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Computation of Hyperbolic Geometric Flow on

Closed Riemann Surfaces

Zheng Xie∗ and Zheng Ye

Abstract: Hyperbolic geometric flow, introduced by Kong and Liu, is a sys-
tem of nonlinear evolution partial differential equations of second order for
Riemannian metric and Ricci curvature. This work introduces two numerical
algorithms for initial value problem of this flow on closed Riemann surfaces
with circle packing metric and pointwise conformal metric, and demonstrates
the evolution of metric by data and graphs. Specially, the numerical experi-
ment and the analysis of schemes show that the Euler character is an essential
obstruction to the existence of periodic solution for any initial metrics on
sphere and double torus.
Keywords: Hyperbolic geometric flow, Riemann surfaces, Discrete meric,
Circle packing metric, Discrete curvature.

1 Introduction

Let M be n-dimensional Riemannian manifold with Riemannian metric gij . The
following general evolution equations for the metric gij and Ricci curvature Rij

∂2gij

∂t2
= −2Rij (1)
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have been introduced recently by Kong and Liu motivated by Einstein equation
and Ricci flow [1–5] and named hyperbolic geometric flow(HGF), which can be
used to describe the wave character of metrics and curvatures of manifolds and
carries many interesting features of both the Ricci flow as well as the Einstein
equations [6–14]. This is essentially different from the Ricci flow, which describe
the heat diffusion process character of metrics and curvatures.

In this paper, we mainly focus on the numerical computation of the initial
problem of HGF on closed Riemann surfaces, namely a compact manifold without
boundary, such as sphere, torus and double torus. The reason for calculating on
closed manifold is because that this surface has a triangulation with a finite
number of triangles, and no need to consider boundary conditions, e.g. Dirichlet
conditions. As the first part of our research on this topic, we are interested
in the computation using Thurston’s circle packing on surfaces. This is based
on works of the discrete Ricci flow on piecewise linear surfaces introduced by
Gu et al [15–18]. As the second part of our research, we are interested in the
pointwise conformal class (M, w(t, ·)g0), where w(t, ·) is a nonnegative function
with parameter t and g0 is the initial metric on the surface. Therefore, the Ricci
curvature is

R =
2
w

(
k − 1

2
∆g0 lnw

)
,

where k is the Gaussian curvature of (M, g0). Thus, HGF can be deduced to

∂2w

∂t2
= ∆g0 lnw − 2k. (2)

We give a numerical algorithm for initial value problem of Eq.(2) on closed Rie-
mann surface, such as sphere and tours. The numerical experiments verify the
qualitative conclusions presented by Kong and Liu et al, including the theorem: if
the Euler characteristic number of surface is positive, then any solution of Eq.(2)
must decay in finite time for any initial problem.
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2 Computation of HGF for circle packing metric

Computational domain

A closed Riemann surface has a triangulation with a finite number of triangles,
and the Riemannian metric and the Gaussian curvature are discretized as the edge
lengths and the angle deficits. In this section, we compute the HGF with circle
packing metric. This method is same as discrete Ricci flow, except the different
for derivative of time. Consider a triangle mesh Σ for M with vertices V , edges
E and triangles F . If each triangle in F is realizable on the Euclidean plane,
then we call Σ is with Euclidean background geometry. Similarly, the meshes
can be defined with spherical or hyperbolic background geometries respectively.
Some concepts in differential geometry, such as metric, Gaussian curvature, and
conformal structure can also be defined on mesh.

Discrete Riemannian metric

Consider a triangle fijk with edge lengths lij , ljk, lki, and the angles θk, θi, θj

against the corresponding edges. The edge lengths define the discrete Riemannian
metric on Σ by

l : E → R+,

such that for a triangle fijk the edge lengths satisfy the triangle inequality

lij + ljk > lki.

Discrete Gaussian curvature

The discrete Gaussian curvature Ki on a vertex vi can be computed using Gaus-
sian Bonnet formula from the angle deficit:

Ki = 2π −
∑

fijk∈F

θjk
i , (2)

where θjk
i represents the corner angle attached to vertex vi in the face fijk. The

values of angles and edge lengths are related by cosine laws. Meshes with Eu-
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clidean background geometries require the cosine laws as follows:

l2ij = l2jk + l2ki − 2ljklki cos θk, (3)

where lij , ljk, lki are edges in a triangle fijk and θk is the angle attached to vertex
vk.

Discrete conformal structure

Let Γ be a function defined on the vertices

Γ : V → R+,

which assigns a radius ri to the vertex vi. Let Φ be a function defined on the
edges,

Φ : E → [0,
π

2
],

which assigns an acute angle Φ(lij) to each edge lij . The pair (Γ,Φ) on the mesh
Σ is called a circle packing metric of Σ. Two circle packing metrics (Γ1; Φ1) and
(Γ2; Φ2) on a same mesh are conformal equivalent, if Φ1 = Φ2.

Figure 1: Circle packing metric for a triangle

The circle packing metric and the edge lengths can be converted to each other
by using cosine laws dependent on the Euclidean background geometry as follows:

l2ij = r2
i + r2

j + 2rirj cos φij (4)

where vi has a circle whose radius is ri, φij is defined by the two circles of vi and
vj (see Fig.1).
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Discrete HGF

Now, we are ready to derive the discrete HGF(DHGF) on surfaces, which is an
system of evolution difference equations of the discrete metric. Let

ui = log ri. (5)

Since the discrete Ricci flow [18] is defined as:

dui(t)
dt

= −2Ki,

we can similarly derive the DHGF as:

d2ui(t)
dt2

= −2Ki. (6)

The temporal partial derivatives can be approximated by differences. The com-
putational scheme for Eqs.(6) is

un+1
i = −2(∆t)2Kn

i + 2un
i − un−1

i . (7)

where un
i denotes ui(n∆t).

Geometric properties

The first geometric property is that the metrics on surfaces at each time step
is conformal to the original metrics, since Φ is invariant in the computational
progresses. The other geometric property is that the Euler characteristic number
has essential relationship with the solution for Eqs.(7). More accurately, we have

Theorem 2.1 Let χ(M) be the Euler characteristic number for closed Riemann
surface M with triangulation Σ. If {un

i |i ∈ V } is a solution of Eqs.(2), then

a. If χ(M) < 0, then the discrete metric for Eqs.(7) expand in infinite time
for any initial value {u0

i , u
1
i |i ∈ V }.

b. If χ(M) = 0 and u1
i < u0

i for all i ∈ V , then the discrete metric for Eqs.(7)
decay in infinite time;
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c. If χ(M) > 0, then the discrete metric for Eqs.(7) decay in infinite time for
any initial value {u0

i , u
1
i |i ∈ V }.

Proof. Taking integration on both sides of Eqs.(7) and using Gauss-Bonnet for-
mula, we have

∑

i∈V

un
i = −2n(n− 1)πχ(M)∆t2 + n

∑

i∈V

u1
i − (n− 1)

∑

i∈V

u0
i (8)

for n = 2 and any initial values {u1
i , u

0
i |i ∈ V }. The conclusions (a-c) can be

concluded from (5) and (8). ¤

It can be see that Euler character is the essential geometric obstruction to
the existence of periodic solution on sphere and double torus.

Algorithm

The numerical algorithm to compute Riemannian metrics with prescribed Gaus-
sian curvatures using DHGF is designed. The unified pipeline for this algorithm
is listed as follows:

Step 1. Compute the discrete Gaussian curvature.

This curvature can be computed from Eq.(2) using Gaussian Bonnet
formula.

Step 2. Compute the initial circle packing metric.

2.1. For each face fijk, compute a radius for the vertex vi

rjk
i =

lki + lij − ljk
2

,

where lij , ljk, and lki are the lengths of the edges eij , ejk, and eki,
respectively.

2.2. For each vertex vi, approximate the radius ri by averaging the radius
from the faces adjacent to vi:

ri =
1
m

∑

fijk∈F

rjk
i ,

where m is the number of the adjacent faces to vertex vi.
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2.3. For each edge lij , compute its edge weight φij from ri, rj using a
cosine law (4). If the edge weight is greater than π

2 , take π
2 as its

value.

Step 3. Update the circle pacing metric by DHGF.

3.1. Compute edge lengths lij from the current vertices radius ri and rj

and the fixed edge weight φij using the cosine law (4).

3.2. Compute the corner angles θi in each face fijk from the current edge
lengths by using the cosine law (3).

3.3. Compute the discrete Gaussian curvature Ki of each vertex vi by
using Eq.(2).

3.4. Update ui of each vertex vi by Eqs.(7).

3.5. Update ri by Eqs.(5), and go to Step 3.1.

The following numerical experiments in this section show that this algorithm
is not a very efficient algorithm for practical use due to the lowly convergence.

Examples

This numerical algorithm has been implemented in Java on a PC with AMD CPU
of 3.4 GHz and 2GB RAM. We use Hypermesh to generat the triangle meshes
for sphere, torus, and double torus(Fig.2).

Figure 2: Triangle meshes for sphere, torus and double torus
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For those meshes, we can calculate the initial value for {u0
i , i ∈ V } and let u0

i = u1
i ,

for all i ∈ V , namely let the initial velocity be zero. Then we obtain a initial
value problem for Eqs.(7) on sphere, torus and double torus.

Figure 3: The trajectory of ui under DHGF on different surfaces

Fig.3(a) shows the trajectory of one ui in {ui|i ∈ V } on sphere for this initial
value problems, (b) for torus, and (c) for double torus. Since the value of ui on
a vertex i can not give the information of others in {ui|i ∈ V }, we let u be the
mean value of {ui|i ∈ V } to describe the behavior of all ui and record the initial
and end values of u. Table 1 recodes the data of initial and end values of u for a
initial value problem on sphere.

∆t N u0 = u1 uN rN

0.0245 877 -4.399645598 -5.586009882 0.003778194

0.001 3999 -4.399645598 -4.409869389 0.012251197

0.0001 3999 -4.399645598 -4.399747835 0.012376393

0.00001 3999 -4.399645598 -4.3996466198 0.0123776606

Table 1 : Data for a initial value problem on sphere

The data in Table 1 and conclusion in Theorem 2.1(c) show that the discrete
metric tend to 0 in infinite time. Since the Euler characteristic number of sphere
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is 2 and the initial value satisfies u1 = u0 < 0, the trajectory of u is a parabola
by Theorem 2.1(c). In Fig.4, it can be seen that the trend line for trajectory of
u likes a parabola y = ax2 + b, a < 0, b < 0. Fig.4(a) is the trajectory of u

with ∆t = 0.024527068, (b) with ∆t = 0.001, (c) with ∆t = 0.0001 and (d) with
∆t = 0.00001.

Figure 4: The trajectory of u under DHGF on sphere

Table 2 recodes the data of initial and end values of u for a initial value
problem on double torus.

∆t N u0 = u1 uN rN

0.01 3999 -3.074213079 3.404914496 32.27251434

0.001 3999 -3.074215499 -3.009424208 0.051216977

0.003 3999 -3.074215435 -2.491093808 0.124428483

0.0005 3999 -3.074215506 -3.058017683 0.047438238

Table 2 : Data for a initial value problem on double torus

Since the Euler characteristic number of double torus is −2 and the initial value
satisfies u1 = u0 < 0, the trajectory of u is a parabola like y = ax2 + b, a >
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0, b < 0 by Theorem 2.1(a). In Fig.5, it can be seen that the trend line for
trajectory of u is a parabola. Fig.5(a) is the trajectory of u with ∆t = 0.01, (b)
with ∆t = 0.001, (c) with ∆t = 0.003 and (d) with ∆t = 0.0005.

Figure 5: The trajectory of u under DHGF on double torus

Table 3 recodes the data of initial and end values of u for a initial value
problem on torus.

∆t N u0 = u1 uN rN

0.001 3999 -3.692617641 -3.692617641 0.025714392

0.0001 3999 -3.692617641 -3.692617641 0.025714392

0.0005 3999 -3.692617641 -3.692617641 0.025714392

0.00001 3999 -3.692617641 -3.692617641 0.025694951

Table 3 : Data for a initial value problem on torus

Since the Euler characteristic number of torus is 0 and the initial value satisfies
u1 = u0 < 0, the trajectory of u is a straight line like y = b, b < 0 by Theorem
2.1(b). In Fig.6, it can be seen that the trend line for trajectory of u is a straight
line. Fig.6(a) is the trajectory of u with ∆t = 0.001, (b) with ∆t = 0.0001, (c)
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with ∆t = 0.0005 and (d) with ∆t = 0.00001.

Figure 6: The trajectory for u of DHGF on torus

Based on data in Tables (1-3), we can obtain the qualitative behavior of mean
value of discrete metric for three initial problems of DHGF (7) on different sur-
faces in Table 4.

Riemann Euler Initial discrete Initial Mean value
sufaces characteristic metric velocity of metric

Sphere 2 < 1 0 Decay

Torus 0 < 1 0 Invariant

Double torus −2 < 1 0 Expand

Table 4 : Summary of numerical results
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3 Computation of HGF for pointwise conformal met-

ric

Computational scheme

As the second part of our research, we are interested in calculating HGF on
Riemann surfaces with pointwise conformal metric, namely the simplified HGF
(2). The 2D space manifold can be approximated by triangles, and the time by
line segments. We suppose each simplex contains its circumcenter and establish
a discrete scheme for Eqs.(2) on triangles in Fig.7 as an example for a mesh, in
which 0,..., C are vertices, 1, 2, 3 are the circumcenters of triangles, a, b, c are
the circumcenters of edges. Letting lij be the length of line segment (i, j) and
Aijkl be the area of quadrangle (i, j, k, l), we approximate Eqs.(2) as follows:

wn+1
O = 2wn

O − wn−1
O − 2∆t2

PO
(2π − ∠AOB − ∠AOC − ∠BOC) + ∆t2

PO

(
l13
lAO

×(lnwn
A − lnwn

O) + l12
lBO

(lnwn
B − lnwn

O) + l23
lCO

(lnwn
C − lnwn

O)
)

.
(9)

where l12 := l1b + l2b, l23 := l2c + l3c, l31 := l3a + l1a and PO := AO1ab + AO2bc +
AO3ac.

Figure 7: A part of triangle mesh



Computation of Hyperbolic Geometric Flow 1087

Analysis of stability

Suppose there is a perturbation εn
i on wn−1

i and wn
i on each vertice i, the relation

between εn
i and εn+1

i can be induced from Eqs.(9) as follows:

εn+1
O ≈ εn

O + ∆t2

PO

(
l13
lAO

( εn
A

wn
A
− εn

O
wn

O
) + l12

lBO
( εn

B
wn

B
− εn

O
wn

O
) + l23

lCO
( εn

C
wn

C
− εn

O
wn

O
)
)

< εn
O − ∆t2

PO

(
l13
lAO

+ l12
lBO

+ l23
lCO

)(
εn
O

max wn
i
− max εn

i
min wn

i

)

=
(
1− ∆t2

PO

(
l13
lAO

+ l12
lBO

+ l23
lCO

)
1

max wn
i

)
εn
O

+∆t2

PO

(
l13
lAO

+ l12
lBO

+ l23
lCO

)
max εn

i
min wn

i
.

Therefore, we can say Eqs.(9) is unstable because

1− ∆t2

PO

(
l13

lAO
+

l12
lBO

+
l23
lCO

)(
1

max wn
i

− 1
minwn

i

)
> 1.

So we should choose very small time step to avoid numerical divergence rapidly.
If the initial metric, initial velocity, and Gaussian curvature are isotropic, Eqs.(9)
in this case is almost stable since max wn

i ≈ minwn
i . The numerical experiment

(Fig.8, Table.5) also verifies this point.

Geometric properties

The geometric property of Eqs.(9) shows that the Euler characteristic number
has essential relationship with the solution. More specifically, we have

Theorem 3.1 Let χ(M) be the Euler characteristic number for closed Riemann
surface M with triangulation Σ. If {wn

i |i ∈ V } is a solution of Eqs.(9), then

a. If χ(M) > 0, then any solution of Eqs.(9) decay in finite time for any initial
value {w0

i , w
1
i |i ∈ V }.

b. If χ(M) = 0 and w1
i < w0

i for all i ∈ V , then solutions of Eqs.(9) decay in
finite time;

c. If χ(M) < 0 and w1
i ≥ w0

i for all i ∈ V , then solutions of Eqs.(9) expand
in infinite time.
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Proof. Taking integration on both sides of Eqs.(9) and using Gauss-Bonnet for-
mula, we have

∑

i∈V

wn
i Pi = −2n(n− 1)πχ(M)∆t2 + n

∑

i∈V

w1
i Pi − (n− 1)

∑

i∈V

w0
i Pi (10)

for n = 2 and any initial conditions {w1
i , w

0
i |i ∈ V }. The conclusions (a-c) can

be concluded from the expression (10). ¤

From the Theorem 3.1, we see that Eqs.(9) have essential geometric obstruc-
tion to the existence of periodic solution on sphere and double torus.

Examples

Table 5 records the value of one wi in {wi|i ∈ V } on sphere for a special initial
problems of Eqs.(9) with time step ∆t = 6.934× 10−6. Since the value of wi can
not give the information of others in {wi|i ∈ V }, we let w be the mean value of
{wi|i ∈ V } to describe the behavior of all wi and record the value of w.

N wN
i−1 wN

i ∆ln wN
i kN

i wN

1 1 1 0 1.53× 10−7 1

952 0.928424 0.928575 −1.23× 10−8 1.53× 10−7 0.931719

1903 0.708709 0.709017 1.60× 10−9 1.53× 10−7 0.72869

2854 0.356898 0.357318 7.72× 10−8 1.53× 10−7 0.392946

3488 0.0741055 0.0745791 1.07× 10−8 1.53× 10−7 0.0972911

Table 5 : Data for a initial value problem of Eqs.(9) on sphere

Since the Euler characteristic number of sphere is 2 and the initial value satisfies
w1 = w0 > 0, the trajectory of

∑
i∈V wn

i Pi is a parabola like y = ax2 + b, a <

0, b > 0 by Theorem 3.1(a). So w is almost a parabola if Pi ≈ Pj , ∀ i, j ∈ V .
Fig.8(a) is the trajectory of one wi and (b) is a trajectory of w. It can be seen
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that the trend line in Fig.8(b) is a parabola.

Figure 8: The trajectory of a wi and w of Eqs.(9) on sphere

Table 6 shows the data for a special initial problems for Eqs.(9) on torus with
time step ∆t = 2.8311× 10−5.

N wN
i−1 wN

i ∆ln wN
i kN

i wN

1 1 1 0 7.83× 10−8 1

1255 0.929713 0.929832 −1.58× 10−8 7.83× 10−8 0.957312

2509 0.437896 0.438117 7.53× 10−7 7.83× 10−8 1.00795

3345 0.432457 0.432378 7.95× 10−7 7.83× 10−8 1.02469

4366 0.438288 0.438177 1.02× 10−6 7.83× 10−8 0.910947

Table 6 : Data for a initial value problem of Eqs.(9) on torus

Since the Euler characteristic number of torus is 0 and the initial value satisfies
w1 = w0 > 0, the trajectory of

∑
i∈V wn

i Pi is a line like y = b, b > 0 by Theorem
3.1(b). So w is almost a line if Pi ≈ Pj , ∀ i, j ∈ V . Fig.9(a) is the trajectory
of one wi in {wi|i ∈ V } and (b) is a trajectory of w. It can be seen that the
trend line for trajectory of w is almost a line. The trajectory in Fig.9 (b) is not
exact a line, in part because the anisotropy of the curvature and the irregularity
of mesh. The value of w will neither decay nor expand. If w+∞

i = +∞, then∑
i∈V w+∞

i Pi = +∞, which contradicts to Theorem 3.1(b). If there is a N such
that wN

i = 0 and wN
j 6= 0 for a pair of adjacent points i, j, then ∆ lnwN

j = ∞, so
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wN+1
j = ∞, which contradicts with Theorem 3.1(b). So w will always oscillate.

Figure 9: The trajectory of a wi and w of Eqs.(9) on torus

Table 7 records the data for a special initial problems for Eqs.(9) on double
torus with time step ∆t = 2.8311× 10−5.

N wN
i−1 wN

i ∆ln wN
i kN

i wN

1 1 1 0 1.48× 10−8 1

4000 0.922261 0.922296 3.48× 10−9 1.48× 10−8 1.03876

8000 0.724934 0.724994 8.16× 10−9 1.48× 10−8 1.15113

12000 0.487802 0.48785 3.75× 10−8 1.48× 10−8 1.34347

14629 0.451264 0.45125 3.23× 10−8 1.48× 10−8 1.51792

Table 7 : Data for a initial value problem of Eqs.(9) on torus

Since the Euler characteristic number of double torus is −2 and the initial value
satisfies w1 = w0 > 0, the trajectory of

∑
i∈V wn

i Pi is a parabola like y = ax2 +
b, a > 0, b > 0 by Theorem 3.1(c). So w is almost a parabola if Pi ≈ Pj ,
∀ i, j ∈ V . Fig.10(a) is the trajectory of one wi and (b) is a trajectory of w. It
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can be seen that the trend line for trajectory of w is almost a parabola.

Figure 10: The trajectory of a wi and w of Eqs.(9) on double torus

Based on data in Tables (5-7), we can obtain the qualitative behavior of mean
value of discrete metric for three initial problems for Eqs.(9) on different surfaces
in Table 8. It can be see that our numerical results verify the conclusion of Kong
and Liu et al: if the Euler characteristic number of surface is positive, then any
solution of Eq.(2) must blow up in finite time for any initial problem [11].

Riemann Euler Initial discrete Initial Mean value
sufaces characteristic metric velocity of metric

Sphere 2 > 0 0 Decay

Torus 0 > 0 0 Oscillation

Double torus −2 > 0 0 Expand

Table 8 : Summary of numerical results

4 Conclusion

We have introduced two algorithms for HGF with circle packing metric and point-
wise conformal metric respectively that allow to study HGF in computing view.
The experimental results are consistent with the theoretical achievement by Kong
and Liu. This proofs the correctness and effectiveness of those algorithms at a
certain extent. One limitation of the method for the experiments that we per-
formed was the dependence of the high qualitative triangulation for Riemann
surfaces, namely, each triangle should be acute one. The other limitation is the
computation time. It is interesting to note that the speed of our algorithms
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can be substantially improved by using some method, for instance by Newtonian
iteration.

5 Future work

Boundary conditions

The discrete Gaussian curvature can also be defined as the angle deficit on a
boundary of meshes as

Ki = π −
∑

fijk∈F

θjk
i

where θjk
i represents the corner angle attached to vertex vi in the face fijk. Hence,

we can consider the mixed initial boundary value problem for hyperbolic geomet-
ric flow.

Open regions

A consideration with numerical approach to solving HGF is that many geometries
of interest are defined in open regions where the spatial domain of the computed
field is unbounded in one or more coordinate directions, e.g., R2. Principally, this
is because those scheme in this paper cannot be implemented at the outermost
vertices, since by definition there is no information concerning the curvature value
outside of computational domain.

Singularities

It well known that one can understand the heat kernel from the kernel of wave
equation. This indicates that one can derive various information of the Ricci
flow from that of the HGF. Therefore it is also interesting to understand the
relations between the HGF and the Ricci flow, the singularities of its solutions
and its relation by numerical method. This will be another interesting topic to
exploration.
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