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Local GW Invariants of Elliptic Multiple Fibers

Junho Lee

Abstract: We use simple geometric arguments to calculate the dimension
zero local Gromov-Witten invariants of elliptic multiple fibers. This com-
pletes the calculation of all dimension zero GW invariants of elliptic surfaces
with pg > 0.
Keywords: Local GW invariants, elliptic surfaces, spectral flow.

Let X be a Kähler surface with pg > 0. By the Enriques-Kodaira classification
(cf. [BHPV]), its minimal model is a K3 or Abelian surface, a surface of general
type or an elliptic surface. Each holomorphic 2-form α on X defines an almost
complex structure

(0.1) Jα = (Id + JKα) J (Id + JKα).

Here, J is the complex structure on X and the endomorphism Kα of TX is
defined by the formula 〈u,Kαv〉 = α(u, v) where 〈 , 〉 is the Kähler metric. This
Jα satisfies :

Lemma 0.1 ([L]). If f is a Jα-holomorphic map that represents a nontrivial
(1,1) class then its image lies in the support of the zero divisor Dα of α and f

is, in fact, holomorphic.

The Gromov-Witten invariant GWg,n(X, A) is a (virtual) count of holomorphic
maps representing the class A. In particular, the invariant GWg,n(X, A) vanishes
unless A is a (1,1) class since every holomorphic map represents (1,1) class. Note
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that each canonical divisor D of X is a zero divisor of a holomorphic 2-form.
Lemma 0.1 thus shows that the GW invariant is a sum

GWg,n(X, A) =
∑

GW loc
g,n(Dk, Ak)

over the connected components Dk of the canonical divisor D of local invariants
that counts the contribution of maps whose image lies in Dk (cf. [LP], [KL]).
It follows that the GW invariants of minimal K3 or Abelian surfaces are trivial
except possibly for the trivial homology class because their canonical divisors are
trivial.

The local GW invariants have a universal property. If X is a minimal surface
of general type with a smooth canonical divisor D then the local invariants asso-
ciated with D, and hence GW invariants, are determined by the normal bundle
of D — in fact, there exists a universal function of c2

1 and c2 that gives the GW
invariants of X (cf. Section 7 of [LP]).

If π : X → C is a minimal elliptic surface with pg > 0, after suitable deforma-
tion, we can assume X has a canonical divisor of the form

∑

i

niF
i +

∑

k

(mk − 1)Fmk

where F i is a regular fiber and Fmk
is a smooth multiple fiber of multiplicity mk

(cf. Proposition 6.1 of [LP]). In this case, the GW invariants of X are sums of
universal functions, and are completely determined by the multiplicities mk and
the number

cπ = χ(OX)− 2χ(OC)

(cf. Section 6 of [LP]). In particular, the generating function for the set of all
dimension zero GW invariants of X is given by

(0.2) GW 0
X = cπ

∑

d>0

GW loc
1 (F, d) td +

∑

k

∑

d>0

GW loc
1 (Fmk

, d) tdmk

where the formal variables t and tmk
are for the fiber class [F ] and the multiple

fiber classes [Fmk
] respectively; these satisfy tmk

mk
= t. The local invariants in (0.2)

are counts of multiple covers of elliptic curves together with signs determined by
the GW theory of 4-manifolds.
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Some of the generating functions in (0.2) are known. In cases of the regular
fiber F and the multiple fiber F2, it was proved in Section 10 of [LP] that

(0.3) GW loc
1 (F, d) = −1

d
σ(d) and GW loc

1 (F2, d) =
1
d

(
σ(d) − 2 σ

(d

2

))

where σ(d) =
∑

k|d k if d is a positive integer and σ(d) = 0 otherwise. In this
note we use geometric arguments to obtain the terms in (0.2) associated with
fibers of higher multiplicity. Our main theorem is the following formula for the
local invariants GW loc

1 (Fm, d) for m > 2. This completes the calculation of all
dimension zero GW invariants of all minimal elliptic surfaces with pg > 0.

Main Theorem. Let m ≥ 3. Then

GW loc
1 (Fm, d) =

1
d

(
σ(d) − mσ

( d

m

))
.

The contribution of each degree d cover f of elliptic curve Fm is, as a map into
a 4-manifold, determined by the normal bundle Nm of Fm. In cases of F1 = F

and F2, the almost complex structure Jα on X is generic in the sense that the
linearized operator Lf (see (1.7) below) is invertible and hence the contribution of
f is (−1)h0(Nm)/|Aut(f)| (cf. Section 10 of [LP]). When m ≥ 3, Jα is, in general,
no longer generic. We need to perturb Jα to generic J . In Section 2, using the
universal property of local invariants (see (1.3) below), we choose a local model
that is convenient for our calculation. In Section 3, when Lf is not invertible,
we use a lifting property of covering space to calculate the contribution of f that
proves the Main Theorem. The information for dimension zero GW invariants of
elliptic surfaces with pg > 0 is the same as for its Seiberg-Witten invariants. We
spell out the specific connection in Remark 3.4.

Acknowledgments. I am very grateful to Thomas H. Parker for helpful discus-
sions.

1. Dimension Zero Genus One Local GW Invariants

Let X be a (not necessarily compact) elliptic Kähler surface with a holomorphic
2-form α. The 2-form α defines an almost complex structure Jα on X by the
formula (0.1). Suppose that the zero divisor Dα of α has a smooth reduction
Dα = (m − 1)D where D is a regular fiber or a multiple fiber of multiplicity m
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for some integer m > 1. The adjunction formula then shows c1(TX)([D]) = 0
and c1(N) = 0 where N is the normal bundle of D. The moduli space

(1.1) Mα
1 (X, d[D])

of stable Jα-holomorphic maps from curves of genus one representing the class
d[D] (d 6= 0) carries a (virtual) fundamental class

(1.2) [Mα
1 (X, d[D])]vir

that is defined by the GW theory of 4-manifolds (cf. Section 4 of [LP]). This
(virtual) fundamental class (1.2) has dimension zero since c1(TX)([D]) = 0. The
dimension zero genus one local Gromov-Witten invariant of X associated with
the zero divisor Dα is then

GW loc
1 (X, Dα, d) := [Mα

1 (X, d[D])]vir.

This local GW invariant has the following universal property. Let X ′ be another
elliptic Kähler surface with a holomorphic 2-form α′ whose zero divisor Dα′ =
(m′ − 1)D′ where D′ is a regular fiber or a multiple fiber of multiplicity m′. Let
N ′ be the normal bundle of D′. If m = m′ and h0(N) = h0(N ′) then

(1.3) GW loc
1 (X, Dα, d) = GW loc

1 (X ′, Dα′ , d)

(cf. Section 6 of [LP]). We set
(1.4)

GW loc
1 (X, Dα, d) =





GW loc
1 ((m− 1)F, d) if D is a regular fiber

GW loc
1 (Fm, d) if D is a m-multiple fiber

It was proved in Example 4.4 of [LP] that

(1.5) GW loc
1 (mF, d) = mGW loc

1 (F, d).

As given in (0.2), all dimension zero GW invariants of minimal elliptic surfaces
with pg > 0 are sums of local invariants in (1.4).

In the below, we will give a precise description on the (virtual) fundamental
class (1.2) which will be used for our calculation in Section 3. The point in the
moduli space (1.1) is an equivalence class [f, C] of stable maps (f, C) where two
stable maps (f, C) and (f ′, C ′) are equivalent if there is a biholomorphic map
σ : C → C ′ with f ′ ◦ σ = f . By Lemma 0.1, if d 6= 0 every representative (f, C)
of [f, C] is a holomorphic d-fold covering map from C to D. Thus, if D is given by



Local GW Invariants of Elliptic Multiple Fibers 933

a lattice Λ in the complex plane then [f, C] is determined by an index d sublattice
of Λ. In particular, the moduli space (1.1) consists of σ(d) points.

On the other hand, since the (virtual) fundamental class (1.2) is defined by
the GW theory of 4-manifolds, as described in Section 3 of [IP], it is a finite sum

(1.6) [Mα
1 (X, d[D])]vir =

∑
c([f, C])

over [f, C] ∈ Mα
1 (X, d[D]) of the contributions c([f, C]) that are defined as fol-

lows. Choose a p ∈ D and a small disk B in X with B ∩ D = {p} and, once
and for all, fix a map (f, C, x) with f(x) = p such that (f, C) represents [f, C].
Then for a generic almost complex structure J on X that is sufficiently close to
Jα and tamed by the Kähler form on X, there are finitely many J-holomorphic
maps (fi, Ci, xi) from smooth genus one curves with one marked point such that
(i) fi(xi) ∈ B (ii) each (fi, Ci, xi) is C0-close to (f, C, x) (in a suitable space of
maps) and (iii) the index zero operator

(1.7) Lfi
: Ω0(f∗i Ni) → Ω0,1(f∗i Ni)

has trivial kernel (or equivalently Lfi
is invertible) where the operator Lfi

is
obtained by linearizing J-holomorphic map equation (see Remark 1.1 below) and
restricting to the normal bundle Ni of the image of fi. Denote by

M(f,C,x),B,J

the set of such J-holomorphic maps (fi, Ci, xi). Notice that for each (fi, Ci, xi)
the preimage f−1

i (B) consists of d = |Aut(f)| distinct points xij . Since the auto-
morphism group of Ci acts transitively, for each xij there exists an automorphism
σj of Ci with σj(xi) = xij such that (fi ◦ σj , Ci, xi) is also contained in the set
M(f,C,x),B,J . The contribution c([f, C]) is thus the (weighted) sum

c([f, C]) =
1
d

∑
(−1)SF (Lfi

)

over fi in M(f,C,x),B,J where the sign of each fi is given by the mod 2 spectral
flow SF (Lfi

) of the invertible operator Lfi
. In particular, SF (Lfi

) = 0 if Lfi
is

complex linear, namely J-linear.

Remark 1.1. The operator Dfi
: Ω0(f∗i TX) → Ω0,1(f∗i TX) obtained by lin-

earizing J-holomorphic map equation at fi is given by

(1.8) Dfi
(ξ)(v) = ∇vξ + J∇jvξ +

1
2
[
(∇ξJ)(dfi(jv))− J(∇ξJ)(v)

]
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where ξ ∈ Ω0(f∗i TX), v ∈ TCi and j is the complex structure on Ci. Here ∇ is
the pull-back connection on f∗i TX of the Levi-Civita connection of the metric on
X that is defined by the Käler form and J (cf. Lemma 6.3 of [RT]).

2. Local Model

Once and for all, fix an integer m ≥ 2 and let D denote the elliptic curve given
as the complex plane (with coordinate z) modulo the lattice Z + (mi)Z. Then
S = D × C has an automorphism ϕ of order m defined by

ϕ(z, w) =
(
z + i, e2πi/m · w)

such that all powers ϕi are fixed-point free where w is a coordinate on C. Let Sm

be the quotient of S by the group {ϕi} and q : S → Sm the quotient map. The
map S → C : (z, w) → wm then factors through Sm to give an elliptic fibration
Sm → C whose central fiber is a m-multiple fiber Dm given by the lattice Z+ iZ
with torsion normal bundle Nm of order m :

S = D × C q
//

(z,w)→wm

%%JJJJJJJJJJ
Sm

}}||
||

||
||

C

The following simple observation is a key fact for our subsequent discussions.
Let f : C → Dm be a holomorphic map of degree d from an elliptic curve C that
is given by a sublattice of Z+ iZ of the form

aZ + (bi + k)Z with d = ab, 0 ≤ k ≤ a− 1.

Write D × {0} ⊂ S simply as D.

Lemma 2.1. Let D, Nm and f : C → Dm be as above. Then,

f factors through D ⇐⇒ a | d
m ⇐⇒ f∗Nm = OC

Proof. f factors through D ⇐⇒ aZ+(bi+k)Z is a sublattice of Z+(mi)Z⇐⇒
m|b ⇐⇒ a| d

m . This shows the first assertion. Observe that for the restriction
map gm = q|D : D → Dm,

(2.1) g∗m(Nm) = g∗m([Dm]|Dm
) = q∗([Dm])|D = [q∗Dm]|D = [D]|D = OD
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where [Dm] is the line bundle associated to the divisor Dm, Nm = [Dm]|Dm
by

adjunction, the pullback divisor q∗Dm = D and again by adjunction [D]|D is the
normal bundle of D that is trivial. Write as Nm = ODm(p− q) where

∫ p

q
dz =

k1

m
+ i

k2

m
for some 0 ≤ k1, k2 ≤ m− 1.

Then, by (2.1) and the Abel’s Theorem, g∗mNm = OD(
∑

j(pj − qj) ) for some
pj , qj such that

∑

j

∫ pj

qj

dz = k1 + ik2 ≡ 0 mod Z+ (mi)Z.

Consequently, k2 = 0 and gcd(m, k1) = 1 since Nm is torsion of order m. Now,
again by the Abel’s Theorem, f∗Nm = OC(

∑
`(t`− s`) ) for some s`, t` such that

∑

`

∫ t`

s`

dz =
dk1

m
≡ 0 mod aZ+ (bi + k)Z ⇐⇒ f∗Nm = OC

Therefore, a| d
m ⇐⇒ m|b ⇐⇒ a | dk1

m ⇐⇒ f∗Nm = OC . This shows the second
assertion. ¤

Remark 2.2. Since q : S → Sm is a covering map, Lemma 2.1 shows f : C →
Dm ⊂ Sm lifts to f̃ : C → D ⊂ S if and only if f∗Nm = OC . On the other hand,
the Kähler form − i

2(dz ∧ dz̄ + dw ∧ dw̄) on C2 descends to a Kähler form ω̃ on
S that is ϕ-invariant, so ω̃ also descends to a Kähler form ω on Sm such that
q∗ω = ω̃.

3. Calculation

Let q : (S,D) → (Sm, Dm) be as in Section 2. Fix a holomorphic 2-from

α = wm−1dw ∧ dz

on S whose zero divisor is (m − 1)D and let Jα denote the almost complex
structure on S defined by the formula (0.1). The 2-form α is ϕ-invariant, so it
descends to a holomorphic 2-form αm on Sm whose zero divisor is (m − 1)Dm.
We denote by Jm = Jαm the almost complex structure on Sm defined by the
2-form αm. Since Dm is a multiple fiber of multiplicity m,

GW loc
1 (Fm, d) = [Mαm

1 (Sm, d[Dm]) ]vir



936 Junho Lee

where the right-hand side is given by the sum of contributions as in (1.6). In
order to calculate them, we decompose the moduli space Mαm

1 (Sm, d[Dm]) as a
disjoint union

Mαm

1 (Sm, d[Dm]) = M+
m,d

∐ M−
m,d

where

M+
m,d = { [f, C] : h0(f∗Nm) = 0 } and M−

m,d = { [f, C] : h0(f∗Nm) = 1 }.
It then follows from Lemma 2.1 that

(3.1) #M+
m,d = σ(d) − σ

( d

m

)
and #M−

m,d = σ
( d

m

)

where #A is the cardinality of a set A.

We first calculate the contribution c([f, C]) of [f, C] in M+
m,d. In the below,

we always assume m ≥ 3 and m|d.

Lemma 3.1. If [f, C] ∈M+
m,d then c([f, C]) = 1

d .

Proof. The linearized operator Lf has the form Lf = ∂f + Rm where ∂f is the
usual ∂-operator on f∗Nm and the zeroth order term Rm is given by

Rm(ξ) = −∇ξKαm ◦ Jαm ◦ df for ξ ∈ Ω0(f∗Nm)

(cf. Section 8 of [LP]). But, Rm ≡ 0 since αm (and hence Kαm) vanishes of
order m − 1 ≥ 2 along Dm. Consequently, dimkerLf = 2h0(f∗Nm) = 0, so Lf

is invertible with SF (Lf ) = 0. Now, the proof follows from the fact f : C → Dm

has degree d. ¤

Let [f, C] ∈ M−
m,d. The proof of Lemma 3.1 shows Lf = ∂f is not invertible.

In this case, we will uses the m-fold covering map q : S → Sm to calculate the
contribution c([f, C]). Observe that by Lemma 2.1 the map

M−
m,d → Mα

1 (S, d
m [D]) defined by [f, C] → [f̃ , C]

is one-to-one and onto where f̃ is a lift of f .

Lemma 3.2. If [f, C] ∈M−
m,d then c([f, C]) = 1

m c([f̃ , C]).

Proof. Let B = {0} × ∆ ⊂ S where ∆ is a small disk around 0 in C and
Bm = q(B) and fix a map (f, C, x) with f(x) ∈ Bm such that (f, C) represents
[f, C]. Since the restriction map q|B : B → Bm is one-to-one, Lemma 2.1 shows



Local GW Invariants of Elliptic Multiple Fibers 937

that (f, C, x) uniquely lifts to a Jα-holomorphic map (f̃ , C, x) with f̃(x) ∈ B

such that (f̃ , C) represents [f̃ , C] in Mα
1 (S, d

m [D]).

Let ω and ω̃ be the Kähler forms as in Remark 2.2 and choose a generic ω-
tamed almost complex structure J on Sm that is close to Jm. Then, we have

• J lifts to an ω̃-tamed almost complex structure J̃ on S close to Jα such
that dq ◦ J̃ = J ◦ dq,

• each fi in M(f,C,x),Bm,J is homotopic to f since fi is C0-close to f ,
so (fi, Ci, xi) also uniquely lifts to J̃-holomorphic maps (f̃i, Ci, xi) with
f̃(xi) ∈ B such that (f̃i, Ci, xi) is C0-close to (f̃ , C, x).

The pair (ω, J) defines a metric g on Sm whose lift g̃ = q∗g is the same
metric defined by the pair (ω̃, J̃). Let ∇ and ∇̃ respectively denote the pull-back
connections on f∗i TSm and f̃∗i TS of the Levi-Civita connection of g and g̃. The
differential dq then induces a bundle isomorphism dq : f̃∗i TS → f̃∗i q∗TSm =
f∗i TSm such that dq ◦ ∇̃ = ∇ ◦ dq (see [W] page 138) and hence by the formula
(1.8) we have

(3.2) dq ◦Df̃i
= Dfi

◦ dq

The differential dq also induces a bundle isomorphism dqi : f̃∗i Ñi → f∗i Ni and
restricting the equation (3.2) to f̃∗i Ñi and f∗i Ni gives

dqi ◦ Lf̃i
= Lfi

◦ dqi

where Ñi and Ni are normal bundles of Im(f̃i) and Im(fi) respectively. Therefore,
Lf̃i

is also invertible and hence there is one-to-one correspondence

M(f,C,x),Bm,J → M(f̃ ,C,x),B,J̃ given by (fi, Ci, xi) → (f̃i, Ci, xi).

Let L̃t be a path of first order elliptic operators from an invertible J̃-linear
operator L̃0 to L̃1 = Lf̃i

with all L̃t invertible except at finitely many tk. Then,
dqi ◦ L̃t ◦ (dqi)−1 is also a path from invertible J-linear operator to Lfi

such that

SF (Lf̃i
) ≡

∑

k

dimker L̃tk =
∑

k

dimker dqi◦L̃tk◦(dqi)−1 ≡ SF (Lfi
) (mod 2).

Now, noting deg(f) = d and deg(f̃) = d
m , we have

c([f, C]) =
1
d

∑

fi

(−1)SF (Lfi
) =

1
d

∑

f̃i

(−1)SF (Lf̃i
) =

1
m

c([f̃ , C]). ¤
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We are now ready to prove the Main Theorem in the introduction.

Proof of the Main Theorem : It follows from Lemma 3.1, Lemma 3.2 and
(3.1) that

GW loc
1 (Fm, d) =

∑

[f,C]∈M+
m,d

c([f, C]) +
∑

[f,C]∈M−
m,d

c([f, C])(3.3)

=
1
d

(
σ(d)− σ

( d

m

))
+

1
m

[Mα
1 (S, d

m [D]) ]vir.

Since the 2-form α on S has the zero divisor (m− 1)D, so by (1.5) and (0.3) we
have

(3.4) [Mα
1 (S, d

m [D]) ]vir = GW loc
1 ((m− 1)F, d

m) = −(m− 1)
m

d
σ
( d

m

)
.

Now, the proof follows from (3.3) and (3.4). ¤

Remark 3.3. One can also use the above argument to compute GW loc
1 (F2, d),

replacing the “Taubes type” argument used in [LP]. Specifically, for each f in
Mα2

1 (S2, d[D2]) the linearized operator Lf is invertible with SF (Lf ) ≡ h0(f∗N2)
(mod 2) (cf. Proposition 9.2 of [LP]). Thus, by (3.1) we have

GW loc
1 (F2, d) = [Mα2

1 (S2, d[D2]) ]vir =
1
d

(
σ(d)− σ

(d

2

))
− 1

d
σ
(d

2

)

=
1
d

(
σ(d)− 2σ

(d

2

))
.

Remark 3.4. Ionel and Parker [IP] showed how GW invariants for the class
A of a symplectic 4-manifold X are related with the Taubes’ Gromov invari-
ants GrX(A) [T] that count embedded (not necessarily connected) curves in X

representing the class A. They used a particular function F (t) that satisfies

∏

d

F
(
td

)− 1
d
σ(d)

= (1− t)

to relate Taubes’ counting of multiple covers of embedded tori with the dimension
zero genus one GW invariants. Let X be a minimal elliptic surface with pg > 0. In
this case, any GW invariant constrained to pass through generic points vanishes
(cf. Corollary 3.4 of [LP]). So, by (0.2), (0.3) and the Main Theorem, the relation
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between two set of invariants (Theorem 4.5 of [IP]) yields
∑

A

GrX(A) tA =
∏

d,k

F (td)cπGW loc
1 (F,d) F (tdmk

)GW loc
1 (Fmk

,d)

= (1− t)cπ
∏

k

(1 + tmk
+ · · ·+ tmk−1

mk
).

This also gives the well-known Seiberg-Witten invariants SW of X (cf. [FM],
[B], [FS]) due to the famous Taubes’ theorem SW = Gr.
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