
Pure and Applied Mathematics Quarterly

Volume 8, Number 4

1117—1146, 2012

On Hermitian Forms over Dyadic Non-maximal Local
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Abstract: We reduce a study of polarized abelian varieties over finite fields
to the classification problem of skew-Hermitian modules over (possibly non-
maximal) local orders. The main result of this paper gives a complete classi-
fication of these skew-Hermitian modules for the case where the ground ring
is a dyadic non-maximal local order.
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1. Introduction

Let p be a rational prime number. Let R := Z2[X]/(X2 + p) = Z2[π], an order
of the Q2-algebra E := Q2[X]/(X2 + p), where Z2 is the ring of 2-adic integers,
and π is the image of X in R. Denote by a 7→ ā the non-trivial involution on E

and OE the ring of integers in E. By a skew-Hermitian module over R we mean a
Z2-free finite R-module M together with a Z2-valued non-degenerate alternating
pairing

ψ : M ×M → Z2

such that ψ(ax, y) = ψ(x, āy) for all a ∈ R and x, y ∈ M . If M is self-dual with
respect to the pairing ψ, then it is called a self-dual skew-Hermitian R-module.
In this paper we study the classification of self-dual skew-Hermitian modules
over R. As an elementary fact, the ring R is the maximal order if and only if
p = 2 or p ≡ 1 (mod 4). It is easier to handle the case where R is maximal;
the classification is known even for any non-Archimedean local maximal order of
characteristic not equal to 2, due to Jacobowitz [6]. We give an exposition of the
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classification in Section 2, for the reader’s convenience. The main part of this
paper treats the case where R is not maximal, that is, the case p ≡ 3 (mod 4).
We now describe the main results.

Let r ≥ 1 be an integer. Let Sr be the set of symmetric matrices in GLr(F2).
Define the equivalence relation ∼ on Sr by A ∼ B, for A,B ∈ Sr, if there exists a
matrix P ∈ GLr(F2) such that B = P tAP . Denote by Sr/∼ the set of equivalence
classes in Sr. Define integers mr for r ≥ 0 by m0 := 1 and

(1.1) mr := #Sr/∼, ∀ r ≥ 1.

Theorem 1.1. Assume p ≡ 7 (mod 8). There are

(1.2)
n∑

r=0

mr

non-isomorphic self-dual skew-Hermitian R-modules of Z2-rank 2n.

Theorem 1.2. Assume p ≡ 3 (mod 8). There are

(1.3)
n∑

r=0

mr

non-isomorphic self-dual skew-Hermitian R-modules of Z2-rank 2n.

The proofs are given in Sections 4 and 5. Though the statements of Theo-
rems 1.1 and 1.2 look the same, the structures in the classification are different.
It is easy to compute the integers mr; see Lemma 4.7. The classification problem
for (Z2-valued) skew-Hermitian R-modules is equivalent to the same problem for
Hermitian R-modules. Indeed, let (M, ψ) be a skew-Hermitian module over R.
Then there is a unique Hermitian form

ϕ : M ×M → 2mR

such that

ψ(x, y) := TrE/Q2
πϕ(x, y), ∀x, y ∈ M.

Here m is the largest integer such that R∨ ⊂ 2mR, where R∨ is the dual lattice of
R for the pairing (a, b) 7→ TrE/Q2

(ab); in fact m = 0 or −1 depending on whether
R is maximal or not, cf. § 5.1. Conversely, given a Hermitian R-module (M, ϕ)
we get a (Z2-valued) skew-Hermitian R-module (M, ψ) by setting

ψ(x, y) := TrE/Q2
πϕ(x, y), ∀x, y ∈ M.
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It is worth noting that when p ≡ 3 (mod 4), the ground ring R is not hereditary
(see Remark 3.4), nor the condition that a+ ā = 1 for some a ∈ R is not fulfilled.
Therefore, results in the paper complement those of Riehm [12], and a general
Witt type cancellation theorem [1, Theorem 3] obtained by Bayer-Fluckiger and
Fainsilber; see Propositions 4.4 and 5.7.

The motivation of this work is to determine the Tate modules of certain abelian
varieties over finite fields as Galois modules. The reader who is not familiar with
abelian varieties may consult the reference [9] by Mumford. An abelian variety
A over a field k of characteristic p is said to be superspecial if it is isomorphic
to a product of supersingular elliptic curves over an algebraic closure k̄ of k.
Let Σn(Fp) denote the set of isomorphism classes of n-dimensional superspecial
abelian varieties (A, λ) over Fp together with a principal polarization λ over Fp

such that π2
A = −p, where πA is the Frobenius endomorphism of A. Suppose

(A, λ) is an element in Σn(Fp). For any prime ` 6= p, the associated Tate module
T`(A) is a free Z`-module of rank 2n together with a continuous action ρA of
the Galois group G := Gal(Fp/Fp) and a Galois equivariant self-dual alternating
pairing (the Weil pairing)

e` : T`(A)× T`(A) → Z`(1),

where

Z`(1) := lim← µ`m(Fp)

is the Tate twist. Let σ : x 7→ xp be the Frobenius automorphism of G. Since
σx = πAx for all x ∈ T`(A), the action of the Galois group G on the Tate module
T`(A) factors through the quotient

Z`[G] → Z`[X]/(X2 + p) = Z`[πA].

The pairing e` induces an involution a 7→ ā on Z`[πA] by the adjoint. It follows
from πAπA = p and π2

A = −p that this involution is non-trivial. Fix an iso-
morphism Z`(1) ' Z` as Z`-modules. The problem of classifying Tate modules of
superspecial abelian varieties in Σn(Fp) as G-modules together to the Weil pairing
amounts to

(1) classifying self-dual skew-Hermitian modules over the ring Z`[X]/(X2+p),
and
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(2) determining the image of Σn(Fp) in the set of isomorphism classes of
skew-Hermitian modules over Z`[X]/(X2 + p).

The second problem seems to be hard. Besides, in order to state the result
of the second problem, one needs an explicit description of the classification. In
this paper we limit ourselves to the first problem.

As mentioned before, if the ring Z`[X]/(X2 + p) is the maximal order in the
(commutative and semi-simple) Q`-algebra Q`[X]/(X2+p), then the classification
is known. As well-known the ring Z`[X]/(X2 + p) is maximal except when ` = 2
and p ≡ 3 (mod 4), which is also the most complicated case. Theorems 1.1 and
1.2 solve the first problem in this exceptional case. An immediate consequence
of Theorems 1.1 and 1.2 (also using Lemma 4.7) is the following result.

Theorem 1.3. Notation as above. Assume p ≡ 3 (mod 4). There are at most
n + bn/2c isomorphism classes of polarized 2-adic Tate modules (T2(A), ρA, e2)
for all elements (A, λ) in Σn(Fp).

The paper is organized as follows. In Section 2 we give an exposition of the
classification of Hermitian forms over non-Archimedean local maximal orders
of characteristic not equal to 2, following Jacobowitz [6]. Section 3 gives the
complete classification of R-modules. Sections 4 and 5 treat the classification of
skew-Hermitian R-modules in the split case p ≡ 7 (mod 8) and the inert case
p ≡ 3 (mod 8) separately.

Acknowledgments. The manuscript is prepared during the author’s stay at
l’Institut des Hautes Études Scientifiques. He acknowledges the institution for
kind hospitality and excellent working conditions. The research was partially
supported by grants NSC 97-2115-M-001-015-MY3 and AS-99-CDA-M01. The
author acknowledges the referee for his/her careful reading and helpful comments
which remove many errors and inaccuracies.

2. Hermitian forms over local fields

In this section we give an exposition of the classification of Hermitian forms over
local maximal orders, for the reader’s convenience. Our reference is Jacobowitz
[6].
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2.1. Hermitian spaces. Let F be a non-Archimedean local field of charF 6= 2.
Let OF be the ring of integers of F , and πF a uniformizer of OF . Let E be a
quadratic field extension of F ; E is necessarily separable over F . Let OE be the
ring of integers in E, and π a uniformizer of OE . Write a 7→ ā for the non-trivial
automorphism of E over F , and let π = πF if the extension E/F is unramified.
Let v be the normalized valuation on E such that v(π) = 1.

By a Hermitian space over E we mean a finite-dimensional vector V over E,
together with an F -bilinear pairing

h : V × V → E

such that h(ax, by) = ab̄h(x, y) and h(y, x) = h(x, y) for all a, b ∈ E and x, y ∈ V .
The pairing h is called a Hermitian form. It is called non-degenerate if the
induced linear map V → V ∗ := HomE(V, E) by x 7→ h(·, x) is injective (and
hence isomorphic). By a Hermitian module over OE we mean a finite free OE-
module L together with a Hermitian form h on V = E ⊗OE

L, not necessarily
assumed that h(L,L) ⊂ OE . It is called non-degenerate if the Hermitian E-
space (V, h) is non-degenerate; it is unimodular if h(L,L) ⊂ OE and the induced
map L → L∗ := HomOE

(L,OE) is an isomorphism. A full rank OE-submodule
in a Hermitian E-space is usually called an OE-lattice. A decomposition of a
Hermitian module (resp. space) L into submodules (resp. subspaces) L1 and L2:

L = L1 ⊕ L2

means that L = L1 + L2, L1 ∩ L2 = 0 and h(x, y) = 0 for all x ∈ L1 and
y ∈ L2. For a submodule (resp. subspace) L1 of L, denote by L⊥1 the orthogonal
complement of L1 in L.

Lemma 2.1. Any Hermitian space (V, h) over E has a decomposition

V = V ⊥ ⊕ V1,

where V1 is any E-linear subspace complementary to the null subspace V ⊥. The
Hermitian subspace V1, if non-zero, is non-degenerate and the projection V1 →
V/V ⊥ is isometric.

From now on, we assume that (V, h) is non-degenerate. The determinant or
discriminant of V (resp. of a lattice L), denoted by dV (resp. dL), is defined
as det(h(xi, xj)), where x1, . . . , xn is an E-basis for V (resp. an OE-basis for L).
The determinant dV (resp. dL) is unique up to an element in NE/F (E×) (resp.
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NE/F (O×
E)). Write dV1 ' dV2 (resp. dL1 ' dL2) if there is an element a ∈

NE/F (E×) (resp. a ∈ NE/F (O×
E)) such that dV2 = a · dV1 (resp. dL2 = a · dL1).

Theorem 2.2.

(1) We have V = Ex1 ⊕ · · · ⊕ Exn−1 ⊕ Exn with h(xi, xi) = 1 for i =
1, . . . , n− 1 and h(xn, xn) = dV .

(2) Two Hermitian spaces V1 and V2 over E are isometric if and only if
dimV1 = dim V2 and dV1 ' dV2.

Proof. This is Theorem 3.1 of [6]. The statement (1) follows from the fact that
any non-degenerate quadratic form of rank ≥ 4 over F represents every non-zero
element in F . The statement (2) follows from (1).

2.2. General properties of Hermitian lattices. Let (L, h) be a Hermitian
lattice. For any elements x1, . . . , xn in L, denote by < x1, . . . , xn >OE

the OE-
submodule generated by x1, . . . , xn. If L has an orthogonal basis x1, . . . , xn with
h(xi, xi) = αi, we will write

L =< x1 > ⊕ · · ·⊕ < xn >' (α1)⊕ · · · ⊕ (αn).

Definition 2.3.

(1) A vector x ∈ L is called maximal if x 6∈ πL.
(2) Let sL := {h(x, y)|x, y ∈ L}, and let nL be the OE-submodule in E

generated by elements h(x, x) for all x ∈ L. Clearly, one has nL ⊂ sL.
(3) We call L normal if nL = sL, and subnormal otherwise.
(4) A lattice L is called πi-modular, where i ∈ Z, if h(x, L) = (πi) for every

maximal vector x ∈ L; L is called modular if it is πi-modular for some
i ∈ Z.

Clearly, if L1 and L2 are both πi-modular, then so is their direct sum L1⊕L2.
Any rank one lattice is modular. The lattice L =< x, y > with v(h(x, y)) =
i, v(h(x, x) > i, and v(h(y, y)) > i is a πi-modular plane. We write

(
a b

b̄ c

)
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for the Hermitian plane (O2
E , h) with h(e1, e1) = a, h(e1, e2) = b and h(e2, e2) = c.

For any i ∈ Z, define the hyperbolic plane H(i) to be
(

0 πi

π̄i 0

)
.

Proposition 2.4. There is an OE-basis x1, . . . , xr, y1, . . . , ys, z1, . . . , zs such that

V =< x1 > ⊕ · · ·⊕ < xr > ⊕ < y1, z1 > ⊕ · · ·⊕ < ys, zs >

and all components are modular.

Proof. This is Proposition 4.3 of [6].

Proposition 2.5. A πi-modular lattice L has an orthogonal basis if any of the
following conditions holds:

(1) L has odd rank.
(2) L is normal.
(3) i = 0 and there is an element a ∈ E such that v(a) = v(a + ā) = 0.

Proof. This is Proposition 4.4 of [6].

Definition 2.6.

(1) For any integer j ∈ Z, define

L(j) := {x ∈ L |h(x, L) ⊂ (πj) }.

This defines a decreasing filtration {L(j)} on L.
(2) A decomposition L = ⊕1≤λ≤tLλ of L is called a Jordan splitting if each

Lλ is modular and

sL1 ) . . . ,) sLt.

Two Jordan splittings

L = ⊕1≤λ≤tLλ, K = ⊕1≤λ≤T Kλ

are said to be of the same type if t = T , and for each λ, one has

sLλ = sKλ, rankLλ = rankKλ,

and either both Lλ and Kλ are normal or both are subnormal.
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It follows from Proposition 2.4 that every lattice has a Jordan splitting. Any
two Jordan splittings of a lattice L are of the same type (see [6, p. 449]). For
a Jordan splitting L = ⊕λLλ, define the integers s(λ) and u(λ) = uL(λ) for
λ = 1, . . . , t by

sLλ = (πs(λ)), nL(s(λ)) = (πu(λ)),

and the fractional OE-ideals f(λ) for λ = 1, . . . , t− 1 by

f(λ) := (πu(λ)+u(λ+1)−2s(λ)).

Since any two splittings are of the same type, the invariant {s(λ)}, and hence the
invariants {u(λ)} and {f(λ)} are independent of the choice of Jordan splittings.

Theorem 2.7. Suppose E/F is unramified. Then

(1) There is an element a in E such that v(a) = v(a + ā) = 0.
(2) Any πi-modular lattice L is isomorphic to (πi)⊕ . . . ,⊕(πi).
(3) Any two lattices are isometric if and only if they are of the same type.

Proof. This is Theorem 7.1 of [6].

Theorem 2.8. Suppose that E/F is ramified and non-dyadic.

(1) Let L be a πi-modular lattice of rank n.
If i = 2d is even, then

L ' (πd)⊕ · · · ⊕ (πd)⊕ (π−(n−1)ddL).

If i is odd, then n is even and

L ' H(i)⊕ · · · ⊕H(i).

(2) Let L and K be two lattices with Jordan splittings ⊕Lλ and ⊕Kλ, respec-
tively. Then L ' K if and only if L and K are of the same type and
dLj ' dKj for every index j for which s(j) is even.

Proof. These are Proposition 8.1 and Theorem 8.2 of [6].

Theorems 2.7 and 2.8 complete the classification in the cases where E/F is un-
ramified, or E/F is ramified and non-dyadic. It remains to describe the ramified
dyadic case.
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2.3. The ramified dyadic case: modular lattices. In the remaining of this
section we assume that E/F is ramified and dyadic.

Proposition 2.9. Suppose that L is a πi-modular lattice of rank ≥ 3. Then

L ' L0 ⊕H(i)⊕ · · · ⊕H(i).

where L0 is a πi-modular lattice of rank one or two satisfying nL0 = nL.

Proof. This is Proposition 10.3 of [6].

Proposition 2.10. Let L1 and L2 be two πi-modular lattices. If L1 ⊕ H(i) '
L2 ⊕H(i), then L1 ' L2.

Proof. This is Proposition 9.3 of [6].

By Propositions 2.9 and 2.10, the classification of modular lattices is reduced
to the case of planes. Furthermore we may assume that i = 0 or 1.

We need a classification of dyadic ramified extensions. For an element a in
O×

F , denote by dF (a) the smallest OF -ideal J such that a mod J is a square.
If a is a square, then define dF (a) to be (0). Since the squaring x 7→ x2 is an
automorphism on OF /(πF ), one has dF (a) ⊂ (πF ) for any a ∈ O×

F . It is known
that the OF -ideals occurring as dF (a) for some a ∈ O×

F are precisely (0), (4), and
all (π2k+1

F ) with 0 < 2k + 1 < vF (4) where vF (πF ) = 1. Furthermore, one has

dF (1 + π2k+1
F δ) = (π2k+1

F )

for every δ ∈ O×
F and every integer k such that 0 < 2k + 1 < vF (4).

Write E = F (
√

θ), where θ is a non-square unit or a prime element. We have
the following two cases [6, p. 451]:

(a) θ is a prime element, or
(b) θ is a unit and dF (θ) = (π2k+1

F ) with 0 < 2k + 1 < vF (4). In this case,

E = F ((1 + π2k+1
F δ)1/2)

for some unit δ ∈ O×
F .

Note that the case dF (θ) = (4) occurs only when E/F is unramified. We refer the
case (a) as ramified prime, (“R-P”), and the case (b) as ramified unit, (“R-U”).
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We use a notation from [6, p. 450]: to indicate an unspecified element a in E

with v(a) ≥ v(b), we shall write a = {b}; to indicate an unspecified element a

with v(a) = v(b), write a = [b].

Proposition 2.11.

(1) If L is πi-modular, then nL ⊃ nH(i).

(2) If a ∈ F is any element in nH(i), then the πi-modular lattice

(
0 πi

π̄i a

)
is

isomorphic to H(i).

Proof. This is Proposition 9.1 of [6].

Proposition 2.12. Let L be a πi-modular plane, where i = 0 or 1, with nL =
nH(i).

(1) If L is isotropic, then L ' H(i).
(2) Either in R-P with i = 1 or in R-U with i = 0, the lattice L must be

isotropic; particularly one has L ' H(i). In the other two cases, if L is
anisotropic, then (h(x, x)) = nL for any maximal vector x ∈ L.

(3) If K is another πi-modular plane, with nK = nL and dK ' dL, then one
has K ' L.

Proof. This is Proposition 9.2 of [6].

Propositions 2.11 and 2.12 handle the case where L is a πi-modular plane with
nL = nH(i), the minimal case. The other case nL 6= nH(i) is treated in the
following proposition.

Proposition 2.13. Let L be a πi-modular plane, where i = 0 or 1, with nL =
(π2m) ) nH(i).

(1) If L is normal, then L ' (1)⊕ (dL) '
(

1 1
1 {1}

)
.

(2) If L is subnormal, then

L '
(

πm
F πi

π̄i {a}

)
,

where a = 4π−m+i
F in R-P, and a = 4π−2k−m+i−1

F in R-U.
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Proof. This is Proposition 10.2 of [6].

Using Propositions 2.9–2.13, one can obtain the following characterization for
modular lattices (see [6, Proposition 10.4]).

Theorem 2.14. Let L and K be two πi-modular lattices for some i ∈ Z. Then
L ' K if and only if rankL = rankK, nL = nK, and dL ' dK.

2.4. The ramified dyadic case: the invariants. Let L and K be two Her-
mitian lattices, and let I ⊂ OE be a proper ideal. We write dL/dK ' 1 (mod I)
if v(dL) = v(dK) and there are OE-bases xi and yi for L and K, respectively,
such that

det(hL(xi, xj))/ det(hK(yi, yj)) ≡ 1 (mod I).

The following theorem [6, Theorem 11.4] gives a complete classification of
Hermitian forms over local maximal orders by the invariants.

Theorem 2.15. Let L and K be two Hermitian lattices. Suppose

L = ⊕1≤λ≤tLλ and K = ⊕1≤λ≤T Kλ

are any Jordan splittings of L and K, respectively. Then L and K are isometric
if and only if the following four necessary conditions hold:

(1) L and K are of the same type.
(2) dL ' dK.
(3) uL(λ) = uK(λ) for all λ = 1, . . . , t.
(4) For all j = 1, . . . , t− 1, one has

d(L1 ⊕ · · · ⊕ Lj)/d(K1 ⊕ · · · ⊕Kj) ' 1 (mod f(j)).

3. Unpolarized cases

In this section we assume that p ≡ 3 ( mod 4). Recall that R = Z2[X]/(X2 +
p) = Z2[π] and E = R ⊗Z2 Q2 = Q2[π]. Let OE be the ring of integers of E;
OE is either a complete discrete valuation ring or is isomorphic to Z2 × Z2. Put
α := (π − 1)/2. Then α ∈ OE and

OE = Z2[α] = Z2[X]/(X2 + X + (p + 1)/4).
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Put ω := π − 1, and one has

R = Z2[ω] = Z2[X]/(X2 + 2X + (p + 1) ) and 2α = ω.

We shall classify R-modules M which are free Z2-modules of finite rank. Write
< x1, . . . , xm >R for the R-submodule of M generated by elements x1, . . . , xm.

We divide the classification into two cases:

Case (a): p ≡ 3 ( mod 8). In this case, the algebra E is an unramified
quadratic extension of Q2. We have (at least) two indecomposable Z2-free finite
R-modules: R and OE as R-modules. The R-module structure of OE is given as
follows: write OE =< 1, α >Z2 , then

(3.1) ω1 = 2α and ωα = −2α− (p + 1)/2.

If M is an R-module of the form R⊕r ⊕ O⊕s
E for some non-negative integers r

and s, then the integers r and s are uniquely determined by M . Indeed, we have
r + s = dimE M ⊗Z2 Q2, and M/(2, ω)M = (F2)r ⊕ (F2 ⊕ F2)s.

Case (b): p ≡ 7 ( mod 8). In this case, the algebra E is isomorphic to Q2×Q2.
Let α1 and α2 are the roots of the quadratic polynomial X2 + X + (p + 1)/4 in
Z2. By switching the order, we may assume that α1 is a unit and α2 ∈ 2Z2. By
the Chinese Remainder Theorem, we have the isomorphisms

OE = Z2[α] ' OE/(α− α1)×OE/(α− α2) ' Z2 × Z2.

Clearly, X2 + 2X + (p + 1) = (X − 2α1)(X − 2α2) and (ω − 2α1)(ω − 2α2) = 0
in R. There are (at least) three indecomposable Z2-free finite R-modules:

R, R/(ω − 2α1), and R/(ω − 2α2).

Among them, one has

OE ' R/(ω − 2α1)⊕R/(ω − 2α2)

as R-modules. If M is an R-module of the form Rr⊕[R/(ω−2α1)]s⊕[R/(ω−2α2)]t

for some non-negative integers r, s and t, then the integers r, s and t are uniquely
determined by M . Indeed, we have

rankZ2 M = 2r + s + t, M/(2, ω)M = Fr
2 ⊕ Fs

2 ⊕ Ft
2,
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and
M/(ω − 2α1)M = [R/(ω − 2α1)]r+s ⊕ (F2)t.

Conversely, we shall show that the indecomposable finite R-modules described
in Cases (a) and (b) exhaust all possibilities.

Theorem 3.1. Let M be a Z2-free finite R-module. Then

(1) Assume p ≡ 3 (mod 8) (Case (a)). The R-module M is isomorphic to
Rr ⊕Os

E for some non-negative integers r and s. Moreover, the integers
r and s are uniquely determined by M .

(2) Assume p ≡ 7 (mod 8) (Case (b)). The R-module M is isomorphic to

Rr ⊕ [R/(ω − 2α1)]
s ⊕ [R/(ω − 2α2)]

t

for some non-negative integers r, s and t. Moreover, the integers r, s and
t are uniquely determined by M .

Proof. We have seen that the integers r, s (and t for (2)) are uniquely deter-
mined by the R-module M . We now prove the first part of each statement.

(1) Assume p ≡ 3 (mod 8). In this case we have M ⊗Z2Q2 = M ⊗R E ' En '
Q2n

2 , and hence M ' Z2n
2 and M := M/2M ' F2n

2 . Let

(3.2) M := M/2M = (F2[ω]/ω2)r ⊕ (F2)2s

be the decomposition as R/2R = F2[ω]/(ω2)-modules. We first show that if
s = 0, then M ' Rr. Since r = dimM ⊗R F2 = dimE M ⊗R E and R is a local
Noetherian domain, the module M is free.

Now suppose s > 0. Choose an element a 6= 0 ∈ (F2)2s and let x ∈ M

be an element such that x̄ = a. As ωx = 0, the element ωx/2 ∈ M . Put
M1 :=< x, ωx/2 >Z2 ; it is an R-module and is isomorphic to OE . Let ω′ denote
the conjugate of ω; one has ω′ = −2− ω and ωω′ = (1 + p). Note that (1 + p)/4
is a unit. Since x̄ 6∈ ω′M , one has x 6∈ ω′M . We show that ωx/2 6= 0. Suppose
not, then ωx = 4y for some y ∈ M . Applying ω′, we get x = ω′y′ for some
y′ ∈ M , contradiction. We show that the F2-vector space M1 := M1/2M =<

x̄, ωx/2 > is 2-dimensional. Suppose that x + ωx/2 = 2z for some z ∈ M . Since
(1 + ω/2) = −ω′/2, we get x = −[4/(ωω′)] · ωz ∈ ωM and x̄ ∈ ωM = ω′M ,
contradiction. Therefore, the quotient M/M1 has dimension decreased by 2. On



1130 Chia-Fu Yu

the other hand, the Z2-rank of M/M1 also decreases by 2. This shows that M/M1

is free as Z2-modules. If the integer s in (3.2) for M/M1 is positive, then we can
find an R-submodule M2 =< x2, ωx2/2 >Z2' OE not contained in the vector
space E ⊗OE

M1 such that M/(M1 + M2) is free as Z2-modules. Continuing this
process, we get R-submodules M1, . . . , Ms′ , which are isomorphic to OE , such
that M1 + · · ·+Ms′ = M1⊕· · ·⊕Ms′ and M/(M1 + · · ·+Ms′) is a free R-module.
It follows that M ' Os′

E ⊕Rr′ . Since s′ and r′ are uniquely determined by M as
before, the integers s′ and r′ are actually equal to s and r in (3.2), respectively.
This proves (1).

(2) Assume p ≡ 7 (mod 8). Let

M1 := {x ∈ M | (ω − 2α1)x = 0 },
and

M2 := {x ∈ M | (ω − 2α2)x = 0 }.
Using the relation

2 = (ω − 2α1)(2α2 + 1)−1 − (ω − 2α2)(2α2 + 1)−1,

one shows that 2M ⊂ M1 + M2, and hence the quotient M/(M1 + M2) is an F2-
vector space, say of dimension r. Let x1, . . . , xr be elements of M such that the
images x̄1, . . . , x̄r form an F2-basis for M/(M1 +M2). Put F0 :=< x1, . . . , xr >R,
which is isomorphic to Rr, as x̄′is form a basis for F0/(M1 +M2) = F0/(2, ω)F0 '
Fr

2. Now (ω − 2α2)F0 ⊂ M1, we choose elements y1, . . . , ys in M1 so that the
images ȳ1, . . . , ȳs form an R/(ω−2α1)-basis for M1/(ω−2α2)F0, and put F1 =<

y1, . . . , ys >R. We have

M1 = (ω − 2α2)F0 ⊕ F1, and F0 ∩ F1 = 0.

Similarly, we have a free R/(ω − 2α2)-submodule F2 of M2, of rank t, such that

M2 = (ω − 2α1)F0 ⊕ F2, and F0 ∩ F2 = 0.

We have (F0 + F1) ∩ F2 = F0 ∩ F2 = 0 and M = F0 + F1 + F2, and hence
M = F0 ⊕ F1 ⊕ F2. This proves (2).

Corollary 3.2. Assume p ≡ 3 (mod 4). Let A be an n-dimensional superspecial
abelian variety A over Fp with π2

A = −p. Then the Tate module T2(A) of A is
isomorphic to Rr⊕Os

E for some non-negative integers r and s such that r+s = n.
Moreover, the integers r and s are uniquely determined by T2(A).
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Proof. Note that the Tate space V2(A) = T2(A) ⊗Z2 Q2 is a free E-module
of rank n; this follows from the fact that tr(a;V2(A)) = n tr(a;E) for all a ∈ R.
It follows that the numbers s and t in Theorem 3.1 (2) above are the same.
Therefore, the corollary follows.

Lemma 3.3. Assume p ≡ 3 ( mod 4). Let n ≥ 1 be an integer. For any non-
negative integers r and s with r+s = n, there exists an n-dimensional superspecial
abelian variety Ar over Fp with π2

A = −p such that the Tate module T2(Ar) of Ar

is isomorphic to Rr ⊕Os
E.

Proof. Choose a supersingular elliptic curve E0 over Fp such that the endomor-
phism ring EndFp(E0) is equal to the ring OQ(

√−p) of integers in the imaginary
quadratic field Q(

√−p), and a supersingular elliptic curve E1 over Fp such that
the endomorphism ring EndFp(E0) is equal to Z[

√−p] (see Waterhouse [17, The-
orem 4.2 (3), p. 539]). Put Ar = Er

1 × Es
0, then the superspecial abelian variety

Ar has the desired property.

Remark 3.4. We recall that a (not necessarily commutative) ring Λ is said to be
left hereditary if every left ideal of Λ is a projective Λ-module [11, Section 2f,
p. 27]. One defines in a similar manner for the notion of right hereditary. If Λ is
both left and right Noetherian, then Λ is left hereditary if and only if it is right
hereditary [11, p. 29]. In this case Λ is simply called hereditary. Suppose that
A is a Dedekind domain with quotient field K so that A 6= K and B is a finite-
dimensional semi-simple K-algebra. A hereditary A-order in B is an A-order Λ
which is hereditary; note that Λ is both left and right Noetherian as it is finite
as an A-module. Write B =

∏r
i=1 Bi as the product of its simple factors and let

Ai be the integral closure of A in the center Ki of Bi. Under the assumption
that each Ai is a finite A-module, any hereditary A-order Λ in B has the form
Λ =

∏r
i=1 Λi, where Λi is a hereditary Ai-order in Bi; cf. [11, Theorems 40.7,

p. 369]. The finiteness assumption is used to make sure that any Ai-order in Bi

is also an A-order. This assumption is fulfilled if A is Japanese or B is separable
over K, that is, the center of B is a finite product of separable field extensions
of K. We refer the reader to [8] for the definition of Japanese rings. Note that
Theorem 40.7 of [11] is proved under the stronger assumption that B is separable
over K; however, the proof only uses the finiteness assumption as stated.
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As a special case, if B is separable and commutative over K, then the maximal
A-order in B (it exists under the finiteness assumption) is the unique hereditary
A-order in B.

From the discussion above, the non-maximal order R = Z2[π] is not hereditary.

4. Proof of Theorem 1.1.

4.1. In this section we assume that p ≡ 7 ( mod 8). Thus, the algebra E is
isomorphic to Q2 × Q2. Write σi : E → Q2 for the ith projection for i = 1, 2.
Let (M, ψ) be a self-dual skew-Hermitian R-module of Z2-rank 2n and let V :=
M ⊗Z2 Q2. For i = 1, 2, let

(4.1) V i := {x ∈ V ; ax = σi(a)x, ∀a ∈ E } and M i := V i ∩M

be the σi-components of V and M , respectively. It follows from the property
ψ(ax, y) = ψ(x, āy) that each V i is an isotropic subspace overQ2. Thus, dimV i ≤
n for i = 1, 2 and hence dimV 1 = dim V 2. This shows that V is a free E-module
of rank n. Therefore, by Theorem 3.1, there are unique non-negative integers r

and s with r + s = n such that

(4.2) M ' R⊕r ⊕O⊕s
E

as R-modules. Note that r = 0 if and only if M = M1 +M2, and we always have
M/(M1 + M2) ' (Z/2Z)r.

Define a self-dual skew-Hermitian R-module (Lh, ψh) as follows. The R-module
Lh is OE = Z2 ⊕ Z2. Put e1 = (1, 0) and e2 = (0, 1), and set ψh(e1, e2) = 1.

4.2. Suppose that there exist elements x ∈ M1 and y ∈ M2 such that ψ(x, y) = 1.
Then the submodule M1 =< x, y >R generated by x and y is isomorphic to Lh

as skew-Hermitian R-modules and we have the decomposition

(4.3) M = M1 ⊕M⊥
1

as skew-Hermitian R-modules, where M⊥
1 is the orthogonal complement of M1.

Therefore, if s = n, then M ' L⊕n
h as skew-Hermitian R-modules.
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4.3. Recall that the polarization type of a non-degenerate alternating pairing ψ′

on a free module M ′ over a PID R′ of rank r is a tuple (d1, . . . , dr) of elements in R′

with d1| . . . |dr such that there exists a Lagrangian R′-basis xi, yi for i = 1, . . . , r

such that ψ′(xi, yi) = di. The elements di are unique up to a unit in R′. The
choice of the Lagrangian basis {xi, yi} gives rise to a splitting of M ′ = M ′

1 ⊕M ′
2

into isotropic submodules M ′
1 :=< x1, . . . , xr >R′ and M ′

2 :=< y1, . . . , yr >R′ .
Conversely, if M ′ splits into the direct sum of two isotropic submodules M ′

1 and
M ′

2. then a Lagrangian basis {xi, yi} can be chosen so that xi ∈ M ′
1 and yi ∈ M ′

2

for all i = 1, . . . , r.

Lemma 4.1.

(1) The polarization type of the pairing ψ on the R-submodule M1 + M2

viewed as a Z2-module is (1, . . . , 1, 2, . . . , 2), with multiplicity s and r for
1 and 2 respectively.

(2) There is a decomposition as skew-Hermitian R-modules

(4.4) M ' M1 ⊕ L⊕s
h ,

where M1 is a free R-submodule of rank r which is self-dual with respect
to the pairing ψ.

Proof. The polarization type of the pairing ψ on the submodule M1 + M2

viewed as a Z2-module has the form (2a1 , . . . , 2an) with integers 0 ≤ a1 ≤ · · · ≤
an. Since |M/(M1 + M2)| = 2r, one has

∑n
i=1 ai = r. If a1 > 0, then ai = 1 for

all i and r = n. Below we show that s = 0 implies a1 > 0. This proves the case
where s = 0.

If a1 = 0, then there exist elements x ∈ M1 and y ∈ M2 such that ψ(x, y) = 1.
Using § 4.2, one has a decomposition of M into skew-Hermitian R-modules

(4.5) M ' M ′ ⊕ Lh

with M ′ ' Rr ⊕Os−1
E as an R-module, particularly s > 0.

Suppose s > 0 and we prove the statement by induction on s. Then a1 = 0
and by the same argument we have M ' M ′ ⊕ Lh as above. By the induction
hypothesis, the polarization type of ψ on M1 + M2 is (1, . . . , 1, 2, . . . , 2) with
multiplicity s for 1, and we get a decomposition of M into skew-Hermitian R-
modules

M ' M1 ⊕ L⊕s
h ,
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where M1 is a free R-submodule of rank r which is self-dual with respect to the
pairing ψ. This proves both (1) and (2).

4.4. Now we classify self-dual skew-Hermitian R-modules (M, ψ) in the case
where M ' Rr, where r is a positive integer. Let N be the smallest OE-module
in V containing M , and let N ′ = M1 + M2. We have

N = N1 ⊕N2, N ′ = 2N.

The polarization type of ψ on 2N is (2, . . . , 2). Put ψN := 2ψ. Then we have
ψN (N, N) ⊂ Z2 and N is self-dual with respect to the pairing ψN . Put N =
N/2N and let ψN : N × N → F2 be the induced non-degenerate pairing. We
have

(4.6) 2N ⊂ M ⊂ N, dimF2 M = r

and that M is isotropic for ψN , where M := M/2N . Note that M generates N

over OE , or equivalently, M generates N over OE/2OE = F2 × F2.

Suppose M1 is another self-dual skew-Hermitian R-module such that M1 '
Rr. Define N1 and ψN1 similarly. Since (N1, ψN1) is isomorphic to (N, ψN ) by
Lemma 4.1 (2), we choose an isomorphism α : (N1, ψN1) ' (N, ψN ) of skew-
Hermitian R-modules. The image M ′ = α(M1) is an R-module which satisfies
the same property (4.6) as M does.

Now we fix the self-dual skew-Hermitian R-module (N, ψN ). Let Xr the set of
all R-submodules M of N such that

• 2N ⊂ M ⊂ N and dimF2 M = r, where M := M/2N ,
• M is isotropic with respect to the pairing ψN , and
• M generates N over OE .

We need to determine the isomorphism classes of elements M in Xr. Let Xr be
the set of maximally isotropic F2-subspaces M of N such that M generates N

over F2 × F2. Since the R-module structure of N is simply an F2-module, the
reduction map M 7→ M gives rise to a bijection Xr ' Xr.

If two elements M1 and M2 in Xr are isomorphic as skew-Hermitian R-modules,
then any isomorphism between them lifts to an R-linear automorphism of (N, ψN ).
Therefore, the set of isomorphism classes of elements in Xr is in bijection with
the orbit set AutR(N, ψN )\Xr. As the R-action on N extends uniquely to an
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OE-action on N , we have AutR(N, ψN ) = AutOE
(N, ψN ). The action of the

group AutOE
(N, ψN ) on Xr factors through AutOE

(N, ψN ), and the reduction
map yields a bijection

AutOE
(N, ψN )\Xr ' AutOE

(N, ψN )\Xr.

Proposition 4.2. Let r be a positive integer. There are

# AutOE
(N, ψN )\Xr.

non-isomorphic self-dual skew-Hermitian R-modules M such that M ' Rr as
R-modules.

We now describe the set AutOE
(N, ψN )\Xr. Let N = N

1⊕N
2 be the decom-

position induced by OE = F2 × F2, and let pi : N → N
i be the ith projection

for i = 1, 2. Fix a basis e1, . . . , er for N
1 and a basis f1, . . . , fr for N

2 such that
ψN (ei, fj) = δi,j for all i, j = 1, . . . , r. Using the basis {ei, fi}i=1,...,r we iden-
tify the F2-vector space N with the F2-space F2r

2 of column vectors. Let M be
an F2-vector space of N of dimension r. Choose a basis v1, . . . , vr for M . The
subspace M generates N over F2 × F2 if and only if pi(M) = N

i for i = 1, 2.
In this case, after a unique change of basis we may assume that vi = ei + ui

for i = 1, . . . , r and u1, . . . , ur forms a basis for N
2. Write uj =

∑
i uijfi and

let U := (uij) ∈ GLr(F2). The matrix U is uniquely determined by M . One
computes

ψN (ei + ui, ej + uj) = ψN (ei, uj)− ψN (ej , ui) = uij − uji.

It follows that M is isotropic for ψN if and only if the matrix U is symmetric.
This shows Xr ' Sr. Recall that Sr denotes in the set of all symmetric matrices
in GLr(F2) (Section 1). With respect to the basis {ei, fi} the automorphism
group AutOE

(N, ψN ) of is

{(
A−1 0
0 At

)
; A ∈ GLr(F2)

}
' GLr(F2),

(
A−1 0
0 At

)
7→ A−1.

From the formula (
A−1 0
0 At

)(
Ir

U

)
=

(
Ir

AtUA

)
A−1
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the action of the group GLr(F2) ' AutOE
(N, ψN ) on Sr, transported from the

action on Xr, is given by

A · U = A−tUA−1, ∀A ∈ GLr(F2), U ∈ Sr.

We have shown the following proposition.

Proposition 4.3. Notation as above. There is a bijection

AutOE
(N, ψN )\Xr ' GLr(F2)\Sr.

Note that Sr/∼, the set of equivalence classes (see Section 1), is the orbit set
GLr(F2)\Sr.

Proposition 4.4 (Witt Cancellation). Let M1 and M2 be two self-dual skew-
Hermitian R-modules. Suppose there is an isomorphism

M1 ⊕ L⊕s
h ' M2 ⊕ L⊕s

h

of skew-Hermitian R-modules for some integer s ≥ 0. Then M1 is isometric to
M2.

Proof. By Lemma 4.1 (2), we have decompositions M1 = M ′
1 ⊕ L⊕s′

h and
M2 = M ′

2⊕L⊕s′′
h as skew-Hermitian modules such that M ′

1 and M ′
2 are free as R-

modules. Note that s′′ = s′. Replacing M1 and M2 by M ′
1 and M ′

2, respectively,
we may assume that M1 ' M2 ' Rr as R-modules. Write ψi for the pairings on
Mi ⊕ L⊕s

h , for i = 1, 2. Let Ni be the smallest OE-module in the vector space
E⊗R Mi containing Mi. Then Ni⊕L⊕s

h is the smallest OE-module in the vector
space E⊗R (Mi⊕L⊕s

h ) containing Mi⊕L⊕s
h . Put ψ′i := 2ψi, which is a Z2-valued

skew-Hermitian form on Ni ⊕ L⊕s
h . The pairing ψ′i induces a non-degenerate

pairing ψ′i on the F2-vector space

(Ni ⊕ L⊕s
h )/(2Ni ⊕ L⊕s

h ) ' Ni/2Ni =: N i,

and the subspace

(Mi ⊕ L⊕s
h )/(2Ni ⊕ L⊕s

h ) ' Mi/2Ni =: M i

is a maximal isotropic subspace with respect to ψ′i.

Let α : M1⊕L⊕s
h ' M2⊕L⊕s

h be an isomorphism of skew-Hermitian R-modules.
The map α lifts to an isomorphism β : N1 ⊕ L⊕s

h ' N2 ⊕ L⊕s
h , and β induces

an isomorphism β̄ : N1 ' N2 of symplectic F2-spaces such that β̄(M1) = M2.
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We lift Lagrangian bases {xi} for N1) and {β̄(xi)} for N2 to Lagrangian bases
Xi for N1 and Yi for N2, respectively. The map γ : N1 ' N2 which sends Xi

to Yi is an isomorphism of skew-Hermitian R-modules. Since γ(2N1) = 2N2

and γ(M1) = M2, it gives an isomorphism from M1 to M2. This proves the
proposition.

Remark 4.5. Proposition 4.4 (also Proposition 5.7) is not covered by a general
Witt type cancellation theorem [1, Theorem 3] proved by Bayer-Fluckiger and
Fainsilber, as the condition a + ā = 1 for some a ∈ R is not fulfilled.

Corollary 4.6. Let M be a self-dual skew-Hermitian R-module of Z2-rank 2n.
Then there are unique non-negative integers r and s with r+s = n and a self-duel
skew-Hermitian R-module M1 which is free of rank r such that

M ' M1 ⊕ L⊕s
h .

Moreover, M1 is uniquely determined by M up to isomorphism.

Proof. This follows immediately from Lemma 4.1 (2) and Proposition 4.4.

By Corollary 4.6 and Propositions 4.2 and 4.3, Theorem 1.1 is proved.

4.5. It is well-known that the set Sr/∼ parametrizes equivalence classes of non-
degenerate symmetric F2-spaces (W,ϕ) of dimension r. We use the notation
(1) to indicate the one-dimensional non-degenerate symmetric space F2 with the
pairing ϕ(e1, e1) = 1, and write (

0 1
1 0

)

for the two-dimensional non-degenerate symmetric space F2⊕F2 with the pairing

ϕ(e1, e1) = ϕ(e2, e2) = 0, ϕ(e1, e2) = 1.

Lemma 4.7. Let (W,ϕ) be a symmetric space over F2 of dimension r ≥ 1.
If r is odd, then

(W,ϕ) ' (1)⊕
(

0 1
1 0

)
⊕ · · · ⊕

(
0 1
1 0

)
.
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If r is even, then either

(W,ϕ) '
(

0 1
1 0

)
⊕ · · · ⊕

(
0 1
1 0

)
, or

(W,ϕ) '
(

0 1
1 0

)
⊕ · · · ⊕

(
0 1
1 0

)
⊕ (1)⊕ (1).

In particular, we have

#Sr/∼=





1, if r is odd,

2, if r is even.

Proof. Denote by N(W ) the set of vectors x ∈ W such that ϕ(x, x) = 0. It
is easy to show that N(W ) is a subspace. Let N(W )n be the null subspace of
N(W ) and W2 ⊂ N(W ) be a complement of N(W )n. Then W2 is a maximal
non-degenerate subspace in N(W ) and it is easy to show

W2 '
(

0 1
1 0

)
⊕ · · · ⊕

(
0 1
1 0

)
.

Let W1 := W⊥
2 ⊂ W be the orthogonal complement of W2; one has W = W1⊕W2

and N(W ) = N(W1)⊕W2. It follows that N(W )n = N(W1) = W (W1)n in W1.
We have dim W1 ≤ dimN(W1) + 1, as if one has y 6= x with ϕ(x, x) = 1 and
ϕ(y, y) = 1 then ϕ(x+y, x+y) = 0. It follows that dimN(W1) ≤ 1, otherwise W1

would be degenerate. Therefore, dimW1 ≤ 2. As there are no vectors x, y ∈ W1

such that ϕ(x, x) = ϕ(y, y) = 0 and ϕ(x, y) = 1, the symmetric space (W1, ϕ) is
isomorphic to the direct sum of copies of (1). Therefore, the lemma follows.

5. Proof of Theorem 1.2.

5.1. In this section we assume that p ≡ 3 (mod 8). Thus, the algebra E is an
unramified quadratic field extension of Q2. Recall that

R = Z2[ω] = Z2[X]/(X2 + 2X + p + 1) ⊂ OE = Z2[α]/(X2 + X + (p + 1)/4),

ω = π − 1, α = ω/2 and π ∈ R is an element with π2 = −p. Let (M, ψ) be a
skew-Hermitian R-module of Z2-rank 2n, and let V := M ⊗Z2 Q2. There is a
unique non-degenerate E-valued skew-Hermitian form

(5.1) 〈 , 〉 : V × V → E
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such that 〈ax, by〉 = ab̄〈x, y〉 for all a, b ∈ E and x, y ∈ V , and ψ(x, y) =
TrE/Q2

〈x, y〉 for all x, y ∈ V . Since E/Q2 is unramified, the inverse different
D−1

E/Q2
is equal to OE . Put ( , ) := π〈 , 〉, which is a Hermitian form on V . Note

that 〈M, M〉 ⊂ OE if and only if (M, M) ⊂ OE , as the element π = 1 + ω lands
in 1 + 2OE = R× ⊂ O×

E .

Lemma 5.1.

(1) One has (M, M) ⊂ 2−1R. Under the assumption that M is self-dual with
respect to the pairing ψ, the condition (M, M) ⊂ OE holds if and only if
M is invariant under the OE-action.

(2) The R-lattice M is self-dual with respect to the pairing ψ if and only if
M is self-dual with respect to the pairing 2( , ).

Proof. (1) The element 〈x, y〉 for x, y ∈ M satisfies the property TrE/Q2
(〈x, y〉R) ⊂

Z2. Therefore, it lands in the dual lattice R∨ of R for the pairing (a, b) 7→
TrE/Q2

(ab). It is easy to check that R∨ = 2−1R, and hence the first part is
proved.

Let M̃ be the OE-submodule in V generated by M . If M is invariant under
the OE-action, then 〈M, M〉 ⊂ O∨

E = OE . Conversely, if 〈M, M〉 ⊂ OE , then
〈M̃, M̃〉 ⊂ OE . This yields ψ(M̃, M̃) ⊂ Z2. As M is self-dual, one has M̃ = M .
This proves (1).

(2) For any element x ∈ V , one has

(x,M) ∈ 2−1R ⇐⇒ ψ(x,M) ∈ Z2.

Therefore, the assertion follows.

From now on, we assume that M is self-dual with respect to the pairing ψ.

Lemma 5.2. One has NE/Q2
(R×) = Z×2 .

Proof. We use the following basic fact in number theory; see [10, Corollary,
p. 7]. Suppose E/F is a unramified finite extension of non-Archimedean local
fields. For any integer i ≥ 1, let U

(i)
E := 1+πi

EOE ⊂ O×
E and U

(i)
F := 1+πi

F OF ⊂
O×

F be the ith principal congruence subgroups of O×
E and O×

F , respectively. Then
we have NE/F (U (i)

E ) = U
(i)
F .

Since R× = 1 + 2OE and Z×2 = 1 + 2Z2, the lemma follows.
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5.2. We define three self-dual skew-Hermitian R-modules L0, L1,H as follows.

(i) The R-module L0 is OE and the pairing ψ0 is defined by ψ0(1, ω/2) = 1.
Write ω′ for the conjugate of ω. To see this defines a skew-Hermitian
R-module, one checks that

(5.2) ψ0(ω′/2, 1) = ψ0((−2− ω)/2, 1) = ψ0(−ω/2, 1) = ψ0(1, ω/2).

(ii) The R-module L1 is R and the pairing ψ1 is defined by ψ1(1, ω) = 1.
Similarly, one checks that ψ1(1, ω) = ψ1(ω′, 1) as (5.2).

(iii) The R-module H is R⊕R with standard basis e1 = (1, 0) and e2 = (0, 1).
The pairing ψH is defined by

ψH(e1, ωe1) = ψH(e1, e2) = ψH(e2, ωe2) = ψH(ωe1, ωe2) = 0,

ψH(e1, ωe2) = ψH(e2, ωe1) = 1.
(5.3)

Note that using the relation ψH(ωx, y) = ψH(x, ω′y) the pairing ψH is
uniquely determined by any values of

ψH(e1, ωe1), ψH(e1, e2), ψH(e1, ωe2), and ψH(e2, ωe2).

One checks that

ψH(ω′e1, e2) = ψH((−2− ω)e1, e2) = ψH(e2, ωe1) = 1 = ψH(e1, ωe2).

So (5.3) defines a skew-Hermitian R-module.

By Theorem 3.1, there are unique non-negative integers r and s with r+s = n

such that

M ' Rr ⊕Os
E

as R-modules. If one has a decomposition

M ' L⊕r1
1 ⊕H⊕r2 ⊕ L⊕s′

0

as skew-Hermitian R-modules for some non-negative integers r1,r2 and s′, then
r1 + 2r2 = r and s′ = s.

5.3. Let M0 ⊂ M be the R-submodule defined by

(5.4) M0 := {x ∈ M |ωx ∈ 2M }.
Write M := M/2M and M0 := M0/2M . Let

ψ : M ×M → F2
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be the induced non-degenerate alternating pairing. We have a filtration

ωM ⊂ M0 ⊂ M,

and have the following properties

• dimF2 ωM = dimF2 M/M0 = r and dimF2 M0 = 2s + r, and
• ωM is an isotropic subspace with respect to the pairing ψ.

For any element x in M , write x for the image of x in M .

Lemma 5.3. Let M be a self-dual skew-Hermitian R-module.

(1) If there exists an element x ∈ M such that ψ(x, ωx) 6= 0, then the R-
submodule M1 generated by x, with the pairing ψ|M1 restricted on M1, is
isomorphic to (L1, ψ1) as skew-Hermitian R-modules. Moreover, we have
the decomposition

M = M1 ⊕M⊥
1

as skew-Hermitian R-modules.
(2) If there exists an element x ∈ M0 ⊂ M such that ψ(x, ω/2x) 6= 0, then

the R-submodule M1 generated by x and ω/2x, with the pairing ψ|M1

restricted on M1, is isomorphic to (L0, ψ0) as skew-Hermitian R-modules.
Moreover, we have the decomposition

M = M1 ⊕M⊥
1

as skew-Hermitian R-modules.

Proof. (1) We have ψ(x, ωx) = a ∈ Z×2 . By Lemma 5.2, there is an element
λ ∈ R× such that N(λ) = a−1. Replacing x by λx, we get ψ(x, ωx) = 1. Since
M1 is self-dual and R-invariant, the orthogonal complement M⊥

1 is R-invariant
and we have M = M1 ⊕M⊥

1 . This proves (1).

(2) Using the same argument as (1), we can choose an element x ∈ M1 such
that ψ(x, ω/2x) = 1 and we have the decomposition M = M1 ⊕M⊥

1 . It is clear
that we have an isometry (M1, ψ|M1) ' (L0, ψ0). This proves (2).

Lemma 5.4. There is a decomposition as skew-Hermitian R-modules

(5.5) M ' M1 ⊕ L⊕s
0

where M1 is a free R-submodule of rank r which is self-dual with respect to the
pairing ψ.
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Proof. Let M0 ⊂ M be the submodule defined as (5.4). It is clear that
ψ(ωM, M0) = 0. It follows from the non-degeneracy of ψ that there are vectors
x1, . . . , xr ∈ ωM and y1, . . . , yr ∈ M such that

ψ(xi, xj) = ψ(yi, yj) = 0, and ψ(xi, yj) = δi,j

for all i, j = 1, . . . , r. Put W1 :=< y1, . . . , yr >F2 and W2 := (ωM ⊕W1)⊥. We
have M = ωM ⊕W1 ⊕W2. It follows from

ψ(ωW2,M) = ψ(W2, (−2− ω)M) = 0

that ωW2 = 0, and hence W2 ⊂ M0. It follows from the dimension counting
that M0 = ωM ⊕ W2. This shows that the pairing ψ is non-degenerate on
M0/ωM . We can choose elements z1, . . . , zs in M0 such that the OE-submodule
M2 =< z1, . . . , zs >OE

⊂ M0 is mapped onto W2. The module M2 is self-dual
with respect to ψ. By Lemma 5.1, M2 is a unimodular Hermitian module over
OE for the pairing ( , ), and hence M2 is a direct sum of OE-rank one Hermitian
submodule, as E/Q2 is unramified. Therefore, M2 ' L⊕s

0 as skew-Hermitian R-
modules. Put M1 := M⊥

2 . We have M = M1 ⊕M2 as skew-Hermitian modules,
and M1 is a free R-submodule of rank r which is self-dual with respect to the
pairing ψ.

5.4. Now we classify self-dual skew-Hermitian R-modules (M, ψ) in the case
where M ' Rr, where r is a positive integer. Let N be the smallest OE-module
in V containing M , and let N ′ be the largest OE-submodule in M . We have
N ′ = 2N ⊃ 2M . Since N ′/2M is a maximal isotropic F2-subspace of dimension
r with respect to ψ, the polarization type of ψ on N ′ is (2, . . . , 2). Put ψN :=
2ψ. We have ψN (N, N) ⊂ Z2, and N is self-dual with respect to the pairing
ψN . Note that (N, ψN ) ' (L0, ψ0)⊕r by Lemma 5.4. Put N = N/2N and let
ψN : N ×N → F2 be the induced non-degenerate pairing. We have

(5.6) 2N ⊂ M ⊂ N, dimF2 M = r

and M is isotropic for ψN , where M := M/2N . Note that M generates N over
OE , or equivalently, the subspace M generates N over OE := OE/2OE = F4.

Suppose M1 is another self-dual skew-Hermitian R-module such that M1 ' Rr.
Define N1 and ψN1 similarly. As (N1, ψN1) ' (N, ψN ), we choose an isomorphism
α : (N1, ψN1) ' (N, ψN ) of skew-Hermitian R-modules. The image M ′ = α(M1)
is an R-module which satisfies the same property as M does (5.6).
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Now we fix the self-dual skew-Hermitian R-module (N, ψN ). Similarly to § 4.4,
let Xr be the set of all R-submodules M of N such that

• 2N ⊂ M ⊂ N and dimF2 M = r,
• M is isotropic with respect to the pairing ψN , and
• M generates N over OE .

We need to determine the isomorphism classes of elements M in Xr. Let Xr be
the set of maximally isotropic F2-subspaces M of N such that M generates N

over F4. Since the R-module structure of N is simply an F2-module, the reduction
map M 7→ M gives rise to a bijection Xr ' Xr.

Using the same argument as in § 4.4, the set of isomorphism classes of elements
in Xr is in bijection with the orbit set AutOE

(N, ψN )\Xr, and the reduction map
induces the bijection

(5.7) AutOE
(N, ψN )\Xr ' AutF4(N, ψN )\Xr

Proposition 5.5. Let r be a positive integer. There are

#AutF4(N, ψN )\Xr

non-isomorphic self-dual skew-Hermitian R-modules M such that M ' Rr as
R-modules.

We now describe the orbit set AutOE
(N, ψN )\Xr. Let V0 = Fr

4, viewed as the
space of column vectors, together with the standard non-degenerate Hermitian
form ( , )0 defined by

((xi), (yi))0 =
r∑

i=1

xiȳi,

where y 7→ ȳ is the non-trivial automorphism on F4. Choose an element ε ∈ F×4
such that ε+ ε̄ = 0 (in fact ε = 1) and put 〈x, y〉0 := TrF4/F2

ε(x, y)0, for x, y ∈ V0.
Then we have an isomorphism (V0, 〈 , 〉0) ' (N, ψN ) as skew-Hermitian modules
over F4 and we may identify (N, ψN ) with (V0, 〈 , 〉0). Let U(r) be the unitary
group over F2 associated to the Hermitian space (V0, ( , )0); one has

U(r)(F2) = AutF4(V0, ( , )0) = AutF4(V0, 〈 , 〉0)

Write any matrix U in GLr(F4) as (u1, . . . , ur), where ui ∈ V0. The map

U = (u1, . . . , ur) 7→ W =< u1, . . . , ur >F2
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induces a bijection between GLr(F4)/ GLr(F2) and the set Zr of r-dimensional
F2-subspace W ⊂ V0 which spans V0 over F4. Note that TrF4/F2

(x, y)0 = 0 if and
only if (x, y)0 ∈ F2. It follows that a subspace W ∈ Zr is isotropic with respect
to 〈 , 〉0 if and only if Ū tU ∈ GLr(F2) for any matrix U mapping to W . Let
Yr ⊂ GLr(F4) be the subset consisting of matrices U such that Ū tU ∈ GLr(F2).
The action of the group U(r)(F2) on the set GLr(F4)/ GLr(F2), transported from
the action of the group AutOE

(N, ψN ) = AutF4(V0, 〈 , 〉0) on the set Xr, is simply
the left translation. Thus, there is a bijection

(5.8) AutOE
(N, ψN )\Xr ' U(r)(F2)\Yr/ GLr(F2).

Lemma 5.6. The map π : Yr → GLr(F2) defined by U 7→ Ū tU induces the
bijection

U(r)(F2)\Yr/ GLr(F2) ' Sr/∼ .

Proof. Since the matrix Ū tU is Hermitian, one has π(Yr) ⊂ Sr. Each non-
empty fiber of π is a principal homogeneous space of U(r)(F2). Thus, the induced
map π : U(r)(F2)\Yr → Sr is injective. One easily checks π(UP ) = P tπ(U)P for
P ∈ GLr(F2). Thus, we have the injection map

U(r)(F2)\Yr/ GLr(F2) → Sr/∼ .

It suffices to show that the map π : Yr → Sr/∼ is surjective. By Lemma 4.7,
any matrix A in Sr is equivalent to a matrix with diagonal boxes either (1) or

Ĩ2 =

(
0 1
1 0

)
. Thus it suffices to find a matrix U ∈ GL2(F4) such that Ū tU = Ĩ2.

Note that F4 = F2[β] with β2 + β + 1 = 0. Take

U =

(
β β + 1
1 β + 1

)

and get Ū tU = Ĩ2. This proves the lemma.

Proposition 5.7 (Witt Cancellation). Let M1 and M2 be two self-dual skew-
Hermitian R-modules. Suppose there is an isomorphism

M1 ⊕ L⊕s
0 ' M2 ⊕ L⊕s

0

of skew-Hermitian R-modules for some integer s ≥ 0. Then M1 is isometric to
M2.
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Proof. The proof is the same as that of Proposition 4.4. Note that one can
lift the isomorphism β : (N1, ψ1) ' (N2, ψ2) to an isomorphism γ : (N1, ψ1) '
(N2, ψ2). This is because IsomR((N1, ψ1), (N2, ψ2)) is the set of Z2-points of a
smooth scheme over Z2 (in fact a trivial torsor of a smooth group scheme over
Z2).

Corollary 5.8. Let M be a self-dual skew-Hermitian R-module of Z2-rank 2n.
Then there are unique non-integers r and s with r + s = n and a self-duel skew-
Hermitian R-module M1 which is free of rank r such that

M ' M1 ⊕ L⊕s
0 .

Moreover, M1 is uniquely determined, up to isomorphism, by M .

Proof. This follows immediately from Lemma 5.4 and Proposition 5.7.

Theorem 1.2 follows from Corollary 5.8, Proposition 5.5, (5.8), and Lemma 5.6.
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