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Well-posedness of Initial Value Problem for Fourth
Order Nonlinear Schrodinger Equation

Yu-Zhu Wang and Wenxu Ge

Abstract: In this paper, we study the well-posedness of initial value prob-
lem for fourth order nonlinear Schrodinger equation. By exploiting the
Strichartz estimates, Kato's smoothing effect and the maximal function es-
timates for the linear Schrodinger operator, we establish the local and global
well-posedness of initial value problem for fourth order nonlinear Schrédinger
in homogeneous and nonhomogeneous Besov spaces. Moreover, the scatter-
ing result for small initial data is also obtained.
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1. INTRODUCTION

It is well known that the nonlinear Schrodinger (NLS) equation models a wide
range of physical phenomena including self-focusing of optical beams in nonlinear
media, the modulation of monochromatic waves, propagation of Langmuir waves
in plasmas, etc. The nonlinear Schrodinger equation plays an important role in
many areas of applied physics, such as nonrelativistic quantum mechanics, laser
beam propagation, Bose-Einstein condensates, and so on (see [23]).The initial
value problem (IVP) or the initial-boundary value problem (IBVP) of the non-
linear Schrodinger equations on R™ have been extensively studied in the last two
decades (e.g., see [3]-[6], [1], [8], [11], [13], [18], [20]-[22]).
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This paper concerns with the initial value problem for the fourth order non-
linear Schrodinger equation

—_

iug + ad?u + btu = £0,uf, TR, teR (1.1)

u(z,0) = up(z), r€eR (1.2)
where a,b € R, k € N, u = u(z,t) is a complex valued functions of (x,t), up(z)

is the given complex value function.

(1.1) plays an important role in the nonlinear fiber optics [7]. Karpman
[10] employed (1.1) describing the resonant radiation of solitons. This class of
nonlinear Schrodinger equations has been widely applied in applied science such
as deep water wave dynamics, plasma physics, optical communications and so
on [2]. A large amount of interesting works has been devoted to the study of
Cauchy problem to dispersive equations, such as [5-6, 8, 22] and references cited
therein. Hao, Hsiao and Wang [5] studied the IVP for one-dimensional fourth
order nonlinear Schrédinger equation

iup = Opu + P((05U)|a| <2, (00T)|a)<2)- (1.3)

They investigated the local smoothing effects and established local well-
posedness. Hao, Hsiao and Wang [6] again studied the local smoothing effects
and well-posedness of the IVP for (1.3) in multi-dimensional spaces and obtained
local well-posedness. Segata [22] investigated the IVP for fourth order nonlinear
Schrodinger equation which describes the motion of the vortex filament

iug + 02u + vdiu = F(u,u, Opu, Oy li, 02u, 021)

—~~
—_
=~

)
and established the IVP for (1.4) is locally well-posed in the space H*(R)(s > 3)
under the conditions v < 0 and p — § = 0. Here F'(u,u, 0u, 0,1, 02u, 0%u1) is

v

given by
1 3
F == Jufu— Z'u|u|4u +(—2p+ %)(8xu)2ﬂ

— (4 + v)|0pul?u + w020 + (—2u + v)|0%u|?02u.
Huo and Jia [8] improved Segata's results.

In this paper, we will investigate the well-posedness on the IVP (1.1)-(1.2)
in homogeneous and nonhomogeneous Besov spaces. More precisely speaking, we
will prove that the IVP (1.1)- (1.2) has a unique solution in C([—T,T7; B;fq) and
C([-T,T]; B3 ;) for some T' > 0. We will also show that the IVP (1.1)-(1.2) admits
a unique global solution in the space C(R; By%) and C(R; B3 ) provided certain
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norm of the initial data is suitably small. Here s; = % — %, s > sk, k > 5 and

1 < ¢ < o0. By employing the method in the present paper initiated by Planchon
in [19]-[21] and developed by Molinet and Ribaud in [16]-[17], and the Strichartz
estimates, Kato's smoothing effect and the maximal function estimates for the
linear Schrodinger operator, we establish well-posedness on the IVP (1.1)-(1.2) in
homogeneous and nonhomogeneous Besov spaces. Noticing that sj is the critical
value obtained from a similar scaling argument as that in [14]. Thus by similar
considerations as in [14] we can expect that the lowest index sj for Besov spaces
that we obtain is optimal, namely, if s < s then it is reasonable to conjecture
that well-posedness does not hold in either Bg,q(R) or B ,(R) for any 1 < g < oo.

The paper is organized as follows. In Section 2, we state some notations
and give some preliminaries. Section 3 is devoted to establishing the estimates
for nonlinear terms. Section 4 is devoted to establishing the local and global
well-posedness in homogeneous and nonhomogeneous Besov spaces. Finally, in
Section 5 we obtain the scattering result for small initial data.

2. PRELIMINARIES

In this section, we give some preliminaries.

2.1. Notations. Throughout this paper, we will use the following notations:

The Fourier transform of f will be denoted by
fle) = [ ey

LP(1 < p < o0) denotes the usual space of all LP(R)-functions on R with
norm || f||zr. H® denotes s order sobolev space on R with norm ||f||gs = ||({ —
A)2 fll2 = (1 +1€]?)3 f|| 12, where s is a real number and I is unitary operator.
The Riesz potential of order s is denoted by

D; = (|1 f(9)".

We will use the space-time Lebesgue spaces LEL] and L{LE respectively
equipped with the norms

1llzpzs = ( /R 1 () [ ader)

3=
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and

Q|

1llzoze = ( /R 1FC D% de)s.

Sometimes we will need need the local in time versions of those spaces. We denote
them by LELL and LLLE and they are respectively equipped with the norms

1f (@, Ol zzre = IF (@ ) paq-7.m |l e )
Hf(wat)HLqTL’; = fCs e ll Laq—z,17)-

Now we recall the definition of the homogeneous and nonhomogeneous Besov
spaces. Throughout this paper, let ¢ € S(R) such that ¢ is supported by the set
{€: 5 <[¢] <2} and

D e =1, £#0.
JEZL
Define ¢ by
p=1-) ¢(277¢)
jz1

and note that ¢ € D(R)JZJ is supported by the ball {¢||¢] < 2} and ¢ =1 for
|€] < 1. We denote now by A; and S; the convolution operators whose symbols
are respectively given by ¢(277¢) and ¢)(277¢). Also we define the operator A;
by
Aj=Nj1+Aj+ Ajy,
which satisfies
Aj (¢] Aj = Aj.

For 1 < p < o0,1 < g < 00, the homogeneous Besov space B;”q(R) is defined

by
B; ,(R) = {u € S'(R)[[|2| Ajull Lo l1a(zy < o0}
and the nonhomogeneous Besov space B, ,(R) is defined by
B; 4(R) = {u € S'(R)|[|Soullzs + 12| Ajull o lia vy < 00}
It is well known that B3,(R) = H*(R) and Bj,(R) = H*(R).
Also it is well known that for —% <s< %, the two following convergences hold
r +oo
f= lim A =D A

r—-+00
j=—r j=—00



Well-posedness of Initial Value Problem for Fourth Order... 1051

and

k
Se(f) = tm > A(h) = 3 A,

Firstly, we consider the initial value problem for the linear schrodinger equa-

tion
iug + ad>u + bOru = f(x,t), (2.1)
u(z,0) = up. (2.2)
(2.1)-(2.2) can be rewritten as
t
(e, t) = S(tug — i / S(t — 7)f(z, 7)dr. (2.3)
0
Here
S(t)'LLO _ 6i(a83+b8§)tu() — fg—l(ei(faé%rb&‘l)tao)' (24)

2.2. Preliminaries. Lemma 2.1 Let up € S(R),ab < 0(b # 0), then we have

3
1Dz S(t)uoll ez < Clluol|2- (2.5)

1
1S(#)uollparee < ClDz uoll2- (2.6)

Proof. (2.5) can be derived from Theorem 4.1 in [12], for which we omit the
details. Making use of Theorem 2.5 in [12], we may obtain (2.6), here we omit
the proof. ]

Lemma 2.2 Let T be a linear operator defined on space-time functions g(z, t)

by
+oo
Tg(t) = K(t,7)g(r)dr,
—00

such that

ITgll o < Cllgll e oo
Here

min(p1,¢1) > max(pa, ga)- (2.7)
Then

¢
H/ K(t,7)g(r)dr| o1 g < Cligll ez o
0
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For the proof of Lemma 2.2, see Lemma 2 in [17].
Lemma 2.3 Assume that ug € S(R),ab < 0(b # 0),f € S(R?) and let
(p1,q1), (P2, q2) € [4, +00) X [2,+00] such that
1 1 1

< 2.8
pi 2¢ 4 (28)
then for all j € Z, we have
(L4 1
2](pi+q1‘ 3) ”S(t>Aju0"LﬁiLfi < CHAJ‘UOHLQ (2.9)
and
(L4 1 t (3_1_ 4
o Gt a z>||Aj/0 S(t — )0 f(7)dr]| 1 o < 2702 qz)HAijLp;Lq;.
z” Ly
(2.10)
Proof. From (2.5) and Bernstein inequality, we get
~ § .
1S()Ajuollpeorz < C2727[|Ajuol| 2. (2.11)
Similarly, using Bernstein inequality and (2.6) yields
1S()Asuoll e < €24 Ajuo]l (2.12)

We consider the operator T' = S (t)Aj and apply Riesz-Thorin theorem, for 6 €
[0, 1], we obtain

2 < C2 7| Ao 2.

IS Asu0ll s
L
z t
Note that Aj oAj = Aj, from the above inequality we deduce

70

IS0l 1, 5 < C2F Aol

t

It follows from Sobolev embedding theorem and Bernstein inequality that

IS@Ajuoll s e < CIDES ) Ajuoll s,

2
9
t
<02 77| D2 A 2

17

< 279299 || Ao 12,

where

and where (p;, ¢;) is given by

1 _1-0 _ - 1_1_ 1
{Pz‘ 4 aia 4 p; 2q; (2‘13)
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(2.9) follows from
1-176 1 1 4
+ a

4 2 b G
and 0 < o < L e Wlth0<9<11fandonly1f —i—2q §7W1thp,<—|—oo This
has completed the proof of (2.9).

From (2.9) yields

j(Lya_1y q
2602 () Aol s < €23 1A g0l 2. (2.14)
And by duality, we obtain
+oo 1 11
H/ 0z S(=7)A;f(r)dr]|L2 < G n 1293 )|A; fH : (2.15)
—00 Ltl

Choosing g € Ly L{* with ||g]| S g <1, using Holder inequality and (2.15), we
L

deduce

+o0
</ 0uS(t — )A; f(z, 7)dr, g(2, 1))
—|/+Oo /82 A f (=, 7)dr)( /32 A, gz, t)dt)dx|

< / 02 S(—r) A f(z, 7)dr| 12 / 02 S(~1)Ajg(x, )t 2

<0290 A, i, ,zﬂ“ﬁ‘ﬁ)zjéugu s
Lo
It follows from the above 1nequahty that
i+ 1) e (3-L-4)
PGt | A, / S =)l g < CPEETR Ay

Since (2.9) implies max(pz,qz) < 2 < min(p1,q1), using Lemma 2.2, we obtain
(2.10). The Lemma is proved. O
Lemma 2.4 Assume that ug € S(R),ab < 0(b # 0), f € S(R?) and let (p,q)

satisfy

1 1 1
4 —<Z 2.16
2qg 4 ( )
with p < 400. Then for all j € Z, we have
15(8) Ajuollrse 2 < Clluoll 2. (2.17)

H/ DS (t — TV f (2, 7)dr | oz < CHPCTTTD DG oo (218)

L2 L
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Proof. Since the group S(t) is unitary in H*(R), by Bernstein inequality, we
know that (2.17) holds.

Using (2.9), we obtain
27770 0,8 () A juoll 2 s < C2||Ajuol| 12 (2.19)

With%+i§iandp<+oo.
It follows from duality method that

+°° (3-1-4)
1] oSna e il < PG IA
Since S(t) is unitary group in L?(R), which commutes with space derivatives, we
get
+o0 1
sup | 0,S(t — T)A; f(z, 7)dr 2 < C2027G 5D A f||
teR —00 Ly Ly

For any fixed ¢, substituting f(7) by the function xr, (7)X{r<n(7)f(7) in the
above inequality, we have completed the proof of (2.18). d

Recall that we want to solve (1.1), (1.2) for initial data in the homogeneous
Besov space Bsk and in the nonhomogeneous Besov space Bj ,, where s > s =

% - 17k:>5and1<q<oo

Define function space

Ey = {u€ S ®)[ullg, = Niglu) + Nagu) < +oo}. (2.20)

Here
Niglu) = 220 0D Agul| o l(Z), i=12  (221)

and
) = CEL o6 1)), (o 0) = (8,) (2.22)

Sometime we also employ E,r to denote the local in time version of Fj.

Where N; 4(u) replaced respectively with

44
;

l .
Nigar(w) = 1272552 Agu) s 1 (2), 7 = 1,2

A direct computation, we obtain the following Lemma.
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Lemma 2.5 Let (p;,qi),i = 1,2, be defined by (2.22) and set (p,q) =

Then the following conclusion hold

1+1<1 <+
—r— <= o0
pi 2q 4 P
kE—1 1 1
+ — = 7
D1 D2 p
E—1 1 1
q1 q2 q"
1 1 4
S —— >
2 poq
and
1 1 4 1 1 4
e (k=) (s — =+ — >0
2 p2 @ ( I 2 p1o¢

1055

(8,4).

(2.23)

(2.24)

(2.25)

(2.26)

(2.27)

Lemma 2.6 Assume that ug € B;fq,q € [1, +oc]and ab < 0(b # 0), then we

have
1S @)uoll e e + 1S (D)uollr, < Clluoll g -

Proof. Using (2.17), we obtain

. 1
1S )uoll peo 53 = sup[ Y (27| 2;S(H)uo| £2)9]
4 teR jez

. 1
< O3 (27 || Ajuol| r2)9)
JEZ

Thanks to (2.9), for i = 1,2, we deduce
(LAl
Nig(S(tyug) = |25+ 2" %752 A, S (1o | s i 2y
< O[22 | Ajuol| 2 lluaz)

= CHUOHB;kq

(2.28)

(2.29)

(2.30)

Combining (2.29), (2.30) and (2.20) yields (2.28). We have proved Lemma

2.6. O
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3. NONLINEAR ESTIMATES

Lemma 3.1 Suppose that u € E,,q € [1,400] and ab < 0(b # 0). Then the
following estimates hold

t
H/O S(t—7)3xuk(7)dTlngoB;gcq < Clullg,llul5- (3.1)

t
H/O S(t = m)dpu* (T)dr||g, < Cllullp, ]} (3.2)
Proof. Firstly, we establish the following estimate

(s 43 .
||Aj(uk)HL%L% < 2796k S)n, Ve Z. (3.3)
x M

where 7;(j € R) satisfies

Q=

< Jlull g, lull (3-4)

illizy = O il

JEZL
For any fixed t, rewrite A;(uf(t)) as

Aj(ut () = A lim (S(w)*] = A0 (Srr(w)* = (Sp(w)"]

r—-+00
reZ

N
—

= Aj{Z[Sr+l(u) — Sp(u)] (Sr+1(U))p(Sr(u))k*p*1}

reZ P

I
=)

k—1
= A A S (Sraa ()P(S () F71)
p=0

reZ

Since the term A, ju Zﬁ;é(S’T+1(u))p(ST(u))k*p*1 is localzed in frequencies in
a ball |¢] < 2847 we deduce that

+o00 k—1
Aj(uF) = A0 Avpaw Y (Sppa (w))P(Sp(w) P71 (3.5)
r=j—k p=0
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Noting that the operators A; are uniformly bounded in LP(R)(p € [1, 400]), using
Minkowski and Hélder inquality, we obtain

k—p—
1854 5,4 <l 5 Arﬂ“Z SOUCAD
x _] k x
<C Z HAmuz r 1 (W)P (S (W) P s s
LIL?
r= ] k
<C HATJrluHLp?Lq? |!5r+1 o 185 (w) |57
L LRV LY
r=j—k
(3.6)
where we have used the following equality
1 k—p—1 1 k-1 7
1,p k-p-1 1 k=17
P2 p1 D1 P2 D1 8
1 k—p—1 1 k—1 3
1.op k=p=1_ 1 k=1_3
2 q Q1 q2 q1 4
Let
. ]( 1 _,’_i l ]( _’_i_,
o = 295627 b2 T az 2) Au popaz, G = 29%k2 Au P17 a1 €7,
J 2piz, &) Lo L 0 J
then we have
_ —jsk _j(i'f'i_%) :
18jul g2 e = 2772702 0 2oy, j ez
and
A — o—dsg it 5~
HA]UHLgngl =272 e 2ay, j € L. (3.7)
From v € E,, we get
lullvy, = 8llazy, Nullve,, = lleajlla@), lulln. = 11l z)- (3.8)
Let
Z 209 e a = Z 20 _7+E+E)O‘JX{7= >0}
j=—00 j==o0
with

X{r—j>0} = 1(r > J), Xgr—j>0y = 0(r < j).
Notice that S, (u) =" Aju, we obtain

j=—00

T
ISk @) lgpze < D I1Aull g

j=—o00
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T ) 4
R I B AR R i AR TR N (3.9)
j=—o00

Since s — % + p% + i < 0(k > 5), using Young inequality, we deduce

1Brllia(zy < Clldjllia(z) = Cllullny,, (3.10)
18rll1ee(z) < Clidllioe(zy = Cllullny - (3.11)
Combining (3.7) and (3.9) yields
k—1

k—p—1
18 1@l gz S IS 1 0 o |10 5 ot

k—1
1 4
§27(T+1)(Sk77+7+6 OéT+IZ2 pT+1)( +E+E)
p=0

—(k=p=1)r(sk—5+5-+7-) pk—p—1
ﬁrJrl 2 a ﬁr P

_ o (r D) sk g+ 5 o) o= (k= Dr(sk =3+ 50 +50)

SR . (3.12)
aT+IZ2 kT2 Ty ﬁf+1ﬂr—p—
=0
< 9~ k=) o= =D+ D sk =3+ amzﬁmﬁk p—1
p=0
<Ot Da, (85 + BEY),
In last inequality, we use
1 1 4 1 1 4 3
sk—=t+—4+—)+hk—D(sp— =4+ —+ —) = s + =
(k2p2qz)( )(k2p1q1)k8
It follows from (3.6) and (3.12) that
k-1
k—p—
[Au H 8.3 <C Z ”AT+IUHL‘°2L‘QZHST+1 )Higngz”Sr(u)”LglpL?11
k
7'+]OO
<0 5 Dot + )
r=j—k
+oo 5
=C) 2D,y (85 + A
r=j

=C Z g7t d) ka(ﬁf k1 T 5:?—_;)'
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Thus

Q=

i(s 3
D @AM 5 4))
JEL L Li
S (=) (sk+2) k—1 E—1y\q1+
<C_Q 2V a, (BT + B
JEZ r=j
+0o0
1 3 _ _ 1
<O QY IxG <oy (B h e + B
JEZL reZ

Since sy, + 2 > 0(k > 5), using Holder inequality, (3.8) and (3.11) gives

; 3 1 _ _ 1

D@ DAl 5 )7 < CTY ol (B + B
vt reZ

L < Cluls Jull

jez
§C”UHN2,IJHUHN1,OO

This gives the proof of (3.3) and (3.4).
In what follows, we prove (3.1). For p = 8 and ¢ = 4,j € Z, using (2.18)

and (3.3), we obtain

¢ t
HAj/O S(t—T)az(uk(T))dTHLgOLg=||<9a:/0 S(t = )8 (u)(r)dr| e (3.13)
-3 —‘S ’
§C2J§||Aj(uk)HL§L§ < C277%;.

T

From (3.13) and (3.4) yields

t
I ] (= out @)l e

=su ISk || A t -7 uF(1))dr 2q§
‘teﬂ%%@ 1A, /0 S(t — 1) (u* (7)) dr | 2)1]
<[ @, / S(t — 7)0u(u (r))dr | e 12)7]
jEZ 0
<c(3" )i
JEZ

k—
< Cllullg, llulls-
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Using (2.10) and (3.3), for i = 1,2 and j € Z, we get

(o0 —3)
9 it e —2) |A; / S(t — 7)0puf (1 )dTHLquI
JG =55~ 1A o F
SR Tl y ;/2 (3.14)
= O3 | AjuF|| s 4
' LIL}
< 02795k,

By (2.24), (2.25), (3.4) and (3.14), we obtain

¢
H/ S(t—T)axuk(T)dTHEq
_ZH/ St—T(?u (7)dr||n;,,
_ZZ 2jsk2] pz qi 1

=1 jEZ

D1, [ (- oy ey 0}

1 _
<O e < Cllull g, llulls!
JEZ
This proves Lemma 3.1. O
Lemma 3.2 Assume that uj,us € E; and ab < 0(b # 0), where 1 < ¢ < 0.
Then the following estimates hold

t
H/O S(t—T)aa:(ulf—ug)(T)dTHLtooB;g < Cllur—ua| g, (Jur |15 +l[uzl 5 1) (3.15)

t
H/O S(t — 1)0x(uf — u5)(r)d7||p, < Cllur — ual g, (ua 5" + lua2l ). (3.16)
Proof. From (3.5), we obtain

k-1
Aj(uf — us) Z Apyr(ur —ug) Y (Spra(ua))P(Sr(uz))* 7P+
r=j—k p=0
> Apa(ug)Sra(ur —ug) Y (Sppr(ua) + (Sppr (u2) " (Sp(ur))"
r=j—k ritro+rz=k—2
+ Z Argr(ug)Se(ur —uz) > (Spatqug) ™ (Se(un))™ (Sp(u2))™).
r=j—k ri+rot+ry=k—2

Similar to the proof of Lemma 3.1, we know that (3.15) and (3.16) hold. The
Lemma is proved. ]
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4. MAIN RESULTS

In order to prove our main results, in what follows, we introduce four Lemmas.
Lemma 4.1 Assume that ab < 0(b # 0),q € [1,+00],m € [4,+o0] and n €
2, +00] with L + ;L < L. Let u be a solution of (1.1)- (1.2) with ull g, , < oo.

Then the sequence

i (L4 1
a] = 2J$k2j(m+n Q)HAJ"U/HLZJLL;L (4].)

belongs to [9(Z) and the estimate holds
o llnczy < Cllluollgge + s, ) (4.2
Proof. Since u is a solution of (1.1)- (1.2), we have
Aju = Aj(S(t)ug) + Aj(/ot S(t — 7)0,uf (7)dr), Vj € Z. (4.3)

By (2.9), (3.2) and E, 1 — Es 1, we know that (4.2) holds. This proves Lemma
4.1. O

Lemma 4.2 Assume that ab < 0(b # 0). Let u be a solution of the problem
(1.1)-(1.2), then we have

k
lulzs, < COYT* (ol e + lull, ),

»d
k—15 7(k—1) (4.4)
Here v = v(r) > 0.
Proof. It suffices to show that
0 00
> Azl + D 1Azullzy, < COVT" (luoll gy + Ilullf, ,)- (4.5)

j=—o00 j=1
We first consider the high frequencies. Let r > 4, then there always exists ¢; > 7,
a1 1 1 1,1 4
Suchthat q1€ [2,+OO] Wlth;+ﬂgzand8k*§+;+a>0

Indeed, we can clearly find such a ¢; as long as the set (4(%_1) — ﬁ, min(

11
r?2

2)) is nonempty. The conditions

3 11 5
_2 = 2k -1
o) w sy orsgkb
and
31 _1_2_ k-1
k-1 4 2 ¢ %5
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Using Lemma 4.1 and Holder inequality, we get
o
—j(sk—3+i+2) &
Do lAull 0 =12 Tl < C)(luoll g +llulle, ;). (4.6)
j=1 ‘
Using Hoélder inequality and (4.6), we obtain
o o
v v k
Do lAjulley, T Ajull 0 < C()T (luollggr + llullz, ). (4.7)
j=1 j=1 ’
Hereu:%—%>0.
Now we consider the low frequencies term. Let r € [4, 2(k—1)), set g2 = o0,

then we get 2 + = <landsy —2+14+ 2 <0Oaslongasr>4andr> £t

From Lemma 4.1 again gives

0
—j(sk—5+2+= k
Z ||Aju||L;;LqT2 =2 i(sk—3+; q2)aj||,1(j§0) < C(T)(HUOHBSZ + [ullE, 2)-

j=—00
(4.8)
By Holder inequality yields
0 0
D I8gullag, ST 37 [Aull e < CET (Juoll g + llullf, ). (49)
j=—o0 J=—

Herev=%>0.

Thus, Combining (4.7) and (4.9) gives the proof of (4.5). The proof of Lemma
4.2 is completed. O

Lemma 4.3 Assume that ug € B;fq and ab < 0(b # 0), where 1 < g < 0.
Then for any € > 0, there exists T = T(||u0HB;k ,€) small enough such that
»q

1SH)uollg, » < e (4.10)
Proof. From Lemma 2.6, for any 7" and ug € B;’“q, we get
1S(t)uollNe g < Cliuoll g - i=1,2.

Since Z(R) is dense in B3k

5 there exists vg € Z(R) such that for any € > 0

g
o = woll gy < 35
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Using Lemma 2.3 yields

sl (ot a %
HS(t)vOHNi,q,T = "2.78/92](P1 q; 2) HAyS(i:)’UOHngLg} HZ‘Z(Z)
1 . (L4 1
<CTéui |]238’€2j(1’¢+% 2)HA]'S(75)UOHL§1'L%°||lq(Z)
1L 4
< OTa || 270275 || Ajvo | 12 [l10(z)

1
=CT % ||vol|

4.
Bkt

2,q

4

skt
Since vg € Z(R) C B;jcq % | then we obtain
1
15()volln; g7 < CT

q, T —

1
Choosing T' > 0 small enough such that CT'% <, i=1,2. So we get

1S(t)uoll e, =15 (B)uollNy 4z + IS E)uol| Ny 4 1
<|[S(#)(uo — vo)llny g + 1S (E)vollny 4 7+
!S(t)e(w) n 00)|[Ny . + 15 () voll Ng 4
<4+ 4+4°<
=7 + 1 + 1 + 1S €
This proves Lemma 4.3. O

Lemma 4.4 Assume that ug € B ;1 < g < 00,ab < 0(b # 0) and s > sy,
then for s > s > sy, there exists n; > 0(1 = 1,2) such that

1S ()uolln; 7 < CTmHUO”BS’ ,1=1,2. (4.11)
2,q9
Proof. For g; € [2, 00|, choosing r; > ¢;, such that s — sp > % — %.
’ Lspt A4
Using Holder inequality, Lemma 2.3 and B3 , — B;q % " we obtain

4

R Te N N §
1S @)uollv, e = 1274275572 A S (1ol s oz

1 1 . (A _ 4y 514 1
=o7n 7 |22 T G W TR A S (ol i e
L=t gdlsrt =)
<CT% 7?2 a ||AjU0||L2||lL1(Z)
1 _ 1
=CTu Ti||u0HBSk+q%—%

1 1
<CT4 ri||u .
<CT ol 0

Choosing 7; = % — %, then proof of Lemma 4.4 is finished. O

In what follows, we give main theorem.
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Theorem 4.1 Suppose that £ > 5,k € N and ab < 0(b # 0), suppose fur-
thermore that there exists & = (k) > 0 such that for any ug € Bj* fo With
”UOHB% < §. Then the IVP (1.1)-(1.2) has a unique solution u = u(x,t) on the

domaln R x R and the solution satisfies the following properties

u € C(R; B3~,). (4.12)
Nl,oo + NQ,OO <409 (413)
and

u(t) — ug (4.14)

in S'(R) as t — 0.

Moreover, for any T < oo,
<7§’;:?, %» 5<k<13

and the mapping ug — wu is lipschitz continous from {ug € B |||U0HBSk < 4}

into the space defined by (4.12)-(4.14).

Proof. For any fixed M > 0, we define the function space
Xar = {ulu — S(t)ug € C(R; B3 ) () Eoos [lu — (Buoll e e + llull e < M}
equipped with the metric
d(ur,uz) = llur — w2l oo+ llur — vz pec.
Obviously, (X, d) is a complete metric space.

For any u € Xjs, Lemma 2.6 and 3.1 gives

1®(u) = S(t)uoll e g+ ()]

t t

<| / S(t = 70 () g+ IS Ouolls + | / S(t — )0 (r)dr | .
0 0 0

< Cllull, + Clluoll sz (4.16)

Choosing M = (4C)~ 1 and § = (4C)_%, since Huo||B§koo < §, then from
(4.16), we get

() — S(Oul e+ 19(u) . < M.
So ®(u) € Xyr.
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For uy,us € Xy, using Lemma 3.2 gives

d(u,uz) = [[@(ur) = S(ua)lpee gz + [12(u1) — B(u2)l

<\/ S(t — 7)) (7)o +||/ S(t — )0 — ) (r)dr | .
< Cllu — uall g (et 152 + a5

1 1
< 5”“1 —uzllg, < 561(“1,“2)-
So ® is a strict contractive mapping on Xj;.

Using Banach fixed point theorem, there exists a unique u € X satisfying
(4.12) and (4.13).

In what follows, we prove (4.14) and (4.15). Since u — S(t)ug € C(R; B;koo)
and the continuity of the group S(t) in S'(R) yields (4.14). Lemma 4.2 assure
that (4.15) holds. The proof of theorem 4.1 is completed. O

Theorem 4.2 Suppose that k£ > 5,k € N and ab < 0(b # 0), suppose further-
more that ug € BS’“ o (R) and g € [1, 00).
(1) Then there exists a positive constant T = T(||u0HBsk) such that the IVP
(1.1)-(1.2) has a unique solution u = wu(z,t) on the strlp R x [-T,T] and the
solution satisfies the following properties

ue C([-T,T); B3) () Eqr- (4.17)
Moreover, for all T' < +00
(HE=D) 5oy 5 < k<13

uelh  re k=57 3
e {(’“3, Ly, g >13

(4.18)

and the mapping uy — u(t) from BSZ(R) into the space defined by (4.17) is
locally Lipschitz.

(2) If HUOHBSk < d(given in the statement of theorem 4.1 ), then u is a global
solution of IVP (1.1)-(1.2) and satisfies

u € C(R; B3t ) ()L™ (R; B3E). (4.19)

Moreover, for all T" < 400, (4.18) also holds. The mapping ug — u(t) from
BSZ(R) into the space defined by (4.19) is locally Lipschitz.

Proof. (1) For fixed M,T > 0, we define the metric space
XM = {u e C(-T,T; Bsk ﬂEqT\Hu — )UOHL%OBSZ + Jullg, » < M},
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d(ur, uz) = [Jur — ul oo + [lur — u2l|E, o
Obviously, (X2 d) is a complete metric space.

For any u € XYM , using Lemma 3.1, we get
t
19(u) = S()uoll g e < |l /0 S(t — T)@xuk(T)dTHL%OBQq

lul|¥1 < CM*. (4.20)

Eoo,T

< Cllullg

q,T‘

From Lemma 2.6, 3.1 and 4.3, we obtain

t
1005, 5 = 1 (E)up + / S(t — )9 (7)drll5,
0
t
<|IS®uollz, » + | /0 S()drllg, , (4.21)

k—
<1S®uol g, r + Cllull g, llulli,
<e+cMP.

Combining (4.20) and (4.21) yields
|19(u) = S(uoll e pyr. + 12(w)|| 2, < 2+ CM".

Now choosing M > 0 small enough such that

1
MEL < 2.
¢ =4

Let 0 < e < %M, then we have
12() = SE)uollpge e + @), 2 < M,
So ® maps X:]p\/[into Xi]p\/[.

We now show that ® is a strict contractive map. For any uj,us € X% , it
follows from Lemma 3.2 that

12(u1) = (u2)llpge e + [[2(u1) — 2(u2) g, 0

— k
< Cllur = usll gy 7 (lun 5, + lluzllE )
<20M* Y|ur — usl|g,

1
< §||U1 —uz|| B, 7

From the contraction mapping principle, the IVP (1.1)-(1.2) has a unique
solution u(x,t) on the strip R x [=T,T] and the solution satisfies the properties
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(4.17) and (4.18). From the above proof, we know that the map ug — u(t) is
lipschitz continuous. we have proved the first part in Theorem 4.2.

(2) Let ug € Bgfq(R),q € [1,00) with HUOHB;’&, <, (recalling that B‘;fq —
B;koo) By virtue of Theorem 4.1, {w € Ex|||w| g, < 4CH} is stable by ®.

For any fixed M > 0, we define metric space
Xur = {u € C(R: B:) [\ Eqllullp. < M}
equipped with the metric

d(ur, uz) = Jlur = uz|| o poi + llur — uallp,-

In what follows, we show that ® maps Xj,; into X;. For v € Xy, By
Lemma 2.6 and 3.1, we obtain

12(w) || £ < [1S(uoll e + 1| fy SE—7)OE(T)dr| £,
< Nl gz + Cllull,
< C6§ + cMF.

Choosing M = (40)_ﬁ and § = (20)*1(40)_ﬁ, then from the above inequal-
ity, we get
[@(u)]| 5o < M.

For uq,us € Xy, it follows from Lemma 3.2 that

d(®(ur), ®(uz)) = [|[®(u1) — ®(u2)l| oo o, + [|P(ur) — (u2)llE,
< Cllur — ual|g, (lua |5 + lluzlly )
< QCMkiln’u,l — UQHEq

1
< Ed(ul,w).

So @ is a strict contractive map on Xj,.

From Banach fixed Theorem, the IVP (1.1)-(1.2) has a unique solution u(z, t)
and the solution satisfies the properties (4.19). From the above proof, we know
that the map ug — u(t) is lipschitz continuous. From Lemma 4.2, we know that
(4.18) also holds. The Theorem 4.2 is proved. [

Theorem 4.3 Assume that ab < 0(b # 0),k > 5,k € N and s > s > sp,
suppose further ug € B3 , and 1 < ¢ < oc.
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(1) Then there exists a positive constant 7' = T’ (Hu0|| s ) such that the IVP
2
(1.1)-(1.2) has a unique solution v = wu(z,t) on the strip R x [T,T] and the
solution satisfies the following properties

ue C([-T,T);Bs ) () Eqr (4.22)

. (k=1) 5(k-1)
7(k—1) 5(k—1

DS Sk e Lb r e (25— 3 7), H<k<13

: T” Skl k> 13

k=1
and the mapping up — u(t) from B; (R) into the space defined by (4.22) is

(4.23)

3 v 3 )7

locally Lipschitz.

(2) If ||u0||Bsk < d(given by Theorem 4.1), then wu is a global solution and
satisfies the propertles
ue L¥(R; BS ). (4.24)

Proof. For fixed M, T > 0, define metric space (X2, d)

XM = {u€ O(-T.7): B3 ) () Egr (Lol il o + s

FA(ullLge s, + llullng, ) < M},
d(u1, ug) = [lur —uallg, 7 + llur —uallpe +A(lur —uellrgens , + llus —uellvg, ),
where
\ = 15@uollz, r
luollBs,
and
lullyg, , = 1275255452 A jull 22 2 o .

For any u € X%/[, using Lemma 3.1, 44 and Egr — FEorp, for 0 <T < 1, we
obtain

t
[®()lle, » <ISH)uolle, - + I/ S(t = 1) 0" (7)dr|| £,

<|IS@)uoll, » + Clulle, - lulls,
< C(Tluoll 5y +HUHE )

<C(T"HUOH ‘ +Mk)

(4.25)

From Lemma 4.2, for 0 < T < 1, we get

12 (w)llg, < C(T [[uoll 5y +HUIIE r) < O Juoll 5y +M"). (4.26)
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For t € R, S(t) is a unitary group in H*(R), using Young inequality, we obtain

t
[1S0(@(u))llLge 2 < N150(S(t)uo)ll gz + ”SO(/O S(t = 7)0pu" (7)dr)l| 5o 12
t

< ||Souol|z2 + sup |0:S(t — T)Souk(T)HL%dT
te[-T,T]J0

T
<llollsg, +C [ ISt () o

T
<Iluollz;, + Cllvoll» / ROl
k
< Jluolls, + Cllulll -
(4.27)
Using (4.27), analogous to the nonlinear estimate as those in Lemma 3.1, for
0 < T <1, we can establish
12()lirge s, + 12(Wllng, 7 < 190(2(w)) [ Lge 1z + [@(u)ll oy + 1)z,
k k—
< Clluolly, + lullby + Nl el )
k
< C(lluollsg,, + lullar)
< C(|luol|By,, + M").
For 0 < T <1, Lemma 4.4 gives
leoll

A< OT"—21 < CT" < c,
[[uoll B3,

Thus
M@ ()L ps, + 19(w)lln; , ) < C(|uollgg, +AM*) < C(T"HuoHBgf + MP).
»q

(4.28)
For 0 < T < 1 and any u € X2, combining (4.25), (4.26) and (4.28) yields

[P ()l xar < C(Tma"{"’”}HUOIIB;q +M"). (4.29)
Choosing M > 0 and T > 0 suitably small such that
1
cMFl <=
!
and
Tmax{n,u} < M ’
4CTuoll .
2,9

hold, then we have
|2l xy < M.
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This implies that ® maps X:JFV[ into X:JA/I .

In what follows, we will show that ® is a strictly mapping on X:,M . For any
u1,uz € XM, using the same way to obtain (4.29), we get

[ (ur) — P(uz)xp < C(Hmlll)@} + [luz] ')@})Ilm — gl xar-

If M satisfies CMF1 < %, then we have

1
12(u1) = (u2)llxyr < Sllur —uallxp

From the contraction mapping principle , the IVP (1.1)-(1.2) has a unique solution
u(z,t) on the strip Rx [T, T] and the solution satisfies the property (4.22). From
the above proof, we know that the map ug — u(t) is lipschitz continuous. From
L¥B;, — L¥L2 and Lemma 4.2, (4.23) follows.

The proof of the second part of Theorem 4.3. By the same way to that of
proof of Lemma 3.1 and Lemma 3.2, and from Theorem 4.1, ||u|]%;1 < (4o)t
for ||UQ”B;k < 0, we can show that for any fixed 6 € [0, s] and T > 0

k-1
lull oy + lullyg, < Clluollzg + Cllullslullgg

< Clluollgg + 5 llullyg
<2Cuollgg < 2C|uol pg -

Taking 8 = 0 and s, respectively, this proves that « can be extended for al time
and u € L*(R; B3 ). This proves Theorem 4.3. O

5. SCATTERING

In this section, we give the scattering result.

Theorem 5.1 Assume that uy € B;fq,q € [1,00) and ab < 0(b # 0), and
the initial value satisfy the small assumption of Theorem 4.1. Let u(x,t) be the
solution of the IVP (1.1)- (1.2). Then there exists (ug,ul) € B;’“q X B;’“q such
that

lim_[lu(t) ~ S()ud | =0 lim_[u(t) — S(t)ug || = 0.

t—+oo
Proof. The proof of essentially follows from the proof of Theorem 2.2 in [15].
From the proof of the second part of Theorem 4.2. we obtain u € C(R; Bgf‘q) and

. .3
HQJSkQJsHAj(uk)H 8 %qu(Z) < F00.

LI L;
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Therefore, for any fixed n € N, there exists j, > 0 such that
1

27273185 ()5 4 i) < (5.1)
and there exists T}, such that
1252 A )] s 4 Nt < — (5.2)
LZL?T%+OO) = n

Now by taking ur, ,(t) = S(t —T»)u(T) = S(t)ur,»(0), combining (5.1) and (5.2)
yields

sup [Ju(t) —urn(t) g < cll2°0275 |25 (M) 5 4 ll1a(z)
t>T, 4 4 .3 T &[Ty +00)
<2725 || A (uF)]| g 4 ll1a(151<jn)
[Tn7+00) (53)

. é k
H27# 275 A (W) s 4 gz
T H[Tn,+o0)

2C
< —.
on
Since S(t) is a unitary group in B;fq, for t > T,,,m1 > n and my > n, we obtain
4C
1uz,m (0) = wr,ma (O g = l[urm: (8) = wrms (Ol e < —=

Thus, ur,»(0) is a Cauchy sequence in Bgfq. Let ul be the limit of Cauchy se-
quence ur, ,(0). From (5.3), we obtain

lim [Ju(t) — S(tug || = 0.

t—-+o0
In the same way, we can show that

lim [Ju(t) — S(t)ug || = 0.

t——o0

Then the proof of Theorem 5.1 is completed. ([

Acknowledgements. This work was supported in part by the Research
Initiation Project for High-level Talents (201031) of North China University of

Water Resources and Electric Power.

REFERENCES

[1] T. Cazenave, Semilinear Schrédinger equations, Courant Lecture Notes in Mathematics,
2003.

[2] K. B. Dysthe, Note on a modification to the nonlinear Schrédinger equation for application
to deep water waves, Proc. R. Soc. Lond. Ser. A 369 (1979), 105-114.



1072 Yu-Zhu Wang and Wenxu Ge

[3] J. Ginibre and G. Velo, On the class of nonlinear Schrédinger equations, J. Func. Anal. 32
(1979), 1-71.

[4] J. Ginibre and G. Velo, The global Cauchy problem for the nonlinear Schridinger equation
revisited, Ann. Inst. Henri Poincaré, Analyse non linéaire 2 (1985), 309-327.

[6] C. C. Hao, L. Hsiao and B. X. Wang, Well-posedness for the fourth order nonlinear
Schrédinger equations, J. Math. Anal. Appl. 320 (2006), 246-265.

[6] C. C. Hao, L. Hsiao and B. X. Wang, Well-posedness of Cauchy problem for the fourth
order nonlinear Schrodinger equations in multi-dimensional spaces, J. Math. Anal. Appl.
328 (2007), 58-83.

[7] A.Hasegawa and Y. Kodama, Solitons in Optical Communications, Oxford University Press,
London, 1995.

[8] Z. H. Huo and Y. L. Jia, The Cauchy problem for the fourth-order nonlinear Schrédinger
equation related to the vortex filament, J. Differential Equations 214 (2005), 1-35.

[9] V. 1. Karpman, Stabilization of soliton instability by higher-order dispersion: Fourth-order
nonlinear Schrédinger type equations, Phys. Rev. 53 (1996), 1336-1339.

[10] V. I. Karpman, Radiation of solitons described by a high-order cubic nonlinear Schrédinger
equation, Physical Review E 62 (4) (2000), 5678-5687.

[11] T. Kato, On nonlinear Schrédinger equations, Ann. Inst. Henri Poincaré, Phys. Theor. 46
(1987), 113-129.

[12] C. E. Kenig, G. Ponce and L. Vega, Oscilatory integrals and regularity of dispersive equa-
tions, Indiana Univ. Math. J. 40 (1991), 33-69.

[13] C. E. Kenig, G. Ponce and L. Vega, Smoothing effects and local existence theory for the
generalized nonlinear Schrodinger equations, Invent. Math. 134 (1998), 489-545.

[14] C. E. Kenig, G. Ponce and L. Vega, On the ill-posedness of some canonical dispersive
equations, Duke math. J. 106 (2001), 617-633.

[15] H. Lindblad and C. D. Sogge, On ezistence and scattering with minimal regularity for
semilinear wave equations, J. Funct. Anal. 130 (1995), 357-426.

[16] L. Molinet and F. Ribaud, it On the Cauchy problem for the generalized Korteweg-de Vries
equation, Comm. Partial Differential Equations 28 (2003), 2065-2091.

[17] L. Molinet and F. Ribaud, Well-posedness results for the generalized Benjamin-Ono equa-
tion with small initial data, J. Math. Pure Appl. 83 (2004), 277-311.

[18] T. Ogawa and Y. Tsutsumi, Blow-up solutions for the nonlinear Schridinger equation with
quartic potential and periodic boundary conditions, Lect. Notes Math. 1450 (1989), 236-251

[19] F. Planchon, Self-similar solutions and semi-linear wave equations in Besov spaces, J. Math.
Pure Appl. 79 (2000), 809-820.

[20] F. Planchon, On the Cauchy problem in Besov spaces for a non-linear Schrédinger equation,
Commun. Contemp. Math. 2 (2000), 243-254.

[21] F. Planchon, Dispersive estimates and the 2D cubic Schrédinger equation, J. Anal. Math.
86 (2002), 319-334.

[22] J. Segata, Well-posedness for the fourth-order nonlinear Schrodinger-type equation related
to the vortez filament, Diff. Int. Eqns. 16 (2003), 841-864.



Well-posedness of Initial Value Problem for Fourth Order... 1073

[23] C. Sulem and P. Sulem, The Nonlinear Schriodinger Equation Self-Focusing and Wave Col-
lapse, Appl. Math. Sci. 139, Springer-Verlag, New York, 1999.

[24] N. Yajima and J. Satsuma, Soliton solutions in a diatomic lattice system, Prog. Theor.
Phys. 62 (1979), 370-378.

[25] V.E. Zakharov, Collapse of Langmuir waves, Sov. Phys. JETP 35 (1972), 908-914.

Yu-Zhu Wang

School of Mathematics and Information Sciences,

North China University of Water Resources and Electric Power
Zhengzhou 450011, China

E-mail: yuzhul08@163.com

Wenxu Ge

School of Mathematics and Information Sciences,

North China University of Water Resources and Electric Power
Zhengzhou 450011, China



