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1. Introduction

In type II string theories, gauge and matter fields are localized on subman-

ifolds of the ten-dimensional space-time. Therefore the study of type II com-

pactifications (or their M/F -theory versions) usually proceeds by splitting the

analysis in two steps: first one studies a local model in detail, and then one tries

to embed it in a global UV completion. Furthermore, it has been suggested that

the hierarchy between the weak scale and the Planck scale, or between the GUT

scale and the Planck scale, make such a two-step procedure natural. This raises

the important question: what is the precise relationship between the local model

and the global model?

One expects that a local model will arise as a limit of a global model. In [1]

a decoupling limit was defined by taking the ratio of the volume of the divisor

supporting the Standard Model and the volume of the total space to zero. In

F -theory, this was studied in detail in [2, 3]. However, this is a limit in the Kähler

moduli space, which has no effect on the complex structure of a global model. In

the holomorphic world, functions are determined by their behaviour on a small

neighbourhood, so ‘infinity does not decouple.’

We can also see this at the level of the effective action. The 4d N = 1

supergravity is characterized by a Kähler potential K, a superpotential W and a

gauge kinetic function f . Non-renormalization theorems restrict the dependence

of W and f on the Kähler moduli. As a result, they are largely unchanged in the

limit above, and remember the structure of the global model.

In the present paper, we will address this question more systematically for

F -theory models, although our ideas should also apply to other settings, such

as the situation considered in [1]. From the above discussion it is clear that we

need to take a limit to a boundary of the complex structure moduli space. But

this must be done carefully, for otherwise the relation between the local and the

global model will be very hard to understand. We will see that one can bubble off

local models from global models by semi-stable degeneration. In particular, we

will define a new type of semi-stable degeneration in F -theory which recovers the
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local models studied in [2] from a global model. (For earlier work, see [4, 5, 6].)

If the global model admits a K3 fibration, then we recover a known semi-stable

degeneration of the K3 fibers. However, our method also applies if there is no

K3 fibration.

The main purpose of this paper however is to place the results of section 2 and

reference [7] in a broader perspective. Namely we would like to discuss the roles

played by degeneration and its converse, which is a nice way to construct global

models from local pieces, as a cutting-and-gluing procedure in holomorphic field

theories.

To explain this, let us first define the notion of a log Calabi-Yau space, since

this has not yet percolated to the physics literature and it is one of the funda-

mental concepts studied in this paper. We define a log Calabi-Yau to be a pair

(X,D), where X is a variety and D is an effective divisor in X such that the log

canonical class K(X,D) ≡ KX +D vanishes. It admits a unique (n, 0)-form which

is is holomorphic on X\D and has a logarithmic pole along D, whose residue is

the holomorphic (n − 1)-form of D. A log Calabi-Yau should be thought of as

the holomorphic analogue of a real and oriented manifold with boundary.

Now we start with a disconnected sum of Calabi-Yau manifolds with bound-

ary, say (X1, D) and (X2, D) in the simplest case. Then we glue these pieces

together along the boundaries into a normal crossing variety

Y0 = X1 ∪D X2. (1.1)

Finally when Y0 has a log structure and satisfies other mild hypotheses, we can

deform Y0 to a smooth global model Yt, where t ∈ C is a parameter, by the

fundamental smoothing theorem of Kawamata and Namikawa [8]. Obviously this

construction comes with a small parameter and a built-in degeneration limit.

In order to make use of this technique in F -theory, it is crucial to know

that when Y0 has an elliptic fibration, this continues to hold for the smoothings

Yt. We posed this as an open problem at a recent meeting on string theory for

mathematicians at SCGP. To our delight, János Kollár has now settled this in

the affirmative and proved a number of additional results in [9]. We include a

discussion of some of his results in section 3.4.
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Figure 1: Gluing a Calabi-Yau manifold from local pieces.

Now for physics purposes we are not just interested in complex manifolds

per se, but in holomorphic field theory on such a space, that is a theory which

depends on the complex structure but not on the Kähler moduli. So in order

to use surgery ideas, we want to know how a holomorphic field theory behaves

on a family Yt. We expect that its partition function and correlators behave

nicely in a semi-stable degeneration limit, and that these quantities can in fact

be constructed explicitly from the limit as an expansion in t.

Furthermore, we expect an interesting interplay between the theory in the

bulk and the theory on the boundary. In particular for the case of degeneration

in F -theory, we will argue in sections 3 and 4 that computations can also be

performed ‘holographically’ in the boundary theory. We discuss some expected

features of the boundary theory and how various known examples fit the pattern.

We believe these points give a new perspective on compactifications in which log

varieties play a central role, for F -theory and more generally for string or field

theories on complex spaces.

Coming back to F -theory, recall that for F -theory compactifications to eight

dimensions there are essentially only two weak coupling limits (more precisely,

type II degenerations [10]), which yield the E8 × E8 and the SO(32) heterotic

string. As will hopefully be clear, below eight dimensions there seems to be a

veritable zoo of new degeneration limits, and the methods discussed in this paper

allow one to construct them. The global-to-local degeneration which splits off a
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local dP9-fibration will be our main example in this paper, but much more exotic

examples could be considered. A closely related paper [7] examines another new

type of degeneration, namely a stable version of the Sen limit, from the general

point of view advocated here.

In section 4 we discuss the t-dependence of the Lagrangian in a degeneration

limit by applying the theory of mixed Hodge structures. Although somewhat

abstract, this approach is extremely powerful and allows us to fix much of the

physics from very little input. An interesting aspect of this analysis is the inter-

pretation of brane superpotentials as describing an obstruction to splitting the

mixed Hodge structure into pure pieces.

Our approach answers several questions that were not clear previously. Re-

garding the construction of phenomenological GUT models along the lines of [2],

we believe that one of the most important issues that are clarified is that there

is a new small expansion parameter t in the game, which we identify explicitly,

such that holomorphic calculations in the local model become exact in the limit

t→ 0. This explains to what extent we can trust the E8 picture of local models,

and makes the notion of ‘dropping the subleading terms’ in [2] more precise.

We believe that having such a small modulus is an important step forward in

understanding global models, raising various interesting phenomenological ques-

tions. Although the net amount of chiral matter cannot change if we continuously

vary t, more detailed properties of the effective Lagrangian definitely depend on

t, as seen in section 4. The behaviour of the Calabi-Yau metric as t→ 0 has not

been much investigated, but one expects an anisotropic picture as shown in figure

1, where points on different local pieces get infinitely separated in the limit. The

modulus t may also play a role in the issue of sequestering.

2. Local and global models

2.1. Semi-stable degeneration

The data of an F -theory compactification consists of an elliptically fibered
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Calabi-Yau manifold with section, and a configuration for a three-form field C3

with flux G4 = dC3. In the present section, the focus will be on aspects of the

Calabi-Yau geometry. We will typically have in mind elliptic fourfolds π : Y →
B3, although the considerations will be more general.

We would like to define global-to-local degenerations for F -theory models. By

this, we mean we would like to bubble off a four-fold consisting of a dP9-fibration

over a divisor S in B3, which should capture the behaviour of the elliptic fibration

π : Y → B3 along S. As in [2], we could do a further degeneration along the lines

of [11], in order to relate the dP9-fibration to a Hitchin system.

Let us consider a flat family πY : Y → Δ, where Δ is a disk parametrized by

a variable t, such that the generic fibers are smooth but the central fiber π−1Y (0)

is not. We will actually be interested in fibers with certain types of singularities,

which can however be resolved and followed through the degeneration. This

caveat will not affect the validity of our techniques however.

In order to get a reasonable limiting behaviour, the degeneration needs to be

fairly mild. Specifically, we will be able to achieve our objectives by a semi-stable

degeneration. This means that the total space Y of the family is smooth and the

central fiber is reduced and has at most normal crossing singularities. In local

coordinates (z1, . . . , , zn), a normal crossing singularity is a singularity given by

an equation of the form z1 · · · zk = 0.

According to Mumford’s semi-stable reduction theorem, any degeneration

may be put in the form

z1 · · · zk = t (2.1)

for small t, possibly after a base change (i.e. pulling back the base of the family

by an analytic map Δ → Δ) and then blowing up and down. A semi-stable

degeneration need not be unique, as there may be many different birationally

equivalent models. A degeneration is said to be stable if in addition, the central

fiber has no infinitesimal automorphisms.

Semi-stable degenerations have a number of nice properties. One of these

properties is that they essentially become ‘smooth’ if we include logarithmic d-

ifferential forms. Let us denote the fibers π−1Y (t) by Yt, and the normal crossing

divisor of Y0 by Z. Suppose that in local coordinates, the equation of Z is given
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by z1 · · · zk = 0. Let us consider the spaces

Ωq
Y0
(logZ) (2.2)

of logarithmic differential forms on Y0. For q = 1, this is defined to be the subsheaf

of meromorphic differential forms on Y0 generated by dzi/zi for 1 ≤ i ≤ k and

dzi for k + 1 ≤ i ≤ n, together with the relation

d log(z1) + . . .+ d log(zk) = 0 (2.3)

For larger q we just take exterior powers. More generally one can define logarith-

mic forms with respect to a log structure, but we will not do so here. The exterior

derivative takes logarithmic forms to logarithmic forms, so we get a complex and

we can compute cohomology. It will be convenient to use the short-hand notation

Hk
log(Y0) ≡ H

k(Y0,Ω
•
Y0
(logZ)) (2.4)

for the logarithmic de Rham cohomology of Y0. The spectral sequence for H
k de-

generates at E1, so we get the decomposition Hk
log(Y0) =

∑
k=p+q H

p(Ωq
Y0
(logZ))

on Y0. As motivation for section 3, suppose that k = 2 and W1, W2 are the com-

ponents of Y0. Then the restriction to Wi of Ω
n
Y0
(logZ) is just the log canonical

bundle ΩWi(Z) of the pair (Wi, Z). In particular if Y0 is Calabi-Yau in the sense

that Ωn
Y0
(logZ) is trivial, then each (Wi, Z) is log Calabi-Yau.

In a degeneration limit, the ordinary cohomology typically jumps, as some

classes on Yt will disappear from the cohomology, and some others may appear.

According to the work of Steenbrink [12], the cohomology of logarithmic forms

gives a geometric way to realize the ‘nearby cocycles’ on Y0. Concretely, for a

normal crossing degeneration the sheaves of differential forms Ωq
Yt
naturally fit

together into a locally free sheaf Ωq
Y/Δ(log Y0) of relative forms, whose restriction

to the central fiber yields Ωq
Y0
(logZ). Similarly, the sheaves RpπY∗Ω

q
Y/Δ(log Y0)

are locally free over the base, i.e. they correspond to holomorphic vector bundles

over the base. The fiber over t �= 0 is given by Hp(Ωq
Yt
) and the fiber over t = 0 is

given by Hp(Ωq
Y0
(logZ)). In particular, the dimensions of the cohomology groups
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hp(Ωq
Y0
(logZ)) coincide with the Hodge numbers hp,q(Yt) of the smooth fibers.

As we will see later, these results (and some additional properties discussed in

appendix A) are very helpful for elucidating the physics of a semi-stable degen-

eration.

We will also need to introduce the logarithmic tangent bundle, T (− logZ),
as the dual of the logarithmic cotangent bundle Ω1(logZ). In the local coor-

dinates above, T (− logZ) is generated by zi∂/∂zi for i = 1, . . . , k and ∂/∂zi

for i = k + 1, . . . , n, together with the relation
∑k

i=1 zi∂/∂zi = 0. The tan-

gent space to the smoothing component of the deformation space is given by

H1(T (− logZ)) [13]. By contracting with the logarithmic (n, 0) form, we can

relate this to H1(Ωn−1(logZ)).

Another nice aspect of semi-stable degeneration is that the asymptotic be-

haviour of the Hodge structure is rather well understood. In particular, we can

use the orbit theorems [14] to qualitatively understand the asymptotic behaviour

of the Lagrangian in the degeneration limit, as we will discuss later.

2.2. Normal cone degeneration

Let us first focus on the base B3 without worrying about the elliptic fibration.

Suppose that the discriminant locus contains a a smooth divisor S ⊂ B3 of ADE

singularities. We would like to be able to ‘zoom in’ on S, i.e. we would like to be

able to consider the first order neighbourhood of S in B3. There is a construction

in algebraic geometry which allows us to do this, namely the degeneration to the

normal cone. We will first quickly review this construction and refer the interested

reader to [15] for more details. Then in the next subsection, we will show how

the elliptic fibration can be extended over the normal cone degeneration of B3,

yielding a semi-stable degeneration of the elliptic fourfold.

The deformation to the normal cone is constructed as follows. We consider

the constant family

B = B3 ×C (2.5)

parametrized by t ∈ C. We have the projection πB : B → C and all fibers

are canonically isomorphic to B3. Then we blow up B along the subvariety
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S × {0} ⊂ B to obtain a variety B̃ with exceptional divisor E ⊂ B̃, with E

isomorphic to the projectivization P(O⊕NS) of the normal bundle NS of S in B3.

Via the projection πB̃ : B̃ → C, we get another family of varieties parametrized by

t. Let B̃ ⊂ B̃ be the proper transform of B3×{0}, which projects isomorphically
to B3 via the composite map B̃ → B → B3, where the first map is the map

ρ : B̃ → B which blows down E ⊂ B̃ to S × {0} ⊂ B and the second map is the

projection π1 of B = B3 ×C to its first factor S.

Let us consider the structure of the family B̃ in more detail. Obviously for

t �= 0, the fiber π−1B̃ (t) is still isomorphic to B3. However for t = 0 we get

something interesting. We claim that

B0 := π−1B̃ (0) = E ∪ B̃. (2.6)

Furthermore, these two components are glued in the following way. We can think

of E = P(O ⊕NS) as the compactification of the total space of NS by a section

S∞ at infinity. In this realization, the zero section of NS is identified with a

section S0 of P(O ⊕ NS). Then the two components are glued by identifying

S∞ ⊂ P(O ⊕NS) with the original divisor S ⊂ B3 
 B̃.

Let’s check (2.6) and the assertions below it by writing down the defining

equations for B0 explicitly. The divisor S is the zero locus of a section s of

OB3(S). Thus the locus S×{0} that we are blowing up is given by s = t = 0.1 The

blowup can be constructed as a hypersurface in the fourfold P(OB3 ⊕ OB3(S)),

a P1-bundle over B3. To partially coordinatize this fourfold, we introduce two

additional variables u and v, with (u, v) taking values in OB⊕OB(S), and then we

identify (u, v) ∼ (λu, λv) for any λ ∈ C∗. The hypersurface B̃ ⊂ P(OB3⊕OB3(S))

is given by the standard equation of a blowup

su− tv = 0. (2.7)

When s and t are not both zero, we find that u and v are uniquely determined

up to the action of C∗. When s = t = 0, we get an extra P1 parametrized by

1Here we have chosen a global construction of the blowup. Alternatively, one can pick local

equations fα = 0 for S in open sets Uα and construct the blowup locally, then glue the patches

of the blowup according to how the fα change between patches.
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(u, v). So for each point on S × {0}, we grow an extra P1, showing that the

exceptional divisor E is a P1-bundle over S. After restricting to the exceptional

divisor E, i.e. setting s = t = 0 in (2.7), we see that (u, v) take values in P(O ⊕
NS), since OB(S) restricts to NS on S. This completes the demonstration that

E 
 P(O⊕NS). The zero section S0 is given by v = 0, and S∞ is given by u = 0.

The total space B̃ is smooth, but the fibers of πB̃ are not. For t �= 0, we get a

variety isomorphic to B3 as noted above. But for t = 0, we get two components,

as the equation (2.7) becomes su = 0. Away from the zeroes of s, we get u = 0,

hence a copy of B3 (with S excised). Away from the zeroes of u, we get s = 0,

hence the exceptional divisor (minus S∞). So altogether, for t = 0 we get a

normal crossing variety with two components.

Let’s now take a closer look at the intersection E ∩ B̃ of the two components.

As we have seen above, B0 = E ∪ B̃ is the subvariety of B̃ defined by t = su = 0.

The two components of B0 are therefore defined by t = s = 0 and t = u = 0.

Since the former are the equations of S × {0} ⊂ B, they define the exceptional
divisor E after pulling back to B̃. Since B3 × {0} is defined by t = 0, its proper

transform B̃ is given by the remaining component, t = u = 0. Finally, the

components intersect in the curve E ∩ B̃ defined by s = t = u = 0. Viewed as

a curve inside E it is defined by u = 0 hence is identified with S∞. Viewed as a
curve inside B̃ it is defined by s = 0, hence is identified with S.

This completes the justification of all of our claims about the geometry of B0.

Note that the normal cone degeneration itself is not a complex structure

deformation in the usual sense. All the fibers for t �= 0 are isomorphic, and at

t = 0 the fiber B0 ‘jumps.’ There is no monodromy around t = 0. However,

nontrivial monodromy will occur once we put a suitable elliptic fibration over B̃.

2.3. Degenerating the elliptic fibration

Our next task is to identify a degeneration for the full Calabi-Yau, including

the elliptic fibration. We will do this by extending the elliptic fibration over

the one-parameter family considered in the previous subsection, obtained from

deformation to the normal cone of a divisor S ⊂ B. This will give us a family Y,
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with fibers Yt, such that

Y0 = W1 ∪Z W2 (2.8)

where W1 is an elliptic fibration over E and W2 is an elliptic fibration over

B̃ 
 B3. Furthermore, W1 will have the structure of a dP9-fibration over S.

Let B3 be a smooth three-dimensional F -theory base. We can describe an

elliptically fibered Calabi-Yau Y → B3 in generalized Weierstrass form. Given

sections ai ∈ H0(B3,−iKB3), we can write the equation of an elliptic fibration

over B3 in the form

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6. (2.9)

If we now replace the ai by t-dependent sections ai(t), we will get a family

y2 + a1(t)xy + a3(t)y = x3 + a2(t)x
2 + a4(t)x+ a6(t). (2.10)

of elliptically fibered Calabi-Yau fourfolds parametrized by t, which we can also

view as an elliptically fibered Calabi-Yau fivefold over B. We now want to under-

stand what happens when we pass to the normal cone degeneration by blowing

up S × {0}. A modification is needed since the blowup spoils the Calabi-Yau

condition.

The modification is simple enough: we merely have to ensure that the ai(t)

remain sections of H0(B̃,−iKB̃) after pullback to B̃ in order to preserve the

Calabi-Yau condition. This would make Y a Calabi-Yau fivefold, elliptically

fibered over the fourfold B̃. Composing with the projection πB̃ : B̃ → C, we see

that via πY : Y → C, Y can be viewed as a family of threefolds Yt parametrized

by t ∈ C. Each Yt, including Y0, is Calabi-Yau by the adjunction formula and

the Calabi-Yau property of Y, as the divisor class of Yt is trivial since Yt is the

pullback of a point t ∈ C by the projection πY .

The formula for the canonical bundle of the blowup gives

KB̃ = ρ∗ (KB) + E. (2.11)
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from which it follows immediately that

−iKB̃ = ρ∗ (−iKB)− iE. (2.12)

Then we read off from (2.12) the desired Calabi-Yau condition as the requirement

that each ai(t) vanishes to order at least i along S × {0}. Given such an ai(t),

its pullback to B̃ vanishes along E with multiplicity at least i. Letting e ∈
H0(OB̃(E)) be a section vanishing along E, we see that we have holomorphic

sections

ãi(t) :=
ai(t)

ei
∈ H0(ρ∗ (−iKB)− iE) = H0

(−iKB̃) (2.13)

which can be used to construct the desired elliptically fibered Y → B̃ in the usual
way.

This gives the desired family of F-theory models. For t �= 0, Yt is elliptically

fibered over B3, but Y0 is given by (2.8) as a union of elliptic fibrations W1 and

W2, fibered over the respective components E and B̃ 
 B3 of B0.

The intersection Z of Y1 and Y2 is elliptically fibered over the surface S =

E ∩ B̃. In fact, Z is an elliptically fibered Calabi-Yau threefold. We just have

to check that the ãi(t) restrict to sections of −iKS on S, and for that it suffices

to show that KB̃ restricts to KS on S. But that follows from the adjunction

formula: S = E ∩ B̃ implies that

KS =
(
KB̃ + E + B̃

)
|S , (2.14)

while E + B̃ = B0 is a fiber, which we have already noted is trivial as a divisor

class.

The restriction of KB̃ to B0 is in fact the dualizing sheaf of B0, denoted ωB0 ,

which plays the role of the canonical bundle for B0. This observation will be

useful in Section 3.5 when we glue local models.

We can describe ωB0 in terms of its restriction to the components B̃ and E

of B0. From (2.11) we read off that

ωB0 |B̃ = KB̃ + S. (2.15)
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We also have by adjunction that KE = (KB̃ + E)|E = ωB0 |E − S∞, hence

ωB0 |E = KE + S∞. (2.16)

In other words, sections of ωB0 on each component can be identified with sections

of the canonical bundle with first order poles on the intersection S.

The restriction of KB̃ to Bt for t �= 0 is just the ordinary canonical bundle of

Bt. In fact, KB̃ is the relative dualizing sheaf ωπ of the family πB̃.

We will now show that W1 has the structure of a dP9 fibration over S. Recall

that a dP9 arises as an elliptic fibration over P1 constructed from (2.9) with

ai ∈ H0(P1,OP1(i)). So we just have to show that −KB̃ restricts to OP1(1) on

the fibers of the projective bundle E = P(O⊕NS). But this follows immediately

from (2.11) as ρ∗(KB) has trivial restriction to the fibers while OB̃(E) restricts
to OP1(−1).

Physically the reason we are interested in this degeneration is because we

may have singular fibers corresponding to an enhanced gauge symmetry along

S, and we want to capture this geometry in a local model. So we now specialize

(2.9) to one of the Tate forms [16, 17] which imply that we have enhanced gauge

symmetry along S. We investigate when we can follow this singularity through

the degeneration to the normal cone and preserve the singularity type when we get

to B0, while “pushing the singularity away from B3” by putting the singularity at

S0 ⊂ E, which is disjoint from B̃ 
 B3. For simplicity, we stick to simply laced

cases where we do not need to worry about monodromy issues. So we simply

need to control the order of vanishing of the ai along S and of the ãi(t) along S0.

Let’s say that the desired order of vanishing of ai along S is ni for the appropriate

gauge group. We need to assume the hypothesis that ni ≤ i. The ADE types of

such singularities correspond to subgroups of E8.

Claim: Suppose that the ai(t) satisfy the Calabi-Yau condition that it vanishes

to order at least i on S × {0}, and furthermore that the ai(t) vanish to at least

order ni on all of S ×C. Then after the blowup which realizes the normal cone

degeneration, the order of vanishing of ãi(t) along S0 ⊂ E ⊂ B0 is also at least

ni.
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Proof: By our assumptions, we can write ai(t) = snifi(t) where fi(t) is holomor-

phic. Then fi(t) vanishes to order at least i − ni along E after pulling back to

B̃. Since we only need the order of vanishing of ãi(t) along S0, we can compute

in local coordinates near S0. We have seen that S0 ⊂ E is defined by v = 0,

hence v/u = s/t is an affine NS-valued fiber coordinate on the projective bundle

E = P(O ⊕ NS), vanishing along S0. In this coordinate patch, E is defined by

t = 0. It follow that in this patch fi(t) is divisible by ti−ni and also that we may

write ãi(t) = ai(t)/t
i. Then we compute that

ãi(t) =
ai(t)

ti
=

(s
t

)ni
(
fi(t)

ti−ni

)
(2.17)

with fi(t)/t
i−ni holomorphic. It follows that ãi(t) vanishes to order at least ni

along S0 as claimed.

Example. We can achieve an E8 gauge symmetry by requiring the order

of vanishing of (a1, a2, a3, a4, a6) to be at least (1, 2, 3, 4, 5). If we can choose

sufficiently generic sections a′i ∈ H0(B,−i(KB + D)) for i = 1, 2, 3, 4, and a′6 ∈
H0(B,−6KB − 5D), then the elliptic fibration

y2 + a′1sy + a′3s
3 = x3 + a′2s

2x2 + a′4s
4x+ a′6s

5 (2.18)

over B3 has an E8 singularity along S.

For i = 1, . . . , 4, it is automatic that ai(t) = a′i(t)s
i vanishes to order at least

i along S×{0}. But for i = 6, a′6(t)s5 need not vanish to order 6 along s = t = 0

as required to get a Calabi-Yau. One way to achieve the desired vanishing is to

replace a′6(t)s5 with a′6(t)s5t. Thus the desired degeneration is given by

y2 + a′1(t)sy + a′3(t)s
3 = x3 + a′2(t)s

2x2 + a′4(t)s
4x+ a′6(t)s

5t. (2.19)

To obtain the elliptic fibration W2 over B̃, we divide ai(t) by si and put t/s = 0

to obtain

y2 + a′1y + a′3 = x3 + a′2x
2 + a′4x, (2.20)

where we have put a′i = a′i(0).
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To obtain the elliptic fibration W1 over E, we instead divide each a′i(t) by
ti, introduce the local equation s̃ = s/t which vanishes along S0, and set t = 0.

That gives

y2 + a′1|S s̃y + a′3|S s̃3 = x3 + a′2|S s̃2x2 + a′4|S s̃4x+ a′6|S s̃5, (2.21)

which has the required E8 along S0.

Another example is discussed in section 3.5.

2.4. Caveats

Our construction made use of the Tate form of the Weierstrass fibration. As

was recently investigated in [18], it is not clear if every elliptic fibration with,

say, SU(5) singularities along a divisor S can be put in this form. Although no

counterexample was found, we see no a priori reason why it should be the case

that every elliptic fibration with SU(5) singularities along S can be put in Tate

form.

For the purpose of constructing global models along the lines of [2], the more

relevant question however is not whether one can put the elliptic fibration in

Tate form, but whether there exists a degeneration to a local model. If the elliptic

fibration can be put in Tate form, then as we saw above it is fairly straightforward

to construct such a degeneration. It is not clear to us how to construct such a

degeneration directly from the Weierstrass form, as the conditions for having

suitable singularities along S are rather non-linear in this formulation. But this

does not mean that such a degeneration does not exist. Indeed, in the next section

we will see another approach to constructing global Calabi-Yau manifolds, where

the existence of a degeneration is built in from the start. This method makes no

reference to the Tate form, only to the Weierstrass form.

On the other hand, it clearly should not be true that every single elliptic fibra-

tion with SU(5) singularities along S admits such a degeneration. Let us suppose

that along a sublocus of S, the SU(5) singularity degenerates to a type of singu-

larity that cannot be fit in E8, like say SU(100). Then plausibly the degeneration

to a local dP9 model should not exist, or should develop very bad singularities.
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As a rule of thumb, it seems reasonable to expect that the degeneration to the

local dP9 model exists if the singularities can be fit in E8, as we saw explicitly in

our construction above through the condition ni ≤ i. Fortunately this appears

to be sufficient for phenomenological applications. For example for SU(5)GUT

models, generically the worst we expect is singularities of type E6, SO(12) and

SU(7) on S, all of which can be fit in E8.
2 It is interesting to contrast this with

an alternative weak coupling limit, namely the Sen limit. Note that E6 cannot

be fit in any SO(n), so we expect the Sen limit to be problematic, as was indeed

found in [2]. For related recent work, see [19].

At any rate, the global-to-local degeneration gives a clearer justification for

the use of Higgs bundle and spectral cover technology, since a dP9-fibration with

G-flux is equivalent to spectral data. Similarly it gives a better justification for

the ‘heterotic’ approach to instanton effects in F -theory [20]. In the remainder,

we would like to place this in the general context of weak coupling limits and the

cutting-and-gluing approach.

3. Gluing a Calabi-Yau from local pieces

We have motivated the issue of degeneration on phenomenological grounds,

and from the point of view of string dualities and weak coupling limits. However

there is another good motivation, based on an analogy with topological field

theories.

3.1. Some aspects of topological field theories

Let us give some motivation by first considering topological field theories [21].

We will not give a systematic exposition, but rather discuss a few general features

that will be useful below.

A topological field theory on a closed manifold M is a quantum field theory

2We are referring here to the singularity type of the fiber over a point in S, not the singularity

type of the total space. It is the former that is relevant for the spectral cover/gauge theory

approach.
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in which the correlation functions are independent of the background metric.

Our main interest here is in the gluing axiom. If the space M has a boundary

∂M = Σ, then the field theory produces a state in a Hilbert space HΣ given by

quantizing the fields on the boundary. Now we can take two manifolds M1 and

M2 with boundary with boundary Σ, and glue them together. The gluing axiom

states how the the correlation functions are obtained from M1 and M2. For the

partition function, this takes the form

ZM =
∑

vi∈HΣ

ZM1(vi)ZM2(v
i) (3.1)

where vi is a basis of HΣ and vi is the dual basis of H∗Σ.
The partition function of a topological field theory on a manifold M can thus

be computed by cutting the manifold into pieces and applying the rule above.

For each piece, the field theory determines a distinguished state in the tensor

product of Hilbert spaces associated to the boundaries. If the pieces are simple

enough, then we may be able to write down this state explicitly. Then we glue

the pieces back together to obtain the partition function on M . For beautiful

examples of this paradigm, see eg. [22] or [23].

For the discussion below, it will also be useful to recall some aspects of Chern-

Simons theory on a real 3d manifoldM3, which we take to be closed for now. The

way the Chern-Simons action is usually defined in the literature is as follows: we

pick a real 4d manifold M4 such that M3 = ∂M4, and we extend the gauge field

A over M4. Then the action is defined as

SCS(A) =
k

8π2

∫
M4

Tr(FA ∧ FA). (3.2)

One may show that this does not depend on extension that one picks, up to an

integral ambiguity. Namely if one chooses a different extension, then by gluing

the two choices into a closed manifold and evaluating the above action, we see

that the difference between the two choices must be an integer, so that eiSCS is

well defined.

The extension is not always possible, and a more complete answer has been

given in [24]. In fact it will be useful to consider the definition of the Chern-
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Simons-type invariants on a general manifold X, with dimension possibly greater

than three. A bundle on X can be thought of as an equivalence class of maps

from γ : X → BG, where BG is the classifying space of the gauge group G.

The bundle on X is then identified with the pull-back of the universal bundle

EG over BG. We will take G to be connected and simply connected, as this

simplifies things a little bit.

Since characteristic classes behave naturally under pull-back, we can now

consider the analogous problem for the image of the three-cycle M under the

map γ. Namely we ask for a bounding four-chain for γ(M). For G connected

and simply connected, we have H3(BG,Z) = 0, so the homology class γ∗[M ] = 0

and such a bounding four-chain exists, which then comes equipped with a G-

bundle. We then extend the connection and integrate 1
8π2Tr(F ∧ F ) as before.

For higher dimensional X, the Chern-Simons action is not canonically defined if

the first Pontryagin class does not vanish on X, and we subtract a contribution
1
8π2Tr(F0 ∧ F0) of a reference connection A0.

For general G, we have to worry about issues resulting from torsion in the

cohomology of BG, so we can only bound an integer multiple nγ of γ. We can

integrate over a bounding chain as before and then divide by n, but the result

will only be well-defined up to 1/n times an integer. To properly define the

theory, have to fix a cohomology class in H4(BG,Z) which can be used to fix the

ambiguity. When G is connected and simply connected, we have H4(BG,Z) = Z

and we can just use the first Pontryagin class of the universal bundle.

The choice of extension is not unique, and by changing the choices, we again

get a natural discrete ambiguity. When X is a three-manifold, this gives an

integer ambiguity. For more general X, we get such an integer ambiguity for

every three-cycle, in other words the Chern-Simons form is defined only modulo

the lattice H3(X,Z).

When X has a boundary, then we can proceed similarly. We glue on another

manifold with boundary to get a closed manifold, extend the gauge field, and

then apply the discussion above. The result depends on a choice of extension,

which introduces an ambiguity, and is not quite gauge invariant. Under a gauge
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transformation which is non-trivial on the boundary, we have

S(A) → S(A) +
k

8π2

∫
∂M

Tr(A ∧ dgg−1)− k

24π2

∫
M
Tr(g−1dg)3 (3.3)

where we can see the WZW term emerging. For simplicity, we assumed here that

the bundle is trivial. In fact, Chern-Simons theory on D ×R (with D a disk) is

equivalent to a chiral sector of a WZW model on the boundary S1 ×R [25].

If the boundary is empty, then we see from the above expression that the

Chern-Simons action shifts under a topological quantity, the degree of the map

g :M → G. This gives another interpretation of the ambiguities: they arise from

large gauge transformations that are not continuously connected to the identity.

3.2. Analogy between topological and holomorphic field theories

In holomorphic field theories, there is obviously some dependence on the met-

ric on M . Furthermore we cannot simply cut up a manifold without breaking

holomorphy, so the conventional notion of a boundary and the gluing axiom is not

so useful. Nevertheless there is an analogue of the cutting and gluing procedure

in topological field theories which is compatible with holomorphy. It is given by

the degeneration of the complex manifold to a normal crossing variety, like the

degeneration we discussed in the last section.

For physicists, this is familiar for example from the gluing construction of

conformal blocks in 2d CFT. We can degenerate the Riemann surface into pieces

joined by a long neck. The neck is described algebraically by the equation

xy = q (3.4)

In the limit q → 0, the Riemann surface degenerates to a union Σ1 ∪p Σ2 glued

along a puncture p. Instead of (3.1) above, for small q we can construct conformal

blocks using a q-expansion of the form

ZΣ(R, q) =
∑
ei∈R

ZΣ1(ei)q
w(ei)ZΣ2(e

i). (3.5)
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We want to do something similar with higher dimensional varieties. A suitable

higher dimensional analogue of (3.4) is the normal crossing singularity.

A further intriguing aspect of such a picture is the interplay between the

theory in the bulk and the theory on the boundary. In fact even though the

theories we are dealing with are not topological, in a number of known examples

we can express the theory at small coupling entirely on the boundary. For F -

theory the previously known degeneration limits are the SO(32) and E8 × E8

heterotic limits. In these limits, the Calabi-Yau splits into two pieces, and the

heterotic theories may be thought of as living on the normal crossing divisor

[26, 27, 10], which we interpret as the boundary. In [20, 7], the Sen limit is

discussed from the same point of view and gives a further example: the boundary

is the IIB space-time. The superpotential can be computed either on the fourfold

or in the boundary theory.

We would like to argue that this should hold more generally. Instead of the

algebraic arguments that have been used for the heterotic and IIB limits, we

want to discuss an argument that is more in the spirit of topological field theory.

The holomorphic analogue of real and orientable n-dimensional manifold with

boundary is an n-complex dimensional log Calabi-Yau manifold. The holomor-

phic analogue of the orientation of a real manifold is holomorphic (n, 0)-form on

the log Calabi-Yau, and the holomorphic analogue of the boundary is the polar

divisor of the (n, 0)-form, i.e. the log divisor [28, 29]. The statement below was

already given fifteen years ago [30]. We will give a slight variation of the original

argument.

The analogue of Chern-Simons theory on M3 is holomorphic Chern-Simons

theory on a Calabi-Yau three-fold X3. We will proceed as above for conventional

Chern-Simons theory: we try to extend our gauge fields onX3 to a log Calabi-Yau

fourfold (X4, X3), whose boundary is X3. Then we try to define the holomorphic

Chern-Simons action as

SCS(A) =
1

8π2

∫
X4

Ω4,0 ∧ Tr(FA ∧ FA) (3.6)

This action would normally seems to depend on the extension one picks. The

choice of extension may not be unique, and as before this gives rise to a natural
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ambiguity. Furthermore, the holomorphic Chern-Simons action is in general not

canonically defined, but depends on a choice of base point. We can eliminate

the dependence on a reference connection only when p1|X3 vanishes. If p1 is non-

vanishing, then we cannot assign the same value of the Chern-Simons action to

every three-cycle in the same homology class. (This is very similar to the Picard

group: if c1(L) does not vanish, then we do not get a canonical map from the line

bundle L to the Jacobian. Instead we get a torsor structure, and the combined

data defines a differential character or Deligne cohomology class). However when

tadpole cancellation is satisfied, eg. p1(V1)+p1(V2)−p1(TX3) = 0 in the heterotic

string, then the sum of the Chern-Simons contributions is defined. If one needs 5-

branes wrapped on curves to satisfy tadpole cancellation, then their contribution

to the superpotential also has to be included.

We now use the fact that the logarithmic cohomology Hk
log(X4) for our pair

(X4, X3) is isomorphic to Hk(U), where U = X4\X3. Further we have that

H2n−k(X4, X3) ∼= H2n−k
c (U), where H∗

c denotes compactly supported cohomolo-

gy. It follows that we have a Poincaré duality map Hk
log(X4) → H2n−k(X4, X3).

From the short exact sequence 0→ Ωp
X4
→ Ωp

X4
(logX3)→ Ωp−1

X3
→ 0 we get the

following long exact sequence for Hk
log(X4):

. . . → Hk−2(X3) → Hk(X4) → Hk
log(X4)

res→ Hk−1(X3) → . . . (3.7)

This is precisely the Poincaré dual to the long exact sequence for relative homol-

ogy

. . .→ H2n−k(X3)→ H2n−k(X4)→ H2n−k(X4, X3)
∂→H2n−k−1(X3)→ . . . (3.8)

Now let us take a class α = p1(A)− p1(A0) in H4(X4) which restricts to a trivial

class in H4(X3). From the long exact sequence

. . . → H4(X4, X3) → H4(X4) → H4(X3) → . . . (3.9)

we see that α lifts to H4(X4, X3) ∼= H4
c (U). So now we compute:∫

X4

Ω ∧ (p1(A)− p1(A0)) =

∫
D
p1(A)− p1(A0)
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=

∫
∂D

ωCS(A)− ωCS(A0)

= 2πi

∫
X3

res(Ω) ∧ (ωCS(A)− ωCS(A0)) (3.10)

where D ∈ H4(X4, X3) is the Poincaré dual of Ω. This is what we wanted to

show.

Note that on a log Calabi-Yau, we can rewrite
∫
X4
Ω4,0 ∧ α as an expression

on X3 for any α ∈ H4(X4), whether or not the restriction to H4(X3) is trivial.

To see this, we note that the (0, 4) part of α is Dolbeault exact, so with α0,4 = ∂̄ω

we can write ∫
U
Ω4,0 ∧ ∂̄ω = 2πi

∫
X3

Ω3,0 ∧ ω|X3 (3.11)

where we used the Stokes and Cauchy theorems. However to relate this to the

Chern-Simons action, we need the assumption on the first Pontryagin class.

In general it may not be possible to extend the gauge field A in this way, but

we can still fall back to the definition of the Chern-Simons form in [24], which we

reviewed above. However we see that there’s a further issue. The superpotential

in 4d N = 1 supergravity is a section of a line bundle L over the moduli space,

so there is no room for periodic identifications. Also, the ambiguities of the

holomorphic Chern-Simons action correspond to the periods of Ω3,0, which are

usually dense in C (for example if the rank of H3(X3,Z) is at least three). This is

not a problem if one is only interested in the derivatives, but it seems problematic

whenever we are interested in the value of the action.

This issue reappears in superpotentials for brane configurations more gener-

ally. For example the superpotential for a brane wrapped on a two-cycle C in a

Calabi-Yau three-fold is given by [31]

W =

∫
Γ
Ω3,0 (3.12)

where ∂Γ = C−C0 and C0 is a holomorphic reference curve in the same homology

class. This superpotential is actually closely related to the holomorphic Chern-

Simons action [28, 30, 32, 33]. For holomorphic bundles, the Chern-Simons action

is independent of the choice of hermitian metric and can be written as (3.12) where
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C − C0 is the Chern character ch2, thought of as a Chow class [32]. As noted

in [34], the description using ch2 is then naturally extended to coherent sheaves

and even the derived category. By changing the choice of Γ, again we have an

ambiguity by H3(X,Z), whose image under pairing with Ω3,0 is generally dense.

Nevertheless in string compactification this problem of periodic identifications

is never an issue, as there are additional terms in the superpotential.3 This is

another instance of the principle that the individual terms may be problematic,

and only the sum of the terms has to be well-defined. For example in the heterotic

string we have W ∼ ∫
X Ω3 ∧ (H + ωCS) with dH + dωCS = 0. Since dH is not

identically zero, H does not live in H3(X,Z) but in a torsor, a principal fiber

bundle with structure group H3(X,Z). However H + ωCS does define a class in

H3(X,Z), and W is well-defined up to the usual ambiguity in picking Ω3,0. A

similar phenomenon occurs in type IIB.

We believe that this perspective illuminates the role of Calabi-Yau fourfolds

in the hierarchy of holomorphic field theories. The above expression (3.6) is of

course very reminiscent of the flux superpotential that one encounters in F -theory.

Indeed, it seems very natural to think about the flux superpotential in this way.

Given an F -theory compactification with G-flux in a degeneration limit, let us

consider the part of the flux which comes from W1 or W2 separately. We will

briefly mention the other possible fluxes later.

Up to a shift in the quantization law, we may always express the cohomology

class of the G-flux as G/2π = p1(V ) for some bundle V on Y . According to [35]

the shift is given by −1
2p1(TX4) on a compact real eight-dimensional manifold. In

our context we have instead a log Calabi-Yau manifold (X4, X3). We propose that

the tangent bundle TX4 should be replaced by the logarithmic tangent bundle

Θ ≡ TX4(− logX3), which is the subbundle of TX4 generated in coordinates

by ∂/∂z1, ∂/∂z2, ∂/∂z3, and z4∂/∂z4, where z4 = 0 is a local equation for

X3 ⊂ X4. If X4 is a component of a normal crossings variety Y0 = X4∪X ′
4 whose

components intersect along Z = X3, then TX4(− logX3) is the restriction to X4

of the logarithmic tangent bundle TY0(− logZ) introduced in section 2.1.

3We are grateful to E.Witten for illuminating comments in this regard.
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Thus we can write the superpotential as

W =
1

2π

∫
X4

Ω4,0 ∧ G =

∫
X4

Ω4,0 ∧
[
p1(V )− 1

2
p1(Θ)

]
(3.13)

Here we are implicitly assuming that G|X3 vanishes in H4(X3), otherwise we

should subtract the contribution of a reference connection as discussed above.

Then as before we get:

W =

∫
D

[
p1(V )− 1

2
p1(Θ)

]

=2πi

∫
X3

Ω3,0 ∧
[
ω3(V |X3)−

1

2
ω3(TX3)

]
(3.14)

with ω3 denoting the Chern-Simons form. Here we have used that p1(Θ)|X3 =

p1(TX3). This follows from the exact sequence

0 → TX3 → TX4(− logX3)|X3 → OX3 → 0 (3.15)

which is easily checked using local coordinates.

For the local dP9-fibration discussed in the previous section, this ought to

reproduce the holomorphic Chern-Simons theory on the boundary Z with a single

E8 gauge group, if we restrict to allowed F -theory fluxes.4 This has previously

been noted in [36]. We will show in section 4.3 using the cylinder mapping

for dP9-fibrations that at least we get the same critical set, corresponding to

holomorphic E8 bundles. But the point is really that this is a rather general

property of periods on a log Calabi-Yau, and so quite generally we get such a

Chern-Simons theory living on the boundary for each local piece of our global

model.

Besides the fluxes above, there are additional G-fluxes on W1 ∪Z W2. They

come either from H3(Z,Z) using the boundary map of the Mayer-Vietoris se-

quence, or from G-fluxes that have a pole along Z. This gives rise to extra terms

4It is natural to conjecture an analogous holographic relation for a G2-manifold with superpoten-

tial W =
∫
(ω3(A)+iΦ)∧d(ω3(A)+iΦ) and holomorphic Chern-Simons theory on its Calabi-Yau

threefold boundary.
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in the superpotential on the boundary of the form
∫
X3
Ω3,0 ∧ H. We can un-

derstand this intuitively by dualizing the G-fluxes to homology classes, so that

we can interpret the superpotential as a period integral. The G-fluxes considered

above are cohomology classes on a local piece, so they dualize to a homology class

on that local piece. The superpotential
∫
X3
Ω3,0 ∧H instead comes from periods

of Ω4,0 over vanishing cycles, i.e. homology classes which disappear in the t→ 0

limit. In addition, there are typically also four-cycles which are not closed on the

local pieces individually, and have to ‘pass through the neck.’ This is easily seen

using the Mayer-Vietoris sequence. Periods over such four-cycles diverge with

log(t) and give perturbative corrections to the superpotential on the boundary.

Finally, all these periods receive corrections which are analytic in t, which we

should interpret as instanton corrections on the boundary. We will discuss this

in a more precise language in section 4.

From here it is a natural step to conjecture that in a degeneration limit, the

full theory may be thought of as living on the boundary, not just the holomorphic

sector for which we argued above. As evidence that this is indeed correct, we can

again cite the heterotic and IIB limits of F -theory.

Let us make some side remarks. One can try to generalize many other known

arguments used for topological field theories. A particularly interesting one is the

‘holographic’ relation between Chern-Simons theory on M3 and WZW-models on

M2 = ∂M3, which should have an analogue in a relation between holomorphic

Chern-Simons theory on a log Calabi-Yau three-fold (X3, X2) and a 4d version

of WZW models on X2 = ∂X3. Under a gauge transformation, we have

S(A) → S(A) +
1

8π2

∫
∂X3

Ω2,0 ∧ Tr(A ∧ dgg−1)− 1

24π2

∫
X3

Ω3,0 ∧ Tr(g−1dg)3

(3.16)

where we see a holomorphic version of the WZW term emerging. Note that the

last two terms only depend on the values of the fields at the boundary, and we

have ambiguities corresponding to periods. This holomorphic WZW term was

previously studied in [37].

It could also be interesting to consider Grassmann versions of these theories,

which are used in the context of the twistor string approach to N = 4 super Yang-

Mills theory [38]. The analogy with F -theory suggests that instanton corrections
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in the twistor string can be computed with Hodge theoretic methods by lifting to

a higher dimensional space. One can see hints of this by thinking of D3-branes

as obtained from compactifying M5-branes on an elliptic curve. In the weak

coupling limit, the elliptic curve becomes nodal and the D3-brane theory should

be thought of as living on the nodal divisor. One would like a twistor version of

this relation.

As a further side remark, another part of the analogy says that the analogue

of correlators of Wilson loops in Chern-Simons theory are invariants associated

to holomorphic curves in the holomorphic Chern-Simons theory [30, 29, 39]. In

the abelian case, the holomorphic Wilson loop operator associated to a curve C

is defined as

WC = exp

∫
C
Ω1,0 ∧A0,1 (3.17)

where Ω1,0 is an orientation on C. In the non-abelian case, one would presumably

define it as Det∂̄A|C . In the twistor context, it has been found that the amplitudes
ofN = 4 Yang-Mills theory can be computed from such holomorphic Wilson loops

[40]. This indicates an interesting kind of duality between instanton corrections

in supertwistor space and holomorphic Wilson loops in a dual supertwistor space.

It would be very interesting if some version of this duality exists more generally.

At any rate, we see that from the above point of view it is very natural

to imagine constructing a Calabi-Yau manifold by gluing together local pieces,

independent of any phenomenological considerations.

The Calabi-Yau obtained in this way will have normal crossing singularities.

For many purposes, such a singular Calabi-Yau is practically as good as a smooth

Calabi-Yau. The main difference is that instead of ordinary differential forms,

we should consider logarithmic differential forms Ω•(logD), which behave nicely
under a smoothing. Nevertheless one would like to know if the normal crossing

singularities can indeed be smoothed, for otherwise one might doubt that the

theory exists for finite t. For applications to F -theory, one would also like to

know if the Calabi-Yau obtained from smoothing the normal crossing singularities

admits an elliptic fibration with a section.
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3.3. Smoothing criteria of Kawamata/Namikawa

Thus we now consider a Calabi-Yau Y0 obtained from gluing together a collec-

tion of local models into a normal crossing variety. Then we would like to know

if we can deform it to a smooth global model.

According to Kawamata and Namikawa [8], the normal crossing variety can

be smoothed if it admits a log structure, and some further mild conditions. See

e.g. [41, 42, 43] for many results about log geometry.

Kawamata and Namikawa consider the rather general set-up where the sin-

gular Calabi-Yau d-fold is of the form ∪ZjWi. Then they prove that a smoothing

exists if Y0 is Kähler, admits a log structure, and has H
1(Y0) = Hd−1(Ỹ0) = 0,

where Ỹ0 denotes the normalization of Y0. Locally, Y0 is isomorphic to a hypersur-

face z1 · · · zr = 0 in a neighbourhood of the origin in Cd+1, and the deformation

corresponds to z1 · · · zr = t locally.

For simplicity we will only consider the case Y0 = W1 ∪Z W2. Concretely,

Kawamata and Namikawa prove that a smoothing ofW1∪ZW2 exists in this case

under the following conditions:

1. Z ∈ | −KWi |; in other words, each pair (Wi, Z) is a log Calabi-Yau.

2. H1(OWi) = Hd−1(OWi) = 0. By a Mayer-Vietoris argument, this gives

H1(Y0) = 0, and clearly Hd−1(Ỹ0) = 0 since Ỹ0 =W1
∐

W2.

3. Y0 should be Kähler. This is satisfied if there are ample divisors Hi on Wi

such that H1|Z is linearly equivalent to H2|Z ; then we get an ample line

bundle on Y0 yielding a projective embedding, and thus it follows that Y0

is Kähler.

4. NZ/W1
⊗ NZ/W2

= OZ . This is called the d-semi-stability condition [44],

where d is the dimension of Wi. By proposition 1.1 of [8], d-semi-stability

is equivalent to the existence of a log structure.

Examples of smooth Calabi-Yau three-folds constructed by this method can

be found for example in [8] and [45].
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The proof of the theorem proceeds as follows. For each logarithmic structure,

one can show that the obstruction to a deformation can be lifted order by order

in perturbation theory. Then, the deformation is ‘representable’ over the ring of

formal power series on the disk.

To show that one has an actual deformation, one proceeds as follows.5 In the

analytic category, one knows that the Kuranishi space (i.e. the actual analytic

deformation space) always exists, and then the formal power series result above

shows that there is an analytic smoothing of the variety.

In the algebraic category one can make a similar argument, with the additional

assumption thatH2(OY0) = 0. If one starts with an ample line bundle on Y0, then

the assumption on H2 above implies that the line bundle extends to the analytic

smoothings. It follows that the family extends to a projective family by the

existence of the Hilbert scheme. So again one can match the formal deformation

with an actual deformation.

In order to apply the smoothing theorem of Kawamata/Namikawa to our

situation, there are two issues that we should confront. The first is that Kawa-

mata/Namikawa by itself does not guarantee the existence of a Weierstrass fibra-

tion. This will be addressed in the next subsection. A second problem is that

the Kawamata/Namikawa theorem assumes the local pieces to be smooth. On

the other hand, we are typically interested in the case that W1 has interesting

singularities, to get non-trivial non-abelian gauge groups. We may resolve the

singularities and then apply Kawamata/Namikawa, but it is not completely clear

that the exceptional cycles are preserved by the deformation, so that we can blow

them back down.

Let us think about this problem from a physical perspective. The discriminant

locus Δ of the elliptic fibration of W1 decomposes into two pieces: a multiple of

S0 denoted by Δ0, and a remainder Δ
′ which intersects S0 in the matter curves.

We want Δ0 to be preserved under the smoothing. In gauge theory language, this

means that the gauge group should not get Higgsed under smoothing. When S0

is a del Pezzo, there are no fields in the adjoint representation of the gauge group,

so Δ0 won’t deform by itself. However Δ0 might recombine with Δ′. In gauge

5We are grateful to Y.Kawamata for correspondence on this issue.
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theory language, this corresponds to Higgsing the gauge group by the charged

matter located at the intersection of Δ′ with S0.

So can this happen? Since we are only considering holomorphic questions

here, we should ignore the D-terms. Consider a general superpotential W in

the charged fields φ, φ̃ on Δ0 ∩Δ′, and consider t-dependent deformations. The
problem comes from the t-derivative, if we have terms of the form

W ⊃ P (t) +Q(t)Tr(φφ̃) + . . . (3.18)

which leads to φφ̃ ∼ P ′(t)/Q′(t) for small t. However, substituting the VEVs in
the derivatives ofW with respect to φ, φ̃, we would get a non-trivial equation for t,

whereas we know by Kawamata/Namikawa that there is a one-parameter family

parametrized by t. So perhaps t-dependent terms for Tr(φφ̃) are not generated,

and it is consistent to set the charged fields to zero.

This argument is far from watertight. The question should be closely related

to the choice of log structure. At any rate, we will see some examples later where

we can do the deformation explicitly, and the gauge group along S0 is preserved.

3.4. Criteria for the existence of an elliptic fibration

Let us assume that the central fiber Y0 carries an elliptic fibration. In the

main case studied in this paper the generic elliptic fibers are smooth, but this

is not necessarily true for other interesting examples [7]. We really want the

fibers F to be connected and satisfy χ(F,OF ) = 0. We would now like to see

if the smoothing deformation provided by Kawamata and Namikawa preserves

an elliptic fibration structure. This would be simplest if there were numerical

criteria for the existence of an elliptic fibration on a variety. Such criteria are not

known in complete generality. However there are criteria which cover most cases

of interest, and which are valid in our situation, as was shown recently in [9].

Let us start with some general remarks. Suppose that a variety X of dimen-

sion d has an elliptic fibration π : X → B. Consider an ample line bundle LB on

B, and denote L = π∗LB. Since LB is ample on B, for m large enough the space

of sections H0(X,L⊗m) will give a map from X to projective space such that
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the image is isomorphic to B. This encapsulates an important idea in algebraic

geometry, that rational maps often come from divisors in the manner above, and

that we can try to characterize the morphism through the divisor L. In other

words, instead of the data (X,π) we will consider pairs (X,L), from which π can

be reconstructed. The projection constructed from H0(X,L⊗m) with m large

enough is sometimes called the Iitaka fibration associated to L. The fibers of this

limiting fibration are connected. Note that as necessary conditions for L to be of

the form L = π∗LB, we have the following numerical criteria: L ·C ≥ 0 for every

curve C on X (i.e. L is nef), Ld = 0 and Ld−1 �= 0.

For the moment let’s consider more general fibrations where the fibers F are

still curves, but not necessarily of (arithmetic) genus 1. Let us consider the

holomorphic Euler characteristic

χ(X,Lm) =
∑
i

(−1)iH i(X,Lm) (3.19)

which is a deformation invariant. Using the Leray sequence for π : X → B one

can show that

χ(X,Lm) = χ(F,OF )
md−1

(d− 1)!
Ld−1
B +

md−2

(d− 2)!
Ld−2
B ·R+O(md−3), (3.20)

where R will be written more explicitly below. Thus χ typically grows as md−1.
However, since χ(F,OF ) = 1 − g, χ will actually grow to order at most md−2

precisely when the fibers are elliptic. 6

The divisor R on B is given by

R = −1
2
χ(F,OF )KB +

∑
i

(−1)ic1(Riπ∗OX) (3.21)

6It is interesting to note that by Riemann-Roch, the coefficient of md−1 in χ(X,Ld) is given

by (−1/2)Ld−1 · KX , so the coefficient of md−1 in (3.20) vanishes anyway on a Calabi-Yau.

Indeed, by adjunction c1(KF ) = c1(KX |F ) + c1(NX/F ), but for any fibration we have NX/F is

trivial. It follows that (−1/2)KX · π∗Ld−1
B = (−1/2) deg((KX)|F )Ld−1

B = χ(F,OF )L
d−1
B , since

deg((KX)|F ) = degKF = 2g− 2 = −2χ(F,OF ). So we conclude that the fibers must be elliptic

when KX ∼ 0.
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Using that χ(F,OF ) = 0, R0π∗OX = OB, and c1(R
1π∗OX) = −ΔX/B is (minus)

the class of the discriminant, we can simplify χ(X,L⊗m) to

χ(X,L⊗m) =
md−2

(d− 2)!
Ld−2
B ·ΔX/B +O(md−3) (3.22)

Therefore unless the discriminant locus is trivial, we see that the coefficient of

md−2 must actually be non-zero. Using Riemann-Roch, one further shows that
Ld−2
B ·ΔX/B = Ld−2 · td2(X) as an expression on X, where td2(X) is defined in

terms of a resolution h : X̃ → X as

td2(X) =
1

12
h∗

(
c1(X̃)2 + c2(X̃)

)
(3.23)

So modulo some slight subtleties that we have glossed over, the idea is that we

should have an elliptic fibration if we have a nef divisor L onX, with the following

properties: H0(X,Lm) should grow like md−1, so that the Iitaka fibration of L

gives a projection π : X → B with connected fibers where B has dimension d−1.
And χ(X,Lm) should grow like md−2, so that the fibers are elliptic. The latter
is already a numerical criterion, and if Ld−2 · td2(X) > 0 it turns out the former

can be reformulated as one. Namely it is shown in [9] that a pair (X,L) with

Ld−2 · td2(X) > 0 and KX nef is an elliptic fiber space if and only if

1. L is nef, Ld = 0 and Ld−1 �= 0 (the latter modulo torsion);

2. Ld−1 ·KX = 0 and L− εKX is nef for 0 ≤ ε << 1.

Of course the second condition is automatic if we have KX ∼ 0.

Now that we have a good characterization for the existence of an elliptic fi-

bration, we can ask if it is preserved under a small deformation. It is worth

keeping in mind that this fails in one of the simplest examples, namely the case

of K3 surfaces. The generic deformation of an elliptically fibered K3 surface is

certainly not elliptic. As another example, consider the product of two abelian

varieties A1 × A2 and let π be the projection on the second factor. The general

deformation is a simple abelian variety which has no projection to a lower dimen-

sional abelian variety. So there must be an extra condition if we are to expect an

elliptic fibration after a deformation.
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The main problems are as follows. First, it is not guaranteed that L de-

forms along with X. The obstruction lies in H2(X,OX), so if we require that

H2(X,OX) vanishes then this problem is solved.7 This is the extra requirement

that fails for K3-surfaces and abelian varieties. Second, even when L deforms,

the condition that L is nef is not an open condition in general. This problem is

solved by an induction argument in [9], which can be made both in the algebraic

and in the analytic category.

We conclude that if Y0 admits an elliptic fibration with ΔX/B �= 0 and

H2(Y0,OY0) = 0, then the deformation Yt provided by Kawamata and Namikawa

is also elliptically fibered. As explained in the introduction, this gives a new and

conceptually very interesting way to construct F -theory compactifications, by

assembling the elliptic Calabi-Yau from more fundamental pieces. More general-

ly, we see that F -theory is rather stable: when H2(X,OX) = 0, small complex

structure deformations of X preserve the existence of an elliptic fibration. This is

why the moduli space of an F -theory compactification usually contains an open

subset of the full complex structure moduli space of X.

3.5. Example: bubbling off an SU(5)GUT model

To keep things simple and illustrate the ideas, we consider the following ex-

ample. We take Y to be an elliptic fibration with section over B3 = P3, with

I5 singularities along a smooth irreducible divisor S ⊂ B3 given by z = 0. We

explicitly degenerate this as

Yt → W1 ∪Z W2 (3.24)

where W1 is a dP9 fibration over S, and W2 is an elliptic fibration over P
3 with

boundary Z, but different from Y . This is one of the simplest examples which

does not have a K3-fibration and therefore has no heterotic dual. See figure 2 for

a schematic picture. It is clear that the same analysis may be applied to other

examples, eg. the compact examples introduced in [2].

7If furthermore H1(X,OX) = 0 then this deformation is unique.
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(A) (B)

CP3
CP3

SU(5)GUT

SU(5)GUT

E8  Chern-Simons

Figure 2: (A): Global model with I5 singular fibers along a divisor

S, corresponding to an SU(5)GUT gauge theory. (B): Degenerate

version of the global model, in which the singular elliptic fibers

describing the SU(5)GUT gauge theory have been pushed to a

local dP9-fibration.

The elliptic fibration over P3 can be written in the Tate form

y2 + a1xy + a3 = x3 + a2x
2 + a4x+ a6, (3.25)

where each of the ai are homogeneous polynomials of degree 4i on P3. The I5

condition along the hyperplane z = 0 says that ai = biz
i−1 for each i, where bi is

a homogeneous polynomial of degree 3i+ 1 on P3. It will be convenient to write

ai = biz
i−1 + ciz

i (3.26)

There is some ambiguity in such a parametrization, as was the case in [18]. In the

present example, we can make it more canonical by requiring bi to be independent

of z.

Applying our results from Section 2.3, we can achieve the normal cone de-

generation by simply inserting a factor of t in front of each bi (since i − ni = 1

for all i in the case of I5). Doing so and changing the signs of a1 and a3 for

convenience, we have the following elliptic fibration which extends to the normal
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cone degeneration:

y2 = x3 + a1(t)xy + a2(t)zx
2 + a3(t)z

2y + a4(t)z
3x+ a6(t) z

5. (3.27)

where

ai(t) = tbiz
i−1 + ciz

i (3.28)

For t �= 0, there is clearly an I5 along z = 0, and ai(t) vanishes to order i along

z = t = 0 as required. Applying our previous results, at t = 0 we get W1 to be

the local model with I5 singularities.

Let’s look at the limit in the neighborhood of the intersection of W1 and

W2. In the notation of Section 2 we have the total space B̃ of the normal cone

degeneration, and for t = 0 we have two components. In the current situation,

one component (the base of W2) is isomorphic to P3, and the other component

(the base of W1) is isomorphic to the projective bundle P(O ⊕ O(1)) over P2.

Local coordinates near the intersection of these two components include z and

(t/z), so that t = 0 has two components because t = z(t/z). The component

z = 0 is part of the exceptional divisor E and t/z = 0 gives P3.

To pass to the elliptic fibration over the normal cone degeneration, we replace

the canonical bundle of P3 by the relative dualizing sheaf ωπ. The effect of this

is to require the removal of i copies of the exceptional divisor from each ai(t). In

our local coordinates, this means that we must replace each ai(t) by âi = ai(t)/z
i,

so that

âi =
t

z
bi + ci. (3.29)

Thus, (3.27) becomes after the normal cone degeneration

y2= x3 +
t

z

(
b1xy + b2x

2 + b3y + b4x+ b6
)

+
(
c1xy + c2x

2 + c3y + c4x+ c6
)

(3.30)

We restrict to the P3 component by putting t/z = 0. This gives us W2:

y2 = x3 + c1xy + c2x
2 + c3y + c4x+ c6. (3.31)

The normal crossing divisor Z = W1 ∩W2 is given by further setting z = 0 in

this equation. Note that the ci are sections of (KB3 ⊗O(S))−i, equivalently they
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are sections of powers of the log canonical bundle K(B3,S) = KB3 ⊗ O(S). So

ci|z=0 are sections of K−i
S by adjunction, and Z is an elliptic Calabi-Yau three-

fold. Equation (3.31) is simply a generic elliptic fibration W2 over P
3 with the

property that (W2, Z) is a log Calabi-Yau fourfold.

By setting z = 0 in (3.30) and using t/z as a local coordinate, we are describing

a patch of W1 near the infinity section, where it is glued onto W2. The I5

singularities are located at the zero section S0, which is disjoint from the infinity

section S∞. To see them explicitly, we rescale by z/t and use z̃ = z/t as a local

coordinate as we did in (2.21) where the more general s was used instead of z.

We get

y2= x3 + b1xy + b2z̃x
2 + b3z̃

2y + b4z̃
3x+ b6z̃

5

+(c1z̃xy + c2z̃
2x2 + c3z̃

3y + c4z̃
4x+ c6z̃

6). (3.32)

Here, all the bi and ci are evaluated at z = 0. We recognize the typical form of a

dP9-fibration with I5 singularities at z̃ = 0.

3.6. The general case

We return to the general case. Suppose conversely we are given two local

models, i.e. two elliptically fibered log Calabi-Yau fourfolds (Wi, Z) for i = 1, 2

which we glue along their common elliptically fibered boundary Z to form Y0 =

W1 ∪Z W2. We want to know when this model corresponds to an F-theory limit,

i.e. whenW1∪ZW2 has a smoothing to an elliptically fibered Calabi-Yau fourfold

Yt.

As discussed earlier, we can find a smoothing when the Kawamata-Namikawa

conditions hold. Let Bi be the base ofWi and let S be the base of Z, so that B0 =

B1∪B2 is the base of Y0. We must assume that H1(OWi) = 0 (for which it suffices

to take Bi withH1(OBi) = 0 by the Leray spectral sequence), and the assumption

that Y0 is Kähler is easy to achieve in practice. The only other obstruction to the

smoothability of Y is the d-semistability condition NZ,W1 ⊗NZ,W2 
 OZ , which

we now assume. With these assumptions, Y0 smooths. If we further assume that

the discriminant ΔY0/B0
is non-empty and H2(OY0) = 0, then the smoothing is

elliptically fibered and we are done. We will return to these general considerations
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later, but we digress slightly to specialize a bit.

As we have already discussed, the most interesting situation for F -theory

occurs when one of the local models (say W1) has a dP9 fibration as well as a

prescribed singularity along a divisor S0 ⊂ B1 disjoint from S. We now claim that

these assumptions imply that B0 coincides with the limit B0 of the degeneration

to the normal cone of S ⊂ B2, and we are back in the situation illustrated by

examples in Section 2.3 and Section 3.5. Even still, we have gained something, as

the more abstract Kawamata-Namakawa method makes it clear that our earlier

assumptions of Tate form were not essential, so that the smoothing can be done

if the prescribed singularities are given in a more general way. Furthermore, we

can relax the hypotheses in the previous paragraph (for example by dropping the

requirement of a heterotic dual) and achieve additional F-theory limits with more

general bases B0.

We now prove our claim. The assumption is that B1 is fibered over S by P1s,

with disjoint sections S and S0. This implies that B1 is the projectivization of a

decomposable bundle L1⊕L2, hence is isomorphic to P(OS⊕L) for a line bundle

L on S, with either L = L2⊗L−11 or L = L1⊗L−12 . Since B1−S0 is the total space

of NS/B1
, we see that B1 must therefore be P(OS ⊕ NS/B1

). Next, since NZ/Yi

is the pullback of NS/Bi
by the elliptic fibration, the d-semistabity condition is

that the pullback of NS/B1
⊗ NS/B2

is trivial. However, since Pic(S) → Pic(Z)

is injective, we conclude that NS/B1

 (NS/B2

)−1. Then B2 = P(OS ⊕NS/B1
) 


P(OS ⊕ N−1
S/B2

) 
 P(NS/B2
⊕ OS). Note that NS/B2

is now identified with a

neighborhood of S0 and we have achieved the limit of the degeneration to the

normal cone.

We now return to the general case and be more explicit, using Weierstrass

form. We start with projective bases B1 and B2 with H1(Bi,OBi) = 0 and

H2(Bi,OBi) = 0, sharing a common divisor S with inverse normal bundles in

the respective components. Let Ki = KBi + S be the restriction of the dualizing

sheaf of B0 to Bi, and assume that −4Ki and −6Ki have enough sections fi ∈
H0(Bi,−4Ki) and gi ∈ H0(Bi,−6Ki) with (f1)|S = (f2)|S and (g1)|S = (g2)|S so
that we have a Weierstrass fibration

y2 = x3 + fx+ g, (3.33)
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where f and g are the sections on B0 obtained from the gluing.

Let’s see what else we need for all the necessary conditions. The first condition

was that the pairs (W1, Z) and (W2, Z) should be log Calabi-Yau spaces, but that

is automatic since fi and gi were constructed from the log canonical bundles.

The remaining conditions are also easy to check or achieve. We have already

checked that the d-semistability condition holds since it pulls back from the base.

In order for B0 to be projective, we need to find ample line bundles Li on Bi

which agree on S. This is easy to achieve if the restrictions of Pic(Bi) to Pic(S)

are big enough; or we can just assume it. And there is nothing to check in the case

of the normal cone degeneration since the degeneration can be achieved within

projective geometry by blowups as we have seen. Thus, with the above mild

assumptions, Y0 deforms.

Finally, we want to what conditions are needed so that the deformation is

elliptic. Since we are using Weierstrass form, we only need generic enough sections

f, g for the discriminant Δ = 4f3+27g2 to be a nontrivial divisor, so we assume

that. Furthermore, H2(OY0) = 0 by a Leray spectral sequence argument.

Then we may apply the results of [9] discussed in Section 3.4, and Y0 deforms

to an elliptically fibered Calabi-Yau fourfold, with a built-in degeneration limit.

4. The form of the Lagrangian in a degeneration limit

As we explained, we are not really interested in complex spaces themselves,

but in holomorphic field theories on such spaces. Such holomorpic field theories

lead to interesting moduli spaces, and differential equations on bundles over these

moduli spaces. Degeneration limits give rise to boundaries on such moduli spaces,

and we now want to study how correlators (solutions of differential equations)

behave near a boundary.

Let us think back for example about the case of conformal blocks of CFTs on

a Riemann surface. The conformal blocks of a CFT are mathematically described

by (twisted) D-modules, which are roughly speaking holomorphic vector bundles
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over the moduli space with a (projectively) flat connection. The connection

usually develops a logarithmic singularity when the Riemann surface degenerates

(∇ ∼ d + L0dt/t), and the monodromies give an action of the mapping class

group on the correlators. This action plays an important role in two-dimensional

CFT.

One expects similar phenomena for holomorphic field theories in higher di-

mensions, and F -theory provides another case study. In the large volume limit of

F -theory the moduli space is a fibration, with base given by the complex struc-

ture moduli space of the Calabi-Yau and fiber given by the intermediate Jacobian

J 2 = H3
C/(F

2H3
C+H3

Z). In what follows we focus on the complex structure mod-

uli and ignore the Jacobian. We get a D-module structure from the Gauss-Manin

connection on the Hodge bundle over the complex structure moduli space of the

Calabi-Yau.

In this section we want to understand the behaviour in a semi-stable degener-

ation limit. Fortunately the general aspects of this problem are well-understood.

In appropriate coordinates, near the degeneration limit the Gauss-Manin connec-

tion takes the form

∇ = d+N
dt

t
(4.1)

where N is a nilpotent matrix. Once we know the matrix N , we can use this

to make qualitative statements about the behaviour of the effective lagrangian

without having to calculate a single period integral. As we will see, the matrix

N can be deduced from the geometry of the central fiber. Thus this fits very well

with the cutting-and-gluing approach.

4.1. Asymptotics from monodromy

On a smooth fourfold, the superpotential for the supergravity fields is the flux

superpotential, which appears to take the form of a period integral:

W =
1

2π

∫
Y
Ω4,0 ∧ G. (4.2)

with G/2π − 1/2p1(TY ) having integral periods. Thus we want to understand

the behaviour of periods in a semi-stable degeneration limit, which is a classical
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problem in Hodge theory.

We have to make some caveats. For phenomenological applications we are

not quite interested in smooth Calabi-Yau spaces, but in situations where certain

exceptional cycles are contracted, in order to get non-abelian gauge symmetries.

The above superpotential does not capture interactions of quantized M2 solitons

wrapped on exceptional cycles, since such degrees of freedom are much heavier

and are not obtained by KK reduction from supergravity. Such degrees of freedom

however become important in the limit that the exceptional cycles shrink to zero,

and there exist branches of non-abelian solutions which are not captured by (4.2).

Nevertheless we expect the t-dependent corrections to be qualitatively similar.

Further, the superpotential is often thought of as being defined on the infinite

dimensional space of field configurations, i.e. it also depends on all the massive

KK modes. Here we are only evaluating it on harmonic forms. Still let us see

what we can learn from only a few general considerations.

The qualitative form of the periods in a degeneration limit is rather con-

strained, and can be understood using Hodge theory. We have given a brief

review of the relevant material in appendix A. Here we will be interested in gen-

eral properties of the case of a semi-stable degeneration πY : Y → Δ, where Yt is

a smooth Calabi-Yau fourfold for t �= 0, and Y0 = W1 ∪Z W2, with (W1, Z) and

(W2, Z) log Calabi-Yau spaces and Z a Calabi-Yau threefold.

The lattice H4(Yt,Z) forms a local system over the t-plane away from t = 0.

We can use parallel transport to get an isomorphism with H4(Yt′ ,Z) for t
′ �= t.

Now let us circle around the origin of the t-plane. Then the cycles in H4(Yt,Z)

get rearranged, and this is expressed as an automorphism M of H4(Yt,Z) called

the monodromy transformation. It is known in general that up to a base change

(i.e. reparametrizing t as t ∼ t̃k), the monodromy transformation is unipotent.

In our situation with a semistable degeneration, the monodromy was already

unipotent and so a base change is not necessary. We also introduce the logarithm

N = log(M), which is nilpotent when M is unipotent.

Let us collect the periods of Ω4,0 with respect to some basis of H4(Yt,Z) in

a vector �Π(t). Now the Schmid nilpotent orbit theorem says that as t → 0 the
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periods are approximated in the following way:

�Π(t) ∼ e
1

2πi
N log(t)�Π0 (4.3)

where N is the logarithm of the monodromy matrix, and �Π0 is independent of

t. The expression on the right, i.e. the nilpotent orbit, may be thought of as a

perturbative approximation to the periods. Thus we want to know the matrix N

and we want to know �Π0. In other words, we want to know the limiting mixed

Hodge structure associated to the degeneration t→ 0. In the following, we delve

into a slightly lengthy analysis in order to derive this. Readers who might not

want to follow this derivation may skip to equation (4.36), where we write the

form of the superpotential that follows from our analysis.

4.2. The limiting mixed Hodge structure

As reviewed in appendix A, there are at least two ways for getting the limiting

mixed Hodge structure. The approach we will use below is the Clemens-Schmid

exact sequence, which allows us to compare the limiting mixed Hodge structure

for t→ 0 with the mixed Hodge structure of the central fiber Y0. An alternative

approach, also briefly mentioned in appendix A, is to study the mixed Hodge

structure of the logarithmic cohomology groups Hk
log(Y0) of the central fiber.

The part of the Clemens-Schmid sequence that we will use is

· · · → H6(Y0)
α→ H4(Y0)

i∗→ H4
lim(Yt)

N→ H4
lim(Yt)

β→ H4(Y0) → · · · (4.4)

Since Y0 is a deformation retract of Y, we see that the homologies and comologies
of Y0 are identified with those of Y. Then i∗ is identified with the usual pullback
i∗ : Hk(Y) → Hk(Yt). The maps α and β are induced by Poincaré duality on

Y and Yt respectively. All of the terms in the Clemens-Schmid sequence carry

natural mixed Hodge structures. The maps α, i∗, N , and β are morphisms

of mixed Hodge structures, shifting the degrees by (5, 5), (0, 0), (−1,−1), and
(−4,−4) respectively.

Now we need the weight filtration for H4(Y0). There is a general prescription

which can be found in appendix A, but in the present case we can easily read it
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off from the Mayer-Vietoris sequence for Y0, which is given by

. . . → H3(W1)⊕H3(W2)
d3→ H3(Z)→

→ H4(Y0) → H4(W1)⊕H4(W2)
d4→ H4(Z)→ . . . (4.5)

This gives a short exact sequence

0 → coker(d3) → H4(Y0) → ker(d4) → 0 (4.6)

and so the weight filtration on H4(Y0) is simply given by

0 ⊆ W3 ⊆ W4 = H4(Y0) (4.7)

with Gr4H
4(Y0) = ker(d4) and Gr3H

4(Y0) = coker(d3).

The Clemens-Schmid sequence (4.4) induces exact sequences on the graded

pieces. The Mayer-Vietoris sequence on homology is given by

. . .→ Hk(W1)⊕Hk(W2) → Hk(Y0) → Hk−1(Z) → . . . (4.8)

This shows that the non-zero graded pieces of H6(Y0) are of weights −6 and −5,
while those of H4(Y0) are of weights −4 and −3.

Since Gr−7H6(Y0) = 0 and Gr1H
4(Yt) = 0, the relevant graded piece of (4.4)

gives an isomorphism

Gr3H
4(Y0) ∼= Gr3H

4
lim(Yt) (4.9)

so that

Gr3H
4
lim(Yt) 
 coker(d3). (4.10)

We also have the isomorphism

Gr5H
4
lim(Yt)

N
 Gr3H
4
lim(Yt) (4.11)

by a general property of the monodromy weight filtration, or alternatively from

another graded piece of (4.4).
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Let p be the smallest integer such that GrpH
4(Yt) �= 0. We claim p = 3. If

p < 3, we have from (4.4) the short exact sequence

GrpH
4(Y0) → GrpH

4(Yt)
N→ Grp−2H4(Yt) (4.12)

Since the left and right terms vanish by our assumptions, it follows that also

GrpH
4(Yt) = 0, a contradiction. Because Nk : Gr4+k→Gr4−k is an isomorphism,

we see that the only non-zero graded pieces of H4(Yt) are Gr3, Gr4 and Gr5, and

the matrix N satisfies N2 = 0. Since the weight filtration is non-trivial, we also

have N �= 0. More generally this argument shows that if the central fiber only

has strata up to codimension k, so that if Wn−mHn(Y0) = 0 for m > k, then we

will have Nk+1 = 0.

To summarize, we found that N2 = 0 but N �= 0. The monodromy weight

filtration on H4(Yt) therefore has the form

0 ⊆ W3 ⊆ W4 ⊆ W5 = H4
lim(Yt) (4.13)

where W3H
4(Yt) = im(N) and W4H

4(Yt) = ker(N). We also found the following

isomorphisms of Hodge structures:

Gr5H
4
lim(Yt)

N
 Gr3H
4
lim(Yt) 
 Gr3H

4(Y0) 
 coker(d3). (4.14)

One can say more than this. From (4.4) we also see that

Gr4H
4
lim(Yt) 
 Gr4H

4(Y0)/ker(i
∗) 
 ker(d4)/ker(i∗) (4.15)

as well as

W4H
4
lim(Yt) 
 W4H

4(Y0)/ker(i
∗) = H4(Y0)/ker(i

∗) (4.16)

Now the map α consists of Poincaré dualityH6(Y0) ∼= H6(Y)→ H4(Y, ∂Y), which
is an isomorphism, followed by the natural map H4(Y, ∂Y)→ H4(Y) ∼= H4(Y0).

Furthermore, by the Thom isomorphism we have H4(Y, ∂Y) ∼= H2(Y0). Then the
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geometric picture for ker(i∗) = im(α) is as follows. When we glueW1 andW2, we

have to make certain identifications on the cohomology, as we can see from (4.5).

Similarly we have to make certain identifications in homology. From (4.8) we see

that when a four-cycle in Z embeds non-trivially in W1 and W2, then it has to be

identified in Y0. Now the Poincaré duals of these classes in W1 and W2 are not

identified when we glue; they descend to two distinct cohomology classes in Y0.

But we expect that they should become equivalent when we deform to Yt, since

Yt is smooth and therefore has Poincaré duality. As a result a linear combination

of these classes is in the kernel of i∗. We can see this a bit more easily using the

logarithmic approach, using equation (A.24).

As we will see in a bit more detail in the next section, the remaining in-

formation in the flag structure (4.13) can also be extracted. We can now use

this knowledge of the monodromy, together with the nilpotent orbit theorem, to

compute the asymptotics of periods in the degeneration limit.

4.3. Asymptotic form of the superpotential

The nilpotent orbit theorem [14] says that the degeneration of Hodge struc-

tures behaves asymptotically like exp( 1
2πi log(t)N)F •lim, where F •lim is the Hodge

filtration of the limiting mixed Hodge structure on H4(Yt). We recall this in the

Appendix (cf. (A.26)). Here we apply it to compute the asymptotics of periods

in our degeneration limit.

For the holomorphic four-form, we are interested in the F 4 component. Let

Ω0 ∈ F 4 be a nonzero element of the one-dimensional vector space F 4. Then

NΩ0 ∈ F 3 ∩W3 is nonzero. This gives, since N
2 = 0

Ω(t) ∼ Ω0(t) ≡ Ω0 +
1

2πi
log(t)NΩ0 (4.17)

In order to find the superpotential, we need to write the period map. Let us take

a basis
〈
ei, f j , gk

〉
for W5 = H4(Yt,Z) which is adapted to the monodromy weight

filtration. That is, the ei projects to a basis of W5/W4, the f
j project to a basis

W4/W3, and the g
k span W3. The matrix N acts as Nei = gi, Nf j = Ngk = 0.

We also consider the dual basis 〈ei, fj , gk〉 for H4(Yt,Z). Then we can decompose
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Ω0 as

Ω0 = ei
∫
ei

Ω0 + f j

∫
fj

Ω0 + gk
∫
gk

Ω0 (4.18)

and we can decompose the F 4 part of the nilpotent orbit as

Ω0(t) = ei
∫
ei

Ω0 + f j

∫
fj

Ω0 + gk
(

1

2πi
log(t)

∫
ek

Ω0 +

∫
gk

Ω0

)
(4.19)

Using the basis
〈
ei, f j , gk

〉
to fix an isomorphism Π : H4(Yt,Z) ∼= ZdimH4

, we

can think of this as the period map. As our decomposition suggests, we can

understand the properties of Ω0 in F 4∩W5 = F 4H4
lim(Yt) by successively building

up W5 from the pure Hodge structures on Gr5, Gr4 and Gr3 using the weight

filtration.

First we consider the image of Ω0 in F 4Gr5, by which we mean the projection

(F 4 + W4)/W4. Here we can use the fact that F 4Gr5 
 F 3coker(d3) is an

isomorphism. Define
〈
di
〉
to be a basis for coker(d3) which gets mapped to

〈
ei
〉

and
〈
gi
〉
under the isomorphisms Gr5 ∼= Gr3 ∼= coker(d3), and let 〈di〉 be its dual.

Under the isomorphism we have

∫
ei

Ω0 =

∫
di

Ω3,0 (4.20)

This is the expression we will use for the first term in (4.18).

In the next step, we try to lift this to F 4(W5/W3) = (F 4 +W3)/W3. Note

that from the short exact sequence 0 → W4 → W5 → Gr5 → 0, it follows that

W5/W3 sits in the following short exact sequence of mixed Hodge structures:

0 → Gr4 → W5/W3 → Gr5 → 0 (4.21)

and we are interested in the F 4 part. We have already discussed F 4Gr5, and in

fact we have F 4Gr4 = (F 4∩W4+W3)/W3 = 0. To see this, Gr4 has a weight four

Hodge structure so could a priori have subspace of Hodge type (4, 0). However,

Gr4H
4(Yt) is a quotient of ker(d

4) ⊂ H4(W1) ⊕H4(W2). Since W1 and W2 are

merely log Calabi-Yau fourfolds, they have no holomorphic four-forms, so indeed
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F 4Gr4 = 0. For future use, also note that F 4 ∩W3 = 0, as Gr3 has a Hodge

structure of weight three which trivially has no F 4 part. It then also follows that

F 4 ∩W4 = 0.

Now even though F 4Gr4 = 0, it is not true that
∫
fj
Ω0 vanishes. The reason

is that W5/W3 is not simply a sum of graded pieces, but rather a non-trivial

extension of mixed Hodge structures. So to recover F 4(W5/W3), we also need to

study this extension class, denoted by Ext1MHS(Gr5,Gr4).

Let us see this more explicitly for one of the simplest possible extensions,

namely the extension of the constant Hodge structure Z(0) by Z(1). Explicitly, we

have HZ =
〈
h0, h1

〉
. The weight filtration is given by W−2H =

〈
h0

〉 ⊆W0 = H,

and the Hodge filtration is given by F 0HC =
〈
h1 − log(q)h0

〉 ⊆ HC for some

q ∈ Ext1MHS(Z(0),Z(1)) = C∗. Note that F 0 ∩W−2 = 0, much like F 4Gr4 = 0

above, since F 0 and W−2 are two distinct planes in C2, which intersect only at

the origin. Nevertheless, if in analogy with above we denote h1 − log(q)h0 by Ω,

then we could write the period map as

Ω = h1
∫
h1

Ω+ h0
∫
h0

Ω (4.22)

and we have
∫
h0
Ω = − log(q) �= 0.

The problem of characterizing extensions of mixed Hodge structures has been

studied by Carlson [46]. Let us consider a general extension

0 → A → C → B → 0 (4.23)

If the mixed Hodge structure is separated, in the sense that the highest weight

of A is less than the lowest weight of B, then the generators of Ext1MHS(B,A) are

parametrized by the generalized complex torus

J 0Hom(B,A) ≡ HomC(B,A)/(F 0Hom(B,A) + HomZ(B,A)) (4.24)

Here F 0Hom(B,A) = {φ ∈ HomC(B,A)|φ(F pB) ⊆ F pA}. Furthermore, in

geometric situations we can usefully represent these maps as follows. Let σC :
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B → C be a section, i.e. a map such that σ(F pB) ⊆ F pC but which does not

preserve the integral structure. Let rZ : CZ → AZ be an integral retraction,

which is defined as follows: take an integral basis ei for A, consider the dual

basis ei for A∨, and lift it to C∨ using the surjection C∨ → A∨. Then we

have rZ(c) =
∑

i 〈c, ei〉 ei. This preserves the integral structure but not the

Hodge structure. Using these maps, the extension classes may be represented as

ψ = rZ◦σC. In the above example, this would give ψ(Ω) = h0
∫
h0
Ω = − log(q)h0.

We want to apply this result to our short exact sequence:

0 → Gr4 → W5/W3 → Gr5 → 0 (4.25)

which is certainly separated. Let us first discuss an important special case, which

arises in heterotic/F -theory duality (see [47] and appendix C of [4]) and in IIB/F -

theory duality [7]. In these cases we have certain special divisors (“cylinders”)

R1,2 ⊂ W1,2, intersecting the boundary in R1,2 ∩ Z = C1,2, which can be used

to construct an isomorphism of Hodge structures appearing on the two sides. In

the E8 × E8 case, we get an isomorphism

H2(C1)Λ → H4(W1)Λ (4.26)

and similarly for W2. Here H4(W1)Λ ⊂ H4(W1) is the sublattice corresponding

to the allowed G-fluxes in F -theory, and H2(C1)Λ is a sublattice which is defined

as follows: we have an action of the E8 Weyl group on the cohomology of C1,

and hence the cohomology of C1 decomposes into isotypic pieces. The sublattice

H2(C1)Λ corresponds to the eight-dimensional representation, obtained from the

action of the Weyl group on the E8 root lattice. To descend to Gr4, we further

have to restrict this to ker(d4). Such classes end up in H2(C1)van, which is defined

to be the kernel of the map i1∗ : H2(C1) → H2(Z). One should be careful that

the surface C1 is not smooth. There are several ways for dealing with this, but

in the present discussion we will ignore the singularities. There is a very similar

story for the SO(32) heterotic and IIB limits [7]. In that work we also take the

singularities into account.

As before, we also have the isomorphism Gr5 ∼= coker(d3). In heterotic/F -

theory duality and IIb/F -theory duality, this is actually simply H3(Z). So ap-
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parently, our short exact sequence (4.25) is describing an extension of H3(Z) by

a subgroup of H2
van(C1,2).

Now there is indeed such an extension, and its F 4 part (or F 3 part after

the isomorphisms, which shift the degree down) was described in some detail in

section 9 of [33]. Namely if H3(C) = 0, which holds for example if C is very

ample, we have the following exact sequence for the relative cohomology group

H3(Z,C):

0 → H2
van(C) → H3(Z,C) → H3(Z)→ 0 (4.27)

Further restricting to H2(C)Λ, as we will implicitly assume in the following, the

extension yields a subgroup of H3(Z,C). Then we can apply Carlson’s prescrip-

tion to get an explicit expression for the extension class. We take an integral basis

cj for H2
van(C) mapping to f

j in Gr4, and denote the dual basis of H2,van(C) by ci.

A lift to H3(Z,C) is given by choosing a set of three-chains Γj such that ∂Γj = cj .

Note that such a lift is ambiguous up to classes in H3(Z,Z). We further take the

holomorphic three-form Ω3,0 in H3(Z) and lift it to H3(Z,C), which can be done

since it vanishes in H2(C). Then the homomorphism representing the F 3 part of

the extension class is given by

ψ =
∑
j

cj ψj =
∑
j

cj
∫
Γj

Ω3,0 (4.28)

We recognize this as one of the ways to write the superpotential for 7-branes

wrapped on C ⊆ Z, with worldvolume gauge flux given by cj . As noted above C

is not smooth, but we will ignore the singularities here. It is shown in [33] that

when C is smooth, ψ (or more precisely, any integral linear combination of the

individual terms) has all the expected properties: it varies holomorphically in

the complex structure moduli, and its critical locus (with respect to the complex

structure moduli that keep Z fixed) is the Noether-Lefschetz locus, where the

worldvolume gauge flux is of Hodge type (1, 1). Up to a shift by a class inherited

from H2(Z), which is always of type (1, 1) as h2,0(Z) = 0, a point on the critical

locus thus determines the spectral data of a holomorphic E8 bundle on Z. Also,

by changing the bounding chains Γj , we see that ψj is defined only modulo the

periods of Ω3,0 over the lattice H3(Z,Z), as expected for a Chern-Simons-like
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functional. In the present context, this is a reflection of the Hodge structure

being of mixed type.

In general we should probably not expect such nice divisors as R1 and R2

above. We will use a different description. Recall that despite the suggestive

notation, Ω0 is not quite the holomorphic four-form on Yt, rather it is the F 4

part with respect to the limiting mixed Hodge structure on H4(Yt). However,

there is a sense in which it corresponds to a (4, 0) form. For t �= 0 the holomorphic

(4, 0) form is a section of a line bundle F4 over the disk Δt, which extends over

the origin. Geometrically such a section determines a logarithmic (4, 0) form on

the central fiber Y0, up to periodic identifications of the residues.

Now we can try to relate this to the discussion of section 3 by using Steen-

brink’s description of the limiting mixed Hodge structure, which uses the loga-

rithmic cohomology H4
log(Y0). The limiting mixed Hodge structure corresponds

to the obvious Hodge filtration and a less obvious weight filtration on H4
log(Y0),

as discussed in appendix A. The F 4 part is generated by the logarithmic (4, 0)

form obtained above.

Let us look at the representing homomorphism for the extension (4.25), using

this description of the limiting mixed Hodge structure. We take an integral basis

f̃ j for Gr4, take its dual f̃j , and lift to fj in the dual of W5/W3. Geometrically,

the fj correspond to cycles in H4(W1) or H4(W2), up to a linear combination of

‘vanishing cycles.’ Then the relevant part of the representing homomorphism is

given by

ψ =
∑
j

f̃ j

∫
fj

Ω4,0Y0
(4.29)

The ambiguities by the vanishing cycles correspond to ambiguities by the periods∫
ei
Ω0 discussed previously.

Thus we have

ψj =

∫
fj

Ω0 =

∫
fj

Ω4,0Y0
(4.30)

But the expressions above are precisely the integrals we previously encountered

in section 3.2, up to the usual ambiguity by H3(Z,Z). As we saw, we can rewrite

them on Z as
∫
Z Ω

3,0 ∧ ωCS , see eg. equation (3.14). An alternative strategy is
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to note that W5/W3 is dual to W4 with respect to the polarization, so that we

can equivalently study the extension class for 0→ Gr3 →W4 → Gr4 → 0.

In the final step, we want to lift F 4(W5/W3) to F 4 ∩W5. Equivalently since

F 4 ∩W4 = 0 and since we have the exact sequence

0 → W4 →W5 → Gr5 → 0 (4.31)

we can try to lift the extension class Ext1MHS(Gr5,Gr4) to Ext1MHS(Gr5,W4).

From the short exact sequence 0→ Gr3 →W4 → Gr4 → 0, we get the long exact

sequence

. . .→ Ext0(Gr5,Gr4)→ Ext1(Gr5,Gr3)→ Ext1(Gr5,W4)→ Ext1(Gr5,Gr4)→ 0

(4.32)

Here we use the fact ([48], proposition 3.35) that ExtpMHS vanishes when p ≥ 2. So

we see that Ext1MHS(Gr5,Gr4) can always be lifted to Ext
1
MHS(Gr5,W4), but the

choice of lift is parametrized by a class in Ext1MHS(Gr5,Gr3). These extensions

are indeed non-trivial. If Gr5 were one-dimensional, this is essentially our earlier

example, the non-trivial extension of Z(0) by Z(1).

Let us try to write the representing homomorphism using the logarithmic

(4, 0) form. We take a three-cycle dk in H3(Z,Z) and lift it to the dual of W5.

We can represent this by a pair of four-chains gk = (c1,k, c2,k) in W1 and W2,

such that ∂c1,k = −∂c2,k = dk. Then we have

∫
gk

Ω0 =

∫
gk

Ω4,0Y0
(4.33)

It is not completely clear how to write this as a simple expression, but at least

we can argue that the expression can be localized on Z. To see this, suppose

that we pick another lift c̃1,k with ∂c̃1,k = dk. Then c1,k − c̃1,k is a closed four-

cycle on W1. Therefore modulo certain discrete ambiguities given by the periods∫
fj
Ω0 (and actually also

∫
ei
Ω0), the expression is independent of the extension of

the cycle away from Z. Furthermore we have already seen previously that these

ambiguities can be rewritten as expressions on Z, so the result follows. We will

write it informally as
∫
gk
Ω0 =

∫
dk
Φ.
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To summarize, let us collect all the pieces. The period map for the nilpotent

orbit is of the form

Ω0(t) = ei
∫
di

Ω3,0 + f j ψj + gk
(

1

2πi
log(t)

∫
dk

Ω3,0 +

∫
dk

Φ

)
(4.34)

Geometrically, we think of
∫
ei
Ω(t) as periods over the vanishing cycles,

∫
fj
Ω(t) as

periods over cycles in H4(W1)⊕H4(W2), and
∫
gk
Ω(t) as periods over four-cycles

which have to ‘cross the neck.’

For comparison with expressions predicted by dualities, we define the variable

T =
1

2πi
log(t) (4.35)

Then we have found (see (A.26) for a more precise statement) that for any semi-

stable degeneration Yt → Y0 =W1∪Z W2 with W1,2 log Calabi-Yau fourfolds, the

flux superpotential W = 1
2πi

∫
Yt
Ω4,0 ∧ G is of the asymptotic form

W =

∫
Z
Ω3,0∧H+

∫
Z
Ω3,0∧ωCS+T

∫
Z
Ω3,0∧H̃+

∫
Z
Φ∧H̃+O(Te2πiT ) (4.36)

Here the first term comes from F 4Gr5; the second part comes from the F 4 part

of the extension of Gr5 by Gr4, and the last part comes from log(t)N acting on

F 4 ∩W5 and from the F 4 part of the extension of W5/W3 by W3. The exponen-

tial terms are corrections to the nilpotent orbit, which should be interpreted as

instanton corrections. Note that the fluxes (or rather the combination H + ωCS

as discussed in section 3.2) in general do not take values in the full H3(Z,Z)

lattice, but only in coker(d3)⊥, the sublattice which is orthogonal to the cokernel
of H3(W1)⊕H3(W2)→ H3(Z) with respect to the intersection pairing.

NOTE ADDED IN PROOF: The authors of 1404.7645 claim that the above

formula (4.36) is inconsistent with formulas obtained in their work. However, we

are considering N2 = 0 stable degenerations to normal crossings unions of two

smooth divisors, while they are considering the maximal unipotent monodromy

limit and these limits are not comparable. Furthermore, the Gamma class appears

in the large volume limit of the A-model, and again has no relevance for us.
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Up to one issue which we discuss below, we see that this reproduces known

examples. In the heterotic E8 × E8 or SO(32) limits of K3 fibrations, the pa-

rameter T is identified as a Kähler modulus associated to the elliptic fiber of the

heterotic compactification, and the corrections are interpreted as coming from

worldsheet instantons whose contribution is proportional to exp(2πiT ). Similar-

ly in the Sen limit, T is identified with axio-dilaton τ of type IIB (τ = i/gs + a),

and the corrections are interpreted as D(−1)-instantons, which do indeed give a
contribution of the form exp(2πiT ).

The approach to the periods considered above is a generalization of the work

of [10]. There are many other works on periods in heterotic/F -theory duality.

For more computational approaches, see for example [49, 50, 36, 51, 52, 53, 54,

55, 56, 57].

Our analysis also gives further support for holography, i.e. the claim that the

theory can be thought of as supported on the boundary Z. Moreover we see that

the form of the Lagrangian is almost completely fixed from very little input. The

only thing we don’t know is exactly what CS theory we are dealing with. This

clearly depends on the concrete model under consideration. From the example

given earlier in the paper, it is clear that SO(32) and E8 × E8 are not the only

possible answers.

We have to make some remarks on the terms involving H̃. The E8 × E8

heterotic string has only a single two-from field Bμν , so if we take the E8×E8 limit

then the superpotential is not expected to depend on a second tensor field. This

is not a contradiction. The expression (4.36) really corresponds to all possible

linear combinations of the periods. F -theory places restrictions on the allowed

fluxes, namely they should be orthogonal to four-cycles contained in in the base

B3 or of the form π−1(C), where C is a two-cycle in the base. This tends to place

restrictions on G-fluxes coming from H4(W1) and H4(W2). If we had allowed

such fluxes, then for example the Chern-Simons theory coming from the local

dP9-model would have a gauge group larger than E8, as was checked carefully

in [4]. However the G-fluxes which descend to H̃ are of a slightly different form.

They are Poincaré dual to four-cycles on Yt which asymptote to four-cycles on

Y0 of the form c1+ c2, where c1,2 are four-chains in W1,2 such that ∂c1 = −∂c2 =
b ∈ H3(Z,Z). It is not clear to us why such fluxes would be disallowed, but we
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have not checked it precisely.

4.4. The Kähler potential

One may similarly compute the Kähler potential on the nilpotent orbit. In

the following, we will compare this with the E8×E8 limit. The Kähler potential

is not protected, so it would be remarkable if we would get an exact match. This

is not the case, but nevertheless we can match the main terms.

The Kähler potential in F -theory is of the following form:

KF = − log
[∫

Y
Ω4,0 ∧ Ω0,4

]
− 2 logVB3 +KC3 (4.37)

We set the four-dimensional Planck scale MPl equal to one. Note that up to a

constant,
∫
Yt
Ω(t)∧Ω(t) is simply Q(Ω,Ω), where Q is the polarization on H4(Yt).

By general properties of the monodromy, we have Q(Na,Nb) = −Q(a,N2b) =

0 for any forms a, b. For simplicity, we will assume that the polarization is

simply the sum of the polarizations on the graded pieces. In particular, Q(·, N ·)
corresponds to the polarization of the weight three Hodge structure on Gr3 

H3(Z,Z). Then we have

Q(Ω(t),Ω(t)) ∼ TQ3 +Q4 (4.38)

where T = Im( 1
2πi log(t)), Q3 = i

∫
Z Ω

3,0∧Ω3,0 and Q4 is the polarization on Gr4,

evaluated on the image of Ω0 under the projection H4(Yt) → Gr4. The Kähler

potential for the nilpotent orbit is then given by

KΩ(t) ∼ − log [TQ3 +Q4] ∼ − log(T)− log[Q3] +
Q4

TQ3
+O(T−2) (4.39)

Furthermore using the isomorphism Gr4 → H2
v(C1)Λ ⊕H2

v(C2)Λ, we see that up

to a constant, Q4 is mapped to the natural polarization on the second cohomology

of the spectral covers C1 and C2.

Now let us take a closer look at the Kähler moduli. In heterotic/F -theory

duality, the F -theory base B3 is a P1-fibration over a surface B2. The volume is
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then given by

VB3 =
1

2
FBi Bjdij +

1

2
F2Bidijn

j +
1

6
F3dijn

inj (4.40)

where F is the volume of the P1-fiber, Bidij are volumes of two-cycles in B2, n
i

is the class of the normal bundle of B2 in B3, and dij is the intersection form on

B2. We first need to rewrite this in terms of the Kähler moduli, which are given

by S = ∂VB3/∂F and Ti = dij∂VB3/∂B
j . If we further assume that B3 = B2×P1

is a direct product, then the terms involving ni in (4.40) are absent and we can

easily rewrite this in terms of the Kähler moduli as VB3 = S1/2(TiTjdij)
1/2. Then

we have

KF ∼ − log(S)− log(T)− log(TiTjdij)− log[Q3]+
Q4

TQ3
+KC3 +O(T−2) (4.41)

where we omitted the additional terms in (4.39) and (4.40). We also have

∂∂̄KC3 ∼
∫
Y δC3∧∗δC3, but for Calabi-Yau four-folds there are usually no moduli

of the form δC3 as generically H3(Y ) = 0.

On the E8 × E8 heterotic side, the Kähler potential is of the form

Khet ∼ − log(S)− log(VZ)− log

[
i

∫
Z
Ω3,0 ∧ Ω3,0

]
+KA (4.42)

where KA denote the Kähler potential for the bundle moduli. The volume VZ
can be written as

VZ =
1

2
TTi Tjdij +

1

2
T2Tidijk

j +
1

6
T3dijk

ikj (4.43)

The potential for bundle moduli is harder to write, but we can easily write the

Kähler metric:

∂∂̄KA ∼ 1

VZ

∫
Z
Tr(δA∧δA)∧J ∧J ∼ 1

T

∫
B2

TrE(δAν ∧δAν)+O(T−2) (4.44)

Here δAν denotes the component of δA along the elliptic curve E, which corre-

spond to normal bundle valued moduli of the spectral cover. We can map them
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to (2, 0) forms on the spectral cover by contracting with Ω3,0Z . Thus we can write

1

T

∫
B2

TrE(δAν ∧ δAν) ∼ 1

TQ3

∫
B2

Tr(δΦ2,0 ∧ δΦ2,0) (4.45)

Abelianizing δΦ2,0 we get (2, 0) forms on the spectral cover, which get mapped

to variations δΩ0 sitting in Gr4 under the cylinder map. So we see that this

describes the metric for complex structure moduli of the spectral cover, and

should be compared with ∂∂̄Q4/TQ3 on the F -theory side.

Comparing KF with Khet, we see that the main terms match qualitatively,

without doing any Kähler transformations. It might be interesting to do the

comparison more carefully, as this gives some insight into the subleading terms

which might be useful for the purpose of moduli stabilization.

In the IIb limit one can do a similar comparison. It is in fact more straight-

forward as the potentials for the Kähler moduli can be compared more easily.

4.5. Euler character

A number of additional properties of Yt can be deduced from the degeneration

limit. For example, the Euler character or more generally Chern classes of Yt

can be computed using Chern-Schwartz-Macpherson classes in the degeneration

limit. Here we briefly consider the Euler character, which plays a role in tadpole

cancellation. Recall that the cohomology groups of the smooth fibers agree with

the logarithmic de Rham cohomology groups of the central fiber. Therefore if

Yt → Y0 =W1 ∪Z W2, we have

χ(Yt) =
∑
k

(−1)k Hk
log(Y0) = χ(W1) + χ(W2)− 2χ(Z) (4.46)

Note that this differs from the topological Euler character of Y0. The extra factor

of −χ(Z) comes from the logarithmic forms that have a pole along Z, see equation

(A.24).

We consider the following application. Suppose that we use the Tate form of

the Weierstrass fibration to engineer an elliptic fibration with interesting singu-

larities along a divisor S ⊆ B3. The Euler character of the resolved Y will depend
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on the singularities, and one may ask how it changes when we put different sin-

gularities along S. When Y has a heterotic dual, we can deduce the answer from

heterotic/F -theory duality. It was observed in section 2.3 of [58] that the same

formula appears to hold more generally, when there is no heterotic dual (i.e. Y

does not admit a K3 fibration).

From the perspective of the present paper, this observation is a corollary of

the result (4.46) together with the degeneration limit of section 2. When the

singularities along S fit in E8, we can use our degeneration limit to move the

singularities to W1. But we already know χ(W1)−χ(Z) from heterotic/F -theory

duality. Namely, it should agree with
∫
S ch2(V )− 1

2ch2(TZ), which was computed

in [59], upon setting γ = 0 in their formulae (as this part gets mapped to the

G-flux).

4.6. Bulk versus boundary

We would like to end with a few more comments.

Perhaps one of the most intriguing aspects of this paper is the interplay

between the theory in the bulk and the theory on the boundary. For the E8×E8

and SO(32) degeneration limits of the K3-surface, it has long been known that

the heterotic theory may be thought of as living on the boundary (the normal

crossing divisor), but given the lack of examples it was less than clear how general

this is. In sections 3 and 4 we have given arguments that this should be true in

more general degeneration limits, and in [7] we give another concrete example of

this phenomenon. It would be interesting to understand the general boundary

theories in more detail.

Kawamata/Namikawa also allow the normal crossing divisor to have multiple

components Zi which intersect. This leads us to consider defects in the boundary

theory. The defect theories should be very interesting. As indicated in section 3,

we expect to find a kind of holomorphic generalization of WZW models on such

defects. One should be able to deduce some of its properties from an analysis of

the limiting mixed Hodge structure, similar to sections 4.2 and 4.3.

Log geometry plays a central role in the mirror symmetry program of Gross

and Siebert [60], and their philosophy of gluing Calabi-Yau manifolds from more
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elementary pieces is similar to the one in this paper, although their singular

Calabi-Yau spaces are not necessarily of normal crossing type. It would be very

interesting to understand the holographic aspects of their work.

Finally, the superpotential still receives corrections that are non-perturbative

in the Kähler moduli, due to Euclidean brane configurations. In type II these

come from D-instantons, in F -theory they come from M5-instantons and in the

heterotic string they come from worldsheet instantons and NS5-instantons. They

are all related through heterotic/F -theory/type II duality. It is hard to escape

the impression that there must be some underlying variation of Hodge structure

problem that encodes all instanton corrections to the superpotential in 4d com-

pactifications with N = 1 supersymmetry. It would be extremely interesting to

elucidate this.
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Appendix A: Mixed Hodge structures and monodromy

In this appendix we briefly review some aspects of Hodge theory that will

help us understand a semi-stable degeneration limit. There are many books and

reviews available on this material, see for example [61, 62] and [48].

Recall that on a compact Kähler manifold X of complex dimension n, the

cohomology groups admit a Hodge decomposition

Hk(X,C) =
∑

p+q=k

Hp,q(X). (A.1)

Let us denote the Kähler form of X by J , which we may take to be a class
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in H2(X,Z). The primitive part of the cohomology, denoted by PHk(X,Z), is

defined to be the kernel of ∧Jn−k+1 : Hk(X,Z)→ H2n−k+2(X,Z). Then we have

a further decomposition of the cohomology, the Lefschetz decomposition:

Hk(X,Q) =
⊕
m

Jm · PHk−2m(X,Q) (A.2)

Since J is of type (1, 1), the interesting part of the information is contained in

the primitive part of the cohomology, and we will often implicitly assume that

we are restricting to the primitive part.

We further have a polarization, i.e. a non-degenerate bilinear form

Q(a, b) = (−1)k(k−1)/2
∫
X
a ∧ b ∧ Jn−k (A.3)

which is symmetric for k even and anti-symmetric for k odd. It satisfies the

following two relations, which are called the Hodge-Riemann bilinear relations:

we have Q(Hp,q, Hp′,q′) = 0 unless p + p′ = q + q′ = k, and ip−qQ(a, ā) ≥ 0 if

a ∈ PHp,q.

We will be interested in period integrals onX. The periods themselves depend

on some redundant information, as we have to make a non-canonical choice of

basis. A more invariant way to state it is that we are interested in how the Hodge

decomposition
⊕

Hp,q(X) of Hk(X,C) varies in families. However the Hp,q(X)

individually do not vary holomorphically even if X lives in a holomorphic family.

Let πX : X → B denote a smooth holomorphic family, with fibers Xt for

t ∈ B. On each fiber Xt we have the cohomology lattice Hk(Xt,Z). As we vary

t ∈ B, these lattices fit together in a local system Lk over B. Mathematically,

we have Lk = RkπX∗Z. Similarly, for each fiber Xt we have a vector space

Hk(Xt,C). As we vary t ∈ B, these vector spaces fit together in a vector bundle

Hk → B, which is just the complexification Hk = Lk ⊗ OB. The vector bundle

Hk → B is flat and holomorphic. It has a natural flat Gauss-Manin connection

∇, obtained by requiring that the local sections induced from local sections of Lk

are flat.

Now we may put a decreasing filtration F• on the bundle Hk, by putting the
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following decreasing filtration on each of the fibers:

0 ⊆ F k ⊆ F k−1 ⊆ . . . ⊆ F 0 = Hk(Xt,C), F p ≡
⊕
q≥p

Hq,k−q(Xt) (A.4)

Note that we may recover Hp,q as Hp,q(Xt) = F p ∩ F
q
, so we did not lose any

information by focusing on the filtration. Although the Hp,q generally do not

vary holomorphically, the subbundles Fp → B with fibers F p ⊂ Hk(Xt,C) do

vary holomorphically.

The filtration satisfies the following properties. Let us denoteHZ = Hk(Xt,Z).

Then F • is a k-step decreasing filtration of HC = HZ ⊗ C, such that HC
∼=

F p ⊕ F
k−p+1

for all p. We also have a bilinear form Q(·, ·) with the properies

listed previously. As we vary t ∈ B, this yields a local system Lk over B and a

decreasing filtration F• ofHk = Lk⊗OB, such that each Fp is a holomorphic vec-

tor bundle. Furthermore, the Fp behave nicely with respect to the Gauss-Manin

connection, namely they satisfy Griffiths transversality

∇ : Fp → Fp+1 ⊗ Ω1B (A.5)

The data (B,Lk,F•, Q(·, ·),∇) satisfying the properties discussed above defines
a polarized variation of Hodge structure of weight k.

A filtration in a fixed vector space is classified by a point in the flag manifold

F(nk, .., n0), where np = dimF p. After pullback to the universal cover ρ : B̃ → B,

the bundle ρ∗Hk becomes trivial. Fixing a reference point in B̃ over a point

t ∈ B, the Gauss-Manin connection gives an explicit isomorphism σ : ρ∗Hk 

Hk(Xt,Z)⊗OB̃. Using this isomorphism we get a holomorphic period mapping

Π : B̃ → F(nk, . . . , n0), (A.6)

by associating to each s ∈ B̃ the flag F•ρ(s), identified with a flag in Hk(Xt,Z)

via σ. If the Hodge structure is polarized, its image is contained in the period

domain, which consists of the flags which satisfy the Hodge-Riemann bilinear

relations, i.e. Q(F p, F k−p+1) = 0, and ip−qQ(a, ā) ≥ 0 if a ∈ PHp,q.
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By introducing a basis of integral cycles of X, we can write the mapping

Π in coordinate form in terms of period integrals, but this explicit form obvi-

ously depends on a non-canonical choices. Continuing to fix our reference point

t ∈ B, we pick a basis ei ∈ Hk(Xt,Z) and its dual basis ei ∈ Hk(Xt,Z). We

use the Gauss-Manin connection to extend this basis away from t by parallel

transport. Globally, these bases becomes multi-valued over B but single-valued

over B̃. We also need to introduce a basis for the Fp. Since the Fp are holo-

morphic vector bundles, locally on an open subset U ⊂ B we can trivialize these

bundles by choosing a holomorphic frame. It is convenient to adapt this basis to

the filtration, i.e. we require {ω1, .., ωnk
} to project to a holomorphic frame for

Fk, {ωnk+1, .., ωnk−1
} to project to a frame for Fk−1/Fk, etc. Then the period

mapping associates to each t ∈ U the explicit flag

0 ⊆ 〈
xi,1e

i, . . . , xi,nk
ei
〉 ⊆ 〈

xi,1e
i, . . . , xi,nk−1

ei
〉 ⊆ . . . ⊆ Hk(Xt,C) (A.7)

Here

xi,r =

∫
ei

ωr (A.8)

and 〈. . .〉 denotes the linear subspace of Hk(Xt,C) generated by the vectors

between the brackets.

We are interested in degenerating a Hodge structure with some weight k. It

turns out that in the limit the Hodge structure is not necessarily of pure type,

but may contain pieces with higher or lower weight than k. This leads to some

extra structure in the form of an increasing weight filtration W• of Hk(X,Q):

0 ⊆ W0 ⊆ . . . ⊆ Wi ⊆ . . . ⊆ W2k = Hk(X,Q) (A.9)

The filtrations W• and F • define a mixed Hodge structure when the weight fil-

tration is compatible with the Hodge filtration F•, in the sense that the induced
filtrations F•i on the graded pieces

GrWi = Wi/Wi−1 (A.10)

satisfy the axioms of a Hodge structure of weight i. By duality between homology

and cohomology, we get an induced filtration on the homology, whose weights are
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the negatives of the weights on cohomology. Here we must use the conventional

duality H∗ = Hom(H∗,Z), not Poincaré duality, which tends to fail on singular
spaces.

It has been shown by Deligne that the cohomology of any variety X canon-

ically carries such a mixed Hodge structure. There are two basic cases: if X is

complete but possibly singular, then Wi = Hk(X,Q) for i ≥ k. If on the other

hand X is smooth but not necessarily complete, then Wi = 0 for i < k.

Let us now suppose that we have a one-parameter semi-stable degeneration,

i.e. we have a one-parameter family πX : X → Δ with fibers Xt, such that the

total space is smooth and the central fiber is reduced and has at most normal

crossing singularities. There are two mixed Hodge structures that we can asso-

ciate to this set-up. The first is the mixed Hodge structure of the central fiber

X0, and the second comes from the monodromy weight filtration. Let us discuss

each of these in turn.

First we consider the mixed Hodge structure of the central fiber. Recall that

X0 is a complete and reduced variety with only normal crossing singularities.

The weight filtration in this case can be read of from the Mayer-Vietoris spectral

sequence. Let us suppose that X0 decomposes into irreducible pieces as X0 =

D1 ∪ . . . ∪ DN . We set Di1...iq = Di1 ∩ . . . ∩ Diq and define the codimension q

stratum as

X
[p]
0 =

∐
1≤i1<...<ip≤N

D i1...ip (A.11)

where � denotes disjoint union. Now let us define

Ep,q
0 ≡ Aq(X

[p+1]
0 ) (A.12)

whereA• denotes De Rham cohomology. As usual, we have the exterior derivative

d : Ep,q
0 → Ep,q+1

0 . In addition, we have a second differential δ : Ep,q
0 → Ep+1,q

0 ,

which is the restriction map given by

δφ(Di1...ip+1) =
∑
a

(−1)a φ(Di0...̂ia...ip+1
) (A.13)
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Then we have d2 = δ2 = dδ + δd = 0, so the data (E•,•0 , d, δ) yields a double

complex. It can be shown that this spectral sequence converges to Hk(X0,R).

Now we can use this to define a filtration:

Wi =
⊕
r≤i

E•,r0 (A.14)

This descends to a weight filtration on Hk(X0,R). Similarly we define a Hodge

filtration as F p =
⊕

r,s F
pEr,s

0 , which descends to Hk(X0,C).

Let us discuss this in more detail for the main case of interest in this paper,

where we have X0 =W1 ∪Z W2. Then we have

E0,k
1 = Hk(W1)⊕Hk(W2), E1,k

1 = Hk(Z), (A.15)

with all other terms vanishing. The non-zero differentials are the restriction maps

d0,k1 : Hk(W1)⊕Hk(W2) → Hk(Z) (A.16)

and the spectral sequence degenerates at E2. This gives a short exact sequence

0 → coker(d0,k−11 ) → Hk(X0) → ker(d0,k1 ) → 0 (A.17)

which corresponds to the weight filtration

0 ⊆ Wk−1 ⊆ Wk = Hk(X0,R) (A.18)

with GrkH
k(X0) ∼= ker(d0,k1 ) and Grk−1Hk(X0) ∼= coker(d0,k−11 ). In fact, in this

example it is simpler to read off the weight filtration directly from the long exact

sequence version of Mayer-Vietoris:

. . . → Hk−1(Z) → Hk(W1 ∪Z W2) → Hk(W1)⊕Hk(W2) → Hk(Z) → . . .

(A.19)

We see that the graded pieces Grk−1 and Grk should be thought of as a quotient
or a subspace of the cohomology groups of Z and W1 �W2 respectively. These
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are smooth and complete spaces, which is why they each carry a pure Hodge

structure. This is in some sense the general picture: we find a suitable stratifi-

cation to construct a weight filtration, so that the graded pieces can be though

of as the Hodge structure of a complete non-singular variety, and hence carry a

pure Hodge structure.

The second mixed Hodge structure associated to our semi-stable degenera-

tion comes from the monodromy. As we circle around the origin t = 0, the

cycles in Hk(Xt,Z) get rearranged. This is expressed as an automorphism M of

Hk(Xt,Z) called the monodromy transformation. It is known for our semi-stable

degeneration that the monodromy is unipotent. We also introduce the logarithm

N = log(M), which is nilpotent since M is unipotent.

The operator N should be thought of as an analogue of the Lefschetz op-

erator (cup product with the Kähler class). As such it gives rise to a kind of

Lefschetz decomposition on Hk(Xt,Q), which in turn gives the weight filtration.

The monodromy weight filtration is completely determined by the following two

properties. The log of the monodromy matrix has degree −2 (i.e. N ·Wi ⊂Wi−2),
and N j gives an isomorphism N j : Grk+j → Grk−j . For example, if N2 = 0 but

N �= 0, then the monodromy weight filtration simply takes the form

0 ⊆ im(N) ⊆ ker(N) ⊆ Hk(Xt,Q) (A.20)

i.e. we have

Wk−1 = im(N), Wk = ker(N), Wk+1 = Hk(Xt,Q) (A.21)

In the polarized case, we further have Q(Na, b)+Q(a,Nb) = 0. The polarization

Q ofHk(Xt,Z) yields a natural polarization on the graded pieces, i.e.Q(·, N j ·) on
Grk+j . For example in the case N

2 = 0, N �= 0 above, we have (x, y)→ Q(x,Ny)

for x, y ∈ Hk(Xt,Q)/ker(N), and we have (x, y) → Q(x̃, y) for x, y ∈ im(N),

where x̃ is a lift from im(N) to Hk(Xt,Q) with Nx̃ = x.

So we have now used the monodromy to put a weight filtration on Hk(Xt,Q).

But this weight filtration is not compatible with the Hodge filtration on Xt,

because Xt is smooth and so the Hodge structure is of pure type. However it has
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been shown by Schmid that the limiting Hodge filtration

F•∞ = lim
t→0

e−
1

2πi
log(t)NF• (A.22)

exists, and together with the monodromy weight filtration it does define a mixed

Hodge structure. It is called the limiting mixed Hodge structure.

There is an alternative description of the limiting mixed Hodge structure due

to Steenbrink [12], which uses the logarithmic cohomology groups of X0. We

discuss this a bit more explicitly for X0 = W1 ∪Z W2. As in section 2.1 we use

the short-hand notation Hk
log(X0) = H

k(X0,Ω
•
X0
(logZ)). The spectral sequence

for Hk degenerates at the E1 term, so the Hodge decomposition is the obvious one,

Hk
log(X0) =

∑
k=p+q H

p(X0,Ω
q(logZ)). The weight filtration can be obtained as

follows. We have the short exact sequence

0 → Ωp
X0

→ Ωp
X0
(logZ)

res→ Ωp−1
Z → 0 (A.23)

where ‘res’ denotes the Poincaré residue map. This gives the long exact sequence

. . . → Hk−2(Z) → Hk(X0) → Hk
log(X0) → Hk−1(Z) → . . . (A.24)

where all the maps are compatible with the Hodge structure, and the coboundary

map Hk−2(Z) → Hk(X0) is a Gysin map. We find that Wk+1 = Hk
log(X0) and

Wk = Hk(X0)/Im(H
k−2(Z)). From the Mayer-Vietoris sequence for X0 (A.19)

we further get Wk−1 = coker(dk−1) as before.

Given a limiting mixed Hodge structure, we can define the nilpotent orbit as

O = {e 1
2πi

log(t)NF•∞ | t ∈ Δ} (A.25)

The nilpotent orbit may be thought of as a kind of perturbative approximation

to the periods in the limit t → 0. The precise statement is the content of the

nilpotent orbit theorem of Schmid [14]. As before let Π denote the period mapping

from the upper half plane (the universal cover of the punctured disc) to the period

domain of the Hodge structure. Define T = 1
2πi log(t), the usual coordinate on
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the upper half plane. Then for any reasonable metric d on the period domain,

there are constants A,B such that for Im(T ) ≥ A > 0 we have

d(Π(O),Π(F)) < Im(T )Be−2π Im(T ). (A.26)

In other words, the corrections die out exponentially fast as Im(T )→∞.

So in order to understand the behaviour of the periods as t→ 0, it is of interest

to know the nilpotent orbit, or equivalently the underlying limiting mixed Hodge

structure. Note that the limiting mixed Hodge structure does not sit on the usual

cohomology groups of X0 (although we saw that it does sit on the logarithmic

version of the cohomology groups of X0). The usual cohomology groups of the

central fiber do carry a canonical mixed Hodge structure, but this differs from

the limiting mixed Hodge structure. Nevertheless there exists a close relation

between them. The precise relation is described by the Clemens-Schmid long

exact sequence, which we discuss next.

Let us denote by Hk
lim(Xt) the cohomology group of Xt equipped with the lim-

iting weight and Hodge filtrations. The Clemens-Schmid sequence is the following

long exact sequence:

. . .
α→ Hk(X0)

i∗→ Hk
lim(Xt)

N→ Hk
lim(Xt)

β→ H2n−k(X0)
α→ Hk+2(X0)

i∗→ . . .

(A.27)

The maps are as follows. The map X0 ↪→ X is a homotopy equivalence, so we

have H∗(X0) ∼= H∗(X ). The inclusion i : Xt ↪→ X yields the restriction map

i∗ : Hk(X ) → Hk(Xt) on cohomology. The map β is simply the composition

of Poincaré duality on Xt, H
k(Xt) → H2n−k(Xt), followed by the inclusion i∗ :

H2n−k(Xt)→ H2n−k(X ) ∼= H2n−k(X0). Of course Poincaré duality on a smooth

space is an isomorphism, so the interesting part of this map is i∗. Finally, the
map α is the composition of Poincaré duality on the total space X , H2n−k(X )→
Hk+2(X , ∂X ), followed by the natural map Hk+2(X , ∂X ) → Hk+2(X ). All the
maps are morphisms of mixed Hodge structures, i.e. morphisms of the underlying

lattices which preserves both the Hodge and the weight filtration, with a degree

shift on the Hodge type: α has degree (n+ 1, n+ 1), i∗ has degree (0, 0), N has

degree (−1,−1), and β has degree (−n,−n).
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To summarize, given a semi-stable degeneration, we can figure out the be-

haviour of the periods by taking the following steps: we find the mixed Hodge

structure on the central fiber, which can be deduced from a stratification as in

equation (A.14); then we use Clemens-Schmid or alternatively the logarithmic

cohomology groups to figure out the limiting mixed Hodge structure and the

nilpotent orbit; and finally we use the nilpotent orbit theorem to conclude that

the latter is a good approximation to the periods.

Appendix B: On the value of the holomorphic Chern-Simons action

We discussed some aspects of holomorphic Chern-Simons theory in section 3.

Here we would like to would like to argue that the value of the holomorphic Chern-

Simons action evaluates to zero for holomorphic bundles that admit a spectral

construction, modulo the usual periodic identifications. We were motivated to

write this appendix after a question raised by E. Witten regarding the Chern-

Simons contribution to the gravitino mass in heterotic string compactifications,

which is given by m3/2 = eK/2|W0|.
From the perspective of heterotic/F -theory duality, the reason for the van-

ishing is very simple. The superpotential of the dual F -theory compactification

is given by

WF =
1

2π

∫
Y
Ω4,0 ∧ G (B.1)

The part of the G-flux that comes from the heterotic bundle data is of Hodge type

(2, 2). The superpotential automatically evaluates to zero on such fluxes. The

same argument implies that the D7-brane superpotential does not contribute to

the gravitino mass in IIb vacua that can be lifted to F -theory.

This argument is not very direct and perhaps somewhat unsatisfactory, since

it requires us to invoke duality. We will try to give a more direct and conceptual

argument below. The argument below however relies on a construction which is

still partly conjectural.

Let us consider a holomorphic G-bundle on an elliptically fibered Calabi-Yau

three-fold Z with section. We assume that the bundle is semi-stable on generic

fibers. Let us temporarily focus our attention on a single elliptic fiber E. For
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every semi-stableG-bundle on E, we can construct a rational surface R containing

E as the boundary, and a canonical G-bundle V on R, such that the restriction

V |E recovers our G-bundle on E. This is relatively well-known when G is an

exceptional group, in which case R is a del Pezzo surface [59, 63], but it can in

fact be done for any gauge group G (see eg. [64]). For the case G = SO(32), this

plays an important role in the SO(32) limit of F -theory [7].

We can now consider a relative version of this construction, by fibering over a

base B. We will want to consider the case π : Z → B where Z is our Calabi-Yau

three-fold. Then we should get a holomorphic bundle V on a log four-fold (Y, Z)

which restricts to our original bundle on Z. Furthermore, we expect that the

twisting data is given by

G

2π
= p1(V )− 1

2
p1(TY (−logZ)) (B.2)

These statements have not been fully shown. The current method is to do a

Fourier-Mukai transform along the elliptic fibers and then use a cylinder mapping

to construct Y together with a Deligne cohomology class, and this has not been

carried out for all groups G. When it has, it has not been shown mathematically

that the resulting (2, 2) flux can be interpreted as above. But we believe that

these constructions can be carried out.

Assuming this, we see that our holomorphic bundle on Z can actually be

extended to a holomorphic bundle on (Y, Z). By the transgression argument

discussed previously in section 3, we can now directly show that the holomorphic

Chern-Simons action can be rewritten as

WCS =
1

2π

∫
Y
Ω4,0 ∧ (G− G0) (B.3)

with the G-flux above. Here we added a reference flux G0 such that G − G0

restricts to zero in H4(Z). Writing G0,40 = ∂̄ω, it actually depends only on

ω|Z . The dependence on a basepoint can be cancelled when we consider the full
Chern-Simons action, by tadpole cancellation in the heterotic string, or because

the relevant G-flux lives in ker(d4) from the point of view of section 4.

Now since our extended bundle is holomorphic, G is of type (2, 2), and so

the holomorphic Chern-Simons action evaluates to zero. Conceptually this is the
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holomorphic analogue of a statement in ordinary Chern-Simons theory, which

says that the action automatically vanishes if a flat connection on a real three-

manifold M3 can be extended to a flat connection on M4 with M3 = ∂M4, as one

would have Tr(F ∧ F ) = 0.

The argument may be applied to other examples. Consider for instance a

quintic three-fold. It is precisely the log boundary of P4. So any bundle on the

quintic that extends to a holomorphic bundle on P4, or is constructed from such,

should have zero Chern-Simons invariant.

One may wonder at this point if one can produce examples with non-zero

Chern-Simons invariant, and hence non-zero gravitino mass. At least if one ig-

nores the issue of stability, then it is not hard to do so. Let us simply take a

configuration of curves Ci on the quintic, and wrap heterotic five-branes on them

with multiplicity ni, such that
∑

i n
i[Ci] is a trivial class in homology. Then

by classic work of Griffiths and Clemens (see eg. [62]), there are configurations

whose Abel-Jacobi map is non-zero, for example the difference of two lines. By a

theorem of Voisin, such examples exist on all families of Calabi-Yau three-folds.

By varying moduli we can take the projection on the (0, 3) component to be

non-zero. However such a configuration is clearly not stable as some of the ni

have to be taken negative. Producing stable examples appears to be harder.
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