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INTRODUCTION

This paper is concerned with those homomorphisms ¢: R — S of commutative
noetherian rings for which the homology functors D,,(S|R, —) of André [1] and
Quillen [34] vanish for all n > 3. We call them quasi-complete intersection (or
g.c.i.) homomorphisms, in view of the characterization of locally complete inter-
section (or l.c.i.) homomorphisms by the condition D, (S|R, —) = 0 for n > 2; see
(34, 1, 8].
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Quillen [34] conjectured that q.c.i. homomorphisms are the only maps that
have finitely many non-vanishing André-Quillen homology functors. To devise a
proof or to construct a counter-example, one needs to understand the structure
of q.c.i. homomorphisms and/or to gain a detailed knowledge of their properties.

When R is local J. Majadas Soto and A. Rodicio Garcia [26, 39, 40] proved that
surjective q.c.i. homomorphisms are quasi-Gorenstein in the sense of [9]. Rodicio
conjectured that, up to faithfully flat base change, every q.c.i. homomorphism
has a known form—it arises from a pair of embedded regular sequences; see [39].

Here the goal is to systematically investigate the properties of general g.c.i.
homomorphisms. Our results show that they are remarkably similar to those of
l.c.i. maps, which form a much smaller class. Following a template devised in
[8]-[13] for studying homomorphisms of noetherian rings, we proceed in three

stages.

The initial focus is on surjective homomorphisms of local rings. For such maps
we study the q.c.i. property by using a description in terms of the Koszul homol-
ogy of Ker(p), due to Blanco, Majadas, and Rodicio [20]. Sections 1 through 6
contain, among other things, short new proofs of the theorems of Garcia and So-
to; formulas for the changes of depth and (with restrictions) of Krull dimension,
which raise questions concerning modules of finite Gorenstein dimension; descrip-
tions, in closed form, of the changes in the homological behavior of the residue
fields; examples of q.c.i. homomorphisms that do not have the form conjectured
by Rodicio.

At a second stage, the results on surjective maps of local rings are extended
to arbitrary local homomorphisms. This is done in Section 7 by utilizing Cohen
factorizations of local homomorphisms, constructed in [13].

Finally, homomorphisms of noetherian rings are analyzed by patching the local
results through vanishing theorems for an appropriate (co)homology theory. This
is the content of Section 8, where the characterization of q.c.i. homomorphisms

in terms of André-Quillen homology is used for the first time in this paper.

1. QUASI—COMPLETE INTERSECTION IDEALS

Throughout this section (R, m, k) denotes a local ring; in detail: R is a commu-
tative noetherian ring with unique maximal ideal m, and £ = R/m. In addition,
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I is an ideal of R and we set S = R/I. We define quasi-complete intersection
ideals, track their behavior under certain changes of rings, and provide examples.

Let a be a finite generating set of I and E the Koszul complex on a. The ho-
mology H.(F) has Ho(E) = S and a structure of graded-commutative S-algebra,
inherited from the DG R-algebra E. Thus, there is a unique homomorphism

(1.0.1) A ASH(E) — Ho(E)
of graded S-algebras with \{ = id" () where AS is the exterior algebra functor.

Note that AY is bijective if (and only if) there exists some isomorphism of
graded S-algebras A: H,(FE) = A8 Hi(FE). Indeed, when this is the case the
composed map

S _
ASHy(B) 20 £S | (B) AL 1L (B)

is an isomorphism, and it is equal to /\f because both maps restrict to it (B),

1.1. We say that I is quasi-complete intersection if Hy(E) is free over S and \J
is bijective; this property does not depend on the choice of a, see [21, 1.6.21].

To the best of our knowledge, the ideals defined above first appeared, with no
denomination, in Rodicio’s paper [36]; in his joint paper [19] with Blanco and

Majadas, their defining property is called free exterior Koszul homology.

Recall that gradep S denotes the maximal length of an R-regular sequence in
I, and that this number is equal to the least integer n with Ext’% (S, R) # 0.

Lemma 1.2. If I is quasi-complete intersection, then

(1.2.1) gradep S = rankp F —rankg H; (E).
Proof. The grade-sensitivity of F, see [21, 1.6.17(b)], yields
rankp Ey — gradep S = max{n | H,(EF) # 0}.
As H,(E) is isomorphic to A Hy (E), the right-hand side equals rankg Hy (E). O
Quasi-complete intersection ideals are stable under certain base changes.

Lemma 1.3. Let R’ be a local ring and p: R — R’ a flat homomorphism of rings.
When IR’ # R’ holds, if I is quasi-complete intersection, then so is IR'.

When p is faithfully flat, if IR’ is quasi-complete intersection, then so is I.
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Proof. Note that R’ ®p F is the Koszul complex on the generating set p(a)
of IR'. As R' is a flat R-module, there is a natural isomorphism of graded
algebras Hy(R' @g F) =2 R’ ® g H.(FE), whence the assertions follow by standard
arguments. U

Lemma 1.4. Let b be an R-regular sequence contained in 1.

The ideal I of R is quasi-complete intersection if and only if the ideal I = I/(b)
of R = R/(b) is quasi-complete intersection.

Proof. By induction, we may assume b = b. Let E be the Koszul complex on a
generating set {ai,...,a.} of I with a; =b. Pick v1,...,v. in Ey with 9(v;) = a;
fori =1,...,¢, set v = v1, and note that J := (b,v)E is a DG ideal. Each y € J
can be written as y = be+v f with e, f € E’, where E’ is the DG R-subalgebra of
E, generated by vs,...,v.. Now 0(y) = 0 implies b(0(e)+ f) = 0. As b is regular,
this gives f = —d(e), hence y = 9(ve). We proved H.(J) = 0, s0 E — E/J
induces H,(F) = H.(E/J) as graded S-algebras. It remains to note that E/.J
is isomorphic to the Koszul complex on a = {ag + (b),...,a. + (b)} C R, and
I=(a). O

In our study of quasi-complete intersection ideals a fundamental role is played
by a classical construction of Tate [41]; see also [28, §1.1], [7, §6].

Construction 1.5. Let a = {a1,...,a.} be a generating set of I and E the

Koszul complex on a. Fix a basis v = {v1,...,v.} of Fy with d(v;) = a; for
1 <i < cand aset of cycles z = {z1,...,2,} whose classes minimally generate
Hi(E).

Let W be a graded R-module that has a basis w = {wy,...,wp} of elements
of degree 2, and let 'EW be the divided powers algebra on W. The products
w§]1) = -w}(Ljh) with j; > 0 and j; + -+ + j, = p form an R-basis of FﬁW.

The Tate complex on E and z is the complex F' of free R-modules with

(1.5.1) F,= €p rfwerkE,.
2p+q=n
Feo (1) (dn) — o, (h) E
(1.5.2) 0y, (wy wy" ®e) = wy wy" @07 (e)
h

N ngm Y ) @ e
=1
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It is clear from the construction that Ho(F') = S holds.
1.6. Let F' be the complex in Construction 1.5. From [41, Theorems 4] one gets:

If I is quasi-complete intersection, then F' is a free resolution of the R-module
S. If a generates I minimally, then F' is minimal: each z; then is a syzygy in the
free cover F1 — I, whence z; € mFEy, so O(F) C mF holds by (1.5.2).

We finish the section with descriptions of quasi-complete intersection ideals in
terms of the homology functors D,,(S|R, —) of André [1] and Quillen [34]. Until
the last section, these are used solely for comparisons with existing results or

arguments.

1.7. The ideal I is quasi-complete intersection if and only if D,(S|R,—) = 0
holds for n > 3, if and only if D, (S|R, k) = 0 holds for n > 3.

The first equivalence is due to Blanco, Majadas, and Rodicio and appears in
[20, Corollary 3']; the proofs of similar statements in [36] and [19] are incomplete,
see [20, pp. 126-127]. The second equivalence follows from [1, 4.57].

2. BETWEEN COMPLETE INTERSECTION AND (GORENSTEIN

In this section [ is an ideal in a local ring (R, m, k). We compare the quasi-
complete intersection property and other properties of ideals, which we recall

next.

2.1. Recall that I is said to be complete intersection if it has a generating set a
satisfying the following equivalent conditions: (i) @ is an R-regular sequence; (ii)
H,(E) = 05 (iii) H,(E) = 0 for all n > 1. Thus, one evidently has:

Every complete intersection ideal is quasi-complete intersection.
The ideal m is complete intersection if and only if R is regular; see [21, 2.2.5].

2.2. By Cohen’s Structure Theorem, the m-adic-completion of R has a presen-
tation R Q/J, with Q a regular local ring. The ring R is said to be complete
intersection if in some Cohen presentation of R the ideal J is generated by a reg-
ular sequence; this property is independent of the presentation, see [27, 19.3.2]
or [21, 2.3.3].

The ideal m is quasi-complete intersection if and only if the ring R is complete
intersection; this is due to Assmus, [4, 2.7], see also [21, 2.3.11].
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2.3. A quasi-deformation is a pair R — R’ < @ of homomorphisms of local rings,
where R — R’ is faithfully flat and R’ < Q is surjective with kernel generated
by a @Q-regular sequence. By definition, the CIl-dimension of an R-module M,
denoted CI-dimpg M, is finite if pd, (R'®g M) is finite for some quasi-deformation;
see [15].

If R is complete intersection, then CI-dimg M is finite for each M.

If CI-dimpg m is finite, then R is complete intersection; see [15, 1.3, 1.9].

2.4. We say that I is quasi-Gorenstein if Ex‘c%{mdeR S(S, R) = S and Ext (S, R) =
0 for n > gradep S; thus, m is quasi-Gorensten if and only if R is a Gorenstein

ring.

By [17, 2.3], the ideal I is Gorenstein if and only if the homomorphism R —
R/I is quasi-Gorenstein in the sense of [11]. In particular, [11, 6.5, 7.4, 7.5] yield

(2.4.1) gradep S = depth R — depth S'.

A short proof of this equality, following [26, Corollary 5], proceeds as follows:
Set d = depth S and g = gradep S. As EXt%(S, R) = S, the spectral sequence

ESY = Exth(k, Exth(S, R)) = Ext%™(k, R)

yields Exth,(k, R) = 0 for p < d + g, and Ext% 9 (k, R) = Exté(k, S) # 0.

We present new, direct proofs of two key results of Garcia and Soto, comparing
the quasi-complete intersection condition with other properties: The implication
(3) in the next theorem is [39, Proposition 12] and (4) is obtained in [26, Re-
mark 8.
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Theorem 2.5. For an ideal I of a local ring R, the ring S = R/I, and the Koszul
complex E on some set of generators for I the following implications hold

. . . (1) T is quasi-complete intersection
I is complete intersection &= . )
and pdgp S is finite

@ |

3 Hi(E) i S
1 is quasi-complete intersection # 1(E) is free over

and Cl-dimp S is finite
(4) ﬂ

1 is quasi-Gorenstein

Remark 2.6. The simple implications in the theorem are irreversible: For (2),
apply 2.1 and 2.2 with R = k[z]/(2?) and I = m. For (4), apply 2.2 and 2.4 with
R = k[z,y,2]/(2® —y*,y* — 2%, 2y, 72,y2) and I = m. For (3), see Theorem 3.5.

To prove (3) we use a lemma that can be extracted from the argument for [39,
Proposition 12], which uses André-Quillen homology. Here is a short direct proof.

Lemma 2.7. (Notation as in Theorem 2.5) When Cl-dimpg S is finite and Hi(E)
is free over S there exist a local ring Q, complete intersection ideals J C I' of Q,
and a flat local homomorphism R — Q/J such that 1(Q/J) =1'/J.

Proof. Let R — R’ + Q be a quasi-deformation with pdg(R' ®g S) finite, set
S"= R ®r S and J = Ker(Q — R'); we may assume R’ = @Q/J. Let E be
the Koszul complex on a set {a1,...,a.} of generators of I. Choose in @ a
set @' = {a},...,a.}, such that a, maps to the image of a; in R’, and let E’
be the Koszul complex on a’. Let B the Koszul complex on a Q-regular set
b generating J. The quasi-isomorphism B — R’ induces a quasi-isomorphism
B®gE — R'®qE'. It gives the first isomorphism in the following string, where
the second one is induced by R' ®g E' = R’ @g E, and the third one is due to
the flatness of R’ over R:

Hl(B XKQ E,) = Hl(R/ XQ E/) = Hl(R/ KRR E) ~ R QR Hl(E) ~ g Xg Hl(E)

Thus, H (B ®¢ E') is free over S’. As B ®¢ E’ is the Koszul complex on bU a/,
Gulliksen [28, 1.4.9] shows that the ideal I’ = Q(bU a’) is complete intersection.
The choices made yield I'/J = IR'/J = 1(Q/J), as desired. O
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In [26] the implication (4) in Theorem 2.5 is derived from a result concerning
algebras with Poincaré duality. Our proof uses the DG E-module structure of

Tate complexes. We describe some notions used to handle it.

2.8. Let X be a complex of R-modules. We let |z| = n stand for z € X,,.

The complex ¥X has (£X), = X,_1 and XX = —9X |; for n € Z; for
x € X,—1 we let ¢(x) denote the element x € (XX When X is a DG E-

Jn-
module, so is ¥ X, with action of E given by es(z) = (—1)%(ex) for e € E;.

The complex XV is defined by (XV), = Homg(X_,, R) and (8X"(x))(z) =
(=) x0X(x) for x € (XV)n, © € X i1, and n € Z. When X is a DG
E-module, so is XV, with action of E given by (e - x)(x) = (=1)XIx(ex) for
e € kb

Proof of Theorem 2.5. (1) If I is quasi-complete intersection and pdp S is finite,
then F,, = 0 for n > 0 in the minimal resolution F' of 1.6. This forces W = 0,

hence H;(E) = 0, so I is complete intersection. The converse is clear.

(2) This implication holds because finite projective dimension implies finite
CI-dimension, as testified by the quasi-deformation R — R <— R.

(3) This follows directly from Lemmas 2.7 and 1.3.

(4) We use the notation from Construction 1.5. Let w = {wi,...,wp} be the
basis of WV, dual to w, and SE(WV) the symmetric algebra of WV. Standard
isomorphisms of R-modules, (FFW)Y = SE(WVY), take the elements of the ba-
sis of (FﬁW)v, dual to the basis of FgW described in Construction 1.5, to the

corresponding products w{' - - - wi". Thus, we have

(2.9.1) (F)o= & SE,WY)ar (EY),.
2p+g=n
h
(2.9.2) 8Fv(w®e):w®8Ev(e)—|—Zwiw®zi-e.
=1

A decreasing filtration of F'V is given by the R-linear spans of the sets
(W' wir@e) € FY [ ji > 0,51+ +jn > —p,e € B}
for p < 0. The resulting spectral sequence E} | = H,4,(F") starts with

Y2

(2.9.3)  EY, =SB (WY)®r(EV)ep and dS,=SE (WY)@Rrdl .
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Let U be an R-module with basis w = {ui,...,up}. The hypothesis on T
yields an isomorphism S @z ABU = H,(E) of graded R-algebras sending u; to
the class of z; for i = 1,...,h. Let 7% € (ABU)Y, be the R-linear map with
7% (uy -+ -up) = 1; the map u — u - 7% is an isomorphism AFU = T(ARU)Y
of graded AEU-modules. Similarly, the R-linear map 7° € (EV)_., defined by
7Y(v1 -+ ve) = 1, yields an isomorphism of DG E-modules E = Y~ ¢(EY), given
by e — e - 7%. Thus, we get

(2.9.4) Hy—p(E") = Hy—pre(E) = S ®p /\g—p—ko =S ®r (A*RU)g—p—kc—h

as R-modules. Now (2.9.3) and (2.9.4) yield
B}, =Hy(E),) = S% (W) ®r Hy p(EY)
= S®r (Sljp(wv) ®R (AEU);/—p—s—c—h)
= § o (T, (00) © ALy 1-0U)"

Let C be the complex with Cp, = Py, 41—, Ell)’q and 0§ = Doprg=n dll)’q. Let G
be the Tate complex on the Koszul complex ARU with zero differentials and the
set of cycles u. Formulas (2.9.2) and (1.5.2) show that the maps above produce
an isomorphism of complexes C' = S ®p (X "G)Y. By 1.6, G is an R-free
resolution of R, so G is homotopically equivalent to R. Consequently, (X¢~"G)Y
is homotopically equivalent to ¥"~¢R, whence H,(C) = 0 for n # h — ¢, and
Hj_.(C) = S. We have Cj,_. = E(l)’h_c so the computation of H,(C') yields

S for (paq):(0¢h_c)7

E:, =H,(E! )=
b P 0 otherwise.

The convergence of the spectral sequence implies Hy,_.(FY) = S and H,, (F
0 for n # h—c. One has H,(F") = Ext ;" (S, R), see 1.6, hence Ext%_h(S, R)
and Ext’;(S, R) = 0 for n # ¢ — h, so I is quasi-Gorenstein.

R —
O »n |

3. EXACT IDEALS

In this section (R, m, k) denotes a local ring. We first discuss principal quasi-
complete intersection ideals. They are easy to identify, are amenable to explicit
computations, and have turned up in abundance in recent studies. Exact ideals
are defined in terms of principal quasi-complete intersection ideals by analogy
with the way that complete intersection ideals are formed from regular elements.



588 L. L. Avramov, I. B. Henriques and L. M. Sega

3.1. Let N be an R-module. We say that an element a of R is an exact zero-
divisor on N if there exists an element b of R that satisfies

(3.1.1) (0:a)y=bN#0 and aN=(0:b)xy #0.
This implies that the following sequence is exact:
(3.1.2) s NANSNOENS NS

Thus, (a,b) is an N-ezact pair in the sense of Kielpinski, Simson, and Tyc [30,
1.1], and b also is an exact zero-divisor on N.

Following [29, 1.2], when N = R we call a an exact zero-divisor. In this case
conditions in (3.1.1) are equivalent to the following simpler requirement:

(3.1.3) R+#(0:a)r = R/(a) #0.

Indeed, it implies (0 : a)g = (b) # 0 for some b in R; the map R — (b) with 1 — b
and its composition with (b) = R/(a) have the same kernel, hence (0 : b)r = (a).

We say that an element a of R is ezxact if it is R-regular or an exact zero-divisor.
This holds if and only if (a) is quasi-complete intersection: The Koszul complex
E on {a} has E.9 = 0 and Hi(E) = (0 : a)r, so Hi(E) is free over R/(a) and
A@ 4 (1.0.1) is bijective if and only if (0: a)r =0or (0:a)r = R/(a).

In some cases, only half of the conditions in (3.1.1) need verification.

Lemma 3.2. Let N be an R-module of finite length.
If (0: b)ny = alN holds for some elements a,b € R, then one has (0 : a)y = bN.

Proof. From a(bN) = b(aN) = b(0 : b)y = 0 one gets (0 : a)y 2 bN. A length
count, using this inclusion and the composition N/aN = N/(0: b)y = DN, gives
UN)—laN)=4£((0:a)y) > LbN)=4(N/aN)=L4(N) —{(aN).

These relations imply £((0: a)n) = £(bN), hence (0: a)y = bN. O

For Cohen-Macaulay rings the situation is only slightly more complicated.

Proposition 3.3. For an element a of m the following conditions are equivalent.

(i) a is an exact zero-divisor and R is Cohen-Macaulay.
(ii) (0:a)r = (b) # R for some b in R, and depth R/(a) > dim R.
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(iii) (0:a)r = (b) # R for some b in R, and R/(a) is Cohen-Macaulay with
dim R/(a) = dim R.

Proof. (i) = (ii). Using (2.4.1), we get depth R/(a) = depth R = dim R.

(ii) = (iii). Use the inequalities dim R > dim R/(a) > depth R/(a).

(ili) = (i). Set K = (0: b)r/(a) and pick p € Assr(K). From K C R/(a) we
get p € Assp R/(a). The Cohen-Macaulayness of R/(a) implies that p is minimal
in Suppp R/(a) and satisfies dim(R/p) = dim R/(a). We have dim R/(a) =
dim R, so p is minimal in Spec R, hence the ring R, is artinian. As one has
(0 : (a/1))r, = (b/1)R,, Lemma 3.2 yields (a/1)R, = (0 : (b/1))g,; that is,
K, = 0. Since p can be chosen arbitrarily in Assg(K), we conclude that K is
equal to zero.

Thus, a is an exact zero-divisor. Now (2.4.1) and the hypotheses yield

depth R = depth R/(a) = dim R/(a) = dim R.. O
Remark 3.4. The implication (iii) = (i) may fail when dim R/(a) # dim R.

Indeed, set R = k[z, y]/(xy,y?), and let a and b denote the images in R of z and
y, respectively. The equality (0 : a)g = (b) shows that (0 : a)g is principal, and
the isomorphism R/(a) = k[y]/(y?) that R/(a) is Cohen-Macaulay. However, R is
not Cohen-Macaulay; neither is a an exact zero-divisor, as (0 : b)g = (a,b) # (a).

Now we settle, in the negative, a conjecture of Rodicio; see [39, Conjecture 11].
Theorem 3.5. If k is a field of characteristic different from 2, then in the ring

R k[w,2,y, 2]

(w2, wr — Y2, wy — xz, wz, 2+ yz, vy, 22)

the ideal xR is quasi-complete intersection and has infinite CI-dimension.

Proof. Let a and b denote the images in R of x and y, respectively; thus, R = (a).
A simple calculation yields (0 : a)gr = (b) and (0 : b)gr = (a), so a is an exact
zero-divisor, and hence (a) is a quasi-complete intersection ideal; see 3.1.

Assume Cl-dimp [ is finite. Yoneda products then turn Extj(R/(a), k) into a
finite graded module that is finite over a k-subalgebra of Ext%(k, k), generated
by central elements of degree 2; see [18, 5.3]. On the other hand, in [14, p. 4] it is
shown that Ext%(k, k) contains no non-zero central element of Ext}(k, k), hence
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Ext%(R/(a),k) = 0 for all n > 0. This is impossible, since (3.1.2) with N = R
gives a free resolution of R/(a) that yields Ext}(R/(a), k) = k for n > 0. O

In [30, 1.1] ezact sequences of pairs are defined by analogy with regular se-
quences of elements. Both notions are subsumed into the next concept.

3.6. A sequence aj,...,a. in R is ezact if a; is exact on R/(ay,...,a;—1) for
i=1,...,c. An ideal that can be generated by an exact sequence is called ezxact.
Theorem 3.7. Let aq,...,a. be an exact sequence in R and set I = (a1,...,ac).

The ideal I then is quasi-complete intersection, and for S = R/I one has

gradep S = card{i € [1,c| | a; is regular on R/(a1,...,ai—1)}.

Proof. For ¢ =1 see 3.1, so fix ¢ > 2. Set I' = (ay,...,a.—1) and R = R/I'. Let
E’' and E be the Koszul complexes on {ay,...,a.—1} and {aq,...,a.}, respec-
tively. By induction, we assume H,(E') = A (H,(E')) as algebras and Hy (E’) is
R/-free.

Considering E' as a DG subalgebra of F, set a = a., and choose e € Fj
with d(e) = a. Thus, the elements of E have the form ¢y’ + ey” with unique
y',y" € F',and E/E' 2 YE' as DG E-modules; see 2.8. The exact sequence of
DG E-modules

0—>F —-FE—>E/E—0

induces in homology an exact sequence of R’-modules
o s Hy(E) S Hy(E') - Hy(E) » Hy (B S Hy (B — -
and hence an exact sequence of graded H,(E’)-modules
(3.7.1) 0 — H.(E")/aHi(E') = Ho(E) = X(0: a)u, gy = 0
Let H' be the image of H.(E')/a H.(E’) in H.(E). It is a graded S-subalgebra,
with H' =2 H,(E')/aH.(E’) as graded algebras and Hj free over S.

If a is R'-regular, then (0 : a)g, gy = 0, so Hi(E) = H' by (3.7.1). This
implies Hy(E) = AJ(H;(E)), and hence gradep S = gradey R + 1 by (1.2.1).
If a is an exact zero-divisor, we have (0 : a)y, gy = Hi(E')/a Hi(E") because

H.(E') is R'-free. Thus, (3.7.1) gives H.(F) = H' ® Y H' as graded H'-modules.
It follows that there exists an element h in Hy(F), such that Hy(E) = H; ® R'h
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and 'h = (=1)"'Inh/ holds for W € H’. Since h? = 0 we get an isomorphism
of algebras H,(FE) = AJ(H;(E)), and then gradep S = gradey R’ follows from
(1.2.1). O

Remark 3.8. Theorem 8.8, proved by using André-Quillen homology, gives an
independent proof that exact ideals are quasi-complete intersection. In an earlier
version of this paper we had asked whether the converse holds. Since then, a
negative answer has been obtained by Kustin, Sega, and Vraciu [31].

We finish with examples of exact zero-divisors, taken from the literature.

Ezample 3.9. Let k be an algebraically closed field and R a graded ring of the
form k[z1,...,x.]/I, with deg(z;) = 1 and I generated by forms of degree at

least 2.

The quadratic k-algebras R with rank; R, = e — 1 are parametrized by the
points of the Grassmannian of subspaces of rank (;) +1 in the (egl)—dimensional
affine space over k. Conca [22, Theorem 1] proved that this Grassmannian con-
tains a non-empty open subset U, such that each R in U contains an elemen-
t a € Ry with a®> = 0 and aR, = R, # 0. This implies rank(a) = e and
(aR) € (0 : a)gr. A length count shows that equality holds, so a is an exact

zero-divisor.

Ezample 3.10. Let k and R be as in the preceding example.

The Gorenstein k-algebras R with Ry = 0 # Rs are parametrized by the
points of the (ef)—dimensional projective space over k. This space contains a
non-empty open subset U, such that each R € U contains some exact zero-divisor

a € R;: this follows from Conca, Rossi, and Valla [23, 2.13]; see also [29, 3.5].

4. GRADE

In this section (R, m, k) denotes a local ring, I is an ideal of R, and S = R/I.

Recall that (R,m,k) is said to be quasi-homogeneous if there is a finitely
generated graded k-algebra R = @;°) R; with Ry = k, such that the m-adic-
completion R of R is isomorphic to the (P2, R;)-adic completion R of R. The
ideal I is quasi-homogeneous if I = I R for some homogeneous ideal I of R.
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Theorem 4.1. If I is quasi-complete intersection, then

(4.1.1) gradep S = depth R — depth S'.

Furthermore, an equality
(4.1.2) gradep S = dim R — dim S
holds when one of the following conditions is satisfied:

(a) Cl-dimp S is finite.
(b) I is ezxact.
(¢c) I is quasi-homogeneous.

Proof. In view of Theorem 2.5(4), the equality (4.1.1) follows from (2.4.1).
For (4.1.2) we give a different argument in each case.

(a) Lemma 2.7 gives a local ring @, complete intersection ideals J C I’ of @,
and a flat local homomorphism R — @Q/J with I(Q/J) = I'/J. For R' = Q/J
and S’ = S ®gr R’ we have dim R — dim S = dim R’ — dim S’ because S — S’ is a
flat local homomorphism with k ®g S’ = k ®r R'. As J and I’ are generated by
regular sequences we have dim R’ —dim S’ = gradep, S’. Flatness yields for each n
an isomorphism Ext}, (S, R') = Ext}(S, R) ®g R', hence gradep, S’ = gradep S.

(b) By hypothesis, I = (ay,...,a.) for some exact sequence ay,...,a.. Set d =
dim R and let @ be an exact element of R. If a is regular, then dim R/(a) = d—1,
so in view of Theorem 3.7 it suffices to show that dim R/(a) = d holds when a is
an exact zero-divisor. This is evident for d = 0, so we further assume d > 1.

Suppose, by way of contradiction, that dim R/(a) < d holds. Choose ¢ in
Spec R with dim(R/q) = d. We must have a ¢ q, whence

dimR/(a) <d—1=dimR/(q+ (a)) < dim R/(a).

Thus, some prime ideal p containing q + (a) satisfies dim(R/p) = dim R/(a). It
follows that p is minimal over (a). Krull’s Principal Ideal Theorem now gives
height p < 1; in fact, equality holds, due to the inclusion p D q.

Now choose a generator b of (0: a)r. The exact sequence of R-modules

0— R/(a) > R— R/(b) >0
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yields (R/(b))q = Rq # 0, hence b € q C p. Localizing at p and changing notation,
we get a local ring (R, m, k) with dim R = 1 and elements a and b in m, such
that the map R/(a) — R given by c+ (a) — bc is injective. A result of Fouli and
Huneke, [25, 4.1], implies that ab is a parameter for R; this is absurd, as ab = 0.

(c) The ingredients of formula (4.1.2) do not change under m-adic completion,
SO we may assume R = Rand I =1 R, with I minimally generated by homo-
geneous elements a;,...,a. in R. The Koszul complex E on these generators
is naturally bigraded, so there exist homogeneous cycles z4,...,z; in £;, whose
homology classes minimally generate the graded R-module H;(E). Construction

1.5 then yields a complex F of graded R-modules, with differentials of degree 0.

The complex of R-modules R ®p F is isomorphic to the Tate complex F' on
R®p E and {1 ® 21,...,1 ® 2}, which is a free resolution of S over R by 1.6.
On the category of finite graded R-modules the functor (R ®p —) is exact and
faithful, so F is a graded free resolution of S = R/I over R. As (F,); = 0 for
7 <n, we get

- > . ¢ gdegau
(4.1.3) Z (ZrankR(Fn)j 8]>t" _ H;;:l(l + sdegaut) '

n=0 “j=n Hv:l(l - sdeg Fv t2)

by counting ranks of graded free R-modules. Set Hg(s) = ZjeZ ranky S s" €

Z|[[s]] and define Hr(s) similarly. By counting k-ranks in the exact sequence
=P, —=-F, == F =-F)—=5—=0

we obtain the first equality of formal power series in the following formula:

s) = s) - 3 1" 3 ran sl ) = s -szl(l_Sdegau)
() = 1) 30" k) o) = o) [ AT

The second equality is obtained by evaluating formula (4.1.3) at t = —1.

By the Hilbert-Serre Theorem, Hg(s) represents a rational function in s, and
the order of its pole at s = 1 equals the Krull dimension of S. Equating the
orders of the poles at s = 1 in the formula above, we get the second equality in

the string
dimS =dimS=dmR+h—-—c=dimR+ h —c=dim R — gradep S.

The last equality is given by (1.2.1), while the other two are standard. O

The theorem above supports the following
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Conjecture 4.2. The equality (4.1.2) holds for each quasi-complete intersection ideal.

Remark 4.3. It suffices to prove Conjecture 4.2 in the special case gradep S = 0.

Indeed, set d = dim R and g = gradep S. By prime avoidance, I has a minimal
generating set in which the first g elements form an R-regular sequence, b. By
Lemma 1.4, the ideal T = I/(b) of R = R/(b) is quasi-complete intersection. We
now have S = R/T with grade; S =0, and dimR =d — g.

Recall that a finite R-module M is called totally reflexvive if M = MYV and
Ext%(M,R) = 0 = Ext}y (M"Y, R) for n > 1; here (—)" stands for Hompg(—, R).

Remark 4.4. A quasi-complete intersection ideal I is quasi-Gorenstein by The-
orem 2.5(4), so when gradep S = 0 the R-module S is totally reflexive by 2.4.
Remark 4.3 now shows that a positive answer to the next question implies Con-
jecture 4.2.

Question 4.5. Does dimr M = dim R hold for every totally reflexive R-module
M?

Remark 4.6. When R is Cohen-Macaulay the answer to Question 4.5 is positive:
If M is totally reflexive, then for every n > 0 it is an nth syzygy module in some

minimal free resolution, so dimp M = depth R; see, for instance, [7, 1.2.8].

5. HOMOLOGY ALGEBRAS

When (R, m, k) is a local ring Tor®(k, k) has a structure graded-commutative
k-algebra. It is natural in R, so each ideal I defines a homomorphism of graded
k-algebras Torl'(k, k) — Torl/ I(k:,k). One of the few cases where it is fully
understood is when I is generated by a regular element; see [28, 3.4.1].

Without using that information, in this section we obtain an explicit result for
all quasi-complete intersection ideals. It plays an important role when analyzing
the transfer of properties between R and S; see Proposition 7.5.

5.1. A system of divided powers on a graded R-algebra A is an operation that
for each j > 1 and each ¢ > 0 assigns to every a € As; an element al¥) € Aaij,
subject to certain axioms; cf. [28, 1.7.1]. A DGI" R-algebra is a DG R-algebra A
with divided powers compatible with the differential: d(a?)) = d(a)a=b.
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Let A be a DGI algebra with R — Ay surjective and A,, = 0 for n < 0. Let
A.1 denote the subset of A, consisting of elements of positive degree. Let D(A)
denote the graded R-submodule of A, generated by Ay +mA.;, all elements of
the form uv with u,v € A.1, and all w9 with w € Ag;, i > 1, j > 2. This clearly
is a subcomplex of A, and it defines a complex Q7(A) = A/D(A) of k-vector
spaces.

Given a set x of variables with |z| > 1 for all z € & (where |z| denotes the
degree of x), we let A(x) denote a DGI' algebra with

A®R/\f( &y Rx) ®er( & R:c>
TET rex
|z| odd |z| even

as underlying graded algebra and differential compatible with that of A and the
divided powers of x € x. For every integer n we set &, = {x € x : x| = n}.

A Tate resolution of a surjective ring homomorphism R — T is a quasi-isomor-
phism R(x) — T, where & = {z;};>1 and |z;| > |z;| > 1 holds for all j > i > 1.
Such a resolution always exists: see [41, Thm. 1], [28, 1.2.4], or [7, 6.1.4].

5.2. Any Tate resolution of R — k gives TorZ(k, k) a structure of DGI" k-algebra,
and this structure is independent of the choice of resolution. We set

(5.2.1) m(R) = Q" (Torf(k, k)).
We use the following natural isomorphisms as identifications:
(5.2.2) m1(R) = Torft(k, k) = m/m?.

The assignment R +— m,(R) is a functor from the category of local rings and
surjective homomorphisms to that of graded k-vector spaces.

Theorem 5.3. Let (R,m, k) be a local ring and I an ideal of R. Set S = R/I
and let p: R — S be the natural map. Let E be the Koszul complex on a minimal
generating set of I and set H = Hy(E).

If I is quasi-complete intersection, then there is an exact sequence
(5.3.1) 0 H/mH — m(R) = 10(8) 25 I/mI — m(R) =% 11(5) = 0
of k-vector spaces, and there are isomorphisms of k-vector spaces

(5.3.2) Tn(p): T (R) =, mn(S) for n>3.
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Remark. The statement of the theorem and its proof are reminiscent of those of
[5, 1.1], but neither result implies the other one.

Parts of the theorem can also be obtained by using André-Quillen homology.

Indeed, I/mI = D1(S|R, k) holds by [1, 6.1], H/mH = Dy(S|R, k) by [1, 15.12],
and 7, (R) = Dy, (k|R, k) for n = 1,2 by [1, 6.1 and 15.8]. Furthermore, (A.1.1)
applied to the homomorphisms R — S — k — k yields an exact sequence
(5.3.3)

-+ — Dy (E|R, k) — Dy, (K|S, k) — D, (S|R, k) On, Dy_1(k|R, k) — - --

If Hy(E) is free, then 03 is injective by [35, Theorem 1]; this yields (5.3.1).

For n > 3 one has D, (S|R,k) = 0 by 1.7. If char(k) = 0, then [1, 19.21] gives
mn(R) = Dy, (k|R, k) for all n, so in this case (5.3.2) follows from (5.3.3). However,
7«(R) and D, (k|R, k) are not isomorphic when char(k) > 0; see [2].

Construction 5.4. Choose a Tate resolution S(y) — k with 9(S(y)) C m(S(y)):
this is always possible, see [28, 1.6.4] or [7, 6.3.5].

In view of 1.6, the complex F' from Construction 1.5 gives a Tate resolution
R{v,w) — S. This map can be extended to a surjective quasi-isomorphism

a: R{v,w,xz) — S(y)

of DGT" algebras with @ = {z;};>1 and «a(z;) = y; for each i; see [28, 1.3.5]. In
particular, R(v,w,x) is a free, not necessarily minimal, resolution of k over R.

Proof of Theorem 5.3. The homomorphisms of DGI" algebras
R(v,w) — R{v,w,z) % S{y)
induce an exact sequence of complexes of k-vector-spaces:
(5.5.1) 0= Q'(R{v,w)) — Q"(R{v,w,z)) T Q(S(y)) = 0

Due to the inclusions 9(R(v,w)) C mR(v,w) and 9(S(y)) € mS(y), the com-
plexes at both ends of (5.5.1) have zero differentials. This gives the following
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expressions:

kv=I/mI forn=1,
(5.5.2) Hy(Q"(R(v,w)) =  kw = H/mH forn=2,

0 forn #1,2.
(5.5.3) H,(Q"(S(y)) = ky, Z7m,(S) foralln.

The next statement is the key point of the argument.

Claim. For G = R(v,w, x) one has 0,(G) C mD,,_1(G) for n # 2.

Indeed, for n # 3 this follows from the exact sequence (5.5.1) and the equalities
in (5.5.2) and (5.5.3). Next we prove 9(G3) C mGa + D2(G). Write z € 9(G3) as

(5.5.4) z= Z a;x + Z byw + c.

reEX wew
with a; and by, in R and ¢ € Dy(G). One has d(a(z)) = a(d(z)) =0, so a(z) is
a cycle in the minimal free resolution S(y); this gives the inclusion below:
> plan)y+alc) = a(z) € mS(y).
rET2

From this formula, we conclude that in (5.5.4) we have a, € m for each = € xs.

Now we show that in (5.5.4) each b, is in m. Assume, by way of contradiction,
that b, ¢ m holds for some w € w. Note that R{v, w,x1,x2) has an R-basis
consisting of products involving elements from v Ll 1 and divided powers of
elements from w U x2. When the boundary of an element of R{v,w,x1,x2) is
written in this basis, the coefficient of w?) cannot be invertible; this follows from
the Leibniz rule. On the other hand, the defining properties of divided powers,
see [28, 1.7.1], imply that in the expansion of 209 the element w) appears with
coefficient (by,)?. In homology, this means cls(z)) = cls(2\9)) # 0. Since a is
a quasi-isomorphism, for every j > 1 we get cls(a(z))%) # 0 in Ho(S(yy,¥s)).
This is impossible, as for j > rank;(m/m?) the jth divided power of every class
of even degree in H,.(S(yy,vy5)) is equal to zero; see [5, 1.7]. This finishes the

proof of the claim.

The claim gives, in particular, 0,(Q7(R(v,w,x))) = 0 for all odd n. By [28,
3.2.1(iii) and its proof], there is a quasi-isomorphism p: R(v,w,x) — R{(x) of
DGI' R-algebras, such that R(x) is a minimal DGI" algebra resolution of &, and
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the induced map Q7(p): Q" (R{v,w,x)) — QV(R(x')) is a quasi-isomorphism.
Choose, by [28, 1.8.6], a quasi-isomorphism o: R{z') — R(v,w,z) of DGI' R-
algebras. The minimality of R(zx’) implies that the composition po: R(z') —
R(x') is an isomorphism, see [28, 1.9.5], hence so is the map Q7 (po). It is equal
to Q7 (p)Q7 (o), so Q7 (o) is a quasi-isomorphism. Now form the composition of
k-linear maps

7n(R) = H(Q(R(@'))) = H, (Q7(R(v, w, a))) — L H,(Q7(S())) = ma(S)

where the first isomorphism is due to the minimality of R{(x’}), the second one is
H,,(Q"(0)), and the third one is (5.5.3). As ao: R{(x’) — S{y) induces the iden-
tity on k, the composed map is, by definition, 7, (¢): mp(R) — 7, (S). It follows
that the homology exact sequence of the exact sequence (5.5.1) is isomorphic to

- = Hp(Q"(R(v, w)) — mp(R) (), T (S) KN H,—1(Q"(R(v,w)) — ---

In view of the isomorphisms in (5.5.2), it remains to prove d3 = 0. This follows

from the construction of the connecting isomorphism, and the claim forn =3. O

6. POINCARE SERIES

In this section (R, m, k) is a local ring, I an ideal, S = R/I, and N a finite
S-module. Recall that the Poincaré series of N over S is the formal power series

o0
Pa(t) = Z ranky, TorS (k, N)t" .
n=0
Our goal is to relate it to P]{:,i(t) when I is quasi-complete intersection. The case
N = k is of special interest, as the Poincaré series of the residue field encodes

important information on how far the ring is from being regular.

The deviations of S are defined using the vector spaces in (5.2.1), by the
formula

(6.0.1) en(S) =rankg m,(S) for neZ.
They appear in a well-known formula, see [28, 3.1.3] or [7, 7.1.3]:
[0+ 2y )

L%, (1~ 22

(6.0.2) PP (t) =

For the next theorems, recall that edim R stands for rank(m/m?).



Quasi-Complete Intersection Homomorphisms 599

Theorem 6.1. When I is quasi-complete intersection the following equality hold-
s:

(1 _ t)edimS R (1 _ t)edimR

(6.1.1) PY(t) - s = (t) - (1= 2)depin R -

Proof. Set g = gradep S, h = rankg H1(F), and ¢ = ranky I /mI. The equalities

(1+t)51( ) Hzl(1+t2i+l)82i+l(5)
PE(t) = (1 — @2)e—hta(S)-ar®+ea(R) T[2 (1 — 120+2)e2i42(5)

L0 (e [ s
T o pn® (1R [ (1 A
B (1 _ ZL/Z)depthS (1 )sl(R) R .

- (1 _ t2)depthR (1 ) Tk ( )

are obtained by applying (6.0.2) and (5.3.1) for the first one, (1.2.1) and (5.3.2)
for the second, (4.1.1) and (6.0.2) for the third. Finally, €1(S) = edim S by
(5.2.2). 0

Theorem 6.2. If I is a quasi-complete intersection ideal satisfying INm? C I'm,
then for every finite S-module N the following equality holds:

(1 _ t)edimS R (1 _ t)edimR
(6‘2'1) PN(t) ’ (1 _ t2)depthS = PN(t) ’ (1 _ 752)depthR :
Proof. As I is quasi-complete intersection, the map m,(¢): m,(R) — m,(95) is
surjective for n # 2, by Theorem 5.3. The hypothesis I N m? C mI implies

that I/mI — m/m? is injective, so the same theorem shows that () is surjec-
tive as well. By the definition of m,(R), the image of any k-linear right inverse
o: m«(R) — Torf(k, k) of the natural surjection Torf(k, k) — 7.(R) generates
Tor®(k, k) as a graded I'-algebra over k. Thus, the surjectivity of 7,(yp) mean-
s that the map of I-algebras Torf(k,k): Torf(k,k) — Tor?(k,k) is surjective;
that is, ¢ is a large homomorphism. A theorem of Levin, [32, 1.1], then gives

PR (6P (t) = PR(OPL () -
Now replace P,f (t) with its expression from Theorem 6.1, and simplify. O

To finish, we compare our results with earlier ones for complete intersections.
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Remark 6.3. Let a be a regular sequence and I = (a).

Formula (6.1.1) then specializes to theorems of Tate [41, Theorem 4] and
Scheja [37, Satz 1], and (6.2.1) to one of Nagata [33, 27.3]. It suffices to prove
those theorems for principal ideals, but such a reduction is impossible here; see
Remark 3.8.

When a lies in m Anng N one has edim S = edim R, so (6.2.1) holds by a result
of Shamash, [38, §3, Corollary (2)]; see also [7, 3.3.5(2)]. We know of no analog
of that result for quasi-complete intersection ideals.

In Theorem 6.2 the hypothesis I Nm? C I'm is essential:

Ezample 6.4. For R = k[z], S = R/(z%), and N = S one has

(1 _ t)edimS (1 _ t)edimR

g . _ pR
PY () - Ty =1 =1 # 1= PO 7 myaepmr -

7. LOCAL HOMOMORPHISMS OF LOCAL RINGS

In this section ¢: (R, m, k) — (S, n,1) denotes a homomorphism of local rings,
which is local, in the sense that it satisfies p(m) C n.
We define and study quasi-complete intersection local homomorphisms, with

an emphasis on the transfer of local ring-theoretic properties between R and S.

By [13, 1.1], there is a commutative diagram of local homomorphisms

(7.0.1) / X
, N

R S S

where ¢ is flat, ¢’ is surjective, o is the nS-adic completion map, R’ is complete,

and R'/mR’ is regular. Any such a diagram is called a Cohen factorization of .

7.1. We say that ¢: R — S is quasi-complete intersection (or g¢.c.i.) at n if
in some Cohen factorization of ¢ the ideal Ker(¢') is quasi-complete intersec-
tion. We first show that this property does not depend on the choice of Cohen
factorization:

Lemma 7.2. The homomorphism ¢ is q.c.i. at n (if and) only if Ker ¢" is quasi-

1

complete intersection for every Cohen factorization R S R'ES S of .
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Proof. By [13, 1.2], there is a commutative diagram of local homomorphisms
R/
PN
R R S
WA
R//

where the middle row is a Cohen factorization of ¢, and the vertical arrows are

surjections with kernels generated by regular sequences. Lemma 1.4 shows that

Ker(¢") is quasi-complete intersection if and only if Ker(¢') is. O

Remark 7.3. When ¢ is surjective, it is q.c.i. at n if and only if the ideal I =
Ker(y) is quasi-complete intersection.

Indeed, R — R% S clearly is a Cohen factorization, so by the preceding
lemma it suffices to show that I is quasi-complete intersection if and only if
Ker(() is one. In view of the equality Ker($) = IR, this follows from Lemma
1.3.

The homomorphism ¢ is said to be complete intersection (or c.i.), respectively,
quasi-Gorenstein at n if in some Cohen factorization the ideal Ker(¢') has the
property described in 2.1, respectively, in 2.4. As above, this notion does not

depend on the choice of factorization; see [8, (3.3)] and [11, 4.3], respectively.

Proposition 7.4. The homomorphism ¢ is c.i. at n if and only if it is q.c.i. at
n and S has finite flat dimension over R.

If p is q.c.i. at n, then it is quasi-Gorenstein at n.

Proof. Choose any Cohen factorization (7.0.1) and set I = Ker(¢').

By [13, 3.3], S has finite flat dimension over R if and only if I has finite
projective dimension over R/, so the first assertion follows from Theorem 2.5(1).

If v is q.c.i. at n, then the ideal I is quasi-complete intersection by Lemma 7.2,

and hence it is quasi-Gorenstein by Theorem 2.5(4). O

Next we relate certain local properties of R and S. If ¢ is quasi-Gorenstein at
n, then the rings R and S are simultaneously Gorenstein by [11, 7.7.2]. In view
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of 8.2, the conclusion holds when ¢ is q.c.i. at n; for surjective ¢ this is already
noted in [26, Cor. 5], along with the fact that S is Cohen-Macaulay when R is.

We want to compare numerical measures of the singularity of local rings.
The Cohen-Macaulay defect of S is the non-negative number
cmd S = dim S — depth S';

it is equal to zero if and only if S is Cohen-Macaulay.

Similarly, the complete intersection defect of S is the non-negative number

cid S = e9(S) —e1(S) + dim S;
it is equal to zero if and only if S is complete intersection; see [21, 2.3.3(b)].
Proposition 7.5. When ¢ is q.c.i. at n the following inequalities are satisfied:
cmdS <cecmdR and cidS <cidR.

Equalities hold if gradep S = dim R — dim S; in particular, if R is Cohen-
Macaulay.

Remark. Conjecture 4.2 predicts that equalities always hold: See (7.5.1) and
(7.5.2).

Proof. Let R 2R i/> S be a Cohen factorization. The functions cmd and cid
are additive on flat extensions by [21, 1.2.6, A.11] and [5, 3.6], respectively. As
they vanish on the regular rings R'/mR’ and S /n§ , we see that R and R’ are
Cohen-Macaulay simultaneously, and that we may assume the map ¢ is surjective.

From the definition and formula (4.1.1) we now obtain an equality

(7.5.1) cmd S = cmd R — (dim R — dim S — gradep 5) .

On the other hand, the definition, (5.3.1), and (1.2.1) yield
cid S = e9(S) — e1(S) + dim S
(7.5.2) = e3(R) — €1(R) + ranky (I /mI) — rankg H; (F) + dim S
=cid R — (dim R — dim S — gradep S) .
The desired assertions follow because dim R > dim S + gradep S always holds,

see [21, p. 413 and 1.2.14], with equality if R is Cohen-Macaulay, see [21, 2.1.4].
U
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For surjective maps ¢ the next corollary is proved in [26, Corollary 5.

Corollary 7.6. Assume that ¢ is q.c.i. at n.
If the ring R is Cohen-Macaulay, then so is S.

The Ting R is Gorenstein if and only if so is S.

Proof. The first assertion is already contained in the theorem. The second one
comes from [11, 7.7.2], since ¢ is quasi-Gorenstein at n by Proposition 7.4. O

The next result can also be obtained from [8, 1.5] or 8.6 below.
Proposition 7.7. Any two conditions below imply the third one.

(a) The homomorphism ¢ is g.c.i. at n.
(b) The ring R is complete intersection.

(¢) The ring S is complete intersection.

Proof. As in the proof of Proposition 7.5, we may assume that ¢ is surjective.

When (a) holds, Theorem 5.3 gives e3(R) = €3(5). Vanishing of 3 character-
izes complete intersections, see [28, 3.5.1(iii)] or [7, 7.3.3], whence (b) <= (c).

When (b) and (c) hold, and »: Q — R is a surjective homomorphism with
@ regular local, then both ideals I = Ker s and J = Ker(psx) are generated by
regular sequences. By 2.1 and Lemma 1.4, JR is quasi-complete intersection.
Now JR =1 ﬁ, so I is quasi-complete intersection by Lemma 1.3. O

8. HOMOMORPHISMS OF NOETHERIAN RINGS

In this section ¢: R — S denotes a homomorphism of noetherian rings.

For such homomorphisms we first define the g.c.i. property in terms of localiza-
tions, then show how they can be described in terms of vanishing of André-Quillen
homology. Various properties of that theory, collected in Appendix A, are heavily
used when studying the stability of this class of maps.

Developments here follow the treatment of 1.c.i. homomorphisms in [8, §5] and

proofs that can be transposed with only superficial changes have been omitted.
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For q € Spec S we let ¢N R denote the prime ideal o ~1(q) of R. As usual, we set
k(q) = Sq/qS, and call k(q) ®g S the fiber of ¢ at q. The induced homomorphism
of local rings ¢q: Ryng — Sy is called the localization of ¢ at q.

8.1. We say that the homomorphism ¢ is quasi-complete intersection (or g.c.i.)

if it is q.c.i. at every q € Spec S.

This notion mimics those of locally complete intersection (or l.c.i) homomor-
phism in [8] and of quasi-Gorenstein homomorphism in [11], defined by the cor-

responding condition on ¢q. Proposition 7.4 clarifies the relationships:

8.2. Hierarchy. The homomorphism o is l.c.i. if and only if it is q.c.i. and the
R-module Sy has finite flat dimension for every prime ideal q of S.

If ¢ is q.c.i., then it is quasi-Gorenstein. ([

The concept fits properly into Grothendieck’s theory of flat maps; see [27, §6].

8.3. Flat homomorphisms. When ¢ is flat it is q.c.i. if and only if it is
l.c.i., if and only if the ring S @ k(q) is locally complete intersection for every
q € SuppS.

Proof. The first equivalence holds because for flat homomorphisms the g.c.i. and
l.c.i. conditions coincide, by 8.2. The second equivalence is [8, 5.2]. ([

Next we describe q.c.i. homomorphisms in terms of André-Quillen homology,
by extending from the case of surjective maps the characterization given in [20].

8.5. André-Quillen homology. The homomorphism ¢ is q.c.i. at q € Spec S
if and only if D (S|R, k(q)) = 0 holds for n > 3.

The homomorphism ¢ is q.c.i. if and only if D, (S|R, —) = 0 holds for n > 3.
Proof. Let Rynp — R’ — 3; be a Cohen factorisation. The kernel of R’ — TS';
is quasi complete intersection if and only if D,,(S4|R’,k(q)) = 0 for n > 3; see

1.7. By A.2.2, this is equivalent to D, (S|R, k(q)) = 0 for n > 3, whence the first

assertion.

The second assertion follows from the first one by [1, S.29]. O

The next result can be viewed as a sharper version of Proposition 7.7. For
surjective ¢ it is due to André [3, Theorem and Proposition].



Quasi-Complete Intersection Homomorphisms 605

8.6. Complete intersections. Any two conditions below imply the third one.

(a) Da(S|R, k(a)) = 0.
(b) The ring Rqng is complete intersection.

(c) The ring Sy is complete intersection.

When these conditions hold the homomorphism ¢ is q.c.i. at q.

Proof. By [8, 4.5], Sy is complete intersection if and only it Z — Sy is c.i. at q.5;.
The exact sequence (A.1.1) for Z — Rqnr — Sq — k(q) and the criteria for c.i.
and for q.c.i. homomorphisms in A.4 and 8.5, respectively, yield the assertions.

O

The proof of [8, 5.11] shows that the following result is a consequence of 8.5 and
standard properties of André-Quillen homology with respect to flat base change.

8.7. Flat base change. Let R’ be a noetherian ring, p: R — R’ a homomorphis-
m of rings such that S®g R’ is noetherian, and set o' = p@rR': R — S®grR'.

(1) If p is q.c.i. and TorZ(S, R') = 0 holds for all n. > 1, then ¢’ is q.c.i.
(2) If ¢’ is q.c.i. and p is faithfully flat, then ¢ is q.c.i. d

The next three items involve also a noetherian ring () and a homomorphism of
rings ¥ : Q — R. For those assertions that come in two versions it clearly suffices
to prove the statement that includes the text in parentheses.

8.8. Composition. If ¢ is q.c.i. (at some q € SpecS) and v is g.c.i. (at qNR),
then the composed homomorphism o is q.c.i. (at q).

Proof. The exact sequence (A.1.1) for @ — R — S — k(q) yields D, (S]Q, k(q))
0 for n > 3, due to 8.5. By the same token, ¢ is q.c.i. at q.

ol

8.9. Decomposition. Assume that @i is g.c.i. (at some q € SpecS).

(1) If ¢ is l.c.i. (at qN R), then ¢ is g.c.i. (at q).

(2) If v is q.c.i. (at q), then v is q.c.i. (at qN R).

(3) If fdr Sy is finite for some q € SpecS, then ¢ is c.i. at q and ) is g.c.i.
at qN R.



606 L. L. Avramov, I. B. Henriques and L. M. Sega

Proof. (1) Set I = k(q). The exact sequence (A.1.1) for @ — R — S — [ yields
D, (S|R,l) =0 for n > 3 by 8.5 and A.4, so ¢ is q.c.i. at q by 8.5.

(2) The same exact sequence as in (1) here yields D, (R|Q, k(q N R)) = 0 for
n > 3 by 8.5, and the latter also shows that ¢ is q.c.i. at ¢ N R.

(3) Since D, (S|Q,1) — D, (S|R,1) is surjective for n = 4 if char(l) # 2 and
for n = 3 if char(l) = 2, see A.3, we get D4(S|R,l) = 0 if char(l) # 2 and
D3(S|R,1) = 0 if char(l) = 2 from 8.5. Now ¢ is c.i. at q by A.4, so ¢ is q.c.i. at
qN R by (2). O

8.10. Flat descent. When ¢ is faithfully flat the composed homomorphism i)
is q.c.i. if and only if ¢ is l.c.i. and ¥ is q.c.i.

Proof. The “if” part comes from 8.8. The converse follows from 8.9(3), because
faithfully flat homomorphisms induce surjections on spectra. ([

By 8.3, the following result applies to homomorphisms essentially of finite type.

8.11. Factorizable homomorphisms. Assume ¢ = ¢'p, where ¢ and ¢ are
homomorphism of rings such that ¢ is l.c.i. and ¢’ is surjective.

The homomorphism ¢ is q.c.i. if and only if Ker(¢ ) is a quasi-complete

intersection ideal of R, for every mazimal ideal m’ of R’ containing Ker(y').

Proof. From 8.8 and 8.9(1) we see that ¢ is q.c.i. if and only if ¢’ is. By Remark
7.3 the latter holds if and only if the ideal Ker(¢'), of R;, is quasi-complete
intersection for every prime ideal p’ of R’ that contains Ker(¢'). Lemma 1.3
implies that this can be verified by checking only those p’ that are maximal. [

For homomorphisms covered by 8.11 the g.c.i. property localizes, in the sense
that if it holds at the maximal ideals of S, then it does at all prime ideals. In
general, localization may fail. Indeed, recall that the non-zero fiber rings of the
completion maps R — }/2;, when m ranges over the maximal ideals of R, are
called the formal fibers of the ring R. Ferrand and Raynaud [24, 3.2(i)] give a
local domain R with R ® k(0) not Gorenstein; thus, R — Ris g.c.i. at m but not
q.c.i., see 8.3.

In our second result concerning localization the hypotheses are placed on R,
rather than on ¢. It applies, for instance, to excellent rings (as their formal fibers
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are regular) and to homomorphic images of l.c.i. rings (see [10, Main Theorem

(b)])-

8.12. Localization. Assume that Ryng has l.c.i. formal fibers for each q in
Spec S.

When ¢ is q.c.i. at the maximal ideals of S, it is q.c.i. and S has l.c.i. formal
fibers.

Proof. Choose q € Spec.S, a maximal ideal n of S with n O ¢, and set m =nNR.
Set R* = Ry and S* = S,, and let R* — R’ — S* be a Cohen factorization of
©* = pn: R* — S*. Choose q* € Spec S* with ¢* NS = q, and set p’ = q* N R'.
The map R* — R’ is c.i. at p’ as it is flat, R* and R’ are complete, and R’ /mR’
is regular; see [10, §3, Step 1]. By A.4 this gives D,,(R'|R*, k(p’)) = 0 for n > 2.
In addition, R, — R’ — S* is a Cohen factorization of ¢y, so ¢* is q.c.i. at n.S*

by Lemma 7.2, hence D, (S*|R’, k(q*)) = 0 for n > 3 by 8.5. The exact sequence
(A.1.1) for R* - R’ — S* — k(q*) now yields D, (S*|R*, k(q*)) = 0 for n > 3.

As Ry has lci. formal fibers, A.4 gives D, (R*|R,k(q*)) for n > 2. The
sequence (A.1.1) defined by R — R* — S* — k(q*) gives D, (S*|R,k(q*)) = 0
for n > 3, so the composed map R — S — S* is q.c.i. at q* by 8.5. Since S — S*
is flat, 8.9(3) shows that it is c.i. at ¢* and R — S is q.c.i. at q.

We obtain the desired assertions by varying the choices of q, n, and g*. O

The proof of [9, 6.11] shows that 8.12 and 8.7 imply the next property.

8.13. Completion. Assume that Ryngr has l.c.i. formal fibers for each q €
Spec S.

Let I C R and J C S be ideals, such that p(I) C J, and let ¢*: R* — S* be
the induced map of the corresponding ideal-adic completions.

(1) If p is g.c.i., then so is ©*.
(2) If I is contained in the Jacobson radical of R and ¢* is q.c.i., then so is
. (|
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APPENDIX A. ANDRE-QUILLEN HOMOLOGY

For each A-algebra B and every B-module N, André [1] and Quillen [34]
constructed homology groups D,,(B|A, N) with remarkable functorial properties.
A few results crucial for this paper, taken from [1] and [8], are collected below.

Let A% B i C L | be homomorphisms of noetherian rings, where [ is a

field.

A.1. For k = k(Kerv) and each n > 0 there is a natural exact sequence of
[-modules

(A.1.1) D,(B|Ak) @k I — D, (C|A,l) — D, (C|B,1) On, D,—1(B|A k) @ 1.
Indeed, a and § define a Jacobi-Zariski exact sequence with coefficients in [,

see [1, 5.1], which differs from A.1.1 only because in it D, (B|A,l) appears in

place of D,,(B|A, k) ® . However, these modules are isomorphic by [1, 4.58].
For q € SpecC let 6’; denote the qCy-adic completion of Cy and set p = qN B.

A.2. By [1, 4.58 and 5.27] there are natural isomorphisms

(A.2.1) D, (C|B,k(q)) = D,(Cq|B, k(q)) = D, (Cq| By, k(q)) for n>0

If By » B — é\q is a Cohen factorization of 3y, then (A.2.1) and [5, 1.7] give

(A2.2) D, (C|B, k(1)) = Dn(Cq| B, k(7)) for n>2.

A.3. Set | = k(q) and let v: C' — [ be the canonical surjection.

If fdp Cy is finite, then in (A.1.1) one has 9,, = 0 in the following cases:

(a) n = 2i for some integer ¢ with 1 <14 < oo and char(l) = 0.
(b) n = 2i for some integer ¢ with 1 < ¢ < char(l).
(¢) n =3 and char(l) = 2.

Indeed, in view of (A.2.1) we may assume B = By, C' = Cy, and the homomor-
phisms « and (3 are local. Cases (a) and (b) then are settled by [8, 4.7]. When
char(l) = 2 the map m,(a): m,(A4) ® ! — 7, (B) is injective for all integers n > 2,
not just for the even ones, see [6], so case (c) follows from the proof of [8, 4.7]

A.4. For q € Spec C the following conditions are equivalent.

(i) Biscdi. at q.
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) D=o(CIB; k(q)) = 0.
(iii) Do(C|B, k(q)) = 0.

) D>q(C|B,k(q)) = 0 for some some integer ¢, and fdp Cj is finite.

) Do (C|B, k(q)) = 0 for some integer n with 3 < n < 2m — 1, where m is
an integer such that (m — 1)! is invertible in k(q), and fdp Cj is finite.

This is a consequence of [8, 1.2, 1.3, and 1.4], via (A.2.1).

We finish with two open questions suggested by results in the main text.

A.5. The equivalence of conditions (i) and (ii) in A.4 has a parallel in 8.5. It is
natural to ask whether analogs of other conditions hold:

(iii) Does D3(C|B, k(q)) = 0 imply that g is q.c.i. at 7
(iv) Does D.4(C|B, k(q)) = 0 for some some integer ¢ imply that 3 is q.c.i. at q7

Special cases of (iii) are covered by 8.6. An affirmative answer to (iv) was
conjectured by Quillen [34, 5.6] when £ is of finite type and in [8, p. 459] in general.
That conjecture was proved in [8, 1.3] in case Cy has finite flat dimension over
B, and in [16, Theorem 1] in case 8 admits a right inverse ring homomorphism.
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