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Computation of Hyperbolic Geometric Flow on

Closed Riemann Surfaces

Zheng Xie* and Zheng Ye

Abstract: Hyperbolic geometric flow, introduced by Kong and Liu, is a sys-
tem of nonlinear evolution partial differential equations of second order for
Riemannian metric and Ricci curvature. This work introduces two numerical
algorithms for initial value problem of this flow on closed Riemann surfaces
with circle packing metric and pointwise conformal metric, and demonstrates
the evolution of metric by data and graphs. Specially, the numerical experi-
ment and the analysis of schemes show that the Euler character is an essential
obstruction to the existence of periodic solution for any initial metrics on
sphere and double torus.
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1 Introduction

Let 9 be n-dimensional Riemannian manifold with Riemannian metric g;;. The

following general evolution equations for the metric g;; and Ricci curvature R;;
329ij _
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have been introduced recently by Kong and Liu motivated by Einstein equation
and Ricci flow [1-5] and named hyperbolic geometric flow(HGF), which can be
used to describe the wave character of metrics and curvatures of manifolds and
carries many interesting features of both the Ricci flow as well as the Einstein
equations [6-14]. This is essentially different from the Ricci flow, which describe

the heat diffusion process character of metrics and curvatures.

In this paper, we mainly focus on the numerical computation of the initial
problem of HGF on closed Riemann surfaces, namely a compact manifold without
boundary, such as sphere, torus and double torus. The reason for calculating on
closed manifold is because that this surface has a triangulation with a finite
number of triangles, and no need to consider boundary conditions, e.g. Dirichlet
conditions. As the first part of our research on this topic, we are interested
in the computation using Thurston’s circle packing on surfaces. This is based
on works of the discrete Ricci flow on piecewise linear surfaces introduced by
Gu et al [15-18]. As the second part of our research, we are interested in the
pointwise conformal class (90, w(t,-)go), where w(t,-) is a nonnegative function
with parameter ¢ and gg is the initial metric on the surface. Therefore, the Ricci

curvature is
2 1
R = w (k‘ - §Ago lnw> ,

where k is the Gaussian curvature of (9, gg). Thus, HGF can be deduced to

9w

W = AgO ln’ll) — 2k (2)

We give a numerical algorithm for initial value problem of Eq.(2) on closed Rie-
mann surface, such as sphere and tours. The numerical experiments verify the
qualitative conclusions presented by Kong and Liu et al, including the theorem: if
the Euler characteristic number of surface is positive, then any solution of Eq.(2)

must decay in finite time for any initial problem.
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2 Computation of HGF for circle packing metric

Computational domain

A closed Riemann surface has a triangulation with a finite number of triangles,
and the Riemannian metric and the Gaussian curvature are discretized as the edge
lengths and the angle deficits. In this section, we compute the HGF with circle
packing metric. This method is same as discrete Ricci flow, except the different
for derivative of time. Consider a triangle mesh ¥ for 97 with vertices V', edges
FE and triangles F'. If each triangle in F' is realizable on the Euclidean plane,
then we call ¥ is with Euclidean background geometry. Similarly, the meshes
can be defined with spherical or hyperbolic background geometries respectively.
Some concepts in differential geometry, such as metric, Gaussian curvature, and

conformal structure can also be defined on mesh.

Discrete Riemannian metric

Consider a triangle f;;, with edge lengths l;;, [k, lr;, and the angles 0, 0;, 0;
against the corresponding edges. The edge lengths define the discrete Riemannian
metric on 3 by

[:E—RT,

such that for a triangle f;;x the edge lengths satisfy the triangle inequality

lij + ljk IR

Discrete Gaussian curvature

The discrete Gaussian curvature K; on a vertex v; can be computed using Gaus-

sian Bonnet formula from the angle deficit:

K=o Yo%, 2)

fijr€F

where 93 k represents the corner angle attached to vertex v; in the face f;;z. The

values of angles and edge lengths are related by cosine laws. Meshes with Eu-
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clidean background geometries require the cosine laws as follows:
1 = Uy + 1 — 2kli; cos Oy, (3)

where l;;, L, l; are edges in a triangle f;;, and 0y is the angle attached to vertex

Vi

Discrete conformal structure

Let I' be a function defined on the vertices
I':vV—-R",

which assigns a radius r; to the vertex v;. Let ® be a function defined on the
edges,

™
¢:F —
- [07 2]’

which assigns an acute angle ®(l;;) to each edge l;;. The pair (I', ®) on the mesh
Y is called a circle packing metric of ¥. Two circle packing metrics (I';; ®1) and

(T'9; 2) on a same mesh are conformal equivalent, if &1 = P,.

Figure 1: Circle packing metric for a triangle

The circle packing metric and the edge lengths can be converted to each other

by using cosine laws dependent on the Euclidean background geometry as follows:
l?j =7+ 7“]2» + 2747 COS Oy (4)

where v; has a circle whose radius is 7, ¢;; is defined by the two circles of v; and

vj (see Fig.1).
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Discrete HGF

Now, we are ready to derive the discrete HGF(DHGF') on surfaces, which is an

system of evolution difference equations of the discrete metric. Let
u; = logr;. (5)

Since the discrete Ricci flow [18] is defined as:

duz(t)
= 2K;
dt (3
we can similarly derive the DHGF as:
dzui(t)
2 —2K;. (6)

The temporal partial derivatives can be approximated by differences. The com-

putational scheme for Egs.(6) is
uftt = —2(At’ K] + 2uf —ul (7)

where u]" denotes u;(nAt).

Geometric properties

The first geometric property is that the metrics on surfaces at each time step
is conformal to the original metrics, since ® is invariant in the computational
progresses. The other geometric property is that the Euler characteristic number

has essential relationship with the solution for Eqs.(7). More accurately, we have

Theorem 2.1 Let x(9M) be the Euler characteristic number for closed Riemann
surface M with triangulation . If {ul|i € V'} is a solution of Eqs.(2), then

a. If x(MM) < 0, then the discrete metric for Eqs.(7) expand in infinite time

for any initial value {u?, ul|i € V'}.

b. If x(9) = 0 and u} < uf for alli € V, then the discrete metric for Egs.(7)

decay in infinite time;
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c. If x(OM) > 0, then the discrete metric for Eqs.(7) decay in infinite time for

any initial value {ud, ulli € V'}.

Proof. Taking integration on both sides of Eqgs.(7) and using Gauss-Bonnet for-

mula, we have
Zuf = —2n(n — 1) (M) AL? + nZuzl —(n—=1) Zu? (8)
i€V i€V i€V

for n = 2 and any initial values {ul,u?|i € V}. The conclusions (a-c) can be

concluded from (5) and (8). O

It can be see that Euler character is the essential geometric obstruction to

the existence of periodic solution on sphere and double torus.

Algorithm

The numerical algorithm to compute Riemannian metrics with prescribed Gaus-
sian curvatures using DHGF is designed. The unified pipeline for this algorithm

is listed as follows:

Step 1. Compute the discrete Gaussian curvature.

This curvature can be computed from Eq.(2) using Gaussian Bonnet

formula.

Step 2. Compute the initial circle packing metric.

2.1. For each face f;j;, compute a radius for the vertex v;
gk Ui+l — Lk
=T
where l;;, L, and Ig; are the lengths of the edges e;;, ek, and ey,

respectively.

2.2. For each vertex v;, approximate the radius r; by averaging the radius

from the faces adjacent to v;:
1 .
— 2 : gk
fijkeF

where m is the number of the adjacent faces to vertex v;.
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2.3. For each edge [;;, compute its edge weight ¢;; from r;, r; using a

cosine law (4). If the edge weight is greater than 7, take 7 as its

value.

Step 3. Update the circle pacing metric by DHGF.

3.1. Compute edge lengths [;; from the current vertices radius r; and 7;

and the fixed edge weight ¢;; using the cosine law (4).

3.2. Compute the corner angles 6; in each face f;; from the current edge

lengths by using the cosine law (3).

3.3. Compute the discrete Gaussian curvature K; of each vertex v; by
using Eq.(2).

3.4. Update u; of each vertex v; by Eqgs.(7).

3.5. Update r; by Egs.(5), and go to Step 3.1.

The following numerical experiments in this section show that this algorithm

is not a very efficient algorithm for practical use due to the lowly convergence.

Examples

This numerical algorithm has been implemented in Java on a PC with AMD CPU
of 3.4 GHz and 2GB RAM. We use Hypermesh to generat the triangle meshes
for sphere, torus, and double torus(Fig.2).

Figure 2: Triangle meshes for sphere, torus and double torus
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For those meshes, we can calculate the initial value for {u?,i € V} and let u{ = u},
for all ¢ € V, namely let the initial velocity be zero. Then we obtain a initial

value problem for Eqgs.(7) on sphere, torus and double torus.
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Figure 3: The trajectory of w; under DHGF on different surfaces

Fig.3(a) shows the trajectory of one w; in {u;|i € V'} on sphere for this initial
value problems, (b) for torus, and (c) for double torus. Since the value of u; on
a vertex i can not give the information of others in {u;|i € V'}, we let u be the
mean value of {u;|i € V'} to describe the behavior of all u; and record the initial
and end values of u. Table 1 recodes the data of initial and end values of u for a

initial value problem on sphere.

At N u® = u! ulv rV
0.0245 | 877 | -4.399645598 | -5.586009882 | 0.003778194
0.001 | 3999 | -4.399645598 | -4.409869389 | 0.012251197
0.0001 | 3999 | -4.399645598 | -4.399747835 | 0.012376393

0.00001 | 3999 | -4.399645598 | -4.3996466198 | 0.0123776606

Table 1 : Data for a initial value problem on sphere

The data in Table 1 and conclusion in Theorem 2.1(c) show that the discrete

metric tend to 0 in infinite time. Since the Euler characteristic number of sphere
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is 2 and the initial value satisfies u' = u® < 0, the trajectory of u is a parabola
by Theorem 2.1(c). In Fig.4, it can be seen that the trend line for trajectory of
u likes a parabola y = az? + b, a < 0, b < 0. Fig.4(a) is the trajectory of u
with At = 0.024527068, (b) with At = 0.001, (¢) with At = 0.0001 and (d) with
At = 0.00001.
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Figure 4: The trajectory of w under DHGF on sphere

Table 2 recodes the data of initial and end values of w for a initial value

problem on double torus.

Since the Euler characteristic number of double torus is —2 and the initial value

satisfies u' = u® < 0, the trajectory of u is a parabola like y = az? + b, a >

At N u® = ul ulV rv

0.01 | 3999 | -3.074213079 | 3.404914496 | 32.27251434
0.001 | 3999 | -3.074215499 | -3.009424208 | 0.051216977
0.003 | 3999 | -3.074215435 | -2.491093808 | 0.124428483
0.0005 | 3999 | -3.074215506 | -3.058017683 | 0.047438238

Table 2 : Data for a initial value problem on double torus
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0, b < 0 by Theorem 2.1(a).
trajectory of u is a parabola. Fig.5(a) is the trajectory of u with At = 0.01, (b)
with At = 0.001, (c¢) with At =0.003 and (d) with At = 0.0005.

In Fig.5, it can be seen that the trend line for
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Figure 5: The trajectory of v under DHGF on double torus

Table 3 recodes the data of initial and end values of u for a initial value

problem on torus.

At N u® = ul ulv rv
0.001 | 3999 | -3.692617641 | -3.692617641 | 0.025714392
0.0001 | 3999 | -3.692617641 | -3.692617641 | 0.025714392
0.0005 | 3999 | -3.692617641 | -3.692617641 | 0.025714392

0.00001 | 3999 | -3.692617641 | -3.692617641 | 0.025694951

Table 3 : Data for a initial value problem on torus

Since the Euler characteristic number of torus is 0 and the initial value satisfies

1

2.1(b). In Fig.6, it can be seen that the trend line for trajectory of u is a straight
line. Fig.6(a) is the trajectory of u with At = 0.001, (b) with At = 0.0001, (c)

u! = u® < 0, the trajectory of u is a straight line like y = b, b < 0 by Theorem
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with At = 0.0005 and (d) with At = 0.00001.
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Based on data in Tables (1-3), we can obtain the qualitative behavior of mean

value of discrete metric for three initial problems of DHGF (7) on different sur-

faces

Figure 6: The trajectory for v of DHGF on torus

in Table 4.

Riemann Euler Initial discrete | Initial | Mean value
sufaces characteristic metric velocity | of metric
Sphere 2 <1 0 Decay
Torus 0 <1 0 Invariant

Double torus -2 <1 0 Expand

Table 4 : Summary of numerical results
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3 Computation of HGF for pointwise conformal met-

ric
Computational scheme

As the second part of our research, we are interested in calculating HGF on
Riemann surfaces with pointwise conformal metric, namely the simplified HGF
(2). The 2D space manifold can be approximated by triangles, and the time by
line segments. We suppose each simplex contains its circumcenter and establish
a discrete scheme for Eqgs.(2) on triangles in Fig.7 as an example for a mesh, in
which 0,..., C are vertices, 1, 2, 3 are the circumcenters of triangles, a, b, ¢ are
the circumcenters of edges. Letting [;; be the length of line segment (,7) and

A;iii be the area of quadrangle (4, j, k,1), we approximate Eqs.(2) as follows:

wit =2up — wiy ™t — 2L (3r — LAOB - £A0C - ZBOC) + 32 ({1

9)

x(Inw} —Inwp) + 42 (Inwph — nwp) + 2 (Inwp, - mwg)) .

where lig 1= Uiy + lop, 123 := loc + l3¢, 131 :=l34 + 14 and Po := Ao1ap + A02bc +
AO3ac-

Figure 7: A part of triangle mesh
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Analysis of stability

Suppose there is a perturbation €' on wzﬂ_l and w]' on each vertice ¢, the relation

between €}’ and €”+1 can be induced from Egs.(9) as follows:
o e 40t - )+ e - B i - )
<ep— % R /23 (mai(owf Eiﬁ}n)
= %t; ll,;é + /12 + ll23 maiw? e
+3 (s + s+ ) Rk

Therefore, we can say Eqs.(9) is unstable because

At? (1] l l 1 1
1= (2422 - — > 1.
Po \lso Igo lco maxw;  minw}

So we should choose very small time step to avoid numerical divergence rapidly.

If the initial metric, initial velocity, and Gaussian curvature are isotropic, Egs.(9)
in this case is almost stable since max w;' ~ minw;'. The numerical experiment
(Fig.8, Table.5) also verifies this point.

Geometric properties

The geometric property of Eqgs.(9) shows that the Euler characteristic number

has essential relationship with the solution. More specifically, we have

Theorem 3.1 Let x(9M) be the Euler characteristic number for closed Riemann
surface M with triangulation X. If {w]'|i € V'} is a solution of Eqs.(9), then

a. If x(9M) > 0, then any solution of Eqs.(9) decay in finite time for any initial
value {wf, w}li € V}.

b. If x(M) = 0 and wi < w) for alli € V, then solutions of Eqs.(9) decay in

finite time;

c. If x(M) < 0 and w} > w? for alli € V, then solutions of Eqs.(9) expand

in infinite time.
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Proof. Taking integration on both sides of Eqgs.(9) and using Gauss-Bonnet for-

mula, we have

Zw{‘Pi = —2n(n — )Ty (M)A + nZlePZ —(n—1) Zw?Pi
i€V eV i€V

(10)

for n = 2 and any initial conditions {w},w?|i € V'}. The conclusions (a-c) can

be concluded from the expression (10). O

From the Theorem 3.1, we see that Eqs.(9) have essential geometric obstruc-

tion to the existence of periodic solution on sphere and double torus.

Examples

Table 5 records the value of one w; in {w;|i € V'} on sphere for a special initial
problems of Egs.(9) with time step At = 6.934 x 1075, Since the value of w; can
not give the information of others in {w;|i € V'}, we let w be the mean value of

{w;|t € V'} to describe the behavior of all w; and record the value of w.

N wl¥ w Alnwl kN wv

1 1 1 0 1.53 x 1077 1

952 | 0.928424 | 0.928575 | —1.23 x107% | 1.53 x 10~7 | 0.931719
1903 | 0.708709 | 0.709017 | 1.60 x 102 | 1.53 x 10~ | 0.72869
2854 | 0.356898 | 0.357318 | 7.72x 1078 | 1.53 x 1077 | 0.392946
3488 | 0.0741055 | 0.0745791 | 1.07 x 10~® | 1.53 x 10~7 | 0.0972911

Table 5 : Data for a initial value problem of Eqs.(9) on sphere

Since the Euler characteristic number of sphere is 2 and the initial value satisfies
w! = w’ > 0, the trajectory of Y icv Wi P is a parabola like y = ar’> +b, a <
0, b > 0 by Theorem 3.1(a). So w is almost a parabola if P; ~ P;, V i,j € V.

Fig.8(a) is the trajectory of one w; and (b) is a trajectory of w. It can be seen
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that the trend line in Fig.8(b) is a parabola.

1.2

1

0.2
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0 1]
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Figure 8: The trajectory of a w; and w of Egs.(9) on sphere

Table 6 shows the data for a special initial problems for Egs.(9) on torus with
time step At = 2.8311 x 1075.

N wl¥ w Alnwl kN w™

1 1 1 0 7.83 x 1078 1
1255 | 0.929713 | 0.929832 | —1.58 x 1078 | 7.83 x 1078 | 0.957312
2509 | 0.437896 | 0.438117 | 7.53 x 1077 | 7.83 x 1078 | 1.00795
3345 | 0.432457 | 0.432378 | 7.95 x 107 | 7.83 x 10~8 | 1.02469
4366 | 0.438288 | 0.438177 | 1.02x 107% | 7.83 x 1078 | 0.910947

Table 6 : Data for a initial value problem of Egs.(9) on torus

Since the Euler characteristic number of torus is 0 and the initial value satisfies
w! = w® > 0, the trajectory of > icy wi'P; is a line like y = b, b > 0 by Theorem
3.1(b).

of one w; in {w;|i € V} and (b) is a trajectory of w. It can be seen that the

So w is almost a line if P =~ P;, V 4,5 € V. Fig.9(a) is the trajectory

trend line for trajectory of w is almost a line. The trajectory in Fig.9 (b) is not
exact a line, in part because the anisotropy of the curvature and the irregularity
of mesh. The value of w will neither decay nor expand. If wj * = 400, then
>iev wi P, = 400, which contradicts to Theorem 3.1(b). If there is a N such
that wlN =0 and wév # 0 for a pair of adjacent points 7, j, then Aln wj-v = 00, SO

1089



1090 Zheng Xie and Zheng Ye
w;y *1 = 00, which contradicts with Theorem 3.1(b). So w will always oscillate.
1.2 1.2
1 1
0.2 0.2
0.6 \ 0.6
0.4 \\ 0.4
0.2 0.2
a o
1 328 B35 982 1309 1636 1963 2290 2617 2944 3271 3598 3925 4252 1 329 BT 985 1313 1641 1969 2297 2625 2953 3281 3609 3937 4265
[a) 1)

Figure 9: The trajectory of a w; and w of Eqgs.(9) on torus

Table 7 records the data for a special initial problems for Egs.(9) on double
torus with time step At = 2.8311 x 107°.

N wi]\ll sz Aln wlN k:lN wh

1 1 1 0 1.48 x 1078 1
4000 | 0.922261 | 0.922296 | 3.48 x 107° | 1.48 x 108 | 1.03876
8000 | 0.724934 | 0.724994 | 8.16 x 107° | 1.48 x 10~® | 1.15113
12000 | 0.487802 | 0.48785 | 3.75 x 1078 | 1.48 x 1078 | 1.34347
14629 | 0.451264 | 0.45125 | 3.23 x 1078 | 1.48 x 1078 | 1.51792

Table 7 : Data for a initial value problem of Egs.(9) on torus

Since the Euler characteristic number of double torus is —2 and the initial value
satisfies w! = w® > 0, the trajectory of > icy Wi P is a parabola like y = ax® +
b, a > 0,b > 0 by Theorem 3.1(c).
vV i,j € V. Fig.10(a) is the trajectory of one w; and (b) is a trajectory of w. It

So w is almost a parabola if P; ~ P,
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can be seen that the trend line for trajectory of w is almost a parabola.

1.2 1.5
" 1.4
1.2
0.8 1
0.6 0.8
0.8

0.4
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0.2 0.2
0 Q

1 1638 3076 4612 G149 TESG D223 10780 12207 13834 1 1576 3149 4723 6287 8Tl D445 11019 125935 14167
(a)

Figure 10: The trajectory of a w; and w of Egs.(9) on double torus

Based on data in Tables (5-7), we can obtain the qualitative behavior of mean
value of discrete metric for three initial problems for Eqs.(9) on different surfaces
in Table 8. It can be see that our numerical results verify the conclusion of Kong
and Liu et al: if the Euler characteristic number of surface is positive, then any

solution of Eq.(2) must blow up in finite time for any initial problem [11].

Riemann Euler Initial discrete | Initial | Mean value
sufaces characteristic metric velocity | of metric
Sphere 2 >0 0 Decay
Torus 0 >0 0 Oscillation

Double torus -2 >0 0 Expand

Table 8 : Summary of numerical results

4 Conclusion

We have introduced two algorithms for HGF with circle packing metric and point-
wise conformal metric respectively that allow to study HGF in computing view.
The experimental results are consistent with the theoretical achievement by Kong
and Liu. This proofs the correctness and effectiveness of those algorithms at a
certain extent. One limitation of the method for the experiments that we per-
formed was the dependence of the high qualitative triangulation for Riemann
surfaces, namely, each triangle should be acute one. The other limitation is the

computation time. It is interesting to note that the speed of our algorithms
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can be substantially improved by using some method, for instance by Newtonian

iteration.

5 Future work

Boundary conditions

The discrete Gaussian curvature can also be defined as the angle deficit on a

KZ':W— Z Hik

fijx€F

boundary of meshes as

where 0{ k represents the corner angle attached to vertex v; in the face f;;x. Hence,
we can consider the mixed initial boundary value problem for hyperbolic geomet-

ric flow.

Open regions

A consideration with numerical approach to solving HGF is that many geometries
of interest are defined in open regions where the spatial domain of the computed
field is unbounded in one or more coordinate directions, e.g., R%. Principally, this
is because those scheme in this paper cannot be implemented at the outermost
vertices, since by definition there is no information concerning the curvature value

outside of computational domain.

Singularities

It well known that one can understand the heat kernel from the kernel of wave
equation. This indicates that one can derive various information of the Ricci
flow from that of the HGF. Therefore it is also interesting to understand the
relations between the HGF and the Ricci flow, the singularities of its solutions
and its relation by numerical method. This will be another interesting topic to

exploration.
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