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Abstract: The horocycle transform on a hyperbolic space H associates to
each function on H the integral over each horocycle in H. Here we prove a
special support theorem for this transform.

1. Introduction

The Radon transform associates to a function on a space X a function f̂ on a
family Ξ of subsets ξ ⊂ X with the definition,

(1.1) f̂(ξ) =
∫

ξ

f(x) dm(x) , ξ ∈ Ξ ,

dm being a given measure on each ξ. Radon’s original question [9] was whether
this mapping f → f̂ was injective, in other words whether f is determined by
the integrals (1.1). Along with this injectivity problem, determining the range
of the mapping f → f̂ is an interesting question. A part of this question is the
so-called support theorem. While the implication

(1.2) supp (f) compact ⇒ supp (f̂) compact

(supp denoting support) will usually hold for simple reasons, the converse impli-
cation
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(1.3) supp (f̂) compact ⇒ supp (f) compact

is designated the support theorem (usually with extra assumption on f). Positive
answers for some examples lead to various applications:

(i) An explicit description of the range D(X)̂where X is a Euclidean space
or a symmetric space of the noncompact type ([2], [3]). Here (D = C∞c ).
In the first case, f̂ in (1.1) is integration over hyperplanes in X = Rn;
in the latter case f̂ in (1.1) refers to integration over horocycles ξ in the
symmetric space X.

(ii) Medical application in X-ray reconstruction ([6], p.47).
(iii) Existence theorem for invariant differential equations on a symmetric space

X ([3], Lemma 8.1 and Theorem 8.2).

While these results rely on special methods for each case, microlocal analysis
has been used e.g. by Quinto [8] for results of more general nature, requiring
however stronger a priori assumptions about f and its support.

For a symmetric space X of the noncompact type there are two natural Radon
transforms, the X-ray transform and the horocycle transform; in both cases (1.3)
holds ([4], [3]). If X has rank one, then a horocycle has codimension one and
its interior is well defined ([1]). Thus one can raise the question of a support
theorem for the X-ray transform f → f̂ relative to a fixed horocycle. If f is
assumed exponentially decreasing, the support theorem does indeed hold ([5]).
Specifically, a function on X is said to be exponentially decreasing if

sup
x

f(x)em d(0,x) < ∞

for each m > 0, 0 ∈ X denoting the origin and d the distance.

For X a hyperbolic space we consider in this note the analogous question for
the horocycle transform f → f̂ , relative to a fixed horocycle (Theorem 2.2),
extending a result by Lax and Phillips ([7]).

This paper is dedicated to the memory of Shiing-Shen Chern in appreciation
of his generosity and thoughtfulness through many years. In 1959 when I was
planning my 1962 book, his encouragement and advice were invaluable. He took
active interest in my work developing Radon transform theory for homogeneous
spaces and told me how his 1942 incidence definition for a pair of homogeneous
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spaces fits into the program. In fact, some of Radon’s old results from 1917 are
best understood from this point of view.

2. The horocycle transform on Hn

For the support question we take the hyperbolic space Hn with the metric

(2.1) ds2 =
dx2

1 + · · ·+ dx2
n

x2
n

, xn > 0 .

In the metric (2.1) the geodesics are the circular arcs perpendicular to the
plane xn = 0; among these are the half lines perpendicular to xn = 0. The
horocycles perpendicular to these last geodesics are the planes xn = const . The
other horocycles are the Euclidean (n− 1)-spheres tangential to the boundary.

Let ξ ⊂ Hn be a horocycle in the half space model. It is a Euclidean sphere
with center (x′, r) (where x′ = (x1, . . . xn−1)) and radius r. We consider the
intersection of ξ with the plane through (x′, r) parallel to the xn−1xn plane. It is
the circle γ : xn−1 = x′ + r sin θ, xn = r(1− cos θ) where θ is the angle measured
from the point of contact of ξ with xn = 0. The plane xn = r(1−cos θ) intersects
ξ in an (n − 2)-sphere whose points are x′ + r sin θω′ where ω′ = (ω1, . . . , ωn−1)
is a point on the unit sphere Sn−2 in Rn−1. Let dω′ be the surface element on
Sn−2.

Proposition 2.1. Let f be exponentially decreasing on Hn. Then in the notation
above,

(2.2) f̂(ξ) =

π∫

0

∫

Sn−2

f(x′ + r sin θω′ , r(1− cos θ)) dω′
(

sin θ

1− cos θ

)n−2 dθ

1− cos θ
.

Proof: Since horizontal translations preserve (2.1) and commute with f → f̂ we
may assume x′ = 0.

The plane πθ : xn = r(1− cos θ) has the non-Euclidean metric

dx2
1 + · · ·+ dx2

n−1

r2(1− cos θ)2

and the intersection πθ ∩ ξ is an (n− 2)-sphere with induced metric

r2 sin2 θ(dω′)2

r2(1− cos θ)2
,
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where (dω′)2 is the metric on the (n− 2)-dimensional unit sphere in Rn−1. The
non-Euclidean volume element on ξ ∩ πθ is thus

(
sin θ

1− cos θ

)n−2

dω′ .

The non-Euclidean arc element on γ is by (2.1) equal to dθ/(1− cos θ). Putting
these facts together (2.2) follows by integrating over ξ by slices ξ ∩ πθ.

Theorem 2.2. Let ξ0 ⊂ Hn be a fixed horocycle. Let f be exponentially decreas-
ing and assume

f̂(ξ) = 0

for each horocycle ξ lying outside ξ0. Then

f(x) = 0 for x outside ξ0 .

Remark.

For the case n = 3 this is proved in Lax-Phillips [7]. As we see below, this case
is an exception and the general case requires additional methods.

Proof: By homogeneity we may take ξ0 as the plane xn = 1. Assuming f̂(ξ) = 0
we take the Fourier transform in the x′ variable of the right hand side of (2.2),
in other words integrate it against e−i〈x′,η′〉 where η′ ∈ Rn−1.

Then
π∫

0

∫

Sn−2

f̃(η′, r(1− cos θ))e−ir sin θ〈η′,ω′〉 dω′
(

sin θ

1− cosθ

)n−2 dθ

1− cos θ
= 0 .

By rotational invariance the ω′ integral only depends on the norm |η′|r sin θ so
we write

J(r sin θ|η′|) =
∫

Sn−2

e−ir sin θ〈η′,ω′〉 dω′ .

and thus
π∫

0

f̃(η′, r(1− cos θ))J(r sin θ|η′|)
(

sin θ

1− cos θ

)n−2 dθ

1− cos θ
= 0 .
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Here we substitute u = r(1− cos θ) and obtain

(2.3)

2r∫

0

f̃(η′, u)J((2ur − u2)1/2|η′|) r

un−1
(2ur − u2)

1
2
(n−3) du = 0 .

Since the distance from the origin (0, 1) to (x′, u) satisfies

d((0, 1), (x′, u)) ≥ d((0, 1), (0, u)) =

1∫

u

dxn

xn
= − log u

so

ed((0,1),(x′,u)) ≥ 1
u

,

and since

f̃(η′, u) =
∫

Rn−1

f(x′, u)e−i〈x′,η′〉 dx′ ,

we see from the exponential decrease of f , that the function u → f̃(η′, u)/un−1

is continuous down to u = 0.

The case n = 3. In this simplest case (2.3) takes the form

(2.4)

2r∫

0

f̃(η′, u)u−2J((2ur − u2)1/2|η′|) du = 0 .

We need here standard result for Volterra integral equation (cf. Yosida [10]).

Proposition 2.3. Let a < b and f ∈ C[a, b] and K(s, t) of class C1 on [a, b] ×
[a, b]. Then the integral equation

(2.5) ϕ(s) +

s∫

a

K(s, t)ϕ(t) dt = f(s)

has a unique continuous solution ϕ(t). In particular, if f ≡ 0 then ϕ ≡ 0.

Corollary 2.4. Assume K(s, s) 6= 0 for s ∈ [a, b]. Then the equation

(2.6)

s∫

a

K(s, t)ψ(t) dt = 0 implies ψ ≡ 0 .
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This follows from Prop. 2.3 by differentiation. Using Cor. 2.4 on (2.4) we
deduce f̃(η′, u) = 0 for u ≤ 2r with 2r ≤ 1 proving Theorem 2.2 for n = 3.

The case n = 2. Here (2.3) leads to the generalized Abel integral equation
(0 < α < 1).

(2.7)

s∫

a

G(s, t)
(s− t)α

ϕ(t) dt = f(s) .

Theorem 2.5. With f continuous, G of class C1 and G(s, s) 6= 0 for all s ∈ [a, b],
equation (2.7) has a unique continuous solution ϕ. In particular, f ≡ 0 ⇒ ϕ ≡ 0.

This is proved by integrating the equation against 1/(x − s)1−α whereby the
statement is reduced to Cor. 2.4 (cf. Yosida, loc.cit.).

This proves Theorem 2.2 for n = 2.

The general case. Here the parity of n makes a difference. For n odd we just
use the following lemma.

Lemma 2.6. Assume ϕ = C1([a, b]) and that K(s, t) has all derivatives with
respect to s up to order m − 2 equal to 0 on the diagonal (s, s). Assume the
(m− 1)th order derivative is nowhere 0 on the diagonal. Then (2.6) still holds.

In fact, by repeated differentiation of (2.6) one can show that (2.5) holds with
a kernel

K(m)(s, t)

{K(m−1)
s (s, t)}t=s

and f ≡ 0.

This lemma proves Theorem 2.2 for n odd. For n even we write (2.3) in the
general form

(2.8)

s∫

0

F (u)H((su− u2)1/2)(su− u2)
1
2
(n−3) du = 0 n even ≥ 2 ,

where H(0) 6= 0.

Theorem 2.7. Assume F ∈ C([0, 1]) satisfies (2.8) for 0 ≤ s ≤ 1 and H ∈ C∞

arbitrary with H(0) 6= 0. Then F ≡ 0 on [0, 1].
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Proof: We proceed by induction on n, the case n = 2 being covered by The-
orem 2.5. We assume the theorem holds for n and any function H satisfying
H(0) 6= 0. We consider (2.8) with n replaced by n + 2 and take d/ds. The result
is with H1(x) = H ′(x)x + (n− 1)H(x),

s∫

0

F (u)uH1((su− u2)
1
2 )(su− u2)

1
2
(n−3) du = 0 .

Since H1(0) 6= 0 we conclude F ≡ 0 by induction. This finishes the proof of
Theorem 2.2.
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