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Abstract: In this paper we prove a stability theorem for block diffeomor-
phisms of 2d-dimensional manifolds that are connected sums of Sd × Sd.
Combining this with a recent theorem of S. Galatius and O. Randal-Williams
and Morlet’s lemma of disjunction, we determine the homology of the clas-
sifying space of their diffeomorphism groups relative to an embedded disk in
a stable range.
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1. Introduction

The traditional method to obtain homotopical and homological information
about diffeomorphism groups of high dimensional smooth manifolds is a two step
procedure: the surgery exact sequence handles the larger group of block diffeo-
morphisms and Waldhausen’s K-theory of spaces connects block diffeomorphisms
and actual diffeomorphisms. In practice one is forced to retreat to rational infor-
mation. The method was used by Farrell and Hsiang [17] to evaluate the rational
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homotopy groups of the orientation preserving diffeomorphism groups of spheres
in a modest range of dimensions;

(1) πk(B Diff(Sn)) ⊗ Q =

⎧⎪⎨⎪⎩
Q, k ≡ 0 (4), n even
Q ⊕ Q, k ≡ 0 (4), n odd
0, otherwise.

for 0 < k < n
6 − 7. The orthogonal group SO(n + 1) is a subgroup of Diff(Sn),

and πkBSO(n + 1) accounts for one Q when k ≡ 0 (4). The second Q in line two
above is of a different nature. It comes from the connection between Waldhausen’s
algebraic K-theory of spaces and the homotopy theory of the homogeneous space
D̃iff(Sn)/ Diff(Sn) of block diffeomorphisms modulo diffeomorphisms. This is
most clearly expressed in the following theorem from [52]:

πkD̃iff(Mn)/ Diff(Mn) ∼= πk+1(Wh(Mn)//Z/2), k � n.

Here Wh(Mn) is a factor in Waldhausen’s A(M),

A(M) � Q(M+) × Wh(M), Q = Ω∞Σ∞,

cf. [51]. For k < n,

πkA(Sn) ⊗ Q ∼= πkA(∗) ⊗ Q ∼= πkK(Z) ⊗ Q,

so one Q in the second line of (1) is represented by a non-zero multiple of the
Borel regulator. In more geometric terms,

πkB Diff(Dn, ∂) ⊗ Q ∼= πk+1K(Z) ⊗ Q

for odd n 	 k.

In general, A(M), and more generally algebraic K-theory of ring spectra, is
very hard to evaluate explicitly, although the topological cyclic homology func-
tor of [12] gives a description of the homotopy fiber of the “linearization” map
A(M) → K(Z[π1M ]) and thus reduces the calculation of A(M) to Quillen’s space
K(Z[π1M ]) whose homotopy groups are the higher algebraic K-groups of the in-
tegral group ring of the fundamental group of M , cf. [33, 16].

With the solution of the generalized Mumford conjecture [34] a new method
was introduced to study diffeomorphism groups, based on embedded surfaces and
the Pontryagin-Thom collapse map. [34] only treated surfaces but the viewpoint
was generalized in [19] where the homotopy type of the embedded cobordism
category was determined. Most recently, Galatius and Randal-Williams used
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surgery techniques, combined with the results from [19] and the group completion
theorem, to determine the “stable” homology of diffeomorphism groups of (d−1)-
connected 2d-dimensional compact manifolds. We recall their main result. The
d’th homotopy group of BO(2d) is cyclic by Bott periodicity. Let f ∈ πdBO(2d)
be an element and

θf : BO(2d)〈f〉 → BO(2d)

the associated connected covering, i.e., the Serre fibration with

(2)
πk(BO(2d)〈f〉) = 0 for k < d,
πk(θf ) injective with image Z·f for k = d,
πk(θf ) isomorphism for k > d.

If f = 0 then θf is the standard d-connected covering

θd+1 : BO(2d)[d + 1,∞) → BO(2d).

There is a spectrum MT θf (2d) associated with θf , namely the Thom spec-
trum of −θ∗f (U2d) where U2d is the tautological 2d-dimensional vector bundle
over BO(2d). In more detail, BO(2d) is the colimit (union) of the Grassmanni-
ans Grass2d(RN ) of 2d-dimensional linear subspaces of RN as N → ∞. Let

θf : Bk(N) → Grass2d(RN )

denote the fibration induced from (2). There are two basic vector bundles over
the Grassmannian, the tautological 2d-dimensional vector bundle U2d(N) and
its (N − 2d)-dimensional complement U2d(N)⊥. The Thom spaces (one point
compactifications, when the base is compact) give rise to the spectrum MT θf (2d)
with structure maps

Th(θ∗f (U2d(N)⊥)) ∧ S1 → Th(θ∗f (U2d(N + 1)⊥)).

More precisely, the N ’th space of MT θf (2d) is the Thom space of θ∗f (U2d(N)⊥).
The associated infinite loop space is by definition

(3) Ω∞MT θf (2d) = hocolimN ΩN Th(θ∗f (U2d(N)⊥)).

Just as surfaces come in two varieties, orientable or non-orientable, so do (d−1)-
connected 2d-dimensional manifolds E for d > 1. The tangent bundle TE is
represented by a map τ : E → BO(2d), and we may consider

τ∗ : πdE → πdBO(2d) ∼= πdBO.
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The image is a cyclic group. Let f = f(E) be a generator. The case f(E) = 0
corresponds to orientable surfaces and f(E) �= 0 to non-orientable surfaces when
d = 1. Since πdBO ∼= πdBO(d + 1), f gives rise to a (d + 1)-dimensional vector
bundle over Sd. Its associated sphere bundle is denoted by K. Notice that
K = Sd × Sd if f = 0 and otherwise K is a 2d-dimensional “Klein bottle”.
Consider the string

B DiffD(E) → B DiffD(E#K) → . . . → B DiffD(E#gK) → . . . ,

where D ⊂ E is a 2d-dimensional disk and DiffD(E) etc denotes the diffeomor-
phisms that fix D pointwise. The main result of [20] is

Theorem 1.1 (Galatius, Randal-Williams). For d �= 2 and any (d−1)-connected
2d-dimensional closed manifold E,

colimg H∗(B DiffD(E#gK); Z)
∼=−→ H∗(Ω∞

0 MT θf (2d); Z),

where the subscript in the target indicates the connected component of the constant
loop.

For d = 1, this is the generalized Mumford conjecture from [34]. The theorem
raises the obvious question if there is a stability range for the colimit, depending
on g. This is the case when d = 1 by [4, 47]. We introduce the notation

(4) Mg = (Sd × Sd)# . . .#(Sd × Sd), g summands.

Our main result is the following

Theorem 1.2. For d > 2,

Hk(B DiffD(M2d
g ); Q) → Hk(B DiffD(M2d

g+1); Q)

is an isomorphism provided k < min(d − 2, 1
2(g − 4)).

We believe that there is a similar stability result in the “unoriented” case,
where Mg is replaced with

Ng = K# . . .#K, g summands,

and K is a generalized Klein bottle, i.e., the sphere bundle of the vector bundle
represented by a non-trivial map f : Sd → BO(d + 1).
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Remark 1.3. Theorem 1.2 implies a stability result for the spaces in Theorem
1.1 when E is “oriented”. This follows because for a given E there exists an F

with E#F#Mh
∼= Mg for suitable h and g.

The rational cohomology of the right hand side of Theorem 1.1 is easily dis-
played. First recall the rational homotopy type of BSO(2d) is

BSO(2d)Q � K(Q, 2d) ×
d−1∏
�=1

K(Q, 4�)

with the map given by the Euler class and the Pontryagin classes of the universal
2d-dimensional vector bundle. This implies that

(5) BO(2d)[d + 1,∞)Q � K(Q, 2d) ×
d−1∏

�=� d+1
4

�
K(Q, 4�).

The Thom isomorphism theorem calculates the rational cohomology of the spec-
trum MT θ(2d),

Hk(MT θ(2d); Q) ∼= Hk−2d(BO(2d)[d + 1,∞); Q).

Indeed, by definition

Hk(MT θ(2d)) = lim Hk+N (MT θ(2d)N )) = lim Hk+N (Th(θ∗NU2d(N)⊥))

= lim Hk−2d(Grass2d(RN )) = Hk−2d(BO(2d)[d + 1,∞)),

where the inverse limit is for N → ∞. The rational cohomology of the connected
component Ω∞

0 MT θ(2d) can be expressed as

(6) H∗(Ω∞
0 MT θ(2d); Q) = Λ(H∗>2d(BO(2d)[d + 1,∞); Q)[−2d]).

Here Λ denotes the free graded commutative algebra of the stated graded vector
space. The bracket [−2d] is the notation for shifting down grading by 2d. For
example,

H∗(Ω∞
0 MT θ(2); Q) = Λ(spanQ {xi | deg xi = 2i > 2} [−2])

is a polynomial algebra in generators of degrees 2, 4, 6 ..., and

H∗(Ω∞
0 MT θ(6); Q) = Λ(spanQ {xijk | deg xijk = 4i + 6j + 8k > 6} [−6])

because the rational cohomology algebra of BO(6)[4,∞) = B Spin(6) is a poly-
nomial algebra in the first two Pontryagin classes and the Euler class. In general,
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the rational cohomology of BO(2d)[d + 1,∞) is concentrated in even dimensions
and the algebra in (6) is a polynomial algebra.

The proof of Theorem 1.2 uses rational homotopy theory, the surgery exact
sequence and Morlet’s lemma of disjunction. Let M be a (d − 1)-connected, 2d-
dimensional closed manifold. By combining Quillen’s and Sullivan’s models for ra-
tional homotopy and Koszul duality, we derive an explicit formula for the rational
homotopy groups of the space of homotopy self-equivalences aut(M) in the case
when d ≥ 2 and rank Hd(M) ≥ 3. In particular, we find that πk(aut(M))⊗Q = 0
unless k is divisible by d − 1. Moreover, we prove that the natural map

π0 aut(M) → Autalg(H∗(M ; Z))

has finite kernel and image of finite index. For the manifolds of (4), this implies
that π0 aut(M) is commensurable with the symplectic group Sp2g(Z) or the or-
thogonal group O2g(Z) depending on the parity of d. This part of the paper is
written in larger generality than necessary for Theorem 1.2. A planned sequel to
this paper needs the larger generality.

The next step in the proof of Theorem 1.2 is to compare aut(M) to the group
of block diffeomorphisms D̃iff(M), but in a relative case. Let N = Mg \ intD,
with Mg the manifold displayed in (4) and D ⊂ Mg a 2d-dimensional disk. There
is a fibration

(7) Ãut∂N (N)/D̃iff∂N (N) → BD̃iff∂N (N) → BÃut∂N (N),

where Ãut∂N (N) � aut∂N (N) denotes the semi-simplicial monoid of block homo-
topy self-equivalences of N that keep ∂N pointwise fixed. Note that D̃iff∂N (N) ∼=
D̃iffD(Mg). The surgery exact sequence is used to show that

πk(Ãut∂N (N)/D̃iff∂N (N)) ⊗ Q = Hd(Mg; Q) ⊗ πk+d(G/O)

and that

H∗(Ãut∂N (N)/D̃iff∂N (N); Q) = Λ(π∗(Ãut∂N (N)/D̃iff∂N (N)) ⊗ Q).

Stability for group cohomology of Sp2g(Z) and O2g(Z) with coefficients in stan-
dard modules leads to the analog of Theorem 1.2 with DiffD(M) replaced with
D̃iffD(M). Finally, Morlet’s lemma of disjunction completes the proof of Theorem
1.2.

Recently in [21], Galatius and Randal-Williams have proved a stronger version
of our Theorem 1.2 by completely different methods. Indeed, they prove integral
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stability in the improved range ∗ < 1
2(g − 4). In a successor to this paper we

extend the stability result for block diffeomorphisms to prove that

Hk(BD̃iffD(Mg); Q) → Hk(BD̃iffD(Mg+1); Q)

is an isomorphism for k < 1
2(g−4), and we calculate the rational stable homology.

Combined with the cited results of Galatius and Randal-Williams this should give
valuable homological information about D̃iffD(Mg)/ DiffD(Mg).

2. Rational homotopy theory of homotopy self-equivalences

Let M be a (d − 1)-connected 2d-dimensional closed manifold where d ≥ 2.
Let D2d ⊂ M be an embedded disk and let N be the manifold with boundary
N = M \ intD2d. For a pair A ⊂ X of topological spaces, let autA(X) denote
the topological monoid of homotopy self-equivalences of X that leave A fixed
pointwise, with the compact-open topology. We calculate below the rational
homotopy groups of aut∂N (N), autD(M) and aut(M). In particular, we find
that in all three cases,

πk(aut) ⊗ Q = 0, for k �≡ 0(d − 1).

In particular, πk(aut) ⊗ Q = 0 for k < d − 1; this is the result we need for the
proof of Theorem 1.2. Furthermore, we show that the evident homomorphism to
the automorphism group of the cohomology algebra

h : π0 aut∂N (N) → Autalg H∗(M ; Z)

has finite kernel and its image is a subgroup of finite index.

Our proof will depend on methods from rational homotopy theory. The rational
homotopy type of a simply connected space X with degreewise finite dimensional
rational homology is modeled algebraically by either

• The Sullivan-de Rham commutative differential graded algebra (cdga)
Ω(X) of polynomial differential forms on X [45].

• Quillen’s differential graded Lie algebra (dgl) λ(X) of normalized chains
on the simplicial Lie algebra of primitives in the completed group algebra
on the Kan loop group of a 1-reduced simplicial set model for X [40].
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2.1. Sullivan’s rational homotopy theory. Let Ω• denote the simplicial poly-
nomial de Rham algebra; it is the simplicial cdga with n-simplices

Ωn =
Q[t0, . . . , tn] ⊗ Λ(dt0, . . . , dtn)

(t0 + . . . + tn − 1, dt0 + . . . + dtn)
, |ti| = 0, |dti| = 1,

with standard face and degeneracy maps. The simplicial deRham algebra Ω•
gives rise to a (contravariant) adjunction between simplicial sets and commutative
differential graded algebras

sSet
Ω ��

CDGAop
Q ,

〈−〉
��

Ω(X) = HomsSet(X, Ω•), 〈B〉 = Homcdga(B,Ω•).

The cdga Ω(X) is the Sullivan-deRham algebra of polynomial differential forms
on X, and 〈B〉 is the spatial realization of B. It is a fundamental result in
rational homotopy theory that the adjunction induces an equivalence between
the homotopy categories of nilpotent rational spaces of finite Q-type and minimal
algebras of finite type, see [5, 45].

If T is a topological space, then we define Ω(T ) = Ω(S•(T )), where S•(T ) is
the singular complex of T . We prefer to work in the category of simplicial sets
and will use the word ‘space’ to mean a simplicial set unless otherwise indicated.
A cdga A which is quasi-isomorphic1) to Ω(X) is called a cdga model for X. A
Sullivan algebra is a cdga of the form A = (ΛV, d) where

• ΛV denotes the free graded commutative algebra on a graded Q-vector
space V = V 1 ⊕ V 2 ⊕ . . ..

• V admits a filtration 0 = F0V ⊆ F1V ⊆ . . . ⊆ ∪pFpV = V such that

d(FpV ) ⊆ Λ(Fp−1V ).

A Sullivan algebra which is also a cdga model for X is called a Sullivan model for
X. Sullivan algebras play the role of CW-complexes in the category of cdgas; they
are cofibrant in the sense that, up to homotopy, maps from a Sullivan algebra to
the target of a quasi-isomorphism lift uniquely to the source.

1)A is quasi-isomorphic to B if there is a zig-zag of morphisms of differential graded algebras that

induce isomorphisms in cohomology A
∼← . . .

∼→ B.
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Theorem 2.1 (Sullivan’s localization theorem [5, 45]). Let X be a nilpotent
connected space of finite Q-type and let A

∼→ Ω(X) be a Sullivan model. Then
the adjoint map X → 〈A〉 is a Q-localization.

2.2. Quillen’s rational homotopy theory. For a simplicial set X with X0 =
X1 = ∗, Quillen [40] considers the differential graded Lie algebra

λ(X) = N∗PQ̂[G•X]

of normalized chains on the simplicial Lie algebra of primitives in the completed
group algebra on the Kan loop group of X. The functor λ : sSet1 → DGL induces
an equivalence between the homotopy category of 1-connected rational spaces and
dgls. The homology of λ(X) is isomorphic to the graded Lie algebra formed by
the rational homotopy groups π∗(ΩX) ⊗ Q with Samelson products:

H∗(λ(X)) ∼= P H∗(ΩX; Q) ∼= π∗(ΩX) ⊗ Q.

A dgl L which is quasi-isomorphic to λ(X) in the category of differential graded
Lie algebras is called a dgl model for X. A Quillen model for X is a dgl model
of the form L = (L(W ), d) where L(W ) denotes the free graded Lie algebra on
a graded vector space W = W1 ⊕ W2 ⊕ . . .. Quillen models are cofibrant in the
category of dg Lie algebras.

Given a dgl L of finite type, let C∗(L) be the differential graded cocommutative
coalgebra

C∗(L) = (Λ(L[1]), d = d0 + d1), L[1]k = Lk−1,

where d0 is induced from the differential in L and

d1(x1 ∧ . . . ∧ xk) =
∑
i<j

εij [xi, xj ] ∧ x1 ∧ . . . x̂i . . . x̂j . . . ∧ xk.

Here εij is the standard sign from permuting xi and xj to the front. The
Chevalley-Eilenberg construction C∗(L) is the dual cdga,

C∗(L) = HomQ(C∗(L), Q) ∼= Λ(L[1]∨)

with L[1]∨ = HomQ(L[1], Q).

In 1977 Baues and Lemaire [1] conjectured that the Chevalley-Eilenberg con-
struction would provide a bridge from Quillen’s to Sullivan’s theory. This was
proved by Majewski in 2000 [35]. The precise statement is the following.
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Theorem 2.2 (Baues-Lemaire conjecture [1, 35]). Let X be a simply connected
space of finite Q-type. If L is a finite type dgl model for X then C∗(L) is a
Sullivan model for X.

2.3. Rational homotopy theory of mapping spaces. There are several ap-
proaches to the rational homotopy theory of mapping spaces, see for instance
[3, 8, 9, 31, 24]. We will describe the model of [3], which uses the Maurer-Cartan
simplicial set associated to a dg Lie algebra.

Let g be a dgl whose underlying chain complex is not necessarily bounded. The
set of Maurer-Cartan elements MC(g) consists of all elements τ ∈ g of degree −1
that satisfy the equation

(8) d(τ) +
1
2
[τ, τ ] = 0.

Equivalently, τ is a Maurer-Cartan element if the map dτ : g → g defined by

dτ (x) = dx + [τ, x]

satisfies (dτ )2 = 0. In this case, (g, dτ ) is again a dgl.

If A is a cdga and g is a dgl, the tensor product chain complex A⊗ g becomes
a dgl with Lie bracket

[x ⊗ α, y ⊗ β] = (−1)|α||y|xy ⊗ [α, β],

and grading

(A ⊗ g)k =
⊕

n

An ⊗ gn+k.

Following [22], we may form the simplicial dgl Ω• ⊗ g and the simplicial set

MC•(g) = MC(Ω• ⊗ g).

Since τ �→ dτ + 1
2 [τ, τ ] is not a linear operator, MC•(g) is not a simplicial group,

nevertheless it is fibrant, i.e. a Kan complex, by [22].

The path components of MC•(g) is the set of Maurer-Cartan elements of g

modulo homotopy equivalence. Let us make this explicit. A 1-simplex γ ∈
MC1(g) = MC(Λ(t, dt) ⊗ g) may be written as

γ = α(t) + β(t)dt
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where α(t) =
∑

i αit
i and β(t) =

∑
i βit

i for elements αi ∈ g−1 and βi ∈ g0, and
the Maurer-Cartan equation dγ + 1

2 [γ, γ] = 0 is equivalent to

dα(t) +
1
2
[α(t), α(t)] = 0

dβ(t) + [α(t), β(t)] = α̇(t)

where dα(t) =
∑

i d(αi)ti and α̇(t) =
∑

i iαit
i−1. Two Maurer-Cartan elements

τ, τ ′ ∈ MC(g) are homotopy equivalent if there is a γ as above such that γ|t=0 = τ

and γ|t=1 = τ ′, or equivalently, α(0) = τ and α(1) = τ ′.

For a fixed basepoint τ ∈ MC•(g), i.e., a Maurer-Cartan element of g, the
higher homotopy groups πn+1(MC•(g), τ) can be calculated as follows:

Proposition 2.3 ([3]). Let τ be a Maurer-Cartan element of g. For every n ≥ 0
the map

(9) Bτ
n : Hn(g, dτ ) → πn+1(MC•(g), τ),

[α] �→ [1 ⊗ τ + dt0 ∧ . . . ∧ dtn ⊗ α]

is a bijection. For n ≥ 1 it is an isomorphism of abelian groups, and for n =
0 it identifies the group π1(MC•(g), τ) with the exponential of the Lie algebra
H0(g, dτ ).

Recall that the exponential of a Lie algebra g is the group with underlying
set g and group multiplication given by the Campbell-Hausdorff formula x · y =
log(exey).

Notice that if L is a dgl that is concentrated in positive degrees, then MC•(L)
is simply connected. In a sense, the construction L �→ MC•(L) is inverse to
Quillen’s functor Y �→ λ(Y ). Indeed, suppose that L is a finite type dgl model
for a simply connected space Y of finite Q-type. For a bounded cdga A, restriction
to generators gives a map

Homcdga(C∗(L), A) → HomQ(L[1]∨, A)0 ∼= (A ⊗ L)−1.

Since the underlying algebra of C∗(L) is free this map is injective. The image
can be identified with MC(A⊗L). In particular, if we take A = Ω• this yields an
isomorphism of simplicial sets

〈C∗(L)〉 ∼=→ MC•(L).
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By the affirmed Baues-Lemaire conjecture, C∗(L) is a Sullivan model for Y ,
i.e., there is a quasi-isomorphism of cdgas φ : C∗(L) ∼→ Ω(Y ). By Sullivan’s
localization theorem, the adjoint Y → 〈C∗(L)〉 ∼= MC•(L) to φ is a Q-localization.
Thus, if L is a finite type dgl model for λ(Y ), then MC•(L) is a Q-localization of
Y .

Next, let X be a finite connected space. For a fixed map f : X → Y the
Q-localization map r : Y → MC•(L) induces a Q-localization

r∗ : Map(X, Y )f → Map(X, MC•(L))rf ,

see e.g., [26, Theorem II.3.11]. There is a natural homotopy equivalence

(10) ϕ : MC•(Ω(X) ⊗ L) → MapsSet(X, MC•(L))

which is defined as follows: Firstly, there is a natural isomorphism

μ : MC(Ω(X) ⊗ L) → HomsSet(X, MC•(L))

given by μ(τ)(x) = x∗(τ), where x∗ : Ω(X) ⊗ L → Ωn ⊗ L is the dgl morphism
induced by a simplex x ∈ Xn. Secondly, on k-simplices ϕ is defined as the
composite

MC(Ω(Δ[k]) ⊗ Ω(X) ⊗ L) → MC(Ω(Δ[k] × X) ⊗ L)
μ→ MapsSet(X, MC•(L))k

where π is induced by the natural morphism Ω(X) ⊗ Ω(Y ) → Ω(X × Y ). The
proof that ϕ is a homotopy equivalence can be found in [3]. Furthermore, the
functor MC•(− ⊗ L) : CDGAQ → sSet takes quasi-isomorphisms to homotopy
equivalences [3]. Therefore, the mapping space Map(X, YQ) is homotopy equiva-
lent to MC•(A⊗L) where A is any cdga model for X and L is any dgl model for
Y . The homotopy groups may be calculated by (9).

Theorem 2.4. Let X be a connected finite space and let Y be a simply connected
space of finite Q-type. If A is a cdga model for X and L is a finite type dgl model
for Y then there is a homotopy equivalence

MC•(A ⊗ L) ∼→ Map(X, YQ).

In particular, there is a bijection

(11) [X, YQ] ∼= π0MC•(A ⊗ L).
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Let f : X → Y be a fixed map, and let τ ∈ MC(A⊗L) be a Maurer-Cartan element
whose component corresponds to the homotopy class of rf : X → YQ under the
bijection (11). Then for every n ≥ 0 there is a bijection

Hn(A ⊗ L, dτ )
∼=→ πn+1(Map(X, Y ), f) ⊗ Q.

For n ≥ 1 this is an isomorphism of rational vector spaces, and for n = 0 it
identifies the Malcev completion of the fundamental group π1(Map(X, Y ), f) with
the exponential of the Lie algebra H0(A ⊗ L, dτ ).

The constant map X → Y corresponds to the trivial Maurer-Cartan element
τ = 0. The finiteness assumption on X can be relaxed if one considers coalgebra
models instead of cdga models. Moreover, one can relax L to a be an L∞-algebra
rather than a strict dgl. The reader is referred to [3] for more details.

2.4. Formal and coformal spaces and Koszul algebras. Theorem 2.4 raises
the question of how to find tractable algebraic models for the spaces involved. The
cohomology of the Sullivan-de Rham algebra Ω(X) is isomorphic to the singular
cohomology algebra H∗(X; Q). The simplest possible cdga with this cohomology
is the cohomology itself, viewed as a cdga with zero differential. If Ω(X) is
indeed quasi-isomorphic to H∗(X; Q), then X is called formal. Far from all spaces
are formal, Massey operations in the cohomology being a first obstruction, but
sometimes formality is forced by geometric constraints. A celebrated result due to
Deligne, Griffiths, Morgan and Sullivan says that every simply connected compact
Kähler manifold is formal [14]. Formality can also be deduced from connectivity
and dimension constraints. As shown in [37], every (d − 1)-connected manifold
of dimension at most 4d − 2 is formal, for d ≥ 2.

There is a parallel story for the Quillen model. The homology of Quillen’s dgl
λ(X) is isomorphic to the graded Lie algebra formed by the rational homotopy
groups π∗(ΩX)⊗Q with Samelson products. A space X is called coformal if the
homotopy Lie algebra π∗(ΩX) ⊗ Q, with zero differential, is a dgl model for X.

If we want to use Theorem 2.4 to model a mapping space Map(X, Y ), the sim-
plest case imaginable is when X is formal and Y is coformal; then one may choose
A = H∗(X; Q) and L = π∗(ΩY ) ⊗ Q as models. We are particularly interested
in self-maps of X, and so one is naturally led to ask when X is simultaneously
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formal and coformal. The answer is given by Theorem 2.5 below. The character-
ization involves the notion of Koszul algebras, so we first need to explain what
this means.

Koszul algebras were introduced by Priddy [39]. Let A be a graded commuta-
tive Q-algebra A = A0 ⊕ A1 ⊕ . . . which is connected in the sense that A0 ∼= Q.
Let VA = A+/A+ ·A+ denote the space of indecomposables and let RA ⊆ Λ2VA be
the kernel of the multiplication map Λ2VA → A induced by some choice of split-
ting of the projection A+ → VA. The algebra A is called quadratic if the induced
surjective morphism of graded algebras ΛVA/(RA) → A is an isomorphism. In
other words, A is quadratic if it is generated by some elements xi modulo certain
quadratic relations

(12)
∑
i,j

cijxixj = 0, cij ∈ Q.

If A is quadratic then there is an additional grading on A given by the wordlength
in the generators xi

2). We will refer to this additional grading as the weight
grading. This weight grading induces an additional grading also on the Ext-
groups Ext∗A(Q, Q). A graded commutative connected algebra A is a Koszul
algebra if it is quadratic and if Exts,tA (Q, Q) = 0 for s �= t.

Let L = L1 ⊕ L2 ⊕ . . . be a graded Lie algebra over Q, let VL = L/[L,L]
denote the space of indecomposables and let RL ⊆ L2(VL) be the kernel of the
multiplication map L2(VL) → L induced by some choice of splitting of the pro-
jection L → VL. There is an induced surjective morphism of graded Lie algebras
L(VL)/(RL) → L. If it is an isomorphism then L is called quadratic. In other
words, L is quadratic if it is generated by some elements αi modulo certain qua-
dratic relations

(13)
∑
i,j

λij [αi, αj ] = 0, λij ∈ Q.

There is an additional grading on a quadratic Lie algebra given by bracket length
in the generators αi. Again, we will refer to this additional grading as the weight
grading. The weight grading induces an additional grading on the cohomology
Ext∗UL(Q, Q). A graded Lie algebra L is called Koszul if it is quadratic and if
Exts,t

UL(Q, Q) = 0 for s �= t.

2)Note that the generators xi need not be of the same cohomological degree.
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If A is a quadratic commutative algebra and L is a quadratic Lie algebra then
we say that A is Koszul dual to L if there is a non-degenerate pairing of degree 1

〈 , 〉 : VA ⊗ VL → Q

such that R⊥
L = RA under the induced pairing

〈 , 〉 : Λ2(VA) ⊗ L2(VL) → Q,

〈xy, [α, β]〉 = (−1)|y||α|+|x|+|α|〈x, α〉〈y, β〉 − (−1)|α||β|+|y||β|+|x|+|β|〈x, β〉〈y, α〉.
In other words, A and L are Koszul dual if they have dual generators and or-
thogonal relations. We may without loss of generality assume that the coeffi-
cients in (12) and (13) are symmetric in the sense that cij = (−1)|xi||xj |cji and
λij = −(−1)|αi||αj |λji. In effect, to say that A and L have orthogonal relations
means that a relation (13) holds in L if and only if∑

i,j

(−1)|xj ||αi|cijλij = 0

whenever the coefficients cij represent a relation among the generators xi as in
(12).

Every quadratic algebra A has a dual, often denoted A!Lie: simply define
VL := HomQ(VA, Q)[−1], with the standard evaluation pairing, define RL := R⊥

A

and let L = L(VL)/(RL). Clearly, the dual is unique up to isomorphism.

There is a natural pairing between the cohomology and homotopy groups of a
space X given by

(14) 〈 , 〉 : Hn(X) ⊗ πn(X) → Z, 〈x, α〉 = 〈α∗(x), [Sn]〉.
If x is decomposable with respect to the cup product or if α is decomposable
with respect to the Whitehead product then 〈x, α〉 = 0. Therefore, (14) induces
a pairing (of degree +1) between indecomposables

(15) 〈 , 〉 : VA ⊗ VL → Q,

where A = H∗(X; Q) and L = π∗(ΩX) ⊗ Q. Sometimes the pairing is non-
degenerate, sometimes it is not. If it is non-degenerate, then it sometimes exhibits
H∗(X; Q) and π∗(ΩX) ⊗ Q as Koszul dual, but often it does not. However, we
have the following theorem which characterizes spaces that are both formal and
coformal.
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Theorem 2.5 ([2]). Let X be a simply connected space of finite Q-type. The
following are equivalent:

(1) X is both formal and coformal.
(2) X is formal and H∗(X; Q) is a Koszul algebra.
(3) X is coformal and π∗(ΩX) ⊗ Q is a Koszul Lie algebra.

Furthermore, in this situation the pairing between indecomposables in cohomology
and homotopy (15) is non-degenerate and exhibits H∗(X; Q) and π∗(ΩX)⊗Q as
Koszul dual to one another.

Returning to the problem of finding rational models for the space aut(X), note
that the component of the mapping space Map(X, X) that contains a fixed homo-
topy self-equivalence is equal to the same component of aut(X), since any map
homotopic to a homotopy equivalence is itself a homotopy equivalence. More-
over, π1(aut(X), 1X) is an abelian group as aut(X) is a monoid. By combining
Theorem 2.4 and Theorem 2.5 we obtain the following.

Theorem 2.6. Let X be a simply connected finite complex. If X is formal and
coformal then there is an isomorphism of rational vector spaces

(16) πk+1(aut(X), 1X) ⊗ Q ∼= Hk(H∗(X; Q) ⊗ π∗(ΩX), [κ,−]), k ≥ 0.

Here κ =
∑

i xi ⊗ αi, where x1, . . . , xn is a basis for the indecomposables of
H∗(X; Q) and α1, . . . , αn is a dual basis for the indecomposables of π∗(ΩX) ⊗ Q

under the natural pairing between cohomology and homotopy.

2.5. Highly connected manifolds. Consider a (d−1)-connected 2d-dimensional
closed manifold M where d ≥ 2. By Poincaré duality the cohomology of M is of
the form

H∗(M) = H0(M) ⊕ Hd(M) ⊕ H2d(M).

Moreover H0(M) ∼= H2d(M) ∼= Z and Hd(M) ∼= Zn for some n. Let x1, . . . , xn be
a basis for Hd(M). The cohomology algebra structure is completely determined
by the integer n × n-matrix (qij) where

qij = 〈xi ∪ xj , [M ]〉.
Since the cup product is graded commutative qij = (−1)dqji and qii = 0 if d is odd.
By the Hurewicz theorem there are classes αi ∈ πd(M) such that 〈xi, αj〉 = δij

under the pairing Hd(M) ⊗ πd(M) → Z.
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By removing the interior of an embedded disk D2d ⊂ M we obtain a manifold
N := M \ intD2d with boundary ∂N ∼= S2d−1. By reinserting the disk we recover
the manifold M : there is a pushout square

(17) ∂N ��

i
��

D2d

��
N

j
�� M.

The manifold N is homotopy equivalent to an n-fold wedge of d-dimensional
spheres, N � ∨nSd, and the inclusion i : ∂N → N is determined up to homotopy
by the corresponding class Q ∈ π2d−1(∨nSd). By Hilton’s calculation [25] an
element Q ∈ π2d−1(∨nSd) can be written uniquely as

(18) Q =
∑
i<j

aij [ιi, ιj ] +
∑

i

ιiγi,

where ιi ∈ πd(∨nSd) is the homotopy class of the inclusion of the ith wedge
summand Sd → ∨nSd, the aij are integers and γi ∈ π2d−1(Sd). The coefficients
aij and the Hopf invariant of γi can be read off from the intersection matrix:
aij = qij and H(γi) = qii, provided ιi maps to αi under the inclusion N ⊂
M . Let K ⊆ π2d−1(Sd) be the kernel of the Hopf invariant homomorphism
H : π2d−1(Sd) → Z. Then K is a finite group and π2d−1(Sd) ∼= Z⊕K if d is even
and π2d−1(Sd) = K if d is odd. If the Hopf invariant of γi is even (which must
be the case if d �= 2, 4, 8 by Adams’ famous theorem), then βi := γi − H(γi)

2 [ιi, ιi]
has Hopf invariant 0 and we may rewrite Q as

(19) Q =
1
2

∑
i,j

qij [ιi, ιj ] +
∑

i

ιi ◦ βi

If we agree to interpret 1
2 [ιi, ιi] as an element of Hopf invariant 1 when relevant,

then the above expression remains valid in all cases. The class ιi : Sd → N is ho-
motopic to an embedding with normal bundle νi represented by [νi] ∈ πdBSO(d).
The J-homomorphism

J : πdBSO(d) → π2d−1(Sd)

maps [νi] to the element γi of (18), cf. [49, 50]. In the special case M = Mg =
#g(Sd × Sd), (18) reduces to

(20) Q = [ι1, ιg+1] + . . . + [ιg, ι2g]
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when ι1, . . . , ιg are the inclusions into the first factor of the g summands Sd ×Sd

and ιg+1, . . . , ι2g are the inclusions into the second factor. Indeed, the normal
bundles νi are all trivial, so the elements γi in (18) vanish.

The rational homotopy Lie algebra of a wedge of spheres ∨nSd is a free graded
Lie algebra

π∗(Ω(∨nSd)) ⊗ Q ∼= L(ι1, . . . , ιn)

where the class ιi : Sd−1 → Ω(∨nSd) is represented by the adjoint of the inclusion
of the ith wedge summand [25].

Proposition 2.7. Let M be a (d− 1)-connected 2d-dimensional closed manifold
with d ≥ 2 such that n = rank Hd(M) ≥ 2. Then M is formal and coformal and
the rational homotopy Lie algebra of M is given by

(21) π∗(ΩM) ⊗ Q ∼= L(α1, . . . , αn)/(Q), Q =
1
2

∑
i,j

qij [αi, αj ],

where αi are classes of degree d − 1 and (qij) is the cup product matrix of M .

Proof. That M is formal and coformal follows from [38, Proposition 4.4]. Hence,
by Theorem 2.5 the homotopy Lie algebra L = π∗(ΩM) ⊗ Q is Koszul dual to
the cohomology algebra A = H∗(M ; Q). This means that it is generated by the
classes αi ∈ πd(M) ∼= πd−1(ΩM) dual to xi ∈ Hd(M) modulo the orthogonal
relations RL = R⊥

A. A relation∑
i,j

cijxi ∪ xj = 0, cij ∈ Q,

holds in H∗(M ; Q) if and only if∑
i,j

cijqij = 〈
∑
i,j

cijxi ∪ xj , [M ]〉 = 0.

Therefore, R⊥
A is one-dimensional and spanned by the single relation∑

i,j

qij [αi, αj ] = 0.

�

The condition n ≥ 2 in Proposition 2.7 is necessary as shown by the following
example: The manifold CP2 is formal, e.g., because it is Kähler, but it is not cofor-
mal because the cohomology H∗(CP2; Q) = Q[x]/(x3) is not a quadratic algebra,
let alone a Koszul algebra. The rational homotopy Lie algebra π∗(ΩCP2) ⊗ Q is
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abelian, with two indecomposable classes α and β in degrees 1 and 4, and does
not have the form (21).

For Mg = #g(Sd × Sd) we have n = 2g, and the intersection matrix is(
0 I

(−1)dI 0

)
,

where I denotes the identity g × g-matrix. Thus, π∗(ΩMg) ⊗ Q is generated by
classes α1, . . . , α2g of degree d − 1 modulo the relation

[α1, αg+1] + . . . + [αg, α2g] = 0.

There is a formula for the dimension ηr of the weight r component of the free
graded Lie algebra L(α1, . . . , αn) which is due Witt:

(22) ηr =
1
r

∑
�|r

σμ(�)nr/�.

Here σ is the sign σ = (−1)(d−1)(r+r/�) and μ is the Möbius function from number
theory, i.e., μ(1) = 1, μ(p1 . . . pm) = (−1)m if p1, . . . , pm are distinct primes, and
μ(�) = 0 unless � is square-free. There is a similar but more complicated formula
for the dimensions of the Lie algebra L(α1, . . . , αn)/(Q).

Proposition 2.8. With M as in Proposition 2.7 the dimensions

εr = dimπr(d−1)(ΩM) ⊗ Q

depend only on n and the parity of d. They are given by the formula

(23) εr =
∑
�|r

σ
μ(�)

�

∑
p+2q=r/�

(−1)qnp
(
p+q

p

)
p + q

,

where σ = (−1)(d−1)(r+r/�).

Proof. If A is a graded commutative Koszul algebra with Koszul dual Lie algebra
L, then there are certain numerical relations between the dimensions of the weight
graded components of A and those of the universal enveloping algebra UL, which
express themselves as an equality of formal power series

(24) PA(−z)PUL(z) = 1,
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see e.g., [32, Theorem 3.5.1]. Here

PA(z) =
∑
s≥0

dimQ A(s)zs,

where A(s) denotes the component of weight s. In our case, where A = H∗(M ; Q)
and L = π∗(ΩM) ⊗ Q, we have that PA(z) = 1 + nz + z2, so (24) implies that

(25) PUL(z) =
1

1 − nz + z2
.

On the other hand, by the Poincaré-Birkhoff-Witt theorem there is an isomor-
phism of graded vector spaces between the universal enveloping algebra UL and
the free graded commutative algebra ΛL. Since the weight r component L(r) is
concentrated in homological degree r(d − 1), this implies that

(26) PUL(z) =

{
(1 − z)−ε1(1 − z2)−ε2(1 − z3)−ε3 . . . , if d is odd,
(1 + z)ε1(1 − z2)−ε2(1 + z3)ε3(1 − z4)−ε4 . . . , if d is even.

We will deal with the case d odd and leave the even case to the reader. If we take
logarithms of (25) and (26) and expand in Taylor series we get, respectively,

∑
m≥1

(nz − z2)m

m
=

∑
p,q

p+q≥1

(−1)qnp
(
p+q

p

)
p + q

zp+2q

and ∑
k,�≥1

ε�
zk�

k
.

When identifying zr-coefficients we obtain

∑
p+2q=r

(−1)qnp
(
p+q

p

)
p + q

=
∑
�|r

ε�
�

r
,

and by applying the Möbius inversion formula we arrive at the formula in (23). �

Remark 2.9. The arguments in this section have only used the Poincaré duality
structure, so the results hold more generally for highly connected Poincaré duality
spaces.
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2.6. Homotopy self-equivalences of highly connected manifolds. For a
pair of topological spaces A ⊂ X, let autA(X) denote the topological monoid
of homotopy self-equivalences of X that fix A pointwise. We will now analyze
the spaces of homotopy self-equivalences aut∂N (N), aut∗(M) and aut(M) where
M is a highly connected closed manifold and N = M \ D where D ⊂ M is an
embedded disk of codimension 0.

There is a map e : aut∂N (N) → autD(M) which extends a self-map of N that
fixes the boundary by the identity on the disk D ⊂ M . For diffeomorphisms or
homeomorphisms the corresponding map is an isomorphism, the inverse being
given by restriction to N , but for homotopy self-equivalences the map e is not
even a rational homotopy equivalence.

Theorem 2.10. If n = rank Hd(M) ≥ 3 then the homotopy groups

πk(aut∂N (N), 1N ), πk(aut∗(M), 1M ), πk(aut(M), 1M ),

are finite unless k = r(d − 1). For r ≥ 1, the ranks are given by, respectively,

nηr+1 − ηr+2, nεr+1 − εr+2, nεr+1 − εr+2 − εr

where εr and ηr are given by (22) and (23). In particular, the ranks depend only
on n and the parity of d.

Proof. Since M is formal and coformal we may use Theorem 2.6 to calculate the
rational homotopy groups of aut(M). Let A = H∗(M ; Q) and L = π∗(ΩM) ⊗
Q. The algebra A is generated by classes x1, . . . , xn of cohomological degree
d, and the Lie algebra L is generated by dual classes α1, . . . , αn of homological
degree d−1. In particular, the weight graded component A(s) is concentrated in
cohomological degree sd, and the weight graded component L(r) is concentrated
in homological degree r(d−1). With κ =

∑
i xi⊗αi as in Theorem 2.6, the chain

complex (A ⊗ L, [κ,−]) splits as a direct sum of chain complexes

A(0) ⊗ L(r)
[κ,−]

�� A(1) ⊗ L(r + 1)
[κ,−]

�� A(2) ⊗ L(r + 2),

because A(s) = 0 for s > 2. By inspection, this chain complex is isomorphic to
the following:

(27) L(r)
∂1 �� L(r + 1)n[−d]

∂0 �� L(r + 2)[−2d],
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∂1(ξ) = ([α1, ξ], . . . , [αn, ξ]), ∂0(ζ1, . . . , ζn) =
∑
i,j

qij [αi, ζj ].

Since the intersection form is non-degenerate, the matrix (qij) is invertible, and
therefore ∂0 is surjective. Since α1, . . . , αn generate the graded Lie algebra L,
the kernel of ∂1 may be identified with the center Z(L). We will argue that the
center is trivial if n ≥ 3. To this end, we invoke [11, Proposition 2] which says
that a graded Lie algebra of finite global dimension has non-trivial center only if
the Euler characteristic χ(L) is zero, where

χ(L) =
∑

i

(−1)i dimQ Exti
UL(Q, Q),

and UL denotes the universal enveloping algebra of L. In the situation at hand,
Exti

UL(Q, Q) ∼= A(i) ∼= Hid(M ; Q), so it follows that L has global dimension 2
and that χ(L) = 2 − n, whence L must have trivial center whenever n �= 2. In
particular, the kernel of ∂1 is trivial for n ≥ 3. Thus, we can only have non-
vanishing homology at the middle term of (27). It follows that the dimension of
the middle homology group is

nεr+1 − εr − εr+2,

where εr is the dimension of the component L(r). The middle term is situated in
homological degree (r + 1)(d− 1)− d = r(d− 1)− 1, so it follows from (16) that

dimQ πr(d−1)(aut(M), 1M ) ⊗ Q = nεr+1 − εr − εr+2, r ≥ 1.

The rational homotopy groups of aut∗(M) can be calculated as follows. The
augmentation map ε : A → Q is a model for the inclusion of the base-point
∗ → M . It follows from Theorem 2.4 and Theorem 2.6 that the evaluation
fibration

aut∗(M)1 → aut(M)1 → M

is modeled by the short exact sequence of differential graded Lie algebras

0 → (A ⊗ L, [κ,−]) → (A ⊗ L, [κ,−]) ε⊗1→ (L, 0) → 0

where A = ker ε denotes the augmentation ideal of A. The chain complex (A ⊗
L, [κ,−]) is the direct sum of

A(1) ⊗ L(r + 1)
[κ,−]

�� A(2) ⊗ L(r + 2)

over all r and the calculation above shows that the homology is concentrated in
degree r(d − 1) − 1 and is of dimension nεr+1 − εr+2.
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Finally, to determine the rational homotopy groups of aut∂N (N) we consider
the fibration

(28) aut∂N (N) → aut∗(N) i∗→ Map∗(∂N,N).

Since N � ∨nSd is formal and coformal, we may use Theorem 2.6 to calculate
the rational homotopy groups of aut∗(N). We find that

π∗+1(aut∗(N), 1N ) ⊗ Q ∼= H̃∗(N ; Q) ⊗ π∗(ΩN) ∼= Ln[−d]

where L = π∗(ΩN) ⊗ Q ∼= L(ι1, . . . , ιn) is the free graded Lie algebra on gener-
ators ιi of degree d − 1. The rational homotopy groups of Map∗(∂N,N) can be
calculated using Theorem 2.4:

π∗+1(Map∗(∂N,N), i) ⊗ Q ∼= H̃∗(S2d−1; Q) ⊗ π∗(ΩN) ∼= L[−2d + 1].

A calculation then shows that we may identify

i∗ : π∗+1(aut∗(N), 1N ) ⊗ Q → π∗+1(Map∗(∂N,N), i) ⊗ Q

with

(29) Ln[−d] → L[−2d + 1]

(ζ1, . . . , ζn) �→
∑
i,j

qij [ζi, ιj ].

Since (qij) is non-degenerate this map is surjective. Hence the rational homotopy
sequence associated to the fibration (28) splits and π∗+1(aut∂N (N), 1N ) ⊗ Q is
isomorphic to the kernel of the map (29). A dimension counting argument finishes
the proof. �

The condition n ≥ 3 in Theorem 2.10 is necessary to ensure that the Lie algebra
π∗(ΩM)⊗Q has trivial center. For Sd×Sd the Lie algebra is L(α1, α2)/([α1, α2])
which is abelian if d is odd and has center spanned by [α1, α1] and [α2, α2] if d is
even.

Remark 2.11. Our main application of Theorem 2.10 is the vanishing of the
homology groups

Hk(B aut∂N (N)(1); Q)

for k ≤ d − 1, where the subscript (1) indicates the component of the identity.
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2.7. Groups of components. The results of the previous section imply that
B aut(M) → B(π0 aut(M)) is a rational equivalence in the range ∗ < d − 1.
We will now turn to the determination of the groups of components of the
spaces aut∂N (N), aut∗(M) and aut(M) up to commensurability. First of all
π0 aut∗(M) ∼= π0 aut(M) since M is simply connected. The automorphism group
of the cohomology algebra Autalg(H∗(M)) is isomorphic to the automorphism
group of the intersection form

Aut(Zn, q) =
{
λ ∈ GLn(Z) | λtqλ = q

}
.

Recall that the attaching map Q of the top cell in M has the form

Q =
1
2

∑
i,j

qij [ιi, ιj ] +
∑

i

ιi ◦ βi

where βi ∈ π2d−1(∨nSd) have Hopf invariant 0. Consider the subgroup

Aut(Zn, q, β) =
{
λ ∈ GLn(Z) | λtqλ = q, λtβ = β

} ⊆ Aut(Zn, q).

This subgroup has finite index because it is an isotropy subgroup of the action of
Aut(Zn, q) on the finite abelian group Kn, where K = ker(H : π2d−1(Sd) → Z).

Theorem 2.12. There are group homomorphisms

(30) π0 aut∂N (N) → π0 aut+∗ (M) → Aut(Zn, q, β)

that are surjective and have finite kernels. In particular, all groups above are
commensurable with Aut(Zn, q) ∼= Autalg(H∗(M)).

Proof. Consider the map e : Map∂N (N, N) → Map∗(M, M) that extends a self-
map of N by the identity on D. By construction e(f) restricts to f on N so we
get a commutative diagram of based spaces

(31) Map∂N (N, N) � � ��

e

��

Map∗(N, N) i∗ ��

j∗
��

Map∗(∂N,N)

j∗
��

Map∗(M, M)
j∗

�� Map∗(N, M) i∗ �� Map∗(∂N,M)

where the base-point in Map∂N (N, N) is the identity map. The upper row is a
homotopy fiber sequence because i : ∂N → N is a cofibration and Map∂N (N, N)
is the fiber over i ∈ Map∗(∂N,N). The bottom row is a homotopy fiber sequence
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because it is induced by the homotopy cofiber sequence ∂N
i→ N

j→ M . The
diagram (31) gives rise to a commutative diagram of pointed sets

(32) π1(Map∗(∂N,N), i) ∂ ��

j∗
��

[N, N ]∂N
��

e

��

[N, N ]∗
i∗ ��

j∗
��

[∂N,N ]∗

j∗
��

π1(Map∗(∂N,M), ji) ∂ �� [M, M ]∗
j∗

�� [N, M ]∗
i∗ �� [∂N, M ]∗,

where the rows are exact in the sense that the inverse image of the base-point at
any stage is equal to the image of the previous map.

The manifold N is homotopy equivalent to ∨nSd. A self-map f of ∨nSd gives
an endomorphism f∗ of the free abelian group πd(∨nSd). Let (λij) be the integer
n × n-matrix determined by

f∗(ιi) =
∑
i,j

λijιj ∈ πd(∨nSd),

where ι1, . . . , ιn are the generators for πd(∨nSd) corresponding to the wedge sum-
mands. The map [f ] �→ (λij) identifies [∨nSd,∨nSd]∗ with the monoid Mn×n(Z)
of integer n × n-matrices.

The boundary ∂N is diffeomorphic to S2d−1, so we may identify [∂N,N ]∗ ∼=
π2d−1(∨nSd). The map π0(i∗) : [N, N ]∗ → [∂N,N ]∗ is given by [f ] �→ i∗[f ] =
[f ◦ i] = f∗[i], so by exactness of (32) the image of [N, N ]∂N in [N, N ]∗ is the
submonoid of all [f ] ∈ [N, N ]∗ such that f∗[i] = [i]. The inclusion i : ∂N → N

is equivalent to the attaching map Q : S2d−1 → ∨nSd for the top cell of M given
by (19). Now, for a map f : ∨n Sd → ∨nSd, we have

f∗(Q) =
1
2

∑
i,j

qij [f∗(ιi), f∗(ιj)] +
∑

i

f∗(ιi) ◦ βi

=
1
2

∑
i,j,k,�

qij [λikιk, λi�ι�] +
∑
i,j

λijιj ◦ βi

=
1
2

∑
k,�

(λtqλ)k�[ιk, ι�] +
∑

j

ιj ◦ (λtβ)j .

Since the expression is unique, the above calculation shows that f∗(Q) = Q if
and only if

(33) λtqλ = q, λtβ = β.
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Therefore, the image of [N, N ]∂N in [N, N ]∗ ∼= Mn×n(Z) may be identified
with the submonoid of all integer n × n-matrices λ such that (33) holds. This
proves that the composite map in (30) is surjective. Moreover, the finite group
π1(Map∗(∂N,N), i) surjects onto the kernel by exactness of (32).

The map j∗ : [N, N ]∗ → [N, M ]∗ is an isomorphism. The map j∗ : [∂N,N ]∗ →
[∂N,M ]∗ may be identified with the projection π2d−1(∨nSd) → π2d−1(∨nSd)/(Q).
For this reason, the inverse image of the base-point under i∗ : [N, M ]∗ → [∂N,M ]∗
may be identified with the monoid of based homotopy classes of maps f : ∨nSd →
∨nSd such that f∗(Q) = �Q ∈ π2d−1(∨nSd) for some � ∈ Z. The condition
f∗(Q) = �Q is equivalent to

(34) λtqλ = �q, λtβ = �β.

Thus, the image of [M, M ]∗ in [N, M ]∗ is the submonoid of all λ ∈ Mn×n(Z) such
that (34) is fulfilled. If λ is invertible then necessarily � = ±1 and λ comes from
an orientation preserving homotopy self-equivalence of M precisely when � = 1.

Passing to the submonoids of homotopy self-equivalences, the above shows that
there is a commutative diagram of pointed sets

(35) K ��

j∗
��

π0 aut∂N (N) ��

π0(e)
��

Aut(Zn, q, β) �� 1

L �� π0 aut+∗ (M) �� Aut(Zn, q, β) �� 1

with exact rows, where K = π1(Map∗(∂N,N), i) and L = π1(Map∗(∂N,M), ji)
are finite. The map j∗ : K → L is surjective. Indeed, let F be the homotopy fiber
of j : N → M . The exact sequence derived from the homotopy fiber sequence
Map∗(∂N, F ) → Map∗(∂N, N) → Map∗(∂N, M) looks like

· · · → K
j∗→ L

∂→ π2d−1(F )
g→ π2d−1(N) → π2d−1(M).

The map g is injective since it can be identified with Z ∼= π2d−1(F ) → π2d−1(N)
sending a generator to [i]. This implies that j∗ is surjective. A five lemma
argument, using the fact that all maps in the right square of (35) are group
homomorphisms, shows that π0(e) is surjective. �
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3. Surgery theory and block diffeomorphisms

In this section M = Mg = #g(Sd × Sd) and N = M \ intD with ∂N = S2d−1.
The main objective of the section is the study of the rational homology of the
pair

(Ãut∂N (N), D̃iff∂N (N)).

We remember that Ãut∂N (N) is the topological monoid of block homotopy self-
equivalences of N that fix ∂N pointwise, and that D̃iff∂N (N) is the subgroup of
block diffeomorphisms. The definitions will be recalled in §3.2 below. Our tools
are two homotopy fibrations3):

(36) Ãut∂N (N)/D̃iff∂N (N) → BD̃iff∂N (N) → BÃut∂N (N),

(37) Ãut∂N (N)/D̃iff∂N (N)
η→ Map∗(M, G/O) λ→ L(M).

The first fibration defines the “homogeneous” space in the fiber. The second
fibration from [41, 48] is F. Quinn’s reformulation of the main theorem of surgery
theory: its homotopy exact sequence is the surgery exact sequence of Sullivan and
Wall in positive degrees. In combination with the results of §2, we then derive a
stability theorem for BD̃iffD(Mg), namely that the Harer type stabilization map

BD̃iffD(M2d
g ) → BD̃iffD(M2d

g+1), d �= 2,

induces an isomorphism in rational homology in a range of dimensions depending
on g and d. As g and d tend to infinity the range tends to infinity.

3.1. The surgery exact sequence. For an oriented compact manifold X with
boundary ∂X, the structure set SG/O(X, ∂X) consists of pairs (M, f) of a smooth
manifold M and a simple homotopy equivalence f : (M, ∂M) → (X, ∂X) with
∂f : ∂M → ∂X a diffeomorphism. Two pairs (M0, f0) and (M1, f1) define the
same element of SG/O(X, ∂X) if there is a diffeomorphism ϕ : M0 → M1 with
f1 ◦ ϕ homotopic to f0 rel. boundary.

The surgery exact sequence is a method to enumerate the structure set. We
give a short review of it, referring to [7, 48] for full details.

3)A homotopy fibration F → E
π→ B is a map π whose homotopy fiber at b ∈ B is homotopy

equivalent to F .
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A normal map with target X is a pair (f, f̂) consisting of a degree one map of
manifolds

f : (M, ∂M) → (X, ∂X),

with ∂f a diffeomorphism, together with a fiberwise isomorphism of vector bun-
dles

f̂ : νM → ζ

over f , where ζ is a stable vector bundle over X which is part of the structure
of the normal map. Here νM is the normal bundle of an embedding of (M, ∂M)
into a disk (DN , SN−1) with N large compared to the dimension of M .

A normal cobordism between two normal maps (f0, f̂0) and (f1, f̂1) with target
X is a normal map (F, F̂ ) where

F : Wn+1 → X × I

is a degree one map from a relative cobordism between (M0, f0) and (M1, f1):

(i) ∂W = Mn
0 ∪ V n ∪ Mn

1 , ∂V = ∂M0 � ∂M1.
(ii) F : V → ∂X × I is a diffeomorphism.
(iii) F |(M0,∂M0)= f0, F |(M1,∂M1)= f1.

The bundle data F̂ is a fiberwise isomorphism of vector bundles over F ,

F̂ : νW → ζ × I

with

(iv) F̂ |νM0
= f̂0, F̂ |νM1

= f̂1.

There is a map, the normal invariant, from the structure set to the normal cobor-
dism classes of normal maps,

η : SG/O(X, ∂X) → NG/O(X, ∂X).

It is defined as follows. Let f : (M, ∂M) → (X, ∂X) be a homotopy equivalence
representing an element of the structure set, and let νM be its stable normal
bundle as above. Pick a homotopy inverse g : (X, ∂X) → (M, ∂M) to f with
∂g = (∂f)−1, define ζ = g∗(νM ) and note that f∗(ζ) is identified with νM since
g ◦ f � idM . The bundle map f̂ : νM → ζ is the resulting fiberwise isomorphism
over f . The normal cobordism class of (f, f̂) is independent of the choices. This
defines the normal invariant η(f).
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The process of surgery measures to which extent η is a bijection. The result is
an exact sequence for k + n > 5,
(38)
SG/O(Dk × X, ∂)

η→ NG/O(Dk × X, ∂) λ→ Ln+k(Z[π1X]) α→ SG/O(Dk−1 × X, ∂).

Here n = dimX, and L∗(Z[π1X]) are Wall’s L-groups. They are graded abelian
groups that classify quadratic forms on (free) modules over the group ring Z[π1X]
when ∗ is even and stable automorphisms of such forms when ∗ is odd. For k > 1,
the terms in (38) are abelian groups and the maps are homomorphisms. For k = 1,
α is an action of Ln+1(Z[π1X]) on SG/O(X, ∂X). The set of orbits of this action
is in bijection with the subset of the normal invariants that map to zero under λ.

In our applications X is simply connected, and

(39) Ln(Z) =

⎧⎪⎨⎪⎩
Z, n ≡ 0 (4)
Z/2, n ≡ 2 (4)
0, n odd.

We next recall the important reformulation of the set of normal invariants due
to Sullivan. Let G(n) be the topological monoid of self homotopy equivalences
of the sphere Sn−1 in the compact-open topology. It contains the orthogonal
group O(n). The associated homogeneous space G(n)/O(n) is defined to be the
homotopy theoretic fiber of the map on classifying spaces

π : BO(n) → BG(n).

Let ∗ ∈ BG(n) be a basepoint. Then G(n)/O(n) consists of pairs (x, λ(t)) with
x ∈ BO(n) and λ(t) a path in BG(n) subject to the conditions λ(0) = π(x),
λ(1) = ∗. Hence a map from a space Y to G(n)/O(n) is equivalent to a commu-
tative diagram

Y
f

��

i

��

BO(n)

π

��
CY

g
�� BG(n)

where CY is the cone on Y and g maps the cone point to ∗. Since π maps an
orthogonal vector bundle to its sphere bundle, considered as a spherical fiber
space, the above diagram gives rise to an orthogonal vector bundle over Y whose
spherical fiber space extends over the cone, hence is trivial. In other words,
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G(n)/O(n) classifies pairs (ξ, t) of an orthogonal vector bundle ξ and a fiberwise
homotopy equivalence t : S(ξ) → Sn−1 × Y .

There are inclusions (G(n), O(n)) ⊂ (G(n+1), O(n+1)) and G/O is the colimit
of G(n)/O(n) as n → ∞. By the above, G/O classifies triples (ξ, η, t) of two stable
vector bundles ξ and η over Y and a homotopy equivalence t : S(ξ) → S(η). Hence
the set of homotopy classes from a finite CW complex to G/O can be identified
with the set of isomorphism classes of triples (ξ, η, t).

The space G/O admits a multiplication, it is even an infinite loop space, so
[Y, G/O] is an abelian group. This structure corresponds to the following addition
of triples:

(ξ1, η1, t1) ⊕ (ξ2, η2, t2) = (ξ1 ⊕ ξ2, η1 ⊕ η2, t1 ∗ t2).

We point out that the surgery obstruction map λ in (38) is only a group homo-
morphism when k > 0.

Theorem 3.1 (Sullivan). There is an isomorphism

σ : NG/O(X, ∂X)
∼=→ [X/∂X, G/O].

When X is a manifold the domain of σ is based by the identity of X, which is
sent to zero by σ.

Proof (Sketch). Consider a normal map

νM

��

f̂
�� ζ

��
M

f
�� X

with νM the normal bundle of an embedding (Mn, ∂Mn) ⊂ (Dn+k, ∂Dn+k) for
some large k. View (νM , νM |∂) as (relative) open tube around (M, ∂M) and let

cM : (Dn+k, ∂Dn+k) → (Th(νM ), Th(νM |∂M ))

be the associated Pontryagin-Thom collapse map into the one-point compactifi-
cations. Here the Thom space Th(νM ) is the one-point compactification of the
total space. The collapse map cM has degree one, and we can compose with

(Th(f̂), Th(f̂ |∂)) : (Th(νM ), Th(νM |∂)) → (Th(ζ), Th(ζ|∂X))
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to obtain a degree one map

cM : (Dn+k, ∂Dn+k) → (Th(ζ), Th(ζ|∂X)).

The Pontryagin-Thom collapse map associated with an embedding (X, ∂X) ⊂
(Dn+k, ∂Dn+k) yields another degree one map

cX : (Dn+k, ∂Dn+k) → (Th(νX), Th(νX |∂X)).

The uniqueness theorem for Spivak normal fibrations [7, Theorem I.4.19] gives a
fiber homotopy equivalence

c(f, f̂) : ν̇X → ζ̇

where ν̇X and ζ̇ denote the fiberwise one point compactifications, ν̇X = S(νX⊕R)
etc. The restriction of c(f, f̂) to ∂X is the fiberwise one point compactification
of a vector bundle map. Hence the triple defines the element

σ(f, f̂) ∈ [X/∂X, G/O]∗

in the based homotopy set, which in turn is equal to the unbased one since G/O

is simply connected. The inverse to σ is defined by transversality. �

Remark 3.2. There is a completely analogous theory where smooth manifolds
are replaced by topological (or piece-wise linear) manifolds. The term L∗(Z[π1X])
in (38) is unchanged, but the normal invariant term changes from [X/∂X, G/O] to
[X/∂X, G/Top]. Here Top is the union or colimit of Top(n), the group of home-
omorphisms of Rn. Surgery theory in the topological category is calculationally
easier to handle because of the following results due to Sullivan:

[Y, G/Top] ⊗ Z(2)
∼=

⊕
k≥1

H4k(Y ; Z(2)) ⊕ H4k−2(Y ; Z/2),

[Y, G/Top] ⊗ Z[1/2] ∼= K̃O
0
(Y ) ⊗ Z[1/2].

Let us also recall another of Sullivan’s results, namely that for each prime p

[Y, G/O] ⊗ Z(p)
∼= KSO0(Y ) ⊗ Z(p) ⊕ [Y, CokJ ] ⊗ Z(p).

Here Z(p) ⊂ Q is the subring of fractions with denominator prime to p. The
homotopy groups of CokJ are the largely unknown part of the stable homotopy
groups of spheres that does not come from the homotopy groups of the infinite
orthogonal group; (CokJ)Q � ∗.
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3.2. Block automorphisms and Quinn’s fibration. For a smooth oriented
compact manifold X, Diff∂X(X) denotes the topological group of orientation
preserving diffeomorphisms of X (in the C∞-Whitney topology) that restrict to
the identity on the boundary ∂X. There is an associated simplicial group, namely
its singular complex, with k-simplices consisting of commutative diagrams

Δk × X
ϕ

��

pr1 ����������� Δk × X

pr1�����������

Δk

with ϕ a diffeomorphism which is the identity on Δk × ∂X. One may relax the
condition on ϕ and just assume that

(40) ϕ : Δk × X → Δk × X

preserves the face structure of Δk: for each face Δ� ⊂ Δk, ϕ maps Δ� × X into
itself. Such a ϕ is called a block diffeomorphism. The set of block diffeomorphisms
form a Δ-group or a pre-simplicial group, that is, a simplicial group without
degeneracies. The general theory of Δ-sets was developed in [42]. The geometric
realization of a Δ-set S• is

||S•|| =
⊔
k

Δk × Sk/ ∼, (t, dix) ∼ (dit, x)

for t ∈ Δk−1, x ∈ Sk. Δ-groups are fibrant (satisfy a Kan condition). This
implies that

(41) πkD̃iff∂X(X) = π0 Diff∂(Dk×X)(D
k × X).

We remarked above that the singular complex Sing• Diff∂X(X) is a subgroup of
D̃iff∂X(X). In the rest of the paper we shall replace Diff∂X(X) by its singular
complex without so indicating in the notation. (Alternatively one could pass to
geometric realizations as the realization of Sing• Diff∂X(X) is homotopy equiv-
alent to Diff∂X(X) in the C∞-Whitney topology.) Note that the 1-simplices of
D̃iff∂X(X) are diffeomorphisms of the cylinder I ×X that preserve top and bot-
tom and is the identity on I × ∂X; the 1-simplices of Diff∂X(X) further preserve
the level {t} × X for each t ∈ I.

In (40) we may use face preserving homotopy equivalences instead of diffeo-
morphisms to obtain a Δ-monoid denoted Ãut∂X(X). Up to homotopy there
is no difference between fiberwise homotopy equivalences of fiber bundles and
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homotopy equivalences of their total spaces, cf. [15, Theorem 6.1]. This implies
that the submonoid of fiberwise homotopy equivalences,

(42) Δk × X

�����������

f
�� Δk × X

�����������

Δk

is homotopy equivalent to Ãut∂X(X). The submonoid defined by (42) is the sin-
gular complex of aut∂X(X), the topological monoid of homotopy self-equivalences
of X with compact-open topology, so

Ãut∂X(X) � aut∂X(X),

in the category of Δ-monoids. Again we will tacitly replace aut∂X(X) with
its singular complex without change of notation. In contrast D̃iff∂X(X) is very
different from Diff∂X(X). Indeed, the homogeneous space D̃iff∂X(X)/ Diff∂X(X)
is closely related to Waldhausen’s functor A(X), as explained in the introduction.

The homotopy theoretic fiber of the obvious map J̃ : BD̃iff∂X(X) → BÃut∂X(X)
is by definition the homogeneous space Ãut∂X(X)/D̃iff∂X(X). Below we compare
it with the structure space SG/O

∂X (X) defined by F. Quinn in [41]. Its homotopy
groups are

πkSG/O
∂X

(X) = SG/O

∂(Dk×X)
(Dk × X).

Moreover, Quinn constructs a homotopy fibration

(43) SG/O
∂X

(X) → Map∗(X/∂X, G/O) → L(X)

whose homotopy exact sequence is the surgery exact sequence provided dim X ≥
5. The space L(X) has homotopy groups

πiL(X) = Li+dim X(Z[π1X]).

The structure space is defined simplicially. Its k-simplices are pairs (W, f) where
W is a manifold with corners with dimW = k+dimX, and f : W → Δk ×X is a
simple homotopy equivalence which restricts to a diffeomorphism on the boundary
faces (W is a (k + 2)-ad in the terminology of [48]). There is an obvious map

sX : Ãut∂X(X)/D̃iff∂X(X) → SG/O
∂X

(X).

Indeed, a simplex of the domain is represented by a block automorphism Δk ×
X → Δk × X which defines an element (W, f) of the structure space with W =
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Δk × X. It is a consequence of the s-cobordism theorem that sX defines a weak
homotopy equivalence of the connected components of the identity. Indeed, the
homotopy groups of the target are represented by diagrams

W
g

�� Dk × X

∂W
∂g

����

��

∂(Dk × X)
��

��

with g a simple homotopy equivalence and ∂g a diffeomorphism. For k = 1, W

is a manifold with

∂W = ∂0W ∪ V ∪ ∂1W, ∂V = ∂(∂0W ) � ∂(∂1W )

where ∂νW = (∂g)−1({ν}×X) and V = (∂g)−1(I×∂X). Thus (W,V ) is a relative
h-cobordism and since g is assumed to be a simple homotopy equivalence W is a
relative s-cobordism. This implies by the s-cobordism theorem a diffeomorphism

(W,V, ∂0W,∂1W ) ∼= (I × X, I × ∂X, 0 × X, 1 × X).

For k > 1, write Dk = I×Dk−1 and use the above with X replaced by Dk−1×X.
This shows that

sX : πk(Ãut∂X(X)/D̃iff∂X(X), 1X) → πk(SG/O
∂X

(X), 1X)

is surjective. It is clearly injective and hence an isomorphism, so that sX defines
a weak homotopy equivalence of components of the identity

(44) sX :
[
Ãut∂X(X)/D̃iff∂X(X)

]
(1)

∼→ SG/O
∂X

(X)(1).

In our applications X = N = M2d
g \ intD2d is simply connected, and since

L2k+1(Z) = 0 we can reformulate (43) to the homotopy fibration

(45)
[
Ãut∂N (N)/D̃iff∂N (N)

]
(1)

→ Map∗(Mg, G/O)(1) → L(Mg)(1).

The lemma below is needed for calculations in the next section. Let

f : X1 → X2, g : X2 → X3

be simple homotopy equivalences of smooth manifolds with ∂f and ∂g diffeo-
morphisms. They define elements of SG/O(X2, ∂X2) and SG/O(X3, ∂X3), respec-
tively.
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Lemma 3.3. In [X3/∂X3, G/O] we have the formula

η(g ◦ f) = (g∗)−1(η(f)) + η(g).

Proof. We use the description of the normal invariant from §3.1. Let νi be the
stable normal bundle of Xi and let

αi : Sn+k → Th(νi)/ Th(νi |∂) =: Threl(νi)

be the Pontryagin-Thom collapse map, where n = dimXi and k = dim νi 	 n.
Let f : X2 → X1 and g : X3 → X2 be homotopy inverses to f and g, and let

c(f) : ν̇2 → f
∗(ν̇1) c(g) : ν̇3 → g∗(ν̇2)

be the fiberwise one-point compactifications, which define η(f) and η(g). The
diagram

Sn+k

α1

��

α2 �� Threl(ν2)

c(f)

��

Threl(ν1)
f∗ �� Threl(f∗(ν1))

is homotopy commutative, and similarly for c(g). Now consider the homotopy
commutative diagram

Sn+k

α2

��

α1 �� Threl(ν1)

f∗
��

Sn+k

�������������

�������������

α3

��

α2 �� Threl(ν2)

g∗
��

c(f)
�� Threl(f∗(ν1))

g∗
��

Threl(ν3)
c(g)

�� Threl(g∗(ν2))
g∗(c(f))

�� Threl(g∗f∗(ν1))

The outer diagram shows that

g∗(c(f)) ◦ c(g) � c(g ◦ f) : ν̇1 → g∗f∗(ν̇1)

and hence the result. �
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3.3. Calculations with the surgery exact sequence. In this section, we use
the fibration (45) to calculate the rational homology and homotopy groups of the
identity component of

Ãut∂N (N)/D̃iff∂N (N), N = Mg \ intD.

The rational homotopy type of G/O is

(G/O)Q � BOQ �
∏
�≥1

K(Q, 4�),

so that
(46)
πk Map∗(Mg, G/O)⊗Q ∼= Hd(Mg; Q)⊗ πk+d(G/O)⊕H2d(Mg; Q)⊗ πk+2d(G/O).

Lemma 3.4. For k + 2d ≡ 0 (4) the surgery obstruction map λ∗ restricts to an
isomorphism

λ∗ : H2d(Mg; Q) ⊗ πk+2d(G/O) → Lk+2d(Z) ⊗ Q

of the second summand in (46).

Proof. Both domain and target are 1-dimensional rational vector spaces, so it
suffices to check that the map is surjective. We compare the smooth surgery
exact sequence with its version for topological manifolds, cf. Remark 3.2. In the
diagram

πk Map∗(Mg, G/O) ⊗ Q
λ∗ ��

��

Lk+2d(Z) ⊗ Q

πk Map∗(Mg, G/Top) ⊗ Q
λ∗ �� Lk+2d(Z) ⊗ Q

the left hand vertical map is an isomorphism because πk(Top/O) is finite by
[27, 28].

Milnor’s plumbing construction yields a smooth normal map (f, f̂)

f : (Kn, ∂Kn) → (Dn, Sn−1),

with ∂f a homotopy equivalence, and λ∗(f, f̂) �= 0 for n ≡ 0 (mod 2), cf. [7].
Since any smooth homotopy sphere is homeomorphic to the standard sphere,

∂f : ∂Kn → Sn−1
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can be assumed to be a homeomorphism. For n = k+2d ≡ 0 (mod 4), the normal
map (g, ĝ) = (id ∪ f, id ∪ f̂),

g : M2d
g × Dk \ int(D2d × Dk) ∪∂ Kk+2d → M2d

g × Dk,

has λ∗(g, ĝ) = λ∗(f, f̂) �= 0. �

The homotopy exact sequence of (45) with N = M2d
g \ int(D2d)

[M2d
g , Ωk+1G/O]∗

ηk+1→ L2d+k+1(Z) → πk(Ãut∂N (N)/D̃iff∂N (N), idN )
ηk→ · · ·

induces short exact sequences

0 → L2d+k+1(Z)/ im ηk+1 → πk(Ãut∂N (N)/D̃iff∂N (N)) → im ηk → 0.

The left-hand term is a finite cyclic group and

im ηk ⊗ Q ∼= Hd(Mg; Q) ⊗ πk+d(G/O)

according to Lemma 3.4. The fundamental group of Ãut∂N (N)/D̃iff∂N (N) is
meta-abelian with finite kernel, and maybe abelian. Let us write

πk := πk(Ãut∂N (N)/D̃iff∂N (N), idN )

and let πab
k be the abelianization of πk.

Theorem 3.5. For d > 2 and N = M2d
g \ int(D2d),

(i) πab
k ⊗ Q ∼= Hd(Mg; Q) ⊗ πk+d(G/O).

(ii) H∗(
[
Ãut∂N (N)/D̃iff∂N (N)

]
(1)

; Q) ∼= Λ(πab∗ ⊗ Q), the free graded commu-

tative algebra on the graded vector space πab∗ ⊗ Q.

Proof. (i) follows from the previous lemma and (45). For (ii) we first note that
since Ln(Z) = 0 for n odd,

(47) πk(Ãut∂N (N)/D̃iff∂N (N), 1N ) ⊗ Q → πk Map∗(Mg, G/O) ⊗ Q

is injective. The space G/O is an infinite loop space, in particular a loop space,
G/O � Ω(B(G/O)). The same is then the case for Map∗(Mg, G/O). A loop
space X = ΩY has no rational k-invariants; its rational homotopy type is a
product of Eilenberg-MacLane spaces. This happens if and only if the following
criterion is satisfied: For each α ∈ πr(X) ⊗ Q there exists a cohomology class
ξ ∈ Hr(X; Q) with 〈ξ, α〉 �= 0. Since (47) is injective, the criterion is satisfied for[
Ãut∂N (N)/D̃iff∂N (N)

]
(1)

which therefore has the rational homotopy type of a
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product of Eilenberg-MacLane spaces. For such spaces, rational homology and
homotopy are related as stated in (ii). �

We shall next examine the homomorphism

J̃ : π0D̃iff∂N (N) → π0Ãut∂N (N)

when N = Mg \ intD. The combination of Theorem 2.12 and (20) provides the
exact sequence

0 → K → π0 aut∂N (N) → Aut(Z2g, q) → 0

with K finite, and we remember that aut∂N (N) � Ãut∂N (N).

We next involve C.T.C. Wall’s classification of 2d-dimensional (d−1)-connected
manifolds [49, 50]. See also Kreck’s paper [29]. Given such a manifold M (e.g.
Mg above), write N = M \ intD. Wall defines a quadratic map

α : Hd(N ; Z) → Z/(1 − (−1)d)Z

with

α(x + y) − α(x) − α(y) = q(x, y),

where q is the intersection pairing. We recall the definition. A homology class
x ∈ Hd(N) is represented by an embedding x : Sd ↪→ M with a stably trivial
normal bundle ν(x). Its isomorphism class [ν(x)] is an element

[ν(x)] ∈ ker(πd(BSO(d)) i∗→ πd(BSO(d + 1))).

The calculation of ker(i∗), contained in [43, 7] is

ker(i∗) = Z/(1 − (−1)d)Z

when d �= 1, 3, 7. In the exceptional cases, ker(i∗) = 0. For even d or in the
exceptional cases, α(x) is determined by q(x, x). Wall shows that

h̃ : D̃iff∂N (N) → Aut(Hd(M), q, α)

is surjective. The target of h̃ is the automorphism group of the quadratic form
(Hd(M), q, α). Its kernel is examined in [28, 49].

We now return to the situation M = M2d
g = #g(Sd ×Sd), N = Mg \ intD and

J̃ : π0D̃iff∂N (N) → π0Ãut∂N (N).
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Lemma 3.6. There is an exact sequence of groups

1 → K̃g → im(π0J̃) → Aut(Hd(Mg), q, α) → 1

with K̃g finite.

Proof. By (20), Theorem 2.12 and the above discussion of [49], we have a com-
mutative diagram of groups with exact rows

1 �� L

��

�� π0D̃iff∂N (N)

��

h̃ �� Aut(Hd(Mg), q, α)
� �

��

�� 1

1 �� K �� π0Ãut∂N (N)
h �� Aut(Hd(Mg), q) �� 1.

The result follows. �

For a finitely generated free abelian group A and ε ∈ {−1, 1}, let H(A, ε)
denote the hyperbolic module

H(A, ε) = A ⊕ A∗

with quadratic form
α : H(A, ε) → Z/(1 − ε)Z

and associated bilinear form

μ : H(A, ε) × H(A, ε) → Z

given by
α(x, f) = f(x), μ((x, f), (y, g)) = f(y) + εg(x).

If e1, . . . , eg is a basis for A and f1, . . . , fg the dual basis for A∗, then

μ : Z2g × Z2g → Z

is given by

μ(u, v) = ut

(
0 I

εI 0

)
v, u, v ∈ Z2g.

We have

Aut(H(Zg, ε), μ) =

{
Og,g(Z), ε = +1
Sp2g(Z), ε = −1

Notice that
Aut(H(Zg, +1), μ, α) = Aut(H(Zg, +1), μ),
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whereas Aut(H(Zg,−1), μ, α) is a proper subgroup of Aut(H(Zg,−1), μ) of 2-
power index.

For Mg = #g(Sd × Sd), the quadratic module (Hd(Mg), q, α) is hyperbolic,

(Hd(Mg), q, α) ∼= H(Zg, (−1)d).

3.4. Homological stability of block diffeomorphisms. The main result of
this section is the following analog of Theorem 1.2. Its proof occupies the entire
section.

Theorem 3.7. For Mg = #g(Sd × Sd) with d > 2, the stabilization map

Hk(BD̃iffD(Mg); Q) → Hk(BD̃iffD(Mg+1); Q)

is an isomorphism in the range k < min(d − 2, 1
2(g − 4)).

For N = Mg \ intD2d, the image of

π0J̃ : π0D̃iff∂N (N) → π0Ãut∂N (N)

has finite index by Theorem 2.12 and Lemma 3.6, so defines a finite covering

ρ : BÃut∂N (N) → BÃut∂N (N).

The domain is the classifying space of the submonoid consisting of the components
of Ãut∂N (N) that lie in the image of π0J̃ . The resulting map

π̃ : BD̃iff∂N (N) → BÃut∂N (N)

has homotopy fiber

F(1) =
[
Ãut∂N (N)/D̃iff∂N (N)

]
(1)

,

the “homogeneous space” considered in §3.3.

We remember from (44) the weak equivalence

(48) sN : F(1)
∼→ S

∂N
(N)(1)

with the 1-component of the structure space, and the normal invariant map

ηN : S
∂N

(N) → Map∗(N/∂N, G/O)(1)

examined in §3.3: the cofibration

N
i→ N/∂N → S2d
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induces the fibration

Ω2dN → Map∗(N/∂N, G/O) i∗→ Map∗(N, G/O)

and Theorem 3.5(i) yields the rational homotopy equivalence

(49) (i∗ ◦ ηN ) : S
∂N

(N)(1)
∼Q→ Map∗(N, G/O)(1).

The holonomy action

κ : π1BÃut∂N (N) → π0 aut(F(1)) ∼= π0 aut(S
∂N

(N)(1))

is geometrically described as follows. Let ϕ : N → N be a diffeomorphism with
∂ϕ = id and f : Δk×N → Δk×N a simplex of S

∂N
(N)(1). Then the composition

Δk × N
f

�� Δk × N
Δk×ϕ

�� Δk × N

represents κ([ϕ])(f) in πk(S∂N
(N), ϕ) = πk(S∂N

(N), 1N ).

Remark 3.8. For a diffeomorphism ϕ : N → N with ∂ϕ = id, the class of

Δk × N
Δk×N�� Δk × N

f
�� Δk × N

in the structure set

πk(S∂N
(N), 1N ) = SG/O

∂(Δk×N)
(Δk × N)

is equal to the class of f ,

πk(S∂N
(N), ϕ) = πk(S∂N

(N), 1N ).

Thus the holonomy κ of

F(1) → BD̃iff∂N (N) → BÃut∂N (N)

does act on the homotopy groups π∗(F(1), 1).

Since diffeomorphisms have vanishing normal invariants, the statement of Lemma
3.3 reduces to

(50) ηN ((Δk × ϕ) ◦ f) = (Δk × ϕ)−1(ηN (f)).

From (48), (49) and (50), we conclude that the holonomy action of π1BD̃iff∂N (N)
on

πk(F(1)) ⊗ Q = πkS∂N
(N)(1) ⊗ Q = Hd(N ; Q) ⊗ πk+d(G/O)
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is via the induced map (ϕ−1)∗ ⊗ Q, and that the action on homology

H∗(F(1); Q) = Λ(πab
∗ ⊗ Q)

is Λ((ϕ−1)∗ ⊗Q). With this we can now study the Serre spectral sequence of the
homotopy fibration

F(1) → BD̃iff∂N (N) → BÃut∂N (N).

It has E2-term

(51) E2
p,q(Mg) = Hp(BÃut∂N (N); Hq(F(1); Q))

with local coefficients. It follows that in (51), the action of π1BÃut∂N (N) =
im(π0J̃) on the homology of the fiber is via the projection

h̃ : im(π0J̃) → Aut(H(Zg, (−1)d), q, α),

and this action is understood homologically by results from [13]. More precisely,
Theorem 2.10 tells us that

H∗(BÃut∂N (N); Q) → H∗(Bπ0(Ãut∂N (N)); Q)

is d-connected. The same is then the case for

H∗(BÃut∂N (N); Q) → H∗(B im(π0J̃); Q).

For the E2-term in (51) we get for p < d − 1

E2
p,q(Mg) ∼= Hp(B im(π0J̃); Hq(

[
Ãut∂N (N)/D̃iff∂N (N)

]
(1)

; Q)),

and since h̃ has finite kernel by Lemma 3.6 and the action is through h̃, we get
for p < d − 1

(52) E2
p,q

∼= Hp(Aut(H(Zg, (−1)d), q, α); Λ(πab
∗ ⊗ Q))

with Λ(πab∗ ⊗ Q) displayed in Theorem 3.5.

Theorem 3.9 ([13]). For k ≥ 1, the stabilization map

Hp(Aut(H(Zg, ε), q, α),H(Zg, ε)⊗k) → Hp(Aut(H(Zg+1, ε), q, α);H(Zg+1, ε)⊗k)

is 1
2(g − 4 − k)-connected. �
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Proof of Theorem 3.7. We use the Serre spectral sequence with E2-term (51) and
abutment

H∗(BD̃iff∂N (N); Q) = H∗(BD̃iffD(Mg); Q).

For base degree p < d − 1 we proved above that

E2
p,∗ ∼= Hp(Aut(H(Zg, ε); q, α); Λ(πab

∗ ⊗ Q))

with

πab
∗ ∼= Hd(Mg; Q) ⊗ π∗+d(G/O).

Theorem 3.9 implies that

E2
p,q(Mg) → E2

p,q(Mg+1)

is an isomorphism in the stated range of (total) degrees. The same is then true
for the abutment. �

4. Homological stability for B DiffD(Mg)

The passage from the group of block diffeomorphisms to the group of actual
diffeomorphisms is a consequence of Morlet’s lemma of disjunction, which we now
recall in the form given in [10].

Let V be a compact n-manifold (possibly with boundary) and let D0 ⊂ int(V )
be an n-disk. There is a diagram of inclusions

Diff∂(D0)

��

�� Diff∂(V )

��

D̃iff∂(D0) �� D̃iff∂(V )

where the horizontal maps extend a diffeomorphism of the disk D0 by the identity
in the complement. We consider the induced diagram

(53) B Diff∂(D0)

��

�� B Diff∂(V )

��

BD̃iff∂(D0) �� BD̃iff∂(V )

Morlet’s lemma of disjunction is the following result about the horizontal homo-
topy fibers in (53), see e.g., [10, p.31].
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Theorem 4.1 (Morlet). If V is k-connected and k + 1 < 1
2 dimV , then

πj(Diff∂(V ), Diff∂(D0)) → πj(D̃iff∂(V ), D̃iff∂(D0))

is (2k − 2)-connected.

It follows from (53) that the vertical fibers are also related by a (2k − 2)-
connected map. For N = Mg \ intD, we get that

πj(D̃iff∂(D0)/ Diff∂(D0)) → πj(D̃iffD(Mg)/ DiffD(Mg))

is 2(d − 2)-connected which in turn implies that

πj(D̃iffD(Mg)/ DiffD(Mg)) → πj(D̃iffD(Mg+1)/ DiffD(Mg+1))

is 2(d − 2)-connected.

The combination of Theorem 3.7 and Morlet’s theorem proves our main result.

Theorem 4.2. For d > 2 the stabilization homomorphism

Hk(B DiffD(M2d
g ); Q) → Hk(B DiffD(M2d

g+1); Q)

is an isomorphism for k < min(d − 2, 1
2(g − 4)).

For oriented surfaces (d = 1), the corresponding stability theorem has range
k < 1

3(2g − 1). Moreover, the forgetful map

(54) H∗(B DiffD(M2
g )) → H∗(B Diff(M2

g ))

has a similar range of stability. For d > 2 there is no analog of (54). The isotopy
extension theorem implies that

(55) DiffD(Mg) → Diff(Mg) → Emb(D, Mg)

is a Serre fibration. Use of an exponential function shows that

Emb(D, Mg) � Fr(TMg),

the oriented frame bundle of the tangent bundle,

SO(2d) → Fr(TMg) → Mg.

Since Mg is (d − 1)-connected the fiber in

(56) Fr(TMg) → B DiffD(Mg)
f→ B Diff(Mg)

has the same (d − 1)-type as SO(2d). The non-zero homotopy groups of SO(2d)
prevents a stability range for f , even rationally.
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However, given the proof of Theorem 1.1 from [20] it is not to be expected that
there would be a stability range for

H∗(B DiffD(M2d
g )) → H∗(B Diff(M2d

g )).

Here are a few words of explanation.

For M = M2d
g , consider the spaces of bundle maps

Bun∂(TM, θ∗(U2d)) ⊂ Bun(TM, θ∗(U2d))

where Bun(TM, θ∗(U2d)) is the space of fiberwise isomorphisms

TM

��

ˆ̂τ �� θ∗d+1(U2d)

��
M

τ̂ �� BO(2d)[d + 1,∞)

where τ̂ is a lifting of the tangent bundle map over θd+1, cf. §1 for notation.
Bun∂(TM, θ∗d+1U2d) is the subspace where τ̂ and ˆ̂τ is fixed on TM |D2d . The
diffeomorphism group DiffD(M) acts on the subspace, and Theorem 1.1 really
about the Borel (or stack) quotients

Bunδ(TM, θ∗d+1U2d)//DiffD(M) = E DiffD(M) ×DiffD(M) Bunδ(TM, θ∗d+1U2d).

But Bunδ(TM, θ∗d+1U2d) is contractible by easy obstruction theory, so

B DiffD(M) � Bunδ(TM, θ∗d+1U2d)// DiffD(M).

In contrast, the space Bun(TM, θ∗d+1U2d) is not contractible, so the stability
theorem to be expected is that

H∗(Bun∂(TM, θ∗d+1U2d)//DiffD(M); Q) → H∗(Bun(TM, θ∗d+1U2d)//Diff(M); Q)

is an isomorphism in a range of dimensions, and this is in agreement with (56).

The use of Morlet’s lemma of disjunction prevents the methods of this paper
to improve the stability range for H∗(B DiffD(Mg); Q) beyond ∗ < 2(d − 2).
However, the stability range for H∗(BD̃iffD(Mg); Q) can be improved through a
deeper analysis, involving more rational homotopy theory. We will return to this
question in a sequel to this paper.
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