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0. Introduction.

Equivariant cohomotopy is an important invariant in algebraic Topology of
spaces with actions of compact Lie groups.

In this work, we give a definition of equivariant cohomotopy for spaces with
actions of non compact lie groups in terms of certain nonlinear perturbations of
Fredholm morphisms of Hilbert bundles over a given proper G-CW complex.

The use of analytical methods is due to the fact that the technical difficulties
involved in the proof of excision for equivariant cohomology theories, where the
equivariance group is neither discrete, nor compact Lie cannot be tackled with
constructions using finite dimensional G-vector bundles or finite dimensional rep-
resentations [22], [8].

We prove (Theorem 6.6) that our invariants generalize previous definitions,
such as that of W. Lück [14] in the context of proper actions of discrete groups
on finite G-CW complexes. The proof has its roots in methods employed in
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nonlinear analysis [25], [7], [17]. But is motivated and impregnated by ideas,
methods and constructions concerning gauge theoretical invariants in [3].

We illustrate the applications of our methods by several examples. We com-
ment the potential utility of this approach by generalizing a gauge theoretical
invariant of 4-dimensional smooth manifolds, due to Bauer and Furuta to allow
proper actions of Lie groups on four-manifolds. Finally, we introduce a Burnside
ring for non-compact Lie groups in operator theoretical terms .

This paper is organized as follows: in section 1, a review of equivariant coho-
motopy for compact Lie groups is given. Preliminaries on Hilbert bundles and
Fredholm morphisms between them are given in section 2. Section 3 defines the
analytical objects which define equivariant cohomotopy groups for non compact
group of symmetries, and examples are considered in section 4. The properties of
equivariant cohomotopy are discussed in 5, the relation to previous work is stab-
lished in section 6 via a construction of a natural isomorphism, the parametrized
Schwarz index. In the last section 7, a Burnside ring for noncompact Lie groups
is introduced, and extensions of the Segal conjecture are discussed in this new
setting.

0.1. Aknowledgments. The author would like to thank the Mexican Council
for Science and Technology, CONACYT for the grant 196868. The main re-
sults of this note developed from the corresponding dissertation, defended at the
Westfälische Wilhelms-Universität Münster. This work was also supported by
the SFB 878 at the University of Münster, Wolfgang Lück’s Leibnizpreis, and the
Hausdorff Center for Mathematics in Bonn.

1. Review of Equivariant Cohomotopy for compact Lie Groups.

In the case of compact Lie groups equivariant cohomotopy is an RO(G)- graded
equivariant cohomology theory, in the sense of [18].

Definition 1.1. Let G be a compact Lie group and X a G-CW complex. For
any representation W , form the one-point compactification SW and define the
set of continuous and pointed maps ΩW SW = Map(SW , SW ), where G acts
by conjugation. The equivariant cohomotopy group in degree V = V1 − V2,
where Vi are finite dimensional real representations, is defined to be the abelian
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group constructed as the colimit of the system of homotopy classes of pointed,
equivariant maps

πV
G(X) = colimW [SV1 ∧ X+, ΩW SW⊕V2 ]G

where the system runs along a complete G-universe, that is a Hilbert space con-
taining as subspaces all irreducible representations, where the trivial representa-
tion appears infinitely often.

Finite dimensional representations are involved in this definition in a crucial
way and this is the main handicap to extend equivariant cohomotopy to more
general settings. In fact, pathological examples from group theory [20] provide
finitely generated, discrete groups for which all finite dimensional representations
over R, or C are trivial. Precisely:

Example 1.2. Let G be a finitely presented group. G is said to be residually
finite if for every element g �= 1, there exists a homomorphism ϕ to a finite group
mapping g to an element different from 1. The maximal residually finite quotient
Gmrf of G is the quotient by the normal subgroup consisting of the intersection
of all subgroups of finite index. In symbols:

Gmrf =
G

∩(G:H)<∞H

This is a residually finite group, characterized by the property that every group
homomorphism to a residually finite group factorizes trough the quotient map.
Recall [16], that if G is a finitely generated subgroup of Gln(F ) for some field, then
G is residually finite. This means that in this situation, every finite dimensional
representation of G is induced from one of Gmrf . An example of Olshanskii, [20]
gives for every prime p > 1075 a finitely generated, infinite group all of whose
proper subgroups are finite of order p. That means that G does not contain
proper subgroups of finite index, hence Gmrf = {e} and consequently every finite
dimensional representation of G is trivial.

2. Preliminaries on Hilbert Bundles and Fredholm Morphisms

We recall first some basic definitions and technical facts of equivariant Topol-
ogy.
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Definition 2.1. Let G be a second countable, Hausdorff locally compact group.
Let X be a second countable, locally compact Hausdorff space. Recall that a
G-space is proper if the map

G × X → X × X
θX

(g,x) �→(x,gx)

is proper.

Remark 2.2. In the case of Lie groups, a proper action amounts to the fact that
all isotropy subgroups are compact and that a local triviality condition, coded
in the Slice Theorem is satisfied [21]. Specializing to Lie groups acting properly
on G-CW complexes, (see the definition below), these conditions boil down to
the fact that all stabilizers are compact [13], Theorem 1.23. In particular for an
action of a discrete group G on a G-CW complex, a proper action reduces to the
finiteness of all stabilizer groups.

Definition 2.3. Recall that a G-CW complex structure on the pair (X, A) con-
sists of a filtration of the G-space X = ∪−1≤nXn with X1 = ∅, X0 = A where
every space is inductively obtained from the previous one by attaching cells in
pushout diagrams ∐

i S
n−1 × G/Hi

��

��

Xn−1

��∐
i D

n × G/Hi
�� Xn

We say that a proper G-CW complex is finite if it consists of a finite number of
cells G/H × Dn.

The following result enumerates some facts which will be needed in the follow-
ing, which are proven in chapter one of [13]:

Proposition 2.4. Let (X, A) be a proper G-CW pair

(i) The inclusion A → X is a closed cofibration.
(ii) A is a neighborhood G-deformation retract, in the sense that there exists a

neighborhood A ⊂ U , of which A is a G-equivariant deformation retract.
The neighborhood can be chosen to be closed or open.

We recall the notion of the classifiying space for proper actions:
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Definition 2.5. A model for the classifying space for proper actions is a G-CW
complex EG with the following properties:

• All isotropy groups are compact
• For any proper G-CW complex X there exists up to G-homotopy a

unique G-map X → EG

The classifiying space for proper actions always exists, is unique up to G-
homotopy and admits several models. The following list contains some examples.
We remit to [15] for further discussion.

• If G is a compact group, then the singleton space is a model for EG.
• Let G be a group acting properly and cocompactly on a Cat(0) space X.

Then X is a model for EG.
• Let G be a Coxeter group. The Davis complex is a model for EG.
• Let G be a mapping class group of a surface. The Teichmüller space is

a model for EG.

We begin by describing cocycles for equivariant cohomotopy. They are defined
in terms of certain nonlinear operators on real G-Hilbert bundles, so we briefly
recall some well-known facts on then and their morphisms. A comprehensive
treatment of Hilbert bundles and their linear morphisms is given in the book [22].
For matters related to real C∗-algebras we refer to the text [24], in particular for
connections with Kasparov KK-theory.

Definition 2.6. Let X be a locally compact, Hausdorff proper G-space. A
Banach bundle over X is a locally trivial fiber bundle E with fiber modeled on a
Banach space H, whose structure group is the set of all isometric linear bijections
of H with the strong topology.

If H is a (real) Hilbert space, we will speak of a Hilbert bundle. A G-Hilbert
bundle is a Hilbert bundle p : E → X endowed with a continuous action of the
locally compact group G in the total space. The map p -called the projection- is
assumed to be G-equivariant and the action on the total space is given by linear
isometric bijections.

Definition 2.7 (Linear Morphism). Let E and F be Hilbert bundles over X. A
linear morphism from E to F is an equivariant, continuous function t : E → F

covering the identity on X consisting of bounded operators on fibers and in
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adition, for every point x ∈ X, there exist local trivializations a : E |U→ U ×Ex,
b : F |U→ U × Fx such that bta−1 : U × Ex → U × Fx is given by an expresion
(y, x) 
→ (y, ψ(x)) for a norm continuous map ψ : U → L(Ex, Fx) to the bounded,
adjoinable linear maps between the fiber over x. The support of a morphism t is
the set {x ∈ X | tx �= 0}.
Definition 2.8. Denote by I the unit interval. Two linear morphisms l0, l1 :
E → F are homotopic if there exists a linear morphism H : E × I → F which
covers the projection X × I → X and restricts to 0, 1 to the morphisms l0, l1.

Definition 2.9 (Compact linear morphism). A linear morphism t : E → F is a
compact morphism if it is fiberwise compact in the usual sense (that is, for every
x, tx.Ex → Fx maps bounded sets to relatively compact sets).

Definition 2.10 (Fredholm morphism). A linear morphism t : E → F is said to
be Fredholm if there exists a morphism s : F → E such that st− 1 and ts− 1 are
compact morphisms with compact supports. A Fredholm morphism is said to be
essentially unitary if one can take t = s∗ in the definition. We recall the existence
of G-invariant riemannian metrics on vector bundles over proper G-spaces, which
is proved for instance in [21] as consecuence of the slice theorem.

Remark 2.11. (i) Notice that we choose the structure group of our bundles
to be the isometric bijections with the strong operator topology. Other
choices, like the weak ∗-topology would not give enough morphisms, as
pointed out by Phillips in [22], chapter 9.

(ii) Notice that we forced the existence of adjoints for our morphisms. This is
technically convenient. We also assume that adjoint operators exist and
are always continuous in the operator norm, and the same for morphisms
of Hilbert bundles.

We now ennumerate a collection of facts on linear morphisms and G-Hilbert
bundles which we will use later.

Proposition 2.12 (Proper stabilization theorem). Let E be a G-Hilbert bundle
over a proper G-space X. Denote by H the numerable Hilbert space consisting of
the numerable sum of the space of square integrable functions in G, in symbols
H = ⊕∞

n=1L
2(G). Let H × X be the associated trivial Hilbert G-bundle over X.

There exists an equivariant linear isomorphism of G-Hilbert Bundles

E ⊕H× X ∼= H× X
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Proof. Theorem 2.9, p. 29 of [22], Theorem 2.1.4 , p. 58 of [24] in the real
case. We point out that Phillips realizes this isomorphism as an adjoinable
morphism between the G-C0(X)- Hilbert modules Γ(E) ⊗C0(X) Γ(H × X) and
Γ(X ×H)⊗C0(X) C0(X). The identification of such a morphism with an isomor-
phism of G-Hilbert bundles is consequence of lemma 1.9 in [22]. �

Next, we modify Phillip’s definition of complex equivariant K-theory for proper
actions of locally compact groups, [22] to allow real cocycles. The main reference
for technical isssues concernig the passage to real K-theory is [24].

Definition 2.13. The real equivariant K-theory of the proper and finite G-CW
complex X KO(X)0G is represented by cocycles (E, F, l), where E and F are real
G-Hilbert bundles and l : E → F is a fiberwise linear real Fredholm morphism. A
cocycle is said to be trivial if l is fibrewise unitary. Two cocycles (Ei, Fi, li)i=0,1

are equivalent if there exists a trivial cocycle τ such that l0 ⊕ τ = l1 ⊕ τ is
homotopic to a trivial morphism.

We now enumerate two consequences of the proper stabilization theorem, which
are fundamental for veryfing excision in Phillips’ construction of equivariant K-
theory.

Proposition 2.14. Let i : U → X be the inclusion of a G-invariant, open
subset of X. Let (E, F, t) be a linear cocycle over U such that t is fibrewise
bounded and has a bounded Fredholm inverse. Then, there exists a linear cocycle
(X ×H, X ×H, r) such that the classes i∗(r) and t agree after adding a unitary
linear cocycle.

Proof. Proposition 5.9, p. 74 in [22]. We recall that the constructed classes agree
after application of the proper stabilization theorem, for the real modification,
see Theorem 2.1.4 p.58 in [24] .

�

Proposition 2.15. Let X be a proper G-CW complex and ϕ : E → E be a
Fredholm morphism defined over the space X × I. Denote by ϕ0 : E0 → E0 the
restriction to X × {0}. Then:
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(i) There exists a unitary cocycle ρ between (E, E, ϕ) and (E0, E0, ϕ0). More-
over, the isomorphism can be taken to be unitary over a fixed, invariant
subspace A ⊂ X.

(ii) Let A ⊂ X be a G-subcomplex and l : F |A→ E |A be a bounded mor-
phism. Then, there exists a linear cocycle (l

′
, E, F ), defined over X such

that i∗(l) and l are equivalent .
(iii) Let A ⊂ X be a G-invariant closed subset and U ⊂ X an open neighbor-

hood of which A is a deformation retract. Suppose that (U ×K, U ×K, l)
is an essentially unitary cocycle over U , where K is a strong continu-
ous unitary G-representation in a Hilbert space. Then, there exists an
essentially unitary cocycle (X × H, X × H, F ) such that i∗(F ) = l.

Proof. (i) As the involved bundles are locally trivial E carries the weak
topology with respect to the set p−1(Xi), where Xi is an element of the
CW - filtration in the basis (cfr. lemma 1.26 in [13]). Hence, the state-
ment reduces to the case where (X, A) = (G/H×Dn, G/H×Sn−1) and E

has the form G×
H
H, for a given strong- norm continuous and unitary rep-

resentation of the compact lie group H in a separable real Hilbert space
H. Let Uc(H) be the subspace of the H-equivariant, unitary operators
u in H, for which the conjugation with an arbitrary element h−1uh is a
continuous operator (recall that this is a contractible space after results
of Segal[1], Apendix 3 for the compact Lie case). Giving an isomorphism
ρ as described above amounts to give a map ρ ∈ Map(Dn × I,Uc(H))
which is the identity on G/H × Sn−1 × {0}. There is no obstruction
for doing this because the inclusion G/H × Sn−1 → G/H × Dn is a
cofibration and Uc(H) is contractible.

(ii) It follows from the reduction to a cell as above and the fact that for
a compact group H, the space of H-equivariant compact operators is
contractible.

(iii) It follows from the restriction to a cell as above and the contractibility of
the equivariant unitary group of a Hilbert representation for a compact
group.

�
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3. Cocycles for equivariant stable cohomotopy

The second ingredient for our construction of cocycles for stable cohomotopy
are some basic notions of nonlinear functional analysis. References to this topic
are the books [4] and [6]. Applications to differential equations can be found in
[12], [17]. From this section on, all groups are assumed to be Lie, actions are
assumed to be proper and all spaces are finite G-CW complexes.

Definition 3.1. Let X be a locally compact, proper G-CW complex and let G

be a locally compact group.

A cocycle for the equivariant cohomotopy theory of X, Π[l]
G(X) is a four-tuple

(E, F, l, c) where

• E, F are real G- Hilbert bundles over X, with a linear, real Fredholm
morphism l : E → F .

• A map c : E → F , lifting the identity on X and possibly nonlinear on
each fibre, for which there exist local trivializations a : E |U→ U × Ex,
b : F |U→ U × Fx such that bta−1 : U × Ex → U × Fx is given by a
continuous expresion (y, x) 
→ (y, k(x)) consisting of possibly nonlinear,
compact and continuous maps, in a way that l + c extends to a map
between one-point compactification bundles.

Two cocycles (E, F, l, c) and (E
′
, F

′
, l

′
, c

′
) are equivalent if there is a linear,

unitary cocycle (H, H
′
, u) such that (E⊕H, F⊕H, l⊕u) and (E

′⊕H
′
, F

′⊕H
′
l
′⊕u)

are unitary equivalent as linear cocycles, by an isomorphism which intertwines c

and c
′
.

Two cocycles (E, F, l, c) and (E, F, l, c
′
) are homotopic if there exists a homo-

topy H : SE × I → SF , covering the projection X × I → X, pointed over every
fiber and relative to l. That means, H has the form l + h for a certain compact
map h : SE × I → SF such that H |0= l + c, H |1= l + c

′
.

The set Π[l]
G(X) is called the G-equivariant cohomotopy of X in degree [l].

In several applications in analysis, [17], [10], cocycles have a diferent, but
equivalent shape:

Remark 3.2 (The “no zeros on the boundary”-picture). Equivariant cohomo-
topy also can be described as four-tuples (E, F, t, k) where t : E → F is a real
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Fredholm morphism between G-Hilbert bundles, with a choice of an invariant
riemannian metric on E, k is a non necessary linear, compact fibrewise map
defined on the unitary disk D(E) = {x ∈ E | |x| ≤ 1} which is strongly non
zero, in the sense that kx = 0 has no solutions on the boundary of the unit
disk ∂D = {x ∈ E | |x| = 1}. Cocycles are said to be equivalent if they agree
after adition of a linear, unitary Fredholm morphism. The homotopy condition
is defined with homotopies which not only are assumed to be compact, but also
strongly non-zero and relative to l, that is, a homotopy is a map of the form
l + h, where h is a compact map defined on DE × I, for which for any t, the
corresponding map has no zeros on the boundary ∂D(E).

The coincidence of both approaches in the case X = {•} with an action of a
compact lie group, as for example in [17] follows from the fact that a strongly non-
zero compact perturbation gives a map of pairs (D(E), ∂D(E)) → (E, E − {0}),
which are equivalent via excision and homotopy equivalence to maps (SE ,∞) →
(SE ,∞), via the intermediary pairs (SE , SE − IntD(E)) and (SE , E − {0}), re-
spectively.

The main difference between our definition an the classical one is the fact that
our theory is graded by the group KO(X)0G, instead of the representation ring.
KO(X)0G-theoretical graded invariants play a role in [19], [3] and [23].

4. Examples of Cocycles for equivariant cohomotopy

I this section we will give some of the most common examples of cocycles in
equivariant cohomotopy from the analytical viewpoint. The first four of them
are obtained by modifying classical constructions. The last example generalizes
an invariant due to Stefan Bauer and Mikio Furuta in Gauge Theory and is not
indispensable for the rest of the paper.

Example 4.1 (Collapse map related to the Thom-Pontrjagyn Construction). Let
M be a framed, orientable k-dimensional manifold with an embedding M → U ⊂
Rn+k, where U is a tubular neighborhood. By collapsing the complement of U to
infinity, and choosing an homeomorphism of the tubular neighborhood and using
the framing to project onto SRn

one constructs a proper map c : SRn+k → SRn
.

The cocycle (Rn+k, Rn, 0, c) represents an element in Πk
{1}({∗}) in our sense.
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Example 4.2 (G-Euclidean Neighborhood Retracts). Slightly more general, con-
sider a compact lie group G, and an equivariant euclidean neighborhood retract,
that is, a compactly generated space X with an embedding X → V into some
finite dimensional representation of G, and a retraction r : U → X of some open
invariant subset U ⊂ V . In an analogous situation to the manifold case, Tom
Dieck [28], p.188 constructs a collapse map, called the Lefschetz-Dold index

IG(X) : SV → SV

The element (V, V, 0, IG(X) |V ) ∈ Π0
G({∗}) represents a cocycle.

Example 4.3 (Parametrized Fixed Point Situations). Let B be a metric space
with an action of a compact lie group G. An euclidean neighborhood retract over
B is an equivariant, locally trivial fibration p : E → B endowed with a fiberwise
embedding into a trivial bundle E → V ×B. A parametrized fixed point situation
is a diagram of the form

E × V ⊃ U
f

��

p◦projE
������������ E × V

p◦projE����
��

��
��

�

B

where f is a compactly fixed map, in the sense that the restriction of p to the
fixed point set Fix(f) = {(e, y) ∈ V | f(e, y) = (e, 0)} is a proper map onto B.

Under these hypotheses there exists a G-invariant neighborhood N of Fix(f)
which is relatively compact and contained in U , as well as a positive number ε such
that | projV (fx)−projV x |≥ ε for all x ∈ N̄−N for some G-invariant metric in V .
There exists a map c : U → SU which maps the open ball of radius ε and centre 0
homeomorphically into U . Consider the map k(x) = (c(projV x) − projV f(x), x)
defined on U , which is proper. The element (B × V, B × V, 0, k) represents a
cocycle in Π0

G(B).

Parametrized equivariant fixed point theory was developed in detail in [30] in
the context of actions of compact lie groups, generalizing the foundational work
of Dold [7].

Example 4.4 (Nonlinear Elliptic Operators with Symmetry). Let Ω ⊂ V be a
G-invariant, relatively compact, open domain with smooth boundary inside some
real representation V of the compact lie group G. Consider the Hölder spaces
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Ck+μ(Ω̄, V ) = Ck(Ω̄, R)⊗V for μ ∈ (0, 1) and an elliptic linear operator of order
m:

P =
∑

|α|≤m

Aα(X)Dα

where the matrix-valued functions Aα : Ω̄ → HomR(V, V ) are G-equivariant.
Given a set of well-posed, G-equivariant boundary conditions B, and any μ ∈
(0, 1) Marzantowicz [17] constructs a G-equivariant, Fredholm operator between
Banach spaces

P : Ck+m+μ
P,B (V ) = {x ∈ Ck+m+μ(Ω̄, V ) | B(x) = 0} → Ck+μ(Ω̄, V )

defined in a subspace Ck+m+μ
P,B (V ) of the Hölder space satisfying the boundary

conditions.

In an analogous situation, considering the elliptic operator in the Hilbert space
Hs,2(Ω, R) of all functions having formal derivatives in L2 up to a certain order
s gives a G-Hilbert space Hs,2(Ω̄, V ) = Hs(Ω̄, R) ⊗ V , as well as a Fredholm
operator defined on the space where the boundary conditions B are satisfied,
which we also denote by PB : Hs+m,2

B (Ω̄, V ) → Hs,2
B (Ω̄, V )

For any strongly nonzero, nonlinear equivariant function defined on the radius
one disk Φ : D1(Hs+m

B (Ω̄), ) → Hs(Ω̄, V ), the cocycle

(Hs+m
B (Ω̄, V ),Hs(Ω̄, V ), PB, Φ)

represents an element in the “no-zeros on the boundary”-picture of

Πker(PB)−coker(PB)
G ({∗})

See [17], definition 1.2 for the definition of an explicit isomorphism (the equivari-
ant Leray-Schauder degree) of an specific kind of these objects to the equivariant
stems of a compact Lie group. This is the equivariant version of the main result
of the foundational work of Albert Schwarz, [25]. See also [12] for applications of
related constructions to Hopf bifurcation problems.

We illustrate now an example where our constructions in terms of perturbation
of Fredholm morphisms appear in a natural way. This approach was used by
Stefan Bauer [3] and Mikio Furuta, see also [19] and [26].

We recall briefly that in the context of smooth, riemannian, oriented 4-dimensional
manifolds, the existence of a Spinc(4)-structure is always guaranteed. This amounts
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to a map from a Spinc(4) principal bundle Q together with a bundle map Q → P

to the frame bundle of the tangential bundle. The identification of the group
Spinc(4) with the sugroup {u+, u− | u−, u+ ∈ U(2), det(u+) = det(u−)} allows to
define positive, respectively, negative spinor bundles S+, S− = Q ×

ρ+,−
C2, where

ρ+,− : Spinc → U(2) are the respective projections. Using quaternionic multipli-
cation, it is posible to furnish S := S+ ⊕ S− with the structure of a module over
the Clifford algebra of the cotangential bundle T ∗(X) × S+,− → S−,+. Clifford
identities give a linear map ρ : Λ2 → EndC(S+) whose kernel is the bundle of
anti-selfdual 2-forms and whose image is the bundle of trace free skew hermitian
endomorphisms. For any spinc-connection A, define the associated Dirac oper-
ator D as the composition Γ(S+) →

∇A+a

Γ(S+) ⊗ Λ1(T ∗M)
γ→ Γ(S−), where γ

denotes Clifford multiplication.

The monopole map μ̃ is defined for four-tuples (A,φ, a, f) of a Spinc connection
A, a positive spinor φ, a 1-form a and a locally constant function f on M as

μ : Conn × Γ(S+) ⊕ Ω1(M) ⊕ H0(M) →
Conn × Γ(S−) ⊕ Ω+(M) ⊕ Ω0(M) ⊕ H1(M)

(A,φ, a, f) 
→ (A,DA+aφ, F+
A+a − σ(φ), d∗(a) + f, aharm)

where σ is the trace free endomorphism (−i)(φ ⊗ φ∗) − 1
2 | φ |2 ˙id, and F+

denotes the self-dual part of the curvature. Given a point in M , the based gauge
group Gx is the kernel of the evaluation map at x. map(X, S1) → S1. The
subspace A + ker(d) is invariant under the free action of the based gauge group.
The quotient is isomorphic to the Picard torus, Pic(X) = H1(X, R)/H1(X, Z).
Let A and B be the quotients

a + ker d × Γ(S+) ⊕ Ω1(X) ⊕ H0(X, R)/Gx

respectively

a + ker d × Γ(S−) ⊕ Ω+(X) ⊕ Ω0(X, R) ⊕ H1(X, R)/Gx

the quotient map μ : μ̃/Gx : A → B has by definition a presentation as a fibrewise
compact perturbation of a Fredholm operator. It is proper after a result of Bauer
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and Furuta, [3], which essentially uses estimates determined by the Weitzenböck
formula. This gives rise to a cocycle. A,B, DA + d + d∗, c = F+

A + a · φ + σ(φ),
where σ is the selfdual trace free endomorphism φ 
→ (−iφ ⊗ φ∗ − 1

2 | φ |).

Example 4.5. Suppose G is a (possibly noncompact) Lie group acting properly
and cocompactly on the smooth Spinc- manifold M . assume furthermore, that
the group preserves the orientation and by means of isomorphisms of complex
Spinc structures, and respecting the Spinc-connection. As the action is proper, it
can be assumed that G preserves the metric. Let G be the group of pairs (ϕ, u),
where ϕ is a G-equivariant diffeomorphism which preserves both the metric and
the orientation and u : f∗(σM ) → σM is an isomorphism of the Spinc principal
bundle. In particular, this gives a description of G in the middle of the following
exact sequence

1 → S1 → G → G → 1

In this situation, the class of μ is denoted by

mG(X, σX) ∈ Πind(λ)
G (Pic(X))

and we call it the generalized Bauer-Furuta invariant. The restriction map

resS1

G : Πind(l)
G

(Pic(X)) → Πind(l)
S1 (Pic(X)) ∼= Πind(l)

S1 (Pic(X))

which will be constructed in the following section maps mG to the S1-equivariant
cohomotopical Bauer-Furuta invariant defined in [3].

5. Cohomological Properties of Equivariant Cohomotopy for

proper actions

We describe now an additive structure in equivariant cohomotopy theory.

Let (E0, F0, l0, c0) and (E1, F1, l1, c1) be cocycles in the equivariant cohomotopy
theory of a given degree [l].

Let us suppose without loss of generality that we have representatives of the
form (E0, F0, l, c0) and (E0, F0, l, c1).

Let X × R → X × R be the trivial bundle and . Denote by SR the one
point compactification bundle. Define the pinching map ∇ : SR → SR ∨ SR ≈
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(S∞, 0) ∨ (S−∞, 0)

∇(x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ln(−x) (x ∈ −∞,−1]

−ln(−x) x ∈ (−1, 0]

∞ x = 0

ln(x) x ∈ (0, 1]

−ln(x) x ∈ (1,∞)

−∞ x = ∞

The sum of two cocycles is represented by the cocycle (E0⊕R, F0⊕R, l⊕ id, c),
where l ⊕ id + c : SE0⊕R → SF0⊕R is given as the composition

SE0 ∧X SR id∧X∇→ SE0 ∧X SR ∨X SR ≈→

SE0⊕R ∨X SE0⊕R (l⊕id+c0)∧X(l⊕id+c1)→ SF0⊕R

The zero element is represented by a cocycle (E, F, l, c) such that l + c extends
to a map sending constantly SE to the point at infinity.

The inverse of an element (E, F, l, c) is represented by the element (E⊕R, F ⊕
R, l ⊕ id, c ⊕−id). We have the following result:

Proposition 5.1. The operations described above define an abelian group struc-
ture in equivariant cohomotopy.

There is a relative version for pairs (X, A) of proper G-CW complexes. An
element in Π[l]

G(X, A) is represented by a compact perturbation of a fibrewise
perturbation of a Fredholm morphism l + c : E → F , which extends to the
one-point compactification bundles being constant over the subspace A, with the
value at infinity. Notice that this is consistent with the usual identification of X

with the pair (X, ∅).
We construct a multiplicative structure on the equivariant cohomotopy theory:

∪ : Π[l1]
G (X, A1) × Π[12]

G (X, A2) → Π[l1+l2]
G (X, A1 ∪ A2)

Consider for this representing elements ui = li + ci ∈ Π[li]
G (X, Ai) for i ∈ {1, 2},

where ci is a compact map accepting fibrewise an extension to the one-point
compactification, constant over Ai with the value at infinity. u1 ∪ u2 is the
cocycle defined as (E1 ⊕ E2, ϕ1 ⊕ ϕ2, C) where the map C is such that C :
(e1, e2) 
→ (c1(e1), c2(e2)). Notice that this map allows an extension to the one-
point compactification.
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We investigate now the cohomological behaviour of equivariant cohomotopy:

Proposition 5.2 (Functoriality). Let f : (X, A) → (Y, B) be a G-map between
finite G-CW complexes. Then f induces a group homomorphism

Π[l]
G(Y, B) → Πf∗[l]

G (X, A)

Proof. Follows from the naturality of the pullback construction for Hilbert bun-
dles, Fredholm morphisms and compact perturbations. �

Proposition 5.3. Let (X, A) be a proper G-CW pair. There exists a natural
sequence

Π[l]
G(X, A)

ρ∗→ Π[l]
G(X) i∗→ Π[l]

G(A)

which is exact in the middle, where ρ and i denote the inclusion of A into X and
X into (X, A), respectively.

Proof. That i∗ ◦ ρ∗ = 0 is clear form the definitions. Let now l + c : E → F be a
cocycle for which i∗([l + c]) is compactly homotopic to the trivial morphism over
A.

In view of proposition 2.12, we can choose a representative (which we denote
by the same symbols) for which both E and F are the trivial G-Hilbert bundle
H×X → X and the extension to one point compactification bundles is constant
over A with value ∞. Using proposition 2.14, we can assume up to equivalence
that the perturbation of the Fredholm morphism extends to a map l̃ defined
between bundles defined over all points of X.

Suppose that there is a homotopy ht : i∗SE × I → i∗SF defined over A which
begins with i∗[l + c] and ends with a map l + c which sends SE to the base point
at infinity. As X − A is built up out of a finite number of equivariant cells, one
can argue inductively to extend h to a map H : SE → SF , defined on all X such
that h |A×I= h. H determines a homotopy between certain element ρ∗(l̃ + c̃)
defined over X and l + c.

�

Proposition 5.4. Let (X, B) be a proper, finite G-CW pair obtained as the
pushout with respect to the cellular map (f, F ) : (X0, A) → (X, B) as in the
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following diagram:

A
f

��

��

B

��

X0
F

�� X

then the map (f, F )∗ : Π[l]
G(X, B) → Π[l]

G(X0, A) induces a natural isomorphism.

Proof. Let (E, F, l, c) ∈ Π[l]
G(X0, A). Due to propositon 2.14, it is possible to

assume that there exists a linear morphism l̃ : E ⊕ E
′ → F ⊕ E

′
defined over

X such that F ∗(l̃) and li differ by addition of an unitary cocycle. As c |A= ∞,
it is posible to extend c to a map c̃ defined on X, which extends to one point
compactification bundles for which l̃ + c̃ |B= ∞. Then (F ∗, f∗) : Π∗

G(X, B) →
Π∗

G(X0, A) sends l̃+ c̃ to l+c. This proves surjectivity. To prove injectivity, recall
that if l + ht : E × I → E is a nullhomotopy starting with the extension to one
point compactification bundles of (F ∗, f∗)(l + c), ending with the constant ∞.
As before, as c is constant over B and (F ∗, f∗)(c) is trivial over A, it is possible
to extend the map ht to a homotopy h̃t defined over X which is trivial over B

and which begins with l + c, and ends with a constant map. This shows that the
map is injective. �

Proposition 5.5 (Homotopy invariance). Let f0, f1 : (X, A) → (Y, B) be two G-
maps of pairs of proper G-CW complexes. If they are homotopic, then Π[l]

G(f1) =
Π[l]

G(f2).

Proof. In view of the naturality of the construction, this amounts to prove that
Π[l]

G(h) = id for the map h : (X, A)× I → (X, A)× I given by (x, t) 
→ (x, 0). Let
(E, F, l, c) be a cocycle representing an element in Π[l]

G(X, A× I). In the notation
of proposition 2.15, there exist unitary morphisms u : E → h∗(E), v : F → h∗(F )
covering the identity X × I → X × I such that the restrictions to E0, F0 are the

respective identities. Note that the composition f = h∗(E) u−1→ E
l+c→ F

v−1→ h∗(F )
is homotopic to h∗(l + c) relative to h∗(l). After checking out the conditions for
the definition of Π[l]

G(X), one has that the equivalence classes Π[l]
G(h)(l + c) =

[f ] = [l + c] agree. �

Definition 5.6. Let l : E → F be a fixed representative of a class in KO(X)G
0 .

The group Π[l+1]
G (X) is defined to be the group of equivalence classes represented
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by cocycles defined over X, which admit a representation by a cocycle (E ⊕
R, E, l ◦ projE , c), where projE denotes the projection onto the subspace E.

We construct a suspension isomorphism

σX,A
[l] : Π[l]

G(X, A) → Π[l]+1
G ((X, A) × (I, {0, 1}))

Given l+c : E → F ∈ Π[l]
G((X, A), form the bundle E

′
= E⊕R, denote by p the

projection E ⊕R → E and define the map σ[l](l + c) : E
′ × I → E

′ × I defined as
(e, t) 
→ p◦l+(log(t)−(log(−t)))(c(p(v)). By this means, we obtain a cocycle (E⊕
R, E, p ◦ l, C) which extends to the fibrewise one-point compactifications, beeing
trivial on the required subspace. Given an element l+c ∈ Π[l+1]

G ((X, A)×I, {0, 1}),
consider a unitary, fibrewise linear cocycle u : E → E0 × I v : F → F0 covering
the identity X×I → X×I, which restricted over the subspace A×I ∪X×{0, 1}
is the identity map. The map constructed as E0 × I

u−1→ E
ϕ+c→ F

v→ F0 × I

determines an inverse for σ
(X,A)
[l] .

A coboundary map is defined as the composition

Π[l]
G(A)

σn
G(A)−→ Π[l+1]

G (A × I, A × {0, 1})
Π

[l+1]
G (i1)−1

−→ Π[l+1]
G (X ∪A×{0} A × I, X

∐
A × {1})

Π
[l+1]
G (i2)−→ Π[l+1]

G (X ∪A×{0} A × I, A × {1})
Π

[l+1]
G (pr1)−1

−→ Π[l+1]
G (X, A)

Where the maps, in for n = 0, 1 are the inclusions, and pr1 is the projection .
The maps Πn+1

G (in) are bijective by excision and Πn+1
G (pr1) is bijective because

of homotopy invariance.

We analize now induction structures. In order to define the induction structure
in equivariant cohomotopy, we restrict ourselves to the case where G is a Lie
group.

Let α : H → G be a group homomorphism and X be an H-CW complex.
The induced space indαX, is the G-CW complex defined as the quotient space
obtained from G × X by the right H-action given by (g, x) · h = (gα(h), h−1x).
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Proposition 5.7. Let α : H → G be a proper Lie group homomorphism . Then
there exists a group homomorphisn

Π[l]
G(indα(X, A)) → Π[l]

H(X, A)

which satisfies

(i) Bijectivity. If ker(α) acts freely on (X, A), then the map is an isomor-
phism.

(ii) Compatibility with the boundary homomorphisms. δ
[l]
H ◦ Indα = indα ◦δ[l]

G .
(iii) Functoriality. If β : G → K is a group homomorphism, then the diagram

commutes:
(iv) Compatibility with conjugation.For any g ∈ G , the homomorphism

indc(g):G→GΠ[l]
G(X, A) → Π[l]

G(ind)c(g):G→G(X, A))

agrees with the map Π[l]
G(f2), where f2 : (X, A) → indc(g):G→G sends x

to (1, g−1x) and c(g) is the conjugation isomorphism in G associated to
g

Proof. (i) The map i : X → indα(X) (x 
→ (1G, X) induces a group homo-
morphism Π∗

G(indαX, A) → Π[l]
H(X, A). An inverse is given by the map

which associates to a linear cocycle (E, F, ϕ) the cocycle (E/H,F/H, ϕ/H).
It is easy to show that this is the case for the perturbation and that this
still satisfies the boundedness condition. We point out that we state this
fact for proper actions of Lie groups, see remark below.

(ii) Follows from the naturality of the induced bundle construcctions.
(iii) Follows from the functoriality of the induced vector bundle construction.
(iv) Compatibility with conjugation. Follows from element chasing in the

diagram

Π[l]
G(indc(g)(X, A))

indc(g)
�� Π[l]

G(X, A)

Π[l]
G(indc(g)(X, A))

=

��

Π
[l]
G (f2)

��������������

where f2 : (X, A) → indc(g)(X, A) is given by x 
→ (1, g−1x) and c(g)(g−1) =
gg

′
g−1.

�
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Remark 5.8. N.C. Phillips proves in [22], corollary 8.5 , p. 131 a more general
result for equivariant K-theory, allowing proper actions of locally compact groups
as input, instead of only Lie groups. The adaptation of these methods is certainly
plausible. The main problematic point is the induction structure. We cannot
guarantee the local triviality of bundles E/H → X/H unless H is Lie, see [21].

6. The parametrized Schwarz-Index

Several approaches have been proposed towards the definition of equivariant
cohomotopy theory for proper actions. Lück [14] uses finite dimensional bundles.
This allows to deal with the difficulties appearing in the case where a discrete
group acts on a finite G-CW complex. We briefly recal this approach

Fix an equivariant, proper G-CW complex. Form the category

SPHBG(X) which has as as objects G- equivariant, finite dimensional real
vector bundles over X. Denote by Sξ the one point compactification bundle
asociated to the vector bundle ξ. A morphism from ξ : E → X to μ : F → X

is a bundle map Sξ → Sμ covering the identity in X, which preserves fiberwise
the basic points. A homotopy between the morphisms u0, u1 is a G-bundle map
h : Sξ × [0, 1] → Sμ from the bundle Sξ × [0, 1] → [0, 1] × X to the bundle
Sμ covering the projection X × [0, 1] −→ X and preserving the base points on
every fiber such that its restriction to X × {i} is ui for i = 0, 1. Let Rn be the
trivial vector bundle over X, which is furnished with the trivial action of G. Two
morphisms of the form

Sξi⊕Rki → Sξi⊕Rki+n

are said to be equivalent if there are objects μi in SPHBG(X) and an isomor-
phism of vector bundles ν : μ0 ⊕ ξ0

∼= μ1 ⊕ ξ1 such that the following diagram of
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morphisms in SPHBG(X) commutes up to homotopy

Sμ0⊕Rk1 ∧X Sξ0⊕Rk0
id∧Xu0

��

σ1

��

Sμ0⊕Rk1 ∧X Sξ0⊕Rk0+n

σ2

��

Sμ0⊕ξ0⊕Rk0+k1

Sν⊕id

��

Sμ0⊕ξ0⊕Rk0+k1+n

Sν⊕id

��

Sμ1⊕ξ1⊕Rk0+k1

σ3

��

Sμ1⊕ξ1⊕Rk0+k1+n

σ4

��

Sμ1⊕Rk0 ∧X Sξ1⊕Rk1

id∧Xu1

�� Sμ1⊕Rk0 ∧X Sξ1⊕Rk1+n

where the isomorphisms σi are determined by the fiberwise defined homeomor-
phism SV ⊕W ≈ SV ∧ SW and the associativity of smash products, which holds
for every pair of representations V ,W . We recall now W. Lück’s definition of
equivariant cohomotopy:

Definition 6.1. Let X be a G-CW complex, where G is a discrete group and
X is finite. We define its n-th G-equivariant stable cohomotopy group πn

G(X)
as the set of homotopy clases of equivalence classes of morphisms u : Sξ⊕Rk →
Sξ⊕Rk+n

under the above mentioned relation. For a G-CW pair, (X, A) we define
Πn

G(X, A) as the equivalence classes of morphisms which are trivial over A, i.e.
those which are given by a representative u : Sξ⊕Rk → Sξ⊕Rk+n

which satisfies
that over every point a ∈ A, the map ua : Sξa⊕Rk → Sξa⊕Rk+n

is constant
with value the base point. For a pair of bundle morphisms u : Sξ⊕Rk → Sξ⊕Rk+n

,
v : Sξ

′⊕Rk → Sξ
′⊕Rk+n

, the sum is defined as the homotopy class of the morphism

u : Sξ⊕ξ
′⊕Rk ∧X SR id∧X∇→ Sξ⊕ξ

′⊕Rk ∧X (SR ∨X SR) σ3→

(Sξ⊕Rk ∧X SR) ∨X (Sξ
′⊕Rk ∧X SR)

(u∧X id)∨X(v∧X id)→
Sξ⊕ξ

′⊕Rk+n ∧X SR

where σ3 is the canonical isomorphism given by the fiberwise distributivity
and associativity isomorphisms and ∇ denotes the pinching map SR → SR ∨ SR.
The relative version for elements lying in the group of a pair, πn

G(X, A) translates
word by word when one sets all sphere bundles and morphisms to be trivial over
A.
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Our approach extends the notions proposed first by Lück and solves its prin-
cipal problem, namely: the the lack of finite dimensional G-vector bundles to
represent excisive G-cohomology theories. The crucial result in this is the con-
struction of an index theory in the context of parametrized nonlinear analysis.
Previous versions of this index theory (restricted to the unparametrized and S1-
equivariant case) were constructed in [3], [26], [19] from where we adopt the
crucial ideas.

We prepare its definition with the following facts, which are parametrized
versions of the discussion in page 5 and Lemma 2.5 in [3]. We also use the
notation from that article. In this section, all groups are discrete and all G-CW
complexes are finite.

Definition 6.2. Let l : E → E be a Fredholm morphism over a proper G-CW
complex X, equipped with some invariant riemannian metric. For any finite
dimensional G-vector subbundle ξ embedded as direct summand, the orthogonal
spherical retraction associated to ξ, ρξ : SE −Sξ⊥ → Sξ is defined to be the map
given on every fiber x as w 
→ |w|Projξ(w)

The following is a parametrized version of lemma 2.5 in [3], compare also
Corollary 3.11 in [19]:

Proposition 6.3. Let G be a discrete group acting on a finite G-Cw complex.
Let f = l + c : E → E be a fibrewise compact perturbation of the linear Fredholm
morphism l defined in a G- Hilbert bundle E over the proper G-space X. Then,
there exist finite dimensional G-vector bundles ξ ⊂ E such that

• ξ spans together with the image of l the G-Hilbert bundle E.
• Given a fibrewise inclusion as orthogonal summand in a finite dimen-

sional vector bundle ξ → τ , ξ⊕ζ = τ , the restricted map f : Sl−1(ξ) → Sξ

sends the unit sphere Sξ⊥ to the orthogonal complement of ξ.
• The maps ρτf |l−1(τ) and idζ ∧X ρξ are G-homotopic over X.

Proof. (i) Denote by D the unit ball bundle in E. Due to the boundedness
condition, the map f−1(Dx) is bounded over any point x ∈ X. Hence, the
closure Cx of its image under the compact map c is fibrewise compact. It
follows that given ε < 1

4 there exist continuous sections {φi : X → E}n
i=1

such that Cx ⊂ Bε(φi(x)). One can furthermore assume that {φi(x)}
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form a linearly independent set and the linear subspace spanned by them
intersects trivially the orthogonal complement of the image, l(E)⊥ on
each fiber. The finite dimensional bundle associated to the fredholm
morphism given as the projection onto l(E)⊥x ⊕ 〈φ1, . . . , φn(x)〉 satisfies
the required properties.

(ii) If wx ∈ Sτ⊥
x is in the image of f |

Sl−1(τ) , then f−1(wx)) ∩ l−1(τ) will be
mapped under f |l−1 to a subspace of τx+〈{φi}〉. So, wx will be contained
in Sτ⊥ ∩ τx + 〈{φi}〉, which is not possible, because the distance between
these subspaces is greater than 1 − ε > 3

4 .
(iii) In view of the slice theorem and the local triviality of the G-Hilbert

bundles involved, we can cover the space X with invariant neighborhoods
for which there is a map Ux → G/H, and the bundle over Ux is the
pullback of the bundle G×

H
Ex → G/H , where Ex is some strong, norm

continuous representation of H in a Hilbert space. Hence, we can restrict
ourselves to bundles over an orbit. In the notation of the previous part,
there is a retraction ρτx : Sτx → SEx−Sτ⊥

x . We consider the isomorphism
l−1(τx) ∼= ζx ⊕ l−1(ξx) given by w

′
x 
→ (l ◦ (1 − prl−1(ξx)w

′
x, prl−1(ξx)w

′
x).

We claim that after this isomorphism, the maps idζxρξx(f |l−1(ξx)) and
f |

Sl−1(τx) are homotopic. Consider for this a ball D ⊂ E which contains
the inverse image f−1(D1(0)) of the unitary ball We define the homotopy
h : D × I → SE − Sτ⊥

as follows

h(wx, t) =

{
l + [(1 − 3t)idEx + (3t)prξx

] ◦ c t ∈ [0, 1
3 ]

l + prξx
◦ c[(2 − 3t)idl−1(ξx) + (3t − 1)prl−1(ξx)] t ∈ [ 13 , 2

3 ]

prζx
◦ l + [(3 − 3t)prξx

+ (3t − 2)ρζx ◦ (l + c) ◦ prl−1(ζx)] t ∈ [ 23 , 1]

Since SE
x −D ∩ τ⊥

x is contractible, the homotopy above can be extended
to a homotopy Sl−1(τ) × I → SE − Sτ⊥ � Sτ , as needed.

�

Using appropiate rescaling homotopies we have:

Proposition 6.4. The homotopy type of an orthogonal spherical retraction does
not depend on the choice of a riemannian metric.

Definition 6.5 (Parametrized Schwarz index). Let G be a discrete group acting
on the proper, finite G-CW complex X. Denote by (E, F, l, k) a non-linear cocycle
for the equivariant cohomotopy theory over the proper, finite G-CW complex X,
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where l is a linear morphism whose index bundle is trivial of virtual dimension
p. Let ξ be a finite dimensional G-vector bundle as constructed in proposition
6.3. The parametrized Schwartz index is the class of the element.

[pξ(l + k) |l−1(ξ)] : Sl−1(ξ) → Sξ ∈ πp
G(X)

in the equivariant cohomotopy group as, introduced by Lück in [14]. This con-
struction does not depend of the choice of the finite dimensional vector bundle
as a consequence of part 3 of proposition 6.3.

We are now able to state our main result:

Theorem 6.6. Let G be a discrete group acting on a G-CW pair (X, A). Denote
by [l] the KOG-theoretical class of a Fredholm morphism whose fibrewise index is
a trivial virtual vector bundle of dimension p. The parametrized Schwartz index
gives an isomorphism

Π[l]
G(X, A) → πp

G(X, A)

Proof. We construct a natural inverse map. Using proposition 2.12, we can add
finite dimensional vector bundles and assume that the morphism u : Sξ⊕Rn+p →
Sξ⊕Rn

is homotopic to a map such for which on every fiber, the only preimage of
the basis point ∞ is ∞. We denote by c : Γ(ξ⊕Rn+p) → Γ(ξ⊕Rn) the (possibly
nonlinear) map obtained by restricting u fibrewise to the complement of the point
at infinity.

Consider the projection operator Pξ⊕Rn : Γ(ξ ⊕Rn+p) → Γ(ξ ⊕Rn). Let H be
the stable G-Hilbert space of proposition 2.12. Recall that Γ(η) ⊕ Γ(X × H) ∼=
Γ(X × H) for all G-Hilbert bundles η, due to the proper stabilization theorem.
The map of C(X)- G- Hilbert modules

Pξ⊕Rn ⊗C(X) id : Γ(ξ ⊕Rn+p)⊗Γ(X ×H) → Γ(ξ ⊕Rn)⊗Γ(H×X) ∼= Γ(X ×H)

determines up to precomposition with the proper stability isomorphism a Fred-
holm morphism l : X ×H → X ×H, which represents a class for which the index
bundle is trivial of virtual dimension p. We denote by C the proper, compact,
nonlinear map defined on every fiber by

Γ(X ×H)
∼=→ Γ(X ×H) ⊕ Γ(ξ ⊕ Rn+p) 0⊕c→ Γ(X ×H) ⊕ Γ(ξ ⊕ Rn) → Γ(X ×H)

where the first map is given by the proper stabilization isomorphism, and the
second one is the inclusion in the first factor of the direct sum followed by the
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proper stabilization isomorphism. The cocycle associated to u is (X × H, X ×
H, l, C).

�

Remark 6.7. In the case of compact Lie groups, one may assume that the
index bundle ker−coker(l) has the form of a trivial bundle X × V , where V is a
G- representation. The equivariant Schwartz index identifies this with the usual
definition for equivariant cohomotopy groups for finite G-complexes. Specializing
to the trivial group and the one-point space, this theorem can be traced to the
main result in [25], and in [3] one finds an S1-equivariant version which basically
deals with all problems on compact Lie groups. In view of this correspondence,
we use in the rest of this note the notation Π for cohomotopy or its equivariant
generalizations.

7. A Burnside Ring for Lie Groups

We now define a Burnside ring in operator theoretical terms for non compact
Lie groups. We first recall the definition for compact Lie groups, which was first
introduced by Tom Dieck in [27].

Definition 7.1. Let G be a compact Lie group. Consider the folowing equiva-
lence relation on the collection of finite G-CW complexes. X ∼Y if and only if
for all H ⊂ G, the spaces XH and XH have the same Euler characteristic. Let
A(G) be the set of equivalence classes. Disjoint union and cartesian product of
complexes are compatible with this equivalence relation and induce composition
laws on A(G). It is easy to verify that A(G) together with these composition
laws is a commutative ring with identity. The zero element is represented by a
complex X such that the Euler characteristic χ(XH) is zero for each H ⊂ G. If
K is a space with trivial G-action and χ(K) = −1, then X × K represents the
additive inverse of X in A(G).

We collect some information about the algebraic structure of the Burnside ring
in the followiing results, which have been published by Tom Dieck in [29], pages
240 250 and 256, respectively.

Proposition 7.2. (i) As abelian group A(G) is the free abelian group on
G/H, where H ∈ Φ(G) and Φ(G) denotes the space of conjugacy classes
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of subgroups such that N(H, G)/H is finite, where N(H, G) denotes the
normalizer of H in G.

(ii) There is a character map charG : A(G) → Map(Φ(G), Z), where Φ(G),
the space of closed subgroups of G carries the Hausdorff metric (in par-
ticular it is a compact Hausdorff space). And charG(X) is defined by
H 
→ XH .

Proposition 7.3. By means of the character map, the elements of the Burnside
ring can be identified with sums

∑
K

n(H, K)χ(XK) ∼= 0 mod | NH/H | (∗)

where the sum is over conjugacy classes (K) such that H is normal in K,
K/H ⊂ NH,G/H is cyclic, the integer numbers n(H, K) are defined to be

n(h,K) =| Gen(K/H) | | WH,G/NWK/H ,WH,G
|

and Gen(Z) denotes the cardinality of the generators of the finite cyclic group Z.
In particular, the rationalized Burnside ring A(G) ⊗ Q can be identified with the
ring of continuous rational functions defined on Φ(G)

Theorem 7.4 ( [28], p.188). Let G be a compact Lie group. There is an isomor-
phism

Π0
G({∗}) → A(G)

Remark 7.5 (The spectral sequence). Let X be a proper G-CW complex. There
is an equivariant Atiyah-Hirzebruch spectral sequence which converges to Πn

G(X)
and whose E2-term is given in terms of Bredon cohomology

Ep,q
2 = Hp

ZOrG(X, Πq
?)

AppLied to the universal proper G-space EG:

Ep,q
2 = Hp

ZSUBCOM(G)
(EG, Πq

?)

where Π0
? is the contravariant coefficient system H 
→ π0

H .

There is a canonical identification

H0
ZSUBCOM(G)

(EG, Π0
?) ∼= lim←−H∈COMΠ0

H
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The edge homomorphism of the spectral sequence defines a map edgeG :
Π0

G(EG) → Ainv(G). Several known results of the spectral sequence go trough.
Among them, as in case of discrete groups, the edge homomorphism is a rational
isomorphism.

Definition 7.6 (An operator theoretical Burnside Ring). Let G be a locally
compact group. The operator theoretical burnside ring of G, Aop(G) is the 0-
dimensional equivariant cohomotopy theory of the classifying space of proper
actions EG. In symbols

Aop(G) = Π0
G(EG)

The augmentation ideal ÎG ⊂ Π0
G(EG) is defined to be the kernel of the com-

position of the restriction to the oth- skeleton of the classifying space and the
restriction to the trivial group

Π0
G(EG) → Π0

G(EG0) → Π0
{e}(EG0)

Example 7.7 (The group Sl2(R)). Recall that the group Sl2(R) is defined to
be the group of real 2 × 2-matrices with determinant 1. It is a Lie group of
dimension 3 and has one connected component. The maximal compact subgroup
is S1 = SO2.

As Sl2(R) is almost connected, a model for ECOMSl2 is Sl2(R)/SO2 ≈ R2,
which can be handled as the upper-half plane model for the 2-dimensional hy-
perbolic space. Note that this is a zero-dimensional proper CW -complex. From
the equivariant Atiyah- Hirzebruch Spectral Sequence follows that the edge ho-
momorphism

edgeSl2(R) : Π0
Sl2(R)(EGSl2(R)) → lim

invH∈COM(Sl2(R))
ΠH(pt)

is an isomorphism. On the other hand, since S1 is a final object in the category
of compact subgroups of Sl2(R), we have

Aop(Sl2(R)) ∼= A(S1)

A(S1) ∼= Z

is a well known fact.
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8. Extending one version of the Segal conjecture for lie groups

The Segal conjecture for finite groups, proven in 1984 [5] states the existence
of an isomorphism between a certan completion of the Burnside ring and the 0th-
stable cohomotopy of the classifying space:

Theorem 8.1 (Carlsson, 1984). The Segal conjecture is true for finite groups.
That is, there is an isomorphism

A(G)ÎG

∼= Π0
{1}(BG)

In the case of Lie groups, this conjecture is known to be false in this generality
[9]. However, a weaker version was obtained by Feshbach in [9] and later refined
by Bauer in [2]. The statement is :

Theorem 8.2. [Segal conjecture for compact Lie groups]

Let G be a compact Lie group with maximal torus T of dimension n and Weyl
group W = NT,G/T . Let ρ : W → Gln(Z) be a representation which gives rise to
the action of W on T ≈ Rn/Zn. Suppose that ρ does not originate at a generalized
quaternion group of order 2n. Then the map

A(G)ÎG
→ Π0

{1}(BG)

has dense image in the skeletal filtration.

We extend this theorem in the following direction:

Theorem 8.3. [Segal Conjecture for almost connected Lie groups] The Segal
conjecture is true for (non compact) Lie groups with finitely many components.
That is, there is a map

Aop(G)ÎG
→ Π0

{1}(BG)

with dense image in the skeletal filtration whenever a maximal compact subgroup
of G satisfies the hypotheses of theorem 8.2.

Proof. Let G be a Lie group with finitely many components. Then

(i) There is up to conjugacy a unique maximal compact subgroup K of G.
Any other compact subgroup is subconjugated to K.

(ii) There exist diffeomorphisms G ≈ G/K × K and G/K ≈ Rk.
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See [11], Theorem 3.1 p 180 for a proof of this. Hence, the space G/K carries a
proper action, and in particular, the induction isomorphism gives an isomorphism
Aop(G) ∼= A(K), where A(K) stands for the Burnside ring in the sense of Tom
Dieck [27]. On the other hand, the classifying spaces BG and BK have the same
homotopy type. Hence the map

Π0
GÎG

(EG)
∼=→ Π0

K({∗})ÎK
→ Π0

e(BK)
∼=→ Π0

1(BG)

has dense image as a consequence of theorem 8.2.

�
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