove point (a), by Lemma 4.3.7 (whose 2nd proof is applicable in the

twisted case), we can replace X by Y , and it suffices to show that the discrepancy

11By point (a) this statement does not depend on which of the two t-structures we consider on

CrysT (X).
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between the two t-structures on CrysT (Y ) is finite. By Proposition 4.1.3 (applied

in the twisted case) and Lemma 7.4.7, it suffices to show that the functor

ΨY : QCohT (Y )→ IndCohT (Y )

is of bounded cohomological amplidude. This is equivalent to the corresponding

fact for

ΨY : QCoh(Y )→ IndCoh(Y ),

which in turn follows from the corresponding fact for Z.

Point (b) follows from the fact that the functor

′i∗ : QCohT (Y )→ QCohT (X)

is of bounded amplitude, which is again equivalent to the corresponding fact for

′i∗ : QCoh(Y )→ QCoh(X),

and the latter follows from the corresponding fact for Z.

�

7.4.9. The results concerning the “coarse” forgetful and induction functors, es-

tablished in Sect. 4.6 for untwisted crystals, render automatically to the twisted

situation.

7.4.10. Our current goal is to show:

Proposition 7.4.11. Let X be a quasi-compact DG scheme mapping to YdR.

(a) The “right” t-structure on CrysT,r(X) is left-complete.

(b) For X affine, the natural functor D(CrysT,r(X)♡)+ → CrysT,r(X)+, where

the heart is taken with respect to the “right” t-structure, uniquely extends to an

an equivalence

D(CrysT,r(X)♡)→ CrysT,r(X).
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7.4.12. Proof of Proposition 7.4.11(a). Again, the assertion is Zariski-local, and

we retain the setting of the proof of Proposition 7.4.5.

It suffices to exhibit a collection of objects

Pα ∈ CrysT,r(X)

that generate CrysT,r(X) and that are of bounded Ext dimension, i.e., if for each

α there exists an integer kα such that

HomCrysT (X)(Pα,M) = 0 if M ∈ CrysT (X)<−kα .

We realize CrysT,r(X) as CrysT,r(Y ). By Lemma 4.3.7 and Lemma 7.4.7, the

t-structure on CrysT,r(X) ≃ CrysT,r(Y ) is characterized by the property that

M ∈ CrysT,r(Y )≥0 ⇔ oblvT,r
Y (M) ∈ IndCohT (Y)≥0.

We take Pα to be of the form indT,r(F) for F ∈ CohT (Y )♡. To prove the

required vanishing of Exts, we need to show that for M ∈ CrysT,r(Y )≪0,

HomIndCohT (Y )(F,oblv
T,r
Y (M)) = 0.

However, this follows from the fact that the category IndCohT (Y ) has finite

cohomological dimension with respect to its t-structure:12 indeed, the category

in question in non-canonically equivalent to IndCoh(Y ), and the cohomological

dimension of the latter is bounded by that of IndCoh(Z).

7.4.13. Proof of Proposition 7.4.11(b). We keep the notations from the proof of

point (a).

As in the proof of Proposition 4.7.3, given what we have shown in point (a),

we only have to verify that for M1,M2 ∈ CrysT (X)♡ and any k ≥ 0, the map

Extk
CrysT (X)♡

(M1,M2)→ HomCrysT (X)(M1,M2[k])

is an isomorphism.

12We refer the reader to the footnone in Remark 4.7.8 where we explain what we mean by this.
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For that it suffices to show that the category CrysT,r(X)♡ contains a pro-

projective generator of CrysT,r(X), i.e., that there exists a filtered inverse family

with surjective maps Pα ∈ CrysT,r(X)♡, such that the functor

colim
α

MapsCrysT,r(X)(Pα,−)

is t-exact and conservative on CrysT,r(X).

We take Pα to be

indT,r
Y (OXn) ∈ CrysT,r(Y )♡ ≃ CrysT,r(X)♡,

where Xn is the n-th infinitesimal neighborhood of cl,redX in Z. �

7.5. Other results.

7.5.1. Twisted crystals and twisted D-modules. Let X be a smooth classical

scheme. We have seen in Sect. 6.5.4 that the Picard category of twistings on

X is equivalent to that of TDO’s on X.

Given a twisting T , and the corresponding TDO, denoted DiffT
X , there exists

a canonical equivalence

CrysT,l(X) ≃ D-modT,l(X),

which commutes with the forgetful functors to QCoh(X), and similarly for twisted

right crystals. The proof is either an elaboration of the strategy indicated in

Sect. 5.5.4, or one using Sect. 5.4.

7.5.2. The relation between twisted D-modules and modules over a TDO can be

extended to the case when instead of a smooth classical scheme X, we are dealing

with a formal completion Y of a DG scheme X inside a smooth classical scheme

Z.

This allows to prove:

Proposition 7.5.3. Let X be a quasi-compact DG scheme over YdR.

(a) The abelian category CrysT,r(X)♡ is locally Noetherian.

(b) CrysT,r(X) has finite cohomological dimension with respect to its t-structure.

(We refer the reader to the footnotes in Remark 4.7.8 where we explain what

we mean by the properties asserted in points (a) and (b) of the proposition.)
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