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Hodge Integral Identities from the Cut-and-Join

Equation of Marino-Vafa Formula

Shengmao Zhu

Abstract: In this paper, we calculate the Laplace transform of cut-and-
join equation of Marino-Vafa formula and obtain a polynomial identity of
Hodge integral. Subsequently, we present how to obtain some Hodge integral
identities from this polynomial identity. Lastly, we will give a recursion
formula for Hodge integral (7, A\gA1)y where by, = (b, ..., b;).
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1. INTRODUCTION

In a recent paper [7], B. Eynard, M. Mulase and B. Safnuk stated the Laplace
transform of the cut-and-join equation of the partition function of Hurwitz num-
bers and obtained a polynomial identity of linear Hodge integrals. As an ap-
plication, they proved the Bouchard-Marinio conjecture on Hurwitz numbers [2].
Then, M. Mulase and N. Zhang [14] showed that this polynomial identity can
also be used to derive the DVV equation and A4-integral with the same method
in [9].

In 2003, C.-C. Liu, K. Liu and J. Zhou [11] proved the celebrated Marino-Vafa
conjecture [13]. One of the main step in their proof is to show the generating
function of Hodge integral with triple A-classes C(\,p;7) satisfies the cut-and-
join equation. Combining the cut-and-join equation of the combinatorial side
[16], they finished the proof of Marino-Vafa formula. Moreover, the famous ELSV
formula [6] for Hurwitz numbers is the large framing limit of Marino-Vafa formula
[12].

With the above motivations, we calculate the Laplace transform of the cut-
and-join equation for Marino-Vafa formula in the first part of this paper. The

main result is

Theorem 1.1. For g > 1 and | > 1, we have the following equation:

W) =@ +07 3 (A= Der+ Dm0y + (0 + ), 4Ty, )

br,>0

' \ilbL (tr;7) — (7_2 + T)lil Z (1, Lg(7))g
by >0
Lo 1. .
: Z ((%‘Pbi (tisT) + P l\Ijbi-i-l(ti;T)) Wop 1 (oA T)

i=1

() X '
1 > 2 (T Do Wor oy (i) 7)

1<i<j<l  a>0
b (i3 =0
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(t; = DT + t0) Yot (tis7) = (i = D7 + ) Vara (855 7)

ti —t,
T —|—T 1
+ Z Z (T +T)<Ta1Ta2TbL\{i}Fg—1(T)>g—1
i=1 a12>0
a2>0
br\{iy20

- Z (Tay Ty, L'g, (T)>91 (Tas s Lg, (T)>92
g1+92=9
T T=L\{i}
291—1+|Z|>0
2g2—14|7|>0

. H \i’an—i-l (ti; T)\ibe\{i} (tL\{i}; 7—)

n=1

where L = {1,2,..,1} is an index set, and for any subset I C L, we denote

tr = (tiier, br = (bi)ier, ™, = HTbl, Uy, (tr,7 H\I/b ti, T
iel iel
~ 24\ (tr1 n
and Ty(r) = A (DAY (=7 = DAY(), n(t;7) = (%%) (m) forn >

0.

We remark that Theorem 1.1 is equivalent to the symmetrized cut-and-join
equation of Marino-Vafa formula obtained by L. Chen [3].

Furthermore, we use the result of Theorem 1.1 to obtain some Hodge integral
identities. In fact, Wy(t, 7) can be written as
b Tk
Uy(tim) =Y e V()
kzo (7- + 1)b+1
and WF(t), 0 < k < b could be calculated by definition.

Firstly, we consider the expansion of 7 at co. Taking the highest level of
formula (1), we get

Corollary 1.2.

l
D> (my Ay (1) ((29—2+1)W2§(m+2(t% ti) a‘z it )prL\”(L\{i})>

by
b, >0 i=1
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_ br{ig)
= D D (el Ay (g Wy 0 ()

1<i<5<l a>0

brn{e,320
(1 - DR () - (6 - DBV 1))
ti—t;

l
1
+ 9 Z Z <TalTa27_bL\{i}A;;/—1(1)>g*1 + Z <TalTbIA;/1(1)>g1

i=1 a;>0 g1+g2=g
az>0 TUT=L\{i}
br\ iy 20 291—1+|Z|>0
2g2—1+|TJ[>0
Y a1+1/,. a2+1/,. bL\{i}
(TasTo, Ag, (1)>92) Yar 11 (tl)\pa2+1 (t’)\PbL\{i} (tL\{i})'

We show in Section 2 that W(¢) is equal to &(t) which is defined by &,(t) =
(3 — tQ)%)b(t — 1) in formula (1.2) in [7]. Hence, the main Theorem 1.1 in [7]
is the special case of formula (1) in this paper. Similarly, taking the sub-highest
level of Theorem 1.1, we also get another Hodge integral identity in Section 3.

Next, we consider the expansion of 7 at 7 = 0. In this case, the lowest level of

formula (1) is

Corollary 1.3.

1

br>0 1<i<j<l  a>0
bra (i3 20
. (t; = DY (t) — (t = VY (t))
t;—t; '

We can rederive the Ag-integral [8] from Corollary 1.3.

Furthermore, we also pick up the sub-lowest level of formula (1) and get the

following identity:

Corollary 1.4.

D (T Aghgl | —(bel + 1)WY, (t2) + Y W (£) ¥y, ()
br, >0 j=1
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l
+ > (MuAedg Y _(# W (6) 99, (o giy)
br,>0 i=1
39—3

+ D (my Y PaN)gl¥y, (tr)

bL>O d= g— 1

Z Z TaTor i,y Mg

1<i<j<l  a>0
bLA{i,j} 20

. ((tj — D)t (L1 (t:) + (8 — [bryfip] — a— 3)¥0, 1 ()

ti —t;

(ti = D)ty (W p(t5) + (= lbrygigy] —a — 3)\P2+1(tj)))
ti—t;

+ Z Z TaTbp (s, A9 Z v, (t \I'bL\{”}( L\{i.j})

1<i<j<l a>0 r#i,j
br (i3 20
(t; = Dtvo (6 ) (tz —1)t; 00, t]
~ Y Y
1<i<5<l a>0

brA (4,53 20

B (g T DV () = (1 = 1)1 %a4 (1)
bL\{i,j} L\{%J} ti — tj

l
1
+ 9 Z Z Z (Tar oz Agi ) g1 <TaszJ Aga)gs
=1 a12>0 91+92=g
4250  TUJ—=L\[i}
b (i} 20 291 —1+|Z|>0
2g2—1+[J[>0

\Il21+1 ( )lIl22+1 (tl)l:[/gL\{z} (tL\{’L})

where Zz‘i;il Py(A) = Ay (Dar(N) and a1 (N) = 27—y mAg-mAg—(—

The above identity contains Hodge integral of type (7, Zig: _93_1 Pi(N))g-

some direct calculations,

Pyo1(A) = Ag—1, P(A) = gAg, Pyy1(A) = —AgAs,

, Pag_3(\) = (—1)g+1)‘g)‘g—1)‘9—2-

0
\PbL\{i,j} (tL\{iJ})

39—3

(TaTop (i) Z Pa(N))g
d=g—1

1)I9A (—

1151

DAg1.

By

As an application of Corollary 1.4, we get the following Hodge integral recursion.
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Theorem 1.5. If Zizl bi = 29 — 4 + 1, there exists a constant C(g,l,b1,..,b;)
related to g,l,b1,..,b;, such that

bi + b;)!
Z <Tbi+bj1TbL\{i’j})\gAl>g(l)lei7) + C(Q? lv b17 ooy bl)
i:05:

1<i<j<l

~|

(T, AgA1)g =
where C(g,1,b1,..,b;) is a very verbose combinatoric constant.

The initial value (725-3AgA1)g = 15[9(29 — 3)bg + b1bg—1] has been obtained by
Y. Li [10]. Combining the recursion formula in Theorem 1.5, we can get all the
Hodge integral (m,, AgA1)4. Moreover, the Hodge integrals (m,, Py()))4 appeared
in Corollary 1.4 could also be calculated via the same method. But the compu-

tation will be more complicated.

Acknowledgements. The author would like to thank Professor Kefeng Liu
for his encouragement, and bringing the paper [7] to his attention. The author is
grateful to the referees for their valuable comments and suggestions which greatly
improved the presentation of the content.

2. THE LAPLACE TRANSFORM OF CUT-AND-JOIN EQUATION OF MARINO-VAFA
FORMULA

2.1. The Laplace transform of the generating function C, (7). At first,
we introduce some notations followed by [11]. Let

AY(E) =19 = A9 4 (=),
be the Chern polynomial of EV, the dual of the Hodge bundle. For a partition
given by
M1 ZIU’QZZMZ(M) >07

we will use the standard notation |u| = Zi(:“f iy

Let Ty(1) = Ay (1)Ay (=7 — 1)A;(7) and we define,

() Up) -1
Cour) = =Yt o [ ez k) f Dl
’ |AUt(’u)| i=1 (Mi - 1)! mgJ(u) Hi(:ul)(l - lel)
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where the Deligne-Mumford stack ﬂg,l is the moduli space of stable curves sat-
isfying the stability condition 2g —2+1 > 0. For the unstable cases (g,1) = (0, 1)

and (0,2), we define
/ 11
Moy L—mp p?’

1 1
/Mo,z (1= 1) (1 — potpa)  pa + po

It follows that

a1 1] N dr +a)
Coafr) = —y=1* HHlamaldT 2 0) oo

VoI H T4, /LZT +a) 1

C T)= |
0,(u1,2)(T) | Aut (p1, pi2)] SR

The Marino-Vafa formula proved in [11] gives a direct combinatorial formula
associated to representation of symmetric groups for the generation function of
Cy,u(7). But we don’t go further to this formula here.

Through a direct calculation, we get

\/*\ﬂHK#

(2) CQ»M(T) = |Aut( )| [ (T + 1)]1(#)_1
1 Huz_l N27+a) b;
b, L' g ( i
% dnnenll: ‘

Let Cy(p; 7) = |Aut(p)|Cq,u(T), we define the Laplace transform of Cy ,(7) as

1
Co(wr, ..o wp) = E 71(29(/1,; T)e_(#1w1+~--+uzwz)
’ ¥
et V=1 Il

where we have let [ = I(u).

In the following of this subsection, we will show that the Laplace transform
of Cy,(7) has a nice expression in the new variable t. We need the following

Lagrange inversion theorem,
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Theorem 2.1. Let ¢(\) be an invertible formal power series in the indeterminate
X. Then the functional equation y = x¢(y) has a unique formal power series
solution y = y(x). Moreover, if f is a formal power series, then

If (A
Q F@) = £0) + 3 T e T e
n>1
and
fy(x)) xdy(x nixn n
(W WD) 2E) _ S o) (1)
Y z n>0
We consider the framed Lambert curve x = y(1 — y)". Put ¢(y) = ﬁ and
k—2

f(y) = y in formula (3), we have y =3, -, ka. We now introduce the

new variables ¢, w through t = and x = e~ ™. It is easy to see that the

1
T—(r+1)y
derivative of variables w, x,y, t satisfy the following relations:

d d _ (1-yy d:(t(t—l)(tT—l—l))d

_%_xdx_l—(T%—l)ydy T+1 dt’
One can get that
k—1
(T+1)y+(7'—|—1) dy 1+1+72Ha:0(k‘7+a)xk.

t=1-—
T T d:];

k>1

We now define the polynomials

(i) = (DL Dy YT

for n > 0. Finally, the Laplace transform of Cy ,,(7) can be written in variable ¢ ,

3 1
(5) ngl (t17 oy tl) = Z 7lcg(/~l/7 T)e_(‘ulwl—"_“'—"_:u‘lwl)
peNt \/jlﬂu‘

—(7(1 + 1)) Z HTbF gH\I'b ti;T).

b;>0 i=1
i=1,..l

2.2. The Laplace transform of the cut-and-join equation. Let us introduce
the formal variables p = (p1, .., pn, ..), and define p, = p,, - * Py, for a partition
1. We also introduce the generating functions

Cy (3 _
Cg7l()\,p; T) = Z |A,L(LI;II( ))|p )‘29 2+la
wol(p)
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CApiT) =) Cou(\pi7

g>0
>1

In [11], C. Liu, K. Liu and J. Zhou proved that C(\, p; 7) satisfies the following
cut—and—join equation

o VL5 (4 ac .+ oc . ocac
J pzp]a ]pz—i-]a 8 Jpz+j8 ap]

i,5>1

For every choice of g > 1 and a partition u, the coefficient of puz\zg*“l(“) in the

above formula is

6) PV TS )G 3.+ i)

1<J

l
VIS S ap| et s Y Gl i)

i=1 a+L=p; g1+g2=g
vi [ vo=p(ev,i)

Let us first calculate the Laplace transform of the cut-and-join equation when
=1

Proposition 2.2. When g > 1 and | = 1, the Laplace transform of the cut-and-
join equatian 18:

B Z Tb \Ilb(t T) - Z<Tbrg(7)>g <j7_q’b(t§7') + tTi— 1‘i’b+1(t;7')>

b>0 b>0

= % Z (r(7 + 1))<T‘117‘12F9—1(7)>9—1 - Z <Ta1rg1 (7')>91 <Tazrg2 (7)) g2

a1,a2>0 g1+g2=g
g1>0
g2>0

g1t 7) Vo (7).

Proof. When [ = 1, the formula (6) is reduced to

o acgf()/j;f) _ \/2—7 > aﬂ( (@, B);T)+ D Coyla57)Coy (B )).

a+0=p gi1+g92=9g
It then follows that the Laplace transformation of LHS of formula (7) is

o oo
®) aro 6T = 5o gy

9 .
Cg,l(t; T) + EC%l(t;T),
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and the stable part of RHS of (7) becomes

1 A “
F(r(r+1) > (a7l 1(1))g-1%ay41(6 7)oy g1 (£57)
a1,a2>0

5 3 T T (Mg B 1 (5 7)1 17,

g1+92=9
g1>0
g2>0

In the following, we calculate the Laplace transform of the unstable term

d—
Colo7)Cy(5: ) + Cylas T)Co(B: 7). Since Coalr) = —y/—T* LIzl 1

follows that its Laplace transform Co i (w; ) = D1 ﬁcw(f)e*dw satisfies:
d\? . t—1 Y
—— ) C (T) = — = — .
< dw) 01(ws) T+1 1—(r+1)y
Hence -LCo 1 (w;7) = —In(1—y) followed by —-4 = IEI(L?JF)Ty)y%. Moreover, recall

that the framed Lambert curve is y(1 — y)” = x, where y depends on 7. Taking
the derivative of 7, we have the identity

_Oyl-(r+1)y
or y(l-y)

Therefore, the Laplace transform of the unstable part of RHS of (6) is

—In(1 —y)

oyl —(r4+ Dy (2 —t)(tr+1) 0 , 0y 0 ‘
(9) E y(l _ y) r+1 &Cg,l(th) - Et (T + 1)§C9,1(t5 T)a
where we have used ¢t = m We also have
ot 5 0y, =t Oy,

Hence, moving the unstable part to left hand side of formula (7), then by formulas
(8),(9) and (10), we obtain
< o t2—t 0

PR . A . — 1
or + r 1 1) 8t> Cy,1(t; ) = stable part

which is the Proposition 2.2. O

To finish the computation for [ > 2, we introduce two lemmas firstly.
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Lemma 2.3. When (g,1) = (0,2), we have the following Laplace transformation

formula:
A el 1 e+ ) [PRBr4@) an s
Coo(wy,wy;7) = — Z ot 3 o 5 w1 o —Pw2
a,B3>1
— i (22 ) 1) +1nC1 - ).
T1 — T2

Proof. By definition,

R 1
Co2(w1, we; ) = Z 2+a+5|AUt(a B)ICo,(.,8)(T)

a,5>1 V™
_ Z T+1 1 ]._[a 0(aT+a)H (67——’_0’)670410167511)2
| | ’
SE T a+ a! 0!

it follows that

d d 4 A .
<— - > Co.2(w1, wo; T) = —=7(7 + 1)Wo(t1;7) Wo(t2; 7)

Y1y2
(I—=(r+ Dy)(1 = (1 + ya2)

=-—7(1+1)

Then, we obtain

é()’g(wl,’wg;T) =—In (yl — y2> —7(In(1 —y1) + In(1 — y92))
Ir1 — T2

which followed by the relation
d d (I1-yy d

Tdw  Cdr 1—(r+ydy

Lemma 2.4. We have the following identity:

11 (@)=Y (o + B)r + a)
(a+3)!

= W (t;7) —
T; — .Tj Tr; — xj

(a + ﬂ)a+16_awi6_’8wj
a,B>1

‘i/a+1(tj; T) — \i/a—i-l(ti; T) — ‘i/a+1(tj; ).

Proof. This calculation is same as formula (3.15) showed in paper [7].
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Let y = a+ [ and v = 3, then

a+ﬁ
1 H ((a + 6)7— + a) (a + ﬂ)a+1€faw¢e*ﬂwj

af>1 (a+3)!
1 H OH_B ((a kA B)T + a) a+1l_—aw; ,—fw;
af20 | (a+9)! (a4 B)atteawic

_ Z 1 Hg;é(aT + CL) aa—i-le—awi _ Z l H (BT + a) ﬁa+1 —Bw;

|
a21T ’ B>1 &
1 T4+ a W —pws & A
_ZZ = Oiu )ﬂaHe (=vwie =i o (83 7) — Papn (ty57)
pn>0v= 0
_ 1 ptl
1], Ut +a ot — 2k . .
=Z*H“‘O(. Lt Tt 7) — W)
L a;i—a:j
,LL>0
= Uop(tinT) — Woi1(t37) = War1(ti; 7) — Yapa (£ 7).
Xy — X yi xi—xj

Now we present our main result in this paper.

Theorem 2.5. For g > 1 and |l > 1, we have the following equation:

(1) — (2 +7)? Z ((l = 127+ D)1, Tg(7))g + (7 + T)<TbLjTFg(T)>g>
b, >0
: \ilbL (tL;T) - (7—2 + T)l_l Z <TbLFg(7—)>9
br,>0
l
3 <;_\T/bi(ti;r) -,

— ﬁ\pbi+1(ti3 T)) ‘I’bL\m (tL\{i}; 7)

(1 +Tl 2 -
- rr1 2 2 Tty Do Wor s (b 7)

1<i<5<l a>0

brfi,5) =0
(tj = D77 + 1) Wara (ti37) — (ti = D37 + ) Wara (15 7)
ti—t
Z Z (T + )71 Tay Top, 1y Tg-1(T))g-1
i=1 a1>0
a2>0

bry\{iy =0
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- Z (Tay To:Lgy (T)>91 (Tas TbJPQZ (T>>g2
g1t+92=9
ZI[ T=L\{i}
2g1—1+|Z|>0
2g2—1+|T|>0

2
. H \Ijan+1(ti; T)\IlbL\{Z} (tL\{Z}’ T)‘
n=1

Proof. By definition, the Laplace transform of LHS of equation (6) is

(1) > e el e )

0 1 .
= ZN-H#ICQ(’M;T)e (Brw1+-+pgwy)

ot; 9 9 s
:Zggcg,l@lv“atl;T)+Ecgvl(t1""tl;7_)'

The Laplace transform of stable geometry in the cut-term of RHS of (6) is

e
(13) 5 Z l(u+|ulz > aBCyrlule ;)

HEN =1 a+B=p;
i Z Cor (V1 7)Cs (V5 7—)>€_(’u1w1+‘“+mwz)
g1+92=g

vi [ vo=p(avi)
2g1—2+|v1[>0
2g2—2+|v2|>0

( +T)l 1
Z Z (T + )T Tay Top, 11y Tg-1(7))g-1

=1 a1>0
a2>0
bry(iy 20
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- Z (Tay To:Lgy (T)>91 (Tas X Ly, (T>>g2
g1+92=9g
T I={1,.4,.1}
291—1+|I‘>0
2g2—1+[J|>0

2
. H W, +1(ti; T)\IlbL\{z‘} (tL\{’i}; 7).

n=1

The unstable geometry in the cut-term of RHS has two terms for [ > 2:

0= Y2 S o (Golenm) - Cyl(li). B):7) + Cyl (i), )i 7) - o))

i=1 a+B=p;i

=YY S a8y (Gollus o)) - Co((u 3. B):7)

i=1 otB=p;  j#i
+Cy((n(3 , @);7) - Col (s, B)i7) ) -
As calculated in the proof of Proposition 2.2, the Laplace transform of U; is

L By, d .
(14) a;t?(T + 1)%Cg,l(t1, b T).

i=1
Moving the formula (14) to left hand side of (6), it will cancel the first term of
formula (12), i.e.

l

(15)  (12) — (14) = Q+Zt3_t"i Coulty, .t 7)
~\or T+ 1ot ) ottt

i=1

— (P2 +1)2 Y (1= 1)@r + )i{m, Ty(r)),

br,>0
1) T ) Wy (07) = (0241 (T
l

0 - 1 . .
. Z ((%\I/bi(ti;T) + Py 1‘Ifbi+1(tl'; 7‘)> \Ibe\{i} (tL\{i};T).

=1

Furthermore, the Laplace transform of Us equals to

1
(16) Z : U2e*(mw1+---+uzwz)
N /1 +pl
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= — Z Z Z 2+#J+a aCy ((Mj, a); T)e*/ljwje*awi

=1 j#i pj>1

a>1
XD a0l 1), B m)e e Zusia i
7+ 1 )
g0 V-1 M "
H>0
k;éij
_ ZZ@—COQ Wi, Wi T )(7’ +7')
i=1 j#i
Z <TaTbL\{i,j}Fg (T)>9\Pa+1 (ti; T)\I’bL\{m} (tL\{i,j}; T)
a>0
br\{i,j320
!
:ZZ(_ Yi <1+ TYj )+ T )
S\ Vi 1= (74 Dy T — Xj
D) Tambp oy TP g Wara (b 7)oy oy (B gigys )
a>0
bL\{iJ'}>0

(r% + 1) Z Z TaThy iy Lo (T )>9@bL\{i,j}(tL\{i7j}5T)

1<i<yj<l  a>0
bL\{i,j}>0

where we have used the Lemma 2.4.

Finally, we calculate the Laplace transform of the join term in RHS of (6)

(17) Z Z +|#| (ki + 115)Cq (N(%aj);T)e_mwie_“jwje*Zk;ﬁi,j P W
peN! Z<J
L8 (T + a)
l ? a=0 k
T +7) ZZ Z TbL\{”} (7')>g H; P
peN! i<y a0 k#i,5

bry{i ;320
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pitpi—Loo )
. Nzkei 2 ktig e, L a0 (i + p)7 + a) (

T (b + py)!
(r* +7)f Z Z TaTbp 1oy V(7)) g Worn oy (EL\ G535 T)

1<i<j<l  a>0
bL\(i.j}20

i + Iuj)a—&-le—uiwie—ujwj

':L‘Z A "L‘] A A A
. v ti57) — v tj;T) =W tisT) =W i .
<$i — 2 at1(ti; ) i — a+1(t557) at1(ti; 7) a+1(t; T)>

Combining (16) and (17), we get

(18)  (16)+ (17)
() + 7)i72 <
- r+1 Z Z TaTou i Lo (Mg Whun oy (P g9y 7)

1<i<j<l a>0

br\(i,j) 20
(tj = DT + 1) Wara (tis7) — (8 = V(37 + 1) Wara(ty57)
ti—t '

Collecting the remainder equations (15),(16) and (18), we obtain the identity (11)
of Theorem 2.5. g

3. SOME HODGE INTEGRAL IDENTITIES

In this section, we will show how to use the formula (1) to obtain some Hodge

integral identities.

3.1. Preliminary calculations. For convenience, let us recall the formula (1)
first: for g > 1 and [ > 1,

(19)  LHS:=—(7"+7)72 Y (1= 1)(2r + 1)(m, Ty(r))
br,>0

(5, Ty ) By (10i7) = (774 S (Tl
br,>0
l

9 . 1 .
. — Uy (ti: -
> (Lo tir)+ -

po—— Wy, 1 (ts; T)) ‘i’bL\{i} (to\giys 7)
i1

=T +Ty+T;s
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where
)2
7' +T 2
Ti=—r Do D Ty Do Wy (tigiyi7)
1<i<j<l a>0
b (i3 20
(= DT+ 1) Fan (t57) = (6 = DET + 1) Fop b3 7)
ti —t; ’

!
T +T
Bi="—7— Z Z (a1 Tao Toy 1y Tg—1(7))g-1

=1 al -~ >0
az> >0
bry {320

2
: H o1t 7)o, oy (EL\ (i35 T)s

7- 7— -1
T3 : = + Z Z Z <Ta1 TbIFgl (T)>91 <Ta2 Uy ng (7—)>92

=1 a1>0 gi+g92=g
4250 T[] J=L\{i}
br\{i} 2g1—14+|Z|>0
2ga—14|J|>0

2
H ant1(ts; T ‘llbL\{z}(tL\{ i} T 7),

0, (1) = <(t2t)(tr+1)d>”(t1> for n > 0,

T+1 dt T+ 1
and

Ly(1) = A;/(l)A;/(—T — 1)AZ(T).
One can expand W, (t;7) and T',(7) as follow,

b Lk
(20) Uy (t;7) = 7\?“()
;0 T+ )b+1
and
2g
(21) Dy(r) =Y AY(Dam(X)™.
m=0

By the definition of Ay (t) = Y27_o(—1)977 Ay—;t/ and Mumford’s relation Ay (t)Ay (—

(—1)9t%9, one can obtain the coefficients a,,()) in (21). For example,

(22) azg(\) = (=1), agg_1(A) = (—=1)%g, -

t) =
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g
=D mAgemAg — (~1)Ag-1A] (-1),

ap(N) = (—1)9A,AY (~1).

On the other hand, by definition Wy, (¢, 7) = (£2— t)(zth 4 d \i’b(t, ), Wo(t, 1) =

T+1
=1 +1’ it follows that l:[lb+1(t 7) has the expansion form (20). Moreover, we have
d d
(28) W) = (¢~ ) TwEN ) (0 - ) D), k=0,b L

and all the U¥(¢) can be calculated.

As an illustration, we calculate some cases which will be used in the following
discussions. By formula (23),
d

(24) W) = () S k)
(25) W (1) = (5 = 2) Sl () + (7 — 1) S wl)
(26) W) = (15— ) S0 + (7 — 1) S w0,
(21) Wa(1) = (7~ 1) S 0).

It is clear that, the recursion relation for W9(t) in (24) is same as the definition
of &(t) in [7] and they share the same initial. Hence Uo(t) = &y(t). We write
Wh(t) as

2b+1

(28) vty = Y ot

i=b+1
then all the f°(b,i) could be calculated from the recursion (24). For example,
fo(b,2b+1) = (20— 1)1, fo(b,b+ 1) = (—1)%b! which are the coefficients used in
the proof of DVV equation and ), integral respectively[14, 5, 9]. One can also

let
2b

(29) vl =) St

i=b
and by (25), we obtain

P+ 1,k) = (k=2)f> Y bk —2) — (k—1)f> 1 (bk — 1)
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+ (k=1)f(b,k — 1) — kf°(b, k).
For example,

fob4+1,20+2) = 2bf°1(b,2b) + (2b+ 1) f2(b,2b + 1)
= 2bf°71(b,2b) + (204 1),

it follows that

”i (2b — 2)11(2k + 1)!!

b—1
(30) #271(b, 2b) Tl

=0

Similarly,

P4+ 1,b4+1) = —bfo(b,b) — (b+1)f2(b,b+ 1)
= —bf*(b,b) + (=1)" (b + 1)1,

1165

hence
1)!
(31) i) = (P
Moreover, we let
b+1
=> O i)y

i=1
and we have fO(b+1,i) = (i — 1)f°(b,i — 1) — if9(b,4) from (27). It is easy to
show
(32) fob,b+1) = bl

Similarly, one can write ¥} (t) as

b+2 A
(33) Uy (t) = f1(b,5)F
j=2
where
fro+1,k) = (k—2)f°b,k—2) — (k—1) b,k — 1)
+ (k=1 f b,k —1) — kf(b k).
Hence

(34) fro+1,04+3) = (b+1)fb,b+ 1)+ (b+2)f1(b,b+2),
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by initial value f1(1,3) = 1 and f°(b,b+ 1) = b!, it follows

b+1
(35) fro,b+2) = (b+1)! Zk

Now, let us substitute (20) and (21) to (19), one gets

29
36) LHS=-3 Y S (m,AYD)an(\)pr(tr)

by >0 0<kr<br m=0
(I =24 m+ k| = b )R M=t 4 (1 — 1 4 m + [k |)r/kelrirm=2
(1 + 1)lbrl+2

29
=D D D Ay (Dam(),

b, >00<ky, <by m=0

!
2 k; L\{i} -
Z(tz’ )626 Wy, (t )‘I’bL\{ }( L\{z})(7+ 1)lbel+2”

> > S (Tamg )y Ay (Dam(V)g

1<i<j<l a>0 m=0 0<k<a+1
brn{e,320 0<krA (4,53 SbL\ (3,5}

o (t = DEWE, (1) = (t = DEWE (1) glh g ritmo
buagig i) ti—t (r + 1)Praianl+ats
29
>0 2 > Ay Man(
1<i<j<l a>0 m=0 0<k<a+1
br i,y 20 0<kr\{i,5} <bL\ (4.5}
Er\{i51 (t )(tj - 1)ti\115+1(t ) (t - 1)t \I’lg-ﬂ( ) leL\{i’j}|+k+l+m_2
brgigy © MBI} ti —t; (7 + 1)lbr\igy Hats?

(38) Z Z Z Z <Ta1Ta2TbL\{i,j}A;/—1(1)am()‘)>g*1

a;>0 m=0 0<ni<a;+1
a2>0 0<no<az+1
bry\{i3 20 0<kr\ (i3 <br\{s}
ki iy [+n1tna+i+m
oo PALIANG
it . ng . L\{i} .
lI’al“(tl)\IJ@“(tl)\IIbL\{i} (e (7 + 1)taetleoy g [+37
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l
) T=-33 Y % S Ay Wam (W),

i=1 a1>0 g1+92=g 0<ni<ai;+1
a2>0 TUJ=L\{i} 0<ngo<as+1
br\{i}202g1 —1+|Z|>0 gémléggl
2go—1+4|J|>0 YSM25292
0<kr iy <br\{i}

\TaxTo s ;/2 mo g2 Zl-i-l i Zﬁ-l {
(TasTo s gy (1) amy (A)) gs Way 11 (8) WS4 (L)
. kL\{i}(t R iy [ tne+H4+mi+me—1
by VL) (T + 1)a1+a2+|k1;\(¢}\+4 ’

where we have used the notation |br| = 2521 b; in above formulas. We note
that (36), (37), (38) and (39) are all the functions of 7. If we expand them as
the formal power series of 7 at different points, we will get some identities of
Hodge integrals after recollecting the coefficients of 7 at both sides of the identity
(36) = (37) + (38) + (39).

3.2. Expansion of 7 at co. For b > 0, one can expand at 7 = oo by

G 51)6 =2 <_hb> e

h>0

For example, the term containing 7 in (36) is

k l -
A <“bL’ - 2) rhem el ok,
(1 + 1)brl+2 = h

It is easy to see that the largest degree of 7 is 2g+1— 3 in the formulas (36), (37),
(38), (39). If F(t,7) € Q[t][[r]], we will use the notation [r*]F(t,7) to denote
the coefficient of 7% in F(¢,7). By ag, = (—1)¢ in (22) and some calculations, we
obtain

(10)  [PIILHS = (<17 Y (n, Ay (1) (2 - 2+ D (1)

b, >0
l 0 b
36— D w}))
=1

l_
(A1) P = (=0 YT > (Famg o, Ay (D)
1<i<ji<l  a>0
by (i3 20
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bL\ (i} (t; — DIV () — (i — DIV (t))
bin gy (PE(Gg)) =

i=1 a1>0
a2>0
br\(iy20
a1+1 (p ygaztl g ) gl
qjal—l—l( )\I’ag-s-l(tz)‘I/bL\“}(tL\{i})

l
1
-
(43) (23] — g+152 Z Z (Tay oz Ay, (1)) g,
=1 a1>0 g1+g2=g
a2>0  TUJ=L\{i}
br\{i} =0 291 —1+|Z|>0

2g2—1+|T|>0
2
brfi
(g Mg, (D)ge [T Warta () Wy 1 (ton i)
n=1

Since Wb (t) = &(t), we obtain the following corollary from the identity (40) =

(41) + (42) + (43),
Corollary 3.1.

I
(44) D (m, AV (1) ((29 —2+ D&, (t0) + > (5 - ti)gtébi (ti)ébL\{i}(tL\{i})>

br,>0 i=1

Z Z TaTbp iy Mg g (1 )>gébL\{i,j} (trig)

1<i<j<I  a>0

brA (4,51 20
) (tj B 1)t12§a+1(ti) —(ti — l)t?§a+1(tj)
ti—t;

l
1
+ 9 Z Z <Ttl1 TasTory (i} A\g/—1(1)>g—1 + Z <Ta1 TbIA\gll (1)>91

=1 a120 91+92=g
a2>0 TOJ=L\{i}
bry(iy20 291 —1+|Z|>0
2g2—1+|T|>0

(Tas T Ay (1))g) €an 1 (60)Eas 1 (880, 1y (FLr (1)
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which is Theorem 1.1, one of main results, in the paper [7]. Formula (44) has
been studied by many people to derive DVV equation [5, 14], Ag-conjecture [9, 14]
and A\g—1 Hodge integral recursion [18].

Obviously, we can obtain more such corollaries with the same procedure. For
example, by agg = (—1)7, agg—1(A) = (=1)%¢ in (22), we have

(45)  [PPHTILHS = (1)1 (29 =3+ 1) ) (m, Ay (1)

b, >0
l
_ b

[( =1 by (tn) + Y Wy T () (g |+ (1)

=1

: )

> Ay (1) | Do —t) 5 (9= lbel — 205 (1) + w3 (1)
br>0 i=1 ’

L\{z} 1 N N
bL\{l} L\{l + ; \II bL\{z J}( L\{z,j})
JFT

(46) [T = (0 S ST (g, A D) ()

1<i<j<l  a>0
b (i) =0

(s = )2 [We, (1) + (9~ a = lbrgigl = 3+ H)wati(e)]
ti —t;

(t: — 1)t [‘lngrl(tj) +(g—a— ooyl — 3+ £)PeTa(t )]
t—t;

l
- 1
(47) [r2o+! 4]T2=(—1)g+1§z Y (T Tan oy Ay (1)g1

(9—a1—az2—|bp\gijnl — )‘I’Ziﬁ( )‘I’gzﬁ(ti)

PO (1) ) + W)W (0)] 0 (1 i)
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l
1
+ (_1)94’152 Z <Ta1Ta2TbL\{i}AZ,1<1)>g—l

=1 a12>0
a2>0
bL\{i}>0
a1+1 az+1 (4 1 N
W )WL) D W ) (t g gy)
J#i
stable

l
(48)  [rHTYTy = g+112 S0 GamAl (g

i=1 a1>0 gi1+g2=g
a2>0 TUJ=L\{i}
bry\{:} =0

O |

ATay o, Mg, (1)) g [(9 — a1 —az — |bpy iy | — DTE T () VT

b (i
PO () 0) + D) (0] R (1)

S S SIS SRR AN

i=1 a1>0 g1+g2=g
a>0  ZUJ=L\{i}
br\(i} 20 291 —14|Z]>0
2g2—1+|T|>0

v +1 +1 1 bL\{z }
AraaToy Mgy (1)g W L (8) W] (8 Ef U ()
JF#

Then, we also get a Hodge integral identity from the identity (45) = (46) +
(47) + (48) which contains the Hodge integral of type (7, Ay(1))g.

In order to get the Hodge integral identity with more than one A-class, we need
to compare the coefficients of 7291=5 with the same procedure, we will obtain
a Hodge integral identity which involves (7, Ay (1)) and (1, Ay (1)A1)g, because
azg—2(A) = (—1)¢ (@ — )q). And by this Hodge integral identity, we can
calculate all the Hodge integral of the type (7, AgAi)g, & = 1,..,9. However,
many terms will appear in the computation of the coefficients of 7297/=% which
makes the computation very complicated. So far, we have not written down the
explicit formula to calculate the Hodge integral of the type (7, AkA1)g-

3.3. Expansion of 7 at 0. Now, let us consider the expansion of ﬁ at 7 =0,

x0T

i>0
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It is easy to see that the lowest degree of 7 in formula (36) is [ — 2. By ap()\) =
(=1)9AgA; (=1) show in (22) and Ay (1)Ay(=1) = (=1)9, we have

(49) [FPILHS = —(1—1) > (75, M) P0, (tL),
b, >0
(50) [~ - > Y (TaTop i A >g\1’2L\{i’j}(tL\{i,j})
1<i<j<l a>0
b iy 20
% (t )tQ‘I/a-‘rl( ) (tl - 1)t2\pa+1( )

ti —t; ’

(51) [P AT, = (7T = 0.

Therefore, we obtain

Corollary 3.2.

IR SICIPHR NS E S DI DI T

b >0 1<i<j<l  a>0
br\i, 320

\IJO (t o )( - 1)t2\11a+1( ) (ti - 1)t?\1’2+1(t]’)

bL\{z‘,j} L\ {45} t; — tj '

We now introduce two notations for the following expositions. Let
g(x1, ..z Z iy iy T3+ ) € Q[ ey 1),
Zk>0
and denote by
Fa(g(ar, - @) = Y @i @y -7
22:1 ig=d
and

[ il : ?l]g(l'la te 7$l) = Qjyjg--gy -

the two operators acting on g(z1,..,2;). Applying the above two operators on

Corollary 3.2, we have

Fog_spa(LHS of (52)) = (1= 1) Y (my, Ag)gbr !yt ™,
b1, >0
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Fog_sio1(RHS of (52)) Z Z TbL\{m} )gla+1)!
1<i<j<l a>0
br >0
+4 +4
VN e L Ml
IN{4.5} "L\ {i,5} t; — tj

It follows that

[#7-) Fag-san(LHS of (52)) = (I — 1){m, Ag)gbr!,

[tZL+1]F29_3+21(RHS of (52)) = Z <Tbi+bj—17—b1;\{¢,j}/\9>g(bi + bj)!bL\{i,j}!-

1<i<j<l
So we get
1 (bi +b;)!
(T, Ag)g = I—1 Z <Tbi+br17bL\{z‘,j})‘9>9W
1<i<j<l R

By induction on [, it follows the \j-integral formula:

2g —3+1
(b, Ag)g = < b >Cg-
L

In the following, we calculate the sub-lowest degree of 7. By ag(A) = (=1)9AgAy (—1)
and Ay (1)Ay(—1) = (=1)9, we have

(53)

[FTLHS = =) " (m Aghgl | —(lbr| + )Y, (¢1) + Zwb D9,y (o))

br,>0
l 0
= D (M Ag)g ) (8~ t) o Uy, (1) 95, ., (tovgiy)
bL>0 =1
= > Ay (Dar (V) ¥y, (1),
br,>0

7'~ Z Z (TaTop\ i3 Ao

1<i<5<l a>0
br{i,3 >0

(tj — Dti (Vo (t) + (ti — [bra iy —a = 3)P0.4 (1))
ti—t;




Hodge Integral Identities from the Cut-and-Join Equation... 1173

(t — 1)t (Wa iy (t5) + (5 — ooyl —a—3)00, 1 (¢))) 70 y
ti —t; bL\{i,j}( L\{ig})

Yoo D (e D0 U )T, (i)

1<i<j<l  a>0 r#1,j
br\{s,320
(= D () — (6 — 1)t Pe,, ()
ti —t,

Z Z TbL\{”} g g (Da1(X))g

1<i<j<l  a>0

br(i,j) 20
Y (to i )(tﬂ' — D500 4 (t) — (6 — 1)t 4 (¢))
b\ (i} L\{i,5} P tj ,
1 l
(56) [ 2 Z Z Z <Ta17—bz)‘g1>g1 <7—a27—b3 )\g2>g2
=1 a1>0 g1tg2=g

;>0  TUJ=L\{i}
br\{i} =0 291 —14|Z|>0
2g92—1+|T|>0

Recall a1(A\) = D27 i mAg_mAg — (—l)gA;/(—l)/\g_l in (22) and Mumford’s re-

lation Ay (1)Ay(—1) = (—1)¢. We have the form

39—3

(57) Ay(Mar(h) = Y Pa(N)

d=g—1
where P;()) is some combinatoric of A-class with degree d. For example
(58) Py1(A) = Ag—1, Pg(A) = gAg, Py1(A) = —AgAs,
, Pag_3(X) = (_1)g+1/\g)‘g—1)‘9—2'

By the above calculation, substituting (57) to the identity (53) = (54) +

we obtain Corollary 1.4 as showed in Section 1.

Since (1, A\g)g = (Qg;LSH) cg, thus all the Hodge integrals of type

39—3

(59) (To, > Pa(N)g

d=g—1

(56)7



1174 Shengmao Zhu

can be calculated by Corollary 1.4.

3.4. A recursion formula for Hodge integral (7, A\jJA1),. Although Corol-
lary 1.4 says that all the Hodge integral (59) is computable, it is not easy to write
down their explicit formula. In this subsection, we will show how to obtain an
recursion formula for (7, AgA1)g-

We have known that (1,, A\g)y = (29b3+l) cg, and (1, Ag—1)g can also be calcu-
lated easily from a recursion formula showed in [18]. Thus, we have
Theorem 3.3. If 22:1 bi = 29 — 4 + 1, there exists a constant C(g,l,b1,..,b;)
related to g,l,b1,..,b;, such that
1 (bl +b )'
(60)  (Tp, A1)y = 7 Z <Tbi+bj_1TbL\“,j}AgA1>gTbjf + C(g,1, by, ..by)

1<i<j<l

where C(g,1,b1,..,b;) is a combinatoric constant related to the Hodge integrals
2g—3+1
(T, Aglg = ( gbL+ )Cg; and (75, Ag—1)g-

Proof. Taking all the terms with degree 2g + 2l — 4 in formula Corollary 1.4, we

have
(61) Fgg+21 4(LHS -1 Z TbL)\ )\1> bL't +G1(t1,..,tl)
b1, >0
(62) Fogra-a(RHS) == > > (7uToy i MMy
1<i<j<l a>0
bri,320
a+1

b i+l
bL\{”} a+1 ZtLL\\{{ a3t ta+2 mtm+1+G2(t1,..,tl)

where Gi(t1, .., t1) = 314, |—ag 4214 Ci(g, 1 d, oy d)TF € Qlt, )], Cilg, 1, dy, .., dy)
is a combinatoric constant related to g,,dy, ..,d;. It follows that

(63) > (i Agh )bty = Z > (TaTip o AeM)a

by >0 1§i<j§l a>0
b (i3 =0

a+1
bivg; i+l
“bpygigyla+1)! Z Lol T et L G, )
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where G(tl, vey tl) = Z|dL|:29+2174 C’(g, l, bl, ey bl)tdLL = %(Gl(tl, ..tl)—GQ(tl, ey tl)).

br+1

Then taking the coeflicients of ¢;*"" in (63), we get

1 (bz + b)'
(64) (To,AgA1)g = 7 Z <Tbi+bjflTbL\{z:j})‘9)‘1>gb.|7().|]
1<i<j<l Lt
Clg,1,b1+1,..,b;+ 1)
+
br!
Let C(g,1,b1,..,b;) = W, Theorem 3.4 is proved. O

The initial value (T25-3AgA1)g = 15[9(29 — 3)by + b1bg—1] has been obtained by
Y. Li in [10]. Therefore, by the above recursion formula (64), one can calculate
all the Hodge integral (m,, A\gA1)y. This Hodge integral can also be computed
using Mumford’s Chern character formula for A\; and the A, theorem [15].

4. CONCLUSION

With the help of the Laplace transform in this paper or the symmetrization
method in [3], we can convert the cut-and-join equation of Marino-Vafa formula
to a polynomial identity which can be used to prove the BKMP conjecture [1] for
C3 [4, 17]. In this paper, we derived some corollaries about the Hodge integral
identities from this polynomial identity. In fact, we have found an algorithm to
calculate the Hodge integrals appearing in Marino-Vafa formula by the following
two steps.

Stepl: expanding 7 at special points, then collect the corresponding level of 7
in Theorem 1.1.

Step2: taking certain degrees of t1, to obtain the corresponding Hodge integral
identities.

In this paper, we only calculate four cases by using Stepl and calculate a new
Hodge integral recursion for (7,, AgA1)4 via Step2 from the result of last case after
doing Stepl. We have not considered other cases here, because the computation
will be more complicated. We hope to implement this algorithm on a computer.

We note that, the recursion formulas for (7, Ag—1)g [18] and (7, AgA1)g in
Theorem 1.5 have the similar recursion structure. For a given g, Hodge integral

with [ points will reduce to 1 points after only [ times recursions. So it is a very
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effective recursion relation. In fact, many Hodge integral recursions have such
structure if they are calculated by above algorithm. We formulate the following

combinatoric problem.

Let Q;(br) = Qi(by,bs, .., b;) be a symmetric function on (b1, b, .., b;) € (Z1)!
which is defined by the following recursion relation. For given g, k,

constant, b=3g—2—k,
Q1(0) =
0, others.

> Quoa(bi+b;— Lbpy ) Abr) + Bi(br) i b =39 —3+1—k,
Qu(br) = q 1<i<j<i

0, others.

where A;(bp) = Ay(b1,..,b) and By(by) = By(by,..,b;) are some fixed functions
defined on (b, b, .., b;) € (Z1)\.

It is interesting to study the properties of Q;(by) defined above. We hope that
such combinatoric structure of Hodge integral will be studied further in future.
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