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Abstract: A deep result of Voisin asserts that the Griffiths group of a general
non-rigid Calabi-Yau (CY) 3-fold is infinitely generated. This theorem builds on
an earlier method of hers which was implemented by Albano and Collino to prove
the same result for a general cubic sevenfold. In fact, Voisin’s method can be uti-
lized precisely because the variation of Hodge structure on a cubic 7-fold behaves
just like the variation of Hodge structure of a Calabi-Yau 3-fold. We explain this
relationship concretely using Kontsevitch’s noncommutative geometry. Namely,
we show that for a cubic 7-fold, there is a noncommutative CY 3-fold which has
an isomorphic Griffiths group. This serves as partial confirmation of seminal
work of Candelas, Derrick, and Parkes describing a cubic 7-fold as a mirror to a
rigid CY 3-fold.

Similarly, one can consider other examples of Fano manifolds with with the
same type of variation of Hodge structure as a Calabi-Yau threefold (FCYs).
Among the complete intersections in weighted projective spaces, there are only
three classes of smooth FCY manifolds; the cubic 7-fold X3, the fivefold quartic
double solid X4, and the fivefold intersection of a quadric and a cubic Xo3. We
settle the two remaining cases, following Voisin’s method to demonstrate that the
Griffiths group for a general complete intersection FCY manifolds, Xy and Xs 3,
is also infinitely generated.
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In the case of X4, we also show that there is a noncommutative CY 3-fold
with an isomorphic Griffiths group. Finally, for X5 3 there is a noncommutative
CY 3-fold, B, such that the Griffiths group of X5 3 surjects on to the Griffiths
group of B. We finish by discussing some examples of noncommutative covers
which relate our noncommutative CYs back toq honest algebraic varieties such
as products of elliptic curves and K 3-surfaces.

Keywords: Hodge Theory, Algebraic Cycles, Calabi-Yau Geometries, Derived

Categories.

1. INTRODUCTION

A fundamental approach to studying subvarieties of an algebraic variety, X, is
through the Chow ring, i.e., the ring of all algebraic cycles on X up to rational
equivalence with product given by the intersection pairing. Then again, one can
also study this ring up to algebraic equivalence, or homological equivalence for
that matter. One might wonder; what is the difference between these different
types of equivalence?

Well to compare, e.g., algebraic and homological equivalence we may simply
study their difference, i.e., the group of algebraic cycles homologically equivalent
to zero modulo algebraic equivalence. This is called the Griffiths group. The
name and the notation for Griff’(X) come from an example due to Griffiths
[Gr], where he famously, “put an end to the belief that algebraic and homological

equivalence of algebraic cycles might coincide.”!

Griffiths’ example was the quintic hypersurface. Specifically, he showed that
for a general quintic hypersurface, the Griffiths group corresponding to 2-cycles,
Griff?(X), is nonzero. Moreover, Griffiths demonstrated that Griff?(X) has an
element of infinite order. This example was amplified by Clemens in [Cl], who
showed that the rational Griffiths group, Griff(Q@(X ) of these quintics has (count-
ably) infinite dimension as a vector space over Q.

In a major advance [Vol], Voisin reenvisioned Griffiths’ example in a much
more structured context. Indeed, in loc. cit. she recovers Clemens’ amplification
by providing a general way for both producing non-trivial algebraic cycles and
showing that they are linearly independent in the rational Griffiths group. This

Lsee S. Zucker’s review of [C1], MR720930.
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general philosophy led to seminal work in [Vo2] where Voisin proves that such
a result is true for a general non-rigid Calabi-Yau threefold, i.e., Griff?@(X ) is a
countably infinite vector space over QQ for such threefolds.

Another example with nontrivial Griffiths group was provided by Ceresa [Ce],
who proved that if C' is a generic curve of genus > 3 embedded by the Abel-
Jacobi map in its Jacobian, J(C'), and if C~ is the image of C ¢ J(X) after the
multiplication by —1, then C' — C~ is an element of infinite order in Griff9™*(X).
In the special case when g = 3 (so that X = J(C) is of dimension 3), Nori [No]
showed that, once again, Griff?(X), is of infinite dimension over Q.2

A common theme among these examples is that the variety, X, has trivial
canonical bundle, dim(X) = n is odd, and the nontrivial Griffiths group which
appears is the “middle” Griffiths group: Griff e (X). On the other hand, utiliz-
ing Voisin’s method in [Vol], Albano and Collino demonstrated that the general
cubic 7-fold, X3, has infinitely generated Griff3(X3) [AC]. Meanwhile, in [No], M.
Nori constructs a class of Fano varieties with non-trivial (non-middle) Griffiths
groups Grifff) (X).

While the example of Albano and Collino is seven as opposed to three-dimensional
and Fano as opposed to Calabi-Yau, it actually bears remarkable homological and
Hodge-theoretic resemblance to a Calabi-Yau threefold. Indeed, as early as the
1980’s the cubic sevenfold X was regarded in the physics literature as a mirror of
a rigid Calabi-Yau threefold with large Picard group, see p. 58-60 in [CHSW]. In
particular, the cubic 7-fold X has a variation of Hodge structure (v.H.s.) similar
to that of a non-rigid Calabi-Yau threefold, see [CDP)].

One can ask whether there are other examples of higher-dimensional manifolds
with a Hodge variation similar to that of a Calabi-Yau threefolds. The answer
is a resounding yes.®> Concretely, one can define the notion of a manifold of
Calabi-Yau type and see such manifolds manifest as Fano complete intersections
in weighted projective space. However, the restriction of being smooth yields
only three projective families [Schi, CDP, BBVW, IM]:

e the smooth cubic 7-folds X3 c P®,

2see also [Scho] for an example of a 3-fold, X, with Kx = 0 and Griff(X) of infinite rank over a
field k # C.
3The second named author is grateful to Maximilian Kreuzer, who presented him with a list of

3284 such hypersurfaces in weighted projective spaces.
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e the smooth hypersurfaces X, of degree 4 in the weighted projective space
P6(16;2) =PS(1:1:1:1:1:1:2), and
e the smooth complete intersections Xo 3 C P7 of a quadric and a cubic.

Our approach to the study of Griffiths groups is therefore twofold. First,
like Albano and Collino, we employ Voisin’s method in [Vol] to settle the two
remaining cases and demonstrate that the rational Griffiths group is infinitely
generated for all of the cases above. Second, in these examples, the Hodge-
theoretic comparisons can be categorified by comparing the bounded derived
categories of coherent sheaves on these spaces to that of 3-dimensional Calabi-
Yau category, or in the language of Kontsevitch, a 3-dimensional Calabi-Yau
noncommutative space. This serves as partial confirmation of the aforementioned
seminal work of Candelas, Derrick, and Parkes describing a cubic 7-fold as a
mirror to a rigid CY 3-fold [CDP].

In summary, we concretely tie the families listed above and the appearance
of many cycles in their Griffiths groups to Voisin’s theorem by abstracting the
situation to the noncommutative setting. This culminates in the following result:

Theorem 1.1. Suppose X is a smooth Fano-Calabi-Yau complete intersection
in weighted projective space. There is a noncommutative space, A, and an iso-
morphism of Griffiths groups,

Griffg(X) = Griffg(A).

If X is sufficiently general, then Griffg(X) = Griffg(A) is a countably infinite
vector space over Q. Furthermore, when X is a cubic 7-fold or a hypersurface
of degree 4 in P(1%;2), then A is a 3-dimensional Calabi-Yau. In the final
case, when X is a smooth complete intersection of a quadric and a cubic in P7,

there is another 3-dimensional Calabi- Yau noncommutative space, B which is a

localization of A and Griffg(X) = Griffg(A) surjects onto Griffg(B).

For certain families, the noncommutative CY 3-folds appearing above can
be related back to algebraic varieties with trivial canonical class by utilizing
the categorical covering picture from [BFK1]. For example, if the functions
f(zo,21,22),9(x3, 24, 25), h(z6, 27, x8) all define smooth elliptic curves, £y, Fy, E3
respectively, then the product Eq x Fo x F3 is a Zs x Zg-cover of the noncommu-
tative CY 3-fold corresponding to the cubic sevenfold, X3, defined by f + g + h.
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From this we are able to obtain an isomorphism:
Griffg(Ey x Ea x Es)™*™ = Griffg(X3)™ %,

where the Zs x Zz-action on Griffg(E) x Ey x E3) is determined by a correspon-
dence on Ej x Ey x B3 x Ey x Ey x E3 and the Zs3 x Zz-action on Griffg(X3) comes
from an easily described subgroup of PGL(9).

This paper is organized as follows. In §2, we gather some basic definitions and
discuss their relevance in the literature. In §3, we describe to necessary back-
ground to implement Voisin’s method. In §4, we use this method to prove that
the Griffiths group for the general smooth hypersurface X, ¢ P9(1;2) is infinite-
ly generated. Similarly in §5, we do the same for X5 3, the general intersection
of a quadric and cubic in P". We then pass to the categorical portion of the
paper where, in §6, we extend the notion of Griffiths groups to certain types of
noncommutative spaces and show that this notion behaves well with respect to
semi-orthogonal decompositions. In §7, we apply this formalism to the examples
in the above list and compare each of these examples with the Griffiths group of a
noncommutative CY 3-fold. Finally, in §8, we implement the categorical covering
picture in [BFK1], to establish a connection between these noncommutative CY
3-folds and certain 3-dimensional algebraic varieties with trivial canonical-class.

Acknowledgments: The authors owe their sincere gratitude to Pranav Pandit,
Maximillian Kreuzer, Matthew Ballard, Bertrand T6en, and Maxim Kontsevich
for stimulating and extremely useful conversations and would like to thank them
all for their time, patience, and insight. The first and third named authors were
funded by NSF DMS 0854977 FRG, NSF DMS 0600800, NSF DMS 0652633 FRG,
NSF DMS 0854977, NSF DMS 0901330, FWF P 24572 N25, by FWF P20778
and by an ERC Grant.

2. BACKGROUND

2.1. Algebraic cycles and Griffiths groups. Let X be a non-singular vari-
ety over an algebraically closed field k. Unless otherwise stated, we assume that
k =C. Let ZP(X) be the free Abelian group generated by the irreducible subva-
rieties on X of codimension p. Let Z¥ ,(X) be the set of all cycles, z € ZP(X),
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rationally equivalent to zero, let Zg lg(X ) be the set of all cycles, z € ZP(X), alge-
braically equivalent to 0, and let Z7 (X)) be the set of of all cycles, z € ZP(X),
homologically equivalent to 0. We have containments,

ZP (X) < Zflg(X) czy (X).
The p-th Chow group,
CHP(X) = ZP(X)] Zy (X)),

is the quotient group of ZP(X) by rational equivalence of algebraic cycles on X.
For dim(X) = n, one can equivalently use the notation Z,(X) = Z"?(X) and
CH,(X)=CH"P(X).

Similarly let us define the notation,

CHy o (X) = 25, (X)] 270y (X)

rat
and
CHizz)om(X) = hom(X)/ rat(X)

The group, CH ,‘fom(X ), can alternatively be described as the kernel of the cycle
class map,

a:CHP(X) > H®(X,Z).
Meanwhile, the subgroup,

CH?, (X) < CHY

hom

(X),
is a divisible algebraic group.
Definition 2.1. The p-th Griffiths group of X is the quotient,

Griff?(X) = CHP (X)/CHP, (X).

hom alg

Note that Griff”(X) = Griff!(X) = 0.

The Griffiths group of X can also be realized as

Lo (XD Zoy(X)

which is the kernel of the cycle class homomorphism

Calg : Zp(X)/Zp

alg

(X) » H”(X,Z)
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Let Ko(X) denote the Grothendieck group of algebraic vector bundles on X
and K§*(X) denote the Grothendieck group of algebraic vector bundles modulo
algebraic equivalence. The Chern character map induces a rational isomorphism,

(1) ch:Kg(X)®Q->CH"(X)®Q,
which preserves algebraic equivalence and yields,

(2) chyst : K(S]St(X) ®Q - Zp(X)/Zglg(X) ®Q.

Hence, the total rational Griffiths group,
dim(X)
Griffp(X):= @ Griff?(X)e®Q,
p=0
is isomorphic to,

ker(cqig o chgst).

This will be the starting point for our categorical definition of the total rational
Griffiths group. Namely, in §6, we show that for an admissible subcategory of
the bounded derived category of coherent sheaves on X, A c Db(coh X), we can
restrict the map co chgy to K (A) and define Griffg(A) as the kernel of this

restriction.

2.1.1. Manifolds of Calabi-Yau type.

Definition 2.2. Let X be a smooth compact complex variety of odd dimension
2n+1,n>1. We call X a generalized Calabi-Yau manifold if

(1) the middle Hodge structure is similar to that of a Calabi-Yau threefold,

ie.
Rl (XY =1, and AMPTRP(X) =0 forp>2;
(2) for any generator w e H™*>""1(X) = C, the contraction map
HYX,TX) = HV (X, Q%)

is an isomorphism;
(3) the Hodge numbers h*0(X),k = 1,2,...,2n are zero.
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Notice that for n = 1 the above definition coincides with the definition of a
Calabi-Yau threefold. Also, recent joint work of Manivel and the second author
[IM] provides a series of examples of manifolds of Calabi-Yau type of dimension
> 3. These examples come from certain complete intersections in homogeneous

varieties, starting from hypersurfaces in projective spaces.

The starting point for this definition is the following property described by
Donagi and Markman, which holds for all Calabi-Yau threefolds (see [DM1],[DM2]):

(DM) The relative intermediate Jacobian forms an integrable system over the
gauged
moduli space of any Calabi-Yau threefold.

As remarked in [DM2], this property cannot be generalized for Calabi-Yau
varieties X of higher dimension n > 4. Indeed, an intermediate Jacobian exists
only for manifolds of odd dimension, so (DM) cannot even be stated correctly
for Calabi-Yau manifolds of even dimension. On the other hand, in the case
when n > 3 is odd, there is still a natural 2-form on the relative intermediate
Jacobian, o, inherited by the cotangent fibration over the moduli space of X.
However, while the fibers of the relative intermediate Jacobian are still isotropic
with respect to o, the Yukawa cubic (or the Donagi-Markman cubic) on the
tangent fibration over the moduli space of X vanishes. Hence o is degenerate
over the general point, see Remark 7.8 and Theorem 7.9 in [DM2]. In contrast,
on the gauged moduli spaces of the generalized Calabi-Yau (2n+1)-folds as above
the relative intermediate Jacobian can form an integrable system, see [IM].

All known examples of manifolds of Calabi-Yau type are Fano. Hence, we
introduce the following terminology:

Definition 2.3. A Fano-Calabi- Yau (FCY) manifold is a manifold X of Calabi-
Yau type that is Fano, i.e., one for which the anticanonical class, —K x, is ample.

FCY manifolds are always of odd dimension at least 5. Another common
property of FCY manifolds and Calabi-Yau manifolds is that the deformations
of Fano manifolds are not obstructed, see e.g. [Ra]. Unobsructedness of de-
formation spaces is an important property of Calabi-Yau manifolds known as
the Bogomolov-Tian-Todorov theorem, see e.g. [Vo4]. As a consequence, one
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can speak about moduli spaces X of FCY manifolds X and relative Jacobians
J(X) - X above them.

3. DEFORMATIONS OF TRIPLES, NOETHER-LEFSCHETZ LOCI, AND
INFINITESIMAL INVARIANTS

3.1. Deformations of triples ()\,Y, X) and Noether-Lefschetz loci. For a
FCY manifold X ¢ PV of dimension 2n + 1, denote by X its deformation space.
Suppose for simplicity that Pic X = ZH where H is the hyperplane section. In
particular —Kx = rH for some integer r = r(X) > 0, i.e. X is a prime Fano
manifold of index r; and suppose in addition that the index r(X) > 2. Fix a
positive integer d < 7(X). Then the smooth divisors Y € |Ox(d)| will be Fano
manifolds, and denote by ) their deformation space.  Let

(3) V<L g={¥.X):vyext - Lx

with ¢ and p being the restrictions of the natural projections of Y x X 2 G to Y
and X. Consider the following diagram

Tycx

4This deformation space exists by result of Z. Ran [Ra.
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in which the vertical and the horizontal row are tangent sequence for Y ¢ X and
the adjoint sequence for Y € X, and Tycx is the kernel of the composition map
~voa. Under the particular assumptions as above, there is an identification of the
normal bundle, Ny x = Oy (d).

Let A e HY"(Y,Z) ¢ H*(Y) be the class of a primitive integer n-cycle Zy
on Y. The class A determines locally around (Y, X) = (Y,, X,) a family F) ¢ G
defined by all local deformations (Y, X;) of (Y, X) inside G for which the class
e H?>™(Y;) = H*(Y) remains of type (n,n).

By definition, the Noether-Lefschetz locus F € ) is the set of all Y for which
the primitive integer cohomology Hy,""(Y,Z) # 0.

For fixed X, we define the Noether-Lefschetz locus inside |Ox(d)|, F(X), to
be the set of all Y € |Ox(d)| that belong to F; and let F(X)y € F(X) to be the
set of all Y € |Ox(d)| that belong to Fy.

For a given triple, (\,Y, X), let TF) be the tangent space to Fy € Y x X at
(Y, X) = (Y5, X,). Suppose in addition that the Kodaira-Spencer map

p:H'(Nyx) > H'(Ty)
is injective. By §1 of [Vol]
TFy={(v,u) e H'(Ty) x H'(Tx) : B(v) = a(u) and ue A" =0},
where e is the cup-product
HY(Ty) ® H"(Q}) - H™H(QEY), (u,\) = ue .

Now consider the following diagram:

H(Ny)x) —%— HY(Ty) —— H'(Txly) — H'(Nyx)

)\na” op )\n,n

Hn+1(Qr}L/—1)

The assumptions on X and Y guarantee that

H'(Ny|x) = H'(Oy(d)) = H'(Ky ® O(r)) = 0
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by the Kodaira vanishing theorem. Therefore, we can apply the argument in §2
from [AC] to conclude:

Proposition 3.1. Let (\,Y,X) be as above, let p, : TFy — TX be the map
induced by the projection p: Fy - X, and suppose that the composition

AV o p: H'(Nyx) - H™H(Q5)
1 an isomorphism. Then

(1) The map ps : TFlyx - TX|x = H (Tx) is also an isomorphism, and
hence the family Fy is smooth of codimension h™™ V"1 (Y) in G at (Y, X),
and the projection p: Fy — X is an isomorphism over a neighborhood of
X.

(2) There are infinitely many 0-dimensional components of the Noether-Lefschetz
locus F(X) € |Ox(d)|, forming a countable subseteq in |Ox(d)|.

Remark 3.2. Part (1) is the analog of Lemma 2.3 and Proposition 2.4 from
[AC], which in turn reproduces the original argument of Voisin in §1 of [Vol].
Part (2) follows from (1) based upon an argument due originally to M. Green.
By (1), the set F(X), is reduced and 0-dimensional. In particular, the Noether-
Lefschetz locus F(X) in |Ox(d)| has at least one 0-dimensional component. By
an argument due originally to M. Green the latter implies that F(X) has count-
ably many 0-dimensional components and they form a dense subset of |Ox(d)],
see the proof of Proposition 1.2.3 in [B-MS] or Propositions 2.4 and 2.5 in [AC]
together with the references found therein.

In §4 and §5 we study two examples of triples, (A, Y, X)), that fulfill the con-
ditions of the above proposition. In order to verify these conditions, we follow
the approach used initially by C. Voisin in [Vol], i.e., we verify these conditions
using the graded rings of X and Y.

3.2. The infinitesimal invariant of a normal function associated to a
deformation of a triple (\,Y,; X). Let (A, Y, X) be a triple which fulfills the
conditions of Proposition 3.1, and suppose further that the Hodge conjecture
holds for Y. Then by (1) of Proposition 3.1 the family, F), is isomorphic to
X over a neighborhood, U of X = X, € X. Since the argument is local, we
can suppose that U/ = X. Thus for any X; € X the class A is represented by
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an algebraic n-cycle Z); on Y; ¢ X;. Since A is, by assumption, homologically
equivalent to zero, Zy; = OI'y; for some real (2n + 1)-chain I'y ; on X.

Let #3*! — X be the (2n + 1) cohomology bundle and ’H}] - X, i+
n+ 1 be its Hodge subbundles over X', with the holomorphic filtration F’ i’H?Y"” =

2n+1-—
Opi HEP T F . Let

Tx = (F" 1YY [Hon (X, 2) — X

be the intermediate Jacobian bundle over X'. The cycles Zy;, t € X\0 define

normal function

o

vyt X > TJ(X%), Xpr—up(t):=D(Zyy),

where ®; is the Abel-Jacobi map for X, see §7 Ch.II in Vol.IT of [Vo3]. The
normal function vy lifts to a holomorphic section ¥y of (F"*1H2* 1)V  defined
on the sections wy of F"HHAM! by

B ) = [ o,

where OI'; = Z ; — see above.

Now we use the assumption that X is a FCY manifold of dimension 2n + 1,
i.e., the only nonzero middle Hodge numbers of X are h"+23n~1 = pn=1m42 = 1 and
Rbm = prntl CFrom this fact, it follows that the variation of Hodge structure
is a map,

THU T —> HHL
Let KerV be the kernel bundle of V.

The Griffiths infinitesimal invariant dvy of the normal function vy is a section
of the dual bundle, (KerV)", defined as follows. Let Y; w; ® x; € kerV, and let
@i(t) be sections of F"*'H2*! such that @;(0) = w;. Then

(4) 5V/\(Zwi®xz'):ZXi(@h(@')—wA(O)(ZVXi(@i)),

see p.721-722 in [AC], or [Gr] and [Vol].

In §4 and §5 we show that the infinitesimal invariants dv) of certain special
primitive algebraic Hodge classes, A, on two given FCY manifolds X are non-zero.
This fact together with the following lemma will provide us with the nontriviality
of Griffg(X). Later down the road, the fact that Griffg(X) is infinitely generated
will follow from this as well.
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Lemma 3.3. Let X, Y, A\, and Z) be as above. If dvy # 0 then for the general
X € X the algebraic n-cycle Zy, represents a non-torsion element of Griff (X;).

Proof. See [Vol] or [B-MS]. O

4. THE GRIFFITHS GROUP OF THE 5-FOLD QUARTIC DOUBLE SOLID X4

4.1. The 5-fold quartic double solid and its quadratic sections. A 5-fold
quartic double solid is a double covering

7:X > P°

branched over a quartic hypersurface B € P?. Tt can be represented as a hyper-
surface X = X, of degree 4 in the weighted projective space P%(1%;2) = PS(1 :
1:1:1:1:1:2). If the opposite is not explicitly stated we assume that X is
smooth, which is equivalent to the smoothness of its branch locus B.

If (z;y) = (xo : ... : x¢ : y) are the coordinates in P%(1%;2) = P(z;y) and
B = (fs(x) = 0) is the equation of B ¢ P> = P°(x) then the equation of X = X4 ¢
PS(z;y) is

y* - fa(z) = 0.

In turn, any smooth hypersurface X4 ¢ P%(1%;2) which does not contain the point
(0;1) is equal to a 5-fold quartic double solid over P5. To see this, let
f(x;2) = 22 +2q(z)z +7(x) = 0,

deg q(x) = 2,deg r(x) = 4 be the equation of X = X4 ¢ P%(z;2) = P5(1%;2). Then
f(x:2) = (z+q(2))? - (¢(x)? = r(x)), and after changing the weight 2 variable z
by y = z + ¢(z) the equation of X becomes y? — f4(z) = 0, where

fa(2) = q(2)? = r(@).

Clearly the map (z;y) = X restricts to a double covering m: X — P° = P°(z),
with branch locus equal to the quartic hypersurface, B, defined by the equation

fa(x) =0.
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4.2. The graded ring of X, c P%(1%;2) and of its quadratic sections. Let

f(@3y) =y = fa(x)
be the equation of X = X4 in P9(1%;2). In the graded algebra,
S(X) = Clz;y] = Clxo, ..., x5, 9],
with deg x; = 1, deg y = 2 the graded Jacobian ideal J(X) of X is generated by
the partials 0f(x,y)/0x; = -0 f4(x)/0x; and Of (xz,y)/0y = 2y. Let
R(X) = S5(X)/J(X) = ?Rd(X)

be the graded Jacobian ring of X. By [Na]
HYPP(X) = Ry 4(X), for p=0,...,5,
which yields
RPO(X) = h0%(X) =0, AP (X) = hMH(X) =1, hP2(X) = k23 (X) = 90.

Let X ¢ P9(15;2) be given by f(z;y) = ¥? - fa(z) = 0 as above. A quadratic
section Y ¢ X which does not contain the point (0;1) is given inside X by an
equation

q(x;y) =y - f2(z) = 0.

Lemma 4.1. If the quadratic section Y of X s as above, then the rational
projection

PO(1%2) = P(a3y) - P*(2), (59) = (2)
sends Y isomorphically onto the quartic hypersurface Yy ¢ P°(x) defined by the

equation

f(x) = fa(x)? - fa(x) = 0.

Proof. In the first equation y? — f4(x) of Y replace y by fo(x) coming from the
second equation y — fa(x) = 0. O

Via the interpretation of Y as a quartic hypersurface f(z) = fo(2)% - fa(z) =0
in P?, its middle primitive cohomology can be computed by the formulas from
[Nal:

HYPP(Y) = Ryyo(Y), p=0,...,4,
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where R=S(Y)/J(Y) = C[xo, ...,x5]/(g—£), s 88—{5) is the graded Jacobian ring of
Y. This yields

RO(Y) = h%4(Y) =0, K3 (Y) = A3 (Y) =21, hB22(Y) = 141.

4.3. Cycles on quadratic sections Y ¢ X. Let Y be a smooth quadratic
section of X which does not contain the point (0;1). By the discussion from the
preceding section, Y is isomorphic to a quartic fourfold Y,. Therefore by [CM],
the Hodge conjecture holds for Y. Let A € HE’Q(Y,Z) be a Hodge class on Y,
representing a primitive algebraic 2-cycle Z) ¢ Y ¢ X, see §3.2. For the given
triple (A, Y, X) the 2°d diagram from §3.1 becomes

HO(Oy(2)) —— H'(Ty) — H'(Txly) — H'(0y(2))=0

A“N

Below we translate the above diagram into the language of the graded ring

)\2,2

H*(Qy)

R(Y). In order to do so, we will need to use the following identities that can
either be obtained directly, by using the adjoint and the tangent sequence for
Y =Y, cP°, or by the Griffiths residue calculus.

(5) H'(Oy(2)) 2 Ro(Y),  H'(Ty) = Ry(Y)

The equation above, together with the identifications from 4.2, allows us to
rewrite the diagram above as,

Ry(Y) ———+ Ry(Y) — HY(Tx|y) — 0

where P, is, by slight abuse of notation, multiplication by the polynomial class
Py corresponding to A2 ¢ H2?(Y) = Rg(Y), and e is multiplication by the
polynomial class e = fo(x) € Ra(Y).

Py

Rip(Y)
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4.4. The infinitesimal invariant for (\,Y, X) in terms of R(Y"). Let ()\,Y, X)
be as above,

V:H»(X)® H'(Tx) » H*(X)
be a variation of Hodge structure for X, and dvy € (KerV)" be the infinitesimal

invariant of vy, see 3.2.

Since X is a Fano-Calabi-Yau manifold, the cup-product with the unique form
(modulo C*), w*!, on X defines an isomorphism,

w:H'(Tx) = H (X)) — H**(X).
By the identifications H3?(X) = Ry(X) and H*3(X) = Rg(X) from §4.2, the
v.H.s. V is identified with a mapping
px : Ry(X)® Ry(X) — Rg(X).

It follows from [Vol], that in the situation above, describing the deformations of
a triple, (\,Y, X)), the following takes place:

Lemma 4.2. The map
px : Ra(X) ® Ra(X) — Rs(X)
is induced by multiplication of monomials in the homogeneous graded ring,

S(X) =Clz;y] = Clxg, ..., x7, Y]

Again by [Vol], under certain conditions the infinitesimal invariant §\v can be

regarded as a linear form on the kernel of the multiplication map
Hy ¢ R4(Y) ® R4(Y) — Rg(Y)

More precisely, let y = fo(2) be the equation of Y in X = (32 = f4(x)) < P%(z;v),
and f(x) = fo(x)? - f4(x) = 0 be the equation of Y in P°(z), representing Y as
a quartic hypersurface in P5 = P5(z). By the isomorphism, H>2(Y) — Rg(Y),
the class \ corresponds to Py € Rg(Y). Let e € Ro(Y') be the class defined by the
quadric form fo(x). Then the following takes place (see [Vol] or [AC]):

Lemma 4.3. If the multiplication by Py.e induces an isomorphism
fa=Ra(Y) = Rio(Y),
then for any w = ¥ Q; ® R; € ker(uy), we have the following equality for the

infinitesimal invariant:
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(2 Qi ® R;) =X P\Qi(fi' (PAR))).

4.5. Cycles on the Fermat quartic fourfold. Let Y be the Fermat quartic
fourfold, i.e., the quadratic section of X as in Lemma 4.1 given by the equation,

f(x)= fg(:):)2 - fa(x) =x61+ +x§.

Let

R(Y)=S8(Y)/J(Y) =Clzo,...,z5]/(x3, ..., x3) = de?ORd(Y)

be the graded Jacobian ring of Y. By §4.2, the primitive cohomology satisfies
H2?(Y) = Rg(Y). Following [Shi], we now describe the rational cohomology
classes in H2?(Y) and their corresponding elements from Rg(Y).

Let p4 be the group of 4-th roots ¢; of unity, and let G = (u4)%/A, where A
is the diagonal subgroup. If Z4 = Z/47Z, then the character group G is naturally
embedded in (Z4)® as

G- {a=(ag,...,as) 1 ag+ ... +as = 0} € (Z4)°;
the character o ¢ G = Hom(G,C*) representing (ao, ...,as) sends the element
[Gor s G51 € G = (u)*/A t0 a([CornGs]) = G202 Lot
G*={a=(ag,...,a5) €G:a;#0,i=0,...,5}.

For a = (ag, ...,a5) € G*, define its norm

<ag>+..+<ag>
o] - —

where < a; > is the unique integer between 1 and 3 congruent to a; modulo 4.

The natural action

9=1[C0s- 5] (zo: oo 2 w5) = (Cozos -, (5T5)
of G on IP° restricts to an action of G on the Fermat quartic Y ¢ P?; which in turn
induces a representation g* of G on the primitive cohomology group H2(Y,C).
Let
Vo= {Ae Hy(Y,C): g*(\) = a(g)\},
be the eigenspaces of g* in HZ(Y,C) defined by the characters « € G.

With the above notation, the results in [Shi] yield the following:
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(1) The primitive cohomology obeys the identity,

HZ(Y,Q) ®g C = @ Va,
aeB

where B = {a € G* :|o| = |3.a| = 3} and 3.a. = 3.(ag, ..., a5) = (3ag, ..., 3as).
(2) Let C,(Y)g denotes the subspace of H(Y, Q) spanned by classes of prim-
itive algebraic 2-cycles on Y. There is an equality,

Co(Y) = Co(Y) ®g C = H*(Y,Q) ¢ C.

Remark 4.4. In general, the space C,(Y") spanned by classes of primitive alge-
braic 2-cycles on a fourfold Y is a subspace of HOM(Y, Q) ®q C; the coincidence
(2) is the statement of the Hodge conjecture for the Fermat quartic fourfold, see
[Shi].

4.6. The isomorphism H2*(Y) - Rg¢(Y) in coordinates. Let Y = (g +
.Té =0) be the Fermat quartic fourfold. Since the graded ring of Y is

R(Y)=S8(Y)/J(Y) =Clxo, ..., x5]/(x5, ..., 23)

then in a monomial xgo...ng’, representing a non-zero class modulo J(Y'), the

coordinates z; can enter only with degrees 0, 1 and 2. We therefore use the
following terminology; we call a nonzero monomial f = azg‘)xl{l...x? a monomial
of type (2P19) if b; = 2 for p distinct values of i and b; = 1 for ¢ distinct values of
i. Now it is easy to see that Rg(X) is generated by the following 141 monomials,

regarded as classes modulo J(Y) = (23, ..., 23):

20 monomials f of type (222);
90 monomials f of type (2211);
30 monomials f of type (21111);
1 monomial f of type (111111).
By definition, a = (ag, ...,as) € B iff [a] = [3.] = 3. Since B ¢ G*, the co-

ordinates a; take values k = 1,2 and 3. For an element o = (ag,...,a5) € G*,
let

di(a) = #{i:a; = k},
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be the number of occurrences of the number & € {1, 2,3} among the coordinates a;
of a. We call a an element of type (3P291") if d3(«) = p, do(«) = ¢ and dy () = 7.
As in [AC], the isomorphism

jHY*(Y) > Re(Y)

is given by:

ao—l a1—1 (Z5—1

Jra=(ag,...,a5) — g’ x{ T ay

Now, by a simple combinatorial check, we describe all possible a € B and their
corresponding monomials by j as follows:

20 elements « of type (333111) 2, the 20 monomials of type (222);
90 elements of « of type (332211) > the 90 monomials of type (2211);
30 elements of o of type (322221) 1> the 30 monomials of type (21111);

1 element « of type (222222) —, the unique monomial of type (111111).

Recall that by (1) the 1-dimensional eigenspaces V,, of the above 141 characters
« span the space of primitive cohomology HZ ’Q(Y).

4.7. Infinite generation of the Griffiths group of X4. Let Y be the Fermat
hypersurface in P?(zg : ... : 25) defined by

f(x) = fo(z)? = fa(z) =2 + ... + 3 = 0.
Then R(Y) = C[xg: ...x4]/1(Y), where I(Y) = (23, ..., 23).
To simplify the notation, for 0 <i < j < ... <k we write
Tij k= Tilj... T

for both the monomial and its class in R(Y). For example zop1123 = z20m073 €
R(Y).
We call two monomials x;;. 1 and . g dual if 245 5 . T4 1 = Too11...55; for
the dual monomial of z;; ; we shall use the notation T i.e.
T & - Lij..k = L0011...55-
Let us first find monomials P, and e which fulfill the conditions of Lemma 4.3.
To this end, let

Py = Py, , = a(zo01123 + T234455) + b(Z012233 + T014455)
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and

€ =Uxgl + VT23 + WT45.

Then

Py, ,-€ = a(urgrss + vTgg + vTEs + Wasgs)

We verify that for generic a and b the linear map
Py, ,-¢: Ra(Y) > Rip(Y)

is an isomorphism. In bases z;; and 27; of Ry(Y) and R19(Y') respectively, Py, .
acts as follows:

oo = avxﬂ, Tr11 = avl‘ﬁo

Tog = buxsy, x33 = buws

T4 = (av + bu) e, T55 = (av + bu) Ty

zTog = bwrp, 115 = bwrgy
xos = bwry, T4 = bwrg
T4 > QWTg5, T35 > AWTgy
o5 > CLU)SE@, T34 = aw$2’5
xo2 = (au +bv)xpy, v13 = (au + bv)zs

xo3 = (au +bv)rpy, T12 = (au + bv)zgy

xo1 = avagy + (au + bv)rsy + bw
xo3 = (au + bv)rg + burs + awrg

zo1 = bwrg + awrsy + (av + bu)r

Therefore the matrix of Py_,.e is

@2 @2
0 av 0 bu 0 aw 0 bw
M,y = ® ® ®
av 0 bu 0 aw 0 bw 0
®2
0 av+bu 0 au+bv
@ Aa,b y

av+bu O au+bv 0
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where
av au+bv bw

Agp = |au+bv  bu aw
bw aw av+bu

The determinant
det M, , = a®0u*v*w® (au + bv)* (av + bu)?det Aq p,
where

det A,y = —a”bu’~(ab®+a*)u?v-(a*b+b>)uv?-ab* v+ (2a*b-b> Juw? + (2ab* —a® )vw?.

Therefore if
abuvw(au + bv)(av + bu)det A, p # 0

then
fr=Py, e Ro(Y) > Rip(Y)

is an isomorphism, and we can apply Voisin’s formula from Lemma 4.3 to compute
the infinitesimal invariant d,_ ,. We take

b=1l,u=v=1 and w="h
where h is a transcendental number. It follows from the preceding discussion that
fa = Pa71.€ : RQ(Y) g Rlo(Y)

is an isomorphism if a(a + 1) # 0 (since h is transcendental and « is rational and
not equal to —1, the determinant det(A, 1) = —(a+1)(a® +a+1) + (a? - 3a +1)h?

is always nonzero).

Since fq = Py, ,.€ is an isomorphism, we can apply the formula from Lemma
4.3 to evaluate the infinitesimal invariant dy,, at the elements of Ker(uy ). The
goal is to find elements v € Ker(uy) such that 0y, ,(v) # 0, which by Lemma 3.3
to see that A is an element of infinite order in Griff(X), cf. §4 of [AC].

Let Q = 29233 and R = xg123. Then v = Q ® R € Ker(uy ), and by Lemma 4.3

5)\a,b(Q ® R) = P)\a,lQ(f(;l(P/\a,1R))>

where f;1: Rio(Y) - Ra(Y) is the inverse to isomorphism f, = Py, ,- Since

Py, R = (amoo1123 + aT234455 + T012233 + T014455)T0123 = ATq) + Tgy
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then

1

f (PaaR) = [7 (axgrag) = ALl (azg +ag) = detAg

(co1x01+C23T23+Ca545),

where ¢;; are the minors of the matrix A, 1 in the basis xo1, z23, 45. Now

-1 o1
P R)) = 92 Co1T01 + C23T23 + C45X45 ) = 20122
Q(f, (Py,,R)) detdy 33(co1o 3%23 + C45745) det A, , "012233
and hence
(5(@) = 51/)\ 1 (Q ® R) = “o1 P)\ 12012233 = CL‘T001122334455 =
@ detAa,l @ detAa,l

9 at-a’+2a-1

=a" -a+ .
¢ (a3-3a+1)h2+a?+a+1

Since h is transcendental, and a® — 3a + 1 has no rational roots, the above
expression never vanishes for rational a. This provides infinitely many A\, 1 with
non-zero infinitesimal invariant, and hence (by Lemma 3.3) — infinitely many
non-torsion elements in Griff(X'). This yields our main result about the Griffiths
group of the 5-fold quartic double solid X = Xj:

Theorem 4.5. For the general X = X, € P9(1%;2) the Griffiths group Griﬂ%(X)
is infinitely generated as a vector space over the rationals Q.

Proof. It is sufficient to see that there exists an infinite sequence of integers
a1,az, ... such that é(a;) = évy, ,(Q ® R) are linearly independent over Q. For
this we rewrite

qa
ot + Sq

0(a) =pg +

4 2

where t = h? and p, = a’ - a, Qo = @ —aP+2a-1, 1 =0a®>-3a+1, sq =a’+
a + 1. When the argument a takes the values i = 1,2, 3, ... then the real numbers
5(1),0(2),0(3), ... generate an infinite dimensional vector space over Q. The rest

of the argument repeats the proof of Theorem 4.2 in [AC]. O
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5. THE GRIFFITHS GROUP OF Xy 3 C P7

5.1. The Fano-Calabi-Yau fivefold X33 cP’. Let
X =Xo3=(q(z) = f(x) =0)

be a smooth complete intersection of a quadric, ¢(z) = 0, and a cubic, f(z) =0,
in P"(z) =P (20 : ... : 7).

Since the 5-fold X = X5 3 is a complete intersection, by the Lefschetz hyper-
plane section theorem it follows that all the primitive cohomology groups H5 (X))
for p+q <5 =dim X are zero. By §5.4 below, the middle Hodge numbers of X

are

6)  K(X)=h"P(X)=0, KP(X)=RM(X) =1, B*(X) = h*3(X) = 83.

Therefore the complete intersection of a quadric and a cubic Xo3 € P7 is a
FCY 5-fold.

In the remainder of this section we shall verify that the Griffiths group Griffg (X2 3)
is infinitely generated as a vector space over the rationals.

5.2. Deformations of triples (X,Y,\) and Noether-Lefschetz loci. Let
X ¢ PV be a FCY manifold of dimension 2n + 1. Suppose that X is an ample
divisor in a Fano (2n + 2)-fold Y. As in §3.1, we will assume that Pic Y = ZH,
-Ky = rH for some integer r = r(X) > 2, and X € |Oy(d)| for some positive
integer d < r. Denote by X and ) the deformation spaces of X and Y, and let G
be the incidence

(7) XL g={(xX,Y): Xcy} LY
with its two natural projections p and q.

Let A € HY'V™ (Y, Z) ¢ H?(Y) be the class of a primitive integer (n + 1)-
cycle Zy on Y. The class A determines locally around (Y, X) = (Y5, X,) a family
Fy € G defined by all local deformations (X, Y;) of (X,Y) inside G for which the
class A € H?>"*2(Y;) = H?>"*2(Y') remains of type (n+1,n+1).
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For fixed X, let Yx = p~*(X) be the family of all (X,Y) such that Y contains
X, and suppose that H'(Ty(-X)) = 0. Then the tangent space TYx at (X,Y)
is naturally identified with H'(Ty(-X)), see e.g. [Ty] or [B-MS]. Now, by
exchanging the places of X and Y from §3.1, and considering instead of inclusion
ACY c X the restriction Y 2 A= An X ¢ X, we get a diagram

H)(Ty|x) — HY(Ty(-X)) —— HY(Ty) — H'(Ty|x)

An+1,n+1 ° )\n+l,n+l

p

Hn+3 (Q@H )

in which the map, p : H'(Ty(-X)) - H'(Ty), is interpreted as the Kodaira-
Spencer map for the family Vx.

Let F ¢ Y be the Noether-Lefschetz locus of all Y for which H2*H"* 1 (Y, Z) 4 0.
In particular, F) is a component of F.

As in §3.1, for fixed X one defines the Noether-Lefschetz locus, F(X), inside
YVx to be the set of all Y € Yx that belong to F(X); and define F(X), ¢ F(X)
to be the set of all Y € Vx that belong to F).

For the given triple, (X,Y,\), let T/F) be the tangent space to F) €Y x X at
(X,Y) = (X,,Y,). The following is the analog of Proposition 3.1, in which the
inclusion Y ¢ X is replaced by X c Y.

Proposition 5.1. Let (X,Y,\) be as above, let p. : TFy — TX be the map
induced by the projection p: Fy — X, and suppose that the composition
)\n+l,n+1 OpIHl(Ty(—X)) _)Hn+3(Q§L/+1)

is an tsomorphism. Then

(1) The map p. : TFlyx - TX|x = H(Tx) is also an isomorphism, and
hence the family Fy is smooth of codimension ™" 1(Y) in G at (X,Y)
and the projection, p: Fy — X, is an isomorphism over a neighborhood of
X.

(2) There are infinitely many 0-dimensional components of the Noether-Lefschetz
locus F(X) € Yx which together form a countable subseteq in Vx.
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Remark 5.2. For a proof of 5.1 — see Proposition 2.4.1 and the proof of Propo-
sition 1.2.3 in §2 of [B-MS].

5.3. The infinitesimal invariant of a normal function associated to a
deformation of a triple (X,Y,\).

Let (X,Y,)\) be a triple which satisfies the conditions of Proposition 5.1, and
suppose as in §3.2 that the Hodge conjecture holds for Y.

Then by (1) of Proposition 5.1 the map p. : TFy - Tx is a local isomorphism,
and we can proceed as in §3.2 to define a normal function vy : X - J(&X) and
its infinitesimal invariant dvy € (KerV)Y, where V : H}H’n Ty — ’H?énﬂ is the
variation of Hodge structure for the Fano-Calabi-Yau (2n + 1)-fold X.

The first difference between this situation and the one considered in §3.1 — §3.2
is that instead of regarding n-cycles Zy on 2n-folds Y ¢ X as n-cycles on X, we
instead consider (n + 1)-cycles Zy on (2n + 2)-folds Y 2 X and then look at the
Abel-Jacobi map for their restrictions Z§ = Zy n X, which are already n-cycles
on X.

The second, and perhaps more important difference for our purposes, is that
instead of varying Y inside X, Y varies as a submanifold of X. In the former
case, the way to interpret the infinitesimal invariant dvy in terms of the graded

ring of Y was known already by Voisin.?

However, as far as the authors are aware, in our latter case there is no such
translation. Nevertheless, as we shall see in the next subsection, in the example
we consider of X = X953 € P7 this obstacle can be overcome. This is essentially
due to the observation that the general cubic 6-folds, Y = Y3, containing the
given X are the same as the general hyperplane sections of a nodal 7-fold cubic
7 = 75 ¢ P® uniquely attached to X. With this observation, one can rewrite the

infinitesimal invariant dv) in terms of the graded rings of the cubic 6-folds Y.

5.4. The graded ring of X5 3 and of cubic 6-folds Y3. Let
X =Xo3=(q(z) = f(x) =0)

Ssee also [Wel.
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be a complete intersection of a quadric ¢(x) = 0 and a cubic f(z) =0in PP7(z) =
P7(zg : ... : #7). To understand the groups, Hy P?(X), we follow [Na] and use the
Cayley trick to represent the primitive cohomology groups Ho *P(X) = H? (Q5X_p )
as components of the bigraded ring of a hypersurface.

Let W =Ppr (O(-2) @ O(-3)), and let Dx ¢ W be the hypersurface defined by
F(ayy,2) = yf(x) + zq(2) = 0.

Introduce bidegrees of the variables (x) = (z¢ : ... : 27), y and z as follows:

deg y = (1,-3), deg z=(1,-2), deg z;=(0,1), i=0,...,7.

In the bigraded polynomial ring
S(X) :=Clxg,....,x7,Y, 2],

denote by Fj, = %, 1=0,..,7, Fy = 86—5 =
derivatives of F' = F(z;y,z) = F(xo,...,x7;y,2). Let

f(z), and F, = %—I: = q(x) the partial

_OF

OF OF OF OF) _ 0F
= {5y

JX) = (—,..., —, —, —
(X) (8360’ "Oxy Oy 0z

OF
a—maf(fﬁ),Q(l“))
be the Jacobian ideal of F', and let

R(X) = S(X)/J(X) = D Rap(X)

a,b

be the Jacobian ring of X = X 3 decomposed into bigraded parts R, (X ). Then
HPP(X) =R, 3(X), forp=0,..,5

— see [Nal. Since all Hodge numbers, kP9, with p + ¢ odd come from primitive
classes, we get

(8)  h(X)=h"(X)=0, WP(X) = (X) =1, BP*(X)=hP3(X) =83.
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5.5. Cycles on cubic 6-folds Y 2 X. Let X = Xo3 = (q(x) = f(z) = 0) be
a general smooth complete intersection of a quadric and a cubic in P7, and let
Y =Y; ¢ P” be a smooth cubic 6-fold containing X. Let X and ) be the
deformation spaces of X and Y, and let

XL g={(X,Y): XcY}-LY

be the variety of pairs (X,Y) € X xY with X ¢ Y and its projections to ¢X and
V.
By [St], the Hodge conjecture holds for the cubic 6-folds Y. Let A € H23(Y,Z)

be a Hodge class on Y, representing a primitive algebraic 3-cycle Zy ¢ Y ¢ X,
see §5.3. For the given triple (), Y, X) the diagram from §5.2 becomes

H)Ty|x) — H'(Ty(-X)) —— H(Ty) — H'(Ty|x) —

)\313 op )\3,3

HY(O3)

As in §4.3, we rewrite this diagram in terms of the graded ring R(Y"). For this
we first note the following identifications that can be obtained directly by using
the adjoint and the tangent sequences for X ¢ Y ¢ P” and Bott vanishing:

(9) H'(Ty(-X)) 2 Ry(Y) , H'(Ty) = Rs(Y), H*(Qy)=H> (Y)zRy(Y).
Next, as in §3.1, the composition
3,3
N30 i HY(Ty (-X)) 2> H(Ty) *> HY(93)
becomes

e P
Pyoe: Ri(Y) — R3(Y) —= R;(Y),

where Py : R(Y) — R(Y') is the multiplication by the polynomial class P\ €
R4(Y) corresponding to A € H2?(Y) = Ry(Y), and e : R(Y) — R(Y) is the
multiplication by the class of the quadric ¢(x).
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5.6. The v.H.s. for X5 3 in terms of the bigraded ring R(X). As in §4.4,
start from the variation of Hodge structure (v.H.s.) for X = Xy 3

V:H>?(X)® H(Tx) - H*3(X).

Since X is a FCY manifold, the cup-product with the unique (modulo C*)

4,1

form w™* on X defines an isomorphism

4,1
HY(Tx) = H V(X)) 25 H32(X).

By [Nal, H3?(X) = Ry _3(X), H?3(X) = R3 _3(X); and under these isomor-

phisms the v.H.s. V translates to a map

px i Ro—3(X) ® Ro —3(X) - R3-3(X)

However in this case px is not given by multiplication of polynomials (modulo
the Jacobian ideal) as in §4.3 - for example multiplication would be additive on
bidegrees. Fortunately, by using the generic 1:1 correspondence between X = Xs 3
and nodal cubic 7-folds Z = Z3 from §5.7 below, we are able to instead rewrite
wx as multiplication puyz in the graded ring R(Z).

5.7. X3 and nodal cubic sevenfolds. Let us think of projective 7-space, P7,
as the hyperplane (w = 0) in the projective 8-space, P® = P®(z;w) = P¥(2q : ... :
x7:w). Let Z =273 ¢ P8 be a general nodal cubic sevenfold, and let 0 € Z be the
node of Z; Without loss of generality we may assume that p, = (0:...:0: 1).
The rational projection

po: P (zyw) > P(z),

from o sends the cubic, Z, birationally to P7(z). Under a slight abuse of notation,
we denote this birational map by

po: Z P

as well. Since Z has a node at the point o = (0;1), then in the same coordinates,
(z;w), the equation of the cubic, Z ¢ P8(x;w), can be written as

f(zw) = f(x) +q(x)w=0

where f(x) is a cubic form of (x) = (2o : ... : z7) and ¢(z) is a non-degenerate
quadratic form in ().



On the Griffiths Groups of Fano Manifolds of Calabi-Yau Hodge Type 29

Let 0 : Z — Z be the blowup of Z at o, and let E = 67 (0) € Z be the
exceptional divisor over o; the divisor E is isomorphic to a smooth 6-fold quadric
identified with the base @ = (¢(x) = 0) of the projective tangent cone to Z at o.

The family of lines L € Z that pass through the point o sweep out a cone R,
with vertex o and a base given by the 5-fold

X ={z:q(z)=f(z)=0} <P ().

For the general choice of the nodal cubic, Z, the 5-fold, X = X5 3, is a general
smooth complete intersection of a quadric and a cubic in P7.

Lemma 5.3. In the above notation, let
7 =Zy = (f(x) +q(x)w = 0) € P(z; 2)
be the general nodal cubic 7-fold with node o = (0;1). Then

(1) The birational map p, : Z >IP’7(:E) induced by the rational projection
P¥(z;w) > P7(x) decomposes as in the diagram below

Ec 7 2 R,
o Do
0 € Zs P72 Xo3
Do
U
R,

where R, € Z the proper preimage of the cone R, € Z, and po: Z — PT =
P7(z) is a birational morphism contracting R, to the complete intersection

Xa3=(q(x) = f(x) =0)

of the quadric (q(x) = 0) and the cubic (f(x) =0) in PT.
(2) The birational morphism p,: Z — P from (i) coincides with the blow-up
of X = Xo3 in P7. Moreover the inverse to (i) takes place:
If Xo3 = (q(z) = f(x) = 0) be a general complete intersection of a
quadric (q(z) = 0) and a cubic (f(x) =0) in P" =P"(x), then the blowup
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of P at X is the same as the blowup Z of the nodal cubic 7-fold Z = Zs =
(f (@) +q(z)w = 0).

Proof. The proof is straightforward, we leave the details as an exercise to the

reader. O

5.8. The infinitesimal invariant of (X,Y,)\) by equivalences of graded
rings. Below, we rewrite the infinitesimal invariant dvy for a triple (X,Y,\) =
(X23,Y3,A) (as in §5.2), by using the equivalence of graded rings of X5 3 and the
nodal cubic 7-fold Z = Z3 corresponding to X. However, in order to proceed, we

first require the following lemma:

Lemma 5.4. Let X = X3 CP7 be the general complete intersection of a quadric
and a cubic, and let Z = Z3 € P® be the nodal cubic 7-fold corresponding to X
by Lemma 5.3. Then a 6-fold cubic, Y, containing X and not containing the
quadric, q(x) =0, as a component can be identified with a hyperplane sections
Y of Z which do not pass through the node o of Z. In particular, the generic
cubic 6-fold containing the 5-fold X = X5 3 is the same as the generic hyperplane
section of its corresponding cubic T-fold Z = Zs.

Proof. In the notation of §5.4, let X = Xo3 = (q(z) = f(z) = 0) € P7(z), and let
Z = Z3 = (f(z) +wq(z) = 0) € P’(x;w) be the nodal cubic corresponding to X
by Lemma 5.3. A cubic 6-fold Y ¢ P’(z) containing X and not containing the
quadric (¢(x) =0) as a component has the equation

Y = (f(z) +1(2)q(x) = 0)
where [(x) is a non-zero linear form of (x) = (xg: ... : x7).

From the equation F(z;w) = f(z) +wq(x) of the nodal cubic 7-fold Z = Z3
corresponding to X, we see that Y is the same as the linear section

Y=Zn((z)-w=0)

of the cubic Z. Since in the linear form, [(x) —w, the coefficient at w is non-zero,
it follows that the node, o = (0;1), of Z does not lie on the linear section Y ¢ Z.
Furthermore, since [(z) is a general linear form on (z), the form, [(z)—w, defines
the general linear section of Z that does not pas through its node, o. ([
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5.8.1. The bigraded Jacobian ring R(X). Let X = (¢(z) = f(x) =0), where
2q(z) =2t + ...+ 2% 3f(x) =2} + ...+ 23. Then R(X) = S(X)/J(X) is the same
as C[xg, ..., z7,y, 2] modulo the relations

gt rat=ad e +23=0 and yal=zr,i=0,..,7.

A simple combinatorial check yields:

Lemma 5.5. Let R(X) be the graded ring of X = X935 with equations chosen as
above. Then:

(1) HY(X) = Ry _3(X) = Cy.
(2) H**(X) = Ry _3(X) is generated over C by the following 92 monomials:

e the 8 monomials: z%x;,i=0,...,7;
o the 28 monomials: yzx;x;,0<i<j<7;
e and the 56 monomials: y2a:ixjxk,0 <i<j<k<T.

There are 9 independent relations between the 92 monomials from (2). These
relationships can be found, using the following identities in R(X),

2 .
yx; = 2z, 1=0,...,7,

which yield the following identities in the graded component Ry _3(X),

3/2:1;13 = yz:z:? = 2%z; and y2$?l’j = Y2T;T;.

2z; = y?x? com-

Now, using the basis from (2), we get 1 relation between z
ing from 3f(z) = 3 + ... + 22 = 0, and 8 relations between y*z?r; coming from
2¢(z)z; = (z2 +...+223)x; = 0. One can easily verify that all the relations between
the generators from (2) are generated by the above 9 relations. In particular,

dim H3?(X)=92-9 = 83.

5.8.2. The graded ring, R(Z), of the nodal cubic 7-fold, Z, correspond-
ing to X. For the above choice of X ¢ P"(x) the nodal cubic, Z ¢ P"(x;w),

corresponding to X is
Z = (6f(z;w) = 2f(x) - 3wq(z) = 2(z3 + ... + 23) = 3w(zi + ... + 2°) = 0)

In the graded ring, S(Z) = C[z;w] = C[xo, .., 7, w], the Jacobian ideal, J(Z), of
Z is generated by the relations

2 , 2 2
fo, =i —wx; =0,0=0,..,7 and f,=2p+...+27=0.



32 David Favero, Atanas Iliev and Ludmil Katzarkov

Let

R(Z)=5(2)]J(2) =§>BOR¢

be the graded Jacobian ring of Z. Then the component R3(Z) is generated by:

e the 56 monomials: z;z;7;,0<i<j<k<T;
e the 28 monomials: wx;x; = x?xj = xixJQ-,O <1<j<T;
e the 8 monomials: w?z; = wx? =23,1=0,..,7;

79
e and the monomial: w3.

Lemma 5.6. Let X and Z be as above. Then the C-linear map, S(X) =
Clz;y, 2] = S(Z) = Clz;w], defined by

y—1, zrw, x;~>x;,1=0,..,7
factors through the Jacobian ideals J(X) and J(Z). Let
jR(X) = S5(X)/J(X) > 5(2)]](Z) = R(Z)

be the induced map, S°(Z) = C[z;w]® be the set of all g(x;z) that vanish at the
node o= (0;1) of Z, J°(Z) = J(Z)n S°(Z), and

R(Z)=S5°(Z2)]J°(Z).
The map j: R(X) —» R(Z) restricts to isomorphisms:
j:Ro_3(X)— RY(Z)

and

j: Ry a(X) <> RY(2).

Proof. As a model, we use the 5-fold, X5 3, defined above. We will verify the
isomorphism j only for Ry _3(X). The computation for a general Xs3 and for
R3 _3(X) does not differ substantially.

By the preceding discussion, the component Ry _3(X) is generated by yzxixjxk,
yzx;x; and 2%x; with relations yz; = Z:L"?, )y :UZQ =0, and X xf’ =0.

On the one hand, the map j, as defined above, sends the generating monomi-
als of Ry _3(X) to zjxjxy, wryr; and w2, respectively. This follows from the
preceding discussion together with the fact that the w® generate S3(Y'). Since
the hyperplane, S$(Y) ¢ S3(Y), is defined by w? = 0, this yields that j sends
S_2,3(X) surjectively to S3(Z2).
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On the other hand, j sends the generating relations ymf —ZTi, X a:f and X xf’
for J(X) to x? —wx;, ¥ o7 and ¥ a3 respectively. These relations generate J(Z),
see above. Notice that ¥ 23 = ¥ wz? = w(X z?) belongs to J(Z), ibid. O

5.8.3. The infinitesimal invariant by equivalence of graded rings. From
the identifications in Lemma 5.6, the map,

px i Ro3(X)® Ry _3(X) - Rz _3(X),
from §5.6 transforms to
w7 RY(Z) ® RY(Z) > RY(2).
Now, as in §4.3, by [Vol] (see also [AC]) one has:
Corollary 5.7. The map,
pz: R3(Z) ® Ry(2) — Rg(Z),

is induced by multiplication of monomials in the graded ring S(Z) = C[x;w].

Let (N, Y, Z) be a triple consisting of a nodal cubic 7-fold,

Z = (f(z;w) = f(x) + q(z)w = 0) € P*(z3w),
a hyperplane section,
Y= (f(x) =0),
of Z, and a class, A, representing an algebraic 3-cycle Zy on Y. By the previous
corollary and [Vol] the infinitesimal invariant dyv can be interpreted as a linear
form on the kernel of the multiplication map,
py : R3(Y) ® R3(Y) - Re(Y),
as follows (see also §2 in [AC]):

Lemma 5.8. Let e = q(x) = 9(f(z) + wq(x))/Ow|yw=0(mod.J(Y)) € Ro(Y), and
let Py be the element of Ry(Y) = H*(Y) corresponding to N*3. If the multipli-
cation map, Pyoe: R1(Y) — R7(Y), defined in §5.5 is an isomorphism, then for
any element, Y., F, ® G, € Ker puy € R§(Y') ® R3(Y'), one has

o\ (O Fa®Gy) =Y PyFp.(Pyoe)  (P\G,) e R®(Y) = C.
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5.9. Cycles on the Fermat cubic sixfold. Let Y be the Fermat cubic sixfold,
ie., X cY c P’ is defined by the equation,

flz)=ad+ .. +a3.

Let

R(Y)=S8(Y)/J(Y) =Clzo,...,z7]/ (23, ..., x2) = %Rd(y)

be the graded Jacobian ring of Y. By [Na|, the primitive cohomology satisfies
H>3(Y) = Ry(Y).

Following [Shi| and §3 in [AC], we now describe the rational cohomology classes
in H>*(Y) and their corresponding elements from Ry(Y).

Let p3 be the group of 4™ roots of unity, ¢;, and let G = (u3)%/A, where A
is the diagonal subgroup. Setting Zs = Z/3Z, the character group G of G is
naturally embedded in (Z3)® as

G = {a=(ag,...,ar) :ag+...+ a7 = 0} € (Z3)%;

the character o € G = Hom(G,C*) representing (ag,...,as) sends the element
[Coy-es Gr] € G = (u3)8/A, to a([Co, - Cr]) = (0G5
Let G* = {a = (ap,...,a7) € G :a 4#0,i=0,..,7}. For a = (ag,...,ar) € G*,

define its norm,
<ag>+...+<a7>
o = )
3

where < a; > is the unique integer between 1 and 2 congruent to a; modulo 3.

The natural action,

g= [Coa °")C7] : (LUO et 1"7) = (COQUD, ...,C7$7),

of G on P7 restricts to an action of G on the Fermat cubic Y € P7. This induces
a representation g* of G on the primitive cohomology group HS(Y,C). Let

Vo= {Ae Hy(Y,C): g"(\) = a(g)\}
be the eigenspaces of ¢* in H(Y,C) defined by the characters o € G. By [Shi]

we have the following:

(1) The primitive cohomology satisfies the identity,

H2(Y,Q) ®g C = @ Va,
aeB

where B = {a € G* :|o| = |2.0] = 4} and 2.a0 = 2.(ag, ..., a7) = (2aq, ..., 2a7).
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(2) Let Co(Y)g denote the subspace of H(Y, Q) spanned by classes of prim-
itive algebraic 3-cycles on Y. We have the following identification:

Co(Y) = Co(Y) @ C = Hy*(Y,Q) @ C.

Remark 5.9. The space, C,(Y'), spanned by classes of primitive algebraic 2-
cycles on a fourfold, Y, is a subspace of Ho(Y,Q) ®g C. The coincidence (2) is
the statement of the Hodge conjecture for the Fermat cubic sixfold, see [Shi].

5.10. The isomorphism H.?(Y) - R4(Y) in coordinates. Notice that in
R(Y) = S(Y)/J(Y) = C[zg,...,z7]/ (22, ...,x%) for a monomial, 3380...:025, repre-
senting a non-zero class modulo J(Y'), each of the coordinates, z;, has degree at
most 1. Therefore, R4(Y) is generated by the 70 monomials,

Tiy TigTigTiy, 0 <01 <l <i3<iq <7,

regarded as classes modulo J(Y) = (3, ..., 22).

By definition, a = (ag, ...,a7) € B if and only if |o| = [2.a] = 4. Since B ¢ G*,
the coordinates, a;, take values k =1 or 2.

For an element, o = (ag, ..., a7) € G*, let
dp(a) =#{i:a; =k},

be the number of occurrences of the number & € {1,2} among the coordinates a;
of a. We call a an element of type (2719) if do(a) =p and d;(a) = g. As in [AC],
the isomorphism

jHP(Y) - Ry(Y)

is given by:

ag-1,a1-1 as—1

Jjra=(ag,...,a7) — 2" x{ . ap

This directly implies that all elements « € B are of type (2*1%), sent by j to the

70 monomials x;, z;,z;,x;, as above.
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5.11. Infinite generation of the Griffiths group of X535 < P’. As above, we
continue to have X ¢ Y ¢ P"(x) = P"(xg,...,x7), where Y is the Fermat cubic
6-fold. To simplify notation, for 0 <i < j < ... <k we write

Tij..k = LiTj...T,

for the monomial as well its class w;; ; in R(Y). For example, x22122111
xor12374. We call two monomials x;;. , and xyjr g dual, and write ;. g =

T Al @ijk-Tirjr = To1234567. Let
Py = Py, , = a(zo123 + Z567) + b(T0124 + T3567),

and
€ =xo1 + T23 + T45 + Ter + ha3s,

where h is a transcendental number. Then

Py, ,-e= a(zg + Toy + xp + axgy) + b(xgy + brgy) + hag.

We will now verify that for generic a and b the linear map
P>\a7b.€ : Rl(Y) g R7(Y)

is an isomorphism, see Proposition 5.8. In the bases x; and x5 of Ri1(Y) and
R7(Y') respectively, Py, ,.e acts as follows:

Zo = axq, Iy = axy,
x9 & axg + brg, T3 = arg + brg, x4 v brg + axs, v5 = brg + axg
xe = (a+h)xs, x7 = (a+ h)xg.

Therefore, in the bases z1,...,x7 and 7, ..., 2%, the matrix M, of Py ,.e is

0ab0
Oa a00b 0 a+h
@ D .
al b00a a+h 0
0ba0
Therefore, if detM, ;, = a*(a—b)*(a+b)*(a+h)? # 0, then Py, ,-e: Ri(Y) > R:(Y)

is an isomorphism and we can apply Voisin’s formula from Lemma 5.8 to compute

the infinitesimal invariant d,_,.
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As in [AC], we can restrict to the case b = 1 and compute § e at a well chosen
element @ ® R € Ker(uy). In this particular case Py j.e is an isomorphism if
a(a—1)(a+1) #0.

Let @ = w9933 and R = xg123. Then Q ® R € Ker(uuy ), and by Lemma 5.8 the
infinitesimal invariant
00, (Q® R) = Py, ,Q(f7 (P, R)),
where f;1: R7(Y) - R1(Y) is the inverse to the isomorphism f, = Py,,- Now
the computation of the infinitesimal invariant is straightforward:

B B b
P)\ale = b.’IZ”G’ and fal(P)\a’lR) = fal(b.'lf’é’) = h+(lm7’

which, multiplied by Q = z456, gives ﬁmg)m. Thus we have,

b
h+

b
oy, (QO®R) = —aP/\a,1$4567 =

T01234567-
h+ a

We are now ready to state the main result for Xs 3:

Theorem 5.10. For the general X = X3 € P the Griffiths group Griﬂ%(X) s

infinitely generated as a vector space over the rationals Q.

Proof. Again, we need to check that for an infinite number of choices a1, as,as, ...

of the integer parameter one gets a sequence of numbers 6(a;) = fa. that are
linearly independent over Q. This is straightforward - see the proof of Theorem
4.2 in [AC] (Albano and Collino prove this for the same coefficient function, ﬁ,

obtained in the slightly different situation of a cubic 7-fold). O

6. GRIFFITHS GROUPS FOR SUBCATEGORIES AND QUOTIENTS

Let DP(coh X) denote the bounded derived category of coherent sheaves on
X as a triangulated category, i.e., the category of complexes of coherent sheaves
where maps which induce isomorphisms on cohomology are inverted. For a thick
triangulated subcategory, A" € DP(coh X), we define Kglg (N) to be the subgroup
of Kglg(X ) generated by elements of . Here, thick means that the triangulated
category is closed under taking summands. We can also consider the Verdier
quotient DP(coh X)/N [Ve].
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We can define a type of Griffiths groups for triangulated subcategories and
quotients as follows:

Definition 6.1. Let A/ be a thick triangulated subcategory of Db(cth ). The
total rational Griffiths group of N is

Griffg(N) := ker(c o chggt 01) @7 Q

where ¢ is the inclusion, chgg is the chern character map landing in the Chow ring
and c is the cycle class map to cohomology. The total rational Griffiths group of
the Verdier quotient , D”(coh X)/N, is the quotient

Griffg(X)/Griffg(N).

A special case of Verdier quotients is when the subcategory N admits a left or
right adjoint. In this case, we will use the notation A and we will see below that
the total rational Griffiths group of A has some very nice properties.

Definition 6.2. Let i : A — T be the inclusion of a full triangulated subcategory
of T. The subcategory, A, is called right admissible if i has a right adjoint 7' and
left admissible if it has a left adjoint, ¢*. A full triangulated subcategory is called
admissible if it is both right and left admissible.

Let 7 be a triangulated category and Z a full subcategory. Recall that the left
orthogonal, *Z, is the full subcategory of 7 consisting of all objects, T'€ T, with
Homy(T,1) =0 for any I € Z. The right orthogonal, Z*, is defined similarly.

A closely related notion to an admissible subcategory is that of a semi-orthogonal
decomposition.

Definition 6.3. A semi-orthogonal decomposition of a triangulated category,
T, is a sequence of full triangulated subcategories, A1,..., An, in T such that
A; ¢ Ajl- for i < j and, for every object T € T, there exists a diagram:

0

T — - — 13

% A

where all triangles are distinguished and A € Ai. We shall denote a semi-

(10)

orthogonal decomposition by (A1, ..., An).
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Definition 6.4. An object, F, in a k-linear triangulated category, T, is called
exceptional if,

kifi=0

Hom(E, E[i]) =
0 ifi+0.

When F is either an exceptional object of a k-linear triangulated category,
then the inclusion of (E), the smallest triangulated category generated by E, has
right adjoint Hom(FE, -) ®; F and left adjoint Hom(—, E)Y ®; E. Hence, (E) is
admissible. Moreover, this category is equivalent to the derived category of vector
spaces over k. When this category appears in a semi-orthogonal decomposition,
we follow conventions by just writing F instead of (F) in the notation.

The following is Lemma 2.4 of [Ku2].

Lemma 6.5. Let
T = <A17"'aAm>

be a semi-orthogonal decomposition. For any T € T, the diagram (10) is unique
and functorial.
This allows us to define the following functors.

Definition 6.6. The k'"-projection functor

and sends morphisms to those induced by Lemma 6.5.

Definition 6.7. The i*"-truncation functor
7T =T
Tw1T;

and sends morphisms to those induced by Lemma 6.5 between diagrams.

Definition 6.8. Let 7 be a k-linear triangulated category with finite dimensional
morphism spaces. An autoequivalence, S, is called a Serre functor for T if for
any two objects, 17,75 € T, there is a natural isomorphism,

Homy (1%, 5(T1)) = Homy (Hom7 (11, T»), k).
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Definition 6.9. A triangulated category is called Calabi-Yau of dimension n if

there is an isomorphism of functors,

for some n.

The proofs of the following lemmas can be found in [BK]:

Lemma 6.10. Let A be a full triangulated subcategory of a triangulated category

T possessing a Serre functor. Then the following are equivalent:

i) A is left admissible
ii) A is right admissible
iii) A is admissible

Lemma 6.11. If (Ay,..., An) is a semi-orthogonal decomposition of a triangu-
lated category T with Serre functor, then A; is admissible for all i. Furthermore,
if T = (A, B) is a semi-orthogonal decomposition, then B ="*A.

We now consider the case where X is a smooth projective algebraic variety over
C and 7 = DP(coh X) is the bounded derived category of coherent sheaves on X.
As a matter of convention, we denote by the derived pullback, pushforward, (for
a morphism f: X - Y') and tensor-product as f*, f., and ® respectively without
further alluding to the fact that they are derived.

Definition 6.12. Let X and Y be smooth projective algebraic varieties over C
with P € D”(coh X x V). Denote the two projections by,

q: XxY —>Xandp: X xY >Y.
The induced integral transform is the functor,
®p : DP(coh X) - DP(cohY) , F = p.(¢* F @ P).

The object P is called the kernel of the transform ®p. Furthermore, the integral
transform ®p is called a Fourier-Mukai transform if it is an equivalence.

Remark 6.13. It is a simple exercise to see that the structure sheaf of the diag-
onal, A,Ox, provides the Fourier-Mukai transform corresponding to the identity
functor.
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Integral transforms induce maps between Grothendieck groups and cohomolo-
gy-

Definition 6.14. Let X and Y be smooth projective algebraic varieties over k
and P € Ko(X xY). The K-theoretic integral transform is defined as:

@5+ Ko(X) - Ko(Y)
F = p(Peq (F)).
Similarly, the semi-topological integral transform is defined as:
DI (X) > K§(Y)
F = p(Peq (F)).

Definition 6.15. Let X and Y be smooth projective algebraic varieties over C
and a € H (X xY,Q). The cohomological integral transform is defined as:

oy H'(X,Q) - H'(Y,Q)
B p(a-q"(B))
For P € DP(coh X x Y'), as shorthand, we set

@g =

oH
ch(P)/Ad(XxY)’
The term, ch(P)-\/td(X x Y'), is called the Mukai vector of P where \/td(X xY")

is a formal square root of the Todd class of X x Y.

Notice that due to the adjustment by the Mukai vector, the Grothendieck-
Hirzebruch-Riemann-Roch formula ensures that an element, P € D (coh X x V),
yields a commutative diagram,

DY(coh X) —2 DP(cohY)

Ko(X) —s K§U(Y)
(1)
KP(X) —2 Kph(y)

cochsst cochsst

H

H'(X,Q) —2— H'(Y,Q)
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Definition 6.16. Let X and Y be smooth projective algebraic varieties over k
and P € DP(coh X x Y'). The Griffiths integral transform is defined as:

ST Griffg(X) — Griffg(Y)
Fep.(Poq (F)),

i.e., it is the map between kernels ¢ o chgs induced by the above commutative

diagram.

It was shown by Kuznetsov that the projection functors, «; are represented by
unique integral transforms [Kul].

Proposition 6.17. Let X be a quasiprojective variety over k and
DP(coh X) = (Ay, ..., An)

be a semiorthogonal decomposition. The i*"-projection is isomorphic to an integral
transform with kernel P; and P; is unique up to isomorphism. Similarly, the i*"-
truncation is isomorphic to an integral transform with kernel D; and D; is unique
up to isomorphism. Furthermore, there is a diagram

0

Dmfl A — DQ A*OX

NN

where all triangles are distinguished.

(12)

Proposition 6.18. Let
DP(coh X) = (A1, ..., Am)
be a semi-orthogonal decomposition. There is an isomorphism,

Grifo(X) = Griff@(.Al) ®...0 GriﬁQ(Am).

Proof. Recall that P; e DP(coh X x X) is the kernel of the i*" projection functor
from Proposition 6.17. Equation (12) yields an equality in Ko(X) and K§*(X):

AOx =3P
i=1

Therefore m
sst sst sst
Id=®X, =Pgp =, 5.

i=1
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Furthermore
dp

K3

0 if ¢ # 5.

if =
Qp odp, =

By commutativity of (11) this yields
. . m .
1d = 95! = eGrifs - 2 ol
1=

and

Gri e
Criff o gCriff _ ‘I’P:fo ifi=j

P; P oo

0 if ¢+ 75.

The result follows. 0
Lemma 6.19. Let F € Db(cth) be exceptional. Then,
where (E) is the admissible subcategory generated by E.
Proof. We have an equivalence between (F) and the derived category of vector
spaces. Therefore Ko((E)) = Z. Furthermore, since F is exceptional, the Euler

pairing, x(E, E) = 1. Therefore by the Grothendieck-Hirzebruch-Riemann-Roch

formula,
1=x(E,E) = (c(ch(E)) - td(X)'? c(ch(E)) - td(X)/?).
Therefore ch(E) - td(X)"/? # 0 in H**(X,Q) and since td(X)? is invertible,
c(ch(E)) = caig(chsst(£)) # 0
in H**(X,Q). Therefore the map,
Q=Ko((E)) ®Q -~ H*(X,Q)

is injective.

Corollary 6.20. Suppose there is a semi-orthogonal decomposition,
D"(coh X) = (A, By, ..., E).
There is an isomorphism of Griffiths groups

Griffo(X) = Griffg(.A).
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Proof. This follows immediately from Proposition 6.18 and Lemma 6.19. (]

7. GRIFFITHS GROUPS FOR FANO-CALABI-YAUS

In this section, we use the general theory from the previous section to relate
the Griffiths group of some Fano-Calabi-Yau manifolds to the Griffiths group of
an admissible Calabi-Yau category.

Let A be a connected Z-graded commutative

Definition 7.1. A Z-graded algebra A is Gorenstein if A has finite Z-graded
injective dimension n and there is a integer a such that

RHoma(k, A) 2 k(a)[n].

The element, n(A, M), is called the Gorenstein parameter of (A,M). In
other words, the derived dual of k, kY, is quasi-isomorphic to k(n(A,M)). We
will simply denote n(A, M) by n when (A, M) is clear from the context.

The following definitions are due to Orlov [Or2]:

Definition 7.2. For a Z-graded algebra, A, we defined the graded category of
singularities to be the Verdier quotient [Ve], of the bounded derived category of
finitely generated graded A-modules by the category of bounded complexes of
graded A-modules with finitely generated projective components:

D2 (A) = D*(Mod -A)/ Perf(A).

Definition 7.3. Let M be a finitely generated abelian group. Let B = ®,,,cp B;
be a finitely generated M-graded commutative algebra over a field K. Consider
w € By, which is not a zero-divisor. The category of B-branes of w, is denoted
by DGrB(w, M). The objects of DGrB(w, M) are pairs,
p1
F
P Py

~____—
Po

A morphism f: P - @ in DGrB(w,M) is an equivalence class of pairs of mor-
phisms, f1: Py - Q1 and f: Py = Qo of degree 0 such that fi(m)po = qofo and
q1.f1 = fop1 where two pairs are equivalent if they are null-homotopic, i.e., if there
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are two morphisms s : Py - Q1 and t : P, - Qo(n) such that fi; = go(m)t + sp;
and fo =t(m)po + q15.

The objects of DGrB(w, M) can also be viewed as quasi-periodic infinite “com-
plexes” where the differential squares to w and quasi-periodicity refers to the fact
that shifting the complex two to the left is the same as shifting the grading of the
modules by m. From this interpretation, we can define a triangulated structure
[Or2] where [1] is the shift of this complex one to the left. It follows that we have
an isomorphism of functors,

(13) [2] = (m),
in DGrB(w, M). Following Orlov, when M =Z we simply write DGrB(w).

We state the following special case of Theorem 3.10 in [Or2]

Theorem 7.4. With the notation above assume that B is reqular. There is an
equivalence of categories,

DGrB(w) = DE; (B/w).

Let us now recall a special case of a celebrated result of Orlov [Or2].

Theorem 7.5. Let X be a connected projective Gorenstein scheme of dimension
n. Let L be a very ample line bundle such that wx = L™ for some r € Z. Set

A=@PH(X, L.

120

(1) If r >0, there is a semi-orthogonal decomposition,
D"(coh X) = (O(-r),...,0(-1),D%(A)),

with O(1) exceptional.
(2) If r =0, there is an equivalence,

DP(coh X) = D& (A).
(8) If r <0, there is a semi-orthogonal decomposition,

D& (A) = (k(-7),...,k(-1),D"(coh X)),

where k(i) are exceptional objects corresponding to the A-module H*(X, £°)(i).
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Corollary 7.6. Let X be a smooth projective variety of dimension n. Let L be
a very ample line bundle such that wx = L™ for some r > 0. Set

A=@H(X,L.

120

There is an isomorphism of Griffiths groups,

Criff(X) = Grifig(DZ(A)).

Proof. From Theorem 7.5 there is a semi-orthogonal decomposition,
DP(coh X) = (O(-r),...,0(-1),D&(A)).
Since O(i) is exceptional for all ¢ this is an immediate consequence of Corol-
lary 6.20
g

Lemma 7.7. With the notation above, the category D5;(A) is a Calabi-Yau cat-
egory of dimension 3 for the following two cases:

e the smooth cubic 7-folds X3 c P8,
e the smooth hypersurfaces X4 € P9(15;2) of degree 4 in the weighted pro-
jective space P6(1%;2) =PS(1:1:1:1:1:1:2), and

Proof. For a Gorenstein commutative finitely generated connected algebra of in-
jective dimension n and Gorenstein parameter a, the Serre functor S4 on DE (A)
satisfies (see §5.3 of [KMV])

Sa=(-a)[n-1].

In the first two cases, A is defined by a single element, w, in a Z-graded polynomial
ring. Hence Theorem 7.4 and (13) imply that deg(w) = [2].

For X3, a =6, deg(w) =3 and n = 8. Therefore

Sa=(-6)[7] = [-4][7] = [3].

For X4, a =4, deg(w) =4 and n = 6. Therefore
Sa=(-4)[5] = [-2][5] = [3].
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We are left to consider the final case of a Fano-Calabi-Yau complete intersection
in weighted projective space, for which the general member is smooth. Let X5 3 ¢
P7 be a smooth complete intersections defined by a quadric, f, and a cubic, g, in
R :=k[xg,...,z7]. Set B:= R/f. We wish to relate the Griffiths group of X235 to
that of a 3-dimensional Calabi-Yau category. We know already by Corollary 6.20
that

Griff(X) = Griffg(Dg; (R/(f.9)))-
However, D§;(R/(f,g)) is not Calabi-Yau in this case. On the other hand, in
light of Theorem 7.4 we expect this category to be closely related to DGrB(w)

(notice that B is not regular so the hypothesis of the theorem is not satisfied).
Indeed, Theorem 3.9 of Orlov states that there is still a fully-faithful functor,

F:DGrB(w) —» D& (R/(f,9))-
Moreover, DGrB(w) is a 3-dimensional Calabi-Yau category.

Lemma 7.8. Let X3 € P7 be a smooth complete intersections defined by a
quadric, f, and a cubic, g, in R = k[xo,...,x7]. Consider g as an element of

R/f. The category, DGrB(g), is a 3-dimensional Calabi-Yau category.

Proof. To show that DGrB(g) is a 3-dimensional Calabi-Yau category, notice
that since R/f is Gorenstein with Gorenstein parameter 6, the Serre functor on
DGrB(g) is given by (=6)[7]. Since g is a cubic,

3)=[2]

by (13) and therefore the Serre functor,

Sparb(g) = (=6)[7] = [-4][7] = [3].
0

Unfortunately, DGrB(g) does not appear to be admissible in D”(coh X5 3) and
we are unable to apply the discussion in §6. Instead, we can appeal to a closely
related category defined by Positselski [Pol] called the absolute derived category
D*S[Fact(B,Z, g)] (see also [BFK2, BFK3]). As the details are a bit technical, we
just mention that this category is a Verdier localization of a category defined the
same way as DGrB(g) except that the pairs consist of any two finitely generated
graded B-modules as opposed to finitely generated projective graded B-modules.
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Since B is not regular in our case, this distinction is important. However, the
relevant property that

(14) [2] = (degg) = (3)
still holds by definition and hence D*®[Fact(B,Z,g)] is a 3-dimensional Calabi-
Yau category.
Furthermore, Positselski establishes an equivalence,
D*™[Fact(B,Z, g)] = DP(mod -B/g)/ D" (mod - B).
Notice that
DE(R/(f.9)) = D"(mod -R/(f,9))/ D" (mod -R).

and hence D**[Fact(B,Z,g)] is a Verdier quotient of DE (R/(f,g)) by some tri-
angulated subcategory, N € D§;(R/(f,g)). From Orlov’s theorem, it follows that
D*"[Fact(B,Z,g)] is a Verdier quotient of D°(coh X) by the full triangulated
subcategory generated by A" and O(-3),0(-2) and O(-1).

Hence, we arrive at the following result

Proposition 7.9. Let Xo3 € P7 be a smooth complete intersections defined by a
quadric, f, and a cubic, g, in R :=k[xo,...,x7]. There is a surjective homomor-
phism of rational vector spaces:

Griffg(X) — Griffg(D*[Fact(B,Z,9)]).

Furthermore D**[Fact(B,Z, g)] is a 3-dimensional Calabi-Yau category.
Proof. This follows immediately from the previous discussion. O

We summarize our results

Theorem 7.10. With the notation above, suppose X is a general smooth Fano-
Calabi-Yau complete intersection in weighted projective space. The Griffiths
group,
Griffg(X) = Griffg(D5(A)),

is infinitely generated. Furthermore, when X is a cubic 7-fold or a hypersurface of
degree 4 inP6(15;2), then DE, (A) is an admissible 3-dimensional Calabi-Yau sub-
category Obe(COhX). When X is an intersection of a quadric, f, and a cubic, g,
then Griffg(X) surjects onto Griffg(D*™[Fact(B,Z,g)]) and D***[Fact(B,Z,g)]
is a 3-dimensional Calabi-Yau category.
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Proof. By Corollary 6.20, we get the equality,
Griffg(X) = Griffg(DE(A)).

The fact that it is infinitely generated is a combination of the main result of [AC]
and Theorems 4.5 and 5.10.

The statement that when X is a cubic 7-fold or a hypersurface of degree 4 in
P(15;2), then DE (A) is an admissible 3-dimensional Calabi-Yau subcategory of
DP(coh X) is Lemma 7.7.

When X is an intersection of a quadric, f, and a cubic, g, the statement is a

consequence of Proposition 7.9 U

Remark 7.11. It was pointed out to the authors by M. Kontsevich and B.
Toen, that using work of Toéen and Vessosi, one can define the total rational
Griffiths group of a saturated dg-category. This is the kernel of the map from
semi-topological K-theory to Hochschild homology tensored over Q. This defi-
nition reduces to our definition in the case of a thick triangulated subcategory
of DP(coh X). It would be interesting to see if one can generalize Voisin’s result
to an open subset of the moduli space of saturated 3-dimensional Calabi-Yau

dg-categories and obtain all FCY manifolds as a special case.

8. CATEGORICAL COVERS AND GRIFFITHS GROUPS

Suppose M and N are finitely generated abelian groups of rank one and ¢ :
M - N is a surjective homomorphism with finite kernel. When considering
the categories, DGrB(w, M) and DGrB(w, N), the following abstract situation
occurs (see [BFK1] for a more complete discussion).

One has two triangulated categories 7 and S, and there is a finite group I
(resp. T') of autoequivalences of T (resp. S) given for each v € ' by T;— (resp.

Tg/). Furthermore, there are functors,
F:S>TandG:T -8

satisfying

GoF=@PYsand FoG= P T7.
yel’ el



50 David Favero, Atanas Iliev and Ludmil Katzarkov

Now suppose that is : S - DP(coh X) and i : T - D(cohY) are admissible
subcategories. Let Ps (resp. Pr) be the projection functor onto S (resp 7) with
respect to the semi-orthogonal decomposition

DP(coh X) = (S,*S)(resp. DP(cohY) = (T,*T)).

Composing with inclusions and projections, all the functors above can be thought
of as functors between some choices of DP(coh X) and DP(cohY). Assume further
that all these functors are represented by integral transforms.

In this situation, we obtain an isomorphism between the I'-invariant and I"-

invariant Griffiths groups,
(15) Griffo(S)" - Griffo(T)",

with respect to the action of the Griffiths integral transforms induced by the Tk
and T;—/ respectively.

Now suppose M and N are finitely generated abelian groups of rank one and
¢ : M — N is a surjective homomorphism with finite kernel. Let B be an M-
graded polynomial algebra. The map ¢ induces an N-grading on B as well. We
can let S = DGrB(w, M), T = DGrB(w, N), I" = ker ¢, and I'" = Gyer ¢ be the dual
group. For 7/ € T there is an action on B which acts on a homogeneous element
b € By, for n € N by 4/(b) = 4/(n) -b. Furthermore we can set T1 = (y) and
Y% =Ids. One of the central aspects of the work in [BFK1] is that it guarantees
that all functors in question are always represented by integral transforms.

Proposition 8.1. Let M and N be finitely generated abelian groups of rank
one and ¢ : M — N be a surjective homomorphism with finite kernel and B be
an M-graded polynomial algebra. Suppose that DGrB(w, M), DGrB(w, N) are
admissible subcategories of DP(coh X) and DP(cohY') respectively where X and
Y are smooth proper algebraic varieties over k. There is an isomorphism,

Griffg(DGrB(w, M))ke”5 - Griffo(DGrB(w, N))kerd’.

Example 8.2. Let M = (Ze Z & Z)[((3,-3,0),(3,0,-3)) and B = k[zo, ..., x3]
be the M-graded algebra where,

(1,0,0) if0<i<2,
deg(z;) =4(0,1,0) if3<i<h5,
(0,0,1) if6<i<8.
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Consider smooth elliptic curves, E1, Fy, E3 defined by f3(xo, z1,22), 93(23, 24, 5),
and hs(xe,z7,78). Set w = f3+ g3 + hg. By [BFK1] there is an equivalence of

categories,

DP(coh Ey x Ey x E3) 2 DGrB(w, M).
Let N =Z and ¢ be the summing map. The kernel of ¢ is Z3 ® Z3, a finite group
of order 9 generated by (1,-1,0) and (1,0,-1). By Theorem 7.5 DGrB(w, N) is

an admissible subcategory of DP(coh X3) where X3 is the cubic sevenfold defined
by w. Hence, by Corollary 7.6 we obtain:

Griff(Ey x By x By)™®% = Griffg(X3) %%,

Example 8.3. Let M = (Z&Z)/{((3,-3)) and B = k[zo, ..., xg] be the M-graded
algebra where,
1,0 if 0<4<5,
deg(z;) = (LO) ross
(0,1) if6<i<8.

Let Z be a smooth cubic-fourfold by f3(zo,...,25) and E be a smooth elliptic
curve defined by hs(zg,x7,x8). Set w = f + h. Suppose further that DGrR(f)
DP(cohY) for some smooth K3 surface, Y, where R = k[xzo, ..., z5].5 By [BFKI]
there is an equivalence of categories,

D"(cohY x E) 2 DGrB(w, M).

Let N =7Z and ¢ be the summing map. The kernel of ¢ is Zg3, the finite group
of order 3 generated by (1,-1). By Theorem 7.5 DGrB(w, N) is an admissible
subcategory of DP(coh X3) where X3 is the cubic sevenfold defined by w. Hence,
by Corollary 7.6 we obtain:

Criffg(V x )% = Griffg(X3)%.
Example 8.4. Let M = (Z®Z)/((2,-4)) and B = k[xo, ..., x¢]| be the M-graded
algebra where,
(1,0) if0<i<3,
deg(z;) =4(0,1) if4<i<5h.
(0,2) ifi=6.

6This occurs, for example, when f is Pffafian or contains a plane P and a 2-dimensional cycle T’
such that T- H> - T- P is odd [Ku3].
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Let Y be a smooth quartic K 3-surface defined by f4(x,...,23) and E be a smooth
elliptic curve defined by hy(z4,x5,26) in P(1:1:2). Set w = fy + hy. By [BFK1]
there is an equivalence of categories,

DP(cohY x E) 2 DGrB(w, M).

Let N =Z and ¢ be the summing map. The kernel of ¢ is Zs, the finite group of
order 2 generated by (1,-2). By Theorem 7.5 DGrB(w, N) is an admissible sub-
category of DP(coh X4) where Xy is the smooth hypersurface in P(1%;2) defined
by w. Hence, by Corollary 7.6 we obtain:

Griffg (Y x E)%2 = Griffg(X4)%2.

In light of these examples, let us propose the following conjectures:

Conjecture 8.5. For the general member of each of the families above, the in-
variant Griffiths groups,

Griffg (X3)%®% and Griffg(X,)"

are infinitely generated.

From the conjecture and the examples above, it follows that the Griffiths group
for the product of three general elliptic curves, E1 x Eo x E3, is infinitely generated

as well as the product of a general quartic K 3-surface and a general elliptic curve
inP(1:1:2).
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