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Abstract: The classical McKay correspondence establishes a one-to-one
correspondence between finite subgroups of SU(2) and simply-laced root
systems, namely root systems of ADE type. In this article, we extend the
McKay correspondence to all root systems, simply-laced or not, and relate
this correspondence to triality of quaternions.
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1. Introduction

1.1. The McKay correspondence says that, conjugacy classes of finite subgroups

Γ̃ of SU(2), are in one-to-one correspondence with simply-laced simple Lie alge-
bras, or equivalently, Dynkin diagrams of ADE type.

In this article, we extend this correspondence to all simple Lie algebras, simply-
laced or not, using the triality of the quaternions H. This correspondence for
non-simply laced Dynkin diagrams is more or less known. We give an explicit
and unified description, and relate it to the triality of the quaternions H.

Note that SU(2) = Sp(1) acts on H by left multiplications and the adjoint
map Ad : SU(2) → SO(3) is the universal covering of SO(3), which is the
automorphism group of H as a normed division algebra, i.e. SO(3) = Aut(H)

and SU(2) = Ãut(H). Recall that there are only four normed division algebras
A and they are R,C,H and O. Such an algebraic structure is closely related to
the notion of a normed triality:

t : V1 × V2 × V3 → R.

Indeed given any triality triple ~v = (v1, v2, v3), we obtain canonical identifications
V1

∼= V2
∼= V3

∼= V ∗
3 and t determines a product structure on Vi. This makes Vi
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into a normed division algebra A. We write tA instead of t and we denote the set
of all triality triples as TriA.

The symmetry group Aut(tA) ⊂ O(V1)×O(V2)×O(V3) of triality is isomorphic
to SU(2)3/Z2 (resp. Spin(8)) when A equals H (resp. O). Also we denote the

universal cover of Aut(tA) by Ãut(tA). Then Ãut(tH) = SU(2)3. The projection

to each Vi induces a homomorphism pi : Ãut(tA) → O(Vi). In general, Aut(tA)
acts transitively on TriA and the isotropy group is isomorphic to Aut(A), which
equals SO(3) (resp. G2) when A equals H (resp. O). As a result, subgroups of
Aut(A) correspond to subgroups of Aut(tA) which fix some point in TriA.

From the above discussions, the McKay correspondence can be rephrased as
a correspondence between simply laced root systems and finite subgroups of

Ãut(tH) fixing some element in TriH, and we call such a subgroup an isotropic
subgroup. Our main result says that if we consider pairs of finite isotropic sub-

groups of Ãut(tH) inducing the same symmetries on each Vi, then the McKay
correspondence can be extended to all root systems.

A pair (g, τ) with g a (complex) simple Lie algebra and τ an outer automor-
phism determines a Lie algebra g

τ by taking the fixed part. Equivalently, a simply
laced Dynkin diagram D and a diagram automorphism τ determines a Dynkin
diagram Dτ by taking the folding. All non-simply laced simple Lie algebras (or
equivalently, Dynkin diagrams) can be obtained from simply laced ones in such
a way. Namely, g

τ = Bn, Cn, F4, G2 when g = Dn+1, A2n−1, E6,D4 respectively
with τ being of order 2 except for D4, and 3 for D4.

Theorem 1. There is a one-to-one correspondence between the pairs (g, τ) and

the equivalence classes of pairs of finite isotropic subgroups Γ̃, Γ̃′ ⊂ Ãut(tH) of the

same order satisfying pi(Γ̃) = pi(Γ̃′) ⊂ O(Vi) ∼= O(4) for all i.

To prove this result, we first establish the following non-simply laced McKay
correspondence. Our construction is different from the classical restricted-induced
construction in [14] (see also [10]).

Theorem 2. The equivalence classes of pairs (Γ̃, Ov) with Γ̃ a finite subgroup

of SU(2) and Ov an element of the outer automorphism group of Γ̃ induced by
Ad(v) where v ∈ H, are in one-to-one correspondence with the pairs (g, τ) as
above. In particular, we obtain all non-simply laced root systems from the pairs

(Γ̃, Ov).

The Dynkin diagram associated with a pair (Γ̃, Ov) is obtained as follows. Let

W0,W1, · · · ,Wn be all irreducible representations of (Γ̃, Ov). W0 is the trivial
one. Let W be the standard representation of SU(2). Assign a node pl to each
Wl. Assume Wl ⊗W ∼= ⊕malmWm. When alm = aml 6= 0 (both are equal to 1),
we draw alm edges to connect the nodes pl and pm. When alm 6= aml, one of them,
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(Γ̃, Ov) D(Γ̃,Ov)

Cn+1, Ov = 1 An :

BDn−2, Ov = 1 Dn :

BT , Ov = 1 E6 :

BO, Ov = 1 E7 :

BI, Ov = 1 E8 :

C2n, |Ov| = 2 Cn : <

C2n+1, |Ov| = 2 An :

BDn−1, |Ov| = 2 Bn : >

BT , |Ov| = 2 F4 : >

BD2, |Ov| = 3 G2 : <

Figure 1. Dynkin diagrams associated with the pairs (Γ̃, Ov)

say alm, must be 2 or 3, and another is 1. In this case, we draw alm directed edges

from pm to pl. Thus, we obtain a diagram Daff

(Γ̃,Ov)
. Removing the node p0 and

all the edges with p0 as an endpoint from Daff

(Γ̃,Ov)
, we obtain a diagram D

(Γ̃,Ov)
,

and it is a Dynkin diagram. Conversely, each Dynkin diagram can be obtained
in such a way. When Ov = id, we obtain a simply laced Dynkin diagram. We
illustrate this correspondence in Figure 1, where the groups Cn, BDn, BT , BO,
and BI are respectively the cyclic, binary dihedron, binary tetrahedron, binary
octahedron, and binary icosahedron groups.

1.2. Remark. When A = R the similar correspondence is rather trivial, as
Aut(R) = {1,−1}. When A = C we have U(1) = Aut(C). Finite subgroups of
U(1) = S1 are finite cyclic groups Z/nZ (n ∈ N). These finite groups are also
subgroups of SO(3) = Aut(H), since Aut(C) ⊂ Aut(H).

When A = O, the octonions or the Cayley numbers, we have Aut(O) = G2

and Aut(tO) = Spin(8). Finite subgroups Γ of SU(3) ⊂ G2 were studied by
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many mathematicians, as well as physicists, for example, see [8][12][13][15][16]
and the references therein, and the McKay correspondence relates the geometry
of the Calabi-Yau threefolds which are the crepant resolutions of C

3/Γ and the
orbifold (or stingy) geometry of C

3/Γ ([12][13]). There is also a version at the
level of derived categories, see [3]. It is natural to ask a similar question for
R

7/Γ and its G2-resolution for finite subgroup Γ ⊆ G2. It is also interesting to
understand the octonions analogue of our result here.

1.3. In this short article, we first recall in §2 the classification of finite subgroups
of SU(2), and study their (special) outer automorphisms (i.e. automorphisms
induced by adjoint actions).

In §3, we present an explicit description for non-simply laced McKay corre-
spondence. Our result is Theorem 16 and Corollary 17 (see also Theorem 2).

In §4, we explain the relation between non-simply laced McKay correspondence
and triality. The result is Theorem 1 (see also Theorem 25 and Corollary 26).

2. Finite Subgroups of SU(2)

2.1. Finite Subgroups of SO(3) and SU(2), and the Quaternions. Recall,
finite subgroups of SO(3) are classified completely, up to conjugacy (see [5][7]).

Proposition 3. The classification of finite subgroups Γ of SO(3), up to conju-
gacy, is listed in the following table. Here A,B,C are the generators of Γ. The
last column lists the regular polyhedrons whose symmetry groups are the respective
finite groups.

Group, Γ Order Generating Relations (Regular) Polyhedrons

Cyclic, Cn n An = Bn = C1 = ABC = 1 n-gon’s in R
2

Dihedron, Dn 2n An = B2 = C2 = ABC = 1 n-gon’s in R
3

Tetrahedron, T 12 A3 = B3 = C2 = ABC = 1 Tetrahedrons

Octahedron, O 24 A4 = B3 = C2 = ABC = 1 Octahedrons

Icosahedron, I 60 A5 = B3 = C2 = ABC = 1 Icosahedron

Let H be the algebra of quaternions, with the basis 1, i, j,k. For a = a0 +
a1i + a2j + a3k ∈ H with ai ∈ R, we denote Re(a) = a0 ∈ Re(H), Im(a) =
a1i + a2j + a3k ∈ Im(H), and the conjugate ā = Re(a) − Im(a). When a0 = 0,
a is called a pure quaternion. If a is a unit quaternion, then a can be written as
the form

a = cosα+ y sinα = eyα,

where cosα = Re(a) and y is a pure unit quaternion.
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The set of all unit quaternions forms a multiplicative group, which is isomorphic
to SU(2):

a+ bi + cj + dk 7→
(
a+ bi c+ di
−c+ di a− bi) .

Identifying H with C
2 by the map

x = x0 + x1i + x2j + x3k 7→ (x0 + x1i,−x2 + x3i),
we see that g(x) = g · x, for any x ∈ H, g ∈ SU(2).

In R
3 = Im(H), the reflections and rotations can be represented by quaternion

multiplications.

Remark 4. (See [6]) Let y be a unit pure quaternion.

(1) Denote Sy the reflection of Im(H) in the plane perpendicular to y. Then
Sy is represented by the quaternion transformation

Sy(x) = yxy for x ∈ Im(H).

(2) Denote R(y,α) the rotation of Im(H) about y through 2α. Then R(y,α) is
represented by the quaternion transformation

R(y,α)(x) = e−αyxeαy for x ∈ Im(H).

(3) The group of all unit quaternions is 2 : 1 homomorphic to the group of all
rotations that leave the origin fixed, that is, the group SO(3). The kernel
of this homomorphism is {±1}.

Let Γ̃ 6= {0} be a finite subgroup of unit quaternions, or equivalently

Γ̃ ⊂ SU(2). There are two different classes.

The first class: If Γ̃ contains −1, then by Remark 4, Γ̃ is 2 : 1 homomorphic
to a finite subgroup Γ of SO(3). By Proposition 3, there are 5 cases. Moreover,

in terms of generators and generating relations, Γ̃ can be written as the form

Γ̃ =< A,B,C > where Ap = Bq = Cr = ABC = −1.

Proposition 5. Let −1 ∈ Γ̃. Then the classification is listed in the following
table. Here (A,B,C) in the third, forth and fifth row are respectively (1/2(1 +i + j + k), 1/2(1 + i − j + k), i), (1/2(1 + i + j + k), 1/2(1 + i − j + k), i) and
(cos π/5 + k cos π/3 + i sinπ/10, cos π/3 + k cos π/5 + j sinπ/10,k).
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Group, Γ̃ Γ Order (p, q, r) (A,B,C)

Cyclic, BCn Cn 2n (n, n, 1) (eπi/n, e−πi/n,−1)

Binary Dihedron, BDn Dn 4n (n, 2, 2) (eπi/n, j, eπi/nj)
Binary Tetrahedron, BT T 24 (3, 3, 2) (A,B,C)

Binary Octahedron, BO O 48 (4, 3, 2) (A,B,C)

Binary Icosahedron, BI I 160 (5, 3, 2) (A,B,C)

The second class: If Γ̃ does not contain −1, each of its elements eyα represents

uniquely the rotation through 2α about y, so Γ̃ is isomorphic to a subgroup of
SO(3). In this case, none of the rotations can be a half-turn, because then the
corresponding quaternion would be pure, and its square would be −1. Looking
through the list of finite subgroups of SO(3), we see that the only kind not
containing a half-turn is the cyclic group Cn, where n is odd. Hence we have

Proposition 6. The only finite subgroups of quaternion not containing −1 are
the cyclic groups of odd order.

Altogether, we obtain the complete classification of the finite subgroups of
SU(2).

Theorem 7. (see [6]) Let Γ̃ be a finite subgroup of quaternion.

(1) If Γ̃ does not contain −1, then Γ̃ is a cyclic subgroup of odd order.

(2) Otherwise, Γ̃ is one of the five types listed in Proposition 5.

2.2. The Outer Automorphisms. By definition,

Inn(Γ̃) = {Ad(x)|x ∈ Γ̃, Ad(x)(y) := x−1yx}.
Slightly different from the standard notations, we denote

Out(Γ̃) = (Aut(Γ̃) ∩Ad(SU(2)))/Inn(Γ̃)

and call it the outer automorphism group of Γ̃ by abuse of ambiguity. For v ∈
SU(2) ⊂ H, we shall use Ov to denote the image of Ad(v) in Out(Γ̃) if Ad(v) ∈
Aut(Γ̃). So when v ∈ Γ̃, Ov = id

Γ̃
.

Theorem 8. Up to obvious equivalences, (Γ̃, Ov) are classified into the following
types.

(1) When Ov = id, the classification of (Γ̃, Ov) is the same as that of Γ̃.
(2) Otherwise, there are the following four types.

(i) Γ̃ = Cn, and Ov is of order 2. When n = 2m is even, that is Γ̃ =

BCm, we call (Γ̃, Ov) of Cn-type.

(ii) Γ̃ = BDn, and Ov is of order 2. (Γ̃, Ov) is called of Bn+1-type.
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(iii) Γ̃ = BT , and Ov is of order 2. (Γ̃, Ov) is called of F4-type.

(iv) Γ̃ = BD2, and Ov is of order 3. (Γ̃, Ov) is called of G2-type.

Proof. This is a direct consequence of the following Proposition 9. �

Proposition 9. The outer automorphism group (defined as above) of Γ̃ is Z2 for

Γ̃ = Cn, BDn(n 6= 2) or BT . For Γ̃ = BD2, it is S3, the symmetry group of 3
letters. In all other cases, the outer automorphism group is trivial.

Proof. Let g = eαy = cosα+ y sinα ∈ Γ̃ and v = exβ ∈ SU(2). Then Ad(v)(g) =

v−1eαyv = v−1(cosα)v + v−1(y sinα)v = cosα + (v−1yv) sinα = eα(v−1yv). Thus
we can see that Ad(v) transforms the rotation by 2α about the vector y ∈ Im(H)
into the rotation about v−1yv ∈ Im(H) by the same angle. But the action
y 7→ v−1yv itself is the rotation by 2β with the vector x, since v = exβ. Then
according to the classification of finite subgroups of SO(3) (or SU(2)), it suffices
to show the existence of the non-trivial outer automorphisms Ov with v ∈ SU(2),

in the case where −1 ∈ Γ̃. For convenience, we suppose the generators of Γ̃

are taken as in Remark 5. For Γ̃ = Cn (BDn(n 6= 2) or BT , respectively), we

take v = j (respectively, e−πi/2n, ieπj/4). One can check directly that v satisfies

the condition. For Γ̃ = BD2, one can check that Ov1
and Ov2

generate the outer

automorphism group S3, where v1 = e(π/3)(i+j+k)/
√

3 and v2 = (i+j)/√2. For the

case where Γ̃ does not contain −1, the result comes from the following lemma. �

Lemma 10. Take (Γ̃, Ov) as above. Let g ∈ Γ̃ be an element of order d > 1.

If Ov(g) = gl then l ≡ ±1 mod (d). If g = e2πi/d, we can take v = k such that
Ov(g) = g−1.

Proof. Note that Γ̃ must be conjugate with e2πi/d in SU(2). Let g = ue2πi/du−1

with u ∈ SU(2). Then hgh−1 = gl implies that hue2πi/du−1h−1 = ue2πi/du−1.

Thus (u−1hu)e2πi/d(u−1hu)−1 = e2πik/d. Therefore we can assume g = e2πi/d.
As elements of SU(2),

g =

(
e2πi/d 0

0 e−2πi/d

)
and h =

(
a b
−b̄ ā

)
,

where a, b ∈ C with |a|2 + |b|2 = 1. One can check that there are only two
solutions for (a, b, l): (1, 0, 1) and (0, 1,−1). �

Example 11. In the case that Γ̃ = BD2, we can take Γ̃ = {±1,±i,±j,±k},
v = e(2π/3)(i+j+k)/

√
3 and Ad(v) acts just as the permutation (ijk). This is the

classical triality.
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3. McKay Correspondence and Dynkin Diagrams

In this section we first recall the classical McKay correspondence between sub-
groups of SU(2) and ADE diagrams [10]. To obtain non-simply laced Dynkin
diagrams, one just takes the “folding”. In [14], Slodowy considered the relation
between finite subgroups of SU(2), Dynkin diagrams and simple singularities,
and he realized the diagram automorphisms as the automorphisms of the desin-
gularizations.

By considering the irreducible representations and the conjugacy classes

associated with a finite subgroup Γ̃ with an outer automorphism, we give an
explicit and unified description for McKay correspondence in all cases.

Let us first recall how to obtain ADE-Dynkin diagrams from finite subgroups

of SU(2). Let Γ̃ be a finite subgroup of SU(2). Let W = C
2 be the standard

representation of SU(2). And let Wl, l = 0, 1, · · · , s be all of the irreducible repre-

sentations of Γ̃, where W0 is the trivial representation, and s+1 is the number of

the conjugacy classes of Γ̃ (recall that the number of irreducible representations
equals to the number of conjugacy classes, for a finite group). Then we have

W ⊗Wl
∼=

⊕

m

almWm,

where alm is the multiplicity of Wm in this decomposition. Assigning a node pl

to each Wl and drawing alm edges to connect pl and pm, we obtain the so-called

affine McKay quiver of Γ̃, denoted by Daff (Γ̃). McKay found that Daff (Γ̃) was

an affine Dynkin diagram of type An (respectively Dn, E6, E7, E8) for Γ̃ = Cn+1

(respectively BDn−2, BT , BO, BI). If we remove the node p0 and all the edges
with p0 as an endpoint, we obtain the corresponding Dynkin diagrams (of finite

type), denoted as D(Γ̃).

In the following we consider the pair (Γ̃, Ov), where v is a unit quaternion.

Definition 12. An irreducible representation of the pair (Γ̃, Ov) is a representa-
tion W of Γ, which satisfies the following two conditions.

(a) W is invariant under Ad(v), that is, Ad(v) preserves the characters of
W .

(b) W can not be written as a direct sum W1 ⊕W2 with Wi satisfying the
condition (a).

Definition 13. An Ov-conjugacy class of (Γ̃, Ov) is an equivalence class of con-

jugacy classes of Γ̃, where two conjugacy classes ḡ1 and ḡ2 are called equivalent
to each other if Ad(v)(ḡ1) = ḡ2 or Ad(v)(ḡ2) = ḡ1.
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The outer automorphism group Out(Γ̃) acts on the set of the representations

of Γ̃ as follows. Let Ov ∈ Out(Γ̃), and V be a representation of Γ̃. We obtain a

new representation V ′ by composing the action of Γ̃ on V with Ov : Γ̃ → Γ̃.

Theorem 14. Given any finite subgroup Γ̃ ⊆ SU (2) invariant under Ov ∈
Out(Γ̃), we have

(i) Ov induces a diagram automorphism on D(Γ̃);

(ii) the number of irreducible representations of (Γ̃, Ov) is equal to the number

of Ov-conjugacy classes of (Γ̃, Ov).

Proof. (ii) is a direct consequence of (i). We check (i) directly in each case.

For Γ̃ = Cn, Γ̃ is generated by g = e2πi/n. For l = 0, · · · , n − 1, let Wl
∼= C

be the l-th irreducible representation, namely, it is one-dimensional with basis el
satisfying g(el) = gl · el. Note that W0 is the trivial irreducible representation.
Take v = j. Then Ov 6= idG, and Ov(g) = g−1. So Ov transforms the character

of Wl to the one of Wn−l. That is, Ov induces a diagram automorphism of D(Γ̃).

For Γ̃ = BDn and Ov of order 2. As a subgroup of SU(2), we can take Γ̃ to
be generated by two elements

g =

(
eiπ/n 0

0 e−iπ/n

)
, h =

(
0 1
−1 0

)
.

Let Wl
∼= C

2 be the l-th 2-dimensional representation, with the action given by
g(el, fl) = (el, fl)g

l, h(el, fl) = ((−1)lfl, el), where el, fl is a basis of Wl. Note
that Wl is irreducible for l 6= 0, n. W0 splits into two irreducible representations
W01 and W02, where W02 is the trivial one and g|W01

= id, h|W01
= −id. Also

Wn splits into Wn = Wn1 ⊕Wn2. When n is even, Wn1 = C < en + fn >, Wn2 =
C < en − fn >. When n is odd, Wn1 = C < en + ifn >, Wn2 = C < en − ifn >.
Take v = k, then Ov just interchanges the characters of Wn1 and Wn2.

The situation for BT is similar but more complicated. The character table
for BT is

char 1 C −1 A2 B2 A B

1 1 1 1 1 1 1 1
2 2 0 −2 −1 −1 1 1
3 3 −1 3 0 0 0 0
2′ 2 0 −2 −ρ −ρ2 ρ2 ρ
2′′ 2 0 −2 −ρ2 −ρ ρ ρ2

1′ 1 1 1 ρ ρ2 ρ2 ρ
1′′ 1 1 1 ρ2 ρ ρ ρ2
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where ρ = e2πi/3, and the entries in the first column are all irreducible rep-
resentations indexed by the affine Dynkin diagram of E6. Let Ov interchange
the generators A and B. Then Ov interchanges pairwise the 5-th and the 6-th
columns, the 7-th and the 8-th columns in this table. Hence it also interchanges
pairwise the 5-th and the 6-th rows, the 7-th and the 8-th rows. That is, Ov

induces a diagram automorphism of D(Γ̃).

The proof for G = BD2 is very easy, according to Remark 11. �

Similar to the classical case, we define the McKay quiver for a pair (Γ̃, Ov) as
follows.

Definition 15. Given a pair (Γ̃, Ov), let Wl, l = 0, · · · , n be all irreducible rep-

resentations of (Γ̃, Ov), where W0 is the trivial one, and n + 1 is the number
of the Ov-conjugacy classes. Assign a node pl to each irreducible representa-
tion Wl. Let W = C

2 be the standard representation of SU(2). Assume that
Wl ⊗W ∼= ⊕malmWm. When alm = aml 6= 0 (it must be equal to 1 in this sit-
uation), we draw alm edges to connect the nodes pl and pm. When alm 6= aml,
one of them, say alm, must be 2 or 3, and another is 1. In this case, we draw
alm directed edges from pm to pl. Thus, we obtain a diagram, called the affine

McKay quiver of (Γ̃, Ov), and denoted by Daff

(Γ̃,Ov)
. Removing the node p0 and all

the edges with p0 as an endpoint from Daff

(Γ̃,Ov)
, we obtain a diagram, denoted by

D(Γ̃,Ov), called the (finite) McKay quiver of (Γ̃, Ov).

Theorem 16. Given any finite subgroup Γ̃ ⊆ SU(2) and Ov ∈ Out(Γ̃), D(Γ̃,Ov)

must be one of the following types.

(1) For Ov = idΓ̃, D(Γ̃,Ov) is a Dynkin diagram of ADE-type.

(2) Suppose Ov is non-trivial.

(i) For Γ̃ = C2n+1, D(Γ̃,Ov) is of An-type.

(ii) For Γ̃ = BCn = C2n, D(Γ̃,Ov) is of Cn-type.

(iii) For Γ̃ = BDn and (Ov)
2 = idΓ̃, D(Γ̃,Ov) is of Bn+1-type.

(iv) For Γ̃ = BT , D(Γ̃,Ov) is of F4-type.

(v) For Γ̃ = BD2 and (Ov)
3 = idΓ̃, D(Γ̃,Ov) is of G2-type.

Proof. (1) is the classical McKay correspondence, see [10]. By Theorem 14, we
obtain non-simply laced Dynkin diagrams from simply laced ones. Let {Wl|l =

0, 1, · · · , s} is the set of all irreducible representations of (Γ̃, Ov), where s + 1 is

the number of the Ov-conjugacy classes of (Γ̃, Ov), and W0 is the trivial one. Let
alm, l,m = 0, · · · , s be the non-negative numbers determined by the following
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decomposition

Wl ⊗W ∼=
⊕

m

almWm.

We only need to verify the number of undirected edges connecting the nodes
pl and pm is equal to alm where alm = aml; and the number of directed edges
connecting from pm to pl is equal to alm where alm > aml = 1.

This follows from a direct checking. For example, we compute D(Γ̃,Ov) for

Γ̃ = C2k and Ov 6= id. Just as in the proof of Theorem 14, suppose Γ̃ is generated

by g = e2πi/(2k). Let Wl
∼= C is the l-th irreducible representation of Γ̃, which is

one-dimensional with basis el, where g(el) = gl ·el, for l = 0, · · · , 2k−1. Note that
W0 is the trivial irreducible representation. Take v = j. Then Ov 6= id

Γ̃
. And

Ov(g) = g−1. So the irreducible representations for (Γ̃, Ov) are U0 = W0, Ul =
Wl ⊕W2k−l, 0 < l < k,Uk = Wk. Let Ul =

⊕
m
almUm. Then we can see that

alm satisfies the constrains, since U0 ⊗W = U1, U1 ⊗W = 2U0 ⊕ U2, Ul ⊗W =
Ul−1 ⊕Ul+1, for 1 < l < k− 2 and Uk−1 ⊗W = Uk−2 ⊕ 2Uk, Uk ⊗W = Uk−1. �

Corollary 17. Except the case (Γ̃, Ov) where Γ̃ = C2k+1 and Ov 6= idΓ̃, D(Γ̃,Ov) is

just one of the affine Dynkin diagrams of untwisted type, and the matrix 2I−(aij)
is just the Cartan matrix of the corresponding affine Dynkin diagram.

Remark 18. In fact, this outer automorphism Ov induces an outer automor-
phism of a regular polyhedron P (that is, interchanging the vertices and the faces
of P). For example, the tetrahedron has such a non-trivial outer automorphism.
Accordingly the binary tetrahedron group as well as its McKay quiver also has
such an outer automorphism.

4. Triality and Non-simply Laced McKay Correspondence

We have seen that the McKay correspondence in non-simply laced cases is
induced by that one in simply laced case with a symmetry of H. Essentially,
all symmetries of H come from the triality property on H. In this section, we
formulate this correspondence in terms of triality.

4.1. Triality. In the following, we recall the theory on triality. For references,
see [1] and [2]. Let Vi, i = 1, 2, 3 be three real vector spaces of finite dimension.

Definition 19. A triality is a trilinear map

t : V1 ⊗ V2 ⊗ V3 → R

such that for any non-zero v1 ∈ V1, v2 ∈ V2 there exists a v3 ∈ V3 such that
t(v1 ⊗ v2 ⊗ v3) 6= 0 (and similarly for v1, v3 6= 0, v2, v3 6= 0). If each Vi has a
norm, we say that f is a normed triality if |t(v1 ⊗ v2 ⊗ v3)| ≤ ||v1|| · ||v2|| · ||v3||,



952 Naichung Conan Leung and Jiajin Zhang

and for all v1, v2 6= 0, there is a v3 6= 0 for which the bound is attained (and
similarly for the other two cases).

Example 20. V1 = V2 = V3 = R,C, or H respectively and take t(x ⊗ y ⊗ z) =
Re(xyz). Then t is a normed triality.

Theorem 21. A triality exists only if dimV1 = dimV2 = dimV3 = 1, 2, 4 or 8.

Proof. See [1] for reference. For later uses, we sketch the proof. Suppose we are
given a triality t. Then for any e1 6= 0 we get a duality of V2, V3, so we must
have dimV2 = dimV3 and similarly dimV1 = dimV2 = dimV3. We can transpose
V3 to get t′ : V1 ⊗ V2 → V ∗

3 . Choose e1 6= 0 in V1 and use it to identify V2 with
V ∗

3 by v2 7→ t′(e1 ⊗ v2). Similarly choose e2 6= 0 in V2 to identify V1 with V ∗
3 .

We now have t′′ : V ∗
3 ⊗ V ∗

3 → V ∗
3 for which t′′(e1 ⊗ e2) acts as a two-sided unit

and t′′ is non-singular in that if x, y 6= 0 ∈ V ∗
3 , then t′′(x ⊗ y) 6= 0. So we have

a division algebra A over R and consequently dimVi = 1, 2, 4 or 8. If we start
with a normed triality, we then obtain a normed algebra A, and in this case, we
should take unit vectors e1, e2 and e3. �

From the above proof we see that for a normed triality t : V1 × V2 × V3 → R,
given a triple ~v = (v1, v2, v3) where vi ∈ Vi, i = 1, 2, 3 such that ||vi|| = 1
and t(v1, v2, v3) = 1, we obtain a normed division algebra A. Such a triple
~v = (v1, v2, v3) is called a triality triple. We will write tA instead of t and denote
the set of all triality triples as TriA, that is

TriA = {(v1, v2, v3) ∈ V1 × V2 × V3 | t(v1, v2, v3) = 1, ||vi|| = 1, i = 1, 2, 3}.

It is well-known that there are only four normed (finite) R-algebras and they
are R,C,H,O.

An automorphism of the normed triality t : V1 × V2 × V3 → R is a triple of
norm-preserving maps fi : Vi → Vi such that

t(f(~v)) = t(~v)

for all ~v ∈ V1 × V2 × V3, where f = (f1, f2, f3), ~v = (v1, v2, v3) and f(~v) =
(f1(v1), f2(v2), f3(v3)). These automorphisms form a group we call Aut(tA). Take
a triality triple ~v = (v1, v2, v3) ∈ TriA, and denote

Aut(tA, ~v) = {f ∈ Aut(tA) : f(~v) = ~v}.
Lemma 22. Aut(tA) acts transitively on the set TriA of triality triples, and there

is a canonical isomorphism ψ~v : Aut(A)
∼−→ Aut(tA, ~v) for any triality triple ~v.

Proof. The first part is trivial since given two unit vectors ui, vi in Vi, there is a
norm-preserving map fi ∈ Aut(Vi), such that fi(ui) = vi. To prove the second
part, we identify Vi to A by identifying vi to the identity element 1 of A. Then for
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any f ∈ Aut(tA, ~v), under above identifications, f preserves the algebra structure
of A, therefore f ∈ Aut(A). The converse is also true. �

Corollary 23. For all ~u,~v ∈ TriA, there exists a φ~u~v ∈ Aut(tA), such that
Aut(tA, ~u) = φ−1

~u~v (Aut(tA, ~v))φ~u~v.

Let pi : Aut(tA) → O(Vi) be the homomorphism induced by the projection to
the ith component: V1 × V2 × V3 → Vi, i = 1, 2, 3. Then by construction, for any
~v ∈ TriA, the map pi : Aut(tA, ~v)

∼−→ pi(Aut(tA, ~v)) ⊂ O(Vi) is an isomorphism
onto its image, for all i.

4.2. McKay Correspondence via Triality of H. From now on, we assume

A = H. The universal cover (i.e. double cover) Ãut(tH) of Aut(tH) is isomorphic

to SU(2)3. Let Γ̃ be a finite subgroup of Ãut(tH) with the image Γ ⊂ Aut(tH).

A subgroup of Ãut(tH) is called an isotropic subgroup if it fixes some element in

TriH. By Lemma 22, a finite isotropic subgroup of Ãut(tH) is in fact a subgroup

of Ãut(H) ∼= SU(2). Thus finite subgroups of SO(3) (or SU(2)) are identified

with finite isotropic subgroups of Aut(tH) (or Ãut(tH)).

Considering the pairs of finite isotropic subgroups Γ̃, Γ̃′ of Ãut(tH), of the same
order, with p1(Γ) = p1(Γ

′) (or equivalently, for all pi). In the following we show
that the classification of such pairs is equivalent to the classification of the pairs

(Γ̃, Ov), where Γ̃ ⊂ SU(2), v ∈ H.

Assume ~u,~v ∈ TriH. According to [1], we have

SO(3) = Aut(H) ∼= Aut(tH, ~u) ⊂ Aut(tH) ∼= (Sp(1) × Sp(1) × Sp(1))/{±1}.

Without loss of generality, we can take ~u = ~e = (1, 1, 1) and ~v = (v1, v2, v3).
In this case, we can take Vi = H, i = 1, 2, 3, then the map tH : H × H × H →
R given by t(u, v,w) = Re(uvw) defines the normed triality of H. And this
triality implies that any triality triple (v1, v2, v3) determines unique isomorphisms
V1

∼= V2
∼= V3 = H (every isomorphism is in fact an automorphism of H). And

SO(3) = Aut(tH, ~u) ∼= Aut(tH, ~v), where the isomorphism, is just φ~v := φ~u~v as
above, is given by g 7→ (φ~v,1(g), φ~v,2(g), g) with φ~v,i being an isomorphism of
groups induced by ~v = (v1, v2, v3). Note that the dual space H

∗ is naturally
identified with H = H, where x̄ = Re(x) − Im(x), since the inner product on H

is defined as
< x, y >:= Re(x̄y) = Re(xȳ).

This implies for v1 ∈ V1, t induces an isomorphism from V2 = H to H defined by
t1 : y 7→ v1y for y ∈ V2. Thus φ~v,1(g) = t−1

1 gt1. Similarly φ~v,2(g) = t−1
2 gt2 with

t2 defined by t2(x) = xv2 for x ∈ V1. Since v1, v2 are unit quaternions, φ~v,1, φ~v,2

are elements of SU(2). Pulled back to SU(2), φ~v,1, φ~v,2 induces automorphisms

of SU(2), which are just the conjugations Ad(v1) : g 7→ v−1
1 gv1 and the identity.
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The reason is the following. Let g ∈ SU(2), then g(x) = g · x, since we consider
SU(2) as the group of unit quaternions. We have the following commutative
diagram:

x
v1·−−−−→ v1x

φ~v,1(g)

y
yg·

φ1(g)(x)
v1·−−−−→ y.

Thus φ~v,1(g) = Ad(v1)(g) = v−1
1 gv1. Similarly, we have φ~v,2(g) = g. Hence the

isomorphism φ~v = (Ad(v1), id, id). Thus we have proved that

Proposition 24. Let Γ̃, Γ̃′ be two finite subgroups of Ãut(tH) of the same order,

fixing respectively ~u,~v ∈ TriH, and let p1(Γ̃) = p1(Γ̃′). Then φ~u~v induces an

(outer) automorphism on p1(Γ̃) = p1(Γ̃′).

Let Γ̃ ⊂ SU(2), and Γ̃′, Γ̃′′ be two finite isotropic subgroups of Ãut(tH), of the

same order, and assume p1(Γ̃′) = p1(Γ̃′′). Let v ∈ H. Consider the equivalence

classes of the pairs (Γ̃′, Γ̃′′) in the obvious sense.

Theorem 25. The equivalence classes of the pairs (Γ̃′, Γ̃′′) as above are in one-

to-one correspondence with the equivalence classes of the pairs (Γ̃, Ov).

Proof. Given a pair (Γ̃′, Γ̃′′) as above, up to conjugation, we can take ~u = (1, 1, 1)

and ~v = (v1, v2, v3). We take Γ̃ ⊂ SU(2) to be the finite subgroup of the same or-

der such that Γ = p1(Γ̃′) = p1(Γ̃′′), and we take x = v1. Conversely, given (Γ̃, Ox),

we take ~u = (1, 1, 1) and ~v = (x, x−1, 1). Then we can take Γ̃′′ to be group consist-

ing of the diagonal elements of Γ̃ × Γ̃ × Γ̃, and Γ̃′ = (Ad(x), id, id)(Γ̃′′). Then by
construction and by Proposition 24, one can easily see the above correspondence
is one-to-one. �

Corollary 26. The equivalence classes of the pairs (Γ̃′, Γ̃′′) as in Proposition 24,
are in one-to-one correspondence with the pairs (D, τ) with D a simply laced
Dynkin diagram and τ a diagram automorphism (see Figure 1).

Remark 27. The same arguments as the proof of Proposition 24 and Theorem 25
work in fact for all normed division algebras.

Much less is known about general finite subgroups of G2 = Aut(O). For finite
subgroups of SU(3) ⊂ G2, there is a geometric McKay correspondence ([12][13]
etc). But the McKay quiver is usually more complicated. We hope to have a
detailed study of the octonion case in the future.



McKay Correspondence and Triality 955

References

[1] J.F. Adams, Lectures on Exceptional Lie Groups, The University of Chicago Press, 1996.
[2] J.C. Baez, The octonions, Bull. Amer. Math. Soc. 39 (2002), 145–205.
[3] T. Bridgeland, A. King, M. Reid, The McKay correspondence as an equivalence of derived

categories, J. Amer. Math. Soc. 14 (2001), no. 3, 535–554.
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