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Well-posedness of Initial Value Problem for Fourth

Order Nonlinear Schrödinger Equation

Yu-Zhu Wang and Wenxu Ge

Abstract: In this paper, we study the well-posedness of initial value prob-
lem for fourth order nonlinear Schrödinger equation. By exploiting the
Strichartz estimates, Kato

′
s smoothing effect and the maximal function es-

timates for the linear Schrödinger operator, we establish the local and global
well-posedness of initial value problem for fourth order nonlinear Schrödinger
in homogeneous and nonhomogeneous Besov spaces. Moreover, the scatter-
ing result for small initial data is also obtained.
Keywords: Nonlinear Schrödinger equation, Initial value problem, Well-
posedness, Besov spaces.

1. Introduction

It is well known that the nonlinear Schrödinger (NLS) equation models a wide
range of physical phenomena including self-focusing of optical beams in nonlinear
media, the modulation of monochromatic waves, propagation of Langmuir waves
in plasmas, etc. The nonlinear Schrödinger equation plays an important role in
many areas of applied physics, such as nonrelativistic quantum mechanics, laser
beam propagation, Bose-Einstein condensates, and so on (see [23]).The initial
value problem (IVP) or the initial-boundary value problem (IBVP) of the non-
linear Schrödinger equations on Rn have been extensively studied in the last two
decades (e.g., see [3]-[6], [1], [8], [11], [13], [18], [20]-[22]).
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This paper concerns with the initial value problem for the fourth order non-
linear Schrödinger equation

iut + a∂2
xu + b∂4

xu = ±∂xuk, x ∈ R, t ∈ R (1.1)

u(x, 0) = u0(x), x ∈ R (1.2)

where a, b ∈ R, k ∈ N, u = u(x, t) is a complex valued functions of (x, t), u0(x)
is the given complex value function.

(1.1) plays an important role in the nonlinear fiber optics [7]. Karpman
[10] employed (1.1) describing the resonant radiation of solitons. This class of
nonlinear Schrödinger equations has been widely applied in applied science such
as deep water wave dynamics, plasma physics, optical communications and so
on [2]. A large amount of interesting works has been devoted to the study of
Cauchy problem to dispersive equations, such as [5-6, 8, 22] and references cited
therein. Hao, Hsiao and Wang [5] studied the IVP for one-dimensional fourth
order nonlinear Schrödinger equation

iut = ∂4
xu + P ((∂α

x u)|α|≤2, (∂
α
x ū)|α|≤2). (1.3)

They investigated the local smoothing effects and established local well-
posedness. Hao, Hsiao and Wang [6] again studied the local smoothing effects
and well-posedness of the IVP for (1.3) in multi-dimensional spaces and obtained
local well-posedness. Segata [22] investigated the IVP for fourth order nonlinear
Schrödinger equation which describes the motion of the vortex filament

iut + ∂2
xu + ν∂4

xu = F (u, ū, ∂xu, ∂xū, ∂2
xu, ∂2

xū) (1.4)

and established the IVP for (1.4) is locally well-posed in the space Hs(R)(s ≥ 1
2)

under the conditions ν < 0 and µ − ν
2 = 0. Here F (u, ū, ∂xu, ∂xū, ∂2

xu, ∂2
xū) is

given by

F =−1
2
|u|2u− 3µ

4
|u|4u + (−2µ +

ν

2
)(∂xu)2ū

−(4µ + ν)|∂xu|2u + u2∂2
xū + (−2µ + ν)|∂2

xu|2∂2
xu.

Huo and Jia [8] improved Segata
′
s results.

In this paper, we will investigate the well-posedness on the IVP (1.1)-(1.2)
in homogeneous and nonhomogeneous Besov spaces. More precisely speaking, we
will prove that the IVP (1.1)- (1.2) has a unique solution in C([−T, T ]; Ḃsk

2,q) and
C([−T, T ];Bs

2,q) for some T > 0. We will also show that the IVP (1.1)-(1.2) admits
a unique global solution in the space C(R; Ḃsk

2,q) and C(R;Bs
2,q) provided certain
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norm of the initial data is suitably small. Here sk = 1
2 − 3

k−1 , s > sk, k ≥ 5 and
1 ≤ q ≤ ∞. By employing the method in the present paper initiated by Planchon
in [19]-[21] and developed by Molinet and Ribaud in [16]-[17], and the Strichartz
estimates, Kato

′
s smoothing effect and the maximal function estimates for the

linear Schrödinger operator, we establish well-posedness on the IVP (1.1)-(1.2) in
homogeneous and nonhomogeneous Besov spaces. Noticing that sk is the critical
value obtained from a similar scaling argument as that in [14]. Thus by similar
considerations as in [14] we can expect that the lowest index sk for Besov spaces
that we obtain is optimal, namely, if s < sk then it is reasonable to conjecture
that well-posedness does not hold in either Ḃs

2,q(R) or Bs
2,q(R) for any 1 ≤ q ≤ ∞.

The paper is organized as follows. In Section 2, we state some notations
and give some preliminaries. Section 3 is devoted to establishing the estimates
for nonlinear terms. Section 4 is devoted to establishing the local and global
well-posedness in homogeneous and nonhomogeneous Besov spaces. Finally, in
Section 5 we obtain the scattering result for small initial data.

2. Preliminaries

In this section, we give some preliminaries.

2.1. Notations. Throughout this paper, we will use the following notations:

The Fourier transform of f will be denoted by

f̂(ξ) =
∫

R
e−ixξf(x)dx.

Lp(1 ≤ p ≤ ∞) denotes the usual space of all Lp(R)-functions on R with
norm ‖f‖Lp . Hs denotes s order sobolev space on R with norm ‖f‖Hs = ‖(I −
∆)

s
2 f‖L2 = ‖(1 + |ξ|2) s

2 f̂‖L2 , where s is a real number and I is unitary operator.
The Riesz potential of order s is denoted by

Ds
x = (|ξ|sf̂(ξ))∨.

We will use the space-time Lebesgue spaces Lp
xLq

t and Lq
tL

p
x respectively

equipped with the norms

‖f‖Lp
xLq

t
= (

∫

R
‖f(x, ·)‖p

Lqdx)
1
p
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and

‖f‖Lq
t Lp

x
= (

∫

R
‖f(·, t)‖q

Lpdt)
1
q .

Sometimes we will need need the local in time versions of those spaces. We denote
them by Lp

xLq
T and Lq

T Lp
x and they are respectively equipped with the norms

‖f(x, t)‖Lp
xLq

T
= ‖‖f(x, ·)‖Lq([−T,T ])‖Lp(R)

‖f(x, t)‖Lq
T Lp

x
= ‖‖f(·, t)‖Lp‖Lq([−T,T ]).

Now we recall the definition of the homogeneous and nonhomogeneous Besov
spaces. Throughout this paper, let ϕ ∈ S(R) such that ϕ̂ is supported by the set
{ξ : 1

2 ≤ |ξ| ≤ 2} and ∑

j∈Z
ϕ̂(2−jξ) = 1, ξ 6= 0.

Define ψ by

ψ̂ = 1−
∑

j≥1

ϕ̂(2−jξ)

and note that ψ ∈ D(R), ψ̂ is supported by the ball {ξ||ξ| ≤ 2} and ψ̂ = 1 for
|ξ| ≤ 1. We denote now by ∆j and Sj the convolution operators whose symbols
are respectively given by ϕ̂(2−jξ) and ψ̂(2−jξ). Also we define the operator ∆̃j

by

∆̃j = ∆j−1 + ∆j + ∆j+1,

which satisfies

∆̃j ◦∆j = ∆j .

For 1 ≤ p ≤ ∞, 1 ≤ q ≤ ∞, the homogeneous Besov space Ḃs
p,q(R) is defined

by

Ḃs
p,q(R) = {u ∈ S′(R)|‖2js‖∆ju‖Lp‖lq(Z) < ∞}

and the nonhomogeneous Besov space Bs
p,q(R) is defined by

Bs
p,q(R) = {u ∈ S′(R)|‖S0u‖Lp + ‖2js‖∆ju‖Lp‖lq(N) < ∞}.

It is well known that Ḃs
2,2(R) = Ḣs(R) and Bs

2,2(R) = Hs(R).
Also it is well known that for −1

2 < s < 1
2 , the two following convergences hold

f = lim
r→+∞

r∑

j=−r

∆j(f) =
+∞∑

j=−∞
∆j(f)
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and

Sk(f) = lim
r→+∞

k∑

j=−r

∆j(f) =
k∑

j=−∞
∆j(f).

Firstly, we consider the initial value problem for the linear schrödinger equa-
tion

iut + a∂2
xu + b∂4

xu = f(x, t), (2.1)

u(x, 0) = u0. (2.2)

(2.1)-(2.2) can be rewritten as

u(x, t) = S(t)u0 − i

∫ t

0
S(t− τ)f(x, τ)dτ. (2.3)

Here

S(t)u0 = ei(a∂2
x+b∂4

x)tu0 = F−1
ξ (ei(−aξ2+bξ4)tû0). (2.4)

2.2. Preliminaries. Lemma 2.1 Let u0 ∈ S(R), ab ≤ 0(b 6= 0), then we have

‖D
3
2
x S(t)u0‖L∞x L2

t
≤ C‖u0‖L2 . (2.5)

‖S(t)u0‖L4
xL∞t ≤ C‖D

1
4
x u0‖L2 . (2.6)

Proof. (2.5) can be derived from Theorem 4.1 in [12], for which we omit the
details. Making use of Theorem 2.5 in [12], we may obtain (2.6), here we omit
the proof. ¤

Lemma 2.2 Let T be a linear operator defined on space-time functions g(x, t)
by

Tg(t) =
∫ +∞

−∞
K(t, τ)g(τ)dτ,

such that

‖Tg‖L
p1
x L

q1
t
≤ C‖g‖L

p2
x L

q2
t

.

Here

min(p1, q1) > max(p2, q2). (2.7)

Then

‖
∫ t

0
K(t, τ)g(τ)dτ‖L

p1
x L

q1
t
≤ C‖g‖L

p2
x L

q2
t

.
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For the proof of Lemma 2.2, see Lemma 2 in [17].
Lemma 2.3 Assume that u0 ∈ S(R), ab ≤ 0(b 6= 0), f ∈ S(R2) and let
(p1, q1), (p2, q2) ∈ [4,+∞)× [2,+∞] such that

1
pi

+
1

2qi
≤ 1

4
. (2.8)

then for all j ∈ Z, we have

2j( 1
pi

+ 4
qi
− 1

2
)‖S(t)∆ju0‖L

pi
x L

qi
t
≤ C‖∆ju0‖L2 (2.9)

and

2j( 1
p1

+ 4
q1
− 1

2
)‖∆j

∫ t

0
S(t− τ)∂xf(τ)dτ‖L

p1
x L

q1
t
≤ C2j( 3

2
− 1

p2
− 4

q2
)‖∆jf‖

L
p
′
2

x L
q
′
2

t

.

(2.10)

Proof. From (2.5) and Bernstein inequality, we get

‖S(t)∆̃ju0‖L∞x L2
t
≤ C2−

3
2
j‖∆ju0‖L2 . (2.11)

Similarly, using Bernstein inequality and (2.6) yields

‖S(t)∆̃ju0‖L4
xL∞t ≤ C2

1
4
j‖∆ju0‖L2 . (2.12)

We consider the operator T = S(t)∆̃j and apply Riesz-Thorin theorem, for θ ∈
[0, 1], we obtain

‖S(t)∆̃ju0‖
L

4
1−θ
x L

2
θ
t

≤ C2
1−7θ

4
j‖∆ju0‖L2 .

Note that ∆̃j ◦∆j = ∆j , from the above inequality we deduce

‖S(t)∆ju0‖
L

4
1−θ
x L

2
θ
t

≤ C2
1−7θ

4
j‖∆ju0‖L2 .

It follows from Sobolev embedding theorem and Bernstein inequality that

‖S(t)∆ju0‖L
pi
x L

qi
t
≤C‖Dα

xS(t)∆ju0‖
L

4
1−θ
x L

2
θ
t

≤C2
1−7θ

4
j‖Dα

x∆ju0‖L2

≤C2
1−7θ

4
j2αj‖∆ju0‖L2 ,

where
0 ≤ α <

1− θ

4
and where (pi, qi) is given by

{
1
pi

= 1−θ
4 − α ⇔ α = 1

4 − 1
pi
− 1

2qi
1
qi

= θ
2 ⇔ θ = 2

qi
.

(2.13)
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(2.9) follows from
1− 7θ

4
+ α =

1
2
− 1

pi
− 4

qi

and 0 ≤ α < 1−θ
4 with 0 ≤ θ ≤ 1 if and only if 1

pi
+ 1

2qi
≤ 1

4 with pi < +∞. This
has completed the proof of (2.9).

From (2.9) yields

2j( 1
pi

+ 4
qi
− 1

2
)‖∂

1
2
x S(t)∆ju0‖L

pi
x L

qi
t
≤ C2j 1

2 ‖∆ju0‖L2 . (2.14)

And by duality, we obtain

‖
∫ +∞

−∞
∂

1
2
x S(−τ)∆jf(τ)dτ‖L2 ≤ C2j( 1

2
− 1

pi
− 4

qi
)2j 1

2 ‖∆jf‖
L

p
′
i

x L
q
′
i

t

. (2.15)

Choosing g ∈ L
p
′
1

x L
q
′
1

t with ‖g‖
L

p
′
1

x L
q
′
1

t

≤ 1, using Hölder inequality and (2.15), we

deduce

|〈
∫ +∞

−∞
∂xS(t− τ)∆jf(x, τ)dτ, g(x, t)〉|

= |
∫ +∞

−∞
(
∫

R
∂

1
2
x S(−τ)∆jf(x, τ)dτ)(

∫

R
∂

1
2
x S(−t)∆̃jg(x, t)dt)dx|

≤ ‖
∫

R
∂

1
2
x S(−τ)∆jf(x, τ)dτ‖L2‖

∫

R
∂

1
2
x S(−t)∆̃jg(x, t)dt‖L2

≤C2j( 1
2
− 1

p2
− 4

q2
)2j 1

2 ‖∆jf‖
L

p
′
2

x L
q
′
2

t

2j( 1
2
− 1

p1
− 4

q1
)2j 1

2 ‖g‖
L

p
′
1

x L
q
′
1

t

.

It follows from the above inequality that

2j( 1
p1

+ 4
q1
− 1

2
)‖∆j

∫ +∞

−∞
S(t− τ)∂xf(τ)dτ‖L

p1
x L

q1
t
≤ C2j( 3

2
− 1

p2
− 4

q2
)‖∆jf‖

L
p
′
2

x L
q
′
2

t

.

Since (2.9) implies max(p
′
2, q

′
2) < 2 ≤ min(p1, q1), using Lemma 2.2, we obtain

(2.10). The Lemma is proved. ¤
Lemma 2.4 Assume that u0 ∈ S(R), ab ≤ 0(b 6= 0), f ∈ S(R2) and let (p, q)
satisfy

1
p

+
1
2q
≤ 1

4
(2.16)

with p < +∞. Then for all j ∈ Z, we have

‖S(t)∆ju0‖L∞t L2
x
≤ C‖u0‖L2 . (2.17)

‖
∫ t

0
∂xS(t− τ)∆jf(x, τ)dτ‖L∞t L2

x
≤ C2j2j( 1

2
− 1

p
− 4

q
)‖∆jf‖

Lp
′

x Lq
′

t

. (2.18)
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Proof. Since the group S(t) is unitary in Hs(R), by Bernstein inequality, we
know that (2.17) holds.

Using (2.9), we obtain

2−j( 1
2
− 1

p
− 4

q
)‖∂xS(t)∆ju0‖Lp

xLq
t
≤ C2j‖∆ju0‖L2 (2.19)

with 1
p + 1

2q ≤ 1
4 and p < +∞.

It follows from duality method that

‖
∫ +∞

−∞
∂xS(−τ)∆jf(x, τ)dτ‖L2 ≤ C2j2j( 1

2
− 1

p
− 4

q
)‖∆jf‖

Lp
′

x Lq
′

t

.

Since S(t) is unitary group in L2(R), which commutes with space derivatives, we
get

sup
t∈R

‖
∫ +∞

−∞
∂xS(t− τ)∆jf(x, τ)dτ‖L2 ≤ C2j2j( 1

2
− 1

p
− 4

q
)‖∆jf‖

Lp
′

x Lq
′

t

.

For any fixed t, substituting f(τ) by the function χR+(τ)χ{τ≤t}(τ)f(τ) in the
above inequality, we have completed the proof of (2.18). ¤

Recall that we want to solve (1.1), (1.2) for initial data in the homogeneous
Besov space Ḃsk

2,q and in the nonhomogeneous Besov space Bs
2,q, where s ≥ sk =

1
2 − 3

k−1 , k ≥ 5 and 1 ≤ q ≤ ∞.

Define function space

Eq = {u ∈ S′(R2)|‖u‖Eq = N1,q(u) + N2,q(u) < +∞}. (2.20)

Here

Ni,q(u) = ‖2jsk2j( 1
pi

+ 4
qi
− 1

2
)‖∆ju‖L

pi
x L

qi
t
‖lq(Z), i = 1, 2 (2.21)

and

(p1, q1) = (
4(k − 1)

3
, 2(k − 1)), (p2, q2) = (8, 4). (2.22)

Sometime we also employ Eq,T to denote the local in time version of Eq.

Where Ni,q(u) replaced respectively with

Ni,q,T (u) = ‖2jsk2j( 1
pi

+ 4
qi
− 1

2
)‖∆ju‖L

pi
x L

qi
T
‖lq(Z), i = 1, 2.

A direct computation, we obtain the following Lemma.
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Lemma 2.5 Let (pi, qi), i = 1, 2, be defined by (2.22) and set (p, q) = (8, 4).
Then the following conclusion hold

1
pi

+
1

2qi
≤ 1

4
, pi < +∞ (2.23)

k − 1
p1

+
1
p2

=
1
p′

. (2.24)

k − 1
q1

+
1
q2

=
1
q′

. (2.25)

1
2
− 1

p1
− 4

q1
> sk (2.26)

and

−1
2

+
1
p2

+
4
q2

+ (k − 1)(sk − 1
2

+
1
p1

+
4
q1

) > 0. (2.27)

Lemma 2.6 Assume that u0 ∈ Ḃsk
2,q, q ∈ [1,+∞]and ab ≤ 0(b 6= 0), then we

have

‖S(t)u0‖L∞t Ḃ
sk
2,q

+ ‖S(t)u0‖Eq ≤ C‖u0‖Ḃ
sk
2,q

. (2.28)

Proof. Using (2.17), we obtain

‖S(t)u0‖L∞t Ḃ
sk
2,q

= sup
t∈R

[
∑

j∈Z
(2jsk‖∆jS(t)u0‖L2)q]

1
q

≤C[
∑

j∈Z
(2jsk‖∆ju0‖L2)q]

1
q

= C‖u0‖Ḃ
sk
2,q

.

(2.29)

Thanks to (2.9), for i = 1, 2, we deduce

Ni,q(S(t)u0) = ‖2jsk2j( 1
pi

+ 4
qi
− 1

2
)‖∆jS(t)u0‖L

pi
x L

qi
t
‖lq(Z)

≤C‖2jsk‖∆ju0‖L2‖lq(Z)

= C‖u0‖Ḃ
sk
2,q

.

(2.30)

Combining (2.29), (2.30) and (2.20) yields (2.28). We have proved Lemma
2.6. ¤



1056 Yu-Zhu Wang and Wenxu Ge

3. Nonlinear estimates

Lemma 3.1 Suppose that u ∈ Eq, q ∈ [1,+∞] and ab ≤ 0(b 6= 0). Then the
following estimates hold

‖
∫ t

0
S(t− τ)∂xuk(τ)dτ‖L∞t Ḃ

sk
2,q
≤ C‖u‖Eq‖u‖k−1

E∞ . (3.1)

‖
∫ t

0
S(t− τ)∂xuk(τ)dτ‖Eq ≤ C‖u‖Eq‖u‖k−1

E∞ . (3.2)

Proof. Firstly, we establish the following estimate

‖∆j(uk)‖
L

8
7
x L

4
3
t

≤ C2−j(sk+ 3
8
)γj , ∀j ∈ Z. (3.3)

where γj(j ∈ R) satisfies

‖γj‖lq(Z) = (
∑

j∈Z
|γj |q)

1
q ≤ ‖u‖Eq‖u‖k−1

E∞ . (3.4)

For any fixed t, rewrite ∆j(uk(t)) as

∆j(uk(t)) = ∆j [ lim
r→+∞(Sr(u))k] = ∆j [

∑

r∈Z
(Sr+1(u))k − (Sr(u))k]

= ∆j{
∑

r∈Z
[Sr+1(u)− Sr(u)]

k−1∑

p=0

(Sr+1(u))p(Sr(u))k−p−1}

= ∆j [
∑

r∈Z
∆r+1u

k−1∑

p=0

(Sr+1(u))p(Sr(u))k−p−1].

Since the term ∆r+1u
∑k−1

p=0(Sr+1(u))p(Sr(u))k−p−1 is localzed in frequencies in
a ball |ξ| ≤ 2k+r, we deduce that

∆j(uk) = ∆j [
+∞∑

r=j−k

∆r+1u

k−1∑

p=0

(Sr+1(u))p(Sr(u))k−p−1]. (3.5)
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Noting that the operators ∆j are uniformly bounded in Lp(R)(p ∈ [1,+∞]), using
Minkowski and Hölder inquality, we obtain

‖∆j(uk)‖
L

8
7
x L

4
3
t

≤C‖
+∞∑

r=j−k

∆r+1u
k−1∑

p=0

(Sr+1(u))p(Sr(u))k−p−1‖
L

8
7
x L

4
3
t

≤C

+∞∑

r=j−k

‖∆r+1u

k−1∑

p=0

(Sr+1(u))p(Sr(u))k−p−1‖
L

8
7
x L

4
3
t

≤C

+∞∑

r=j−k

‖∆r+1u‖L
p2
x L

q2
t

k−1∑

p=0

‖Sr+1(u)‖p

L
p1
x L

q1
t
‖Sr(u)‖k−p−1

L
p1
x L

q1
t

,

(3.6)
where we have used the following equality

1
p2

+
p

p1
+

k − p− 1
p1

=
1
p2

+
k − 1

p1
=

7
8
,

1
q2

+
p

q1
+

k − p− 1
q1

=
1
q2

+
k − 1

q1
=

3
4
.

Let

αj = 2jsk2j( 1
p2

+ 4
q2
− 1

2
)‖∆ju‖L

p2
x L

q2
t

, α̃j = 2jsk2j( 1
p1

+ 4
q1
− 1

2
)‖∆ju‖L

p1
x L

q1
t

, j ∈ Z,

then we have

‖∆ju‖L
p2
x L

q2
t

= 2−jsk2−j( 1
p2

+ 4
q2
− 1

2
)
αj , j ∈ Z

and

‖∆ju‖L
p1
x L

q1
t

= 2−jsk2−j( 1
p1

+ 4
q1
− 1

2
)
α̃j , j ∈ Z. (3.7)

From u ∈ Eq, we get

‖u‖N1,q = ‖α̃j‖lq(Z), ‖u‖N2,q = ‖αj‖lq(Z), ‖u‖N1,∞ = ‖α̃j‖l∞(Z). (3.8)

Let

βr =
r∑

j=−∞
2(r−j)(sk− 1

2
+ 1

p1
+ 4

q1
)
α̃j =

+∞∑

j=−∞
2(r−j)(sk− 1

2
+ 1

p1
+ 4

q1
)
α̃jχ{r−j≥0}

with

χ{r−j≥0} = 1(r ≥ j), χ{r−j≥0} = 0(r < j).

Notice that Sr(u) =
∑r

j=−∞∆ju, we obtain

‖Sr(u)‖L
p1
x L

q1
t
≤

r∑

j=−∞
‖∆ju‖L

p1
x L

q1
t
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=
r∑

j=−∞
2−j(sk− 1

2
+ 1

p1
+ 4

q1
)
α̃j = 2−r(sk− 1

2
+ 1

p1
+ 4

q1
)
βr. (3.9)

Since sk − 1
2 + 1

p1
+ 4

q1
< 0(k ≥ 5), using Young inequality, we deduce

‖βr‖lq(Z) ≤ C‖α̃j‖lq(Z) = C‖u‖N1,q , (3.10)

‖βr‖l∞(Z) ≤ C‖α̃j‖l∞(Z) = C‖u‖N1,∞ . (3.11)

Combining (3.7) and (3.9) yields

‖∆r+1(u)‖L
p2
x L

q2
t

k−1∑

p=0

‖Sr+1(u)‖p

L
p1
x L

q1
t
‖Sr(u)‖k−p−1

L
p1
x L

q1
t

≤ 2−(r+1)(sk− 1
2
+ 1

p2
+ 4

q2
)
αr+1

k−1∑

p=0

2−p(r+1)(sk− 1
2
+ 1

p1
+ 4

q1
)

βp
r+12

−(k−p−1)r(sk− 1
2
+ 1

p1
+ 4

q1
)
βk−p−1

r

= 2−(r+1)(sk− 1
2
+ 1

p2
+ 4

q2
)2−(k−1)r(sk− 1

2
+ 1

p1
+ 4

q1
)

αr+1

k−1∑

p=0

2−p(sk− 1
2
+ 1

p1
+ 4

q1
)
βp

r+1β
k−p−1
r

≤ 2−(r+1)(sk− 1
2
+ 1

p2
+ 4

q2
)2−(k−1)(r+1)(sk− 1

2
+ 1

p1
+ 4

q1
)
αr+1

k−1∑

p=0

βp
r+1β

k−p−1
r

≤C2−(r+1)(sk+ 3
8
)αr+1(βk−1

r+1 + βk−1
r ),

(3.12)

In last inequality, we use

(sk − 1
2

+
1
p2

+
4
q2

) + (k − 1)(sk − 1
2

+
1
p1

+
4
q1

) = sk +
3
8
.

It follows from (3.6) and (3.12) that

‖∆ju
k‖

L
8
7
x L

4
3
t

≤C
+∞∑

r=j−k

‖∆r+1u‖L
p2
x L

q2
t

k−1∑

p=0

‖Sr+1(u)‖p

L
p2
x L

q2
t
‖Sr(u)‖k−p−1

L
p1
x L

q1
t

≤C

+∞∑

r=j−k

2−(r+1)(sk+ 3
8
)αr+1(βk−1

r+1 + βk−1
r )

= C
+∞∑

r=j

2−(r−k+1)(sk+ 3
8
)αr−k+1(βk−1

r−k+1 + βk−1
r−k )

= C

+∞∑

r=j

2−r(sk+ 3
8
)αr−k+1(βk−1

r−k+1 + βk−1
r−k ).
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Thus

[
∑

j∈Z
(2j(sk+ 3

8
)‖∆j(uk)‖

L
8
7
x L

4
3
t

)q]
1
q

≤C[
∑

j∈Z
(
+∞∑

r=j

2(j−r)(sk+ 3
8
)αr−k+1(βk−1

r−k+1 + βk−1
r−k ))q]

1
q

≤C[
∑

j∈Z
(
+∞∑

r∈Z
2j(sk+ 3

8
)χ{j−r≤0}αr−k+1(βk−1

r−k+1 + βk−1
r−k ))q]

1
q .

Since sk + 3
8 > 0(k ≥ 5), using Hölder inequality, (3.8) and (3.11) gives

[
∑

j∈Z
(2j(sk+ 3

8
)‖∆ju‖

L
8
7
x L

4
3
t

)q]
1
q ≤C[

∑

r∈Z
αq

r−k+1(β
k−1
r−k+1 + βk−1

r−k )q]
1
q

≤C‖u‖N2,q‖u‖k−1
N1,∞ ≤ C‖u‖Eq‖u‖k−1

E∞ .

This gives the proof of (3.3) and (3.4).

In what follows, we prove (3.1). For p = 8 and q = 4, j ∈ Z, using (2.18)
and (3.3), we obtain

‖∆j

∫ t

0
S(t− τ)∂x(uk(τ))dτ‖L∞t L2

x
= ‖∂x

∫ t

0
S(t− τ)∆j(uk)(τ)dτ‖L∞t L2

x

≤C2j 3
8 ‖∆j(uk)‖

L
8
7
x L

4
3
t

≤ C2−jskγj .
(3.13)

From (3.13) and (3.4) yields

‖
∫ t

0
S(t− τ)∂x(uk(t))dτ‖L∞t Ḃ

sk
2,q

= sup
t∈R

[
∑

j∈Z
(2jsk‖∆j

∫ t

0
S(t− τ)∂x(uk(τ))dτ‖L2

x
)q]

1
q

≤ [
∑

j∈Z
(2jsk‖∆j

∫ t

0
S(t− τ)∂x(uk(τ))dτ‖L∞t L2

x
)q]

1
q

≤C(
∑

j∈Z
|γj |q)

1
q

≤C‖u‖Eq‖u‖k−1
E∞ .
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Using (2.10) and (3.3), for i = 1, 2 and j ∈ Z, we get

2j( 1
pi

+ 4
qi
− 1

2
)‖∆j

∫ t

0
S(t− τ)∂xuk(τ)dτ‖L

pi
x L

qi
t

≤C2j( 3
2
− 1

p2
− 4

q2
)‖∆ju

k‖
L

p
′
2

x L
q
′
2

t

= C2j 3
8 ‖∆ju

k‖
L

8
7
x L

4
3
t

≤C2−jskγj .

(3.14)

By (2.24), (2.25), (3.4) and (3.14), we obtain

‖
∫ t

0
S(t− τ)∂xuk(τ)dτ‖Eq

=
2∑

i=1

‖
∫ t

0
S(t− τ)∂xuk(τ)dτ ||Ni,q

=
2∑

i=1

[
∑

j∈Z
(2jsk2j( 1

pi
+ 4

qi
− 1

2
)‖∆j

∫ t

0
S(t− τ)∂xuk(τ)dτ‖L

pi
x L

qi
t

)q]
1
q

≤C(
∑

j∈Z
|γj |q)

1
q ≤ C‖u‖Eq‖u‖k−1

E∞ .

This proves Lemma 3.1. ¤

Lemma 3.2 Assume that u1, u2 ∈ Eq and ab ≤ 0(b 6= 0), where 1 ≤ q ≤ ∞.

Then the following estimates hold

‖
∫ t

0
S(t−τ)∂x(uk

1−uk
2)(τ)dτ‖L∞t Ḃ

sk
2,q
≤ C‖u1−u2‖Eq(‖u1‖k−1

E∞ +‖u2‖k−1
E∞ ). (3.15)

‖
∫ t

0
S(t− τ)∂x(uk

1 − uk
2)(τ)dτ‖Eq ≤ C‖u1 − u2‖Eq(‖u1‖k−1

E∞ + ‖u2‖k−1
E∞ ). (3.16)

Proof. From (3.5), we obtain

∆j(uk
1 − uk

2) = ∆j [
∞∑

r=j−k

∆r+1(u1 − u2)
k−1∑

p=0

(Sr+1(u1))p(Sr(u2))k−1−p+

∞∑

r=j−k

∆r+1(u2)Sr+1(u1 − u2)
∑

r1+r2+r3=k−2

(Sr+1(u1))r1 + (Sr+1(u2))r2(Sr(u1))r3

+
∞∑

r=j−k

∆r+1(u2)Sr(u1 − u2)
∑

r1+r2+r3=k−2

(Sr+1(u2))
r1(Sr(u1))r2(Sr(u2))r3 ].

Similar to the proof of Lemma 3.1, we know that (3.15) and (3.16) hold. The
Lemma is proved. ¤
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4. Main results

In order to prove our main results, in what follows, we introduce four Lemmas.
Lemma 4.1 Assume that ab ≤ 0(b 6= 0), q ∈ [1,+∞],m ∈ [4,+∞] and n ∈
[2,+∞] with 1

m + 1
2n ≤ 1

4 . Let u be a solution of (1.1)- (1.2) with ‖u‖Eq,T
< ∞.

Then the sequence

αj = 2jsk2j( 1
m

+ 4
n
− 1

2
)‖∆ju‖Lm

x Ln
t

(4.1)

belongs to lq(Z) and the estimate holds

‖αj‖lq(Z) ≤ C(‖u0‖Ḃ
sk
2,q

+ ‖u‖k
Eq,T

). (4.2)

Proof. Since u is a solution of (1.1)- (1.2), we have

∆ju = ∆j(S(t)u0)±∆j(
∫ t

0
S(t− τ)∂xuk(τ)dτ), ∀j ∈ Z. (4.3)

By (2.9), (3.2) and Eq,T ↪→ E∞,T , we know that (4.2) holds. This proves Lemma
4.1. ¤

Lemma 4.2 Assume that ab ≤ 0(b 6= 0). Let u be a solution of the problem
(1.1)-(1.2), then we have

‖u‖Lr
Tx
≤ C(r)T ν(‖u0‖Ḃ

sk
2,q

+ ‖u‖k
Eq,T

),

r ∈ (
k − 1

3
,
5
3
(k − 1))

⋂
(
7(k − 1)
2k − 5

,+∞)
⋂

(4,+∞).
(4.4)

Here ν = ν(r) > 0.

Proof. It suffices to show that
0∑

j=−∞
‖∆ju‖Lr

Tx
+

∞∑

j=1

‖∆ju‖Lr
Tx
≤ C(r)T ν(‖u0‖Ḃ

sk
2,q

+ ‖u‖k
Eq,T

). (4.5)

We first consider the high frequencies. Let r > 4, then there always exists q1 ≥ r,

such that q1 ∈ [2,+∞] with 1
r + 1

2q1
≤ 1

4 and sk − 1
2 + 1

r + 4
q1

> 0.

Indeed, we can clearly find such a q1 as long as the set ( 3
4(k−1)− 1

4r ,min(1
r , 1

2−
2
r )) is nonempty. The conditions

3
4(k − 1)

− 1
4r

<
1
r
⇔ r <

5
3
(k − 1)

and
3

4(k − 1)
− 1

4r
<

1
2
− 2

r
⇔ r >

7(k − 1)
2k − 5

.
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Using Lemma 4.1 and Hölder inequality, we get

∞∑

j=1

‖∆ju‖Lr
xL

q1
T

= ‖2−j(sk− 1
2
+ 1

r
+ 4

q1
)
αj‖l1(j≥1) ≤ C(r)(‖u0‖Ḃ

sk
2,q

+ ‖u‖k
Eq,T

). (4.6)

Using Hölder inequality and (4.6), we obtain

∞∑

j=1

‖∆ju‖Lr
Tx
≤ T ν

∞∑

j=1

‖∆ju‖Lr
xL

q1
T
≤ C(r)T ν(‖u0‖Ḃ

sk
2,q

+ ‖u‖k
Eq,T

). (4.7)

Here ν = 1
r − 1

q > 0.

Now we consider the low frequencies term. Let r ∈ [4, 5
3(k−1)), set q2 = ∞,

then we get 1
r + 1

∞ ≤ 1
4 and sk − 1

2 + 1
r + 4

∞ < 0 as long as r ≥ 4 and r > k−1
3 .

From Lemma 4.1 again gives

0∑

j=−∞
‖∆ju‖Lr

xL
q2
T

= ‖2−j(sk− 1
2
+ 1

r
+ 4

q2
)
αj‖l1(j≤0) ≤ C(r)(‖u0‖Ḃ

sk
2,q

+ ‖u‖k
Eq,T

).

(4.8)
By Hölder inequality yields

0∑

j=−∞
‖∆ju‖Lr

Tx
≤ T ν

0∑

j=−∞
‖∆ju‖Lr

xL
q2
T
≤ C(r)T ν(‖u0‖Ḃ

sk
2,q

+ ‖u‖k
Eq,T

). (4.9)

Here ν = 1
r > 0.

Thus, Combining (4.7) and (4.9) gives the proof of (4.5). The proof of Lemma
4.2 is completed. ¤

Lemma 4.3 Assume that u0 ∈ Ḃsk
2,q and ab ≤ 0(b 6= 0), where 1 ≤ q < ∞.

Then for any ε > 0, there exists T = T (‖u0‖Ḃ
sk
2,q

, ε) small enough such that

‖S(t)u0‖Eq,T
≤ ε. (4.10)

Proof. From Lemma 2.6, for any T and u0 ∈ Ḃsk
2,q, we get

‖S(t)u0‖Ni,q,T
≤ C‖u0‖Ḃ

sk
2,q

. i = 1, 2.

Since Z(R) is dense in Ḃsk
2,q, there exists v0 ∈ Z(R) such that for any ε > 0

‖u0 − v0‖Ḃ
sk
2,q
≤ ε

4C
.
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Using Lemma 2.3 yields

‖S(t)v0‖Ni,q,T
= ‖2jsk2j( 1

pi
+ 4

qi
− 1

2
)‖∆jS(t)v0‖L

pi
x L

qi
T
‖lq(Z)

≤CT
1
qi ‖2jsk2j( 1

pi
+ 4

qi
− 1

2
)‖∆jS(t)v0‖L

pi
x L∞T

‖lq(Z)

≤CT
1
qi ‖2jsk2j 4

qi ‖∆jv0‖L2‖lq(Z)

= CT
1
qi ‖v0‖

Ḃ
sk+ 4

qi
2,q

.

Since v0 ∈ Z(R) ⊂ Ḃ
sk+ 4

qi
2,q , then we obtain

‖S(t)v0‖Ni,q,T
≤ CT

1
qi .

Choosing T > 0 small enough such that CT
1
qi ≤ ε

4 , i = 1, 2. So we get

‖S(t)u0‖Eq,T
= ‖S(t)u0‖N1,q,T

+ ‖S(t)u0‖N2,q,T

≤‖S(t)(u0 − v0)‖N1,q,T
+ ‖S(t)v0‖N1,q,T

+
‖S(t)(u0 − v0)‖N2,q,T

+ ‖S(t)v0‖N2,q,T

≤ ε

4
+

ε

4
+

ε

4
+

ε

4
≤ ε.

This proves Lemma 4.3. ¤

Lemma 4.4 Assume that u0 ∈ Bs
2,q, 1 ≤ q ≤ ∞, ab ≤ 0(b 6= 0) and s > sk,

then for s > s
′
> sk, there exists ηi > 0(i = 1, 2) such that

‖S(t)u0‖Ni,q,T
≤ CT ηi‖u0‖

Bs
′

2,q

, i = 1, 2. (4.11)

Proof. For qi ∈ [2,∞], choosing ri > qi, such that s
′ − sk ≥ 4

qi
− 4

ri
.

Using Hölder inequality, Lemma 2.3 and Bs
′

2,q ↪→ Ḃ
sk+ 4

qi
− 4

ri
2,q , we obtain

‖S(t)u0‖Ni,q,T
= ‖2jsk2j( 1

pi
+ 4

qi
− 1

2
)‖∆jS(t)u0‖L

pi
x L

qi
T
‖lq(Z)

= 2T
1
qi
− 1

ri ‖2jsk2j( 4
qi
− 4

ri
)2j( 1

pi
+ 4

qi
− 1

2
)∆jS(t)u0‖L

pi
x L

ri
T
‖lq(Z)

≤CT
1
qi
− 1

ri ‖2j(sk+ 4
qi
− 4

ri
)‖∆ju0‖L2‖lq(Z)

= CT
1
qi
− 1

ri ‖u0‖
Ḃ

sk+ 4
qi
− 4

ri

≤CT
1
qi
− 1

ri ‖u0‖
Bs
′

2,q

.

Choosing ηi = 1
qi
− 1

ri
, then proof of Lemma 4.4 is finished. ¤

In what follows, we give main theorem.
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Theorem 4.1 Suppose that k ≥ 5, k ∈ N and ab ≤ 0(b 6= 0), suppose fur-
thermore that there exists δ = δ(k) > 0 such that for any u0 ∈ Ḃsk

2,∞ with
‖u0‖Ḃ

sk
2,∞

≤ δ. Then the IVP (1.1)-(1.2) has a unique solution u = u(x, t) on the
domain R× R and the solution satisfies the following properties

u ∈ C(R; Ḃsk
2,∞). (4.12)

N1,∞ + N2,∞ ≤ 4Cδ (4.13)

and

u(t) ⇁ u0 (4.14)

in S′(R) as t → 0.

Moreover, for any T < ∞,

u ∈ Lr
Tx, r ∈

{
(7(k−1)

2k−5 , 5(k−1)
3 ), 5 ≤ k ≤ 13

(k−1
3 , 5(k−1)

3 ), k ≥ 13
(4.15)

and the mapping u0 → u is lipschitz continous from {u0 ∈ Ḃsk
2,∞|‖u0‖Ḃ

sk
2,∞

≤ δ}
into the space defined by (4.12)-(4.14).

Proof. For any fixed M > 0, we define the function space

XM , {u|u− S(t)u0 ∈ C(R; Ḃsk
2,∞)

⋂
E∞, ‖u− S(t)u0‖L∞t Ḃ

sk
2,∞

+ ‖u‖E∞ ≤ M}
equipped with the metric

d(u1, u2) = ‖u1 − u2‖L∞t Ḃ
sk
2,∞

+ ‖u1 − u2‖E∞ .

Obviously, (XM , d) is a complete metric space.

For any u ∈ XM , Lemma 2.6 and 3.1 gives

‖Φ(u)− S(t)u0‖L∞t Ḃ
sk
2,∞

+ ‖Φ(u)‖E∞

≤ ‖
∫ t

0
S(t− τ)∂xuk(τ)dτ‖L∞t Ḃ

sk
2,∞

+ ‖S(t)u0‖E∞ + ‖
∫ t

0
S(t− τ)∂xuk(τ)dτ‖E∞

≤ C‖u‖k
E∞ + C‖u0‖Ḃ

sk
2,∞

. (4.16)

Choosing M = (4C)−
1

k−1 and δ = (4C)−
k

k−1 , since ‖u0‖Ḃ
sk
2,∞

≤ δ, then from
(4.16), we get

‖Φ(u)− S(t)u0‖L∞t Ḃ
sk
2,∞

+ ‖Φ(u)‖E∞ ≤ M.

So Φ(u) ∈ XM .
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For u1, u2 ∈ XM , using Lemma 3.2 gives

d(u1, u2) = ‖Φ(u1)− Φ(u2)‖L∞t Ḃ
sk
2,∞

+ ‖Φ(u1)− Φ(u2)‖E∞

≤ ‖
∫ t

0
S(t− τ)∂x(uk

1 − uk
2)(τ)dτ‖L∞t Ḃ

sk
2,∞

+ ‖
∫ t

0
S(t− τ)∂x(uk

1 − uk
2)(τ)dτ‖E∞

≤ C‖u1 − u2‖E∞(‖u1‖k−1
E∞ + ‖u2‖k−1

E∞ )

≤ 1
2
‖u1 − u2‖E∞ ≤ 1

2
d(u1, u2).

So Φ is a strict contractive mapping on XM .

Using Banach fixed point theorem, there exists a unique u ∈ XM satisfying
(4.12) and (4.13).

In what follows, we prove (4.14) and (4.15). Since u− S(t)u0 ∈ C(R; Ḃsk
2,∞)

and the continuity of the group S(t) in S′(R) yields (4.14). Lemma 4.2 assure
that (4.15) holds. The proof of theorem 4.1 is completed. ¤

Theorem 4.2 Suppose that k ≥ 5, k ∈ N and ab ≤ 0(b 6= 0), suppose further-
more that u0 ∈ Ḃsk

2,q(R) and q ∈ [1,∞).
(1) Then there exists a positive constant T = T (‖u0‖Ḃ

sk
2,q

) such that the IVP
(1.1)-(1.2) has a unique solution u = u(x, t) on the strip R × [−T, T ] and the
solution satisfies the following properties

u ∈ C([−T, T ]; Ḃsk
2,q)

⋂
Eq,T . (4.17)

Moreover, for all T < +∞

u ∈ Lr
Tx, r ∈

{
(7(k−1)

2k−5 , 5(k−1)
3 ), 5 ≤ k ≤ 13

(k−1
3 , 5(k−1)

3 ), k ≥ 13
(4.18)

and the mapping u0 7−→ u(t) from Ḃsk
2,q(R) into the space defined by (4.17) is

locally Lipschitz.
(2) If ‖u0‖Ḃ

sk
2,∞

≤ δ(given in the statement of theorem 4.1 ), then u is a global
solution of IVP (1.1)-(1.2) and satisfies

u ∈ C(R; Ḃsk
2,q)

⋂
L∞(R; Ḃsk

2,q). (4.19)

Moreover, for all T < +∞, (4.18) also holds. The mapping u0 7−→ u(t) from
Ḃsk

2,q(R) into the space defined by (4.19) is locally Lipschitz.

Proof. (1) For fixed M, T > 0, we define the metric space

XM
T = {u ∈ C([−T, T ]; Ḃsk

2,q)
⋂

Eq,T |‖u− S(t)u0‖L∞T Ḃ
sk
2,q

+ ‖u‖Eq,T
≤ M},
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d(u1, u2) = ‖u1 − u2‖L∞T Ḃ
sk
2,q

+ ‖u1 − u2‖Eq,T
.

Obviously, (XM
T , d) is a complete metric space.

For any u ∈ XM
T , using Lemma 3.1, we get

‖Φ(u)− S(t)u0‖L∞T Ḃ
sk
2,q
≤ ‖

∫ t

0
S(t− τ)∂xuk(τ)dτ‖L∞T Ḃk

2,q

≤ C‖u‖Eq,T
‖u‖k−1

E∞,T
≤ CMk. (4.20)

From Lemma 2.6, 3.1 and 4.3, we obtain

‖Φ(u)‖Eq,T
= ‖S(t)u0 ± i

∫ t

0
S(t− τ)∂xuk(τ)dτ‖Eq,T

≤‖S(t)u0‖Eq,T
+ ‖

∫ t

0
S(τ)dτ‖Eq,T

≤‖S(t)u0‖Eq,T
+ C‖u‖Eq,T

‖u‖k−1
E∞,T

≤ ε + cMk.

(4.21)

Combining (4.20) and (4.21) yields

‖Φ(u)− S(t)u0‖L∞T Ḃ
sk
2,q

+ ‖Φ(u)‖Eq,T
≤ ε + CMk.

Now choosing M > 0 small enough such that

CMk−1 ≤ 1
4
.

Let 0 < ε ≤ 1
2M, then we have

‖Φ(u)− S(t)u0‖L∞T Ḃ
sk
2,q

+ ‖Φ(u)‖Eq,T
≤ M,

So Φ maps XM
T into XM

T .

We now show that Φ is a strict contractive map. For any u1, u2 ∈ XM
T , it

follows from Lemma 3.2 that

‖Φ(u1)− Φ(u2)‖L∞T Ḃ
sk
2,q

+ ‖Φ(u1)− Φ(u2)‖Eq,T

≤C‖u1 − u2‖Eq,T
(‖u1‖k−1

E∞,T
+ ‖u2‖k1

E∞,T
)

≤ 2CMk−1‖u1 − u2‖Eq,T

≤ 1
2
‖u1 − u2‖Eq,T

.

From the contraction mapping principle, the IVP (1.1)-(1.2) has a unique
solution u(x, t) on the strip R× [−T, T ] and the solution satisfies the properties
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(4.17) and (4.18). From the above proof, we know that the map u0 7−→ u(t) is
lipschitz continuous. we have proved the first part in Theorem 4.2.

(2) Let u0 ∈ Ḃsk
2,q(R), q ∈ [1,∞) with ‖u0‖Ḃ

sk
2,∞

≤ δ, (recalling that Ḃsk
2,q ↪→

Ḃsk
2,∞). By virtue of Theorem 4.1, {ω ∈ E∞|‖ω‖E∞ ≤ 4Cδ} is stable by Φ.

For any fixed M > 0, we define metric space

XM = {u ∈ C(R; Ḃsk
2,q)

⋂
Eq|‖u‖E∞ ≤ M}

equipped with the metric

d(u1, u2) = ‖u1 − u2‖L∞t Ḃ
sk
2,q

+ ‖u1 − u2‖Eq .

In what follows, we show that Φ maps XM into XM . For u ∈ XM , By
Lemma 2.6 and 3.1, we obtain

‖Φ(u)‖E∞ ≤‖S(t)u0‖E∞ + ‖ ∫ t
0 S(t− τ)∂k

x(τ)dτ‖E∞

≤‖u0‖Ḃ
sk
2,∞

+ C‖u‖k
E∞

≤Cδ + cMk.

Choosing M = (4C)−
1

k−1 and δ = (2C)−1(4C)−
1

k−1 , then from the above inequal-
ity, we get

‖Φ(u)‖E∞ ≤ M.

For u1, u2 ∈ XM , it follows from Lemma 3.2 that

d(Φ(u1),Φ(u2)) = ‖Φ(u1)− Φ(u2)‖L∞t Ḃsk + ‖Φ(u1)− Φ(u2)‖Eq

≤C‖u1 − u2‖Eq(‖u1‖k−1
E∞ + ‖u2‖k−1

E∞ )
≤ 2CMk−1‖u1 − u2‖Eq

≤ 1
2
d(u1, u2).

So Φ is a strict contractive map on XM .

From Banach fixed Theorem, the IVP (1.1)-(1.2) has a unique solution u(x, t)
and the solution satisfies the properties (4.19). From the above proof, we know
that the map u0 7−→ u(t) is lipschitz continuous. From Lemma 4.2, we know that
(4.18) also holds. The Theorem 4.2 is proved. ¤

Theorem 4.3 Assume that ab ≤ 0(b 6= 0), k ≥ 5, k ∈ N and s > s
′

> sk,
suppose further u0 ∈ Bs

2,q and 1 ≤ q < ∞.
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(1) Then there exists a positive constant T = T (‖u0‖
Bs
′

2,q

) such that the IVP

(1.1)-(1.2) has a unique solution u = u(x, t) on the strip R × [−T, T ] and the
solution satisfies the following properties

u ∈ C([−T, T ];Bs
2,q)

⋂
Eq,T (4.22)

and

Ds−sk
x u ∈ Lr

Tx, r ∈
{

(7(k−1)
2k−5 , 5(k−1)

3 ), 5 ≤ k ≤ 13
(k−1

3 , 5(k−1)
3 ), k ≥ 13

(4.23)

and the mapping u0 7−→ u(t) from Bs
2,q(R) into the space defined by (4.22) is

locally Lipschitz.

(2) If ‖u0‖Ḃ
sk
2,∞

≤ δ(given by Theorem 4.1), then u is a global solution and
satisfies the properties

u ∈ L∞(R;Bs
2,q). (4.24)

Proof. For fixed M, T > 0, define metric space (XM
T , d)

XM
T = {u ∈ C([−T, T ];Bs

2,q)
⋂

Eq,T

⋂
Lk

Tx|‖u‖Eq,T
+ ‖u‖Lk

Tx

+λ(‖u‖L∞T Bs
2,q

+ ‖u‖Ns
2,q,T

) ≤ M},
d(u1, u2) = ‖u1− u2‖Eq,T

+ ‖u1− u2‖Lk
Tx

+ λ(‖u1− u2‖L∞T Bs
2,q

+ ‖u1− u2‖Ns
2,q,T

),

where

λ =
‖S(t)u0‖Eq,T

‖u0‖Bs
2,q

and
‖u‖Ns

2,q,T
= ‖2js2j( 1

p2
+ 4

q2
− 1

2
)‖∆ju‖L

p2
x L

q2
T
‖lq(Z).

For any u ∈ XM
T , using Lemma 3.1, 4.4 and Eq,T ↪→ E∞,T , for 0 < T ≤ 1, we

obtain

‖Φ(u)‖Eq,T
≤‖S(t)u0‖Eq,T

+ ‖
∫ t

0
S(t− τ)∂xuk(τ)dτ‖Eq,T

≤‖S(t)u0‖Eq,T
+ C‖u‖Eq,T

‖u‖k−1
E∞,T

≤C(T η‖u0‖
Bs
′

2,q

+ ‖u‖k
Eq,T

)

≤C(T η‖u0‖
Bs
′

2,q

+ Mk).

(4.25)

From Lemma 4.2, for 0 < T ≤ 1, we get

‖Φ(u)‖Lk
Tx
≤ C(T ν‖u0‖

Bs
′

2,q

+ ‖u‖k
Eq,T

) ≤ C(T ν‖u0‖
Bs
′

2,q

+ Mk). (4.26)
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For t ∈ R, S(t) is a unitary group in Hs(R), using Young inequality, we obtain

‖S0(Φ(u))‖L∞T L2
x
≤‖S0(S(t)u0)‖L∞T L2

x
+ ‖S0(

∫ t

0
S(t− τ)∂xuk(τ)dτ)‖L∞T L2

x

≤‖S0u0‖L2 + sup
t∈[−T,T ]

∫ t

0
‖∂xS(t− τ)S0u

k(τ)‖L2
x
dτ

≤‖u0‖Bs
2,q

+ C

∫ T

−T
‖S0(uk(t))‖L2dt

≤‖u0‖Bs
2,q

+ C‖ψ0‖L2

∫ T

−T
‖uk(t)‖L1dt

≤‖u0‖Bs
2,q

+ C‖u‖k
Lk

Tx
.

(4.27)
Using (4.27), analogous to the nonlinear estimate as those in Lemma 3.1, for
0 < T ≤ 1, we can establish

‖Φ(u)‖L∞T Bs
2,q

+ ‖Φ(u)‖Ns
2,q,T

≤‖S0(Φ(u))‖L∞T L2
x

+ ‖Φ(u)‖L∞T Ḃs
2,q

+ ‖Φ(u)‖Ns
2,q,T

≤C(‖u0‖Bs
2,q

+ ‖u‖k
Lk

Tx
+ ‖u‖k−1

N1,∞,T
‖u‖N2,q,T

)

≤C(‖u0‖Bs
2,q

+ ‖u‖k
XM

T
)

≤C(‖u0‖Bs
2,q

+ Mk).

For 0 < T ≤ 1, Lemma 4.4 gives

λ ≤ CT η
‖u0‖

Bs
′

2,q

‖u0‖Bs
2,q

≤ CT η ≤ c,

Thus

λ(‖Φ(u)‖L∞T Bs
2,q

+ ‖Φ(u)‖Ns
2,q,T

) ≤ C(λ‖u0‖Bs
2,q

+ λMk) ≤ C(T η‖u0‖
Bs
′

2,q

+ Mk).

(4.28)
For 0 < T ≤ 1 and any u ∈ XM

T , combining (4.25), (4.26) and (4.28) yields

‖Φ(u)‖XM
T
≤ C(Tmax{η,ν}‖u0‖

Bs
′

2,q

+ Mk). (4.29)

Choosing M > 0 and T > 0 suitably small such that

CMk−1 ≤ 1
4

and
Tmax{η,ν} ≤ M

4C‖u0‖
Bs
′

2,q

,

hold, then we have
‖Φ(u)‖XM

T
≤ M.
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This implies that Φ maps XM
T into XM

T .

In what follows, we will show that Φ is a strictly mapping on XM
T . For any

u1, u2 ∈ XM
T , using the same way to obtain (4.29), we get

‖Φ(u1)− Φ(u2)‖XM
T
≤ C(‖u1‖k−1

XM
T

+ ‖u2‖k−1
XM

T

)‖u1 − u2‖XM
T

.

If M satisfies CMk−1 ≤ 1
4 , then we have

‖Φ(u1)− Φ(u2)‖XM
T
≤ 1

2
‖u1 − u2‖XM

T
.

From the contraction mapping principle , the IVP (1.1)-(1.2) has a unique solution
u(x, t) on the strip R×[−T, T ] and the solution satisfies the property (4.22). From
the above proof, we know that the map u0 7−→ u(t) is lipschitz continuous. From
L∞T Bs

2,q ↪→ L∞T L2
x and Lemma 4.2, (4.23) follows.

The proof of the second part of Theorem 4.3. By the same way to that of
proof of Lemma 3.1 and Lemma 3.2, and from Theorem 4.1, ‖u‖k−1

E∞ ≤ (4C)−1

for ‖u0‖Ḃ
sk
2,∞

≤ δ, we can show that for any fixed θ ∈ [0, s] and T > 0

‖u‖L∞T Ḃθ
2,q

+ ‖u‖Ṅθ
2,q,T

≤C‖u0‖Ḃθ
2,q

+ C‖u‖k−1
E∞ ‖u‖Ṅθ

2,q,T

≤C‖u0‖Ḃθ
2,q

+
1
2
‖u‖Ṅθ

2,q,T

≤ 2C‖u0‖Ḃθ
2,q
≤ 2C‖u0‖Bθ

2,q
.

Taking θ = 0 and s, respectively, this proves that u can be extended for al time
and u ∈ L∞(R;Bs

2,q). This proves Theorem 4.3. ¤

5. Scattering

In this section, we give the scattering result.

Theorem 5.1 Assume that u0 ∈ Ḃsk
2,q, q ∈ [1,∞) and ab ≤ 0(b 6= 0), and

the initial value satisfy the small assumption of Theorem 4.1. Let u(x, t) be the
solution of the IVP (1.1)- (1.2). Then there exists (u−0 , u+

0 ) ∈ Ḃsk
2,q × Ḃsk

2,q such
that

lim
t→+∞ ‖u(t)− S(t)u+

0 ‖ = 0; lim
t→−∞ ‖u(t)− S(t)u−0 ‖ = 0.

Proof. The proof of essentially follows from the proof of Theorem 2.2 in [15].
From the proof of the second part of Theorem 4.2. we obtain u ∈ C(R; Ḃsk

2,q) and

‖2jsk2j 3
8 ‖∆j(uk)‖

L
8
7
x L

4
3
t

‖lq(Z) < +∞.
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Therefore, for any fixed n ∈ N, there exists jn > 0 such that

‖2jsk2j 3
8 ‖∆j(uk)‖

L
8
7
x L

4
3
t

‖lq(|j|≥jn) ≤
1
n

(5.1)

and there exists Tn such that

‖2jsk2j 3
8 ‖∆j(uk)‖

L
8
7
x L

4
3
[Tn,+∞)

‖lq(|j|≤jn) <
1
n

. (5.2)

Now by taking uL,n(t) = S(t−Tn)u(Tn) = S(t)uL,n(0), combining (5.1) and (5.2)
yields

sup
t≥Tn

‖u(t)− uL,n(t)‖Ḃ
sk
2,q
≤ c‖2jsk2j 3

8 ‖∆j(uk)‖
L

8
7
x L

4
3
[Tn,+∞)

‖lq(Z)

≤‖2jsk2j 3
8 ‖∆j(uk)‖

L
8
7
x L

4
3
[Tn,+∞)

‖lq(|j|≤jn)

+‖2jsk2j 3
8 ‖∆j(uk)‖

L
8
7
x L

4
3
[Tn,+∞)

‖lq(|j|≥jn)

≤ 2C

n
.

(5.3)

Since S(t) is a unitary group in Ḃsk
2,q, for t ≥ Tn,m1 ≥ n and m2 ≥ n, we obtain

‖uL,m1(0)− uL,m2(0)‖Ḃ
sk
2,q

= ‖uL,m1(t)− uL,m2(t)‖Ḃ
sk
2,q
≤ 4C

n
.

Thus, uL,n(0) is a Cauchy sequence in Ḃsk
2,q. Let u+

0 be the limit of Cauchy se-
quence uL,n(0). From (5.3), we obtain

lim
t→+∞ ‖u(t)− S(t)u+

0 ‖ = 0.

In the same way, we can show that

lim
t→−∞ ‖u(t)− S(t)u−0 ‖ = 0.

Then the proof of Theorem 5.1 is completed. ¤
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