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0. Introduction

In this work the authors continue their study of the geometrical/topological
properties of symmetric tensors on algebraic manifolds, with a special empha-
sis on the case of algebraic surfaces. The objects of interest in this paper are
the closed symmetric differentials which are a natural generalization of closed
holomorphic 1-forms to symmetric differentials of higher degrees. The presence
of closed holomorphic 1-forms imposes topological restrictions on the manifold,
our ultimate goal is to establish a similar but weaker connection between the
existence closed symmetric differentials and the topology of the manifold.

A closed symmetric differential is a symmetric differential which can be de-
composed as a product of closed holomorphic 1-forms on a neighborhood of
some point of the manifold. If a differential has local decompositions of this
type around every point of the manifold, then the closed differential is said to
be of the 1st kind. Closed symmetric differentials are not necessarily of the 1st
kind for degrees greater than 1. In section 2.1 we provide examples for each
of the 3 causes of this failure. One of the causes of this failure has a striking
manifestation, some closed symmetric differentials (holomorphic) only allow de-
compositions into products of closed 1-forms if some of the 1-forms have essential
singularities. A feature of closed symmetric differentials on a complex manifold
X is that they are connected to webs, possibly degenerate, on X not matter what
the dimension of X is (non closed symmetric differentials do not have necessarily
this connection if the manifold has dimension greater than 2).

In this article we study the degree 2 case which is the first interesting case to
consider and has some special features such as: 1) the local decompositions of a
differential as a product of closed holomorphic 1-forms have rigidity properties
for all degrees but for degree 2 this rigidity has the maximum strength, i.e.
the 1-forms in the decomposition are unique up to a multiplicative constant;
2) symmetric 2-differentials on complex manifolds are analogous to Riemannian
metrics in differential geometry. Using feature 2) we identify in theorem 2.1
the differential operator that characterizes closed symmetric 2-differentials on
surfaces. This differential operator is just the natural translation of the Gaussian
curvature operator to our case. We observe that a closed symmetric 2-differential
on a surface is the direct analogue of the notion of a flat Riemannian metric on
a real surface.

The rigidity of the local decompositions of a closed symmetric 2-differential as
product of closed holomorphic 1-forms gives for symmetric 2-differentials of 1st
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kind w on a projective manifold X a dual pair (Cw,C
∗
w) of local systems of rank

1 on X or on an unramified double cover of X (depending on whether w is split
or non split). Moreover, the 2-differential w of the 1st kind can be decomposed
as w = φ1φ2 the product of twisted closed 1-forms φi ( φ1 twisted by Cw and
φ2 twisted by C∗w). The work Beauville, Green-Lazarsfeld and Simpson on the
cohomology loci (see references) plays a key role in establishing that the local
system Cw must be torsion. Once established that the local system Cw is torsion,
one can work further to obtain the theorem describing the geometric origins and
features of non-degenerate symmetric 2-differentials w of the 1st kind, where
w being non-degenerate means that w defines at some point x ∈ X 2 distinct
directions in TxX:

Theorem 3.2. Let X be a smooth projective manifold with w ∈ H0(X,S2Ω1
X)

a nontrivial non-degenerate closed differential of the 1st kind. Then:
i) X has a holomorphic map to a cyclic or dihedral quotient of an abelian

variety from which the symmetric differential w is induced from. More precisely,
there is a commutative diagram

X ′
aX′−−−−→ Alb(X ′)

f

⏐⏐� q

⏐⏐�
X

a−−−−→ Alb(X ′)/G

and f∗w = a∗X′ω with ω ∈ H0(Alb(X ′), S2Ω1
Alb(X′))

G where f : X ′ → X is an

unramified G-Galois covering and aX′ : X
′ → Alb(X ′) the Albanese map. The

group G is Zm if w is split and D2m if w is non split.

ii) π1(X) is infinite, more precisely ∃Γ � π1(X) such that π1(X)/Γ is finite
cyclic or dihedral and its abelianization, Γ/[Γ,Γ], is an infinite group.

In section 2.3 we prove that if a closed 2-differential is of the 1st kind outside
of codimension 2, then it is of the 1st kind everywhere. We also show that the
locus where a closed 2-differential fails to be of the 1st kind is contained in the
divisorial part of the degeneracy locus, i.e. the locus of all points where the
2-differential fails to define two distinct hyperplanes on the tangent space.

In our last result, theorem 3.3, we describe the geometry associated to the
class of closed symmetric 2-differentials that are the product of two closed mero-
morphic 1-forms. There some points of interest in this result: one is that this
class contains symmetric differentials that are not of the 1st kind; another is that
even though we are allowing the closed 1-forms φi in the decomposition w = φ1φ2
to be not holomorphic, one still obtains non-triviality of the regularity. A priori
allowing the φi to be not holomorphic could invalidate any non triviality results
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on the fundamental group (closed meromorphic 1-differentials can exist in sim-
ply connected manifolds), but in fact we show that the decomposition w = φ1φ2
implies the existence of a fibration over a curve of genus ≥ 1 which implies a
large fundamental group.

Theorem 3.3. Let X be a smooth projective manifold and w ∈ H0(X,S2Ω1
X)

be a closed differential of rank 2 with a decomposition:

(3.7) w = φ1φ2 with φi ∈ H0(X,Ω1
X,cl(∗))

where Ω1
X,cl(∗) is the sheaf of closed meromorphic 1-forms. Then the Albanese

dimension of X ≥ 2 and either:

1) w = φ1φ2 with φi ∈ H0(X,Ω1
X), or

2) X has a map to a curve of genus ≥ 1, f : X → C and w = (f∗ϕ+ u)f∗μ,
with f∗ϕ + u non-holomorphic and where u ∈ H0(X,Ω1

X), ϕ ∈ H0(C,Ω1
C(∗))

μ ∈ H0(C,Ω1
C).

1. Preliminaries

A symmetric differential of degree m, w ∈ H0(X,SmΩ1
X), defines at each

point x ∈ X an homogeneous polynomial of degree m on the tangent space TxX.
If X is a surface, then w defines at each tangent space, TxX, m, not necessarily
distinct, lines through the origin. Around a general point on X, one obtains
k ≤ m integrable distributions of lines giving a k-web, i.e. a collection of k
foliations. On higher dimensions this is no longer necessarily the case, since the
pointwise splitting of w(x) into linear factors might not hold and even if such
splitting occurs the distributions of hyperplanes in TxX defined by w might not
be integrable.

LetX be a complex manifold of dimension n. The Pn−1-bundle P(Ω1
X) overX,

π : P(Ω1
X)→ X, and its tautological line bundles OP(Ω1

X)(m) are intimately con-

nected to the theory of symmetric differentials. There is in particular a natural
bijection between H0(X,SmΩ1

X) and H
0(P(Ω1

X),OP(Ω1
X)(m)). To a symmetric

differential w ∈ H0(X,SmΩ1
X) on X one can associate an hypersurface:

(1.1) Zw ⊂ P(Ω1
X)

such that Zw ∩ π−1(x) is an hypersurface of degree m (Z can also be viewed as
the zero locus of the section of OP(Ω1

X)(m) corresponding to w).
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The hypersurface Zw can be reducible and non reduced. The irreducible
components of Zw are called horizontal if they dominate X via the map π and
vertical otherwise. Hence:

(1.2) Zw = Zw,h + Zw,v

with Zw,h and Zw,v the union of respectively the horizontal and the vertical
irreducible components.

Definition 1.1. A symmetric differential w ∈ H0(X,SmΩ1
X) on a smooth com-

plex manifold X is said to be:
a) split if either one of the following equivalent statements holds:

i) w = φ1...φm with φi meromorphic 1-differentials.

ii) Zw,h is the union of m irreducible components.

b) split at x if there is a neighborhood of x on which w splits (or equivalently
w(x) ∈ SmΩ1

X,x is a product of linear forms).

Gauss lemma implies that if w is split at x, then there is a neighborhood Ux of
x where w is the product of holomorphic 1-forms. A split symmetric differential
is therefore locally the product of holomorphic 1-forms but the converse does
not necessarily hold (e.g. Zw is an unramified cover of X, with degree > 1). If
w splits, then w = μ1 ⊗ ... ⊗ μm with μi ∈ H0(X,Ω1

X ⊗ Li) where the Li line
bundles on X with

∏
Li = O(−D) with π∗D = Zw,v.

The following fact will be used later, any w ∈ H0(X,S2Ω1
X) that splits at the

general point (always holds if X is a surface) has associated to it a canonical
generically 2-1 covering (possibly ramified) sw : X ′ → X for which s∗ww is split
and X ′ is smooth.

Definition 1.2. On a smooth complex manifold X a symmetric differential w ∈
H0(X,SmΩ1

X) that splits at the general point is said to:

i) have rank k, rank(w) = k, if at a general point there are k distinct hyper-
planes in P (Ω1

X,x) defined by w(x), i.e. there are k distinct foliations defined by

w near the general point (the foliations are defined by the 1-forms φi in a local
decomposition w|Ux = φ1...φm).

ii) be degenerate at x if w(x) = 0 or if the number of distinct hyperplanes in
P (Ω1

X,x) defined by w(x) is less than the rank of w. The locus consisting of the
union of all points where w is degenerate is called the degeneracy locus of w, Dw.

The degeneracy locus Dw of a symmetric differential w ∈ H0(X,SmΩ1
X) on

a surface is the discriminant divisor of w which is defined locally where w|U =
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am(dz1)
m + am−1(dz1)

m−1dz2 + ... + a0(dz2)
m by the discriminant of w|U seen

as a polynomial in O(U)[dz1, dz2]. As a set Dw is the the union of the points
x ∈ X such that Zw ∩ π−1(x) has multiple points.

2. Closed 2-differentials and differentials of the 1st kind

2.1 General concepts.

Definition 2.1. A symmetric differential w ∈ H0(X,SmΩ1
X) on a smooth com-

plex manifold X is said to have:

1) a holomorphic (meromorphic) exact decomposition if:

w = df1...dfm fi ∈ O(X) (fi ∈M(X))

2) a holomorphic (meromorphic) exact decomposition at x ∈ X if there is a
neighborhood Ux of x where w|Ux has a holomorphic (meromorphic) exact de-
composition.

3) a split closed decomposition if w|U = φ1...φm with φi closed holomorphic
1-differentials on a Zariski open U (the φi are not necessarily meromorphic on
X).

Definition 2.2. A symmetric differential w ∈ H0(X,SmΩ1
X) on a smooth com-

plex manifold X is said to be:

i) closed if w has a holomorphic exact decomposition at a general point of X.

ii) closed of the 1st kind if w has a holomorphic exact decomposition at all
points of X.

If w is a symmetric differential on a surface X, then there are always holomorphic
functions fi and f on a neighborhood of any general point of X, such that
w = fdf1...dfm holds. The condition of w being closed asks for the existence of
functions fi such that f can be made constant. For degree 2 this condition can
be seen as a flatness curvature type condition on w (see the next section).

For degree m = 1 the classes of closed and closed of the 1st kind differentials
coincide. A symmetric differential of degree 1, i.e. a holomorphic 1-form, which
is closed in the sense of definition 2.2 is also closed in the usual sense due to
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the principle of analytic continuation. Poincare’s lemma implies that a closed
1-form must be locally exact, i.e. of the 1st kind in the sense of definition 2.2.
For degrees m ≥ 2 the two classes no longer coincide. There are 3 consecutive
levels of possible the failure of a closed symmetric differential w to be of the 1st
kind at x ∈ X, which will be illustrated by examples below.

The first level of failure of a closed symmetric differential w to be of the 1st
kind at x ∈ X is the failing of w to split at x (1st kind must be split at every
point by definition).

Example: (non-split) Let z1 be a holomorphic coordinate of C
n and f ∈ O(Cn),

set w = z1(dz1)
2 − (df)2 . The differential is non split at all points in {z1 = 0}

but it is closed since any point y ∈ X \ {z1 = 0} has a neighborhood Uy where√
z1 exists and hence w has a holomorphic exact decomposition w|Uy = d( 23z

3
2
1 +

f)d( 23z
3
2
1 − f).

If the differential is locally split at x, then the 2nd layer of failure is due
to monodromy in the factors in the exact decomposition (not of the foliations)
around the locus where it fails to be of the 1st kind.

Example (monodromy of the exact decomposition): Let B ⊂ C2 be a sufficiently
small open ball about the origin where 1 + z2 is invertible. Consider w = (1 +
z2)

αdz1d[z1(1 + z2)]. The differential w has an exact decomposition at a point
if and only if we can decompose (1 + z2)

α as a product of functions of z1 and
z1(1 + z2) (see section 2.2). Any such decomposition is unique up multiplicative
constants (see 2.3). At points away from {z1 = 0} we have the decomposition
(1 + z2)

α = z−α
1 [z1(1 + z2)]

α, but the functions involved are multivalued in
neighborhoods of points in {z1 = 0}. In fact this monodromy is infinite if α �∈ Q,
meaning that even after finite ramified coverings the symmetric differential would
not have an exact decomposition along a divisor.

If the differential is both locally split at x and no monodromy occurs, then w
has a split closed decomposition at x and the 3rd level of failure is due to the
singularities of the the 1-differentials on the decomposition.

Example: (singularities) This example shows that even essential singularities

can occur, w = e
z2

1+z1z2 dz1d[z1(1 + z1z2)]. The 1-differentials in the split closed
decomposition are unique up to constants, as it will shown in section 2.3, and
the constants will cancel each other so in fact the decomposition is unique and
has the form

w = e
z2

1+z1z2 dz1d[z1(1 + z1z2)] = e−
1
z1 dz1e

1
z1(1+z1z2) d[z1(1 + z1z2)]
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with essential singularities occurring on the closed 1-forms at {z1 = 0}.

Next are some cases and examples of globally defined closed symmetric differen-
tials.

Example: The basic examples of global closed symmetric differentials on compact
Kahler manifolds are holomorphic 1-forms and their products w = μ1...μm with
μi ∈ H0(X,Ω1

X). The condition of compactness is essential t o obtain the closed
property. In the compact surface case one does not need the Kahler condition,
the holomorphic 1-forms are closed by a direct application of the Stoke’s theorem.

On abelian varieties every symmetric differential is a linear combination over
C of closed symmetric differentials.

On the case of curves the space of symmetric differentials of degree m is
equal to H0(C, (Ω1

C)
⊗m) = H0(C,mKC) and they are all closed. One of its

main themes of this article is the decomposition of a closed symmetric differ-
ential as a product of closed 1-differentials with torsion coefficients, i.e. sec-
tions of Ω1

C ⊗ Oχi with Oχi a flat line bundle. We proceed to consider the
special case of symmetric differentials on curves. Any symmetric differential
w ∈ H0(C, (Ω1

C)
⊗m) is defined modulo an invertible constant by the zero divisor

of w, (w)0. Hence if there is a splitting of (w)0 into collections of (2g−2)-points,
then the splitting provides modulo constants an unique decomposition of w as
a product of twisted 1-differentials, w =

∏m
i=1 φi, where φi ∈ H0(C,Ω1

C ⊗ Oχi)
and

⊗m
i=1Oχi

= O. Thus we have a finite number of representations of w as
a product of 1-differentials with torsion coefficients, namely there are exactly
((2g − 2)m)!/((2g − 2)!)m such representations (modulo constants) if we add
multiplicities. However, if we want to represent w as a product of untwisted
1-differentials, i.e holomorphic 1-forms, then such representation does not exists
for a generic symmetric differential w.

Example (Bo-De11): All symmetric differentials w of rank 1 on a projective
manifold are closed.

Example: let g : Y → X be an unramified covering of X of degree m. Then
the norm for the map g of an holomorphic 1-form μ ∈ H0(Y,Ω1

Y ), ng(μ) ∈
H0(X,SmΩ1

X) is locally exact. Locally ng(μ) is defined ng(μ)|U = df1...dfm
where dfi = μ|Ui , g

−1(U) =
∏m

i=1 Ui (U sufficiently small and the Ui are biholo-
morphic to U , so the fi can also be view on U).

Example: There are examples of global closed symmetric differentials that are not
of the fist kind (i.e. there are some points where the symmetric differential fails
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to have a local holomorphic exact decomposition at). These examples, that have
rank 2, can be construct via (holomorphic) products of 2 closed meromorphic
1-differentials, w = φ1φ2 with φi ∈ H0(X,Ω1

cl(∗)) and φ1∧φ2 is somewhere non-
vanishing. In section 3.3, we show that if we have such a product, then X has a
fibration f : X → C onto a smooth curve of genus ≥ 1 and w = (f∗ϕ + u)f∗μ,
where u ∈ H0(X,Ω1

X), ϕ ∈ H0(C,Ω1
C(∗)) and μ ∈ H0(C,Ω1

C) (Ω
1
C(∗) is the

sheaf of meromorphic 1-differentials on C).

2.2 Differential operator for closed 2-differentials on surfaces.

Poincare lemma states that locally exact symmetric differentials w of degree
1 are the solutions of the first order differential equation dw = 0, where d is
the exterior derivative. For higher degrees, we saw in the last section, the illus-
trative examples of how a symmetric differential that has almost everywhere a
local holomorphic exact decomposition can fail to have it at points where the
differential is degenerate, i.e. in the discriminant locus Dw. The reasons for this
failure, e.g. monodromy about the the divisor Dw (giving a local cohomological
obstruction to the existence of a holomorphic exact decomposition), can not be
detected via a differential operator. A differential operator can only be expected
to detect the existence of local holomorphic decompositions where the symmet-
ric differential is non degenerate, which by the way is enough to guarantee that
the symmetric differential is closed. The result of this section states that the
property of a symmetric 2-differential being closed is indeed determined by a
differential operator. We expect the same to happen for higher degrees (see the
end of the section).

A symmetric 2-differential w ∈ H0(X,S2Ω1
X) is locally given by:

(2.1) w(z)|U = a11(z)dz
2
1 + a12(z)dz1dz2 + a22(z)dz

2
2

with aij(z) ∈ O(U) and can formally be considered as a (degenerate) ”complex
metric” on X. This perspective illustrates once more the distinction between
rank 1 and rank 2. Only the case of rank 2 benefits from this perspective, since
rank 1 would correspond to an everywhere degenerate metric. The reasoning
that follows connecting the property of being closed to flatness concerns rank 2
alone. The case of rank 1 is distinct and related to the case of 1-forms, we have
that locally near a general point w|U = f(z)(dz1)

2 and w is closed if and only if
df ∧ dz1 = 0. Moreover, global arguments give that all symmetric differentials of
rank 1 defined on a compact Kahler manifold are closed, see [BodeO11].
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The Gaussian curvature R operator on 2-dimensional real manifolds acts on
sections of S2(TR

xM)∗ representing metrics and sends them to functions. We call
RC the natural ”complexification” of this operator (i.e. replace the ∂

∂xi
by ∂

∂zi
)

which gives a map:

RC : H0(X,S2Ω1
X)→M(X)

Recall that associated with the symmetric differential of rank 2 w one has det(w)
the section of 2KX , given locally by det(w)(z) = a11(z)a22(z)− 1

4a12(z)
2.

Theorem 2.1. Let X be a smooth complex surface and w ∈ H0(X,S2Ω1
X) a

symmetric differential of rank 2. Set P2w = det(w)2RC. Then the nonlinear
differential operator

(2.2) P2 : H
0(X,S2Ω1

X)→ H0(X, 4KX)

is such that w is closed if and only if P2w = 0. Moreover, P2w = 0 implies is of
the 1st kind on X \Dw.

Proof. The complexified Gaussian curvature RC operator applied to the symmet-
ric 2-differential w which is locally expressed in the form (2.1) gives according to
the Brioschi formula:

RCw|U =
1

det(w|U )2 [

∣∣∣∣∣∣∣
− 1

2 (
∂2a11

∂z2
2
+ ∂2a22

∂z2
1
− ∂2a12

∂z1∂z2
) 1

2
∂a11

∂z1
1
2 (

∂a12

∂z1
− ∂a11

∂z2
)

1
2 (

∂a12

∂z2
− ∂a22

∂z1
) a11

1
2a12

1
2
∂a22

∂z2
1
2a12 a22

∣∣∣∣∣∣∣

−

∣∣∣∣∣∣∣
0 1

2
∂a11

∂z2
1
2
∂a22

∂z1
1
2
∂a11

∂z2
a11

1
2a12

1
2
∂a22

∂z1
1
2a12 a22

∣∣∣∣∣∣∣
]

Globally one obtains a meromorphic function RCw whose poles come from the
zeros of det(w)2 and (2.2) follows.

Every point outside of the discriminant locus of w, x ∈ X \Dw, has an open
neighborhood Ux with w|Ux = μ1μ2 with μi nowhere vanishing holomorphic 1-
forms on Ux. The existence of local non vanishing holomorphic integrating factors
for nowhere vanishing holomorphic 1-forms implies that after possibly shrinking
once more Ux one has:

(2.3) w|Ux = f(u)du1du2
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with f ∈ O(Ux) and (u1, u2) a holomorphic coordinate chart of Ux.

The ”Gaussian curvature” for ”complex metric” in the form (2.3) is given by:

(2.4) RCw|Ux = −
2

f

∂2logf

∂u1∂u2

(f is non vanishing).

The conditionRCw|Ux = 0 (i.e. ∂2logf
∂u1∂u2

= 0) is equivalent to f(u) = f1(u1)f(u2)
on some ball Bx centered at x. Hence w has a holomorphic exact decomposition
on Bx

w(u) = dF1(u1)dF2(u2)

where the Fi are the primitives of the fi. Hence the condition that P2w = 0 is
equivalent to the existence of a locally exact decomposition of w at every point
in X \Dw, which implies the theorem.

Question. Is there a differential operator Pm, m > 2, generalizing P2 and char-
acterizing closed symmetric m-differential on surface X?

The following is a sketch of an approach to show that such operators or better
said a family of such differential operators do exist. Let w be a symmetric m-
differential on a surface X. Locally on an sufficiently small open neighborhood
Ux of a generic point x ∈ X the symmetric tensor w is given by the product

w|Ux = μm1
1 ...μmk

k

with μi ∈ H0(Ux,Ω
1
X) and μi ∧ μj nowhere vanishing for i �= j. In this case

w defines a nonsingular k-web Ww, i.e. a family of k distinct foliations Fi on
X which are pairwise transversal and smooth on Ux. Let {zi}i=1,...,k with zi ∈
O(Ux) be a set of local functions such that: 1) dzi are nowhere vanishing and 2)
whose level sets are the leaves of the foliations Fi on Ux. For such a collection
{zi}i=1,...,k one gets the decomposition w|Ux = f

∏k
i=1 dz

mi
i with f ∈ O(Ux).

Let us consider the germ a nonsingular m-web W at a point x ∈ X defined by
the symmetric differential dz1...dzm with {zi}i=1,...,m a collection as above. Any
germ wx of a symmetric differential w at x with Wwx =W can be written in the
form
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(2.5) wx = f
m∏
i=1

dzi

with f ∈ Ox. The jet of n-th order of a symmetric m-differential defining W
is determined by (n + 2)(n + 1)/2 coefficients (from the Taylor series of f),
giving the dimension of Jn(W, x), the space of n-th order jets of symmetric m-
differentials defining the m-web germ W. We denote by Jn(W, x)cl ⊂ Jn(W, x)
the space of n-th order jets of closed m-differentials defining the m-web W. The
symmetric differential wx is closed if and only if the function f is of the form
f =

∏m
i=1 fi(zi). The n-th order jets of each function fi (determined by n + 1

coefficients) are involved in the n-th order jet of the product function f and the
constant term of the product f imposes only one condition of the n-th order jets
of the fi. Consequently, J

n(W, x)cl is a subvariety of J
n(W, x) of dimension at

most mn+ 1 and hence it is a proper subvariety once n > 2m− 3.

Let Jn(m,x) (Jn(m,x)cl) be the set of n-th order jets of symmetric (closed)
m-differentials at x. From the previous discussion it follows that once n > 2m−3
the closure J̄n(m,x)cl of set J

n(m,x)cl is a proper affine subvariety of J
n(m,x).

On Jn(m,x) we have the natural action of JnAut(B2) which is the group of n-th
order jets of holomorphic automorphisms of the ball the 2-ball (B2). The group
JnAut(B2) is an algebraic group which is finite-dimensional nilpotent extension
of GL(2). The subvariety J̄n(m,x)cl is naturally invariant under the above action
of JnAut(B2).

Let F be a regular function on Jn(m,x) which vanishes on J̄n(m,x)cl and
satisfies F (gwx) = χN (g)F (wx) ∀wx ∈ Jn(m,x) and ∀g ∈ JnAut(B2) with
χ : JnAut(B2) → GL(2) → C∗ natural projection and N ∈ N+ (the function F
with the latter property will be called a semi-invariant function relative to the
group action). Standard invariant theory gives that there is a finite set of semi-
invariant regular functions F generating the ideal of semi-invariant functions
vanishing on J̄n(m,x)cl. Thus the function F defines a nonlinear map of vector
bundles over X:

F ′ : Jn(m,x)→ NKX

with F ′ mapping the (nonlinear) sub-fibration J̄n(m,x)cl into zero section of
NKX . The map F

′ on the n-th order jets of symmetric m-differential induces a
differential operator of order n

DF : H0(X,SmΩ1
X)→ H0(X,NKX)
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which is trivial on the closed symmetric m-differentials which define nonsingular
m-webs. Our previous discussion stating that if n > 2m− 3, then J̄n(m,x)cl �
Jn(m,x) implies that the n-th order differential operators just described will
vanish on the closed symmetric m-differentials but will be nontrivial on generic
symmetric m-differentials. Note that for the case of m = 2 this approach gives
that we need to go to jets of order 2 to obtain a differential operator which
vanishes on closed but not on generic symmetric differentials (this matches result
in theorem 2.1). The construction just described raises up many interesting
questions. The most fundamental questions are clearly how to find such semi-
invariant functions F and operators DF naturally for arbitary m and what are
the properties of such operators.

2.3 1st kind, local systems and global decompositions.

In this section we describe the analytical and topological objects (respectively
twisted holomorphic closed 1-forms and local systems) that can be associated
to a closed symmetric 2-differential of the 1st kind and establish two basic facts
about the locus where a closed symmetric 2-differential fails to be of the 1st kind.
In the next section we will determine the properties and geometric consequences
of these objects. We remind the reader that the case of interest concerns 2-
differentials of rank 2, the case of rank 1 will be mentioned just in passing (for
full details see [BoDeO11]).

The local holomorphic exact decompositions of a closed symmetric differential
w

(2.6) w|U = (df1)
m1 ...(dfk)

mk

with dfi ∧ dfj �≡ 0, have rigidity properties. The strength of the rigidity is
dependent on a notion coming from the theory of webs, the abelian rank of the
k-web associated to the differential w on U (for the notion of abelian rank see
for example [ChGr78]). In the case of interest, i.e. differentials of degree 2, then
the decomposition (2.6) has the strongest form of rigidity, i.e. the fi are unique
up to a multiplicative constant and an additive constant (in the case of rank 2
this is a manifestation of the triviality of the abelian rank of the 2-web and will
be directly explained below).

Remark 2.2. i) A rank 2 symmetric 2-differential of the 1st kind is always
locally of the form (2.6) (by definition).

ii) The case of a rank 1 symmetric 2-differential of the 1st kind is distinct,
there might be points where w can not be locally written in the form (2.6). The
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example to have in mind is w = z1(dz1)
2, which can not be put in the form

(2.6) on any open set intersecting {z1 = 0} (due to the absence of a well defined
square root). In general, let (w)0 =

∑
i liDi, be the irreducible decomposition of

(w)0. The local decomposition of type (2.6) exist in a neighborhood of every point
outside of the divisor:

Ew =
∑

j∈{i|m�li}
Dj

The presence of Ew has an impact on the topological properties that can be
derived from the presence of a rank 1 symmetric differential (see section 3.1 and
[BoDeO11] for full details).

Lemma 2.3. Let X be a smooth complex manifold and w a symmetric 2-differential
having a closed decomposition, i.e. w|U = φ1φ2, with φi ∈ H0(U,Ω1

cl
) for some

Zariski open set U ⊂ X.

i) If w is of rank 2, then the closed decomposition of w is unique, up to
multiplication by constants. More precisely, if V ⊂ X is any connected open
subset of U and w|V = ψ1ψ2 is another closed decompositions of w|V , then up to
a reordering of the ψi we have:

ψi = ciφi|V c2 = c−1
1 ∈ C∗

ii) If w is of rank 1, then the closed decompositions of w are not unique.
However, any two decompositions of the form w = (φ)2 = (ψ)2 with φ, ψ ∈
H0(V,Ω1

cl
), V ⊂ X open, are also unique up to multiplication by ±1.

Proof. The case of rank 1 is clear. Consider the case where w is of rank 2. Let
x ∈ X and Ux be an open neighborhood of x where φi|Ux = dfi and ψi|Ux = dgi
with fi, gi ∈ O(Ux). The differential w being of rank 2 implies that we could
have chosen x ∈ X such that df1(x) ∧ df2(x) �= 0, i.e. f1 and f2 can be viewed
as local holomorphic coordinates around x.
After reordering, one can make dfi ∧ dgi ≡ 0 for i = 1, 2. The relation

dfi ∧ dgi ≡ 0 implies that near x the gi is a function of fi, gi = gi(fi). Hence
dg1dg2 = df1df2 implies that g

′
1(f1)g

′
2(f2) = 1 must hold, which can only happen

if g′1(f1) and g
′
2(f2) are nontrivial constant functions (since df1(x)∧ df2(x) �= 0).

So ψi = ciφi on a neighborhood of x and hence on the whole V via the principle
of analytic continuation.

Remark/Notation 2.4. A symmetric 2-differential of the 1st kind and rank
2 on a complex manifold X is either split or there is an associated unramified
double cover of X
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(2.7) sw : X ′ → X

such that s∗ww splits. The differential not being split is equivalent to the impossi-
bility to make the local orderings of the two foliations associated to w consistent
on the whole X. Given a open covering U of X with local orderings, one gets
from the transition of the orderings in the intersections a 1-cocycle in H1(U , S2)
and its associated representation ρ : π1(X)→ S2. The covering sw is the regular
cover associated with the representation ρ.

The next proposition shows that associated to a split 2-differential w of the
1st kind one has a dual pair of local systems and a decomposition of w as a
product of twisted closed holomorphic 1-forms. This decomposition will be used
in section 3 to derive the global geometric/topological properties of X. If the
differential w is non split, then the remark above tell us that the pair (X ′, s∗ww)
has this decomposition from which we derive again the geometric/topological
properties of X.

Proposition 2.5. Let X be a smooth complex manifold and w ∈ H0(X,S2Ω1
X)

be split and closed of the 1st kind.

i) (rank 1) w has a decomposition on X \ Ew, w|Ew = φ2 with φ ∈ H0(X \
Ew,Ω

1
cl
⊗C Cw), where the divisor Ew is as in remark 2.2, Cw is a local system

of rank 1 associated to a 1-cocycle with values in Z2.

ii) (rank 2) w has a decomposition:

(2.8) w = φ1φ2

with (φ1, φ2) ∈ H0(X,Ω1
cl
⊗C (Cw ⊕ C∗w)) where Cw is a local system of rank 1

whose isomorphism class is uniquely determined (up to its dual) by w.

Proof. Case of rank 1, see [BoDeO11]. Case of rank 2. Let U = {Ui}i∈I be a
covering of X by holomorphic balls such that their intersection are contractible.
This covering can be chosen such that w|Ui = df1idf2i with f1i, f2i ∈ O(Ui) (1st
kind) and df1i ∧ df1j ≡ 0 on all nonempty intersections Ui ∩Uj (split). Applying
Lemma 2.3, it follows that:

(2.9) dfki = ck,ijdfkj and c2,ij = c−1
1,ij

where k = 1, 2 and ck,ij ∈ C∗. The 2 collections {ck,ij} for k = 1, 2 are 1-cocycles
in Z1(U ,C∗). It follows from (2.9) that:



628 FEDOR BOGOMOLOV AND BRUNO DE OLIVEIRA

(φ1, φ2) := ({df1i}i∈I , {df2i}i∈I) ∈ H0(X,Ω1
cl
⊗ (Cw ⊕ C∗w))

where Cw is the local system of rank 1 determined by the 1-cocycle {c1,ij}.
The pair of local systems (Cw,C

∗
w) is uniquely determined up to isomorphism

(and order, of course) by the 2-differential of the 1st kind w. Let V = {Vk}
be another cover of X for which the w|Vk

are holomorphically exact decom-
posable with w|Vk

= dg1kdg2k and let W = {Wr} a Leray cover relative to
locally constant sheaves of X such that each Wr is such that Wr ⊂ Ui(r)

and Wr ⊂ Vk(r). The induced decompositions w|Wr = df1i(r)|Wrdf2i(r)|Wr and
w|Wr

= dg1k(r)|Wrdg2k(r)|Wr following the argument above can be used to derive
two pairs of 1-cocycles with values in C∗ relative to the coverW. Since by lemma
2.3 the following dfαi(r)|Wr

= cα,rdgαk(r)|Wr
holds for α = 1, 2, it follows that

the 1-cocycles are cohomologous and hence the pairs of associated local systems
are isomorphic.

Example: The non-triviality of the local systems associated to a split closed
symmetric 2-differential does occur. Let C be a curve with an involution without
fixed points. The surface Y = (C × C)/Z2 where Z2 acts diagonally (Y =
C/Z2 × C/Z2) is such that q(C × C) − q(Y ) = g(C) − 1. So if g(C) ≥ 3 there
are 2 anti-invariant holomorphic 1-forms μ1 and μ2 on C × C, one coming from
each factor. The product μ1μ2 is Z2-invariant and hence induces a 2-differential
w on Y which is closed, rank 2 and split (the 2 foliations of w correspond to
the 2 natural fibrations on C/Z2×C/Z2). The symmetric 2-differential w is the
product of the twisted closed 1-forms on Y coming from the μi (and can not be
written as the product of two untwisted 1-forms).

The next lemma shows that the locus where a closed differential fails to be of
the 1st kind has no isolated points and hence is of pure codimension 1.

Lemma 2.6. Let X be a complex manifold and w ∈ H0(X,S2Ω1
X) be closed of

the 1st kind outside of codimension 2. Then w is closed of the 1st kind on X.

Proof. Let Z ⊂ X be a locus of codimension at least 2 containing all the points
of X where w fails to have holomorphic exact decomposition at. Pick any x ∈ Z
and Bx ⊂ X a ball centered at x. Let U = {Ui} be an open covering of Bx \ Z
on which:

(2.10) w|Ui = df1idf2i

with f1i, f2i ∈ O(Ui). Since π1(Bx \Z) = 0 we can order for each i the functions
fki such that on the non-empty intersections Uij dfki ∧ dfkj = 0. By the lemma
2.3 on the intersections Uij one has:
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dfki = ck,ijdfkj

where {ck,ij} ∈ Z1(U ,C∗) (for k=1 and 2). These cocycles must be coboundaries
since Bx \ Z is simply connected. Hence for each k there is a 0-cochain {ck,i}
with values in C∗ such that d(ck,ifk,i) = d(ck,jfk,j) on Uij . The collections
{d(ck,ifki)} glue to give two closed 1-forms μ1, μ2 ∈ H0(Bx \ Z,Ω1

cl
) such that:

w|Bx\Z = μ1μ2

Again since π1(Bx \ Z) = 0 it follows that the forms μi are actually exact,
i.e. μi = dfi with f1, f2 ∈ O(Bx \ Z). Hartog’s extension theorem gives the
holomorphic extensions f̄1, f̄2 ∈ O(Bx) of respectively f1 and f2 from which w
gets the holomorphic exact decomposition at x, w|Bx = df̄1df̄2. Hence there are
no pints where w fails to be of the first kind.

Proposition 2.7. Let X be a smooth complex manifold and w ∈ H0(X,S2Ω1
X)

a closed differential of rank 2. Then the locus where w fails to be of the 1st kind
is contained in the degeneracy locus Dw.

Proof. Since X \ Dw is connected and the locus where w is of the 1st kind is
open and nonempty, we just need to show that the set where w is of the 1st kind
is also closed in X \Dw.
We want to prove that if x ∈ X \Dw is such that all open balls Bx centered at

x have a point y ∈ Bx where w has a holomorphic exact decomposition at, then
w also has a holomorphic exact decomposition at x. Since x ∈ X \Dw, then w
is split at x and one has a ball Bx centered at x where

w|Bx = μ1μ2

with μi ∈ H0(Bx,Ω
1
X). Using the hypothesis of the claim there is a point y ∈ Bx

at which w has a holomorphic exact decomposition at,

(2.11) w|By = dh1dh2

with hi ∈ O(By), where By ⊂ Bx is an open ball centered at y. It follows from
(2.11) that, after reordering if necessary, one has μi|By = gidhi with gi ∈M(By),
hence μi ∧ dμi = 0 on By. This in turn implies the μi are completely integrable
on the whole Bx. Since μi(x) �= 0 and the μi are completely integrable one can
shrink Bx so that the μi have first integrals ui ∈ O(Bx), i.e. μi = fidui with
fi, ui ∈ O(Bx). Since μ1 ∧μ2 is nowhere vanishing on Bx, again by shrinking Bx
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we can assume u1 and u2 are two coordinates of a holomorphic chart (u1, .., un)
for Bx. So one has

w|Bx = h(u)du1du2

(with h(u) = f1f2 ∈ O(Bx)). In the ball Bx there is a point y where w has a
holomorphic exact decomposition at, still describe this decomposition by (2.1).
From dh1dh2 = hdu1du2 on By it follows that hi = hi(ui) and hence

h(u)|By = h′1(u1)h
′
2(u2)

This in turn implies that the function h depends only on u1 and u2, h = h(u1, u2),
on the whole Bx and h(u1, u2) = h′1(u1)h

′
2(u2) on By. The latter condition, as

discussed in the proof of theorem 2.1, implies that that h satisfies the differential

equation ∂2logh
∂u1∂u2

= 0 on By. By the identity principle

(2.12)
∂2log h(u1, u2)

∂u1∂u2
= 0

holds on Bx. The equation 2.12 as seen in the proof of theorem 2.1 implies that
h = h1(u1)h2(u2) on a neighborhood of x and w therefore has a holomorphic
exact decomposition at x.

3. Global geometric properties

In the first part of this section we determine the topological restrictions and
geometric features that are implied by closed symmetric 2-differentials of the 1st
kind. Here we are mainly interested in the properties of the fundamental group
and the existence of varieties (and maps into them) from which the differentials
would be induced. The case of 2-differentials of rank 1 follows from a previous
work by the authors [BoDeO11], hence the focus lies in the rank 2 case. In the
last subsection, we describe the geometry of a very natural of class of closed
2-differentials (not necessarily of the 1st kind), the class consisting of products
of two closed meromorphic 1-forms.



CLOSED SYMMETRIC 2-DIFFERENTIALS OF THE 1ST KIND 631

3.1 1st kind of rank 1.

In [BoDeO11] the authors studied symmetric differentials of rank 1 of all
degrees on projective manifolds. We present here, for the sake of completeness,
the statement of the result concerning the case of interest, i.e. degree 2, with
a small modification concerning the condition of being of 1st kind plus a few
remarks. The main result of that paper gives for the case of interest:

Theorem 3.1. [BoDeO11] Let X be a smooth projective manifold and w ∈
H0(X,S2Ω1

X) a nontrivial differential of rank 1. Then:

i) w is closed on X and closed of the 1st kind outside of codimension 2.

ii)There is a cover of X which is generically 2 to 1 g : X ′ → X such that
g∗w = μ⊗2 with μ ∈ H0(X ′,Ω1

X′).

iii) There is a holomorphic map from X to a Z2-quotient of an abelian variety
with isolated singularities aw : X → Aw/Z2, such that w = aw

∗(u) and u ∈
H0(Aw/Z2, S

m
orbΩ

1
Aw/Z2

).

iv) There is a 2-negative divisor E ⊂ (w)0 ⊂ X such that π1(X \ E) is
infinite. More precisely, π1(X \ E) has a normal subgroup Γ of finite index for
which π1(X \E)/Γ is cyclic and its abelianization, Γ/[Γ,Γ], is an infinite group.

Remarks: 1) A divisor D is said to be 2-negative if for all smooth surfaces
S ⊂ X, the divisor D ∩ S of S is negative.

2) item iii) states that geometrically a symmetric 2-differential of rank 1 (of
1st kind or not) comes from an orbifold symmetric differential on a Z2-quotient
of an abelian variety. If w = μ⊗2 with μ ∈ H0(X,Ω1

X), then aX is the natural
aw, where aX is the Albanese morphism.

3) The divisor E lies inside the ramification divisor of the covering map g in
ii) (which in turn lies inside the union of the irreducible components of (w)0 with
odd multiplicity).

4) For the case of closed 2-differentials of the 1st kind of rank 2 we will see
below that one obtains topological conditions for the whole complex manifold
X, while in this case (of rank 1) the conditions are for the complement X \ E.
The reason for this distinction is the fact that for 2-differentials of the first kind
of rank 1 the rigidity of the holomorphic exact decompositions at the points in
E is weakened (outside of E one can write w = (df)2 and such decomposition is
unique at to multiplication by ±1 but for example w = z3(dz)2 has no natural
exact decomposition that is unique).

5) There are projective manifolds with a closed symmetric 2-differential of the
1st kind and rank 1 which are simply connected (see [BoDeO11]).
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3.2 1st kind of rank 2.

In order to extract the geometrical/topological properties associated to closed
symmetric 2-differentials of the 1st kind we are going to take full advantage of
their global decomposition of as products of twisted closed 1-differentials. As seen
in proposition 2.5, if w is split w = φ1φ2, with (φ1, φ2) ∈ H0(X,Ω1

cl
⊗C(Cw⊕C∗w))

where (Cw ⊕C∗w) is the dual pair of local systems associated to w via the closed
decomposition.

There are 2 elements in the above decomposition with a geometric meaning.
One is the dual pair of local systems (Cw,C

∗
w) giving us a pair of dual charac-

ters of the fundamental group. The other are the twisted closed 1-differentials
φi which topologically define elements of 1st cohomology group of X with co-
efficients in the local system Cw or C∗w and geometrically define special type of
foliations, e.g. if Cw ⊗ O is non-torsion the foliations are algebraic (it follows
from the work Beauville, Green-Lazarsfeld and Simpson on the cohomology loci
(see references)) and if torsion the foliations share the same properties as folia-
tions defined by global holomorphic 1-forms. A key ingredient of next result is
that if X is projective, then the isomorphism class of the local system Cw must
be torsion. Hence in the projective case, if w is split , then up to finite cyclic
unramified covers, rank 2 differentials of the 1st kind are just products of closed
1-differentials.

Theorem 3.2. Let X be a smooth projective manifold with w ∈ H0(X,S2Ω1
X)

a nontrivial rank 2 closed differential of the 1st kind. Then:

i) X has a holomorphic map to a cyclic or dihedral quotient of an abelian
variety from which the symmetric differential w is induced from. More precisely,
there is a commutative diagram

X ′
aX′−−−−→ Alb(X ′)

f

⏐⏐� q

⏐⏐�
X

a−−−−→ Alb(X ′)/G

and f∗w = a∗X′ω with ω ∈ H0(Alb(X ′), S2Ω1
Alb(X′))

G where f : X ′ → X is an

unramified G-Galois covering and aX′ : X
′ → Alb(X ′) the Albanese map. The

group G is Zm if w is split and D2m if w is non split.

ii) π1(X) is infinite, more precisely ∃Γ � π1(X) such that π1(X)/Γ is finite
cyclic or dihedral and its abelianization, Γ/[Γ,Γ], is an infinite group.
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Proof. We start by considering the case when w is split. A split closed 2-
differential of the first kind and rank 2 has as stated in proposition 2.5 the
decomposition:

(3.1) w = φ1φ2

with (φ1, φ2) ∈ H0(X,Ω1
cl
⊗C (Cw ⊕ C∗w)) where Cw is a local system of rank 1

whose isomorphism class is uniquely determined up to its dual by w. We will
first show how the theorem follows if the isomorphism class of local system Cw

is torsion and then prove that the class of Cw is indeed torsion.

Assume: the isomorphism class of Cw is torsion.

Associated to the local system Cw (whose isomorphism class is torsion) we
have a finite character ρw : π1(x) → C∗, with image a cyclic group Zm. The
unramified cyclic Galois cover

f : X ′ → X

associated to the character ρw is such that f∗Cw is isomorphic to the trivial local
system C on X ′.
First we show how to use the pullback of the decomposition (3.1) to X ′ to

obtain the decomposition

f∗w = μ1μ2

with μi ∈ H0(X ′,Ω1
X′) (despite the f

∗φi not being the 1-forms μi). Let U =
{Ui}i∈I be a Leray open covering of X ′ relative to locally constant sheaves.
On the contractible open sets Ui one has f

∗φk|Ui = dgk,i with gk,i ∈ O(Ui) for
k = 1, 2. As in the proposition 2.5, on the intersections Ui∩Uj , dgk,i = bk,ijdgk,j ,

with b1,ij = b−1
2,ij and {b1,ij} the 1-cocycle relative to U giving the local system

f∗Cw. Since the local system f∗Cw is isomorphic to the trivial local system C

on X ′ there are 0-cochains relative to U with values in C∗, {bk,i}i∈I (b1,i = b−1
2,i ),

whose coboundaries are the 1-cocycles {bk,ij} for k = 1, 2. To obtain the 1-forms
μk giving f

∗w = μ1μ2 one untwists the collections {dgk,i}i∈I using the 0-cochains
{bk,i}i∈I

μk = {bk,idgk,i}i∈I
The Zm action on the Galois covering space X ′ of X induces due to the

universal properties of the Albanese variety of X ′ an action on Alb(X ′) and the
Albanese morphism aX′ : X

′ → Alb(X ′) descends to the morphism a : X →
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Alb(X ′)/Zm asked in part i) of the theorem. It follows from f∗w = μ1μ2 with
μk ∈ H0(X ′,Ω1

X′) that f
∗w = a∗X′ω with ω ∈ H0(A,S2Ω1

X)
Zm . Finally the

topological consequence, part ii), is a direct consequence of i).

Claim: the isomorphism class of Cw is torsion.

Case: isomorphism class of Cw is non torsion but Lw = Cw ⊗O is torsion.

Since X is a compact kahler manifold there is an unique isomorphism class
of unitary local systems giving any fixed flat line bundle. Let Cu be a unitary
local system such that Lw � Cu⊗O. From Lw being torsion plus the uniqueness
of the isomorphism class of unitary local systems giving the trivial line bundle
it follows that the isomorphism class of Cu is also torsion. Therefore, as above,
there is a finite unramified covering f : X ′ → X such that f∗Cu � C and hence
f∗Lw � O. Note that f∗Cw is not isomorphic to the trivial local system.

Consider the pullback, f∗w = f∗φ1f∗φ2, of the decomposition (3.1) to X ′.
Let U = {Ui}i∈I be a Leray open covering of X ′ relative to locally constant
sheaves where {f∗φk|Ui}i∈I = {dgk,i}i∈I with gk,i ∈ O(Ui) and k = 1, 2. Hence

(3.2) f∗w|Ui
= dg1,idg2,i

On the intersections Ui∩Uj , dgk,i = bk,ijdgk,j , with {b1,ij} the 1-cocycle relative
to U giving the local system f∗Cw and b1,ij = b−1

2,ij .

The first paragraph of this case tells us that while the cohomology class
[{b1,ij}] ∈ H1(X ′,O∗) is trivial, the cohomology class [{b1,ij}] ∈ H1(X ′,C∗)
is nontrivial. Let {hi}i∈I be the 0-cochain with values in O∗ whose coboundary
is {b1,ij} then set

μ1 = {hidg1,i}i∈I and μ2 = {h−1
i dg2,i}i∈I

By construction both collections {hidg1,i}i∈I and {h−1
i dg2,i}i∈I match on the

intersections making μk ∈ H0(X ′,Ω1
X′) of k = 1, 2. Since X ′ is compact kahler

dμk = 0 and hence

(3.3) {hidg1,i}i∈I = {dĝ1,i}i∈I and {h−1
i dg2,i}i∈I = {dĝ2,i}i∈I

for some ĝ1,i, ĝ2,i ∈ O(Ui). Therefore we get for each Ui

(3.4) f∗w|Ui = dĝ1,idĝ2,i
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and end up with two holomorphic exact decompositions of w|Ui , (3.2) and (3.4).
Since w is of rank 2, it follows from lemma 2.3 that the hi are actually con-
stant. Hence {hi}i∈I is 0-cochain with values in C∗ but this leads to [{b1,ij}] ∈
H1(X,C∗) being trivial, a contradiction.

Case: Lw (and Cw) is non-torsion.

In this case we will use the geometric properties of twisted holomorphic differ-
entials which were studied in [GrLa87], [Be92], [Si93] and [Ar] to understand the
cohomology locus S1

m(X) = {L ∈ Picτ (X)| dimH1(X,L) ≥ m}, where Picτ (X)
is the variety of line bundles with trivial Chern class.
Consider an irreducible component Z of S1

m(X) containing Lw with m =
dimH0(X,Lw) and let α ∈ H1(X,Lw) be the image of φ2 from (3.1) via the
complex anti-linear isomorphism

(3.5) H0(X,Ω1
X ⊗ L∗w)→ H1(X,Lw)

provided by conjugation. The work of Simpson [Si93] states that since the line
bundle Lw is non-torsion, the variety Z must positive dimensional. By the con-
struction hypothesis of Z one has that dimH1(X,L) ≥ dimH1(X,Lw) (in fact
equality holds due to Grauert’s semi-continuity theorem) for L in Z hence the
class α is preserved under small deformations of Lw along Z. Using the work of
[GrLa87] on the deformation theory of line bundles in S1

m(X), the class α being
preserved by small deformations along Z implies that

(3.6) φ2 ∧ u1 = 0

where u1 ∈ H0(X,Ω1
X) is the conjugate of v1 ∈ TL∗wPicτ (X) = H1(X,O) giving

a 1st order deformation of Lw in Z preserving α.

Beauville [Be92] obtained a Castelnuovo-De Franchis type theorem for twisted
forms from the condition φ2 ∧ u1 = 0. The Beauville-Castelnuovo-De Franchis
theorem states that there is a connected fibration f1 : X → C1, C1 a smooth
curve, such that:

1) u1 ∈ f∗1H0(C1,Ω
1
C1
)

2) Lw, L
∗
w ∈ Picτ (X, f1)

where Picτ (X, f1) is the subvariety of Pic
τ (X) consisting of line bundles whose

restrictions on the smooth fibers of fk are trivial. The conditions (3.6) and 1)
imply that the fibers f1 are the leaves of the foliation defined by φ2.
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Now repeat the previous argument replacing the line bundle Lw by the line
bundle L∗w and obtain a map f2 : X → C2, where C2 is a smooth curve, such
that the fibers of f2 are the leaves of the foliation defined by φ1 and Lw, L

∗
w ∈

Picτ (X, f2).
In conclusion, we have that the non-torsion line bundle Lw is trivial along the

smooth fibers of both fibrations f1 : X → C1 and f2 : X → C2. This can only
happen if the fibrations share all fibers and hence the foliations φ1 and φ2 have
the same leaves, which can not happen since w has rank 2.

If the symmetric differential w is non split, then consider the unramified double
cover

sw : X ′′ → X

described in the remark 2.4 which was built such that (sw)
∗w is split. Apply the

previous results for the pair (X ′′, (sw)∗w) to obtain an unramified Zm covering
f : X ′ → X ′′ such that (sw ◦ f ′)w = μ1μ2 with the μi ∈ H0(X ′,Ω1

X′). The
covering f := (sw ◦ f ′) : X ′ → X is an unramified Galois cover of X with Galois
group D2m and the result follows as above.

3.3 Products of closed meromorphic 1-differentials.

In this section we describe the geometry associated to closed holomorphic
symmetric 2-differentials w of rank 2 which are the product of two closed mero-
morphic 1-forms, w = φ1φ2. We will see that such w might not be of the 1st
kind and that if that is the case, then there must exist a fibration over a curve
of genus ≥ 1 and the Albanese dimension of X will (still) be greater or equal to
2.

Theorem 3.3. Let X be a smooth projective manifold and w ∈ H0(X,S2Ω1
X)

be of rank 2 with a decomposition:

(3.7) w = φ1φ2 with φi ∈ H0(X,Ω1
X,cl(∗))

where Ω1
X,cl(∗) is the sheaf of closed meromorphic 1-forms. Then the Albanese

dimension of X is ≥ 2 and one of the following cases holds:

1) w = φ1φ2 with φi ∈ H0(X,Ω1
X), i.e. w is of the 1st kind.

2) X has a map to a curve C of genus ≥ 1, f : X → C and w = (f∗ϕ+u)f∗μ,
with f∗ϕ + u non-holomorphic and where u ∈ H0(X,Ω1

X), ϕ ∈ H0(C,Ω1
C(∗))

μ ∈ H0(C,Ω1
C).
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Proof. If the differentials φi have no poles, then 1) holds and the Albanese di-
mension is ≥ 2 since φ1 ∧ φ2 �≡ 0 (rank 2).
From now on we assume that at least the differential φ1 has poles. First we

show that we can reduce to the case where (φi)0 ∩ (φi)∞ = ∅ for i = 1, 2, where
(φi)0 is the divisorial component of the zero locus of φi. This follows from the
next lemma and the fact that the conclusion of the theorem will hold for the pair
X and w if it holds for the pair X ′ and σ∗w, where σ : X ′ → X is a modification
of X.

Lemma 3.4. Let X be a smooth projective manifold and φ ∈ H0(X,Ω1
X,cl(∗)).

Then there is a modification of X σ : X ′ → X such that:

(σ∗φ)0 ∩ (σ∗φ)∞ = ∅
and both divisors are normal crossings divisors.

Proof. Let σ : X ′ → X be a map consisting of a finite composition of blow ups
such that the union of the divisor of poles and zeros of σ∗φ is a divisor with
normal crossings. There is a local chart (z1, ..., zn) near any x ∈ (σ∗φ)0∩ (σ∗φ)∞
such that the closed differential σ∗φ is of the form

σ∗φ|Ux =
k∑

i=1

ci
dzi
zi

+ df

Moreover (σ∗φ)0|Ux =
⋃dimX

i=l {zi = 0} with k < l, ci ∈ C and f ∈ M(Ux). The
first observation is that the ci = 0 (no logarithmic pole), since σ∗φ|{z

l
=0} = 0

implies the residue of σ∗φ about {zi = 0}, i = 1, ..., k is 0. So x ∈ (df)0 ∩ (df)∞
and therefore must be a point of indeterminancy of f . After a finite number
of further blowing ups one can resolve the indeterminancies of f and the result
follows (note that this lemma is not true without the assumption that φ is closed).

Pick a connected component of the support of the polar divisor of φ1, P ⊂
(φ1)∞. Since w = φ1φ2 is holomorphic, then

P ⊂ Z ⊂ (φ2)0

where Z is the support of the connected component of (φ2)0 containing P .

The following shows how the presence of P (and then Z) implies the existence
of a fibration with P = Z as a set theoretic fiber and φ2 is induced from the base
of this fibration.
Since Z is a closed analytic subvariety, Z has an open neighborhood UZ such

that Z is a deformation retract of UZ . Moreover, due to (φ2)0 ∩ (φ2)∞ = ∅, UZ
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can be chosen so that φ2 is holomorphic on UZ . This implies that the periods of
φ2 on UZ are just the periods of φ2 on Z and hence they all vanish and we can

integrate φ2 to get a holomorphic function. Set f̂(z) =
∫ z

z0
φ2 with z0 ∈ Z and

z ∈ UZ . By construction Z ⊂ f̂−1(0), since Z ⊂ (φ2)0. In fact, we have more:

Claim: Z is a connected component of f̂−1(0).

We can prove the claim by going to dimension 2. Consider a smooth surface
S = X ∩ (H1 ∩ ... ∩ HdimX−2), where the Hi are general hyperplanes with
its inclusion map j : S ↪→ X, the induced differential j∗w = j∗φ1j∗φ2, Z ′ =
Z ∩ (H1 ∩ ... ∩HdimX−2) and P

′ = P ∩ (H1 ∩ ... ∩HdimX−2).

Say Z is not a connected component of f̂−1(0), then Z ′ will not be a connected
component of f̂−1|S∩UZ (0), but P

′ will be a connected component of (j∗φ1)∞
since Supp(j∗φ1)∞ =Supp[(φ1)∞∩ (H1∩ ...∩HdimX−2)]. To prove the claim, we
have that a slight of the Zariski’s lemma (lemma 8.2 of [BHPV03]) gives that Z ′

is a negative divisor, which leads to a contradiction since P ′ ⊂ Z ′ and connected
components of polar divisors of closed meromorphic 1-forms can not be negative
(see below).

Subclaim: P ′ is not a negative divisor.

Assume P ′ is negative. Let P ′ =
∑m

r=1 P
′
r be the irreducible decomposition of

P ′ and U ′ ⊂ S a sufficiently small open neighborhood of P ′ such that (j∗φ1)∞ ∩
U ′ = P ′.
First we show that the differential j∗φ1 is of the 2nd kind on U ′, i.e. all

residues along divisors on U ′ vanish. Recall that the residue of j∗φ1 along a
divisor D on U ′ is cD = 1

2πi

∫
γ
j∗φ1, where γ is a simple loop around D. Clearly

the residues of j∗φ1 on U ′ can only occur along the irreducible components P ′r,
r = 1, ...,m, of P ′. It follows from [Mu61] that the simple loops γr around the
P ′r, r = 1, ...,m, as elements in H1(U

′ \ P ′,Z) satisfy the nonsingular system
of m linear relations

∑m
j=1 P

′
j .P

′
iγi = 0, determined by the negative definite

intersection matrix [Pj .Pi]. Hence, we have the linear system

m∑
j=1

P ′j .P
′
i

∫
γi

j∗φ1 = 0

which implies that all residues cr =
1

2πi

∫
γr
j∗φ1 = 0.

The differential j∗φ1 being of the 2nd kind on U ′ implies that there is a Leray
open covering U = {Ui} relative to locally constant sheaves of U ′ such that:

(3.8) j∗φ1|Ui = dgi
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with gi ∈M(Ui) and

(3.9) (j∗φ1)∞ ∩ U ′ =
m∑
r=1

nrP
′
r

with nr ≥ 2 for all r. Set P ′′ =
∑m

r=1(nr − 1)Pr. It follows from (3.8) and (3.9)
that (gi)∞ = P ′′|Ui

. If {hi = 0}, hi ∈ O(Ui), are the equations defining the
divisor P ′′, then

gi =
vi
hi

with vi ∈ O(Ui) such that vi|P ′r∩Ui
�≡ 0, r = 1, ...,m. On Ui ∩ Uj the equality

gi = gj + dij holds with dij ∈ C and therefore it follows that:

(3.10) vi =
hi
hj
vj + dijhi

According to (3.10) the collection {vi} gives a section:

v := {vi} ∈ H0(P ′′,OP ′′(P
′′))

which does not vanish identically on any irreducible component P ′r of P
′′. Hence

P ′r.P
′′ ≥ 0 for all r and then by linearity one has (P ′′)2 ≥ 0 which contradicts

the assumption that P ′ is negative and ends the proof of the claim.

We just established that Z is a connected component of the level set f̂−1(0).

Using the compactness of Z we can shrink U so that Z = f̂−1(0) as a set. The
open mapping theorem and Z being compact imply that there is a sufficiently
small open disc Δε centered at 0 such that

(3.11) f̂ |f̂−1(Δε)
: f̂−1(Δε)→ Δε

is a proper fibration onto Δε with Suppf̂
−1(0) = Z.

The local fibration f̂ |f̂−1(Δε)
: f̂−1(Δε)→ Δε implies the existence of a global

connected fibration f : X → C where C is a smooth curve and P = Z occur (set
theorectically) as a fiber and φ2 = f∗μ with μ ∈ H0(C,Ω1

C(∗)).
The fact that the existence of the local fibration (3.11) implies the existence of

a global fibration is a well known result. For completeness we mention a result of
this type (stronger than we need) that asserts that if X has 3 connected effective
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divisors that are pairwise disjoint and belong to the same rational cohomology
class in H2(X,Q), then X has a unique connected fibration onto a smooth curve
with the divisors as fibers, see [To00].
The conclusion that φ2 = f∗μ for some meromorphic 1-form μ ∈ H0(C,Ω1

C(∗))
is a consequence of

(3.12) φ2 ∧ f∗η = 0

where η is any meromorphic 1-form on C. The vanishing of φ2 ∧ f∗η holds since
by construction the fibers of f are leaves of the foliation defined φ2. It follows
from (3.12) that φ2 = gf∗η for some g ∈ M(X), but since both φ2 and f

∗η are
closed, one has dg ∧ f∗η = 0, hence g is constant along the fibers of f and comes
from ĝ ∈M(C) giving φ2 = f∗μ with μ = ĝη.

The fibration f : X → C has also the crucial property that the polar divisors
(φ1)∞ and (φ2)∞ are contained in its fibers. Any connected component of (φ1)∞
or (φ2)∞, other than our previous P of course, will not intersect P = Z, hence
since P = Z is a full fiber of f they must be contained in a finite collection
of fibers of f . Moreover, one has that the connected components of (φ1)∞ and
(φ2)∞ occur as full fibers of f as follows from the arguments that showed that
P ′ is not negative.

We proceed to show that φ2 is actually holomorphic and therefore φ2 = f∗μ
with μ ∈ H0(C,Ω1

C). Suppose (φ2)∞ �= ∅, then the argument that gave the
existence of the connected fibration f : X → C from (φ1)∞ �= ∅ gives that there
is a connected fibration f ′ : X → C ′ such that φ1 = f∗μ′ with μ′ ∈ H0(C,Ω1

C(∗)).
According to the previous paragraph both connected fibrations f : X → C and
f : X ′ → C ′ share P = Z as a fiber. This implies that the fibrations must
coincide (see next paragraph). However the fibrations can not coincide since this
would imply that symmetric differential w would be of rank 1.
Each fibration gives a holomorphic function on a neighborhood U of P whose

level sets are the fibers. If the fibrations were distinct, then there would be
fibers of one of the fibrations, contained in U , that would not be level sets of
the holomorphic function defining the other fibration. This would give rise to
non constant holomorphic functions on some fibers which can not happen. This
forces the connected fibrations f and f ′ to coincide.

What remains is to give a description of the differential φ1. The differential
φ1 induces on the general fiber F of f a holomorphic 1-form i∗φ1 ∈ H0(F,Ω1

F ),
where i : F ↪→ X is the inclusion map. The differential i∗φ1 is holomorphic
since all connected components of (φ1)∞ must be, as shown as above, fibers of f .
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The global invariant cycle theorem by Deligne [De71] states that if i∗φ1 remains
invariant under the monodromy action of π1(C \ S), S the critical values of f ,
then there is a

(3.13) u ∈ H0(X,Ω1
X) such that i∗u = i∗φ1

.
The invariance of i∗φ1 under the monodromy action is guaranteed by φ1 being
a closed holomorphic 1-form on f−1(C \ S). The pullback of difference φ1 − u
to the general fiber of f vanishes and hence φ1 − u = f∗ϕ with ϕ meromorphic
differential on C, completing the proof of 2). The Albanese dimension in the case
2) is also ≥ 2, the two holomorphic 1-forms f∗μ and u must satisfy f∗μ ∧ u �= 0
since w has rank 2.
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