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Abstract: A deep result of Voisin asserts that the Griffiths group of a general

non-rigid Calabi-Yau (CY) 3-fold is infinitely generated. This theorem builds on

an earlier method of hers which was implemented by Albano and Collino to prove

the same result for a general cubic sevenfold. In fact, Voisin’s method can be uti-

lized precisely because the variation of Hodge structure on a cubic 7-fold behaves

just like the variation of Hodge structure of a Calabi-Yau 3-fold. We explain this

relationship concretely using Kontsevitch’s noncommutative geometry. Namely,

we show that for a cubic 7-fold, there is a noncommutative CY 3-fold which has

an isomorphic Griffiths group. This serves as partial confirmation of seminal

work of Candelas, Derrick, and Parkes describing a cubic 7-fold as a mirror to a

rigid CY 3-fold.

Similarly, one can consider other examples of Fano manifolds with with the

same type of variation of Hodge structure as a Calabi-Yau threefold (FCYs).

Among the complete intersections in weighted projective spaces, there are only

three classes of smooth FCY manifolds; the cubic 7-fold X3, the fivefold quartic

double solid X4, and the fivefold intersection of a quadric and a cubic X2.3. We

settle the two remaining cases, following Voisin’s method to demonstrate that the

Griffiths group for a general complete intersection FCY manifolds, X4 and X2.3,

is also infinitely generated.
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In the case of X4, we also show that there is a noncommutative CY 3-fold

with an isomorphic Griffiths group. Finally, for X2.3 there is a noncommutative

CY 3-fold, B, such that the Griffiths group of X2.3 surjects on to the Griffiths

group of B. We finish by discussing some examples of noncommutative covers

which relate our noncommutative CYs back toq honest algebraic varieties such

as products of elliptic curves and K3-surfaces.

Keywords: Hodge Theory, Algebraic Cycles, Calabi-Yau Geometries, Derived

Categories.

1. Introduction

A fundamental approach to studying subvarieties of an algebraic variety, X, is

through the Chow ring, i.e., the ring of all algebraic cycles on X up to rational

equivalence with product given by the intersection pairing. Then again, one can

also study this ring up to algebraic equivalence, or homological equivalence for

that matter. One might wonder; what is the difference between these different

types of equivalence?

Well to compare, e.g., algebraic and homological equivalence we may simply

study their difference, i.e., the group of algebraic cycles homologically equivalent

to zero modulo algebraic equivalence. This is called the Griffiths group. The

name and the notation for Griffp(X) come from an example due to Griffiths

[Gr], where he famously, “put an end to the belief that algebraic and homological

equivalence of algebraic cycles might coincide.”1

Griffiths’ example was the quintic hypersurface. Specifically, he showed that

for a general quintic hypersurface, the Griffiths group corresponding to 2-cycles,

Griff2(X), is nonzero. Moreover, Griffiths demonstrated that Griff2(X) has an
element of infinite order. This example was amplified by Clemens in [Cl], who

showed that the rational Griffiths group, Griff2Q(X) of these quintics has (count-
ably) infinite dimension as a vector space over Q.

In a major advance [Vo1], Voisin reenvisioned Griffiths’ example in a much

more structured context. Indeed, in loc. cit. she recovers Clemens’ amplification

by providing a general way for both producing non-trivial algebraic cycles and

showing that they are linearly independent in the rational Griffiths group. This

1see S. Zucker’s review of [Cl], MR720930.
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general philosophy led to seminal work in [Vo2] where Voisin proves that such

a result is true for a general non-rigid Calabi-Yau threefold, i.e., Griff2Q(X) is a
countably infinite vector space over Q for such threefolds.

Another example with nontrivial Griffiths group was provided by Ceresa [Ce],

who proved that if C is a generic curve of genus ≥ 3 embedded by the Abel-

Jacobi map in its Jacobian, J(C), and if C− is the image of C ⊆ J(X) after the
multiplication by −1, then C −C− is an element of infinite order in Griffg−1(X).
In the special case when g = 3 (so that X = J(C) is of dimension 3), Nori [No]
showed that, once again, Griff2(X), is of infinite dimension over Q.2

A common theme among these examples is that the variety, X, has trivial

canonical bundle, dim(X) = n is odd, and the nontrivial Griffiths group which

appears is the “middle” Griffiths group: Griff
n−1
2 (X). On the other hand, utiliz-

ing Voisin’s method in [Vo1], Albano and Collino demonstrated that the general

cubic 7-fold, X3, has infinitely generated Griff
3(X3) [AC]. Meanwhile, in [No], M.

Nori constructs a class of Fano varieties with non-trivial (non-middle) Griffiths

groups Griffp
Q
(X).

While the example of Albano and Collino is seven as opposed to three-dimensional

and Fano as opposed to Calabi-Yau, it actually bears remarkable homological and

Hodge-theoretic resemblance to a Calabi-Yau threefold. Indeed, as early as the

1980’s the cubic sevenfold X was regarded in the physics literature as a mirror of

a rigid Calabi-Yau threefold with large Picard group, see p. 58-60 in [CHSW]. In

particular, the cubic 7-fold X has a variation of Hodge structure (v.H.s.) similar

to that of a non-rigid Calabi-Yau threefold, see [CDP].

One can ask whether there are other examples of higher-dimensional manifolds

with a Hodge variation similar to that of a Calabi-Yau threefolds. The answer

is a resounding yes.3 Concretely, one can define the notion of a manifold of

Calabi-Yau type and see such manifolds manifest as Fano complete intersections

in weighted projective space. However, the restriction of being smooth yields

only three projective families [Schi, CDP, BBVW, IM]:

● the smooth cubic 7-folds X3 ⊆ P8,

2see also [Scho] for an example of a 3-fold, X, with KX = 0 and Griff(X) of infinite rank over a

field k /= C.
3The second named author is grateful to Maximilian Kreuzer, who presented him with a list of

3284 such hypersurfaces in weighted projective spaces.
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● the smooth hypersurfaces X4 of degree 4 in the weighted projective space

P6(16; 2) = P6(1 ∶ 1 ∶ 1 ∶ 1 ∶ 1 ∶ 1 ∶ 2), and
● the smooth complete intersections X2.3 ⊆ P7 of a quadric and a cubic.

Our approach to the study of Griffiths groups is therefore twofold. First,

like Albano and Collino, we employ Voisin’s method in [Vo1] to settle the two

remaining cases and demonstrate that the rational Griffiths group is infinitely

generated for all of the cases above. Second, in these examples, the Hodge-

theoretic comparisons can be categorified by comparing the bounded derived

categories of coherent sheaves on these spaces to that of 3-dimensional Calabi-

Yau category, or in the language of Kontsevitch, a 3-dimensional Calabi-Yau

noncommutative space. This serves as partial confirmation of the aforementioned

seminal work of Candelas, Derrick, and Parkes describing a cubic 7-fold as a

mirror to a rigid CY 3-fold [CDP].

In summary, we concretely tie the families listed above and the appearance

of many cycles in their Griffiths groups to Voisin’s theorem by abstracting the

situation to the noncommutative setting. This culminates in the following result:

Theorem 1.1. Suppose X is a smooth Fano-Calabi-Yau complete intersection

in weighted projective space. There is a noncommutative space, A, and an iso-

morphism of Griffiths groups,

GriffQ(X) = GriffQ(A).

If X is sufficiently general, then GriffQ(X) = GriffQ(A) is a countably infinite

vector space over Q. Furthermore, when X is a cubic 7-fold or a hypersurface

of degree 4 in P6(16; 2), then A is a 3-dimensional Calabi-Yau. In the final

case, when X is a smooth complete intersection of a quadric and a cubic in P7,

there is another 3-dimensional Calabi-Yau noncommutative space, B which is a

localization of A and GriffQ(X) = GriffQ(A) surjects onto GriffQ(B).

For certain families, the noncommutative CY 3-folds appearing above can

be related back to algebraic varieties with trivial canonical class by utilizing

the categorical covering picture from [BFK1]. For example, if the functions

f(x0, x1, x2), g(x3, x4, x5), h(x6, x7, x8) all define smooth elliptic curves, E1,E2,E3
respectively, then the product E1 ×E2 ×E3 is a Z3 ×Z3-cover of the noncommu-

tative CY 3-fold corresponding to the cubic sevenfold, X3, defined by f + g + h.
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From this we are able to obtain an isomorphism:

GriffQ(E1 ×E2 ×E3)Z3×Z3 ≅ GriffQ(X3)Z3×Z3 ,

where the Z3 ×Z3-action on GriffQ(E1 ×E2 ×E3) is determined by a correspon-
dence on E1 ×E2 ×E3 ×E1 ×E2 ×E3 and the Z3 ×Z3-action on GriffQ(X3) comes
from an easily described subgroup of PGL(9).

This paper is organized as follows. In §2, we gather some basic definitions and
discuss their relevance in the literature. In §3, we describe to necessary back-

ground to implement Voisin’s method. In §4, we use this method to prove that
the Griffiths group for the general smooth hypersurface X4 ⊆ P6(16; 2) is infinite-
ly generated. Similarly in §5, we do the same for X2.3, the general intersection

of a quadric and cubic in P7. We then pass to the categorical portion of the

paper where, in §6, we extend the notion of Griffiths groups to certain types of
noncommutative spaces and show that this notion behaves well with respect to

semi-orthogonal decompositions. In §7, we apply this formalism to the examples

in the above list and compare each of these examples with the Griffiths group of a

noncommutative CY 3-fold. Finally, in §8, we implement the categorical covering
picture in [BFK1], to establish a connection between these noncommutative CY

3-folds and certain 3-dimensional algebraic varieties with trivial canonical-class.

Acknowledgments: The authors owe their sincere gratitude to Pranav Pandit,

Maximillian Kreuzer, Matthew Ballard, Bertrand Töen, and Maxim Kontsevich

for stimulating and extremely useful conversations and would like to thank them

all for their time, patience, and insight. The first and third named authors were

funded by NSF DMS 0854977 FRG, NSF DMS 0600800, NSF DMS 0652633 FRG,

NSF DMS 0854977, NSF DMS 0901330, FWF P 24572 N25, by FWF P20778

and by an ERC Grant.

2. Background

2.1. Algebraic cycles and Griffiths groups. Let X be a non-singular vari-

ety over an algebraically closed field k. Unless otherwise stated, we assume that

k = C. Let Zp(X) be the free Abelian group generated by the irreducible subva-
rieties on X of codimension p. Let Zp

rat(X) be the set of all cycles, z ∈ Zp(X),
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rationally equivalent to zero, let Zp
alg(X) be the set of all cycles, z ∈ Z

p(X), alge-
braically equivalent to 0, and let Zp

hom(X) be the set of of all cycles, z ∈ Z
p(X),

homologically equivalent to 0. We have containments,

Zp
rat(X) ⊆ Z

p
alg(X) ⊆ Z

p
hom(X).

The p-th Chow group,

CHp(X) ∶= Zp(X)/Zp
rat(X),

is the quotient group of Zp(X) by rational equivalence of algebraic cycles on X.
For dim(X) = n, one can equivalently use the notation Zp(X) = Zn−p(X) and
CHp(X) = CHn−p(X).

Similarly let us define the notation,

CHp
alg(X) ∶= Z

p
alg(X)/Z

p
rat(X)

and

CHp
hom(X) ∶= Z

p
hom(X)/Z

p
rat(X).

The group, CHp
hom(X), can alternatively be described as the kernel of the cycle

class map,

α ∶ CHp(X) →H2p(X,Z).

Meanwhile, the subgroup,

CHp
alg(X) ⊆ CH

p
hom(X),

is a divisible algebraic group.

Definition 2.1. The p-th Griffiths group of X is the quotient,

Griffp(X) = CHp
hom(X)/CH

p
alg(X).

Note that Griffn(X) = Griff1(X) = 0.

The Griffiths group of X can also be realized as

Zp
hom(X)/Z

p
alg(X)

which is the kernel of the cycle class homomorphism

calg ∶ Zp(X)/Zp
alg(X) →H2p(X,Z)
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Let K0(X) denote the Grothendieck group of algebraic vector bundles on X

and Ksst
0 (X) denote the Grothendieck group of algebraic vector bundles modulo

algebraic equivalence. The Chern character map induces a rational isomorphism,

(1) ch ∶ K0(X) ⊗Q→ CH∗(X) ⊗Q,

which preserves algebraic equivalence and yields,

(2) chsst ∶ Ksst
0 (X) ⊗Q→ Zp(X)/Zp

alg(X) ⊗Q .

Hence, the total rational Griffiths group,

GriffQ(X) ∶=
dim(X)
⊕
p=0

Griffp(X) ⊗Q,

is isomorphic to,

ker(calg ○ chsst).

This will be the starting point for our categorical definition of the total rational

Griffiths group. Namely, in §6, we show that for an admissible subcategory of

the bounded derived category of coherent sheaves on X, A ⊆ Db(cohX), we can
restrict the map c ○ chsst to Ksst

0 (A) and define GriffQ(A) as the kernel of this
restriction.

2.1.1. Manifolds of Calabi-Yau type.

Definition 2.2. Let X be a smooth compact complex variety of odd dimension

2n + 1, n ≥ 1. We call X a generalized Calabi-Yau manifold if

(1) the middle Hodge structure is similar to that of a Calabi-Yau threefold,

i.e.:

hn+2,n−1(X) = 1, and hn+p+1,n−p(X) = 0 for p ≥ 2;

(2) for any generator ω ∈Hn+2,n−1(X) ≅ C, the contraction map

H1(X,TX) ω
→Hn−1(X,Ωn+1
X )

is an isomorphism;

(3) the Hodge numbers hk,0(X), k = 1,2, ...,2n are zero.
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Notice that for n = 1 the above definition coincides with the definition of a

Calabi-Yau threefold. Also, recent joint work of Manivel and the second author

[IM] provides a series of examples of manifolds of Calabi-Yau type of dimension

> 3. These examples come from certain complete intersections in homogeneous

varieties, starting from hypersurfaces in projective spaces.

The starting point for this definition is the following property described by

Donagi and Markman, which holds for all Calabi-Yau threefolds (see [DM1],[DM2]):

(DM) The relative intermediate Jacobian forms an integrable system over the

gauged

moduli space of any Calabi-Yau threefold.

As remarked in [DM2], this property cannot be generalized for Calabi-Yau

varieties X of higher dimension n ≥ 4. Indeed, an intermediate Jacobian exists

only for manifolds of odd dimension, so (DM) cannot even be stated correctly

for Calabi-Yau manifolds of even dimension. On the other hand, in the case

when n > 3 is odd, there is still a natural 2-form on the relative intermediate

Jacobian, σ, inherited by the cotangent fibration over the moduli space of X.

However, while the fibers of the relative intermediate Jacobian are still isotropic

with respect to σ, the Yukawa cubic (or the Donagi-Markman cubic) on the

tangent fibration over the moduli space of X vanishes. Hence σ is degenerate

over the general point, see Remark 7.8 and Theorem 7.9 in [DM2]. In contrast,

on the gauged moduli spaces of the generalized Calabi-Yau (2n+1)-folds as above

the relative intermediate Jacobian can form an integrable system, see [IM].

All known examples of manifolds of Calabi-Yau type are Fano. Hence, we

introduce the following terminology:

Definition 2.3. A Fano-Calabi-Yau (FCY) manifold is a manifold X of Calabi-

Yau type that is Fano, i.e., one for which the anticanonical class, −KX , is ample.

FCY manifolds are always of odd dimension at least 5. Another common

property of FCY manifolds and Calabi-Yau manifolds is that the deformations

of Fano manifolds are not obstructed, see e.g. [Ra]. Unobsructedness of de-

formation spaces is an important property of Calabi-Yau manifolds known as

the Bogomolov-Tian-Todorov theorem, see e.g. [Vo4]. As a consequence, one
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can speak about moduli spaces X of FCY manifolds X and relative Jacobians

J (X) → X above them.

3. Deformations of triples, Noether-Lefschetz loci, and

infinitesimal invariants

3.1. Deformations of triples (λ,Y,X) and Noether-Lefschetz loci. For a

FCY manifold X ⊆ PN of dimension 2n + 1, denote by X its deformation space.

Suppose for simplicity that Pic X = ZH where H is the hyperplane section. In

particular −KX = rH for some integer r = r(X) > 0, i.e. X is a prime Fano

manifold of index r; and suppose in addition that the index r(X) ≥ 2. Fix a

positive integer d < r(X). Then the smooth divisors Y ∈ ∣OX(d)∣ will be Fano
manifolds, and denote by Y their deformation space. 4 Let

(3) Y q←
 G = {(Y,X) ∶ Y ⊆X} p
→ X

with q and p being the restrictions of the natural projections of Y × X ⊇ G to Y
and X . Consider the following diagram

0
����

0 � TY (−X) �����

0
���

TY ⊆X
������

���
TX �

�
�
��

α

0

NY ∣X

�
�
��

TX ∣Y �

�
γ

TY

�

����

β

0

�

0

0

0

4This deformation space exists by result of Z. Ran [Ra].
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in which the vertical and the horizontal row are tangent sequence for Y ⊆X and

the adjoint sequence for Y ⊆ X, and TY ⊆X is the kernel of the composition map

γ ○α. Under the particular assumptions as above, there is an identification of the
normal bundle, NY ∣X = OY (d).

Let λ ∈ Hn,n
o (Y,Z) ⊆ H2n(Y ) be the class of a primitive integer n-cycle Zλ

on Y . The class λ determines locally around (Y,X) = (Yo,Xo) a family Fλ ⊆ G
defined by all local deformations (Yt,Xt) of (Y,X) inside G for which the class

λ ∈H2n(Yt) =H2n(Y ) remains of type (n,n).

By definition, the Noether-Lefschetz locus F ⊆ Y is the set of all Y for which

the primitive integer cohomology Hn,n
o (Y,Z) /= 0.

For fixed X, we define the Noether-Lefschetz locus inside ∣OX(d)∣, F(X), to
be the set of all Y ∈ ∣OX(d)∣ that belong to F ; and let F(X)λ ⊆ F(X) to be the
set of all Y ∈ ∣OX(d)∣ that belong to Fλ.

For a given triple, (λ,Y,X), let TFλ be the tangent space to Fλ ⊆ Y × X at

(Y,X) = (Yo,Xo). Suppose in addition that the Kodaira-Spencer map

ρ ∶H0(NY ∣X) →H1(TY )

is injective. By §1 of [Vo1]

TFλ = {(v, u) ∈H1(TY ) ×H1(TX) ∶ β(v) = α(u) and u ● λn,n = 0},

where ● is the cup-product

H1(TY ) ⊗Hn(Ωn
Y ) →Hn+1(Ωn−1

Y ), (u,λ) ↦ u ● λ.

Now consider the following diagram:

H0(NY ∣X) � H1(TY ) � H1(TX ∣Y ) � H1(NY ∣X)

Hn+1(Ωn−1
Y )

�

�
�
�
��

λn,n ○ ρ λn,n

ρ

The assumptions on X and Y guarantee that

H1(NY ∣X) =H1(OY (d)) =H1(KY ⊗O(r)) = 0
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by the Kodaira vanishing theorem. Therefore, we can apply the argument in §2
from [AC] to conclude:

Proposition 3.1. Let (λ,Y,X) be as above, let p∗ ∶ TFλ → TX be the map

induced by the projection p ∶ Fλ → X , and suppose that the composition

λn,n ○ ρ ∶H0(NY ∣X) →Hn+1(Ωn−1
Y )

is an isomorphism. Then

(1) The map p∗ ∶ TFλ∣Y,X → TX ∣X = H1(TX) is also an isomorphism, and

hence the family Fλ is smooth of codimension hn+1,n−1(Y ) in G at (Y,X),
and the projection p ∶ Fλ → X is an isomorphism over a neighborhood of

X.

(2) There are infinitely many 0-dimensional components of the Noether-Lefschetz

locus F(X) ⊆ ∣OX(d)∣, forming a countable subseteq in ∣OX(d)∣.

Remark 3.2. Part (1) is the analog of Lemma 2.3 and Proposition 2.4 from

[AC], which in turn reproduces the original argument of Voisin in §1 of [Vo1].
Part (2) follows from (1) based upon an argument due originally to M. Green.

By (1), the set F(X)λ is reduced and 0-dimensional. In particular, the Noether-
Lefschetz locus F(X) in ∣OX(d)∣ has at least one 0-dimensional component. By
an argument due originally to M. Green the latter implies that F(X) has count-
ably many 0-dimensional components and they form a dense subset of ∣OX(d)∣,
see the proof of Proposition 1.2.3 in [B-MS] or Propositions 2.4 and 2.5 in [AC]

together with the references found therein.

In §4 and §5 we study two examples of triples, (λ,Y,X), that fulfill the con-
ditions of the above proposition. In order to verify these conditions, we follow

the approach used initially by C. Voisin in [Vo1], i.e., we verify these conditions

using the graded rings of X and Y .

3.2. The infinitesimal invariant of a normal function associated to a

deformation of a triple (λ,Y,X). Let (λ,Y,X) be a triple which fulfills the
conditions of Proposition 3.1, and suppose further that the Hodge conjecture

holds for Y . Then by (1) of Proposition 3.1 the family, Fλ, is isomorphic to

X over a neighborhood, U of X = Xo ∈ X . Since the argument is local, we

can suppose that U = X . Thus for any Xt ∈ X the class λ is represented by
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an algebraic n-cycle Zλ,t on Yt ⊆ Xt. Since λ is, by assumption, homologically

equivalent to zero, Zλ,t = ∂Γλ,t for some real (2n + 1)-chain Γλ,t on X.

Let H2n+1
X → X be the (2n + 1)th cohomology bundle and Hi,j

X → X , i + j =
n+1 be its Hodge subbundles over X , with the holomorphic filtration F iH2n+1

X =
⊕k≥iHk,2n+1−k

X . Let

JX = (Fn+1H2n+1
X )∨/H2n+1(X ,Z) 
→ X

be the intermediate Jacobian bundle over X . The cycles Zλ,t, t ∈ X/0 define a
normal function

νλ ∶ X o → J (X o), Xt �→ νλ(t) ∶= Φt(Zλ,t),

where Φt is the Abel-Jacobi map for Xt, see §7 Ch.II in Vol.II of [Vo3]. The

normal function νλ lifts to a holomorphic section ψλ of (Fn+1H2n+1
X )∨, defined

on the sections ωt of Fn+1H2n+1
X by

ψλ(t)(ωt) = ∫
Γt

ωt,

where ∂Γt = Zλ,t – see above.

Now we use the assumption that X is a FCY manifold of dimension 2n + 1,
i.e., the only nonzero middle Hodge numbers of X are hn+2,n−1 = hn−1,n+2 = 1 and
hn+1,n = hn,n+1. From this fact, it follows that the variation of Hodge structure

is a map,

∇ ∶ Hn+1,n
X ⊗ TX 
→Hn,n+1

X .

Let Ker∇ be the kernel bundle of ∇.

The Griffiths infinitesimal invariant δνλ of the normal function νλ is a section

of the dual bundle, (Ker∇)∨, defined as follows. Let ∑i ωi ⊗ χi ∈ ker∇, and let
ω̃i(t) be sections of Fn+1H2n+1

X such that ω̃i(0) = ωi. Then

(4) δνλ(∑
i

ωi ⊗ χi) = ∑
i

χi(ψλ(ω̃i) −ψλ(0)(∑
i

∇χi(ω̃i)),

see p.721-722 in [AC], or [Gr] and [Vo1].

In §4 and §5 we show that the infinitesimal invariants δνλ of certain special

primitive algebraic Hodge classes, λ, on two given FCY manifolds X are non-zero.

This fact together with the following lemma will provide us with the nontriviality

of GriffQ(X). Later down the road, the fact that GriffQ(X) is infinitely generated
will follow from this as well.
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Lemma 3.3. Let X, Y , λ, and Zλ be as above. If δνλ /= 0 then for the general

Xt ∈ X the algebraic n-cycle Zλ,t represents a non-torsion element of Griff(Xt).

Proof. See [Vo1] or [B-MS]. �

4. The Griffiths group of the 5-fold quartic double solid X4

4.1. The 5-fold quartic double solid and its quadratic sections. A 5-fold

quartic double solid is a double covering

π ∶X → P5

branched over a quartic hypersurface B ⊆ P5. It can be represented as a hyper-

surface X = X4 of degree 4 in the weighted projective space P6(16; 2) = P6(1 ∶
1 ∶ 1 ∶ 1 ∶ 1 ∶ 1 ∶ 2). If the opposite is not explicitly stated we assume that X is

smooth, which is equivalent to the smoothness of its branch locus B.

If (x; y) = (x0 ∶ ... ∶ x6 ∶ y) are the coordinates in P6(16; 2) = P6(x; y) and
B = (f4(x) = 0) is the equation of B ⊆ P5 = P5(x) then the equation of X = X4 ⊆
P6(x; y) is

y2 − f4(x) = 0.

In turn, any smooth hypersurface X4 ⊆ P6(16; 2) which does not contain the point
(0; 1) is equal to a 5-fold quartic double solid over P5. To see this, let

f(x; z) = z2 + 2q(x)z + r(x) = 0,

deg q(x) = 2,deg r(x) = 4 be the equation of X =X4 ⊆ P6(x; z) = P6(16; 2). Then
f(x; z) = (z + q(x))2 − (q(x)2 − r(x)), and after changing the weight 2 variable z
by y = z + q(x) the equation of X becomes y2 − f4(x) = 0, where

f4(x) = q(x)2 − r(x).

Clearly the map (x; y) ↦ X restricts to a double covering π ∶ X → P5 = P5(x),
with branch locus equal to the quartic hypersurface, B, defined by the equation

f4(x) = 0.
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4.2. The graded ring of X4 ⊆ P6(16; 2) and of its quadratic sections. Let

f(x; y) = y2 − f4(x)

be the equation of X =X4 in P6(16; 2). In the graded algebra,

S(X) = C[x; y] = C[x0, ..., x5, y],

with deg xi = 1, deg y = 2 the graded Jacobian ideal J(X) of X is generated by

the partials ∂f(x, y)/∂xi = −∂f4(x)/∂xi and ∂f(x, y)/∂y = 2y. Let

R(X) = S(X)/J(X) =⊕
d

Rd(X)

be the graded Jacobian ring of X. By [Na]

H5−p,p
o (X) ≅ R4p−4(X), for p = 0, ...,5,

which yields

h5,0(X) = h0,5(X) = 0, h4,1(X) = h1,4(X) = 1, h3,2(X) = h2,3(X) = 90.

Let X ⊆ P6(16; 2) be given by f(x; y) = y2 − f4(x) = 0 as above. A quadratic

section Y ⊆ X which does not contain the point (0; 1) is given inside X by an

equation

q(x; y) = y − f2(x) = 0.

Lemma 4.1. If the quadratic section Y of X is as above, then the rational

projection

P6(16; 2) = P6(x; y) → P5(x), (x; y) ↦ (x)

sends Y isomorphically onto the quartic hypersurface Y4 ⊆ P5(x) defined by the

equation

f(x) = f2(x)2 − f4(x) = 0.

Proof. In the first equation y2 − f4(x) of Y replace y by f2(x) coming from the

second equation y − f2(x) = 0. �

Via the interpretation of Y as a quartic hypersurface f(x) = f2(x)2 −f4(x) = 0
in P5, its middle primitive cohomology can be computed by the formulas from

[Na]:

H4−p,p
o (Y ) = R4p−2(Y ), p = 0, ...,4,
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where R = S(Y )/J(Y ) = C[x0, ..., x5]/( ∂f
∂x0

, ..., ∂f
∂x5

) is the graded Jacobian ring of
Y . This yields

h4,0(Y ) = h0,4(Y ) = 0, h3,1(Y ) = h1,3(Y ) = 21, h2,2o (Y ) = 141.

4.3. Cycles on quadratic sections Y ⊆ X. Let Y be a smooth quadratic

section of X which does not contain the point (0; 1). By the discussion from the

preceding section, Y is isomorphic to a quartic fourfold Y4. Therefore by [CM],

the Hodge conjecture holds for Y . Let λ ∈ H2,2
o (Y,Z) be a Hodge class on Y ,

representing a primitive algebraic 2-cycle Zλ ⊆ Y ⊆ X, see §3.2. For the given

triple (λ,Y,X) the 2nd diagram from §3.1 becomes

H0(OY (2)) � H1(TY ) � H1(TX ∣Y ) � H1(OY (2)) = 0

H3(Ω1Y )
�

�
�
�
��

λ2,2 ○ ρ λ2,2

ρ

Below we translate the above diagram into the language of the graded ring

R(Y ). In order to do so, we will need to use the following identities that can

either be obtained directly, by using the adjoint and the tangent sequence for

Y ≅ Y4 ⊆ P5, or by the Griffiths residue calculus.

(5) H1(OY (2)) ≅ R2(Y ) , H1(TY ) ≅ R4(Y )

The equation above, together with the identifications from 4.2, allows us to

rewrite the diagram above as,

R2(Y ) � R4(Y ) � H1(TX ∣Y ) � 0

R10(Y )
�

�
�
�
��

Pλ ○ e Pλ

e

where Pλ is, by slight abuse of notation, multiplication by the polynomial class

Pλ corresponding to λ2,2 ∈ H2,2
o (Y ) ≅ R6(Y ), and e is multiplication by the

polynomial class e = f2(x) ∈ R2(Y ).
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4.4. The infinitesimal invariant for (λ,Y,X) in terms of R(Y ). Let (λ,Y,X)
be as above,

∇ ∶H3,2(X) ⊗H1(TX) →H2,3(X)
be a variation of Hodge structure for X, and δνλ ∈ (Ker∇)∨ be the infinitesimal
invariant of νλ, see 3.2.

Since X is a Fano-Calabi-Yau manifold, the cup-product with the unique form

(modulo C∗), ω4,1, on X defines an isomorphism,

ω ∶H1(TX) =H−1,1(X) ∼
→H3,2(X).

By the identifications H3,2(X) ≅ R4(X) and H2,3(X) = R8(X) from §4.2, the
v.H.s. ∇ is identified with a mapping

μX ∶ R4(X) ⊗R4(X) → R8(X).

It follows from [Vo1], that in the situation above, describing the deformations of

a triple, (λ,Y,X), the following takes place:

Lemma 4.2. The map

μX ∶ R4(X) ⊗R4(X) → R8(X)

is induced by multiplication of monomials in the homogeneous graded ring,

S(X) = C[x; y] = C[x0, ..., x7, y].

Again by [Vo1], under certain conditions the infinitesimal invariant δλν can be

regarded as a linear form on the kernel of the multiplication map

μY ∶ R4(Y ) ⊗R4(Y ) → R8(Y ).

More precisely, let y = f2(x) be the equation of Y in X = (y2 = f4(x)) ⊆ P6(x; y),
and f(x) = f2(x)2 − f4(x) = 0 be the equation of Y in P5(x), representing Y as

a quartic hypersurface in P5 = P5(x). By the isomorphism, H2,2
o (Y ) ∼
→ R6(Y ),

the class λ corresponds to Pλ ∈ R6(Y ). Let e ∈ R2(Y ) be the class defined by the
quadric form f2(x). Then the following takes place (see [Vo1] or [AC]):

Lemma 4.3. If the multiplication by Pλ.e induces an isomorphism

fλ = R2(Y ) → R10(Y ),

then for any ω = Σ Qi ⊗ Ri ∈ ker(μY ), we have the following equality for the

infinitesimal invariant:



On the Griffiths Groups of Fano Manifolds of Calabi-Yau Hodge Type 17

δνλ(Σ Qi ⊗Ri) = Σ PλQi(f−1λ (PλRi)).

4.5. Cycles on the Fermat quartic fourfold. Let Y be the Fermat quartic

fourfold, i.e., the quadratic section of X as in Lemma 4.1 given by the equation,

f(x) = f2(x)2 − f4(x) = x40 + ... + x45.

Let

R(Y ) = S(Y )/J(Y ) = C[x0, ..., x5]/(x30, ...., x35) = ⊕
d≥0

Rd(Y )

be the graded Jacobian ring of Y . By §4.2, the primitive cohomology satisfies

H2,2
o (Y ) ≅ R6(Y ). Following [Shi], we now describe the rational cohomology

classes in H2,2
o (Y ) and their corresponding elements from R6(Y ).

Let μ4 be the group of 4-th roots ζi of unity, and let G = (μ4)6/Δ, where Δ
is the diagonal subgroup. If Z4 = Z/4Z, then the character group Ĝ is naturally

embedded in (Z4)5 as

Ĝ
∼
→ {α = (a0, ..., a5) ∶ a0 + ... + a5 = 0} ⊆ (Z4)6;

the character α ∈ Ĝ = Hom(G,C∗) representing (a0, ..., a5) sends the element
[ζ0, ..., ζ5] ∈ G = (μ4)6/Δ to α([ζ0, ..., ζ5]) = ζa00 ...ζ

a5
5 . Let

Ĝ∗ = {α = (a0, ..., a5) ∈ Ĝ ∶ ai /= 0, i = 0, ...,5}.

For α = (a0, ..., a5) ∈ Ĝ∗, define its norm

∣α∣ = < a0 > +...+ < a5 >
4

,

where < ai > is the unique integer between 1 and 3 congruent to ai modulo 4.

The natural action

g = [ζ0, ..., ζ5] ∶ (x0 ∶ ... ∶ x5) ↦ (ζ0x0, ..., ζ5x5)

of G on P5 restricts to an action of G on the Fermat quartic Y ⊆ P5; which in turn

induces a representation g∗ of G on the primitive cohomology group H4
o (Y,C).

Let

Vα = {λ ∈H4
o (Y,C) ∶ g∗(λ) = α(g)λ},

be the eigenspaces of g∗ in H4
o (Y,C) defined by the characters α ∈ Ĝ.

With the above notation, the results in [Shi] yield the following:
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(1) The primitive cohomology obeys the identity,

H2,2
o (Y,Q) ⊗Q C = ⊕

α∈B
Vα,

where B = {α ∈ Ĝ∗ ∶ ∣α∣ = ∣3.α∣ = 3} and 3.α = 3.(a0, ..., a5) = (3a0, ...,3a5).
(2) Let Co(Y )Q denotes the subspace of H4

o (Y,Q) spanned by classes of prim-
itive algebraic 2-cycles on Y . There is an equality,

Co(Y ) = Co(Y ) ⊗Q C =H2,2
o (Y,Q) ⊗Q C.

Remark 4.4. In general, the space Co(Y ) spanned by classes of primitive alge-
braic 2-cycles on a fourfold Y is a subspace of H2,2

o (Y,Q) ⊗Q C; the coincidence

(2) is the statement of the Hodge conjecture for the Fermat quartic fourfold, see

[Shi].

4.6. The isomorphism H2,2
o (Y ) → R6(Y ) in coordinates. Let Y = (x40 +

... x45 = 0) be the Fermat quartic fourfold. Since the graded ring of Y is

R(Y ) = S(Y )/J(Y ) = C[x0, ..., x5]/(x30, ..., x35)

then in a monomial xb00 ...x
b5
5 , representing a non-zero class modulo J(Y ), the

coordinates xi can enter only with degrees 0, 1 and 2. We therefore use the

following terminology; we call a nonzero monomial f = xb00 x
b1
1 ...x

b5
5 a monomial

of type (2p1q) if bi = 2 for p distinct values of i and bi = 1 for q distinct values of
i. Now it is easy to see that R6(X) is generated by the following 141 monomials,
regarded as classes modulo J(Y ) = (x30, ..., x35):

20 monomials f of type (222);

90 monomials f of type (2211);

30 monomials f of type (21111);

1 monomial f of type (111111).

By definition, α = (a0, ..., a5) ∈ B iff ∣α∣ = ∣3.α∣ = 3. Since B ⊆ Ĝ∗, the co-

ordinates ai take values k = 1,2 and 3. For an element α = (a0, ..., a5) ∈ Ĝ∗,

let

dk(α) =#{i ∶ ai = k},
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be the number of occurrences of the number k ∈ {1,2,3} among the coordinates ai
of α. We call α an element of type (3p2q1r) if d3(α) = p, d2(α) = q and d1(α) = r.
As in [AC], the isomorphism

j ∶H2,2
o (Y ) → R6(Y )

is given by:

j ∶ α = (a0, ..., a5) �→ xa0−1o xa1−11 ...xa5−15 .

Now, by a simple combinatorial check, we describe all possible α ∈ B and their

corresponding monomials by j as follows:

● 20 elements α of type (333111) j
→ the 20 monomials of type (222);
● 90 elements of α of type (332211) j
→ the 90 monomials of type (2211);
● 30 elements of α of type (322221) j
→ the 30 monomials of type (21111);
● 1 element α of type (222222) j
→ the unique monomial of type (111111).

Recall that by (1) the 1-dimensional eigenspaces Vα of the above 141 characters

α span the space of primitive cohomology H2,2
o (Y ).

4.7. Infinite generation of the Griffiths group of X4. Let Y be the Fermat

hypersurface in P5(x0 ∶ ... ∶ x5) defined by

f(x) = f2(x)2 − f4(x) = x40 + ... + x45 = 0.

Then R(Y ) = C[x0 ∶ ...x4]/I(Y ), where I(Y ) = (x30, ..., x35).

To simplify the notation, for 0 ≤ i ≤ j ≤ ... ≤ k we write

xij...k ∶= xixj ...xk
for both the monomial and its class in R(Y ). For example x001123 = x20x21x2x3 ∈
R(Y ).

We call two monomials xij...k and xi′j′...k′ dual if xij...k . xi′j′...k′ = x0011...55; for
the dual monomial of xij...k we shall use the notation xîj...k, i.e.

xîj...k . xij...k = x0011...55.

Let us first find monomials Pλ and e which fulfill the conditions of Lemma 4.3.

To this end, let

Pλ = Pλa,b
= a(x001123 + x234455) + b(x012233 + x014455)
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and

e = ux01 + vx23 +wx45.

Then

Pλa,b
.e = a(ux0̂123 + vx0̂011 + vx4̂455 +wx2̂345)

We verify that for generic a and b the linear map

Pλa,b
.e ∶ R2(Y ) → R10(Y )

is an isomorphism. In bases xij and xîj of R2(Y ) and R10(Y ) respectively, Pλa,b
.e

acts as follows:

x00 ↦ avx1̂1, x11 ↦ avx0̂0

x22 ↦ bux3̂3, x33 ↦ bux2̂2

x44 ↦ (av + bu)x5̂5, x55 ↦ (av + bu)x4̂4

x04 ↦ bwx1̂5, x15 ↦ bwx0̂4

x05 ↦ bwx1̂4, x14 ↦ bwx0̂5

x24 ↦ awx3̂5, x35 ↦ awx2̂4

x25 ↦ awx3̂4, x34 ↦ awx2̂5

x02 ↦ (au + bv)x1̂3, x13 ↦ (au + bv)x0̂2
x03 ↦ (au + bv)x1̂2, x12 ↦ (au + bv)x0̂3

x01 ↦ avx0̂1 + (au + bv)x2̂3 + bwx4̂5
x23 ↦ (au + bv)x0̂1 + bux2̂3 + awx4̂5
x01 ↦ bwx0̂1 + awx2̂3 + (av + bu)x4̂5

Therefore the matrix of Pλa,b
.e is

Ma,b =
⎛
⎝
0 av

av 0

⎞
⎠
⊕
⎛
⎝
0 bu

bu 0

⎞
⎠
⊕
⎛
⎝
0 aw

aw 0

⎞
⎠

⊕2

⊕
⎛
⎝
0 bw

bw 0

⎞
⎠

⊕2

⊕

⊕
⎛
⎝

0 av + bu
av + bu 0

⎞
⎠
⊕
⎛
⎝

0 au + bv
au + bv 0

⎞
⎠

⊕2

⊕ Aa,b ,
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where

Aa,b =
⎛
⎜⎜
⎝

av au + bv bw

au + bv bu aw

bw aw av + bu

⎞
⎟⎟
⎠
.

The determinant

detMa,b = a6b6u2v2w8(au + bv)4(av + bu)2detAa,b,

where

detAa,b = −a2bu3−(ab2+a3)u2v−(a2b+b3)uv2−ab2v3+(2a2b−b3)uw2+(2ab2−a3)vw2.

Therefore if

abuvw(au + bv)(av + bu)detAa,b /= 0

then

fλ = Pλa,b
.e ∶ R2(Y ) → R10(Y )

is an isomorphism, and we can apply Voisin’s formula from Lemma 4.3 to compute

the infinitesimal invariant δλa,b
. We take

b = 1, u = v = 1 and w = h

where h is a transcendental number. It follows from the preceding discussion that

fa ∶= Pa,1.e ∶ R2(Y ) → R10(Y )

is an isomorphism if a(a + 1) /= 0 (since h is transcendental and a is rational and
not equal to −1, the determinant det(Aa,1) = −(a+ 1)(a2 + a+ 1) + (a2 − 3a+ 1)h2
is always nonzero).

Since fa = Pλa,1 .e is an isomorphism, we can apply the formula from Lemma

4.3 to evaluate the infinitesimal invariant δλa,1 at the elements of Ker(μY ). The
goal is to find elements v ∈ Ker(μY ) such that δλa,1(v) /= 0, which by Lemma 3.3
to see that λ is an element of infinite order in Griff(X), cf. §4 of [AC].

Let Q = x2233 and R = x0123. Then v = Q⊗R ∈ Ker(μY ), and by Lemma 4.3

δλa,b
(Q⊗R) = Pλa,1Q(f−1a (Pλa,1R)),

where f−1a ∶ R10(Y ) → R2(Y ) is the inverse to isomorphism fa = Pλa,1 . Since

Pλa,1R = (ax001123 + ax234455 + x012233 + x014455)x0123 = ax0̂1 + x2̂3
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then

f−1a (Pλa,1R) = f−1a (ax0̂1+x2̂3) = A
−1
a,1(ax0̂1+x2̂3) =

1

detAa,1
(c01x01+c23x23+c45x45),

where cij are the minors of the matrix Aa,1 in the basis x01, x23, x45. Now

Q(f−1a (Pλa,1R)) =
1

detAa,1
x2233(c01x01 + c23x23 + c45x45) =

c01
detAa,1

x012233,

and hence

δ(a) = δνλa,1(Q⊗R) = c01
detAa,1

Pλa,1x012233 =
c01

detAa,1
x001122334455 =

= a2 − a + a4 − a3 + 2a − 1
(a3 − 3a + 1)h2 + a2 + a + 1 .

Since h is transcendental, and a3 − 3a + 1 has no rational roots, the above

expression never vanishes for rational a. This provides infinitely many λa,1 with

non-zero infinitesimal invariant, and hence (by Lemma 3.3) – infinitely many

non-torsion elements in Griff(X). This yields our main result about the Griffiths
group of the 5-fold quartic double solid X =X4:

Theorem 4.5. For the general X =X4 ⊆ P6(16; 2) the Griffiths group Griff3Q(X)
is infinitely generated as a vector space over the rationals Q.

Proof. It is sufficient to see that there exists an infinite sequence of integers

a1, a2, ... such that δ(ai) = δνλai,1
(Q ⊗ R) are linearly independent over Q. For

this we rewrite

δ(a) = pa +
qa

rat + sa
where t = h2 and pa = a2 − a, qa = a4 − a3 + 2a − 1, ra = a3 − 3a + 1, sa = a2 +
a + 1. When the argument a takes the values i = 1,2,3, ... then the real numbers
δ(1), δ(2), δ(3), ... generate an infinite dimensional vector space over Q. The rest
of the argument repeats the proof of Theorem 4.2 in [AC]. �
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5. The Griffiths group of X2.3 ⊆ P7

5.1. The Fano-Calabi-Yau fivefold X2.3 ⊆ P7. Let

X =X2.3 = (q(x) = f(x) = 0)

be a smooth complete intersection of a quadric, q(x) = 0, and a cubic, f(x) = 0,
in P7(x) = P7(x0 ∶ ... ∶ x7).

Since the 5-fold X = X2.3 is a complete intersection, by the Lefschetz hyper-

plane section theorem it follows that all the primitive cohomology groupsHp,q
o (X)

for p + q < 5 = dim X are zero. By §5.4 below, the middle Hodge numbers of X
are

(6) h5,0(X) = h0,5(X) = 0, h4,1(X) = h1,4(X) = 1, h3,2(X) = h2,3(X) = 83.

Therefore the complete intersection of a quadric and a cubic X2.3 ⊆ P7 is a

FCY 5-fold.

In the remainder of this section we shall verify that the Griffiths group GriffQ(X2.3)
is infinitely generated as a vector space over the rationals.

5.2. Deformations of triples (X,Y,λ) and Noether-Lefschetz loci. Let

X ⊆ PN be a FCY manifold of dimension 2n + 1. Suppose that X is an ample

divisor in a Fano (2n + 2)-fold Y . As in §3.1, we will assume that Pic Y = ZH,

−KY = rH for some integer r = r(X) ≥ 2, and X ∈ ∣OY (d)∣ for some positive
integer d < r. Denote by X and Y the deformation spaces of X and Y , and let G
be the incidence

(7) X p←
 G = {(X,Y ) ∶X ⊆ Y } q
→ Y

with its two natural projections p and q.

Let λ ∈ Hn+1,n+1
o (Y,Z) ⊆ H2n(Y ) be the class of a primitive integer (n + 1)-

cycle Zλ on Y . The class λ determines locally around (Y,X) = (Yo,Xo) a family
Fλ ⊆ G defined by all local deformations (Xt, Yt) of (X,Y ) inside G for which the

class λ ∈H2n+2(Yt) =H2n+2(Y ) remains of type (n + 1, n + 1).
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For fixed X, let YX = p−1(X) be the family of all (X,Y ) such that Y contains

X, and suppose that H1(TY (−X)) = 0. Then the tangent space TYX at (X,Y )
is naturally identified with H1(TY (−X)), see e.g. [Ty] or [B-MS]. Now, by

exchanging the places of X and Y from §3.1, and considering instead of inclusion
λ ⊆ Y ⊆X the restriction Y ⊇ λ↦ λ ∩X ⊆X, we get a diagram

H0(TY ∣X) � H1(TY (−X)) � H1(TY ) � H1(TY ∣X)

Hn+3(Ωn+1
Y )

�

�
�
�
��

λn+1,n+1 ○ ρ λn+1,n+1

ρ

in which the map, ρ ∶ H1(TY (−X)) → H1(TY ), is interpreted as the Kodaira-

Spencer map for the family YX .

Let F ⊆ Y be the Noether-Lefschetz locus of all Y for which Hn+1,n+1
o (Y,Z) /= 0.

In particular, Fλ is a component of F .

As in §3.1, for fixed X one defines the Noether-Lefschetz locus, F(X), inside
YX to be the set of all Y ∈ YX that belong to F(X); and define F(X)λ ⊆ F(X)
to be the set of all Y ∈ YX that belong to Fλ.

For the given triple, (X,Y,λ), let TFλ be the tangent space to Fλ ⊆ Y × X at

(X,Y ) = (Xo, Yo). The following is the analog of Proposition 3.1, in which the

inclusion Y ⊆X is replaced by X ⊆ Y .

Proposition 5.1. Let (X,Y,λ) be as above, let p∗ ∶ TFλ → TX be the map

induced by the projection p ∶ Fλ → X , and suppose that the composition

λn+1,n+1 ○ ρ ∶H1(TY (−X)) →Hn+3(Ωn+1
Y )

is an isomorphism. Then

(1) The map p∗ ∶ TFλ∣Y,X → TX ∣X = H1(TX) is also an isomorphism, and

hence the family Fλ is smooth of codimension hn+3,n+1(Y ) in G at (X,Y )
and the projection, p ∶ Fλ → X , is an isomorphism over a neighborhood of

X.

(2) There are infinitely many 0-dimensional components of the Noether-Lefschetz

locus F(X) ⊆ YX which together form a countable subseteq in YX .
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Remark 5.2. For a proof of 5.1 – see Proposition 2.4.1 and the proof of Propo-

sition 1.2.3 in §2 of [B-MS].

5.3. The infinitesimal invariant of a normal function associated to a

deformation of a triple (X,Y,λ).

Let (X,Y,λ) be a triple which satisfies the conditions of Proposition 5.1, and
suppose as in §3.2 that the Hodge conjecture holds for Y .

Then by (1) of Proposition 5.1 the map p∗ ∶ TFλ → TX is a local isomorphism,

and we can proceed as in §3.2 to define a normal function νλ ∶ X → J (X) and
its infinitesimal invariant δνλ ∈ (Ker∇)∨, where ∇ ∶ Hn+1,n

X ⊗TX 
→Hn,n+1
X is the

variation of Hodge structure for the Fano-Calabi-Yau (2n + 1)-fold X.

The first difference between this situation and the one considered in §3.1 – §3.2
is that instead of regarding n-cycles Zλ on 2n-folds Y ⊆ X as n-cycles on X, we

instead consider (n + 1)-cycles Zλ on (2n + 2)-folds Y ⊇ X and then look at the

Abel-Jacobi map for their restrictions Z ′
λ = Zλ ∩X, which are already n-cycles

on X.

The second, and perhaps more important difference for our purposes, is that

instead of varying Y inside X, Y varies as a submanifold of X. In the former

case, the way to interpret the infinitesimal invariant δνλ in terms of the graded

ring of Y was known already by Voisin.5

However, as far as the authors are aware, in our latter case there is no such

translation. Nevertheless, as we shall see in the next subsection, in the example

we consider of X = X2.3 ⊆ P7 this obstacle can be overcome. This is essentially

due to the observation that the general cubic 6-folds, Y = Y3, containing the

given X are the same as the general hyperplane sections of a nodal 7-fold cubic

Z = Z3 ⊆ P8 uniquely attached to X. With this observation, one can rewrite the

infinitesimal invariant δνλ in terms of the graded rings of the cubic 6-folds Y .

5.4. The graded ring of X2.3 and of cubic 6-folds Y3. Let

X =X2.3 = (q(x) = f(x) = 0)

5see also [We].
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be a complete intersection of a quadric q(x) = 0 and a cubic f(x) = 0 in PP 7(x) =
P7(x0 ∶ ... ∶ x7). To understand the groups, H5−p,p

o (X), we follow [Na] and use the

Cayley trick to represent the primitive cohomology groupsH5−p,p
o (X) =Hp

o (Ω5−pX )
as components of the bigraded ring of a hypersurface.

Let W = PP7(O(−2)⊕O(−3)), and let DX ⊆W be the hypersurface defined by

F (x; y, z) = yf(x) + zq(x) = 0.

Introduce bidegrees of the variables (x) = (x0 ∶ ... ∶ x7), y and z as follows:

deg y = (1,−3), deg z = (1,−2), deg xi = (0,1), i = 0, ...,7.

In the bigraded polynomial ring

S(X) ∶= C[x0, ...., x7, y, z],

denote by Fxi = ∂F
∂xi

, i = 0, ..,7, Fy = ∂F
∂y = f(x), and Fz = ∂F

∂z = q(x) the partial
derivatives of F = F (x; y, z) = F (x0, ..., x7; y, z). Let

J(X) = ( ∂F
∂x0

, ...,
∂F

∂x7
,
∂F

∂y
,
∂F

∂z
) = ⟨ ∂F

∂x0
, ...,

∂F

∂x7
, f(x), q(x)⟩

be the Jacobian ideal of F , and let

R(X) = S(X)/J(X) =⊕
a,b

Ra,b(X)

be the Jacobian ring of X =X2.3 decomposed into bigraded parts Ra,b(X). Then

H5−p,p
o (X) = Rp,−3(X), for p = 0, ...,5

– see [Na]. Since all Hodge numbers, hp,q, with p + q odd come from primitive

classes, we get

(8) h5,0(X) = h0,5(X) = 0, h4,1(X) = h1,4(X) = 1, h3,2(X) = h2,3(X) = 83.
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5.5. Cycles on cubic 6-folds Y ⊇ X. Let X = X2.3 = (q(x) = f(x) = 0) be
a general smooth complete intersection of a quadric and a cubic in P7, and let

Y = Y3 ⊆ P7 be a smooth cubic 6-fold containing X. Let X and Y be the

deformation spaces of X and Y , and let

X p←
 G = {(X,Y ) ∶X ⊆ Y } q
→ Y

be the variety of pairs (X,Y ) ⊆ X ×Y with X ⊆ Y and its projections to cX and

Y .

By [St], the Hodge conjecture holds for the cubic 6-folds Y . Let λ ∈H3,3
o (Y,Z)

be a Hodge class on Y , representing a primitive algebraic 3-cycle Zλ ⊆ Y ⊆ X,
see §5.3. For the given triple (λ,Y,X) the diagram from §5.2 becomes

H0(TY ∣X) � H1(TY (−X)) � H1(TY ) � H1(TY ∣X) �...

H4(Ω2Y )
�

�
�
�
��

λ3,3 ○ ρ λ3,3

ρ

As in §4.3, we rewrite this diagram in terms of the graded ring R(Y ). For this
we first note the following identifications that can be obtained directly by using

the adjoint and the tangent sequences for X ⊆ Y ⊆ P7 and Bott vanishing:

(9) H1(TY (−X)) ≅ R1(Y ) , H1(TY ) ≅ R3(Y ) , H4(Ω2Y ) =H2,4(Y ) ≅ R7(Y ).

Next, as in §3.1, the composition

λ3,3 ○ ρ ∶H1(TY (−X))
ρ
→H1(TY )

λ3,3


→H4(Ω2Y )

becomes

Pλ ○ e ∶ R1(Y )
e
→ R3(Y )

Pλ
→ R7(Y ),

where Pλ ∶ R(Y ) → R(Y ) is the multiplication by the polynomial class Pλ ∈
R4(Y ) corresponding to λ ∈ H3,3

o (Y ) ≅ R4(Y ), and e ∶ R(Y ) → R(Y ) is the
multiplication by the class of the quadric q(x).
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5.6. The v.H.s. for X2.3 in terms of the bigraded ring R(X). As in §4.4,
start from the variation of Hodge structure (v.H.s.) for X =X2.3

∇ ∶H3,2(X) ⊗H1(TX) →H2,3(X).

Since X is a FCY manifold, the cup-product with the unique (modulo C∗)

form ω4,1 on X defines an isomorphism

H1(TX) =H−1,1(X) ω4,1


→H3,2(X).

By [Na], H3,2(X) ≅ R2,−3(X), H2,3(X) = R3,−3(X); and under these isomor-

phisms the v.H.s. ∇ translates to a map

μX ∶ R2,−3(X) ⊗R2,−3(X) → R3,−3(X)

However in this case μX is not given by multiplication of polynomials (modulo

the Jacobian ideal) as in §4.3 - for example multiplication would be additive on
bidegrees. Fortunately, by using the generic 1:1 correspondence between X =X2.3

and nodal cubic 7-folds Z = Z3 from §5.7 below, we are able to instead rewrite

μX as multiplication μZ in the graded ring R(Z).

5.7. X2.3 and nodal cubic sevenfolds. Let us think of projective 7-space, P7,

as the hyperplane (w = 0) in the projective 8-space, P8 = P8(x;w) = P8(x0 ∶ ... ∶
x7 ∶ w). Let Z = Z3 ⊆ P8 be a general nodal cubic sevenfold, and let o ∈ Z be the

node of Z; Without loss of generality we may assume that po = (0 ∶ ... ∶ 0 ∶ 1).
The rational projection

po ∶ P8(x;w) P7(x),

from o sends the cubic, Z, birationally to P7(x). Under a slight abuse of notation,
we denote this birational map by

po ∶ Z P7.

as well. Since Z has a node at the point o = (0; 1), then in the same coordinates,
(x;w), the equation of the cubic, Z ⊆ P8(x;w), can be written as

f(z;w) = f(x) + q(x)w = 0

where f(x) is a cubic form of (x) = (x0 ∶ ... ∶ x7) and q(x) is a non-degenerate
quadratic form in (x).
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Let σ ∶ Z̃ → Z be the blowup of Z at o, and let E = σ−1(o) ⊆ Z̃ be the

exceptional divisor over o; the divisor E is isomorphic to a smooth 6-fold quadric

identified with the base Q = (q(x) = 0) of the projective tangent cone to Z at o.

The family of lines L ⊆ Z that pass through the point o sweep out a cone Ro

with vertex o and a base given by the 5-fold

X = {x ∶ q(x) = f(x) = 0} ⊆ P7(x).

For the general choice of the nodal cubic, Z, the 5-fold, X = X2.3, is a general

smooth complete intersection of a quadric and a cubic in P7.

Lemma 5.3. In the above notation, let

Z = Z3 = (f(x) + q(x)w = 0) ⊆ P8(x; z)

be the general nodal cubic 7-fold with node o = (0; 1). Then

(1) The birational map po ∶ Z P7(x) induced by the rational projection

P8(x;w) P7(x) decomposes as in the diagram below

o ∈ Z3 P7 ⊇ X2.3

E ⊂ Z̃ ⊇ R̃o

� �

�
�
�
�
�
��

�
�
�
�
�
��

�
po

σ p̃o

∪

Ro

�
�
�
�
�
�
�
�
�
��	

where R̃o ⊆ Z̃ the proper preimage of the cone Ro ⊆ Z, and p̃o ∶ Z̃ → P7 =
P7(x) is a birational morphism contracting R̃o to the complete intersection

X2.3 = (q(x) = f(x) = 0)

of the quadric (q(x) = 0) and the cubic (f(x) = 0) in P7.

(2) The birational morphism p̃o ∶ Z̃ → P7 from (i) coincides with the blow-up

of X =X2.3 in P7. Moreover the inverse to (i) takes place:

If X2.3 = (q(x) = f(x) = 0) be a general complete intersection of a

quadric (q(x) = 0) and a cubic (f(x) = 0) in P7 = P7(x), then the blowup
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of P7 at X is the same as the blowup Z̃ of the nodal cubic 7-fold Z = Z3 =
(f(x) + q(x)w = 0).

Proof. The proof is straightforward, we leave the details as an exercise to the

reader. �

5.8. The infinitesimal invariant of (X,Y,λ) by equivalences of graded

rings. Below, we rewrite the infinitesimal invariant δνλ for a triple (X,Y,λ) =
(X2.3, Y3, λ) (as in §5.2), by using the equivalence of graded rings of X2.3 and the

nodal cubic 7-fold Z = Z3 corresponding to X. However, in order to proceed, we
first require the following lemma:

Lemma 5.4. Let X =X2.3 ⊆ P7 be the general complete intersection of a quadric

and a cubic, and let Z = Z3 ⊆ P8 be the nodal cubic 7-fold corresponding to X

by Lemma 5.3. Then a 6-fold cubic, Y , containing X and not containing the

quadric, q(x) = 0, as a component can be identified with a hyperplane sections

Y of Z which do not pass through the node o of Z. In particular, the generic

cubic 6-fold containing the 5-fold X =X2.3 is the same as the generic hyperplane

section of its corresponding cubic 7-fold Z = Z3.

Proof. In the notation of §5.4, let X = X2.3 = (q(x) = f(x) = 0) ⊆ P7(x), and let
Z = Z3 = (f(x) + wq(x) = 0) ⊆ P8(x;w) be the nodal cubic corresponding to X
by Lemma 5.3. A cubic 6-fold Y ⊆ P7(x) containing X and not containing the

quadric (q(x) = 0) as a component has the equation

Y = (f(x) + l(x)q(x) = 0)

where l(x) is a non-zero linear form of (x) = (x0 ∶ ... ∶ x7).

From the equation F (x;w) = f(x) + wq(x) of the nodal cubic 7-fold Z = Z3
corresponding to X, we see that Y is the same as the linear section

Y = Z ∩ (l(x) −w = 0)

of the cubic Z. Since in the linear form, l(x)−w, the coefficient at w is non-zero,

it follows that the node, o = (0; 1), of Z does not lie on the linear section Y ⊆ Z.
Furthermore, since l(x) is a general linear form on (x), the form, l(x)−w, defines
the general linear section of Z that does not pas through its node, o. �
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5.8.1. The bigraded Jacobian ring R(X). Let X = (q(x) = f(x) = 0), where
2q(x) = x20 + ... + x27, 3f(x) = x30 + ... + x37. Then R(X) = S(X)/J(X) is the same
as C[x0, ..., x7, y, z] modulo the relations

x30 + ... + x37 = x20 + ... + x27 = 0 and yx2i = zxi, i = 0, ...,7.

A simple combinatorial check yields:

Lemma 5.5. Let R(X) be the graded ring of X =X2.3 with equations chosen as

above. Then:

(1) H4,1(X) = R1,−3(X) = Cy.

(2) H3,2(X) = R2,−3(X) is generated over C by the following 92 monomials:

● the 8 monomials: z2xi, i = 0, ...,7;
● the 28 monomials: yzxixj ,0 ≤ i < j ≤ 7;
● and the 56 monomials: y2xixjxk,0 ≤ i < j < k ≤ 7.

There are 9 independent relations between the 92 monomials from (2). These

relationships can be found, using the following identities in R(X),

yx2i ↦ zxi, i = 0, ...,7,

which yield the following identities in the graded component R2,−3(X),

y2x3i = yzx2i = z2xi and y2x2ixj = yzxixj .

Now, using the basis from (2), we get 1 relation between z2xi = y2x3i com-
ing from 3f(x) = x30 + ... + x37 = 0, and 8 relations between y2x2ixi coming from

2q(x)xi = (x20 + ...+x27)xi = 0. One can easily verify that all the relations between
the generators from (2) are generated by the above 9 relations. In particular,

dim H3,2(X) = 92 − 9 = 83.

5.8.2. The graded ring, R(Z), of the nodal cubic 7-fold, Z, correspond-

ing to X. For the above choice of X ⊆ P7(x) the nodal cubic, Z ⊆ P7(x;w),
corresponding to X is

Z = (6f(x;w) = 2f(x) − 3wq(x) = 2(x30 + ... + x37) − 3w(x20 + ... + x2) = 0)

In the graded ring, S(Z) = C[x;w] = C[x0, .., x7,w], the Jacobian ideal, J(Z), of
Z is generated by the relations

fxi = x2i −wxi = 0, i = 0, ..,7 and fw = x20 + ... + x27 = 0.
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Let

R(Z) = S(Z)/J(Z) = ⊕
d≥0

Rd

be the graded Jacobian ring of Z. Then the component R3(Z) is generated by:

● the 56 monomials: xixjxk,0 ≤ i < j < k ≤ 7;
● the 28 monomials: wxixj = x2ixj = xix2j ,0 ≤ i < j ≤ 7;
● the 8 monomials: w2xi = wx2i = x3i , i = 0, ...,7;
● and the monomial: w3.

Lemma 5.6. Let X and Z be as above. Then the C-linear map, S(X) =
C[x; y, z] → S(Z) = C[x;w], defined by

y ↦ 1, z ↦ w, xi ↦ xi, i = 0, ...,7

factors through the Jacobian ideals J(X) and J(Z). Let

j ∶ R(X) = S(X)/J(X) → S(Z)/J(Z) = R(Z)

be the induced map, So(Z) = C[x;w]o be the set of all g(x; z) that vanish at the

node o = (0; 1) of Z, Jo(Z) = J(Z) ∩ So(Z), and

Ro(Z) = So(Z)/Jo(Z).

The map j ∶ R(X) → R(Z) restricts to isomorphisms:

j ∶ R2,−3(X)
∼
→ Ro

3(Z)

and

j ∶ R3,−3(X)
∼
→ Ro

6(Z).

Proof. As a model, we use the 5-fold, X2.3, defined above. We will verify the

isomorphism j only for R2,−3(X). The computation for a general X2.3 and for

R3,−3(X) does not differ substantially.

By the preceding discussion, the componentR2,−3(X) is generated by y2xixjxk,
yzxixj and z

2xi with relations yxi = zx2i , Σ x2i = 0, and Σ x3i = 0.

On the one hand, the map j, as defined above, sends the generating monomi-

als of R2,−3(X) to xixjxk, wxixj and w2xi respectively. This follows from the

preceding discussion together with the fact that the w3 generate S3(Y ). Since
the hyperplane, So

3(Y ) ⊆ S3(Y ), is defined by w3 = 0, this yields that j sends
S−2,3(X) surjectively to S3(Z).
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On the other hand, j sends the generating relations yx2i − zxi, Σ x2i and Σ x3i
for J(X) to x2i −wxi, Σ x2i and Σ x3i respectively. These relations generate J(Z),
see above. Notice that Σ x3i = Σ wx2i = w(Σ x2i ) belongs to J(Z), ibid. �

5.8.3. The infinitesimal invariant by equivalence of graded rings. From

the identifications in Lemma 5.6, the map,

μX ∶ R2,−3(X) ⊗R2,−3(X) → R3,−3(X),

from §5.6 transforms to

μZ ∶ Ro
3(Z) ⊗Ro

3(Z) → Ro
6(Z).

Now, as in §4.3, by [Vo1] (see also [AC]) one has:

Corollary 5.7. The map,

μZ ∶ Ro
3(Z) ⊗Ro

3(Z) → Ro
6(Z),

is induced by multiplication of monomials in the graded ring S(Z) = C[x;w].

Let (λ,Y,Z) be a triple consisting of a nodal cubic 7-fold,

Z = (f(x;w) = f(x) + q(x)w = 0) ⊆ P8(x;w),

a hyperplane section,

Y = (f(x) = 0),
of Z, and a class, λ, representing an algebraic 3-cycle Zλ on Y . By the previous

corollary and [Vo1] the infinitesimal invariant δλν can be interpreted as a linear

form on the kernel of the multiplication map,

μY ∶ R3(Y ) ⊗R3(Y ) → R6(Y ),

as follows (see also §2 in [AC]):

Lemma 5.8. Let e = q(x) = ∂(f(x) + wq(x))/∂w∣w=0(mod.J(Y )) ∈ R2(Y ), and
let Pλ be the element of R4(Y ) ≅ H3,3

o (Y ) corresponding to λ3,3. If the multipli-

cation map, Pλ ○ e ∶ R1(Y ) → R7(Y ), defined in §5.5 is an isomorphism, then for

any element, ∑a Fa ⊗Ga ∈ Ker μY ⊆ Ro
3(Y ) ⊗Ro

3(Y ), one has

δλν (∑
a

Fa ⊗Ga) = ∑
a

Pλ.Fa.(Pλ ○ e)−1(Pλ.Ga) ∈ R8(Y ) ≅ C.
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5.9. Cycles on the Fermat cubic sixfold. Let Y be the Fermat cubic sixfold,

i.e., X ⊆ Y ⊆ P7 is defined by the equation,

f(x) = x30 + ... + x37.

Let

R(Y ) = S(Y )/J(Y ) = C[x0, ..., x7]/(x20, ...., x27) = ⊕
d≥0

Rd(Y )

be the graded Jacobian ring of Y . By [Na], the primitive cohomology satisfies

H3,3
o (Y ) ≅ R4(Y ).

Following [Shi] and §3 in [AC], we now describe the rational cohomology classes

in H3,3
o (Y ) and their corresponding elements from R4(Y ).

Let μ3 be the group of 4th roots of unity, ζi, and let G = (μ3)8/Δ, where Δ
is the diagonal subgroup. Setting Z3 = Z/3Z, the character group Ĝ of G is

naturally embedded in (Z3)8 as

Ĝ
∼
→ {α = (a0, ..., a7) ∶ a0 + ... + a7 = 0} ⊆ (Z3)8;

the character α ∈ Ĝ = Hom(G,C∗) representing (a0, ..., a5) sends the element
[ζ0, ..., ζ7] ∈ G = (μ3)8/Δ, to α([ζ0, ..., ζ7]) = ζa00 ...ζ

a7
7 .

Let Ĝ∗ = {α = (a0, ..., a7) ∈ Ĝ ∶ ai /= 0, i = 0, ...,7}. For α = (a0, ..., a7) ∈ Ĝ∗,

define its norm,

∣α∣ = < a0 > +...+ < a7 >
3

,

where < ai > is the unique integer between 1 and 2 congruent to ai modulo 3.

The natural action,

g = [ζ0, ..., ζ7] ∶ (x0 ∶ ... ∶ x7) ↦ (ζ0x0, ..., ζ7x7),

of G on P7 restricts to an action of G on the Fermat cubic Y ⊆ P7. This induces

a representation g∗ of G on the primitive cohomology group H6
o (Y,C). Let

Vα = {λ ∈H6
o (Y,C) ∶ g∗(λ) = α(g)λ}

be the eigenspaces of g∗ in H6
o (Y,C) defined by the characters α ∈ Ĝ. By [Shi]

we have the following:

(1) The primitive cohomology satisfies the identity,

H3,3
o (Y,Q) ⊗Q C = ⊕

α∈B
Vα,

where B = {α ∈ Ĝ∗ ∶ ∣α∣ = ∣2.α∣ = 4} and 2.α = 2.(a0, ..., a7) = (2a0, ...,2a7).
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(2) Let Co(Y )Q denote the subspace of H6
o (Y,Q) spanned by classes of prim-

itive algebraic 3-cycles on Y . We have the following identification:

Co(Y ) = Co(Y ) ⊗Q C =H3,3
o (Y,Q) ⊗Q C.

Remark 5.9. The space, Co(Y ), spanned by classes of primitive algebraic 2-

cycles on a fourfold, Y , is a subspace of H3,3
o (Y,Q) ⊗Q C. The coincidence (2) is

the statement of the Hodge conjecture for the Fermat cubic sixfold, see [Shi].

5.10. The isomorphism H3,3
o (Y ) → R4(Y ) in coordinates. Notice that in

R(Y ) = S(Y )/J(Y ) = C[x0, ..., x7]/(x20, ..., x25) for a monomial, xb00 ...x
b5
5 , repre-

senting a non-zero class modulo J(Y ), each of the coordinates, xi, has degree at
most 1. Therefore, R4(Y ) is generated by the 70 monomials,

xi1xi2xi3xi4 , 0 ≤ i1 < i2 < i3 < i4 ≤ 7,

regarded as classes modulo J(Y ) = (x20, ..., x27).

By definition, α = (a0, ..., a7) ∈ B if and only if ∣α∣ = ∣2.α∣ = 4. Since B ⊆ Ĝ∗,

the coordinates, ai, take values k = 1 or 2.

For an element, α = (a0, ..., a7) ∈ Ĝ∗, let

dk(α) =#{i ∶ ai = k},

be the number of occurrences of the number k ∈ {1,2} among the coordinates ai
of α. We call α an element of type (2p1q) if d2(α) = p and d1(α) = q. As in [AC],
the isomorphism

j ∶H3,3
o (Y ) → R3(Y )

is given by:

j ∶ α = (a0, ..., a7) �→ xa0−1o xa1−11 ...xa5−15 .

This directly implies that all elements α ∈ B are of type (2414), sent by j to the
70 monomials xi1xi2xi3xi4 as above.
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5.11. Infinite generation of the Griffiths group of X2.3 ⊆ P7. As above, we

continue to have X ⊆ Y ⊆ P7(x) = P7(x0, ..., x7), where Y is the Fermat cubic

6-fold. To simplify notation, for 0 ≤ i ≤ j ≤ ... ≤ k we write

xij...k = xixj ...xk,

for the monomial as well its class xij...k in R(Y ). For example, x22122111 =
x0x1x3x4. We call two monomials xij...k and xi′j′...k′ dual, and write xi′j′...k′ =
xîj...k if xij...k.xi′j′...k′ = x01234567. Let

Pλ = Pλa,b
= a(x0123 + x4567) + b(x0124 + x3567),

and

e = x01 + x23 + x45 + x67 + hx35,

where h is a transcendental number. Then

Pλa,b
.e = a(x0̂1 + x2̂3 + x4̂5 + ax6̂7) + b(x2̂4 + bx3̂5) + hx6̂7.

We will now verify that for generic a and b the linear map

Pλa,b
.e ∶ R1(Y ) → R7(Y )

is an isomorphism, see Proposition 5.8. In the bases xi and xĵ of R1(Y ) and
R7(Y ) respectively, Pλa,b

.e acts as follows:

x0 ↦ ax1̂, x1 ↦ ax0̂,

x2 ↦ ax3̂ + bx4̂, x3 ↦ ax2̂ + bx5̂, x4 ↦ bx2̂ + ax5̂, x5 ↦ bx3̂ + ax4̂
x6 ↦ (a + h)x7̂, x7 ↦ (a + h)x6̂.

Therefore, in the bases x1, ..., x7 and x1̂, ..., x7̂, the matrix Ma,b of Pλa,b
.e is

⎛
⎝
0 a

a 0

⎞
⎠
⊕

⎛
⎜⎜⎜⎜⎜
⎝

0 a b 0

a 0 0 b

b 0 0 a

0 b a 0

⎞
⎟⎟⎟⎟⎟
⎠

⊕
⎛
⎝

0 a + h
a + h 0

⎞
⎠
.

Therefore, if detMa,b = a2(a−b)2(a+b)2(a+h)2 /= 0, then Pλa,b
.e ∶ R1(Y ) → R7(Y )

is an isomorphism and we can apply Voisin’s formula from Lemma 5.8 to compute

the infinitesimal invariant δλa,b
.
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As in [AC], we can restrict to the case b = 1 and compute δλa,1 at a well chosen

element Q ⊗ R ∈ Ker(μY ). In this particular case Pa,1.e is an isomorphism if

a(a − 1)(a + 1) /= 0.

Let Q = x2233 and R = x0123. Then Q ⊗R ∈ Ker(μY ), and by Lemma 5.8 the
infinitesimal invariant

δλa,b
(Q⊗R) = Pλa,1Q(f−1a (Pλa,1R)),

where f−1a ∶ R7(Y ) → R1(Y ) is the inverse to the isomorphism fa = Pλa,1 . Now

the computation of the infinitesimal invariant is straightforward:

Pλa,1R = bx6̃ and f−1a (Pλa,1R) = f−1a (bx6̃) =
b

h + ax7,

which, multiplied by Q = x456, gives b
h+ax4567. Thus we have,

δνλa,1(Q⊗R) = b

h + aPλa,1x4567 =
b

h + ax01234567.

We are now ready to state the main result for X2.3:

Theorem 5.10. For the general X = X2.3 ⊆ P7 the Griffiths group Griff3Q(X) is

infinitely generated as a vector space over the rationals Q.

Proof. Again, we need to check that for an infinite number of choices a1, a2, a3, ...

of the integer parameter one gets a sequence of numbers δ(ai) = b
h+ai that are

linearly independent over Q. This is straightforward - see the proof of Theorem

4.2 in [AC] (Albano and Collino prove this for the same coefficient function, b
h+a ,

obtained in the slightly different situation of a cubic 7-fold). �

6. Griffiths groups for subcategories and quotients

Let Db(cohX) denote the bounded derived category of coherent sheaves on

X as a triangulated category, i.e., the category of complexes of coherent sheaves

where maps which induce isomorphisms on cohomology are inverted. For a thick

triangulated subcategory, N ∈ Db(cohX), we define Kalg
0 (N) to be the subgroup

of Kalg
0 (X) generated by elements of N . Here, thick means that the triangulated

category is closed under taking summands. We can also consider the Verdier

quotient Db(cohX)/N [Ve].
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We can define a type of Griffiths groups for triangulated subcategories and

quotients as follows:

Definition 6.1. Let N be a thick triangulated subcategory of Db(cohX). The
total rational Griffiths group of N is

GriffQ(N) ∶= ker(c ○ chsst ○i) ⊗Z Q

where i is the inclusion, chsst is the chern character map landing in the Chow ring

and c is the cycle class map to cohomology. The total rational Griffiths group of

the Verdier quotient , Db(cohX)/N , is the quotient

GriffQ(X)/GriffQ(N).

A special case of Verdier quotients is when the subcategory N admits a left or

right adjoint. In this case, we will use the notation A and we will see below that

the total rational Griffiths group of A has some very nice properties.

Definition 6.2. Let i ∶ A → T be the inclusion of a full triangulated subcategory

of T . The subcategory, A, is called right admissible if i has a right adjoint i! and

left admissible if it has a left adjoint, i∗. A full triangulated subcategory is called

admissible if it is both right and left admissible.

Let T be a triangulated category and I a full subcategory. Recall that the left
orthogonal, ⊥I, is the full subcategory of T consisting of all objects, T ∈ T , with
HomT (T, I) = 0 for any I ∈ I. The right orthogonal, I⊥, is defined similarly.

A closely related notion to an admissible subcategory is that of a semi-orthogonal

decomposition.

Definition 6.3. A semi-orthogonal decomposition of a triangulated category,

T , is a sequence of full triangulated subcategories, A1, . . . ,Am, in T such that

Ai ⊆ A⊥
j for i < j and, for every object T ∈ T , there exists a diagram:

(10)

0 Tm−1 ⋯ T2 T1 T

Am A2 A1

∣∣∣

where all triangles are distinguished and Ak ∈ Ak. We shall denote a semi-

orthogonal decomposition by ⟨A1, . . . ,Am⟩.
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Definition 6.4. An object, E, in a k-linear triangulated category, T , is called
exceptional if,

HomT (E,E[i]) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

k if i = 0
0 if i ≠ 0.

When E is either an exceptional object of a k-linear triangulated category,

then the inclusion of ⟨E⟩, the smallest triangulated category generated by E, has
right adjoint Hom(E,−) ⊗k E and left adjoint Hom(−,E)∨ ⊗k E. Hence, ⟨E⟩ is
admissible. Moreover, this category is equivalent to the derived category of vector

spaces over k. When this category appears in a semi-orthogonal decomposition,

we follow conventions by just writing E instead of ⟨E⟩ in the notation.

The following is Lemma 2.4 of [Ku2].

Lemma 6.5. Let

T = ⟨A1, ...,Am⟩
be a semi-orthogonal decomposition. For any T ∈ T , the diagram (10) is unique

and functorial.

This allows us to define the following functors.

Definition 6.6. The kth-projection functor

αi ∶T → T
T ↦ Ai

and sends morphisms to those induced by Lemma 6.5.

Definition 6.7. The ith-truncation functor

τi ∶T → Ti
T ↦ Ti

and sends morphisms to those induced by Lemma 6.5 between diagrams.

Definition 6.8. Let T be a k-linear triangulated category with finite dimensional

morphism spaces. An autoequivalence, S, is called a Serre functor for T if for

any two objects, T1, T2 ∈ T , there is a natural isomorphism,

HomT (T2, S(T1)) ≅ Homk(HomT (T1, T2), k).



40 David Favero, Atanas Iliev and Ludmil Katzarkov

Definition 6.9. A triangulated category is called Calabi-Yau of dimension n if

there is an isomorphism of functors,

S ≅ [n],

for some n.

The proofs of the following lemmas can be found in [BK]:

Lemma 6.10. Let A be a full triangulated subcategory of a triangulated category

T possessing a Serre functor. Then the following are equivalent:

i) A is left admissible

ii) A is right admissible

iii) A is admissible

Lemma 6.11. If ⟨A1, . . . ,Am⟩ is a semi-orthogonal decomposition of a triangu-

lated category T with Serre functor, then Ai is admissible for all i. Furthermore,

if T = ⟨A,B⟩ is a semi-orthogonal decomposition, then B = ⊥A.

We now consider the case where X is a smooth projective algebraic variety over

C and T = Db(cohX) is the bounded derived category of coherent sheaves on X.
As a matter of convention, we denote by the derived pullback, pushforward, (for

a morphism f ∶X → Y ) and tensor-product as f∗, f∗, and ⊗ respectively without

further alluding to the fact that they are derived.

Definition 6.12. Let X and Y be smooth projective algebraic varieties over C

with P ∈ Db(cohX × Y ). Denote the two projections by,

q ∶X × Y →X and p ∶X × Y → Y.

The induced integral transform is the functor,

ΦP ∶ Db(cohX) → Db(cohY ) ,F ↦ p∗(q∗F ⊗P).

The object P is called the kernel of the transform ΦP . Furthermore, the integral

transform ΦP is called a Fourier-Mukai transform if it is an equivalence.

Remark 6.13. It is a simple exercise to see that the structure sheaf of the diag-

onal, Δ∗OX , provides the Fourier-Mukai transform corresponding to the identity

functor.
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Integral transforms induce maps between Grothendieck groups and cohomolo-

gy.

Definition 6.14. Let X and Y be smooth projective algebraic varieties over k

and P ∈ K0(X × Y ). The K-theoretic integral transform is defined as:

ΦK
P ∶ K0(X) → K0(Y )

F ↦ p∗(P ⊗ q∗(F)).

Similarly, the semi-topological integral transform is defined as:

Φsst
P ∶ Ksst

0 (X) → Ksst
0 (Y )

F ↦ p∗(P ⊗ q∗(F)).

Definition 6.15. Let X and Y be smooth projective algebraic varieties over C

and α ∈ H∗(X × Y,Q). The cohomological integral transform is defined as:

ΦH
α ∶ H∗(X,Q) → H∗(Y,Q)

β ↦ p∗(α ⋅ q∗(β)).

For P ∈ Db(cohX × Y ), as shorthand, we set

ΦH
P ∶= ΦH

ch(P)⋅
√
td(X×Y ).

The term, ch(P)⋅
√
td(X × Y ), is called theMukai vector of P where

√
td(X × Y )

is a formal square root of the Todd class of X × Y .

Notice that due to the adjustment by the Mukai vector, the Grothendieck-

Hirzebruch-Riemann-Roch formula ensures that an element, P ∈ Db(cohX × Y ),
yields a commutative diagram,

(11)

Db(cohX) ΦP


→ Db(cohY )
4445

4445

K0(X)
ΦK
P


→ Ksst

0 (Y )
4445

4445
Ksst
0 (X)

Φsst
P


→ Ksst

0 (Y )

c○chsst
4445

c○chsst
4445

H∗(X,Q)
ΦH
P


→ H∗(Y,Q)
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Definition 6.16. Let X and Y be smooth projective algebraic varieties over k

and P ∈ Db(cohX × Y ). The Griffiths integral transform is defined as:

ΦGriff
P ∶ GriffQ(X) → GriffQ(Y )

F ↦ p∗(P ⊗ q∗(F)),

i.e., it is the map between kernels c ○ chsst induced by the above commutative

diagram.

It was shown by Kuznetsov that the projection functors, αi are represented by

unique integral transforms [Ku1].

Proposition 6.17. Let X be a quasiprojective variety over k and

Db(cohX) = ⟨A1, ...,Am⟩

be a semiorthogonal decomposition. The ith-projection is isomorphic to an integral

transform with kernel Pi and Pi is unique up to isomorphism. Similarly, the ith-

truncation is isomorphic to an integral transform with kernel Di and Di is unique

up to isomorphism. Furthermore, there is a diagram

(12)

0 Dm−1 ⋯ D2 D1 Δ∗OX

Pm P2 P1

∣∣∣
where all triangles are distinguished.

Proposition 6.18. Let

Db(cohX) = ⟨A1, ...,Am⟩

be a semi-orthogonal decomposition. There is an isomorphism,

GriffQ(X) = GriffQ(A1) ⊕ ...⊕GriffQ(Am).

Proof. Recall that Pi ∈ Db(cohX ×X) is the kernel of the ith projection functor
from Proposition 6.17. Equation (12) yields an equality in K0(X) and Ksst

0 (X):

Δ∗OX =
m

∑
i=1
Pi.

Therefore

Id = Φsst
Δ∗OX

= Φsst
⊕Pi

=
m

∑
i=1
Φsst
Pi
.
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Furthermore

ΦPi ○ΦPj =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

ΦPi if i = j
0 if i ≠ j.

By commutativity of (11) this yields

Id = ΦGriff
Δ∗OX

= ΦGriff
⊕Pi

=
m

∑
i=1
ΦGriff
Pi

and

ΦGriff
Pi

○ΦGriff
Pj

=
⎧⎪⎪⎪⎨⎪⎪⎪⎩

ΦGriff
Pi

if i = j
0 if i ≠ j.

The result follows. �

Lemma 6.19. Let E ∈ Db(cohX) be exceptional. Then,

GriffQ(⟨E⟩) = 1

where ⟨E⟩ is the admissible subcategory generated by E.

Proof. We have an equivalence between ⟨E⟩ and the derived category of vector
spaces. Therefore K0(⟨E⟩) = Z. Furthermore, since E is exceptional, the Euler

pairing, χ(E,E) = 1. Therefore by the Grothendieck-Hirzebruch-Riemann-Roch
formula,

1 = χ(E,E) = ⟨c(ch(E)) ⋅ td(X)1/2, c(ch(E)) ⋅ td(X)1/2⟩.

Therefore ch(E) ⋅ td(X)1/2 ≠ 0 in H2∗(X,Q) and since td(X)1/2 is invertible,

c(ch(E)) = calg(chsst(E)) ≠ 0

in H2∗(X,Q). Therefore the map,

Q = K0(⟨E⟩) ⊗Q→ H2∗(X,Q)

is injective.

�

Corollary 6.20. Suppose there is a semi-orthogonal decomposition,

Db(cohX) = ⟨A,E1, ...,Es⟩.

There is an isomorphism of Griffiths groups

GriffQ(X) = GriffQ(A).
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Proof. This follows immediately from Proposition 6.18 and Lemma 6.19. �

7. Griffiths Groups for Fano-Calabi-Yaus

In this section, we use the general theory from the previous section to relate

the Griffiths group of some Fano-Calabi-Yau manifolds to the Griffiths group of

an admissible Calabi-Yau category.

Let A be a connected Z-graded commutative

Definition 7.1. A Z-graded algebra A is Gorenstein if A has finite Z-graded

injective dimension n and there is a integer a such that

RHomA(k,A) ≅ k(a)[n].

The element, η(A,M), is called the Gorenstein parameter of (A,M). In

other words, the derived dual of k, k∨, is quasi-isomorphic to k(η(A,M)). We

will simply denote η(A,M) by η when (A,M) is clear from the context.

The following definitions are due to Orlov [Or2]:

Definition 7.2. For a Z-graded algebra, A, we defined the graded category of

singularities to be the Verdier quotient [Ve], of the bounded derived category of

finitely generated graded A-modules by the category of bounded complexes of

graded A-modules with finitely generated projective components:

Dgr
sg(A) ∶= Db(Mod−A)/Perf(A).

Definition 7.3. Let M be a finitely generated abelian group. Let B = ⊕m∈MBi

be a finitely generated M -graded commutative algebra over a field K. Consider

w ∈ Bm which is not a zero-divisor. The category of B-branes of w, is denoted

by DGrB(w,M). The objects of DGrB(w,M) are pairs,

P1 P0

p1

p0

A morphism f ∶ P → Q in DGrB(w,M) is an equivalence class of pairs of mor-
phisms, f1 ∶ P1 → Q1 and f0 ∶ P0 → Q0 of degree 0 such that f1(m)p0 = q0f0 and
q1f1 = f0p1 where two pairs are equivalent if they are null-homotopic, i.e., if there
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are two morphisms s ∶ P0 → Q1 and t ∶ P1 → Q0(n) such that f1 = q0(m)t + sp1
and f0 = t(m)p0 + q1s.

The objects of DGrB(w,M) can also be viewed as quasi-periodic infinite “com-
plexes” where the differential squares to w and quasi-periodicity refers to the fact

that shifting the complex two to the left is the same as shifting the grading of the

modules by m. From this interpretation, we can define a triangulated structure

[Or2] where [1] is the shift of this complex one to the left. It follows that we have
an isomorphism of functors,

(13) [2] ≅ (m),

in DGrB(w,M). Following Orlov, when M = Z we simply write DGrB(w).

We state the following special case of Theorem 3.10 in [Or2]

Theorem 7.4. With the notation above assume that B is regular. There is an

equivalence of categories,

DGrB(w) ≅ Dgr
sg(B/w).

Let us now recall a special case of a celebrated result of Orlov [Or2].

Theorem 7.5. Let X be a connected projective Gorenstein scheme of dimension

n. Let L be a very ample line bundle such that ωX = L−r for some r ∈ Z. Set

A ∶= ⊕
i≥0

H0(X,Li).

(1) If r > 0, there is a semi-orthogonal decomposition,

Db(cohX) = ⟨O(−r), . . . ,O(−1),Dgr
sg(A)⟩,

with O(i) exceptional.

(2) If r = 0, there is an equivalence,

Db(cohX) = Dgr
sg(A).

(3) If r < 0, there is a semi-orthogonal decomposition,

Dgr
sg(A) = ⟨k(−r), . . . , k(−1),Db(cohX)⟩,

where k(i) are exceptional objects corresponding to the A-module H0(X,L0)(i).
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Corollary 7.6. Let X be a smooth projective variety of dimension n. Let L be

a very ample line bundle such that ωX = L−r for some r ≥ 0. Set

A ∶= ⊕
i≥0

H0(X,Li).

There is an isomorphism of Griffiths groups,

GriffQ(X) = GriffQ(Dgr
sg(A)).

Proof. From Theorem 7.5 there is a semi-orthogonal decomposition,

Db(cohX) = ⟨O(−r), . . . ,O(−1),Dgr
sg(A)⟩.

Since O(i) is exceptional for all i this is an immediate consequence of Corol-

lary 6.20

�

Lemma 7.7. With the notation above, the category Dgr
sg(A) is a Calabi-Yau cat-

egory of dimension 3 for the following two cases:

● the smooth cubic 7-folds X3 ⊆ P8,

● the smooth hypersurfaces X4 ⊆ P6(16; 2) of degree 4 in the weighted pro-

jective space P6(16; 2) = P6(1 ∶ 1 ∶ 1 ∶ 1 ∶ 1 ∶ 1 ∶ 2), and

Proof. For a Gorenstein commutative finitely generated connected algebra of in-

jective dimension n and Gorenstein parameter a, the Serre functor SA on Dgr
sg(A)

satisfies (see §5.3 of [KMV])

SA = (−a)[n − 1].

In the first two cases, A is defined by a single element, w, in a Z-graded polynomial

ring. Hence Theorem 7.4 and (13) imply that deg(w) ≅ [2].

For X3, a = 6, deg(w) = 3 and n = 8. Therefore

SA = (−6)[7] = [−4][7] = [3].

For X4, a = 4, deg(w) = 4 and n = 6. Therefore

SA = (−4)[5] = [−2][5] = [3].

�
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We are left to consider the final case of a Fano-Calabi-Yau complete intersection

in weighted projective space, for which the general member is smooth. Let X2.3 ⊆
P7 be a smooth complete intersections defined by a quadric, f , and a cubic, g, in

R ∶= k[x0, ..., x7]. Set B ∶= R/f . We wish to relate the Griffiths group of X2.3 to

that of a 3-dimensional Calabi-Yau category. We know already by Corollary 6.20

that

GriffQ(X) = GriffQ(Dgr
sg(R/(f, g))).

However, Dgr
sg(R/(f, g)) is not Calabi-Yau in this case. On the other hand, in

light of Theorem 7.4 we expect this category to be closely related to DGrB(w)
(notice that B is not regular so the hypothesis of the theorem is not satisfied).

Indeed, Theorem 3.9 of Orlov states that there is still a fully-faithful functor,

F ∶ DGrB(w) → Dgr
sg(R/(f, g)).

Moreover, DGrB(w) is a 3-dimensional Calabi-Yau category.

Lemma 7.8. Let X2.3 ⊆ P7 be a smooth complete intersections defined by a

quadric, f , and a cubic, g, in R ∶= k[x0, ..., x7]. Consider g as an element of

R/f . The category, DGrB(g), is a 3-dimensional Calabi-Yau category.

Proof. To show that DGrB(g) is a 3-dimensional Calabi-Yau category, notice

that since R/f is Gorenstein with Gorenstein parameter 6, the Serre functor on

DGrB(g) is given by (−6)[7]. Since g is a cubic,

(3) = [2]

by (13) and therefore the Serre functor,

SDGrB(g) = (−6)[7] = [−4][7] = [3].

�

Unfortunately, DGrB(g) does not appear to be admissible in Db(cohX2.3) and
we are unable to apply the discussion in §6. Instead, we can appeal to a closely
related category defined by Positselski [Po1] called the absolute derived category

Dabs[Fact(B,Z, g)] (see also [BFK2, BFK3]). As the details are a bit technical, we
just mention that this category is a Verdier localization of a category defined the

same way as DGrB(g) except that the pairs consist of any two finitely generated
graded B-modules as opposed to finitely generated projective graded B-modules.
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Since B is not regular in our case, this distinction is important. However, the

relevant property that

(14) [2] ≅ (deg g) = (3)

still holds by definition and hence Dabs[Fact(B,Z, g)] is a 3-dimensional Calabi-
Yau category.

Furthermore, Positselski establishes an equivalence,

Dabs[Fact(B,Z, g)] ≅ Db(mod−B/g)/Db(mod−B).

Notice that

Dgr
sg(R/(f, g)) = Db(mod−R/(f, g))/Db(mod−R).

and hence Dabs[Fact(B,Z, g)] is a Verdier quotient of Dgr
sg(R/(f, g)) by some tri-

angulated subcategory, N ⊆ Dgr
sg(R/(f, g)). From Orlov’s theorem, it follows that

Dabs[Fact(B,Z, g)] is a Verdier quotient of Db(cohX) by the full triangulated

subcategory generated by N and O(−3),O(−2) and O(−1).

Hence, we arrive at the following result

Proposition 7.9. Let X2.3 ⊆ P7 be a smooth complete intersections defined by a

quadric, f , and a cubic, g, in R ∶= k[x0, ..., x7]. There is a surjective homomor-

phism of rational vector spaces:

GriffQ(X) → GriffQ(Dabs[Fact(B,Z, g)]).

Furthermore Dabs[Fact(B,Z, g)] is a 3-dimensional Calabi-Yau category.

Proof. This follows immediately from the previous discussion. �

We summarize our results

Theorem 7.10. With the notation above, suppose X is a general smooth Fano-

Calabi-Yau complete intersection in weighted projective space. The Griffiths

group,

GriffQ(X) = GriffQ(Dgr
sg(A)),

is infinitely generated. Furthermore, when X is a cubic 7-fold or a hypersurface of

degree 4 in P6(16; 2), then Dgr
sg(A) is an admissible 3-dimensional Calabi-Yau sub-

category of Db(cohX). When X is an intersection of a quadric, f , and a cubic, g,

then GriffQ(X) surjects onto GriffQ(Dabs[Fact(B,Z, g)]) and Dabs[Fact(B,Z, g)]
is a 3-dimensional Calabi-Yau category.
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Proof. By Corollary 6.20, we get the equality,

GriffQ(X) = GriffQ(Dgr
sg(A)).

The fact that it is infinitely generated is a combination of the main result of [AC]

and Theorems 4.5 and 5.10.

The statement that when X is a cubic 7-fold or a hypersurface of degree 4 in

P6(16; 2), then Dgr
sg(A) is an admissible 3-dimensional Calabi-Yau subcategory of

Db(cohX) is Lemma 7.7.

When X is an intersection of a quadric, f , and a cubic, g, the statement is a

consequence of Proposition 7.9 �

Remark 7.11. It was pointed out to the authors by M. Kontsevich and B.

Töen, that using work of Töen and Vessosi, one can define the total rational

Griffiths group of a saturated dg-category. This is the kernel of the map from

semi-topological K-theory to Hochschild homology tensored over Q. This defi-

nition reduces to our definition in the case of a thick triangulated subcategory

of Db(cohX). It would be interesting to see if one can generalize Voisin’s result
to an open subset of the moduli space of saturated 3-dimensional Calabi-Yau

dg-categories and obtain all FCY manifolds as a special case.

8. Categorical covers and Griffiths groups

Suppose M and N are finitely generated abelian groups of rank one and φ ∶
M → N is a surjective homomorphism with finite kernel. When considering

the categories, DGrB(w,M) and DGrB(w,N), the following abstract situation
occurs (see [BFK1] for a more complete discussion).

One has two triangulated categories T and S, and there is a finite group Γ

(resp. Γ′) of autoequivalences of T (resp. S) given for each γ ∈ Γ by Υγ
T (resp.

Υγ′

S ). Furthermore, there are functors,

F ∶ S → T and G ∶ T → S

satisfying

G ○ F = ⊕
γ∈Γ

ΥS and F ○G = ⊕
γ′∈Γ′

ΥT .
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Now suppose that iS ∶ S → Db(cohX) and iT ∶ T → Db(cohY ) are admissible
subcategories. Let PS (resp. PT ) be the projection functor onto S (resp T ) with
respect to the semi-orthogonal decomposition

Db(cohX) = ⟨S, ⊥S⟩(resp. Db(cohY ) = ⟨T , ⊥T ⟩).

Composing with inclusions and projections, all the functors above can be thought

of as functors between some choices of Db(cohX) and Db(cohY ). Assume further
that all these functors are represented by integral transforms.

In this situation, we obtain an isomorphism between the Γ-invariant and Γ′-

invariant Griffiths groups,

(15) GriffQ(S)Γ → GriffQ(T )Γ
′

,

with respect to the action of the Griffiths integral transforms induced by the Υγ
S

and Υγ′

T respectively.

Now suppose M and N are finitely generated abelian groups of rank one and

φ ∶ M → N is a surjective homomorphism with finite kernel. Let B be an M -

graded polynomial algebra. The map φ induces an N -grading on B as well. We

can let S = DGrB(w,M), T = DGrB(w,N), Γ = kerφ, and Γ′ = Gkerφ be the dual

group. For γ′ ∈ Γ′ there is an action on B which acts on a homogeneous element

b ∈ Bn for n ∈ N by γ′(b) = γ′(n) ⋅ b. Furthermore we can set Υγ
T = (γ) and

Υγ′

S = IdS . One of the central aspects of the work in [BFK1] is that it guarantees
that all functors in question are always represented by integral transforms.

Proposition 8.1. Let M and N be finitely generated abelian groups of rank

one and φ ∶ M → N be a surjective homomorphism with finite kernel and B be

an M -graded polynomial algebra. Suppose that DGrB(w,M),DGrB(w,N) are

admissible subcategories of Db(cohX) and Db(cohY ) respectively where X and

Y are smooth proper algebraic varieties over k. There is an isomorphism,

GriffQ(DGrB(w,M))kerφ → GriffQ(DGrB(w,N))kerφ.

Example 8.2. Let M = (Z ⊕ Z ⊕ Z)/⟨(3,−3,0), (3,0,−3)⟩ and B = k[x0, ..., x8]
be the M -graded algebra where,

deg(xi) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

(1,0,0) if 0 ≤ i ≤ 2,
(0,1,0) if 3 ≤ i ≤ 5,
(0,0,1) if 6 ≤ i ≤ 8.
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Consider smooth elliptic curves, E1,E2,E3 defined by f3(x0, x1, x2), g3(x3, x4, x5),
and h3(x6, x7, x8). Set w = f3 + g3 + h3. By [BFK1] there is an equivalence of

categories,

Db(cohE1 ×E2 ×E3) ≅ DGrB(w,M).

Let N = Z and φ be the summing map. The kernel of φ is Z3⊕Z3, a finite group

of order 9 generated by (1,−1,0) and (1,0,−1). By Theorem 7.5 DGrB(w,N) is
an admissible subcategory of Db(cohX3) where X3 is the cubic sevenfold defined

by w. Hence, by Corollary 7.6 we obtain:

GriffQ(E1 ×E2 ×E3)Z3⊕Z3 ≅ GriffQ(X3)Z3⊕Z3 .

Example 8.3. Let M = (Z⊕Z)/⟨(3,−3)⟩ and B = k[x0, ..., x8] be the M -graded

algebra where,

deg(xi) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

(1,0) if 0 ≤ i ≤ 5,
(0,1) if 6 ≤ i ≤ 8.

Let Z be a smooth cubic-fourfold by f3(x0, ..., x5) and E be a smooth elliptic

curve defined by h3(x6, x7, x8). Set w = f + h. Suppose further that DGrR(f) ≅
Db(cohY ) for some smooth K3 surface, Y , where R = k[x0, ..., x5].6 By [BFK1]
there is an equivalence of categories,

Db(cohY ×E) ≅ DGrB(w,M).

Let N = Z and φ be the summing map. The kernel of φ is Z3, the finite group

of order 3 generated by (1,−1). By Theorem 7.5 DGrB(w,N) is an admissible
subcategory of Db(cohX3) where X3 is the cubic sevenfold defined by w. Hence,

by Corollary 7.6 we obtain:

GriffQ(Y ×E)Z3 ≅ GriffQ(X3)Z3 .

Example 8.4. Let M = (Z⊕Z)/⟨(2,−4)⟩ and B = k[x0, ..., x6] be the M -graded

algebra where,

deg(xi) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

(1,0) if 0 ≤ i ≤ 3,
(0,1) if 4 ≤ i ≤ 5.
(0,2) if i = 6.

6This occurs, for example, when f is Pffafian or contains a plane P and a 2-dimensional cycle T

such that T ⋅H2 − T ⋅ P is odd [Ku3].
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Let Y be a smooth quarticK3-surface defined by f4(x0, ..., x3) and E be a smooth

elliptic curve defined by h4(x4, x5, x6) in P(1 ∶ 1 ∶ 2). Set w = f4 + h4. By [BFK1]
there is an equivalence of categories,

Db(cohY ×E) ≅ DGrB(w,M).

Let N = Z and φ be the summing map. The kernel of φ is Z2, the finite group of

order 2 generated by (1,−2). By Theorem 7.5 DGrB(w,N) is an admissible sub-
category of Db(cohX4) where X4 is the smooth hypersurface in P(16; 2) defined
by w. Hence, by Corollary 7.6 we obtain:

GriffQ(Y ×E)Z2 ≅ GriffQ(X4)Z2 .

In light of these examples, let us propose the following conjectures:

Conjecture 8.5. For the general member of each of the families above, the in-

variant Griffiths groups,

GriffQ(X3)Z3⊕Z3 and GriffQ(X4)Z2

are infinitely generated.

From the conjecture and the examples above, it follows that the Griffiths group

for the product of three general elliptic curves, E1×E2×E3, is infinitely generated
as well as the product of a general quartic K3-surface and a general elliptic curve

in P(1 ∶ 1 ∶ 2).
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quintique générale de P4, J. Algebr. Geom. 1 No.1, 157-174 (1992)

[Vo2] Voisin C., The Griffiths group of a general Calabi-Yau threefold is not finitely generated,

Duke Math. J. 102, No.1, 151-186 (2000)



On the Griffiths Groups of Fano Manifolds of Calabi-Yau Hodge Type 55

[Vo3] Voisin C., Hodge theory and complex algebraic geometry, Cambr. Univ. Press, Vol. I

(2002); Vol. II (2003)

[Vo4] Voisin C., Symétrie miroir, Panoramas et Synthèses. 2, Paris: Soc. Math. de France
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