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Composition Series of Tensor Product

Bin Li and Hechun Zhang

Abstract: Given a quantized enveloping algebra Uq(g) and a pair of dom-
inant weights (λ, µ), we extend a conjecture of Lusztig’s in [13] to a more
general form and then prove this extended version of the conjecture. Namely
we prove that for any symmetrizable Kac-Moody algebra g, there is a compo-
sition series of the Uq(g)-module V (λ)⊗V (µ) compatible with the canonical
basis. As a byproduct, the celebrated Littlewood-Richardson rule is de-
rived and we also construct, in the same manner, a composition series of
V (λ)⊗ V (−µ) compatible with the canonical basis when g is of affine type
and the level of λ− µ is nonzero.
Keywords: Canonical basis, crystal basis, composition series.

1. Introduction

Let Uq(g) be a quantized enveloping algebra associated to an arbitrary sym-
metrizable Kac-Moody algebra g. In [13], for dominant integral weights λ and µ,
Lusztig constructed a canonical basis for the Uq(g)-module V (λ)⊗V (−µ), where
V (λ) is an irreducible highest weight integrable Uq(g)-module of highest weight
λ and V (−µ) is an irreducible lowest weight integrable Uq(g)-module of lowest
weight −µ. This basis has many remarkable properties and can be lifted to a
basis of the modified quantized enveloping algebra Ũ . Since then the canonical
basis as well as the corresponding crystal basis of both this tensor product and
Ũ are widely investigated by many mathematicians e.g. [1, 8, 14, 15].
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Due to the stable property of the basis, there are quite a few submodules of
V (λ)⊗V (−µ) compatible with the canonical basis, that is, every such submodule
is spanned by parts of the basis. Lusztig conjectured further in [13] that in the
case g is of finite type there is a composition series of V (λ)⊗ V (−µ) compatible
with the canonical basis and he proved the conjecture in the case of type A1 by
a direct computation. Later in chapter 27 of [14] concerning about the based
module, Lusztig proved that for any integrable Uq(g)-module M =

⊕
ξ∈P+

M [ξ]
in category Oint where M [ξ] is the sum of all submodules of M isomorphic to
V (ξ), M [λ] is compatible with the canonical basis of M if λ is maximal among
those ξ such that M [ξ] is nonzero. Though not pointing out, Lusztig’s proof of
this result implies the conjecture and provided an inductive construction for the
composition series since, in particular, V (λ)⊗V (−µ) is in category Oint when g is
of finite type. The crystal structures of both V (λ)⊗V (−µ) and Ũ are extensively
investigated by Kashiwara in [8]. In [15] Lusztig investigated the two-sided cells
in the canonical basis of Ũ for g of finite type and he raised some conjectures in
affine type case which were finally solved by Beck and Nakajima in [1].

In [2], a filtration of V (Λi) ⊗ V (−Λj) of Uq(g) was constructed, for g which
is of affine type and where Λi and Λj are fundamental weights. Each Uq(g)-
submodules appeared in this filtration is generated by the tensor product of uΛi

with an extremal vector of V (−Λj). It turns out that all of the Uq(g)-submodules
appeared in this filtration are compatible with the canonical basis which can
be proved using an important lemma due to Kashiwara and some results for
Demazure modules. Motivated by the construction of the filtration in [2], we
construct the composition series of V (λ) ⊗ V (µ) directly for g of any type in
the same fashion. The conjecture by Lusztig is then a special case since V (µ) is
also a lowest weight module for g of finite type. This is quite different from the
argument in Chapter 27 in Lusztig’s book [14] and one can derive from our proof
the Littlewood-Richardson rule for decomposing the tensor product V (λ)⊗V (µ)
into a direct sum of irreducible modules, which is also known by the work of
Littelmann [9].

On geometric aspects, quiver varieties were introduced by Nakajima in order
to get integrable highest weight representations of symmetric Kac-Moody algebra
g. Furthermore, there is also a geometric construction of tensor product V (λ1)⊗
· · · ⊗ V (λr) using quiver varieties [17]. To realize this tensor product, Malkin
also introduced in [16] the tensor product variety. Though both constructions
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are in classical case (q = 1), it would be interesting to consider the geometric
construction of the composition series using Nakajima’s quiver variety or Malkin’s
tensor product variety. We will study this topic in the forth coming publications.

The arrangement of the paper is the following: in section 2, we recall some
basics of the theory of crystal basis and canonical basis. In particular, we recall
the construction of the canonical basis of V (λ)⊗ V (−µ) due to Lusztig. Next in
section 3, the extended Lusztig’s conjecture is proved by building up the required
composition series explicitly using the theory of crystal basis due to Kashiwara.
Then we reintroduce the Littlewood-Richardson rule and compare this composi-
tion series with Lusztig’s inductive construction. Finally in the last section we
study the tensor product V (λ)⊗V (−µ) for any symmetrizable Kac-Moody alge-
bra g. In particular, the connected components of the crystal graph of Uq(g)aλ−µ

are completely determined and a composition series of V (λ) ⊗ V (−µ) is con-
structed compatible with the canonical basis when g is of affine type and the
level of λ− µ is nonzero.

2. Lusztig’s Construction of Canonical Basis

2.1. Notations. Let g = g(A) be an arbitrary symmetrizable Kac-Moody alge-
bra over Q where A is the n×n generalized Cartan matrix and let h be the Cartan
subalgebra which is of dimension 2n−rank(A). We denote by I = {1, · · · , n} the
index set. Let Q =

⊕
i∈I Zαi be the root lattice and set Q+ =

⊕
i∈I Z+αi where

αi are the simple roots. Denote by {hi ∈ h | i ∈ I} the set of simple coroots. P∨

is defined to be a free Z-module with a basis

{hi | i ∈ I}
⋃
{dj ∈ h | 1 6 j 6 n− rank(A)},

called the dual weight lattice. We also define P = {λ ∈ h∗ | 〈h, λ〉 ∈ Z ∀h ∈ P∨}
to be the weight lattice. Note that there is a symmetric bilinear form on P such
that

2(αi, λ)
(αi, αi)

= 〈hi, λ〉,

for i ∈ I, λ ∈ P . Let P+ = {λ ∈ h∗|〈hi, λ〉 ∈ Z+ ∀i ∈ I } be the set of dominant
weights. Denote by Λi the fundamental weight, i.e. 〈hi,Λj〉 = δij ∀i, j ∈ I. The
partial order on P is defined as ξ > ϕ if ξ − ϕ ∈ Q+.

The quantized enveloping algebra Uq(g) is defined as a k-algebra with genera-
tors Ei, Fi and qh for all i ∈ I and h ∈ P∨, where k = Q(q). The relations are as
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in [8]. Let Uq(g)+ (resp. Uq(g)−) be the subalgebra of Uq(g) generated by the Ei

(resp. Fi) for all i ∈ I. Note that irreducible integrable highest and lowest weight
Uq(g)-modules can be indexed by P+ and −P+ respectively. Namely, for λ ∈ P+

(resp. λ ∈ −P+), we denote by V (λ) the irreducible highest (resp. lowest) weight
Uq(g)-module of highest (resp. lowest) weight λ and let uλ be the highest (resp.

lowest) weight vector. Let Oint denote the category of integrable Uq(g)-modules
M which are direct sums of irreducible integrable highest weight modules.

As is well known, if g is of finite type, the Weyl group W of the Lie algebra g

is a finite group and there is a unique longest element w0 ∈ W . In this case, the
irreducible module V (λ) is finite dimensional and hence it is also a lowest weight
module of lowest weight w0λ.

Note that Uq(g) is a Hopf algebra and thus the tensor product of Uq(g)-modules
has a structure of Uq(g)-module through the coproduct on Uq(g). There is a Q-
automorphism of Uq(g), denoted by −, such that

q = q−1, qh = q−h, Ei = Ei, Fi = Fi.

Let Ũq(g) or simply Ũ be the modified quantized enveloping algebra [8] gener-
ated by Uq(g)aλ for λ ∈ P subject to the relations:

qhaλ = q〈h,λ〉aλ, aλaµ = δλ,µaλ, uaλ = aλ+ξu for u ∈ Uq(g)ξ

where Uq(g)ξ = {u ∈ Uq(g) | qhuq−h = q〈h,λ〉u ∀h ∈ P∨}. Note that

Ũ =
⊕

λ∈P

Uq(g)aλ.

2.2. Canonical Basis. Canonical bases are constructed by Lusztig for both
Uq(g)± and some classes of Uq(g)-modules [10, 11, 12, 13]. This basis was sub-
sequently studied by Kashiwara [4, 5, 7, 8] who called it the global crystal basis.
Hereafter we will follow Lusztig’s terminology of canonical basis while using the
notations of global crystal basis due to Kashiwara.

For details on definition of (abstract) crystal, one can refer to [4, 5, 6]. We only
mention here that for λ ∈ P+, V (λ) admits a crystal basis (L(λ), B(λ)) where
B(λ) = {f̃i1 · · · f̃iruλ + qL(λ) ∈ L(λ)/qL(λ) | r > 0, ik ∈ I } \ {0} and there is
a similar result for lowest weight module V (−λ) [4, 5]. We denote also by uλ its
image in L(λ)/qL(λ) if this causes no confusion. For a Uq(g)-module M , there is
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an involution − on M such that

u ·m = u ·m ∀u ∈ Uq(g), m ∈ M,

which will be called bar involution hereafter. Assume that M has a crystal basis
(L(M), B(M)) and MQ is a Q[q, q−1]-lattice of M . (L(M), L(M),MQ) is said to
be a balanced triple if

L(M) ∩ L(M) ∩MQ ∼= L(M)/qL(M).

Suppose that the balanced triple does exist for M , then we have a basis consisting
of bar-invariant elements in L(M) ∩ L(M) ∩ MQ, called canonical basis in this
paper (see [5] for details). We denote it by {G(b)|b ∈ B(M)}.

Definition 2.1. Let M and N be Uq(g)-modules with canonical bases,

(i) a Uq(g) (or Uq(g)±)-submodule M ′ of M is said to be nice (or compatible
with the canonical basis of M) if M ′ is spanned as a k-vector space by
parts of the canonical basis of M .

(ii) a Uq(g)-morphism f : M −→ N is said to be nice (or compatible with
canonical bases) if f maps any canonical basis element of M to either
zero or a canonical basis element of N and if kerf is nice.

(iii) a filtration or a composition series of a Uq(g)-module M is said to be nice
(or compatible with the canonical basis) if any submodule in the filtration
or composition series is nice.

For λ ∈ ±P+, we define the bar involution on V (λ) by

x · uλ = x · uλ

for all x ∈ Uq(g). As is well known, V (λ) has a canonical basis {G(b)|b ∈
B(λ)}. Note that Uq(g)∓ also has a canonical basis {G(b)|b ∈ B(±∞)} such that
{G(b)uλ|b ∈ B(±∞)}\{0} coincides with the above set.

2.3. Canonical Bases in Tensor Product. For Uq(g)-modules M and N with
bar involutions where M ∈ Oint, the Uq(g)-module M ⊗N can be endowed with
a bar involution as

u⊗ v = Θ(u⊗ v)

for all u ∈ M, v ∈ N , where Θ is the quasi R-matrix [3].
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We focus our attention on V (λ)⊗V (µ), where λ, µ ∈ P+. Since both V (λ) and
V (µ) have canonical bases, V (λ)⊗ V (µ) has a natural basis {G(b1)⊗G(b2)|b1 ∈
B(λ), b2 ∈ B(µ)}. The bar involution acts on this basis as

G(b1)⊗G(b2) ∈ G(b1)⊗G(b2) +
∑

wtb′1>wtb1,wtb′2<wtb2

Z[q, q−1]G(b′1)⊗G(b′2).

If a partial order is fixed on the natural basis according to the lexicographical
order on {(wt(b1), wt(b2)) | b1 ∈ B(λ), b2 ∈ B(µ)}, then one gets a new basis of
V (λ)⊗V (µ) that is bar-invariant with upper triangular relations with the above
natural one.

Proposition 2.2. ([13]) For b1⊗ b2 ∈ B(λ)⊗B(µ) there exists a unique element

(b1 ¦ b2)λ,µ ∈ G(b1)⊗G(b2) +
∑

wtb′1>wtb1,wtb′2<wtb2

qZ[q]G(b′1)⊗G(b′2)

satisfying (b1 ¦ b2)λ,µ = (b1 ¦ b2)λ,µ. Hence {(b1 ¦ b2)λ,µ|b1 ∈ B(λ), b2 ∈ B(µ)}
forms a new basis of V (λ)⊗ V (µ).

Note that V (λ)⊗V (µ) has a crystal basis (L(λ)⊗L(µ), B(λ)⊗B(µ)) and for
b1 ⊗ b2 ∈ B(λ)⊗B(µ), the corresponding canonical basis element

G(b1 ⊗ b2) = (b1 ¦ b2)λ,µ.

In particular, G(b1 ⊗ b2) = G(b1)⊗G(b2) if b1 = uλ. This basis is constructed in
the same fashion as that of Lusztig’s canonical basis of V (λ)⊗V (−µ) [13]. When
g is of finite type, our basis coincides with Lusztig’s basis for V (λ) ⊗ V (w0µ)
since the Uq(g)-morphism f : V (µ) −→ V (w0µ) which takes uµ to the canonical
basis element of hight weight in V (w0µ) is easily seen to be a nice isomorphism.
Therefore V (λ)⊗ V (−µ) is a special case in our consideration for g of finite type
but things are quite different in affine or indefinite types since this tensor product
is not in category Oint any more. As is known V (λ) ⊗ V (−µ) is a cyclic Uq(g)-
module generated by uλ ⊗ u−µ. We mention here a result of Lusztig’s (Theorem
2 in [13]) on the stability property for the canonical basis of this tensor product,
which is actually true for g of any type.

Proposition 2.3. For any λ, µ, θ ∈ P+, the Uq(g)-morphism

φ : V (λ + θ)⊗ V (−θ − µ) −→ V (λ)⊗ V (−µ)

which takes uλ+θ ⊗ u−θ−µ to uλ ⊗ u−µ is a surjective nice Uq(g)-morphism.
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We can get some submodules of V (λ)⊗ V (−µ) compatible with the canonical
basis of V (λ)⊗ V (−µ) by means of the above maps, but usually one cannot get
a composition series consisting of the nice submodules obtained above.

Example 2.4. In A2 case, consider V (Λ1)⊗ V (−Λ1 − Λ2). Since we have

V (Λ1)⊗ V (−Λ1 − Λ2)
φ−−−→ V (0)⊗ V (−Λ2) ∼= V (−Λ2)

then V (Λ1)⊗V (−Λ1−Λ2) ⊇ kerφ ⊇ 0 is a filtration compatible with the canonical
basis, but kerφ is far from being an irreducible module.

We denote by B(λ,−µ) the crystal basis of V (λ)⊗V (−µ). It can be seen from
Proposition 2.3 that there is an embedding of crystals

B(λ,−µ) ↪→ B(λ + θ,−θ − µ)

and note that it is strict, i.e. the embedding map commutes with all the Kashi-
wara operators ẽi, f̃i. For λ, µ ∈ P+, let Φ : Uq(g)aλ−µ −→ V (λ,−µ) be the
Uq(g)-map taking aλ−µ to uλ ⊗ u−µ. It is known that Ũ as well as each Uq(g)aλ

have canonical bases and Φ is a nice surjective Uq(g)-map [8, 13]. We denote the
crystal basis of Ũ (resp. Uq(g)aλ) by B̃ (resp. B(Uq(g)aλ)). Hence we have an
embedding of crystals B(λ,−µ) ↪→ B(Uq(g)aλ−µ). It can be viewed as

B(λ,−µ) ⊆ B(λ + θ,−θ − µ) ⊆ B(Uq(g)aλ−µ) ⊆ B̃.

Note that
B(Uq(g)aλ) ∼= B(∞)⊗ Tλ ⊗B(−∞)

where Tλ is a crystal consisting of a single element tλ with εi(tλ) = ϕi(tλ) = −∞
for all i ∈ I. For b ∈ B(λ,−µ) ⊆ B̃, we denote the corresponding canonical basis
element in V (λ,−µ) or Ũ by the same G(b) if there is no confusion.

3. Composition Series of V (λ)⊗ V (µ)

3.1. Kashiwara’s Lemma. We fix λ, µ ∈ P+ hereafter. In [13], Lusztig conjec-
tured that there exists a nice composition series of V (λ)⊗ V (−µ) if g is of finite
type. One may extend this conjecture by changing V (−µ) to V (µ) and omitting
the assumption that g is of finite type. This section is devoted to the proof of this
extended Lusztig’s conjecture. In order to do that, we need the following lemma
due to Kashiwara [6] who proved the lemma in case of g = sl2 and claimed that
it is true in general.
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Lemma 3.1. ([6]) Let M be an integrable Uq(g)-module with a canonical basis.
If N is a nice Uq(g)+-submodule of M , then Uq(g)N is a nice Uq(g)-submodule
of M , i.e. Uq(g)N =

⊕
b∈B(Uq(g)N)⊆B(M) kG(b). Moreover,

B(Uq(g)N) = {f̃i1 · · · f̃imb | m > 0, i1, · · · , im ∈ I, b ∈ B(N)} \ {0}.

For completeness, we give a full proof of Kashiwara’s lemma. First assume that
M is a finite dimensional Uq(sl2)-module with canonical basis and we denote by
B(M) or B for simplicity the crystal basis of M . As is defined by M. Kashiwara
in [6], I l(M) is the sum of all l + 1-dimensional irreducible submodules of M .
Hence M =

⊕
l I

l(M). Set I l(B) = {b ∈ B|ε(b) + ϕ(b) = l} and one can see that

B =
⊕

l

I l(B),

where
⊕

here simply means a union. Note that the decomposition of M into
isotypical components I l(M)’s is compatible with the decomposition of crystal
basis B into I l(B)’s, but it is usually not compatible with the canonical basis.
Set W l(M) =

⊕
l′>l I

l′(M) and W l(B) = {b ∈ B|ε(b)+ϕ(b) > l}. We know from
[6] that W l(M) is a nice Uq(sl2)-submodule of M , i.e.

W l(M) =
⊕

b∈W l(B)

kG(b).

Moreover, if b ∈ I l(B), then

F
(k)
i G(b) =

[
εi(b) + k

k

]

i

G(f̃k
i b) (mod W l+1(M)),

E
(k)
i G(b) =

[
ϕi(b) + k

k

]

i

G(ẽk
i b) (mod W l+1(M)).

Let N be a nice Uq(sl2)+-submodule of M , i.e.

N =
⊕

b∈B(N)⊆B(M)

kG(b).

Set Ñ = Uq(sl2)N , I l(B(N)) = B(N)
⋂

I l(B), W l(B(N)) =
⋃

k>l I
k(B(N)),

W l(N) = W l(M)
⋂

N and B(Ñ) =
⋃

m>0 f̃mB(N) \ {0}. We have the following
lemma.

Lemma 3.2. ([6]) For N , W l(N), Ñ , B(Ñ) defined as above,

(i) ẽiB(N) ⊆ B(N)
⋃{0}.

(ii) W l(N) =
⊕

b∈W l(B(N)) kG(b).



Composition Series of Tensor Product 965

(iii) W l(Ñ) = Uq(sl2)W l(N).
(iv) Ñ =

⊕
b∈B(Ñ)⊆B(M)

kG(b).

Definition 3.3. An integrable Uq(sl2)-module M is said to be truncated if M =⊕
j>0 Ij(M) where there exists an l > 0 such that Ij(M) = 0 for all j > l.

Recall that Lemma 3.2 (iv) is proved by showing

W l(Ñ) =
⊕

b∈W l(B(Ñ))

kG(b)

through a descending induction on l since both sides equal zero when l is suf-
ficiently large. Thus the above results also hold when we modify M to be a
truncated integrable Uq(sl2)-module, that is,

Lemma 3.4. Let M be a truncated integrable Uq(sl2)-module with a canonical
basis. If N is a nice Uq(sl2)+-submodule of M , then Uq(sl2)N is a nice Uq(sl2)-
submodule of M , i.e.

Uq(sl2)N =
⊕

b∈B(Uq(sl2)N)⊆B(M)

kG(b).

Moreover, B(Uq(sl2)N) =
⋃

m>0 f̃mB(N) \ {0}.

Furthermore, we can prove the following lemma.

Lemma 3.5. Let M be an (possibly infinite dimensional) integrable Uq(sl2)-
module with a canonical basis. If N is a nice Uq(sl2)+-submodule of M , then
Uq(sl2)N = Uq(sl2)−N is a nice Uq(sl2)-submodule of M . Moreover,

B(Uq(sl2)N) =
⋃

m>0

f̃mB(N) \ {0}.

Proof. One can define a nice Uq(sl2)-submodule W l(M) of M for any l > 0 as
before. Hence M/W l(M) is a truncated module with a canonical basis {G(b) +
W l(M)|b ∈ Ij(B), j < l} and (N+W l(M))/W l(M) is a nice Uq(sl2)+-submodule.
Applying Lemma 3.4, we have

Uq(sl2)((N + W l(M))/W l(M)) =
⊕

b∈⊕
j<l Ij(B(N))

k(G(f̃mb) + W l(M)).
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It follows that

Uq(sl2)(N + W l(M)) = (
⊕

b∈⊕
j<l Ij(B(N))

kG(f̃mb))
⊕

(
⊕

b∈⊕
j>l Ij(B)

kG(b)).

Set Ñ = Uq(sl2)N . We have Uq(sl2)(N + W l(M)) = Ñ + W l(M). Hence

Ñ =
⋂

l>0

(Ñ + W l(M)) =
⋂

l>0

(
⊕

b∈⊕
j<l Ij(B(N))

kG(f̃mb)
⊕ ⊕

b∈⊕
j>l Ij(B)

kG(b))

which is easily seen to be a nice Uq(sl2)-submodule of M . We denote by Bl the
crystal basis of Ñ + W l(M), i.e.

Bl = {f̃mb | b ∈ Ij(B(N)), j < l, m > 0, f̃mb 6= 0} ∪W l(B).

Since f̃mb ∈ Ij(B) for b ∈ Ij(B(N)) and m > 0 such that f̃mb 6= 0, we have for
l < k, Bl ⊇ Bk and Bk

⋂
I l(B) =

⋃
m>0 f̃mI l(B(N)) \ {0}. It follows that

B(Ñ)
⋂

I l(B) = (
⋂

k>0

Bk)
⋂

I l(B) =
⋃

m>0

f̃mI l(B(N)) \ {0}

and hence we have B(Ñ) =
⋃

l>0(B(Ñ)
⋂

I l(B)) =
⋃

m>0 f̃mB(N) \ {0}. ¤

We define Uq(sl2(i)) to be the subalgebra of Uq(g) generated by Ei, Fi and

q
(αi,αi)

2
hi for some i ∈ I. Since N is a nice Uq(g)+-submodule of M , it is also

a nice Uq(sl2(i))+-submodule. Hence Uq(sl2(i))N is a nice Uq(sl2(i))-submodule
of M by Lemma 3.5. It is easy to see that Uq(g)+Uq(sl2(i)) = Uq(sl2(i))Uq(g)+.

Hence

Uq(sl2(i))N = Uq(sl2(i))Uq(g)+N = Uq(g)+Uq(sl2(i))N

is still a Uq(g)+-module. Repeating this, one can see that

Uq(sl2(i1)) · · ·Uq(sl2(im))N

is a nice Uq(g)+-submodule of M which admits a crystal basis

{f̃ r1
i1
· · · f̃ rm

im
b | r1, · · · , rm ∈ Z+, b ∈ B(N)} \ {0}.

This proves Lemma 3.1 since

Uq(g)N =
∑

i1,··· ,im∈I

U(sl2(i1)) · · ·Uq(sl2(im))N.



Composition Series of Tensor Product 967

3.2. Composition Series. The following construction of composition series is
inspired by [2]. For b ∈ B(µ) with wtb = µ − ∑

i∈I miαi where mi > 0, set
l(b) =

∑
i∈I mi. Since B(µ) = {f̃i1 · · · f̃iluµ | i1, · · · , il ∈ I, l > 0} \ {0}, b is of

the form f̃i1 · · · f̃iluµ for some i1, · · · , il ∈ I, l > 0. Hence wtb = µ −∑l
j=1 αij ,

which implies l = l(b). One can define |b| to be the l(b)-tuple (i1, · · · , il(b)) such
that (i1, · · · , il(b)) is minimal in lexicographic order among tuples (j1, · · · , jl(b))
such that f̃j1 · · · f̃jl(b)

uµ = b, i.e.

|b| = min{(j1, · · · , jl(b)) | b = f̃j1 · · · f̃jl(b)
uµ}.

Set |uµ| = 0. Note that the order on I is given as 1 < 2 < · · · < n − 1 < n. If
|b1| = |b2| = (i1, · · · , il), we have b1 = b2 = f̃i1 · · · f̃iluµ which implies that there
is a one to one correspondence between B(µ) and {|b| | b ∈ B(µ)}. Thus we have
a total order on B(µ) as the following,

b1 6 b2 iff l(b1) > l(b2) or l(b1) = l(b2) but |b1| > |b2|.
Obviously b1 < b2 if wtb1 < wtb2.

Example 3.6. In the case of type A, there is a combinatorial realization of the

crystal B(λ) for λ ∈ P+. If Uq(g) = Uq(sl3), B(Λ1 + Λ2) ∼= B( ) and the

crystal graph is given as the following,

We have | 1 1
2

| = 0, | 1 1
3

| = (2), | 1 2
2

| = (1), | 1 3
2

| = (2, 1), | 1 2
3

| =

(1, 2), | 1 3
3

| = (2, 2, 1), | 2 2
3

| = (1, 1, 2), | 2 3
3

| = (1, 2, 2, 1). Hence the order
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on B(Λ1 + Λ2) is given as the following,

1 1
2

> 1 2
2

> 1 1
3

> 1 2
3

> 1 3
2

> 2 2
3

> 1 3
3

> 2 3
3

.

For b ∈ B(µ), we define a k-subspace Vb(µ) of V (µ) spanned by all canonical
basis elements G(c) such that c > b, i.e. Vb(µ) :=

∑
c>b kG(c).

Lemma 3.7. For µ ∈ P+ and b ∈ B(µ), Vb(µ) is a nice Uq(g)+-submodule of
V (µ) and B(Vb(µ)) = {c ∈ B(µ) | c > b}.

Proof. We only need to show that Vb(µ) is a Uq(g)+-submodule of V (µ). For any
c ∈ B(µ) where c > b, one can see that Vc(µ) ⊆ Vb(µ) and

Uq(g)+G(c) =
⊕

ξ∈Q+

Uq(g)+ξ G(c) = kG(c)
⊕ ⊕

ξ∈Q+\{0}
Uq(g)+ξ G(c).

For ξ ∈ Q+ \ {0},
Uq(g)+ξ G(c) ⊆ V (µ)wtc+ξ =

∑

wtd=wtc+ξ

kG(d)

⊆
∑

wtd>wtc

kG(d) ⊆
∑

d>c

kG(d) = Vc(µ).

Hence
⊕

ξ∈Q+\{0} Uq(g)+ξ G(c) ⊆ Vc(µ) and furthermore,

Uq(g)+G(c) ⊆ Vc(µ) ⊆ Vb(µ).

It follows that Uq(g)+Vb(µ) =
∑

c>b Uq(g)+G(c) ⊆ Vb(µ). Thus Vb(µ) is a nice
Uq(g)+-submodule of V (µ). ¤

Clearly, the above proof is independent of the order on

B(µ)l = {b ∈ B(µ) | l(b) = l}.
More generally, we can choose any total order on B(µ) such that b1 < b2 if
wtb1 < wtb2.

For b ∈ B(µ), we define a Uq(g)-submodule Fλ(b) of V (λ)⊗V (µ) generated by
uλ ⊗ Vb(µ), i.e.

Fλ(b) := Uq(g)(uλ ⊗ Vb(µ)).

Since it follows from the coproduct formula that

Uq(g)+(uλ ⊗ Vb(µ)) = uλ ⊗ Uq(g)+Vb(µ) = uλ ⊗ Vb(µ)
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and
uλ ⊗ Vb(µ) =

∑

c>b

kuλ ⊗G(c) =
∑

c>b

kG(uλ ⊗ c),

uλ ⊗ Vb(µ) is a nice Uq(g)+-submodule of V (λ) ⊗ V (µ). We have the following
proposition according to Lemma 3.1.

Proposition 3.8. For λ, µ ∈ P+ and b ∈ B(µ), Fλ(b) is a nice Uq(g)-submodule
of V (λ)⊗ V (µ). Moreover,

B(Fλ(b)) = { f̃i1 · · · f̃il(uλ ⊗ c) | i1, · · · , il ∈ I, l > 0, c > b} \ {0}.

Theorem 3.9. For λ, µ ∈ P+, { Fλ(b) | b ∈ B(µ)} forms a nice ascending
filtration of V (λ)⊗ V (µ) as the following,

(1) 0 ⊆ Fλ(b1) ⊆ Fλ(b2) ⊆ Fλ(b3) ⊆ · · ·
where uµ = b1 > b2 > b3 > · · · is a complete list of B(µ). Moreover, for two
neighbors c > b in B(µ), Fλ(b)/Fλ(c) ∼= V (λ+wtb) if ẽi(uλ⊗ b) = 0 for all i ∈ I,
otherwise Fλ(b) = Fλ(c).

Proof. It suffices to show the second half. We have B(Fλ(b)) ⊇ B(Fλ(c)) if c > b

are two neighbors in B(µ). Claim that

B(Fλ(b)) \B(Fλ(c)) = {f̃i1 · · · f̃il(uλ ⊗ b) | i1, · · · , il ∈ I, l > 0} \ {0}
if ẽi(uλ ⊗ b) = 0 for all i ∈ I, otherwise B(Fλ(b)) = B(Fλ(c)). Indeed, if
B(Fλ(b))\B(Fλ(c)) is non-empty, it follows from Proposition 3.8 that any element
in B(Fλ(b)) \ B(Fλ(c)) is of the form f̃j1 · · · f̃jk

(uλ ⊗ d) for some j1, · · · , jk ∈ I,
k > 0 and d ∈ B(µ) where c > d > b and it implies d = b. Hence if uλ ⊗ b ∈
B(Fλ(b)) \B(Fλ(c)), we have

B(Fλ(b)) \B(Fλ(c)) = {f̃i1 · · · f̃il(uλ ⊗ b) | i1, · · · , il ∈ I, l > 0} \ {0},
otherwise if uλ ⊗ b ∈ B(Fλ(c)), B(Fλ(b)) = B(Fλ(c)). If ẽi(uλ ⊗ b) = 0 for all
i ∈ I, assume that uλ⊗ b /∈ B(Fλ(b)) \B(Fλ(c)). We have uλ⊗ b ∈ B(Fλ(c)) and
it is of the form f̃l1 · · · f̃lt(uλ⊗d) for some l1, · · · , lt ∈ I, t > 0 and d ∈ B(µ) where
d > c > b. Since ẽi(uλ ⊗ b) = 0 for all i ∈ I, it implies t = 0 and uλ ⊗ b = uλ ⊗ d

which is a contradiction. Thus uλ ⊗ b ∈ B(Fλ(b)) \ B(Fλ(b1)). Conversely, if
ẽi(uλ ⊗ b) 6= 0 for some i ∈ I, ẽi(uλ ⊗ b) = uλ ⊗ ẽib 6= 0 where wtẽib = wtb + αi.
It follows that ẽib > b and furthermore, ẽib > c. Hence

uλ ⊗ b = f̃iẽi(uλ ⊗ b) = f̃i(uλ ⊗ ẽib) ∈ B(Fλ(c)).
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We have proved the claim which implies the theorem. ¤

By deleting superfluous terms in the filtration (1), we have a nice composition
series of V (λ)⊗ V (µ).

Corollary 3.10. For λ, µ ∈ P+, there is a nice ascending composition series of
Uq(g)-module V (λ)⊗V (µ) by listing the elements in {Fλ(b) | b ∈ B(µ), ẽi(uλ⊗b) =
0 ∀i ∈ I} according to the descending order on B(µ).

Lusztig’s conjecture for g of finite type is then an immediate consequence of
the Corollary 3.10.

Corollary 3.11. For λ, µ ∈ P+ and g of finite type, there is a nice composition
series of Uq(g)-module V (λ) ⊗ V (−µ) by listing the elements in {Fλ(b) | b ∈
B(−µ), ẽi(uλ ⊗ b) = 0 ∀i ∈ I} according to the descending order on B(−µ).

Example 3.12. For g = sl3, consider the Uq(g)-mod V (Λ1) ⊗ V (−Λ1 − Λ2) as
in Example 2.4. Since V (−Λ1 − Λ2) ∼= V (Λ1 + Λ2) where the total order on the
crystal basis B(Λ1 + Λ2) of V (Λ1 + Λ2) is given as in Example 3.6, there exists
a nice filtration of the tensor product

0 ⊆FΛ1(
1 1
2

) ⊆ FΛ1(
1 2
2

) ⊆ FΛ1(
1 1
3

) ⊆ FΛ1(
1 2
3

) ⊆ FΛ1(
1 3
2

)

⊆FΛ1(
2 2
3

) ⊆ FΛ1(
1 3
3

) ⊆ FΛ1(
2 3
3

) = V (Λ1)⊗ V (−Λ1 − Λ2).

One can check that uΛ1 ⊗ 1 1
2

, uΛ1 ⊗ 1 2
2

, uΛ1 ⊗ 1 2
3

are maximal vectors

while the others are not. Hence

0 ( FΛ1(
1 1
2

) ( FΛ1(
1 2
2

) ( FΛ1(
1 2
3

) = V (Λ1)⊗ V (−Λ1 − Λ2)

is the nice composition series of V (Λ1)⊗V (−Λ1−Λ2) where FΛ1(
1 1
2

) ∼= V (2Λ1+

Λ2), FΛ1(
1 2
2

)/FΛ1(
1 1
2

) ∼= V (2Λ2), FΛ1(
1 2
3

)/FΛ1(
1 2
2

) ∼= V (Λ1).

From the proof of Theorem 3.9 one can derive the generalized Littlewood-
Richardson rule for symmetrizable Kac-Moody algebra g, that is,

V (λ)⊗ V (µ) ∼=
⊕

b∈B(µ), ẽi(uλ⊗b)=0 ∀i∈I

V (λ + wtb).
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This generalized Littlewood-Richardson rule was proved by Littelmann using path
model [9], see also [4]. One can see from the tensor rule of crystal bases that
ẽi(uλ ⊗ b) = 0 for all i ∈ I is equivalent to

ẽ
〈hi,λ〉+1
i b = 0 for all i ∈ I

and such a crystal basis element b is called λ-dominant in [9].

3.3. Comparison With Lusztig’s Composition Series. As stated in the in-
troduction, one can also construct a composition series of V (λ) ⊗ V (µ) in an
inductive way due to Lusztig. To be precise, for any M ∈ Oint with a canonical
basis, we write M as a direct sum of isotypical components M =

⊕
ξ∈P+

M [ξ].
Let λ1 be a maximal weight in the set {ξ ∈ P+| M [ξ] 6= 0}. We can see from the
proof of Proposition 27.1.7 in [14] that there exists a nice submodule V1

∼= V (λ1)
of M . Go on this procedure by changing M to M2 := M/V1 and so on. Thus
we have a nice Uq(g)-submodule Vi

∼= V (λi) of Mi for some λi ∈ P+ maximal in
the weights of Mi where M1 = M and Mi+1 = Mi/Vi. Let πi be the canonical
map πi : Mi −→ Mi+1. We obtain then a sequence consisting of nice surjective
Uq(g)-maps

M = M1
π1−−→ M2

π2−−→ · · · πi−1−−−→ Mi
πi−−→ Mi+1

πi+1−−−→ · · · .

We define Fi(M) to be the kernel of πi◦πi−1◦· · ·◦π1 for i > 1 and set F0(M) = 0.
One can see easily from the construction that

(2) 0 = F0(M) ⊆ F1(M) ⊆ · · · ⊆ Fi(M) ⊆ Fi+1(M) ⊆ · · ·

is a nice composition series of M where Fi(M)/Fi−1(M) ∼= V (λi). Furthermore,
it is clear to see that λi > λj for i < j if they are comparable. In particular, for
λ, µ ∈ P+, there is a nice composition series of V (λ)⊗V (µ). We denote by Fi the
Uq(g)-submodule Fi(V (λ)⊗ V (µ)) of V (λ)⊗ V (µ) defined above for simplicity.

Let b′j be the unique highest weight element in B(Fj)\B(Fj−1). We know from
the previous subsection that b′j ∈ B(λ) ⊗ B(µ) is of the form uλ ⊗ cj for some
cj ∈ B(µ) such that ẽi(uλ ⊗ cj) = 0 for all i ∈ I. One can see that λj = λ + wtcj

and {cj | j = 1, 2, · · · } is a complete set of elements b such that uλ⊗b is maximal.
One can arrange a total order on B(µ) satisfying the following two conditions,

(i) for b, c ∈ B(µ), b < c if wtb < wtc.
(ii) c1 > c2 > c3 > · · · > cj > cj+1 > · · · .
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Indeed we can define uµ to be the maximum in B(µ) (one can see uµ = c1), then
choose an element in B(µ) \ {uµ} maximal in weight to be the second and so on
only to ensure that c1 > c2 > c3 > · · · > cj > cj+1 > · · · . It is feasible since one
can see from the inductive construction of composition series that wtci > wtcj

for i < j if they are comparable. Once such a total order on B(µ) is fixed, we
immediately obtain, by Corollary 3.10, a nice composition series of V (λ)⊗ V (µ)

(3) 0 ⊆ Fλ(c1) ⊆ Fλ(c2) ⊆ · · · ⊆ Fλ(ci) ⊆ Fλ(ci+1) ⊆ · · ·

It is clear that (3) coincides with (2) when M = V (λ)⊗ V (µ), i.e. Fi = Fλ(ci).
Conversely, if we construct the nice composition series of V (λ)⊗ V (µ)

(4) 0 := Fλ(b0) ⊆ Fλ(b1) ⊆ Fλ(b2) ⊆ · · · ⊆ Fλ(bi) ⊆ Fλ(bi+1) ⊆ · · ·

as in the previous subsection, it can be seen from the choice of total order
that λi > λj for i < j if they are comparable where λi ∈ P+ is such that
Fλ(bi)/Fλ(bi−1) ∼= V (λi). Hence for M = V (λ) ⊗ V (µ) = M1, we define
Mi = M/Fλ(bi−1), Vi = Fλ(bi)/Fλ(bi−1) and πi as stated above. It follows
easily that the composition series inductively constructed is exactly (4), i.e.
Fi(M) := ker(πi ◦ πi−1 ◦ · · · ◦ π1) = Fλ(bi). Hence we get the same nice com-
position series of the tensor product in two different approaches.

4. Nice Filtration of V (λ)⊗ V (−µ)

4.1. Filtration. In the previous section we have proved, by Corollary 3.11,
Lusztig’s conjecture that the Uq(g)-module V (λ) ⊗ V (−µ) has a nice compo-
sition series for g of finite type and λ, µ ∈ P+. For an arbitrary symmetrizable
Kac-Moody algebra g, the Uq(g)-module V (λ) ⊗ V (−µ) also admits a canonical
basis as mentioned previously. But the tensor product may have infinite dimen-
sional weight spaces (when λ and µ are both nontrivial) and have no maximal
weights. Therefore it does not belong to category Oint and Lusztig’s approach
to construct nice submodules of V (λ)⊗V (−µ) fails while our method still works
in this case. To be precise, though we cannot obtain a composition series of the
tensor product in general, we find a nice filtration of it instead which helps us to
understand the structure of this module.

Indeed, we can define a total order on B(−µ) similarly. For b ∈ B(−µ)
which is of the form ẽi1 · · · ẽilu−µ, set l(b) = l and define |b| to be the l(b)-tuple
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(i1, · · · , il(b)) such that (i1, · · · , il(b)) is minimal in lexicographic order among
tuples (j1, · · · , jl(b)) such that ẽj1 · · · ẽjl(b)

u−µ = b, i.e.

|b| = min{(j1, · · · , jl(b)) | b = ẽj1 · · · ẽjl(b)
u−µ}.

Set |u−µ| = 0. A total order on B(−µ) is defined as

b1 6 b2 iff l(b1) < l(b2) or l(b1) = l(b2) but |b1| 6 |b2|.
As in section 3, for b ∈ B(−µ), Vb(−µ) is defined as a k-subspace of V (−µ)
spanned by all G(c) such that c > b and let Fλ(b) be the Uq(g)-submodule of
V (λ)⊗ V (−µ) generated by uλ ⊗ Vb(−µ), i.e.

Fλ(b) := Uq(g)(uλ ⊗ Vb(−µ)).

We have the following theorem by Lemma 3.1, which can be similarly proved as
Theorem 3.9.

Theorem 4.1. For λ, µ ∈ P+, { Fλ(b) | b ∈ B(−µ)} forms a nice descending
filtration of V (λ)⊗ V (−µ) as the following

(5) V (λ)⊗ V (−µ) = Fλ(b1) ⊇ Fλ(b2) ⊇ Fλ(b3) ⊇ · · ·
where u−µ = b1 < b2 < b3 < · · · is a complete list of B(−µ). Moreover, for two
neighbors b < c in B(−µ), Fλ(b)/Fλ(c) ∼= V (λ + wtb) if ẽi(uλ ⊗ b) = 0 for all
i ∈ I, otherwise Fλ(b) = Fλ(c).

Actually the order on B(−µ) can be chosen only to satisfy the property that
b1 < b2 if wtb1 < wtb2. In contrast to Corollary 3.11, usually we cannot get a nice
composition series of V (λ) ⊗ V (−µ) by deleting superfluous terms in (5). More
precisely, the intersection of all submodules in (5) might be nonzero. For example,
when g is of affine type and λ − µ is of a negative level, Fλ(b) = V (λ) ⊗ V (−µ)
for all b ∈ B(−µ).

Similarly, with the order on B(λ) defined in section 3, we can construct another
nice filtration of V (λ) ⊗ V (−µ). For b ∈ B(λ), define F−µ(b) to be the Uq(g)-
submodule of V (λ) ⊗ V (−µ) generated by G(c) ⊗ u−µ for all c 6 b. Note that
when we change Uq(g)+ to Uq(g)−, Lemma 3.1 is also true which implies the
following theorem.

Theorem 4.2. For λ, µ ∈ P+, { F−µ(b) | b ∈ B(λ)} forms a nice descending
filtration of V (λ)⊗ V (−µ) as the following,

(6) V (λ)⊗ V (−µ) = F−µ(b1) ⊇ F−µ(b2) ⊇ F−µ(b3) ⊇ · · ·
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where uλ = b1 > b2 > b3 > · · · is a complete list of B(λ). Moreover, for two
neighbors b > c in B(λ), F−µ(b)/F−µ(c) ∼= V (−µ + wtb) if f̃i(b ⊗ u−µ) = 0 for
all i ∈ I, otherwise, F−µ(b) = F−µ(c).

4.2. Affine Type Case. For λ ∈ P , note that there is a subcrystal Bmax(λ) of
B(Uq(g)aλ) consisting of some ∗-extremal elements which is exactly the crystal
basis of extremal weight module V max(λ) (see [8] for details). It is proved in [8]
that

V max(λ) ∼= V max(wλ)

for any w ∈ W and V max(λ) ∼= V (λ) for λ ∈ ±P+.

Proposition 4.3. ([8]) For any connected component B of B̃, there is an l > 0
such that (wtb, wtb) 6 l for all b ∈ B. Moreover, B contains an extremal vector
and can be embedded into Bmax(λ) for some λ ∈ P .

For g of affine type, let c ∈ h be the canonical central element of g. Given
λ ∈ P , we define 〈c, λ〉 to be the level of λ, denoted by level(λ). The corollary
below follows immediately from Proposition 4.3.

Corollary 4.4. (i) For λ with level(λ) > 0, B(Uq(g)aλ) is a union of highest
weight crystals.

(ii) For λ with level(λ) < 0, B(Uq(g)aλ) is a union of lowest weight crystals.

It follows from the corollary that for λ, µ ∈ P+, B(λ,−µ) is a union of highest
(resp. lowest) weight crystals if level(λ − µ) > 0 (resp. level(λ − µ) < 0).
We define W (λ,−µ) (resp. U(λ,−µ)) to be a k-subspace

⋂
b∈B(−µ) Fλ(b) (resp.⋂

b∈B(λ) F−µ(b)) of V (λ)⊗ V (−µ) and set

M(λ,−µ) = (V (λ)⊗ V (−µ))/W (λ,−µ)

(resp. N(λ,−µ) = (V (λ)⊗ V (−µ))/U(λ,−µ)).

Denote by B+(λ,−µ) (resp. B−(λ,−µ)) the subcrystal of B(λ,−µ) which is the
union of all connect components of B(λ,−µ) that are not highest (resp. lowest)
weight crystals.

Proposition 4.5. For λ, µ ∈ P+,

(i) both W (λ,−µ) and U(λ,−µ) are nice Uq(g)-submodules of V (λ)⊗V (−µ).
Moreover, B(W (λ,−µ)) = B+(λ,−µ) and B(U(λ,−µ)) = B−(λ,−µ).
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(ii) both M(λ,−µ) and N(λ,−µ) admit canonical bases and B(M(λ,−µ)) =
B(λ,−µ) \B+(λ,−µ), B(N(λ,−µ)) = B(λ,−µ) \B−(λ,−µ).

Proof. W (λ,−µ) admits a Uq(g)-action since every Fλ(b) does. The conclusion
for W (λ,−µ) in (i) follows from Theorem 3.9 and that any maximal vector in
B(λ,−µ) is of the form uλ ⊗ b with b ∈ B(−µ) and εi(b) 6 〈hi, λ〉 for all i ∈ I.
It is similar for U(λ,−µ) and (ii) is implied by (i). ¤

When g is of finite type, one can see that W (λ,−µ) = U(λ,−µ) = 0 and both
(1) and (6) provide composition series of V (λ)⊗ V (−µ) by deleting superfluous
terms.

For two crystals B1 and B2 where B1 is connected, let [B2 : B1] be the cardi-
nality of the set which consists of all connected components of B2 isomorphic to
B1, i.e. [B2 : B1] = {B ⊂ B2 | B ∼= B1}#.

Theorem 4.6. For λ ∈ P+ and µ ∈ P , [B(Uq(g)aµ) : B(λ)] = dimV (λ)µ.

Proof. We only need to find out all maximal vectors in B(Uq(g)aµ). Note that
B(Uq(g)aµ) = B(∞)⊗ Tµ ⊗B(−∞) and ẽi acts on it as

ẽi(b1 ⊗ tµ ⊗ b2) =

{
(ẽib1)⊗ tµ ⊗ b2 if ϕi(b1) + 〈hi, µ〉 > εi(b2)
b1 ⊗ tµ ⊗ (ẽib2) if ϕi(b1) + 〈hi, µ〉 < εi(b2).

Assume that b1 ⊗ tµ ⊗ b2 is maximal, since ẽib2 6= 0 for all b2 ∈ B(−∞), we have
ẽib1 = 0 and

(7) ϕi(b1) + 〈hi, µ〉 > εi(b2)

for all i ∈ I. Hence b1 = u∞ which is the image of 1.

Now, we claim that u∞⊗tµ⊗b2 is a maximal vector of weight λ iff wtb2 = λ−µ

and ϕi(b2) 6 〈hi, λ〉 for all i ∈ I. Indeed, if u∞ ⊗ tµ ⊗ b2 is maximal and
wt(u∞ ⊗ tµ ⊗ b2) = µ + wtb2 = λ, then wtb2 = λ− µ and (7) holds which can be
rewritten as 〈hi, µ〉 > εi(b2) since ϕi(u∞) = 0. It follows from ϕi(b2) − εi(b2) =
〈hi, wtb2〉 that 〈hi, µ〉 > ϕi(b2) − 〈hi, wtb2〉 which implies ϕi(b2) 6 〈hi, λ〉. The
other side of the claim is easy to prove.

It has been shown by Kashiwara in [5] that for ξ ∈ P+ there is an embedding
of crystals

τ : B(−ξ) −→ T−ξ ⊗B(−∞)
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whose image is Imτ = {t−ξ ⊗ b | ϕ∗i (b) 6 〈hi, ξ〉 ∀ i ∈ I}. Hence for η ∈ P ,

(8) {b ∈ B(−∞)ξ−η| ϕ∗i (b) 6 〈hi, ξ〉 ∀ i ∈ I}# = dimV (−ξ)−η = dimV (ξ)η

Recall that ∗ acts bijectively on B(−∞). By restricting the ∗-action on

{b ∈ B(−∞) | ϕi(b) 6 〈hi, λ〉 ∀ i ∈ I},

we get a bijection between {b ∈ B(−∞) | ϕi(b) 6 〈hi, λ〉 ∀ i ∈ I} and {b ∈
B(−∞) | ϕ∗i (b) 6 〈hi, λ〉 ∀ i ∈ I}. Hence there is a bijection between

{b ∈ B(−∞)λ−µ | ϕi(b) 6 〈hi, λ〉 ∀ i ∈ I}

and

{b ∈ B(−∞)λ−µ | ϕ∗i (b) 6 〈hi, λ〉 ∀ i ∈ I}.
From (8) and the claim above we know that the number of maximal vectors in
B(Uq(g)aµ) of weight λ equals

{b ∈ B(−∞)λ−µ|ϕi(b) 6 〈hi, λ〉 ∀ i ∈ I}# = dimV (λ)µ.

¤

Let P0 be the subset of P+ consisting of weights λ such that 〈hi, λ〉 = 0 for all
i ∈ I. We have the following corollary.

Corollary 4.7. (i) W (λ,−µ) = N(λ,−µ) = 0 and M(λ,−µ) = U(λ,−µ)
= V (λ)⊗ V (−µ) if level(λ− µ) > 0.

(ii) W (λ,−µ) = N(λ,−µ) = V (λ) ⊗ V (−µ) and M(λ,−µ) = U(λ,−µ) = 0
if level(λ− µ) < 0.

(iii) M(λ,−µ) = N(λ,−µ) is a 1-dimensional trivial module if λ − µ ∈ P0,
otherwise if λ − µ /∈ P0 is of level 0, W (λ,−µ) = U(λ,−µ) = V (λ) ⊗
V (−µ) and M(λ,−µ) = N(λ,−µ) = 0.

Proof. (i), (ii) come from Corollary 4.4. (iii) holds since there is no highest or
lowest weight subcrystal in B(λ,−µ) if λ−µ /∈ P0 is of level 0 while there is only
one trivial subcrystal for λ− µ ∈ P0 by Theorem 4.6. ¤

We can see from this corollary that for g of affine type, (5) (resp. (6)) provides
a nice composition series of V (λ) ⊗ V (−µ) by deleting superfluous terms when
λ− µ is of a positive (resp. negative) level.
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