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On the Maslov-type Index for Symplectic Paths with

Lagrangian Boundary Conditions and Spectral Flow
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Abstract: In this paper, we consider the Maslov-type index theory for sym-
plectic paths starting from the identity with Lagrangian boundary conditions
developed by Chun-gen Liu. We firstly give a brief review and some neces-
sary remarks of this theory and then present an explicit formula describing
the connection of this index and the spectral flow. Some new concepts and
basic properties of complex symplectic theory are introduced.
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0. Introduction

Let (R2n, ω0) be the standard linear symplectic space with ω0 =
∑n

j=1 dxj∧dyj .
A Lagrangian subspace L of R2n is an n-dimensional subspace satisfying ω0|L = 0.
The set of all Lagrangian subspaces in R2n is denoted by Lag(n). The linear
symplectic group Sp(2n) is the set of linear transformation ϕ : R2n → R2n

satisfying ϕ∗ω0 = ω0. The matrix J =

(
0 −In

In 0

)
is an example of the linear

transformation corresponds to a matrix M satisfying MT JM = J . We say a
matrix satisfying this condition is a symplectic matrix. In this paper we always
denote the symplectic group by

Sp(2n) = {M ∈ L(R2n) | MT JM = J},
where L(Kn) denotes the group of all n× n matrices with entries in the field K

under the usual matrix multiplication.

For a Lagrangian subspace L and a matrix M ∈ Sp(2n), the image M(L) of
L transformed by the symplectic action M is still a Lagrangian subspace. We
define the L-singular subset of Sp(2n) by

Sp0
L(2n) := {M ∈ Sp(2n) | dimM(L) ∩ L > 0}.

It is a 1-co-dimensional subset of Sp(2n). Its complement in Sp(2n) is denoted
by

Sp∗L(2n) := {M ∈ Sp(2n) | M(L) ∩ L = {0}}.
We denote by

P(2n) = {γ ∈ C([0, 1], Sp(2n)) | γ(0) = I2n},
the set of all continuous symplectic paths starting from identity.

The Maslov index for two Lagrangian paths was defined in [3] and [4]. The
other Maslov indices such as algebraic and geometric Maslov index theories for
non-degenerate symplectic paths are also contained in these two references. In
2006, in their published paper [11], Y. Long, D. Zhang and C. Zhu studied
a Maslov-type index theory for symplectic path with fixed Lagrangian bound-
ary condition L = L0 via the intersection theory of a Lagrangian path with
the constant Lagrangian path L = L0 done by Cappell-Lee-Miller index in
their celebrated paper [3]. In 2007, in his paper [6], for a Lagrangian sub-
space L, Chun-gen Liu developed an index theory for any symplectic path γ ∈
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P(2n) with respect to the singular set Sp0
L(2n). It assigns a pair of integers

(iL(γ), νL(γ)) ∈ Z × {0, 1, · · · , n}, corresponding to the symplectic path γ. We
call it the Maslov-type index theory with Lagrangian boundary conditions (for
convenience, we denote it by Lagrangian-index for short). Here we define νL(γ)
by νL(γ) = dim(γ(1)L) ∩ L, but the definition of iL(γ) is more complicated.
Roughly speaking, iL(γ) is the algebraic intersection number of the symplectic
path γ with the singularity set Sp0

L(2n). The index defined in his papers is used
to study of the nonlinear Hamiltonian systems with Lagrangian boundary condi-
tion. We refer the interested reader to his another paper [7] (and also the new†

references in [9]) for some more examples of studying some nonlinear Hamilton-
ian systems with a Lagrangian boundary condition via this index theory. Here
we note that the methods of defining these two indices are different. (For more
details for these indices, we refer to [11] where Y. Long et al. gave a complete
study of them.) However, as C. Liu and D. Zhang pointed out on pp. 8 of [9],
the indices µ1(γ) and µ2(γ) are essentially special cases of the L-index iL(γ) for
Lagrangian subspaces L0 = {0} × Rn and L1 = Rn × {0} respectively up to a
constant n.

Now, let us give a brief summary of our contents. In Section 1, we will review
this index theory and some related topics. We firstly restate the definition of
the index pair (iL0 , νL0) for the Lagrangian subspace L0 = {0} ⊕ Rn ∈ Lag(n).
Then, we can generalize this index pair to the general case (iL, νL), where L is any
linear Lagrangian subspace of R2n. And also, an important calculation formula
for iL0(γ ∈ P(2n)) is given by C. Liu in Theorem 1.3, which states,

iL0(γ) =
n∑

j=1

E

(
θj(1)− θj(0)

π

)
,

where E(a) = max{k ∈ Z | k < a}. The well-defineness of the index pair (iL, νL)
is proved. Moreover, we will give a rough review of the indices introduced by
Y. Long et al. in [11]. In Section 1, we continue to explore the properties of
Lagrangian-indices with L = L0 since L-index can be reduced to the special case
L0-index. All of the properties are valid for the general case.

In Section 2, we present our main result about the relationship between Lagrangian-
index iL0(γ) and the (Λ,Λ′)-index iΛ̃0,Λ̃0

(γ̃) in Theorem 2.16.

†Our manuscript has been completed earlier than May 2009.
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Theorem 0.1. For any symplectic path γ ∈ P(2n), there holds

iL0(γ) = iΛ̃0,Λ̃0
(γ̃)− n.

Actually, since the (Λ,Λ′)-index iΛ̃0,Λ̃0
(γ̃) here is a variant of spectral flow, we

present an explicit answer to a question about the relation between Lagrangian-
index and spectral flow by an explicit formula. Moreover, we introduce some new
concepts of complex symplectic theory analogous to the standard symplectic the-
ory and study some useful fundamental properties of the spectral flow introduced
in this paper.

In Section 3, we generalize our main Theorem 0.1 for arbitrary Lagrangian
boundary conditions by the methods developed here and some results from Lie
theory as follows.

Theorem 0.2. For any symplectic path γ ∈ P(2n), there holds

iL1
L0

(γ) = iΛ̃1,Λ̃0
(γ̃)− n.

1. The Maslov-type index with Lagrangian boundary conditions

In his papers [6, 7], Chun-gen Liu established an index theory for symplectic
paths starting from the identity with a Lagrangian boundary condition and de-
veloped various properties of the index theory. In this section we will give a brief
review of the definition of the index pair for any symplectic path γ ∈ P(2n) with
the Lagrangian boundary condition (Lagrangian-index for short). It is concerned
about the following linear Hamiltonian system{

ż(t) = JB(t)z, ∀z ∈ R2n, ∀t ∈ [0, 1],
z(0) ∈ L, z(1) ∈ L,

where B(t), t ∈ [0, 1], is a family of continuous symmetric matrix functions and L

is a Lagrangian subspace of the standard symplectic space. Suppose that γ(t) is
the fundamental solution of the linear system ż(t) = JB(t)z, i.e., γ(t), t ∈ [0, 1],
solves this system and satisfying γ(0) = I2n. It assigns a pair of integers

(iL(γ), νL(γ)) ∈ Z× {0, 1, · · · , n},
corresponding to the symplectic path γ. In this section we will review this index
theory and give some details and remarks for [6]. We refer the readers to [6] for
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more details on this index, [9] for C. Liu and D. Zhang’s breakthrough on the
the Bott-type iteration formulas and some abstract precise iteration formulas of
this index theory and its applications, and the wonderful literature [10, 1] for the
basic knowledge about this topic.

We start from a special case. Suppose L = L0 = {0} ⊕ Rn ⊂ R2n which is a
Lagrangian subspace of the linear symplectic space (R2n, ω0). Write a symplectic
path γ(t) in the form:

(1.1) γ(t) =

(
S(t) V (t)
T (t) U(t)

)

where S(t), T (t), U(t) and V (t) are all n×n matrices. The n vectors coming from

the column of the matrix

(
V (t)
U(t)

)
are linearly independent and span a Lagrangian

subspace of (R2n, ω0). In particular, at t = 0, this Lagrangian subspace is L0.

For this L0, define the following two subspace of Sp(2n) by

Sp(2n)∗L0
= {M ∈ Sp(2n) | det V 6= 0}

and
Sp(2n)0L0

= {M ∈ Sp(2n) | det V = 0}

for M =

(
S V

T U

)
.

Since the space Sp(2n) is path connected and the n×n non-degenerate matrix
spaces has two path connected components, one with det V > 0 and the other
with det V < 0, the space Sp(2n)∗L0

has two path connected components as well.
Writing

Sp(2n)±L0
= {M ∈ Sp(2n)∗L0

| ± det V > 0},
then we have Sp(2n)∗L0

= Sp(2n)+L0
∪ Sp(2n)−L0

. We call Sp(2n)0L0
the L0-

degenerate subspace of Sp(2n) and Sp(2n)∗L0
the L0-non-degenerate subspace of

Sp(2n). We denote the corresponding symplectic path space by

P(2n)∗L0
= {γ ∈ P(2n) | γ(1) ∈ Sp(2n)∗L0

}
and

P(2n)0L0
= {γ ∈ P(2n) | γ(1) ∈ Sp(2n)0L0

}.
γ ∈ P(2n)0L0

is called an L0-degenerate symplectic path and otherwise, γ ∈
P(2n)∗L0

is called an L0-non-degenerate symplectic path.
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Definition 1.1. ([6]) We define the L0-nullity of any symplectic path γ ∈ P(2n)
by

νL0(γ) ≡ dimkerL0 (γ(1)) := dim kerV (1) = n− rankV (1)

with the n× n matrix function V (t) defined in (1.1).

Since the n vectors coming from the column of the matrix

(
V (t)
U(t)

)
span a La-

grangian subspace of (R2n, ω0), we note that rank

(
V (t)
U(t)

)
= n. So the complex

matrix U(t)±√−1V (t) is invertible. We define a complex matrix function by

(1.2) Q(t) , Qγ(t) = [U(t)−√−1V (t)][U(t) +
√−1V (t)]−1.

It is easy to see that the matrix Q(t) ∈ U(n), the unitary matrix for any t ∈ [0, 1].
Actually,

([U(t)−√−1V (t)][U(t) +
√−1V (t)]−1)∗[U(t)−√−1V (t)][U(t) +

√−1V (t)]−1

=[U(t)T −√−1V (t)T ]−1[U(t)T +
√−1V (t)T ][U(t)−√−1V (t)][U(t) +

√−1V (t)]−1

=[U(t)T −√−1V (t)T ]−1[U(t)T U(t) + V (t)T V (t)][U(t) +
√−1V (t)]−1

=[U(t)T −√−1V (t)T ]−1[U(t)T −√−1V (t)T ][U(t) +
√−1V (t)][U(t) +

√−1V (t)]−1

=I,

where M∗ denotes the complex conjugate of MT and the second and third equal-
ities follow from Lemma 2.30 in [13]. Denote by

M+ =

(
0 In

−In 0

)
, M− =

(
0 Jn

−Jn 0

)
and Jn = diag(−1, 1, · · · , 1).

It is clear that M± ∈ Sp(2n)±L0
.

For a path γ ∈ P(2n)∗L0
, we first adjoin it with a simple symplectic path

starting from J = −M+, i.e., we define a symplectic path by

γ̃(t) =
{I cos (1−2t)π

2 + J sin (1−2t)π
2 , t ∈ [0, 1/2];

γ(2t− 1), t ∈ [1/2, 1].

Then we choose a symplectic path β(t) in Sp(2n)∗L0
starting from γ(1) and ending

at M+ or M− according to γ(1) ∈ Sp(2n)+L0
or Sp(2n)−L0

, respectively. We now
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define a joint path by

γ(t) = β ∗ γ̃ :=
{ γ̃(2t), t ∈ [0, 1/2];

β(2t− 1), t ∈ [1/2, 1].

By the definition, we see that the symplectic path γ starting from −M+ and
ending at either M+ or M−. As above, we define

Q(t) = [U(t)−√−1V (t)][U(t) +
√−1V (t)]−1

for γ(t) =

(
S(t) V (t)
T (t) U(t)

)
. By Lemma 2.1, we can choose a continuous function

∆(t) in [0, 1] such that

det Q(t) = e2
√−1 ∆(t).

The above argument easily follows that the number 1
π (∆(1) −∆(0)) ∈ Z and it

does not depend on the choice of the function ∆(t) (cf. Lemma 2.4).

Definition 1.2 ([6]). For a symplectic path γ ∈ P(2n)∗L0
, define the L0-index by

iL0(γ) =
1
π

(∆(1)−∆(0)).

The index of L0-degenerate symplectic path γ ∈ P(2n)∗L0
is described in an-

other way. In (1.2), Qγ(t) ∈ U(n) for any t ∈ [0, 1] (here the subscript γ in
Qγ(t) is to indicate the dependence of γ). By the non-degeneracy condition, we
have det V (1) 6= 0. Suppose λj(t) = e2

√−1θj(t) are the eigenvalues of Qγ(t) for
j = 1, 2, · · · , n. C. Liu obtained the following important theorem.

Theorem 1.3 (Theorem 3.6 of [6]). For any symplectic path γ ∈ P(2n), by using
the notations above, there holds

iL0(γ) =
n∑

j=1

E

(
θj(1)− θj(0)

π

)
,

where E(a) := max{k ∈ Z | k < a}.

Remark 1.4. From this theorem, we can find that the Lagrangian-index doesn’t
have the property of path additivity or thus homotopy invariance by path additivity
either (cf. Proposition 2.5). The Maslov index introduced in Subsection 2.2
possesses these two critical properties. Note here θj(0) is a multiplication of π.
In particular, we can take it as 0.



1000 Sheng Rao and Xing Lin

For an L0-degenerate symplectic path γ ∈ P(2n)0L0
, its L0-index is defined by

the infimum of the indices of the nearby non-degenerate symplectic paths.

In the general case, let L be any linear Lagrangian subspace of R2n. Now we
are ready to define the index for any symplectic path γ ∈ P(2n) with L-boundary
conditions. We know that Lag(n) = U(n)/O(n), which means that for any linear

subspace L ∈ Lag(n) there is an orthogonal symplectic matrix P =

(
A−B

B A

)

with A±√−1B ∈ U(n), the unitary matrix, such that PL0 = L. P is uniquely
determined by L up to an orthogonal matrix C ∈ O(n), the orthogonal matrix.
It means that for any other choice P ′ satisfying the conditions above, there exists

a matrix C ∈ O(n) such that P ′ = P

(
C 0
0 C

)
(cf. Lemma 2.31 in [13]). We define

the conjugated symplectic path γP ∈ P(2n) by γP = P−1γ(t)P .

Definition 1.5. ([6]) Define the L-nullity of any symplectic path γ ∈ P(2n) by

νL(γ) ≡ dim kerL (γ(1)) := dim kerVP (1) = n− rank VP (1)

with the n× n matrix function VP (t) defined as in (1.1) with the symplectic path
γ replaced by γP , i.e.,

γP (t) =

(
SP (t) VP (t)
TP (t) UP (t)

)
.

Remark 1.6. The L-nullity νL(γ) is well-defined. In fact, for another choice

of P ′ such that P ′ = P

(
C 0
0 C

)
where C ∈ O(n), the conjugated symplectic path

associated with it is

γP ′ =

(
C−1 0
0 C−1

)(
SP (t) VP (t)
TP (t) UP (t)

)(
C 0
0 C

)
=

(
C−1SP (t)C C−1VP (t)C
C−1TP (t)C C−1UP (t)C

)
.

and dimkerVP (1) = dim kerC−1VP (1)C.

For any L ∈ Lag(n), we define the following two subspace of Sp(2n) by

Sp(2n)∗L = {M ∈ Sp(2n) | det VP 6= 0},

Sp(2n)0L = {M ∈ Sp(2n) | det VP = 0},
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where VP is defined by

MP = P−1MP =

(
SP (t) VP (t)
TP (t) UP (t)

)
.

The space Sp(2n)∗L has two path connected components as well. If we denote
the two components by

Sp(2n)±L = {M ∈ Sp(2n)∗L | ± det VP > 0},

then we have Sp(2n)∗L = Sp(2n)+L ∪ Sp(2n)−L . We call Sp(2n)0L the L-degenerate
subspace of Sp(2n) and Sp(2n)∗L the L-non-degenerate subspace of Sp(2n). We
denote the corresponding symplectic path space by

P(2n)∗L = {γ ∈ P(2n) | γ(1) ∈ Sp(2n)∗L}

and

P(2n)0L = {γ ∈ P(2n) | γ(1) ∈ Sp(2n)0L}.
If γ ∈ P(2n)0L, we call it the L-degenerate symplectic path and otherwise, if
γ ∈ P(2n)∗L, we call it the L-non-degenerate symplectic path.

Definition 1.7. ([6]) For a symplectic path γ ∈ P(2n), we define the Lagrangian-
index by

iL(γ) = iL0(γP ).

Remark 1.8. The Lagrangian-index iL(γ) is well-defined. In fact, for anther
choice P ′ as in Remark 1.6, the conjugated symplectic path associated it is

γP ′ ,
(

SP ′(t) VP ′(t)
TP ′(t) UP ′(t)

)
=

(
C−1 0
0 C−1

)
γP

(
C 0
0 C

)

=

(
C−1SP (t)C C−1VP (t)C
C−1TP (t)C C−1UP (t)C

)
.

The associated unitary matrix defined in (1.2) becomes

QγP ′ (t) = [UP ′(t)−
√−1VP ′(t)][UP ′(t) +

√−1VP ′(t)]−1

= C−1[UP (t)−√−1VP (t)][UP (t) +
√−1VP (t)]−1C.
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2. The relation between Lagrangian-index and spectral flow

2.1. The definition of spectral flow and its properties.

Lemma 2.1. Suppose U(t) ∈ U(n), t ∈ [0, 1] is a continuous family of unitary
matrices. Then there exist continuous functions θ1(t), θ2(t), · · · , θn(t), t ∈
[0, 1], such that the eigenvalues of U(t), ∀t ∈ [0, 1] are e

√−1θk(t), k = 1, 2, · · · , n

and θ1(t) ≤ θ2(t) ≤ · · · ≤ θn(t),∀t ∈ [0, 1].

Proof. The proof of this lemma is a little analogous to the ideas of Theorems
II.5.1 and II.5.2 in [5]. Here we give the main ideas, which are divided as three
steps.

Step 1 For any s ∈ [0, 1], assume that e
√−1θs

k(s), k = 1, 2, · · · , n, are the
eigenvalues of U(s). Without loss of generality, we assume θs

1(s), · · · , θs
n(s) ∈

(−π, π] and then give a numbering θs
l1
(s) ≤ · · · ≤ θs

lm
(s), where lj of θs

lj
(s) denotes

the algebraic multiplicity of it and
∑

j lj = n. Set V s
k = {θ | |θ − θs

k(s)| < π}.
Then there exists a constant δs, such that for any t ∈ [0, 1] ∩ (s− δs, s + δs), the
eigenvalues of U(t) are e

√−1θs
k(t), k = 1, 2, · · · , n and θs

l1
(t) ≤ · · · ≤ θs

lm
(t),

where θs
k(t) ∈ V s

k .

Take ε > 0, such that ε <
θs
k(s)−θs

k−1(s)

3 if θs
k(t) > θs

k−1(s), and ε <
θs
1(s)+2π−θs

n(s)
3 .

Then there exits δ′s, for any t ∈ [0, 1] ∩ (s− δ′s, s + δ′s), such that

σ(U(t)) ∩ {e
√−1(θs

k(s))±ε} = ∅.

Claim There exist l1, l2, · · · , lm eigenvalues near e
√−1θs

l1
(t), e

√−1θs
l1+1(t), · · · ,

e
√−1θs

l1+l2+···+lm−1+1(t), i.e., {e
√−1θ | θ ∈ (θs

k(s)− ε, θs
k(s) + ε)} respectively.

In fact, set open set Ω ∈ C with smooth boundary ∂Ω satisfying ∂Ω∩σ(U(t)) =
∅. Define a projection by

PΩ(U(t)) = − 1
2π
√−1

∫

∂Ω
(U(t)− zI)−1dz.

By the fact that range PΩ(U(t)) is just the eigenspace of U(t) in Ω and by
continuity of U(t), dim range PΩ(U(t)) = const, we can obtain the claim.

So, if t ∈ [0, 1]∩ (s− δ′s, s+ δ′s), we can get a numbering of the eigenvalues. i.e.,

θs
1(t) ≤ · · · ≤ θs

n(t),

where θs
1(s) = θs

2(s) = · · · = θs
l1
(s).
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Step 2 θs
1(t), · · · , θs

n(t) are continuous.

We need to prove θs
k(t̃) → θs

k(t) when t̃ → t. So near e
√−1θs

k(t), by Step
1, we also can get a similar numbering and thus the algebraic multiplicities are
lt1, l

t
2, · · · ltj , respectively. By the claim above, we have that for εt > 0, if |t̃−t| ¿ 1

such that

]{k | |θs
k(t̃)− θs

1(t)| < εt} = lt1,

]{k | |θs
k(t̃)− θs

2(t)| < εt} = lt2,

...

]{k | |θs
k(t̃)− θs

2(t)| < εt} = ltj .

So we can get that |θs
lk

(t̃)− θs
lk

(t)| < εt.

Step 3 Gluing all the small intervals to get a global continuous numbering.

From above, we can get a continuous numbering in a small neighborhood for
each point in [0, 1] and then by Lebesgue Lemma, we have a Lebesgue constant
δ such that all the intervals with diameters smaller that δ contained in some
neighborhood that obtained in the last two steps. The global continuity is assured
by the local continuity in each neighborhood and the numbering is an easy thing.

¤

Definition 2.2. For a continuous family of unitary matrices {U(t) ∈ U(n), t ∈
[0, 1]}, we define the spectral flow of it by

(2.1) sf{U(t), t ∈ [0, 1]} :=
n∑

k=1

([
θk(1)
2π

]
−

[
θk(0)
2π

])
,

where [a] = max{k ∈ Z | k ≤ a}.

Our definition is inspired by the spectral flow introduced by M. F. Atiyah, V.
K. Patodi and I. M. Singer [2].

Example 2.3. It is well-known that spectral flow describes the net change in the
number of negative eigenvalues of the operator family. The counting is done so
that each negative eigenvalue which becomes nonnegative contributes +1, and each
nonnegative eigenvalue which becomes negative contributes −1. Here we assume
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that each θ(t) in e
√−1θ(t) for every t ∈ [0, 1] belongs to [−π, π) and then

sf{e
√−1θ(t), t ∈ [0, 1]} =

{
1 θ(0) < 0

0 θ(0) ≥ 0

}
−

{
1 θ(1) < 0

0 θ(1) ≥ 0

}

=
(
−

[
θ(0)
2π

])
−

(
−

[
θ(1)
2π

])

=
[
θ(1)
2π

]
−

[
θ(0)
2π

]
.

In some sense, Definition 2.2 is a generalization of this example. ¤

Lemma 2.4. Definition 2.2 is valid, i.e., this definition is independent of the
choice of θk(t), k = 1, 2, · · · , n, ∀ t ∈ [0, 1].

Proof. Suppose that there exists another choice of θ̃k(t), k = 1, 2, · · · , n, ∀ t ∈
[0, 1] satisfying the conditions of Lemma 2.1. Then for each k and any t ∈ [0, 1],
we have some k′, such that θk(t) = θ̃k′(t) + 2mk(t)π, and so

n∑

k=1

θk(t) =
n∑

k′=1

θ̃k′(t) + 2

(
n∑

k=1

mk(t)

)
π,

where mk(t) is some integer. Noting here that for any t ∈ [0, 1],
n∑

k=1

mk(t) = constant,

we have [
n∑

k=1

θk(t)
2π

]
=

[
n∑

k=1

θ̃k(t)
2π

]
+ constant.

Then by the following three useful facts
[

n∑

k=1

θk(t)
2π

]
=

[
n∑

k=1

{
θk(t)
2π

}]
+

n∑

k=1

[
θk(t)
2π

]

and similarly,
[

n∑

k=1

θ̃k(t)
2π

]
=

[
n∑

k=1

{
θ̃k(t)
2π

}]
+

n∑

k=1

[
θ̃k(t)
2π

]
,

where {x ∈ R} := x− [x],
[

n∑

k=1

{
θk(t)
2π

}]
=

[
n∑

k=1

{
θ̃k(t)
2π

}]
,
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one can obtain

n∑

k=1

[
θk(1)
2π

]
−

n∑

k=1

[
θk(0)
2π

]
=

n∑

k=1

[
θ̃k(1)
2π

]
−

n∑

k=1

[
θ̃k(0)
2π

]
.

¤

Proposition 2.5 (Basic properties of spectral flow, see also Proposition 3.1 of
[16]). Let U(t) ∈ U(n), t ∈ [0, 1] is a continuous family of unitary matrix. Then
the spectral flow of it has the following basic properties.

(a) (Path additivity) For t′ ∈ [0, 1], we have

sf{U(t), t ∈ [0, t′]}+ sf{U(t), t ∈ [t′, 1]} = sf{U(t), t ∈ [0, 1]}.

(b) (Reversal) By following the notations in Lemma 2.1, we have

sf{U(t), t ∈ [0, 1]} = −sf{U−1(t), t ∈ [0, 1]}+
n∑

k=1

(
δ

(
θk(1)
2π

)
− δ

(
θk(0)
2π

))
,

where δ(x ∈ R) =





1 x is an integer,

0 x is not an integer.

(c) (Homotopy invariance) Suppose Us(t) ∈ U(n), s, t ∈ [0, 1] is a continuous
family of unitary matrix, then

sf{Us(t), (s, t) ∈ ∂([0, 1]× [0, 1])} = 0.

(d) (Zero) If dimker(U(t)− I) ≡ constant, then sf{U(t), t ∈ [0, 1]} = 0.

(e)(Product) Given a unitary path Û(t) ∈ U(n), t ∈ [0, 1], we have

sf{Û(t)∗U(t)Û(t), t ∈ [0, 1]} = sf{U(t), t ∈ [0, 1]},

where M∗ denotes the complex conjugate of MT .

Proof. (a) follows from the definition of spectral flow 2.2 directly.

(b) It is easy to check that the eigenvalues of U−1(t) are

{e−
√−1θk(t), k = 1, 2, · · · , n}
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for any t ∈ [0, 1]. By the definition of spectral flow, we have

sf{U(t), t ∈ [0, 1]}

=
n∑

k=1

([
θk(1)
2π

]
−

[
θk(0)
2π

])

=
n∑

k=1

(
E

(
θk(1)
2π

)
+ δ

(
θk(1)
2π

))
−

n∑

k=1

(
E

(
θk(0)
2π

)
+ δ

(
θk(0)
2π

))

=
n∑

k=1

(
E

(
θk(1)
2π

)
− E

(
θk(0)
2π

))
+

n∑

k=1

(
δ

(
θk(1)
2π

)
− δ

(
θk(0)
2π

))

=−
(

n∑

k=1

([
−θk(1)

2π

]
−

[
−θk(0)

2π

]))
+

n∑

k=1

(
δ

(
θk(1)
2π

)
− δ

(
θk(0)
2π

))

=− sf{U−1(t), t ∈ [0, 1]}+
n∑

k=1

(
δ

(
θk(1)
2π

)
− δ

(
θk(0)
2π

))
,

where E(·) is defined as in Theorem 1.3 and the last second equality applies the
following useful formula,

(2.2) E(x) = −[−x]− 1, ∀x ∈ R.

(c) By the same ideas in the proof of Lemma 2.1, for each point x ∈ [0, 1]×[0, 1],
we can get a neighborhood Ω satisfying the following property.

For any two points x1 and x2 in Ω, let eθ1
j ,eθ2

j , j = 1, 2, · · · , n, be the eigenvalues
of Us(t) at them, respectively and e

θ∗ik the eigenvalues with algebraic multiplicity
ik, where

∑
ik = n and ′∗′ is chosen as 1 or 2. Then we have for each ik,

∣∣∣θ
1
ik

2π
− θ2

ik

2π

∣∣∣ ¿ 1,

and thus, by Property (a), it follows

sf{Us(t), (s, t) ∈ ∂(any square in Ω)} = 0.

Next, by Lebesgue Lemma, if we set the Lebesgue constant as δ and choose
m À 1, such that 1

m < δ, then each small square
[

i
m , i+1

m

] ×
[

j
m , j+1

m

]
, i, j =

0, 1, · · · , n − 1 belongs to some neighborhood with the property. Furthermore,
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since the global continuity of the eigenvalues of θik(t) is assured by the continuity
of θik(t) in each small square (locally), we have

0 =
m−1∑

i,j=1

sf

{
Us(t), (s, t) ∈ ∂

([
i

m
,
i + 1
m

]
×

[
j

m
,
j + 1
m

])}

= sf{Us(t), (s, t) ∈ ∂([0, 1]× [0, 1])},

where the last equality follows from Property (a) (Path additivity).

(d) From the assumption, we know that for each t ∈ [0, 1], U(t) ∈ U(n) have
eigenvalues 1 with the same multiplicity. Without loss of generality, we can
assume the other eigenvalues θk all belong to (0, 2π). By the definition of spectral
flow, we find that the sum in (2.1) is zero.

(e) It is easy to check that U(t) and Û(t)∗U(t)Û(t) have the same eigenvalues.
Then we can get the result from the definition of spectral flow directly. ¤

2.2. A Maslov index by spectral flow. In this subsection, we will present a
Maslov index by spectral flow, in some sense, which can be viewed as a gener-
alization of the Lagrangian-index. And for other interesting connection between
various Maslov indices and spectral flow, we refer to [17, 12, 14, 15] and specially
[16], from which we have learned a lot. Above all, we introduce some new con-
cepts and notations for complex symplectic theory similar to the (real) symplectic
theory.

Definition 2.6. A complex matrix M ∈ L(Cm) is called a J̃-symplectic matrix,
if it satisfies

M∗J̃M = J̃ ,

where

J̃ =

(√−1In1 0
0 −√−1In2

)
, n1 + n2 = m.

J̃ is called the standard J̃-symplectic matrix on Cm when n1 = n2 = n, denoted
by J̃0. In ∈ L(Rn) is the n× n identity matrix and the zero matrix is denoted by
0. All the m × m J̃-symplectic matrices form a subgroup of L(Cm) denoted by
Sp(J̃) and called the J̃-symplectic group.
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Firstly, we consider a 2 × 2 complex matrix M =

(
a b

c d

)
. By Definition 2.6,

the matrix M is J̃-symplectic if and only if

āa− c̄c = d̄d− b̄b = 1 and āb = c̄d.

Furthermore, if M is unitary, it satisfies

āa + c̄c = d̄d + b̄b = 1 and āb = c̄d.

In conclusion, M is unitary J̃-symplectic if and only if

āa = d̄d = 1 and b̄b = c̄c = 0, i.e., āa = d̄d = 1 and b = c = 0.

Lemma 2.7. Suppose that a matrix M ∈ L(C2n) has the square block form

M =

(
A B

C D

)
,

where A,B, C and D are all n× n matrices. Then, we have

(a) The matrix M ∈ L(C2n) is J̃-symplectic if and only if both A∗A− C∗C =
D∗D −B∗B = I and A∗B = C∗D.

(b) Furthermore, the matrix M is unitary J̃-symplectic if and only if A∗A =
D∗D = I and B = C = 0, i.e., A,D ∈ U(n) and B = C = 0.

Proof. (a) follows from the definition of J̃-symplectic matrix by a simple compu-
tation.

(b) Furthermore, when the matrix M is unitary, it should further satisfies
A∗A + C∗C = B∗B + D∗D = I and A∗B + C∗D = 0. By (a) we have A∗A =
D∗D = I and B∗B = C∗C = 0, i.e., A∗A = D∗D = I and B = C = 0. ¤

Definition 2.8. (Definition 4.1 of [16]) Suppose V is a complex vector space of
dimension m, and ω̃ is a sesquilinear, complex antisymmetric and non-degenerate
bilinear form defined on V , i.e., ω̃ satisfies

i) ω̃(x, y) is linear in x and conjugate linear in y;

ii) ω̃(u, v) = −ω̃(v, u), ∀u, v ∈ V ;

iii) ω̃(u, v) = 0 for some u ∈ V and any v ∈ V implies u = 0.
Then ω̃ is called a complex symplectic form on V , and (V, ω̃) is a complex
symplectic space.
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Let (V, ω̃) be a complex symplectic space. u, v ∈ V are complex symplectically
orthogonal, denoted by u⊥v, if ω̃(u, v) = 0. For A,B ⊂ V , define A⊥B if u⊥v

for all u ∈ A and v ∈ B. Let E be a linear subspace of V . Define

Eω̃ = {u ∈ V | ω̃(u, v) = 0, ∀v ∈ E}.

Then Eω̃ is a linear subspace of V , and (Eω̃)ω̃ = E. A linear subspace E of the
complex symplectic space (V, ω̃) is called complex Lagrangian, if E = Eω̃.

The most popular example is the standard complex symplectic space (C2n, ω̃)
with ω̃ defined by the standard J̃-symplectic matrix J̃0,

ω̃(u, v) = 〈J̃0u, v〉C, ∀u, v ∈ C2n,

where 〈u, v〉C denotes the standard complex inner product of u and v, i.e., u∗v.
Without confusion, we omit the subindex C. The corresponding complex La-
grangian subspaces of this complex symplectic space are called J̃0-Lagrangian
subspace and the set of all these subspaces is denoted by Lag(J̃0) for short.

When analogous definitions for complex Lagrangian subspace are adopted here
for general J̃-symplectic matrices, we have the following criterion.

Lemma 2.9. Set J̃ =

(√−1In1 0
0 −√−1In2

)
. Then Λ ∈ Lag(J̃) if and only if

there exists a unique unitary map U : Cn1 → Cn2, satisfying

Λ = Gr(U) :=

{(
x

Ux

) ∣∣∣ x ∈ Cn1

}

and n1 = n2.

Proof. Sufficiency. This follows from the definition of J̃-Lagrangian subspace by
direct computation.

Necessity. From the definition, for any two vectors

(
x1

y1

)
,

(
x2

y2

)
∈ Λ, we have

x1 = x2 if and only if y1 = y2. In fact,

0 = 〈J̃
(

x1 − x2

y1 − y2

)
,

(
x1 − x2

y1 − y2

)
〉

= −√−1 ((x1 − x2)∗(x1 − x2)− (y1 − y2)∗(y1 − y2)) .
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Then, we define a map U : Cn1 → Cn2 by U(x) = y for for any vector

(
x

y

)
∈ Λ.

We claim that the domain and range are Cn1 and Cn2 , respectively. Actually, we
assume that

D = {x ∈ Cn1 | ∃y ∈ Cn2 , satisfying

(
x

y

)
∈ Λ},

R = {y ∈ Cn2 | ∃x ∈ Cn1 , satisfying

(
x

y

)
∈ Λ}.

Take x ∈ D⊥ and then, from the definition of D, it follows

(
x

0

)
∈ Λω̃ = Λ by a

simple computation as above. Thus we have x = 0, i.e., D⊥ = {0} and similarly
R⊥ = {0}. So far, we have proved the claim. Furthermore, the map U is bijective
and n1 = n2.

Thus, assume that Λ is represented as

{(
x

Ux

) ∣∣∣ x ∈ Cn

}
, where U ∈ L(Cn)

is an invertible matrix. Then, for any x, y ∈ Cn, it follows

0 = 〈J̃
(

x

Ux

)
,

(
y

Uy

)
〉

= 〈√−1x, y〉+ 〈−√−1Ux,Uy〉
= −√−1x∗(I − U∗U)y.

By the arbitrariness of x and y, we get U∗U = I. ¤

Remark 2.10. Here there is a natural question: how can we generalize these
concepts and ideas to manifold to obtain a meaningful complex symplectic geom-
etry?

Henceforth, we assume that n1 = n2 = n and denote the corresponding unitary
matrix of a J̃-Lagrangian subspace Λ by ŨΛ. Due to this property, we can
introduce a new Maslov index for a pair of J̃-Lagrangian paths.

Definition 2.11. For a pair of continuous J̃-Lagrangian paths Λ1(t),Λ2(t) ∈
C([0, 1], Lag(J̃)), define a Maslov index by

(2.3) Mas{Λ1(t),Λ2(t)} := sf{ŨΛ1(t)Ũ
−1
Λ2(t), t ∈ [0, 1]},
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where ŨΛj(t), j = 1, 2, is the corresponding unitary matrix of Λj(t) obtained in
Lemma 2.9.

We need a unitary J̃-symplectic matrix P satisfying P ∗JP = J̃ . It is easy to
check that

(2.4) P =
√

2
2

(
I −√−1I

−√−1I I

)

is suitable. Unless mentioned, we denote this matrix by P henceforth.

For convenience, we introduce a new complex symplectic space (C2n, ω̃C) with
complex symplectic form ω̃C defined as,

ω̃C(u, v) = 〈Ju, v〉C, ∀u, v ∈ C2n.

The set of all corresponding complex Lagrangian subspace is denoted by Lag(J).
Moreover, a complex matrix M ∈ L(C2n) is called J-symplectic, if

M∗JM = J,

where J is the standard (real) symplectic matrix defined as in Section 0 and all
the 2n× 2n J-symplectic matrices form a subgroup of L(C2n) denoted by Sp(J)
and called the J-symplectic group.

Lemma 2.12. (a) If a complex Lagrangian subspace Λ ∈ Lag(J), then P ∗Λ ∈
Lag(J̃); And conversely, if a complex Lagrangian subspace Λ̃ ∈ Lag(J̃), then
P Λ̃ ∈ Lag(J).

(b) If M ∈ Sp(J), then M̃ = P ∗MP ∈ Sp(J̃); And conversely, if M̃ ∈ Sp(J̃),
then M = PM̃P ∗ ∈ Sp(J)

Proof. (a) There are two approaches to this claim. One is the direct use of the
definition:

ω̃(P ∗Λ, P ∗Λ) = 〈J̃P ∗Λ, P ∗Λ〉 = 〈P J̃P ∗Λ,Λ〉 = 〈JΛ,Λ〉 = 0

and in addition dimP ∗Λ = n. The other is to check that Λ can be represented
as Gr(U), where U is an invertible matrix with U∗ = U and by a simple compu-
tation,

P ∗Λ = Gr
(
(U +

√−1I)(
√−1U + I)−1

)
.

By the result U∗ = U , we have
(
(U +

√−1I)(
√−1U + I)−1

)∗ (
(U +

√−1I)(
√−1U + I)−1

)
= I.
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So the criterion Lemma 2.9 implies P ∗Λ ∈ Lag(J̃). The converse can also be
obtained by these two approaches.

(b) It can be easily obtained by a simple computation from the definition. ¤

From this Lemma, it is obvious that Lag(J) and Lag(J̃), Sp(J) and Sp(J̃) are
isomorphic, respectively. We will follow the notations in this Lemma henceforth.
For example, Λ̃ and M̃ denote P ∗Λ and P ∗MP , respectively, etc. It is obvious
that

(2.5) Λ̃0 =

{(
x

−√−1x

) ∣∣∣ x ∈ Cn

}
,

where Λ0 =

{(
0
x

) ∣∣∣ x ∈ Cn

}
. Moreover, Sp(2n) ⊂ Sp(J).

Proposition 2.13. (i) If Λ ∈ Lag(J̃) and Ψ ∈ Sp(J̃), then ΨΛ ∈ Lag(J̃).

(ii) For any two J̃-Lagrangian subspaces Λ,Λ′ ∈ Lag(J̃) there exists a unitary
J̃-symplectic matrix Ψ ∈ Sp(J̃) ∩ U(2n) such that Λ′ = ΨΛ. Ψ is uniquely
determined by Λ′ up to a unitary matrix C ∈ U(n), i.e., for any other choice of
Ψ′ satisfying the conditions above, there exists a unitary matrix C ∈ U(n) such
that

Ψ′ = Ψ

(
C 0
0 C

)
.

Proof. (i) is obvious by the definition of J̃-symplectic matrix 2.6 and J̃-Lagrangian
subspace.

(ii) By Lemma 2.9, Λ′ can be written as

{(
x

U ′x

) ∣∣∣ x ∈ Cn

}
and thus Ψ can

be chosen as

(
I 0
0
√−1U ′

)
for Λ = Λ̃0. Then Lemma 2.7 (b) proves the lemma. ¤

Denote by
P(J̃) = {γ ∈ C([0, 1], Sp(J̃)) | γ(0) = I2n}

the set of all continuous J̃-symplectic paths starting from identity.

Propostion 2.14 (J̃-symplectic invariance, see also Corollary 4.1 of [16]). For
any γ(t) ∈ P(J̃) and Λ(t), Λ′(t) ∈ C([0, 1], Lag(J̃)), there holds

Mas{γ(t)Λ′(t), γ(t)Λ(t)} = Mas{Λ′(t),Λ(t)}.
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Proof. Firstly, we claim that it suffices to prove

Mas{γ(1)Λ′(t), γ(1)Λ(t)} = Mas{Λ′(t),Λ(t)}.

In fact, by Definition 2.11,

Mas{γ(t)Λ′(t), γ(t)Λ(t)} = −sf{Ũγ(t)Λ′(t)Ũ
−1
γ(t)Λ(t), t ∈ [0, 1]},

i.e., we can prove

Mas{γ(t)Λ′(t), γ(t)Λ(t)} = Mas{γ(1)Λ′(t), γ(1)Λ(t)}.

Here M , γ(1). Supposing that the eigenvalues of ŨΛ′(t)Ũ
−1
Λ(t) are e

√−1θj(t) and

those of ŨMΛ′(t)Ũ
−1
MΛ(t) are e

√−1θMj
(t)

, j = 1, 2, · · · , n, we have

−
n∑

j=1

([
θM j(1)

2π

]
−

[
θj(0)
2π

])

=−
n∑

j=1

([
θM j(1)

2π

]
−

[
θM j(0)

2π

]
+

[
θM j(0)

2π

]
−

[
θj(0)
2π

])

=−
n∑

j=1

([
θM j(1)

2π

]
−

[
θM j(0)

2π

])

=Mas{MΛ′(t),MΛ(t)},

where the last second equality follows from

(2.6) sf{Ũγ(t)Λ′(0)Ũ
−1
γ(t)Λ(0), t ∈ [0, 1]} = 0.

Actually, by the fact

γ(t)(Λ′(0) ∩ Λ(0)) ∼= M(Λ′(0) ∩ Λ(0)) ∼= (Λ′(0) ∩ Λ(0)),

it follows that dim γ(t)(Λ′(0) ∩ Λ(0)) = constant, i.e.,

dimker(I − Ũγ(t)Λ′(0)Ũ
−1
γ(t)Λ(0)) = constant.

Thus by the Property Zero of spectral flow (cf. Proposition 2.5(d)), we can obtain
this claim.

Next, we prove

Mas{MΛ′(t),MΛ(t)} = Mas{Λ′(t),Λ(t)}.
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Actually,

Mas{MΛ′(t),MΛ(t)} −Mas{γ(0)Λ′(t), γ(0)Λ(t)}
=Mas{γ(s)Λ′(1), γ(s)Λ(1)} −Mas{γ(s)Λ′(0), γ(s)Λ(0)}
=0,

where the first equality follows from the Property Homotopy invariance of spectral
flow (cf. Proposition 2.5(c)) and the second equality follows from

Mas{γ(s)Λ′(1), γ(s)Λ(1)} = Mas{γ(s)Λ′(0), γ(s)Λ(0)} = 0

by the same reasoning of (2.6). ¤

2.3. An explicit formula about Lagrangian-index and spectral flow. Let
us introduce a new index by the Maslov index in Definition 2.11 with respect
to a pair of continuous J̃-symplectic Lagrangian subspaces and a continuous J̃-
symplectic path in Sp(J̃).

Definition 2.15. For any Λ(t),Λ′(t) ∈ C([0, 1], Lag(J̃)) and γ̃ ∈ C([0, 1], Sp(J̃)),
we define (Λ,Λ′)-index of γ̃ by

iΛ,Λ′(γ̃) = Mas{γ̃(t)Λ(t),Λ′(t)}.

By Proposition 2.13(i), it is well-defined. Using Property J̃-symplectic invari-
ance of the Maslov index (cf. Proposition 2.14), we can reduce the (Λ,Λ′)-index
to the special case (Λ̃0, Λ̃0)-index. In fact,

iΛ,Λ′(γ̃) =Mas{γ̃(t)Λ(t),Λ′(t)}
=Mas{γ̃(t)Ψ(t)Λ̃0,Ψ′(t)Λ̃0}
=Mas{Ψ′(t)−1

γ̃(t)Ψ(t)Λ̃0, Λ̃0},
=Mas{γ̄(t)Λ̃0, Λ̃0},

where Ψ(t) and Ψ′(t) are the unitary J̃-symplectic path satisfying Λ(t) = Ψ(t)Λ̃0

and Λ′(t) = Ψ′(t)Λ̃0 (cf. Proposition 2.13(ii)), and γ̄(t) , Ψ′(t)−1γ̃(t)Ψ(t). And
the last second equality follows from the Property J̃-symplectic invariance of the
Maslov index.
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Next, we show that Mas{γ̄(t)Λ̃0, Λ̃0} is independent of the choice of Ψ(t) and
Ψ′(t). In fact, for another choice of Ψ0(t) and Ψ′

0(t) satisfying

Ψ0(t) = Ψ(t)

(
C(t) 0

0 C(t)

)
and Ψ′

0(t) = Ψ′(t)

(
C ′(t) 0

0 C ′(t)

)
,

where C(t), C ′(t) are unitary paths as in Proposition 2.13(ii) and

γ̄0(t) , Ψ′
0(t)

−1
γ̃(t)Ψ0(t),

we have

γ̄0(t)Λ̃0 =

(
C ′(t)−1 0

0 C ′(t)−1

)
Ψ′(t)−1γ̃(t)Ψ(t)

(
C(t) 0

0 C(t)

)
Λ̃0(t)

=

(
C ′(t)−1 0

0 C ′(t)−1

)
Gr(Ũγ̄(t)Λ̃0(t))

=

{(
x

C ′(t)−1Ũγ̄(t)Λ̃0(t)C
′(t)x

) ∣∣∣ x ∈ Cn

}
.

Since C ′(t)−1Ũγ̄(t)Λ̃0(t)C
′(t) does not change the eigenvalues of Ũγ̄(t)Λ̃0(t), we ob-

tain the independence by the definition of Maslov index.

In the end of this section, we give the main result of this paper.

Theorem 2.16. For any symplectic path γ ∈ P(2n), there holds

iL0(γ) = iΛ̃0,Λ̃0
(γ̃)− n.

Recall that L0 = {0} ⊕Rn and Λ̃0 is given by (2.5). γ̃ denotes P ∗γP where P is
given by (2.4).

Proof. Write γ(t) ,
(

S(t) V (t)
T (t) U(t)

)
as in (1.1). Suppose λj(t) = e2

√−1θj(t) are the

eigenvalues of Qγ(t) for j = 1, 2, · · · , n, where

Qγ(t) = [U(t)−√−1V (t)][U(t) +
√−1V (t)]−1

as in (1.2). Using the result and notations in Theorem 1.3, we have

iL0(γ) =
n∑

j=1

E

(
θj(1)− θj(0)

π

)

=−
n∑

j=1

[
−

(
θj(1)− θj(0)

π

)]
− n
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=−
n∑

j=1

([
−θj(1)

π

]
−

[
−θj(0)

π

])
− n

=− sf
{(

(U(t)−√−1V (t))(U(t) +
√−1V (t))−1

)−1
, t ∈ [0, 1]

}
− n

=Mas

{{(
x

−√−1(U(t) +
√−1V (t))(U(t)−√−1V (t))−1x

) ∣∣∣ x ∈ Cn

}
, Λ̃0

}
− n

=Mas

{(
I

√−1I√−1I I

)(
S(t) V (t)
T (t) U(t)

){(
0
x

) ∣∣∣ x ∈ Cn

}
, Λ̃0

}
− n

=Mas{P ∗γPP ∗Λ0, Λ̃0} − n

=Mas{P ∗γP Λ̃0, Λ̃0} − n

=Mas{γ̃Λ̃0, Λ̃0} − n,

where the first and second equalities follow from Theorem 1.3 and the formula
(2.2) respectively. ¤

Remark 2.17. The critical third equality can also be obtained by the first equal-
ity, Proposition 2.5 (b)(Reversal), γ(0) = I and the fact that the total algebraic
multiplicities of eigenvalues is n. In fact,

iL0(γ) =
n∑

j=1

E

(
θj(1)− θj(0)

π

)

=
n∑

j=1

(([
θj(1)

π

]
− δ

(
θj(1)

π

))
−

[
θj(0)

π

])

=−
n∑

j=1

([
−θj(1)

π

]
−

[
−θj(0)

π

])
+

n∑

j=1

(
δ

(
θj(1)

π

)
− 1

)
−

n∑

j=1

δ

(
θj(1)

π

)

=−
n∑

j=1

([
−θj(1)

π

]
−

[
−θj(0)

π

])
− n.

3. A new index with arbitrary boundary conditions

We generalize our main theorem to arbitrary Lagrangian boundary conditions
by the methods developed in the previous section and some results from Lie
theory.
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3.1. The index theory with arbitrary boundary conditions. On the ba-
sis of the Lagrangian-index mentioned above, we develop a new index which
is suitable to study a more general case, that is, to study the following linear
Hamiltonian system with arbitrary Lagrangian boundary conditions

(3.1)





ẋ(t) = JB(t)x(t),
x(0) ∈ L0,

x(1) ∈ L1,

where B(t), t ∈ [0, 1], is still a family of symmetric matrix functions, and L1 ∈
Lag(n) is an arbitrary Lagrangian subspace of R2n.

Suppose that γ(t) is the fundamental solution of the linear Hamiltonian system
ẋ(t) = JB(t)x(t), that is, γ(0) = I2n the identity matrix, and γ̇(t) = JB(t)γ(t),
then γ ∈ C([0, 1], Sp(2n)) is a symplectic path with γ(0) = I2n and write it in

the form

(
S(t) V (t)
T (t) U(t)

)
, where S(t), T (t), V (t) and U(t) are all n×n matrices. It

is easy to see that the n vectors coming from the column of the matrix

(
V (t)
U(t)

)

are linear independent and they span a Lagrangian subspace of (R2n, ω0).

For the linear Lagrangian subspaces L0 and L1, there exists an orthogonal

symplectic matrix P such that PL0 = L1 and P has the form P =

(
A−B

B A

)

with A±√−1B ∈ U(n), the unitary matrix. So P−1 = P T =

(
AT BT

−BT AT

)
. Here

P is uniquely determined by L0 and L1 up to an orthogonal matrix C ∈ O(n),
where O(n) denotes the orthogonal n×n matrix group. (cf. Lemma 2.31 in [13].)
Moreover, the symplectic group is a Lie group and its Lie algebra is

sp(2n) = {M ∈ L(R2n, R2n) | JM + MT J = 0}.

It is easy to see that JetM = e−tMT
J , where MT denotes the transpose of the

matrix M . Hence for any symplectic matrix N ∈ Sp(2n), we have

(e−tMN)T J(e−tMN) = NT e−tMT
Je−tMN = NT JN = J,

that is, e−tMN ∈ Sp(2n). For any M ∈ Sp(2n), it is well-known that the one
parameter curve exp(tM) = etM in Sp(2n) is a Lie subgroup of Sp(2n), and
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Sp(2n) = exp(sp(2n)), which means the exponential map

exp : sp(2n) −→ Sp(2n)

is surjective (not injective). So for the above P ∈ Sp(2n)∩O(2n), there is a matrix
M ∈ sp(2n) such that P = eM and etM ∈ Sp(2n) ∩ O(2n). Furthermore, M is
anti-symmetric, that is, MT +M = 0. So by JM+MT J = 0, we have JM = MJ .
Thus we have a Lagrangian path λ : [0, 1] −→ Lag(n) with λ(t) = etML0. We
write the orthogonal symplectic path

γ0(t) = etM =

(
A(t) B(t)
−B(t) A(t)

)
with A(t)±√−1B(t) ∈ U(n).

The above Lagrangian path determines a unique unitary matrix path

R0(t) = [A(t)−√−1B(t)][A(t) +
√−1B(t)]−1.

But the matrix M is not unique since M̌ := M + 2kπJ ∈ sp(2n) also satisfies
eM̌ = P and we get another symplectic path γk(t) = et(M+2kπJ) with Rk(t) =
e4kπtR0(t).

Proposition 3.1. Let γ0(t) = etM and γk(t) = et(M+2kπJ) be the two symplectic
paths with the same end points. Then we have

(3.2) iL0(γk) = 2nk + iL0(γ0).

Proof. Let us follow the notions as in paper [6]. Then

γk(t) =

(
Sk(t) Vk(t)
Tk(t) Uk(t)

)
and Qk(t) = [Uk(t)−

√−1Vk(t)][Uk(t) +
√−1Vk(t)]−1.

By the fact γk(t) = e2kπJtγ0(t), we have

Qk(t) = e4
√−1kπtQ0(t).

By Theorem 3.3 of [6], we get the result (3.2). ¤

From Proposition 3.2, since iL0(I2n) = −n, we choose a unique matrix M in
the set

Θ = {M ∈ sp(2n) | eM = P, JM = MJ and iL0(e
−tM ) ∈ [−n, n)}.

In the rest, we always fix such a matrix M ∈ Θ.
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Definition 3.2. For any symplectic path γ(t) =

(
S(t) V (t)
T (t) U(t)

)
, define the (L0, L1)-

nullity to be

νL1
L0

(γ) ≡ dimker(AT V (1) + BT U(1)).

In fact, νL1
L0

(γ) is just the dimension of the solution space of the problem (3.1).
Let x = (p, q) ∈ Rn ×Rn be a solution of (3.1). Then it satisfies x(t) = γ(t)x(0).
Suppose (0, v) ∈ {0}×Rn and P (0, v′) = (p, q) for some (0, v′) ∈ {0}×Rn. Hence
by the equality

(
p

q

)
=

(
A −B

B A

)(
0
v′

)
=

(
S(1) V (1)
T (1) U(1)

)(
0
v

)
,

we see that (AT V (1) + BT U(1))v = 0.

Remark 3.3. The definition is well-defined. Since for another P ′ satisfies the
condition we have

P ′ = P

(
C 0
0 C

)
=

(
A −B

B A

)(
C 0
0 C

)
=

(
AC −BC

BC AC

)
,

where C ∈ O(n), then

νL1
L0

(γ) = dim ker((AC)T V (1) + (BC)T U(1))

=dim ker(AT V (1) + BT U(1)).

Definition 3.4. For the symplectic path γ ∈ P(2n), we use the L0-index to define
the (L0, L1)-index of γ by

iL1
L0

(γ) ≡ iL0(e
−tMγ(t)).

Remark 3.5. The index iL1
L0

(γ) is well-defined, that is, it is independent of the
choice of the matrixes M and P . We just need consider how to ensure the in-
dependence of the choice of the orthogonal symplectic matrix P . For the other

choice P ′, there is an orthogonal matrix C ∈ O(n) such that P ′ = P

(
C 0
0 C

)
. We

divide our work into two steps.

Step 1. If det C = 1, then
(

C 0
0 C

)
=

(
eS 0
0 eS

)
= exp

(
S 0
0 S

)
,
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and

P ′ = eM exp

(
S 0
0 S

)
= exp

(
M +

(
S 0
0 S

))
.

The symplectic path exp

(
−tM +

(
−tS 0
0 −tS

))
γ(t) is L0-homotopic to e−tMγ(t)

by the homotopy

exp

(
−tM +

(
−stS 0

0 −stS

))
γ(t), (s, t) ∈ [0, 1]× [0, 1].

(See Definition 3.9 about ’L0-homotopic’.) Thus in this case iL1
L0

(γ) is independent
of the choice of C.

Step 2. If det C = −1, then

P ′ = P




−1 0 0 0
0 In−1 0 0
0 0 −1 0
0 0 0 In−1




(
C ′ 0
0 C ′

)
, with det C ′ = 1.

By Step 1, we only need to suppose that

P ′ = P




−1 0 0 0
0 In−1 0 0
0 0 −1 0
0 0 0 In−1


 = eMeπJ ′ = eM+πJ ′ with J ′ = J2 ¦ I2n−2.

In this case, the symplectic paths e−tπJ ′e−tMγ(t) and e−tMγ(t) satisfy

iL0(e
−tMγ(t)) = iL0(e

−tπJ ′e−tMγ(t)) + 1.

For the proof of this result, one can use the similar arguments as in the proof of
Proposition 3.2. By this, from now on, we fix an orthogonal symplectic matrix P

such that P : L0 → L1 be orientation preserving, i.e., just the case in the Step 1.

Generally, we consider the following Hamiltonian system

(3.3)





ẋ(t) = JB(t)x(t),
x(0) ∈ L,

x(1) ∈ L1,
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where L and L1 are two arbitrary Lagrangian subspaces in R2n. We also can find
an orthogonal symplectic matrix O satisfying OL0 = L and thus define a new
symplectic path γO(t) = O−1γ(t)O.

Definition 3.6. The (L,L1)-nullity of any symplectic path γ ∈ P(2n) is defined
by

νL1
L (γ) = dim ker(AT

1 VO(1) + BT
1 UO(1)),

where VO(t) and UO(t) are defined in γO(t) =

(
SO(t) VO(t)
TO(t) UO(t)

)
and P1 =

(
A1 −B1

B1 A1

)

satisfies P1L0 = O−1L1.

Remark 3.7. This definition is well-defined. Since if the other O′ = O

(
C ′ 0
0 C ′

)

satisfies the above conditions, we have

(O′)−1γ(t)O′ =

(
(C ′)−1 0
0 (C ′)−1

)
O−1γ(t)O

(
C ′ 0
0 C ′

)

=

(
(C ′)−1 0
0 (C ′)−1

)(
SO(t) VO(t)
TO(t) UO(t)

)(
C ′ 0
0 C ′

)

=

(
(C ′)−1SO(t)C ′ (C ′)−1VO(t)C ′

(C ′)−1TO(t)C ′ (C ′)−1UO(t)C ′

)
.

Hence, we have

νL1
L (γ) = dim ker((C ′)−1AT

1 VO(1)C ′ + (C ′)−1BT
1 UO(1)C ′)

= dim ker(AT
1 VO(1) + BT

1 UO(1))

and thus the definition is independent of the choice of the matrix O.

Definition 3.8. The (L,L1)-index is defined by

iL1
L (γ) = iL0(e

−tM1γO(t)).

where eM1 = P1 and iL0(e
−tM1) ∈ [−n, n).

We claim that this definition is independent of the choice of the matrix O ∈
Sp(2n) ∩O(2n). Since for another matrix O′ = O

(
C ′ 0
0 C ′

)
, we have

(O′)−1γ(t)O′ =

(
(C ′)−1SO(t)C ′ (C ′)−1VO(t)C ′

(C ′)−1TO(t)C ′ (C ′)−1UO(t)C ′

)
.
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Therefore

det[(C ′)−1UO(t)C ′ −√−1(C ′)−1VO(t)C ′][(C ′)−1UO(t)C ′ +
√−1(C ′)−1VO(t)C ′]−1

=det[UO(t)−√−1VO(t)][UO(t) +
√−1VO(t)]−1.

3.2. Some properties of our new index. Our new index defined in Subsection
3.1 has many properties which are similar to the Lagrangian-index developed by
C. Liu. For convenience, we first briefly list some results in the paper [6]. In
the paper [8], the authors obtained many more results by using the methods
of Galerkin approximation and the saddle point reduction. First we give some
necessary definitions for the statement.

Definition 3.9. (i) For two symplectic paths γ0, γ1 ∈ P(2n), we say that they
are L0-homotopic and denoted by γ0 ∼L0 γ1, if there is a map δ : [0, 1] → P(2n)
such that δ(j) = γj for j = 0, 1, and νL0(δ(s)) is constant for s ∈ [0, 1].

(ii) For two symplectic matrices of the square block form

M1 =

(
A1 B1

C1 D1

)

2i×2i

and M2 =

(
A2 B2

C2 D2

)

2j×2j

,

the symplectic direct sum of M1 and M2 is defined by

M1 ¦M2 =




A1 0 B1 0
0 A2 0 B2

C1 0 D1 0
0 C2 0 D2


 .

In his paper [6], C. Liu also proved the following important result.

Theorem 3.10 ([6]). (i) If γ0, γ1 ∈ P(2n)∗L0
, then iL0(γ0) = iL0(γ1) if and only

if γ0 ∼L0 γ1.

(ii) For two symplectic paths γj ∈ P(2nj), j = 1, 2, with n1 + n2 = n, there
holds

iL0(γ1 ¦ γ2) = iL′0(γ1) + iL′′0 (γ2),

where L′0 = {0} ⊕ Rn1 and L′′0 = {0} ⊕ Rn2.

(iii) For two symplectic paths γj ∈ P(2nj), j = 1, 2 with γ1(1) = γ2(1), it
holds iL0(γ1) = iL0(γ2) if and only if γ1 ∼L0 γ2 with fixed endpoints.
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(iv) For two symplectic paths γj ∈ P(2nj), j = 1, 2, if γ1 ∼L0 γ2, there holds

iL0(γ1) = iL0(γ2), νL0(γ1) = νL0(γ2).

(v) For any symplectic path γ ∈ P(2n), there holds

iL0(γ) =
n∑

j=1

E

(
θj(1)− θj(0)

π

)
,

where E(a) = max{k ∈ Z | k < a}.

Now we list some properties of our new index below. Since we use the Lagrangian-
index to define the new index and the fact that e−tMγ(t) is the fundamental solu-
tion of ẋ = JB̃x(t), where B̃ = JM + e−tMB(t)etM , these properties of the new
index are very similar to those of the Lagrangian-index. Here we just consider
the case L0 = {0}⊕

Rn.

Proposition 3.11 (Symplectic additivity). For two paths γj ∈ P(2nj), j = 1, 2,
with n1 + n2 = n, there holds

iL1
L0

(γ1 ¦ γ2) = i
L′1
L′0

(γ1) + i
L′′1
L′′0

(γ2),

where L0 = L′0 ⊕ L′′0 with L′0 = {0}⊕
Rn1 and L′′0 = {0}⊕

Rn2, and L1 =
L′1⊕L′′1 = P1L

′
0

⊕
P2L

′′
0 for some suitable orthogonal symplectic matrixes P1 and

P2.

Proof. By the setup of Subsection 3.1, we can write

P1 = eM1 :=

(
A1−B1

B1 A1

)

2n1×2n1

and P2 = eM2 :=

(
A2−B2

B2 A2

)

2n2×2n2

,

which are both orthogonal symplectic matrices.

Let γ̃1(t) = e−tM1γ1(t) and γ̃2(t) = e−tM2γ2(t). Then from our definition of
the (L0, L1)-index, we have iL1

L0
(γ1(t)) = iL0(γ̃1(t)) and iL1

L0
(γ2(t)) = iL0(γ̃2(t)).

As before, we denote by γ1(t) and γ2(t) two symplectic matrices of the square

block form, that is, γi(t) =

(
Si(t) Vi(t)
Ti(t) Ui(t)

)

2ni×2ni

for i = 1, 2.
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Then by direct computation, we see that

γ̃1 ¦ γ̃2

=(e−tM1γ1(t)) ¦ (e−tM2γ2(t))

=

((
AT

1 (t) BT
1 (t)

−BT
1 (t) AT

1 (t)

)(
S1(t) V1(t)
T1(t) U1(t)

))
¦

((
AT

2 (t) BT
2 (t)

−BT
2 (t) AT

2 (t)

)(
S2(t) V2(t)
T2(t) U2(t)

))

=

((
AT

1 (t) BT
1 (t)

−BT
1 (t) AT

1 (t)

)
¦

(
AT

2 (t) BT
2 (t)

−BT
2 (t) AT

2 (t)

))((
S1(t) V1(t)
T1(t) U1(t)

)
¦

(
S2(t) V2(t)
T2(t) U2(t)

))

=(e−tM1 ¦ e−tM2)(γ1 ¦ γ2).

Hence the definition of (L0, L1)-index implies iL1
L0

(γ1 ¦ γ2) = iL0(γ̃1 ¦ γ̃2). ¤

Proposition 3.12 (Homotopy invariant). For two path γj ∈ P(2n), j = 0, 1, it
holds that if γ0 ∼L1

L0
γ1, then

iL1
L0

(γ0) = iL1
L0

(γ1),

where γ0 ∼L1
L0

γ1 means that there is a map δ : [0, 1] → P(2n) such that δ(j) = γj

for j = 0, 1 and υL1
L0

(δ(s)) is constant for s ∈ [0, 1].

Proof. Since γ0 ∼L1
L0

γ1 means that e−tMγ0 ∼L0 e−tMγ1 due to the definition of
the nullity, we can prove the result just by Theorem 3.10 (iv). ¤

Proposition 3.13. For any symplectic path γ ∈ P(2n), there holds

iL1
L0

(γ) = iL0(e
−tMγ) =

n∑

j=1

E

(
θ̃j(1)− θ̃j(0)

2π

)
,

where

E(a) = max{k ∈ Z|k < a},
and λ̃j(t) = e

√−1θ̃j(t) are the eigenvalues of the matrix

=̃(t) = [Ṽ (t)−√−1Ũ(t)][Ṽ (t) +
√−1Ũ(t)],

where Ṽ (t) = AT (t)V (t)+BT (t)U(t) and Ũ(t) = −BT (t)V (t)+AT (t)U(t)). Here

etM =

(
A(t) −B(t)
B(t) A(t)

)
and γ(t) =

(
S(t) V (t)
T (t) U(t)

)
.
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Proof. By a direct calculation we have

e−tMγ(t) =

(
AT (t) BT (t)
−BT (t) AT (t)

)(
S(t) V (t)
T (t) U(t)

)
=

(
∗ Ṽ (t)
∗ Ũ(t)

)

and thus by the definition of our new index and Theorem 3.10 (v), we get the
desired result. ¤

3.3. The relation between the (L0, L1)-index and spectral flow. In this
section, we will generalize our main Theorem 2.16 to establish the relation be-
tween the (L0, L1)-index and spectral flow by an explicit formula.

For convenience, we first introduce some notations about complex symplectic

theory as follows. Let J =

(
0 −In

In 0

)
be the standard (real) symplectic matrix

defined as before and

J̃ =

(√−1In1 0
0 −√−1In2

)
with n1 + n2 = 2n.

If n1 = n2 = n, then J̃ is called the standard J̃-symplectic matrix on C2n and is
denoted by J̃0. Recall that the J̃-symplectic group

Sp(J̃) , {M | M∗J̃M = J̃ ,M ∈ L(C2n)}.

Now consider the standard complex symplectic space (C2n, ω̃) with ω̃ defined
by the standard J̃-symplectic matrix J̃0, that is,

ω̃(u, v) = 〈J̃0u, v〉C, ∀u, v ∈ C2n,

where 〈u, v〉C denotes the standard complex inner products of u and v, that is,
u∗v. Denote by Lag(J̃0) the corresponding complex Lagrangian subspaces of
(C2n, ω̃), that is,

Lag(J̃0) = {Λ is a complex subspace of C2n | Λ = Λω̃},

where Λω̃ = {u ∈ C2n | ω̃(u, v) = 0,∀v ∈ Λ}. Denote

Λ̃0 =

{(
x

−√−1x

) ∣∣∣ x ∈ Cn

}
,
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where Λ0 =

{(
0
x

) ∣∣∣ x ∈ Cn

}
. And let Λ̃1 , P ∗

1 Λ0 where P1 = e−tMP . It is

easy to see that Λ̃1 ∈ Lag(J̃0) since e−tM is a unitary J̃0-symplectic matrix and
so is P . Now we can state our another main result as follows.

Theorem 3.14. For any symplectic path γ ∈ P(2n), there holds

iL1
L0

(γ) = iΛ̃1,Λ̃0
(γ̃)− n,

where the notations follow the remarks above and γ̃ denotes P ∗
1 γP1.

Proof. The proof of this theorem is essentially due to the one of Theorem 2.16.

Write γ(t) ,
(

S(t) V (t)
T (t) U(t)

)
as before. Suppose λj(t) = e2

√−1θj(t) are the eigen-

values of Q̃γ(t) for j = 1, 2, · · · , n, where

Q̃γ(t) = [Ũ(t)−√−1Ṽ (t)][Ũ(t) +
√−1Ṽ (t)]−1

as in (1.2). Using the results and notations in the previous section, we have
n∑

j=1

E

(
θ̃j(1)− θ̃j(0)

π

)

=−
n∑

j=1

[
−

(
θ̃j(1)− θ̃j(0)

π

)]
− n

=−
n∑

j=1

([
− θ̃j(1)

π

]
−

[
− θ̃j(0)

π

])
− n

=− sf

{(
(Ũ(t)−√−1Ṽ (t))(Ũ(t) +

√−1Ṽ (t))−1
)−1

, t ∈ [0, 1]
}
− n

=Mas

{{(
x

−√−1(Ũ(t) +
√−1Ṽ (t))(Ũ(t)−√−1Ṽ (t))−1x

) ∣∣∣ x ∈ Cn

}
, Λ̃0

}
− n

=Mas

{(
I

√−1I√−1I I

)(
AT (t) BT (t)
BT (t) AT (t)

)(
S(t) V (t)
T (t) U(t)

){(
0
x

) ∣∣∣ x ∈ Cn

}
, Λ̃0

}
− n

=Mas{P ∗
1 γP1P

∗
1 Λ0, Λ̃0} − n

=Mas{P ∗
1 γP1Λ̃1, Λ̃0} − n

=Mas{γ̃Λ̃1, Λ̃0} − n,

where γ̃ := P ∗
1 γP1 ∈ C([0, 1], Sp(J̃0)) is applied in the last equality. ¤
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