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Infinitesimal Isospectral Deformations
of Symmetric Spaces, II:

Quotients of the Special Unitary Group of Rank Two

Jacques Gasqui and Hubert Goldschmidt

Abstract: We study the space I(X) of infinitesimal isospectral deforma-
tions of an irreducible and reduced symmetric space X of compact type when
X is a quotient of the special unitary group G = SU(n), with n > 3. If X is
the reduced space of the special unitary group SU(n) or of the special La-
grangian Grassmannian SU(n)/SO(n), the non-zero G-invariant symmetric
3-form on X gives rise to a linear mapping ®¢ : Cg°(X) — I(X), where
CR(X) is the space of real-valued functions on X. Previously, we con-
structed a subspace Fx of Cp°(X) of finite-codimension and showed that
the restriction ® : Fx — I(X) of @y is a monomorphism. Here we prove
that, when n = 3, the mapping ® is an isomorphism and thus obtain in this
case an explicit description of the deformation space I(X).
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INTRODUCTION

Motivated by a result of Guillemin, in [3] we introduced the space I(X) of
infinitesimal isospectral deformations of a Riemannian symmetric space (X, g)
of compact type. We are interested in determining the space I(X) when X is
irreducible and reduced. The reduced space of X constructed in [3] is a symmetric
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space covered by X and which is not the cover of another symmetric space; we
say that X is reduced if it is equal to its reduced space. If I(X) vanishes, we say
that (X,g) is rigid in the sense of Guillemin; in this case, we know that every
isospectral deformation of the metric g is trivial to first-order, and so the space X
is spectrally rigid to first-order.

The only irreducible and reduced spaces for which it is known that the space
of infinitesimal isospectral deformations is non-trivial are quotients of the special
unitary group. In [4] and [5], by means of the homogeneous polynomials of
degree 3 on the Lie algebra of the special unitary group, we produced non-trivial
infinitesimal isospectral deformations of a symmetric space belonging to one of
the following families of irreducible symmetric spaces, where the integer n is > 3:

(i) the reduced space of the symmetric space SU(n)/SO(n);
(ii) the reduced space of the special unitary group SU(n);
(iii) the reduced space of the symmetric space SU(2n)/Sp(n).

In fact, if X is one of these spaces, we constructed an explicit infinite-dimensional
space Fx of real-valued functions on X and an injective mapping

o Fx — I(X).

The symmetric space SU(n)/SO(n) is the special Lagrangian Grassmannian;
its reduced space, which we call the reduced Lagrangian Grassmannian, is the
quotient of SU(n)/SO(n) by the action of a cyclic group of order n consisting of
isometries. The reduced space of the special unitary group G = SU(n) viewed
as a symmetric space is the quotient group G/S, where S is the center of G; the
latter group is isomorphic to the adjoint group of su(n) and is called the reduced
unitary group.

In this paper, we describe explicitly the deformation spaces of two of these
reduced spaces, which are quotients of the special unitary group SU(3) and which
are of rank 2, namely: the reduced Lagrangian Grassmannian, quotient of the
symmetric space SU(3)/SO(3), and the reduced unitary group SU(3)/S. Here
we show that the mapping @ is an isomorphism for these two symmetric spaces.

As in [2], we say that a symmetric p-form u on a symmetric space (X, g)
satisfies the Guillemin condition if, for every maximal flat totally geodesic torus Z



Infinitesimal Isospectral Deformations of Symmetric Spaces, II... 853

contained in X and for all parallel vector fields ( on Z, the integral

/u(C,Q...,C)dZ
Z

vanishes, where dZ is the Riemannian measure of Z. The kernel N, of the Radon
transform for p-forms consists precisely of those forms satisfying the Guillemin
condition.

Let {g:} be a family of Riemannian metrics on X, with gy = g; assume that
{g:+} is an isospectral deformation of g (i.e., that the spectrum of the Laplacian
of the metric g is independent of ¢). Guillemin proved, using the methods he
introduced in [7], that the corresponding infinitesimal deformation h = %gﬂt:o
of the metric g belongs to the kernel N5. If ¢; is a one-parameter family of
diffeomorphisms of X, the family {}fg} is a trivial isospectral deformation; in
fact, the space Lo of Lie derivatives of the metric g is a subspace of N3. This
leads us to define the space I(X) of infinitesimal isospectral deformations as the
orthogonal complement of £y in M. Thus we have the orthogonal decomposition

No Zﬁg@I(X),

and we denote by P the orthogonal projection of Ny onto I(X). If I(X) van-
ishes, the infinitesimal deformation h is a Lie derivative of the metric and the

deformation {g;} is trivial to first-order.

Let (X, g) be a reduced symmetric space belonging to one of the above three
families of reduced spaces. The universal cover X of X is an irreducible symmetric
space corresponding to a Riemannian symmetric pair (G , ), which is in fact one
of the following pairs

(G,50(n),  (GxG,GY),  (G,Sp(n)),

where G = SU(n) for the first two pairs and G = SU(2n) for the latter pair,
with n > 3, and where G* is the diagonal of G x G. We view the symmetric
space X as a homogeneous space of the group G. The symmetric space X carries
a unique (up to a constant) G-invariant symmetric 3-form o, which is induced by
the G-invariant homogeneous polynomial ) on the Lie algebra gg of G defined
by
Q(A) =iTr A3,

for all A € go (see [3, §2]). The form o induces an injective mapping & from the

space of 1-forms on X to the space of symmetric 2-forms on X. According to [4],
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a 1-form 6 on X satisfies the Guillemin condition if and only if the symmetric
2-form &(6) satisfies the Guillemin condition. We consider the G-module Cg°(X)
of real-valued functions on X; if f is an element of CR°(X), the symmetric 2-form
7 (df) satisfies the Guillemin condition. In [4] and [5], we proved that the space F’
of functions f € Cg°(X) for which the symmetric 2-form & (df) is a Lie derivative
of the metric g is the direct sum of two irreducible G-submodules Bg and R(X)
of CR°(X), where R(X) is the space of constant functions on X. Thus if Fx is
the orthogonal complement of F% in CR°(X), the sum

Lo ® (~T(dfx)
is direct; thus we know that the mapping
b="Pod: Fx — I1(X)

is injective and ®(Fx) is an infinite-dimensional subspace of I(X). The main
results of this paper imply that the mapping ® is also surjective when n = 3.

Henceforth, we suppose that G = SU(3), and that X is equal either to the
space SU(3)/SO(3), with G = G, or to the group SU(3), with G = G x G. In
both cases, the space X is the quotient of X by the action of a cyclic group  of
order 3 consisting of isometries which commute with the action of G. We consider
the G-module C*(X) of complex-valued functions and the G-module C*°(SPT)
of complex symmetric p-forms on the space X. To the form o, we associate an
elliptic homogeneous differential operator D, on X with values in the space of
symmetric 2-forms. In order to demonstrate that the equality

@(Fx) = I(X)

holds on X, it suffices to show that a Y-invariant 2-form on X satisfying the
Guillemin condition belongs to the image of D,. The ellipticity of D, allows us

to exploit the harmonic analysis on the homogenous space X of the group G.

In §83, 4 and 12, using the Littlewood-Richardson rule we compute the mul-
tiplicity of an arbitrary isotypic component of the G-module C>°(SPTE), with
p =1,2. We then determine in §§5 and 12 all the highest weight vectors of such
an isotypic component and express them in terms of a family of functions and
a finite set of 1-forms on X. We wish to point out that the descriptions given
there are remarkably simple. More precisely, we construct two explicit functions
f1 and f» on X and consider the family ¢ of functions frs = f1-f5 on X, where
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r, s are integers > 0. If X = SU(3)/SO(3), the highest weight vector of an ir-
reducible G-module of C>®(SPTE), with p = 1,2, can be expressed in terms of
functions belonging to the family &/ and of two explicit 1-forms. On X = SU (3),
we construct explicit 1-forms ¥, with 1 < j < 8, which are highest weight vec-
tors of irreducible G-submodules of C>(T¢); then any highest weight vector of
an irreducible G-submodule of C*°(T}:) can be expressed as a linear combination
of forms of the type f;, with f € & and 1 < j < 8, and any highest weight
vector of an irreducible G-submodule of C°°(S?T, ¢) can be expressed as a linear
combination of the forms bel! onging to the family

{u1g,6(u29;), usy-9;},

with ui,us,us € U and 1 < j,k, I < 8 These descriptions allow us to tell
which of these highest weight vectors are X-invariant. Also if W is an isotypic
component of the G-module C>(SPT{), with p = 1,2, we are able to see that
its G-submodule W= consisting of its Y-invariant forms either is equal to W or

vanishes.

Let ./\~/'27(c denote the G-submodule of C*°(S?T¢) consisting of complex sym-
metric 2-forms satisfying the Guillemin condition. In order to prove the desired
equality, i.e., that the mapping ® is surjective, we simply need to show the fol-
lowing: if W is a non-zero isotypic component of the G-submodule C*(S?T¢)
satisfying W = W, the space W N ./’\V[Q’(C belongs to the image of D,. This last
fact follows from an appropriate bound for the multiplicity of the G-submodule
Wﬂ./\~/'2,(c, or equivalently for the dimension of the vector space W ﬂ/\727(c, where
W is the subspace of W generated by its highest weight vectors. In fact, the
dimension of the space W' is always < 6, and we achieve this bound by con-
structing a mapping W? — R? whose kernel contains W N ./\N/'g(c and showing
that it is surjective, where the integer ¢ depends on W4 and is equal to 1, 2 or 3.
The equality

Lo ﬂ&dCﬁo(X) = 6dBg,

which implies that the mapping @ is surjective, enters into defining these bounds.
In §§10 and 14, we obtain the required bounds by computing specific integrals over
a suitably chosen family of maximal flat totally geodesic tori of X. We need to
evaluate various coefficients of polynomials arising from certain trigonometric in-
tegrals obtained by means of the identities of §9. We give a complete explanation
for only two such computations in Proposition 10.1; all the others are obtained
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by similar methods. Here as in [3], we require the WZ theory, as described in [8],
to prove the combinatorial identities of §8, which are of independent interest.

The proof of our main results allows us to show that the maximal flat Radon
transform for functions on X is injective and that a 1-form on X satisfying the
Guillemin condition is exact (see §7).

We wish to thank Tan Anderson and Michael Eastwood for verifying by means
of Maple that, for n = 3, the differential operators D, of §54 and 11 are of finite

type.

CONTENTS
Introduction 851
CHAPTER I: The Lagrangian Grassmannians 857
1. Riemannian manifolds 857
2. The special unitary group 863
3. Branching laws and multiplicities 866
4. The special Lagrangian Grassmannians 868
5. Symmetric forms 872
6. Symmetric forms and the Guillemin condition 878
7. Main results 881
8. Some algebraic identities 883
9. Computing trigonometric integrals 885
10. Proofs of Propositions 6.2, 6.3 and 6.4 888
CHAPTER II: The unitary groups 896
11. The special and the reduced unitary groups 896
12. Highest weight vectors and multiplicities 903
13. Main results 911
14. Proofs of Propositions 12.5, 12.6 and 12.7 912

References 920



Infinitesimal Isospectral Deformations of Symmetric Spaces, II... 857

CHAPTER I: THE LAGRANGIAN GRASSMANNIANS
1. RIEMANNIAN MANIFOLDS

Let X be a differentiable manifold, whose tangent and cotangent bundles we
denote by T' = T'x and T™* = T%, respectively. We consider the space of complex-
valued functions C*°(X) (resp. real-valued functions Cg°(X)) on X. Let £ be a
vector bundle over X; we denote by E¢ its complexification, by £ the sheaf of
sections of F over X and by C*°(FE) the space of global sections of E over X.
By S¥E. we shall mean the k-th symmetric product of the vector bundle E. We
shall identify S*T* with a sub-bundle of the k-th tensor product ®kT* of T* as
in §1, Chapter I of [2]; in particular, if «, 5 € T*, the symmetric product « - 3
is identified with the element o ® 6 + 8 ® « of ®2T*. If u is a section of SPT™
over X, with p > 1, we consider the morphism of vector bundles

W T — sp=ip
defined by
(ubg)(nlv cee 7np—1) = u(§77717 cee 777p—1)a
for &,m,...,mp—1 €T.

Let g be a Riemannian metric on X. We denote by g* : T* — T the inverse of
the isomorphism ¢” : T — T*. If u is a section of SPT* over X, we consider the

morphism of vector bundles
G=ugt:T* — SPIT*,

We also consider the scalar products on the vector spaces C*°(X), C*°(T") and
C>(S%T*), defined in terms of the Riemannian measure of X and the scalar
products on the vector bundles T' and S?7* induced by the metric g.

We denote by Hess f the Hessian of a real-valued function f on X. The Killing
operator
Dy:T — S*T*
of (X, g), sends a vector field £ into the Lie derivative L¢g of g along £. We also
consider the divergence operator
div: §?7T* — T+,

as defined in §1, Chapter I of [2]; we recall that the formal adjoint of Dy is equal
to 2¢g% - div : S?7* — 7. When X is compact, since the operator Dy is elliptic,
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we therefore have the orthogonal decomposition
(1.1) C>®(S°T*) = DyC™(T) @ { h € C°(S*T*) | divh =0}
given by the relation (1.11) of [2]; we denote by
P:C>®(S?T*) — {h € C®(S*T*) | divh =0}
the projection determined by the decomposition (1.1).

We now suppose that X is a symmetric space of compact type. We know
that there is a Riemannian symmetric pair (G, K) of compact type, where G
is a compact, semi-simple Lie group and K is a closed subgroup of G, such
that the space X is isometric to the homogeneous space G/K endowed with a
G-invariant metric. We shall identify X with G/K. We shall denote by go the
Lie algebra of G. The pair (G, K) is associated with an orthogonal symmetric Lie
algebra (go, #) of compact type, where 6 is an involutive automorphism of go. The
spaces C®°(X), C*°(T') and C*(I¢) and the spaces C>°(SPT*) and C*(SPT{)
of symmetric p-forms on X inherit structures of G-modules from the action of G
on X.

We consider the G-submodule NV, = N, x of C*°(SPT*) consisting of all sym-
metric p-forms satisfying the Guillemin condition; the complexification N, ¢ of NV,
shall be viewed as the G-submodule of C*°(SPT) consisting of all complex sym-
metric p-forms satisfying the Guillemin condition. We recall that DyC>(T) is a
G-submodule of NV and that dCg°(X) is a G-submodule of N; (see Lemma 2.10
of [2]). We consider the space of infinitesimal isospectral deformations of g defined
by

I(X)={heN;|divh=0}.
From the decomposition (1.1), we obtain the orthogonal decomposition

(1.2) No = DoC®(T) & I(X);

moreover, the orthogonal projection of Ny onto I(X) is equal to the restriction
of the projection P to N3. Thus the vanishing of the space I(X) is equivalent to
the fact that the space X is rigid in the sense of Guillemin (see [3, §1]).

Let T" be the dual of the group G, that is, the set of equivalence classes of
irreducible G-modules over C. Let F' be a G-invariant complex sub-bundle of T¢
or SPTE. If 7 is an element of I', we denote by C5°(X) and C3°(F) the isotypic
components of the G-modules C*°(X) and C*°(F'), respectively, corresponding
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to . Let 'y be the subset of I' consisting of those elements v of I' for which the
G-module C5°(X) is non-zero; for v € T'g, we know that the G-module C5°(X) is
irreducible. Let g be the element of 'y corresponding to the trivial irreducible
G-module C. We know that the space C5f(T¢) always vanishes.

Let v be an element of I' and £, be an irreducible G-module corresponding
to 7. A G-submodule W of C5°(F), with v € T', is isomorphic to the direct sum
of k copies of E,; this integer k is called the multiplicity of the G-module W and
denoted by Mult W. If we choose a Cartan subalgebra of the complexification g
of go and fix a system of positive roots of g, we recall that the dimension of the
weight subspace of W, corresponding to the highest weight of E,, is equal to the
multiplicity of W (see [2, Chapter II]).

Let o be a G-invariant symmetric 3-form on X; we consider the G-equivariant

morphism of vector bundles
&:T" — S°T*

induced by o. If the space X is irreducible and the form ¢ is non-zero, we know
that & is a monomorphism. If F' denotes the trivial real line bundle over X, we
associate with o the first-order differential operator

D, :T&F — S*T*

defined by
Do(&, f) = Do + odf,
for £ € C°(T) and f € CR(X).

Let X be a finite group of isometries of X of order m; suppose that the elements
of ¥ commute with the action of G on X and that the group ¥ acts without fixed
points. Then the quotient Y = X /¥ is a manifold and the natural projection
w : X — Y is an m-fold covering. Thus the metric g induces a Riemannian metric
gy on Y such that w*gy = ¢g. Let (G, K’) be another Riemannian symmetric
pair associated with the orthogonal symmetric Lie algebra (go, ). Assume that
K is a subgroup of K’ and that there exists a G-equivariant diffeomorphism
¢ :Y — G/K' which has the following property: when we identify X with G/K,
the projection ¢ o w is equal to the natural projection G/K — G/K’. Under
these conditions, the space (Y,gy) is isometric to the symmetric space G/K’
of compact type endowed with a G-invariant metric. In [3, §1], we saw that the
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reduced space of X can be written as the quotient X /¥, where X is an appropriate
group of isometries of X, and that it also satisfies all of the above assumptions.

We consider the G-submodule C*(X)* of C°°(X) consisting of all ¥-invariant
functions on X. If F' is a sub-bundle of Tt or SPT{ which is invariant under both
the groups G and X, we consider the G-submodule C*(F)* of C*°(F) consisting
of all Y-invariant sections of F' over X. If F'is the vector bundle T or SPT{, we
consider the G-submodules

CO(X)” =C®(X)"NCP(X),  CP(F)” =C®F)"NCE(F)

of C3°(X) and C5°(F), respectively. Let I'y be the subset of I'g consisting of all
elements v of I'y such that

CP(X)” = C(X).

If the symmetric 3-form o is Y-invariant, the symmetric form ¢ induces a
symmetric 3-form oy on Y such that
oc=woy.
We consider the morphism of vector bundles
&y : Ty — S*Ty
induced by the symmetric 3-form oy. If ¢ is a 1-form on Y, we have

(1.3) w oy (p) = (@ p).

Suppose that, if ¢ is an arbitrary 1-form on X satisfying the Guillemin con-
dition, the symmetric 2-form &(¢) on X also satisfies the Guillemin condition.
Then for all v € I', since the differential operators Dy and 6d are homogeneous,
we have the inclusions

DoC>®(T)* + 5dC(X)* € Noy N C™(S>T*)*,
(14 DyC(Te)” 4 6dC°(X)” € Noe NCP(SPTE)™,

for all y € I.

We now further assume that X is irreducible and is not equal to a simple Lie
group. We may suppose that the Lie group G is simple; then the complexifica-
tion g of the Lie algebra gg is simple. Let ~1 be the element of I' which is the
equivalence class of the irreducible G-module g. The space K of all Killing vector
fields on X, i.e., the space of all solutions { € C*°(T) of the equation Dy& = 0,
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is isomorphic to go; thus we may view its complexification K¢ as a G-submodule
of C(Tt). If X is not Hermitian, according to the equality (2.27) of [2] we know
that v, does not belong to I'y and that

(1.5) C2(Te) = Ke.

Proposition 1.1. Suppose that the symmetric space X of compact type is irre-
ducible; assume that it is neither Hermitian nor equal to a simple Lie group.
Let o be a non-zero symmetric 3-form on X which is both G-invariant and
Y-invariant and let oy be the symmetric 3-form on the symmetric space Y sat-
isfying w*oy = o. Suppose that the following hypotheses hold:

(a) If a 1-form ¢ on X satisfies the Guillemin condition, the symmetric 2-form
() on X also satisfies the Guillemin condition.

(b) There exists an element v2 of I'1, not equal to vy or 1, such that
DoC>(Tc) N 6dC™(X) = 6dCT7(X).

(c) The differential operator D, is elliptic.
Then the following assertions are equivalent:

(i) The equality
Noy = DoC*(Ty ) + oy dCR°(Y)
holds.
(ii) The equality
Noc N C®(SPTE)” = DyC™®(Te)* + 6dC™(X)*
holds.
(iii) We have
(1.6) Nag MO (SPTE)™ = Noe N C(S*TE) = {0},
(L7 Noc 1 C35(SPTE)” = DoC3(Te),
and the equality
(1.8) Noe NC(S?TE)® = DoC(Te)™ + 6dC° (X)™

holds for all v € T', with v # 0,71, Y2-
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(iv) The equalities (1.6) hold; moreover, if v is an arbitrary element of I' not
equal to vy or 71, the inequality

Mult (Mo, c NCP(S?TE)™) < 1+ Mult C°(T¢)™
holds whenever v belongs to I'1 and is not equal to o, and the inequality
Mult (No,c N C°(S?TE)™ ) < Mult C2°(T¢)™

holds whenever ~ is equal to y2 or does not belong to I'y.

Proof. Lemma 2.17 of [2], together with the relations (2.6) of [2] and (1.3), gives
us the equivalence of (i) and (ii). Since D, is an elliptic homogeneous differential
operator, from the inclusions (2.12) and Propositions 2.2,(iii) of [2], by (1.4) we
infer that assertion (ii) is equivalent to the fact that the equality (1.8) holds for
all v € T'. According to our hypothesis (b), the equality (1.8), with v = 79, is
equivalent to (1.7). When v = 7, we know that the spaces dC5°(X) and C3°(1¢)
vanish. On the other hand, since X is not Hermitian, we saw that the spaces
C%(X) and DoCS(Tc) vanish. Hence the equalities (1.8), with v equal to o
or 71, are equivalent to the relations (1.6). Thus the assertions (ii) and (iii) are
equivalent. Since Mult C7°(X )* is equal to 1 when the element v of T’ belongs
to I'; and vanishes otherwise, the equivalence of (iii) and (iv) follows from the
inclusions (1.4) and the hypothesis (b). O

We no longer assume that the space X is irreducible and also allow it to be
equal to a Lie group. The following result is a direct consequence of Lemma 2.17
and Proposition 2.32 of [2].

Proposition 1.2. Let X be a symmetric space of compact type and Y be the
symmetric space equal to the quotient of X by the finite group ¥ of isometries

of X. Then the following assertions are equivalent:
(i) A 1-form on'Y satisfies the Guillemin condition if and only if it is exact.

(i1) The equality
NicNC®(TE)* = dC™®(X)*™
holds.
(iii) The equality
Nic N CR(TE)” = dC°(X)>
holds for all v € T'.
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(iv) The inequality
Mult (Nyc N O (TE)™) <1
holds whenever ~ belongs to I'1, and the equality
Nie NCX(TE)” = {0}

holds whenever v does not belong to I'y.

2. THE SPECIAL UNITARY GROUP

Let n > 3 be a given integer. Let X = G be the special unitary group SU(n).
If B denotes the Killing form of the Lie algebra gy = su(n), we endow X with
the bi-invariant Riemannian metric gg induced by —B. As usual, we identify the
G-module go with the tangent space of X at the identity element ey = I,, of G.

We consider the space M, of all n x n complex matrices. For 1 < j, k < n, let
Ej; = (cir) be the element of M,, determined by c;; = 1 and ¢, = 0 whenever
(l,r) # (3,k). 1 <j,k<nmand 1 <1 <mn-—1 are integers, with j # k, the

matrices

Ajp = Eji, — Eyj,  Bjr =i(Ejx + Eyj),  Cr=i(Ey— Epy141)
of M, belong to go; in fact, the set of all these matrices {A;i, Bjr, Ci}, with
1<j<k<mnand1l<[<n-—1,form a basis of gg.

For p > 2, the homogeneous polynomial @, on go defined by

@p(§) = (=) Tr e,

for all £ € go, is G-invariant, non-zero and real-valued; therefore it gives rise to a
non-zero bi-invariant symmetric p-form a; on X. We know that the metric gg is
equal to the symmetric 2-form 2n - o4 and that o} is up to a constant the unique

bi-invariant symmetric 3-form on X (see [3, §2]).

We shall always consider the space X = SU(n), with n > 3, endowed with the
Riemannian metric ¢’ = of. We easily verify that the product of matrices C; - C,
is equal to 0, for all 1 < j,k <n — 1, with |j — k| > 2, and hence that

(21) g/(Cj7Cj) = 27 g/(ClaclJrl) = _17 g/(Ck7Cq) = 07
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forall 1 <j,k,g<n—1and1<I[<n-—2, with ¢ > k+ 2. Moreover, we verify
that

(2.2) g'(C’l,Bjk) =0, g'(Bjk,Brs) = 28015,
forall1<l<n—-—1land1<jk,r,s <nand, with j <k and r < s.
We now consider the mapping
SRV S G,
which sends 6 = (61,...,60,_1) € R* ! into the diagonal matrix
J(0) = diag (e, ..., e"n)

of GG, where

r1 =01, xj=0; —0;_1, Ty = —0p_1,

for2<j<n-—1 1If{e],... e, } is the standard basis of R*~! and A’ is the
lattice of R"~! generated by the basis {2me) f1<j<n—1 of R"~! the mapping ¢/
induces by passage to the quotient an imbedding

Vo R”_l/A’ — G.

The image of the mappings ¢/ is the maximal torus H of the group G which
consists of all diagonal matrices of G and is therefore a maximal flat totally
geodesic torus of G viewed as a symmetric space. Clearly we have //(0) = eg. We
previously considered this maximal torus H of G in [4, §3] and [5, §2].

The complexification h of the Lie algebra hy of H is a Cartan algebra of the
complexification g = sl(n,C) of the simple Lie algebra gy, and consists of all
diagonal matrices of g. In fact, the matrices {C1,...,C,_1} form a basis of ho.
For 1 < j < n, the linear form A; : h — C, sending the diagonal matrix with
ai,...,a, € Cas its diagonal entries into a;, is purely imaginary on ho. We write
aj =N — Ajy1, for 1 < j <n—1. Then

{N—Ml1<jk<nandj#k}
is the system of roots of g with respect to . As in [4, §5], we take
{a1,...,an_1}
as a system of simple roots of g; the corresponding system of positive roots is

A+:{)\j—)\k]1§j<k§n}.
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If o is the root A\j — Mg, with 1 < j,k < n and j # k, the root subspace g,
corresponding to « is generated by Ej;, (over C). We have the decomposition

g=n ®hont,

where

nt = @ 9o, n = @ g—a;

acAt acAt
in fact, n* is spanned by the elements Ejj of g, with 1 < j < k < n. The

corresponding fundamental weights are

with 1 < j <n —1; in fact, w; is the highest weight of the irreducible G-module
N C", and we have

@i (Cj) = ik,

for 1 < j,k <n — 1. The unique element wg of the Weyl group of g determined
wo(AT) = —AT

is the involutive automorphism satisfying

(2.3) wo(;) = —@n—j,

for 1 <j<n-—1 (see [4, §5] or [5, §4]). A dominant integral form X for G may

be written in a unique way
(24) A= ’77“1,~~~,7'n—1 =Tr1wi + -+ Tn—1Wn—1,

where 71, ...,r,—1 are non-negative integers. Thus the highest weight of an irre-

ducible (complex) G-module has a unique expression of this form and so is equal

to
(2.5) AL+t e A,
where cy,...,c,—1 are integers satisfying ¢; > -+ > ¢,—1 > 0; hence we may

identify the dual I' of G with the set of all linear forms on § which can be written
in the form (2.4) (or equivalently in the form (2.5)).

If v = %1 r9,.rn_y is an element of I', where r1,72,...,7,_1 are non-negative
integers, by (2.3), the unique element 74 of I" determined by

wo(y) = =%
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is equal to 7, ;. . rr; in particular, if v is the element w; of I', we have the

equality 4 = wy,_g.

3. BRANCHING LAWS AND MULTIPLICITIES

If V is a real or complex vector space, we denote by S*V and /\ZV the k-th
symmetric product and the [-th exterior product of V', respectively. Let n > 3 be
a given integer and let U be the real vector space R" endowed with its standard
Euclidean scalar product. If k& > 2, we consider the kernel S§U* of the trace
mapping SFU* — S¥~2U* defined in [4, §2].

We consider the groups G = SU(n) and K = SO(n). The complexification
Uc of U is a G-module, and so the k-th symmetric product SkUé of U inherits
a G-module structure. In fact, the space SkUE is an irreducible G-module and,
for k > 2, the complexification S§U{ of S§U* is an irreducible K-module.

A partition m = (71,...,m,—1) is an (n — 1)-tuple of integers satisfying

M >my > 2> Ty > 0.
We say that a partition m = (my,...,m,—1) is even if all its integers 7; are even.
Let

Yy=a1w1+ -+ ap-1Wp-1
be an element of I', where a1,...,a,_1 are non-negative integers. We associate
with the element ~ the partition m(vy) = (71,...,m—1), where

Tj=ai+ -+ ap—j,

for 1 < j < n —1; in fact, this partition uniquely determines the element ~ of I'.
Let No(y) be the integer which is equal to 1 if the partition () is even and 0
otherwise. We consider an irreducible G-module E, corresponding to~y. Let £ > 1
be a given integer and consider the set 3(7, k) of all partitions n = (n1,...,7—-1)
defined as follows: a partition n = (11, ...,7,—1) belongs to 3(v, k) if and only if
there exist integers v, ..., v, > 0 satisfying the relations

Nj = Vj — Un, VjZWjZVj-s-la
Vit Vg =T R

for 1 < j < n—1. We denote by Ni(vy) the cardinality of the set X'(v,k)
consisting of all even partitions of ¥(v, k).
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Since G is a real form of the group SL(n,C) and the subgroup K of G is equal
to GNSO(n, C), from Pieri’s formula (see Proposition 15.25,(i) and formula (A.7)
of [1] and [3, §10]) and the relation (10.4) of [3], for k > 2, we deduce that the
multiplicity My () of the irreducible K-module S4 U¢ in the decomposition of E,
viewed as a K-module is equal to

(3.1) dim Homp (S§UZ, E,) = Ni(v) — Np_2(7).

By (3.1), we know that Ma(y) is equal to Na(y) — 1 if the partition 7 () is even
(i.e., if the integers a; are even) and to Na(7y) otherwise.

If p, q are given integers, let €} be the integer equal to 1 if p > ¢ and 0 otherwise.

Lemma 3.1. Suppose that n = 3. Let r1,ro > 0 be given integers and let ~
be the element vr, r, of I'. Then the integers Na(vy) and Ma(7y) are given by the
following table:

Conditions on r; and 79 Na(7) My(v)
r1,T9 even 14 eyt + eh? enten? + eyt + ey
r1,r9 odd 1 ' + €5’

r1 even, 3 odd 5! eyt +e5'es?
r1 odd, rg even e’ ey’ +e5ter?

Proof. Let v = ajw; + asws be an element of I' and consider the partition

() = (71, m2) associated with v. We consider the sequences

¢ = (m +4,7m2), € = (my,m2 +4), & = (m —4,m —4),
¢t = (my,me — 2), € = (my — 2,m), €5 = (11 +2,m2 + 2),
n' = (m +2,m), n? = (m,m +2), n® = (m —2,m —2)

associated with the partition 7(7y). If a; and ag are even integers, we see that
a partition belonging to ¥'(v,4) (resp. to X/(7,2)) is a subset of {¢!,..., &5}
(resp. of {n',n?,13}). We also consider the sequences

€7 = (my,ma + 1), T+ 2,19 — 1), T — 2,9 — 3),

)

€ = ( & = ( )
510=(7r1+1,7r2), et = (m —1,m +2), 512:(7r1—3,7r2—2)
B =(m+3,m+1), M=m+1l,m+3), °=(m-1m-1),
nt = (m,m — 1), n° = (m —1,m2), nd = (m+1,m+1)
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associated with the partition 7(vy). If a; is even and ag is odd (resp. a; and
as are odd integers), we see that a partition belonging to 3'(v,4) is a subset
of {€7,68,69} (vesp. of {€13 ¢ ¢15)) and that ¥/(v,2) is empty when a1 = 2
and ap = 1 (resp. when a; = az = 1) and is equal to {n*} (resp. {#°}) other-
wise. Moreover, if a; is odd and as is even, we see that a partition belonging to
Y (,4) is a subset of {¢19 &M €12} and that X'(v,2) = {n°} when ay > 2 and
is empty otherwise. Using these remarks, we are able to compute the integers
Ny(y) and N4(7y), from which we obtain the integer My (7). O

4. THE SPECIAL LAGRANGIAN GRASSMANNIANS

Let n be a given integer > 3. Let G be the group SU(n) and let K be the
subgroup SO(n), which is equal to the set of fixed points of the involution s
of G sending a matrix into its complex conjugate. Then (G, K) is a Riemannian
symmetric pair. In the Cartan decomposition

go = £ D po

of the Lie algebra gy of G corresponding to this involution, which we considered
in [4, §6], we know that £y is the Lie algebra of K and that the K-submodule pg
is the space of all symmetric purely imaginary n X n matrices of trace zero. We
denote by ¢, the action of an element ¢ of G on the tangent bundle of X. We
identify pg with the tangent space of X at the coset xq of the identity element eg
of G; in fact, if ¢ is an element of K, we have ¢(xg) = o and, if £ is an element
of po, the vector ¢, of Ty, is given by

(4.1) puf = Ado- €.

We consider the G-invariant metric g and the symmetric 3-form ¢ = g3 on X
introduced in [4, §6]; they are the unique G-invariant symmetric forms whose
restrictions to the space T,, = po are equal to the restrictions of the symmetric
forms ¢’ and o, respectively, to the space po. In fact, they are determined by

9(61,62) = =Tr (§1- &2), o(€1,82,83) =i Tr (&1 &2+ &3),

for all &1, &2, &3 € po. The Riemannian manifold (X, g) is an irreducible symmetric
space (which is not Hermitian), called the special Lagrangian Grassmannian. We
shall consider the objects associated in §§1 and 2 with the symmetric space X

and the group G and use the notation introduced there.
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The set of matrices {Bj;,Ci}, with 1 <j <k <nand1<!<n-—1,forma
basis of pg. For 1 < j < n, we consider the element

Cy:;(SEMkK%§5M%)

k= k=1

of pg. According to (2.1) and (2.2), we have

(4.2) 9(C;,C5) =2, g(C,Cer) = -1, g(Cy, Cg) =0,
foralll1 <jk,g<n—1land1<[l<n-—2, withq¢>k+2, and
(4.3) 9(Ci, Bjr) =0, g(Bjk, Brs) = 20015,

forall1<l<n-1land1<jk,r,s<nand, with j <k and r < s.
We consider the G-equivariant monomorphism
&:T* — S°T*
induced by the symmetric 3-form ¢ and the differential operator D, associated
with ¢ in §1. Let ¢ be an element of T); . In [4, §6], we saw that

(4.4) 5(0)(Cy, Cr) = 0,

for 1 <j,l<n-—1,withl>j+ 1, and that

(4.5) 7(9)(Cj,C)) = (Cj + Cj1a),

for all 1 < j <n —1; moreover, for all 1 < j <n — 2, we have
(4.6) 5(9)(Cj, Cj1) = —p(Cjt1)-

From the relation (3.7) of [4], we deduce that

(4.7) () (B, Bjr) = (Cj + C),

for1 <j<k<n.

The following lemma is a direct consequence of the expressions for the sym-
metric forms g and o.
Lemma 4.1. Let A, B,C be elements of py and ¢ € R satisfying
(4.8) A-B+B-A=icC.
Then we have
- c
Jorall p € T, .
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Let {wj, @}, with 1 < j < k < n, be the basis of T determined by
w;i(Cr) =851, @wik(C1) =0, w;j(Brs) =0, w@jk(Brs) = 0jr0gs,
foralll <l <n—1land1<j,k,r,s <n,withj<kandr <s. Forl<jk <n,

we consider the elements wo, wy, @;; and wy; of T, defined by

Wy = Wnp = Wjj = 0, Wkj = Wijk-

Let U be the set of vectors {Bji} of po, with 1 < j < k < n. If A, B are
elements of U, with A # B, and 1 <[ <n — 1 is a given integer, then we easily
verify that the relation (4.8) holds, where C' is an element of & and ¢ = 0 or 1,
and that

A-Ci+Cp-A=icA,

where ¢ = 0 or +1. According to this remark, Lemma 4.1 and the relations
(4.4)—(4.7), we see that
n

(4.9) 26 (wji) = (Wj —wj—1 + wp — wWi—1) - Wik + Z Wil - Wi,
=1

for all 1 < j < k < n; moreover, when n = 3, we have

- 1
F(w1) = = (Wi 4 2w1 - wo — 2w3 + Wiy + wi3 — 2wa3),

6

(4.10) )
G(we) = g (2w — 2w1 - wo — W3 + 275 — Wiz — Wa3)-

Using Maple and the formulas (4.9) and (4.10), we see that the operator D,
is of finite type when n = 3; in fact, the morphism

(4.11) S3T* @ (T ® F) — S*T* @ S*T*,

which is equal to the second prolongation of the symbol of D,,, is injective. There-
fore by Proposition 6.2 of [6], we obtain:

Proposition 4.2. When n = 3, the differential operator D, on X is elliptic.
According to the relation (7.1) of [4], the equality of G-modules
(4.12) CgO(SpTE) = C5°(SPTE)

holds for all vy € I and p > 0.
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We consider the line bundle {g} generated by the section g of S*T*, the sub-
bundle E; of S*T* introduced in [4, §6] and the isomorphisms

SAUt T SeU* — Ei gy

x07(C7

of K-modules considered there; if + is an element of I', from the Frobenius reci-
procity theorem, we obtain

(4.13) Mult C°(Tg) = Ma(y),  Mult C°(Eyc) = Ma(v).

In this section, we henceforth suppose that the integer n is equal to 3. By (4.13),
we see that the following proposition is an immediate consequence of Lemma 3.1.

Proposition 4.3. Suppose that n = 3. Let r1,r9 > 0 be given integers and let
be the element vy, r, of I'. Then the multiplicities of the G-modules C3°(T¢) and
C(E1c) are given by the following table:

Conditions on 71 and 79 Mult C°(T¢) Mult C°(E1 ¢)
T1,T2 even ext + €57 exter? +ext + e
r1,72 odd 1 eg! + ey

r1 even, ro odd et eyt +eqtey?
r1 odd, ry even €5’ ey’ +egtey?

If 1,79 > 0 are given integers, we consider the elements
VL= (201 2r9) A + 20,

Wy = (201 + 272+ 2)A1 + (272 + 1)Aa,

W e = (271 4 272 4+ 3)A1 + (2ra + 1),

= (291 + 2ry 4+ 3)A1 + (2r2 + 2) Ao

4
77‘177‘2

of I'. We easily verify that

- ) - 4
(414) ’7121,7‘2 = ,}/¥2’T1’ ’77::)1,7"2 = Vror1o
for j =1,2.

In [4, §7], we saw that the subset I'g of I" is given by

FO = {%}177“2 | 1,72 Z 0}.
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Clearly we have vg = 7&70 and we also know that v, = 7370. The G-invariant
orthogonal decomposition (6.3) of [4] becomes

S2T* = {g} & By & 6(T");

thus we obtain the equality

O (S°T2) = O (X)-g & O (Hy ¢) & 50 (T2),
for all v € I'. Hence by Proposition 4.3, we have

C32(S*TE) = OS2 (X) g = C-g.

If v is an element of I', we see that
(4.15) Mult C2°(S*T¢) = 1 + Mult C°(Ey ¢) 4+ Mult C°(T¢)
whenever v belongs to I'g and is not equal to 7, and that
(4.16) Mult C2°(S*T¢) = Mult C°(Ey ¢) 4+ Mult C°(T¢)

whenever v does not belong to I'; here the multiplicities Mult C;’O(El,(c) and
Mult C5°(T¢:) are given by Proposition 4.3. From this proposition, we now deduce
that the G-modules C5°(T¢) and C;’O(SQT(E) both vanish if v is not of the form
’yﬁl,m, for some integers 1,70 > 0 and 1 < j < 4.

5. SYMMETRIC FORMS

Let n > 3 be a given integer. For 1 < j, k < n, we denote by zj;, the function
on the space of matrices M,, which sends a matrix of M, into its (j, k)-th entry,
and we consider the complex vector field

" 0
ik = zz; i
on M,. For 1 < j <n, we consider the C"-valued function Z; on M,, which sends

a matrix of M, into its j-th row.

If z=(z1,...,2,) and w = (wy, ..., w,) are elements of C", we write

n

(z,w) = Z Zjwj.
j=1

Clearly we have
(Zj, Z1)(e0) = dj1,
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for 1 < 4,01 <n. Let 1<k <n-—1be a given integer; we consider the My-valued
function Ay on M, defined by

A = ((Zj, Z)h<jisk
and the complex-valued function
fr = det Ag
on M,, which satisfies fx(eg) = 1. In particular, we have
fi=1(%1, 21), fo =21, 21)(Za, Zo) — (Z1, Z2)*;
we also write f| = (Z1, Za).

We consider the group G = SU(n) as a real submanifold of the complex mani-
fold M,,. The left action of the group G on the manifold M,, induces a morphism
® from g to the Lie algebra of vector fields on M,,, which are tangent to the
submanifold G of M,,. We recall that

O(Bji) = i(&jr + & — &k — &xy)s - P(C) = i&n — G141 + i — &),
forl<j<k<nand1<I<n-1.
According to equation (4.7) of [4], we have
(5.1) O(C)) fr = —2i0x1 [,
for 1 < k,l <n—1. We now easily verify that
®(Byj) 1 = —2i(Z1,Z;), ®(Bji)fr =0, @(Bi2)fa=P(Brs)f2=0,
O(Bur)f2 = 2i((Z1, Z2)(Z2, Zk) — (Z2, Z2)(Z1, Zy)),
O (Bar) f2 = 2i((Z1, Z2)(Z1, Zk) — (21, Z1)(Z2, Zy)),
(Bii)fi = —i(Z2, Zk), ®(Baw)f1 = —i{Z1, Zy),
O(Bi2) fi = —i({Z1, Z1) + (22, Z2)), ®(C1)fi = —idarfi,
forall2<j<k<n,3<r<s<nandl1<!<n-—1. Thus we have
(®(Bjk)f1)(€0) = (®(Bjr) f2)(e0) = 0,
(®(C1)fi)(e0) =0, (®(Bjk)f1)(eo) = —2id1;62u,
foralll<j<k<nandl1<I<n-—1.

(5.2)

We consider the subgroup K = SO(n) of G, the symmetric space X =
SU(n)/SO(n) and the natural projection p : G — X. A function f on G which
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is invariant under the right action of K on G determines a function f on X
satisfying p*f = f. Let € be an element of gg. The vector field ®(¢) on G is
right-invariant; thus the vector field ®(&) is p-projectable and the vector field

€ = p«®(&) on X is a Killing vector field. Moreover, if f is a function on G which
is invariant under the right action of K, we have the relations

—&- f if € € po,
0 if & € %o;

(5:3) (€ )(wo) = (2(&)f)(e0) =

here in the expression & - f , the vector ¢ is viewed as an element of T;,. In fact,
the G-module K of all Killing vector fields on X is given by

K={{|¢€a}

and we know that the equality (1.5) holds. Moreover, the vector field 7y on X
induced by the vector field

%((I)(Aln) - i(I)(Bln))

on G is a highest weight vector of the G-module K¢. By (5.3), we have

7
no(xo) = 5 By,

where the vector Bi, of pp is viewed as an element of T,,; thus by (4.3), we
obtain

(5.4) 9 (10) = iw1n.

The left action of G on M, induces a structure of G-module on the space
C>(M,); we consider the G-submodule C*(M,,)X of C>(M,,) consisting of all
functions which are invariant under the right action of K. If f is an element
of C®(M,)¥, the restriction of f to G induces by passage to the quotient a
function f on X. The function (Z;, Z;), with 1 < j,I < n, belongs to C*°(M,,)¥.
Let {ei1,...,en} be the standard basis of U and Ug; we easily verify that the

mappings
¢ : SPUE — C°°(M,,)¥, ¢ S2Uc — C°(M,)K,

which send an element h of S’QU@ into the function

Z h(€j> ek’)<Zjv Zk>

7,k=1
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and the element e; - e of S*Ug, with 1 < 4,k < n, into the function (Z;, Zx), are
morphisms of G-modules. Hence the image H of ¢ is a G-submodule of C*°(M,,)%;
clearly, the image of ¢ is equal to H. Since the function f; belonging to H is
non-zero and the G-modules SQUé and S?Uc are irreducible, the mappings ¢
and ¢ are injective and H is an irreducible G-module. Since H is a submodule

of C*®(M,)¥, the G-submodule

H={flfeH}

of C*°(X) is isomorphic to H and therefore also to S?Ug. Since the highest
weights of the irreducible G-modules S? Ui and S 2Uc are equal to 2w, and 2wy,
respectively, we obtain the equalities

s (X) =M, Cs2 (X)) =H.

Moreover, for 1 < k < n — 1, the complex-valued function f; on M, belongs
to C*°(M,)¥ and so it induces a function fr on X. The complex conjugate fk
of fk is equal to the function on X induced by the function f,. We also consider
the function f{ on X induced by the element f] of H and the complex conjugate f{
of fI. Clearly we have fi(z0) = 1 and f!(z0) = 0; from the relations (5.1)~(5.3),
we infer that

(5.5) (dfy) (o) = 2iwr, (dfa)(zo) = 2iws, (df}) (o) = 2iwwy;
thus the 1-form

w= fidfi — fidfi
satisfies

(5.6) w(ZE()) = QiW12.

The mapping
X = N CX(M)N — C=(T7),
defined by
X(f A f) = faf — flaf,
for f, f/ € W, is a morphism of G-modules. The 1-form
X(fiAfi) = fidfi = fldfi
on X is equal to the complex conjugate @w of the 1-form w and is therefore

non-zero. We easily see that the highest weight of the G-module /\2(52U<c)
is 3A1 + A2 and that its highest weight vectors are the non-zero multiples of the
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vector v = (e1 - e1) A (e1 - e2). Thus v is a highest weight vector of an irreducible
G-submodule of A*(S2U¢). From the equalities

@=x(fi A1) =x(¢ (e1-e1) A ¢/ (e1 - e2)),

we now deduce that @ is the highest weight vector of an irreducible G-submodule
of C*°(T}) whose highest weight is 3\; + Ao.

In this section, we henceforth suppose that n = 3. By Lemma 9.3 of [4], we
have

(5.7) G(dfy) = —é(4flg + 3Hess fl), G(dfy) = é(4f29 + 3Hess fg)

Let 71,79 > 0 be given integers and let « be the element %}1,7"2 of I'y. The
complex-valued function f,., = Y L. f? is equal to the function on X induced by
the function f,, ., = fI*-f32 on G; the complex conjugate fp, r, = f1f32 of fry.r
is equal to the function on X induced by the function fmﬂqz on G. If ri,r € Z,

when at least one of the integers is < 0, we set

f~r1,r2 =0.

We consider the 1-forms

Y1 = fm—l,rz dfla Y2 = frl,rg—l df2;

we also consider the subspace V;, , of C*(S?*T:) generated by the symmetric

2-forms

h() - fm,rgga hll = ]Em—l,rg&(dfl)u /2 - frl,rg—la'(de))
h3 = fr172,r2 dfl . dfla h4 = frl,r272 de : dfg, h5 = frl—l,rg—l dfl . de

on X, and the subspace V; ,. of V;, ,, generated by the 2-forms h} = (1) and

71,72

Rl = &(p2). We write
hl == fT1—1,7‘2HeSS fla h‘2 — le,Tz—lHess f27

according to the equalities (5.7), we see that {h;}o<;j<s is also a set of generators
of VTl,T2'

According to [4, §7] (cf. Proposition 4.3), we know that the following result is
true:
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Lemma 5.1. Let r1,ro > 0 be given integers and let v be the element 7}1“ of T'g.

(i) The function fm,rz on X 1is a highest weight vector of the irreducible
G-module C3°(X).

(ii) The non-zero members of the family {@1,p2} form a basis of the weight
space of the G-module C3°(T¢) corresponding to its highest weight.

If the form h; (resp. hj)) is non-zero, with 0 < j < 5 (resp. with k£ = 1,2),
from Lemma 5.1,(i) it follows that h; (resp. h}) is a highest weight vector of the
G-module C°(S*T¢).

Proposition 5.2. Let r1,r9 > 0 be given integers and let v be the element 7}1 s
of I.

i) The non-zero vectors of the set {h;}o<i<5 form a basis of the vector space
JI0<j<

Vit re» and we have
dimVy, , = 147" + 72 +e71'el® + 65" + €5

(ii) The weight space of the G-module C’,‘;O(SZT{E) corresponding to the highest
weight ~ is equal to the complex conjugate V., r, of the space Vi, r,.

Proof. From the relations (4.3), (4.7), (5.5) and (5.7), we deduce assertion (i).
The second assertion now follows from Proposition 4.3, the equality (4.15) and

the remark made above concerning the forms ﬁj as highest weight vectors. O

Since the vector field g is a highest weight vector of the G-module K¢, the
1-form ¢°(ng) is a highest weight vector of the irreducible G-module C(TE),
where v, = 7810. Clearly, the complex conjugate &y of 1 also belongs to K¢.
We saw above that the complex conjugate @ of the 1-form w is a highest weight
vector of the G-module CI° (T¢), where v = 7370; according to Proposition 4.3,
we know that this G-module is irreducible.

Let 71,72 > 0 be given integers. From Lemma 5.1,(i), for j = 2 (resp. j = 3), it
follows that f,, r,¢"(10) (resp. fr, r,@) is a highest weight vector of the irreducible
G-module C2°(T¢), where v = 47, r,. We consider the symmetric 2-forms

kl = ifrl,rza-(gb(fﬁ))a k2 = f‘rlfl,m dfl . gb(&])a k3 = le,T’Qfl df? . gb(§0)a
kll - Z‘fmﬂ“z&(w)v k/Q - fm—lﬂ“z dfl W, ké - f?"177"2—1 de cw
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on X, and the subspaces W, ., and W), ., of C*°(S?T¢) generated (over C) by

the forms {k1, ko, ks} and {k], kb, k4 }, respectively.

If the form k; (vesp. k%) is non-zero, with 1 < j < 3, by Lemma 5.1,(i) we see
that l_ﬂg is a highest weight vector of the G-module Cso(SQTE), where v = 'ﬂl T2
with j = 2 (resp. j = 3).

Proposition 5.3. Let r1,r2 > 0 be given integers and let v be the element 7,2,1’,,2
(resp. 73, ,,) of T.

(i) The non-zero generators of the vector space Wy, ,, (resp. W ,.) form a

basis of this vector space, and its dimension is equal to 1 + ' + £7°.

(ii) The weight space of the G-module C;’O(SQT(E) corresponding to the highest
!/
71,7 )
1,72

weight «y is equal to the complex conjugate Wy, ,, (resp. W of the space

Wiy ry (resp. W)

1,72

Proof. From the relations (4.9) and (5.4)—(5.6), we deduce assertion (i). The
second assertion now follows from Proposition 4.3, the equality (4.16) and the

remark made above concerning the forms ]2:]- and 12:; as highest weight vectors. [

6. SYMMETRIC FORMS AND THE GUILLEMIN CONDITION

Let n > 3 be a given integer and X be the special Lagrangian Grassmannian
SU(n)/SO(n). The isometry 7 of X defined in [4, §10] generates a cyclic group ¥
of order n, and the reduced space Y of X (which we call the reduced Lagrangian
Grassmannian) is equal to the quotient of X by ¥ (see [4, §10]).

According to the relations (10.4) of [4], we have
xF _  2iw/n x f1 __  2iw/n pl
T fk =e€ fka T J1=¢€ fl

for 1 <k <n—1. The 1-form w on X therefore satisfies

(6.1) T*w = ey
according to the relations (10.4) of [4], if r1,...,7,—1 > 0 are integers, we then
obtain

(6'2) T*frl,mﬂ”nﬂ - eQiW(rl+2r2+m+(n_1)rn_l)/nfm,m, n—1°
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Thus the 1-form frh,,_,rnflw is invariant under the isometry 7 if and only if the
relation

ri+2ro+--+(n—1)r,—1+2=0mod n.
holds.

In this section, we henceforth suppose that n = 3. Let r1,79 > 0 be given
integers. According to (6.2), the function fmm on X is invariant under the

isometry 7 if and only if
(6.3) r1 = r9 mod 3.

We remark that the vector field &y is 7-invariant. Therefore the 1-form 6, =
frimd’ (&) is invariant under the isometry 7 if and only if the relation (6.3)
holds; moreover, if the symmetric 2-form h; or kj;, associated with the integers
ri,72 in §5, with 1 <7 <6 and 1 < j < 3, is non-zero, by formula (10.2) of [4]
it is invariant under the isometry 7 if and only if the relation (6.3) holds. On
the other hand, by (6.1) and (6.2) we see that the 1-form 6y = f,., ,,w invariant
under the isometry 7 if and only if the relation

(6.4) r1 =719 + 1 mod 3.

holds; moreover, if the symmetric 2-form k}, associated with the integers ri, 72
in §5, with 1 < j < 3, is non-zero, by formula (10.2) of [4] it is invariant under
the isometry 7 if and only if the relation (6.4) holds.

From the preceding remarks, Lemma 5.1 and Propositions 5.2,(ii) and 5.3,(ii),
we now obtain the following;:

Proposition 6.1. Let ri,79 > 0 and 1 < j < 3 be given integers and let v be the

element 7¥1,T2 of I.

(i) If j = 1, the G-module C’f;O(X)E is equal to C5°(X) if and only if r1 and
ro satisfy (6.3).

(ii) For j,p = 1,2, the G-module C’;’O(S]”T(é)Z is equal to C°(SPTE) if the

relation (6.3) holds and it vanishes otherwise.

(ili) For j =3 and p = 1,2, the G-module C’,‘;O(SPT(E)E is equal to C3°(SPTE)
if the relation (6.4) holds and it vanishes otherwise.

Proposition 6.1,(i) tells us that the subset I'; of Ty is given by

I'y={%, | 71,72 >0 and ri =ry mod 3}.
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In §10, we shall prove the following three results:

Proposition 6.2. Let r1,r2 be given integers satisfying the relation (6.3) and
0 <ry <ry. Then the function f7’177’2 on X does not satisfy the Guillemin condi-
tion.

Proposition 6.3. Let r1,7r2 be given integers satisfying the relation (6.3) and
0<m <ra.

(i) Suppose that (r1,72) # (0,0),(1,1). Then we have
Voo NNze ={0},  dim(ViinNoc) <2,
dim (Vp, r, N Noc) <1+e]' +e72.

(ii) Suppose that r1,79 > 1. Then we have
dim(l/;’lm NNyc) < 1.
Proposition 6.4. Let ri,r9 > 0 be given integers.

(i) Suppose that the relation (6.3) holds and that 0 < r; < ryo. Then the
symmetric 2-form ki = ifrhm&(gb(&))) does not satisfy the Guillemin condition.
Moreover, if r1 + 1o > 0, we have

dim (thm ﬂ./\/‘l(c) < 1.
(ii) Suppose that the relation (6.4) holds. Then the symmetric 2-form kj =
ifrl7r2&(w) does not satisfy the Guillemin condition. Moreover, we have

dim (VVII’T2 ﬂ./\/’27<c) < 1.

T

We remark that the first assertion of Proposition 6.4,(i) implies that
W()70 ﬂNQ@ = {0}

Using the equalities (4.12) and (4.14), from Propositions 4.3, 5.2,(ii), 5.3,(ii),
6.3,(i) and 6.4, we obtain the following result:

Proposition 6.5. Let r1,r2 > 0 be given integers and let v be the element %4177«2
of I', with 1 < 5 < 3.

(i) If j =1 and r1 = r9 = 0, we have
Nac N C(S*TE) = {0}
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(ii) If j =1 and the relation (6.3) holds, we have
Mult (Na,c N CS°(S?TE)) < 1+ Mult C3°(T¢)
whenever (ri,r2) # (0,0),(1,1), and
(6.5) Mult (Na,c N CS°(SPTE)) < Mult C°(T¢)
otherwise.
(iii) If j = 2 and 1, = 12 = 0, we have
Noe N CF(S°TE) = {0}

Suppose that the relation (6.3) (resp. (6.4)) holds; if 7 =2 and r1 + 19 > 0 (resp.
if j = 3), then the inequality (6.5) is true.

By means of the equalities (4.12) and (4.14), from Propositions 6.1,(iii) and
6.5,(iii) we deduce the following:

Proposition 6.6. Let r1,79 > 0 be given integers and let v be the element 7;"11,7"2
of T.

i) For p=1,2, the G-module C°(SPT)* is equal to C°(SPTY) if the rela-
ol C vy C
tion

(6.6) r1 =719 + 2 mod 3.

holds and vanishes otherwise.

(ii) If the relation (6.6) holds, then the inequality (6.5) is true.

7. MAIN RESULTS

We consider the symmetric space X = SU(3)/S0O(3) and its reduced space Y.

From Proposition 2.29,(i) of [2], Lemma 5.1,(i) and Propositions 6.1,(i) and 6.2,
we deduce the following result:

Proposition 7.1. Let Y be the reduced Lagrangian Grassmannian equal to the
reduced space of X = SU(3)/SO(3). The mazimal flat Radon transform for
functions on the symmetric space Y is injective.
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If 5 is the element 711,1 of 'y, according to Proposition 9.1 of [4] we have
DoC>(Tg) N 6dC™>(X) = 5dCT; (X).

Thus the irreducible symmetric space X and the symmetric 3-form o satisfy
hypothesis (b) of Proposition 1.1. On the other hand, Lemma 6.2 of [4] and
Proposition 4.2 tell us that hypotheses (a) and (c) of this proposition also hold.
According to the remark which appears at the end of §4 and Propositions 6.1,
6.5 and 6.6, we see that assertion (iv) of Proposition 1.1 is true for X, o and the
group Y. Then from Proposition 1.1, we deduce the following result:

Theorem 7.2. Let Y be the reduced Lagrangian Grassmannian equal to the re-
duced space of X = SU(3)/SO(3). Then the equality

N27y = DoCOO(Ty) + 5ydC§O(Y)
holds.

Since 42 = 72, according to the relation (4.12), with p = 0, we know that the
irreducible G-module B = C59(X) is invariant under conjugation and hence is
equal to the complexification of the G-submodule

Be={feB|f=f}
of Cg°(X). Thus since 72 belongs to I'1, the G-module By = C37(Y) is equal to
the complexification of the subspace
Byr={feBy|f=F}
of CR°(Y') and the mapping w induces an isomorphism @* : By g — Bg.

If P denotes the orthogonal projection corresponding to the decomposition
(1.1) on the space Y, according to Lemma 1.1 of [3] and Lemma 6.2 of [4] the
mapping

P,, =Poyd: Cg(Y)— I(Y)
is well-defined. We denote by Fy the orthogonal complement of the finite-
dimensional space F;, = R(Y) @ By in Cg°(Y). From Proposition 1.2 of [3],
Proposition 9.1 of [4] and Theorem 7.2, we obtain:

Theorem 7.3. Let Y be the reduced Lagrangian Grassmannian equal to the re-
duced space of X = SU(3)/SO(3). Then the equality

I(Y) = PéydCX(Y)
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holds and the mapping
Poyd:Fy — I(Y)

s an isomorphism.

The preceding theorem is a complement to Theorem 10.2 of [4] with n = 3.
According to Lemma 6.2 of [4], with p = 3, and Proposition 4.3 and the ob-
servations which follow it, and the remarks concerning 1-forms which precede
Proposition 5.3, we see that Lemma 5.1,(ii), the equalities (4.12) and (4.14), and
Propositions 1.2, 6.1, 6.3,(ii), 6.4, and 6.6,(i) give us the following result:

Theorem 7.4. Let Y be the reduced Lagrangian Grassmannian equal to the re-
duced space of X = SU(3)/SO(3). A 1-form on'Y satisfies the Guillemin condi-
tion if and only it is exact.

8. SOME ALGEBRAIC IDENTITIES

If p, ¢ are integers, we define the binomial coefficient (5) to be equal to zero
whenever ¢ > p, or whenever one of the integers p, ¢ is negative.

Let m > 0 be a given integer; for 1 < j < 16, we define functions ¢; on N by

a01=3 () (o) e =3 (1) ()

p=SH)Ge) =X G
=S (ntais) e DH) )
An=2()G) w0 GED)
0 =SH () GE) =) G)
w0 =S ET) o= () ()
w1 =2 () D) e =X () ()
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and
r—3 2m +r r—4 oOm +r
9015(7“)=Zk< >< >7 8016(7’)=Z< >( >,
= k m+k+1 = k m+k+ 2
for » > 0. By elementary computations, we verify that
(8.1) 2¢3(r) = rp1(r),
(82) eo(r) = p10(r),
for » > 0, and
(83) p1(r) = 2¢2(r) = 2¢011(r),
for r > 1.

Standard techniques of WZ theory, as described in the book [8] and im-
plemented by the EKHAD package for Maple, can be used to show that, for
Jj=1,4,5,6,7,8, the function ¢; satisfies a recurrence of order 1. We then easily
deduce that

(8.4) i(r)=2" (3::) H 727717: j—kk_ !
k=1

and
35  eslr) = i), pelr) = DTN,

m+r+1 2(m+r+1)
for » > 0. Moreover, if » > 1, we have
(56) oilr) = 3o o
and, if » > 2, we see that

m+r—1 m+r

(8.7) pr(r) = ] e1(r), ws(r) =

2(2m + 2r — 1 2em o =1y A1)

From the formulas (8.2) and (8.6), we obtain the relations

(r—2)(m+r)
A2m +2r — 1) 1),

for r > 2. From the relations (8.1), (8.4) and (8.5), we easily deduce that

(8.8) wo(r) = p10(r) =

r(m+r—1)

(8.9) #1207 = 2 — 1)

(Pl(r)v
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for r > 0; from the formulas (8.4) and (8.9), we obtain the equality

(r—=1)(m+r—1)

(8.10) v13(1r) = 2(2m + 2r — 1) e1(r),

for » > 1. From the relations (8.3), (8.4) and (8.6), we easily deduce that

Pra(r) = 4(2mm++2:j — 1)
(8.11) (r) = (r=3)(m+r)(im+r—1)
250 = fomtar—Demtar =3 ")

for r > 3; on the other hand, from the relations (8.4) and (8.7), we obtain

(m+r—1)(m+r)
2m+2r —3)(2m +2r — 1)

(8.12) P16(r) = 1 Pr(0)

for r > 4.

9. COMPUTING TRIGONOMETRIC INTEGRALS

Let Y be an indeterminate over C. If P is an element of C[Y], we denote
by ¢;(P) its coefficient of degree j and write ¢(P) = ¢o(P); if P is non-zero, we
denote by ¢(P) its leading coefficient.

Let 7, s be given integers satisfying 0 < r < s and the relation
(9.1) r=s mod 3;

let m > 0 be the integer such that s = r + 3m. Let e, e’ > 0 be given integers. If

a1, 09, a3 € 7, are integers satisfying

(9.2) al+oag+oaz=e—¢€,

r—e\[/2m+r—¢e —a
k m+k+a2 ’

we consider the integers

e 3m+r—¢
k) j—
Qa1,02,a3

m —+ aq =0
- 3dIm+r—eé r—e\[/2m+r—¢e —o
e,e _ L .
Caaz.az < m+ o >kz>0 ( k >< m+k+ as ’

we easily verify that

(9.3) cee =0

1,002,003 Qg,03,002°
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Now let di,ds be given integers satisfying

(9.4) e—e =dy —dy (mod 3).
We write
2dy +dy +e—¢€ do —dy +e—¢
€1 = ) €2 = )
3 3
c _6*6/*d1*2d2‘
3 = 3 )

we verify that
€1+ €2+ €3 =e—¢.

The assumption (9.4) implies that €1,e9,e3 are integers. We consider the set

A:{(al,ag,ag)eN?’\al—l—ag—}—agzr—e, m+a;+¢e; >0, for j=1,2,3}.

We consider the functions 9 and ¢ on R? defined by

P, y,v) = ve® + (1 —v)e ™ + ' =2),

O(z,y,v) = ve™ 4+ (1 —v)e ¥ — =),
for all (x,y,v) € R3; if p,q > 0 are integers, we also consider the functions
¢p,q - wp' W, Q;p,q - @Zp' %
on R3. If r,79 > 0 and a,b € Z are given integers, we see that the functions ¢
and ¢ on R defined by

_ 1
 4x2

27 27
) / Ury o (2,9, 0) - €T dap dy,
o Jo

~ 1 2 27 o
W)= g2 /0 | (@ y,0) - T dedy,

for v € R, are in fact polynomials belonging to Q[Y].

We now suppose that 7 > e and s = 3m +r > ¢/. We easily verify that

1 2w 2w (4 J
(0:5) pres / Ureesmer(@,y,v) - B dy dy = F(v),
0 0

1 2r 27 ) B
(9.6) 2 Q)bT,e’S,e/(l', Y,v) - eildiz+day) 1. dy = F(v),
™ Jo Jo
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for all v € R, where F' and F' are the elements of Q[Y] given by

F(Y) = Z Fa,b,c . y?2atmter (1 _ Yv)2c—i—m-‘r637
(a,b,c)eA
F(Y) = Z Fa,b,c . Y2a+m+£1 (Y _ 1)20+m+53,
(a;bc)eA
with
o (r—e)!'(3m+r—¢)!
abe = orplel (m+a+e) (m+b+e) (m—+c+es)’

for (a,b,c) € A. Clearly we also have the equality

1 27 2w

(9.7) Yoot pe(,y,0) - e BTTEY dy dy — F(v).

a2 Jo  Jo
In particular, if

(9.8) m+e; >0,

for 7 =1, 2,3, then we may write

(9.9) F(Y) = Y™ (1 = Y™ Q(v),

(9.10) F(Y) = (-1)% Y™y — 1™ Q(Y),

where ) = Qgie,laz,gg is the polynomial of Q[Y] of degree 2(r — e) equal to

Z (r—e)!(Bm+r—eé)!

Y2a Y —1 2c'
alblel (a+m+e)!(b+m+ex)! (c+m+e3)! ( )

a+btc=r—e

The constant term ¢(Q) and the leading coefficient £(Q) of @ are non-zero; in

fact, we verify that
(9.11) Q) = C5leyeyy (@) = 2055, ., HQ) =055, o,

If e = € = dy = dy = 0, the relation (9.8) holds and the polynomial @ = Qg:&o
is equal to the polynomial P of degree 2r given by

r1(3m +r)!

(9-12) PY)= a+§ﬂ alble! (m + a)! (m +b)! (m + ¢)!

Y2a (Y o 1)21?;
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by formula (8.1), we see that the constant term and the leading coefficient of P
are positive integers and that
3m +r

Py = 7) = (" ),
a(P) = =2 Yatr) = = (M Y

10. PROOFS OF PROPOSITIONS 6.2, 6.3 AND 6.4

(9.13)

We consider the group G = SU(3), the symmetric space X = G/SO(3) and
the natural projection p : G — X. We consider the mapping

(10.1) /R =@
of §2, which sends 6 = (x,y) € R? into the diagonal matrix
/() = diag (", e!v=2), e_iy)

of G; we also consider the mapping ¢ = pot/ : R? — X. If {e}, ¢} } is the standard
basis of R? and A is the lattice of R? generated by the basis {re}, meb} of R?, the
mapping ¢ induces by passage to the quotient an imbedding

L:RZ/A — X,

In [4, §6], we saw that the image Z of ¢ is a maximal flat totally geodesic torus
of X. Clearly we have ¢(0) = xo.

We consider the standard coordinate system (z,y) on R? and endow this space
with the flat Riemannian metric

g=dx -dx+dy-dy—dz-dy.
According to the relation (6.4) of [4], we know that
(102) o=

hence if f is a function on X, we easily see that

(10.3) /Zde = \/§/O7r/07r f(u(z,y)) dz dy.

As in [4, §6], we also consider the parallel vector fields ¢; and (2 on Z which are
determined by

(10.4) w(0/0z)(x,y) = Q(uz,y)),  w(0/9y)(z,y) = G(u(z,y)),
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for (z,y) € R2. If ¢ is a 1-form on X, according to the formulas (6.11) and (6.12)
of [4], we have

(10.5) 6 () (0/0z,0/0x) = < (Fp(0/0z) + 20" p(8/dy)).

W =

For a € R, we consider the element

Cos & 1 sina

1
=— | —v2sina 0 vV2cos«
¢Oc \/§ f f

cosa —1 sina

of SO(3) and the maximal flat totally geodesic torus Z, = ¢,(Z) of X. If f is a

function on X, we have
[ raz.= [ sisaz
Za z

for all @ € R. For a € R, we verify that

1
Ad¢, -Cy = 5((1 + cos® @) Bz — sin? a (C] — Cy)
—V2cosa-sina (Big + ng)),
(10.6) X
Ad gy - Co = 5(0032 a(Cy — Ca) — (1 +sin® ) B3

—V2cosa-sina(Big + ng)).

Since & is a Killing vector field on X and the mapping

daor: (R% ) — (X,g),

sending 6 € R? into ¢, (¢(0)) is totally geodesic, for any element o € R, there is
a parallel vector field £/, on R? such that

ok g (6o) = (L)

in fact, for all # € R?, the tangent vector (¢a«&%)(¢(6)) is equal to the orthog-
onal projection of the vector £y(¢.(t(#))) onto the tangent space of the totally
geodesic torus Z, at the point ¢o(¢(6)). Therefore, for a € R, the functions
ok g7 (€0)(0/0x) and * ¢ g°(£0)(0/dy) on R? are constant. According to the
equality (6.7) of [4] and the relations (4.1), (5.4), (10.4) and (10.6), we see that
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the equalities
65,0 (€0)(0/02)(6) = (1, 6% 9" (€0))(1(6)) = — (1 +cos” ),
V' 6h 9 (€0)(0/0y)(0) = (Ga, 0% 9 (€0))(1(6)) =

(10.7)
(1 +sin? ).

N | .

are true when 6 is the origin of R?; in fact, the previous remark implies that they
hold for all 6 € R2.

If f is a function on R3 and v € R, we consider the function f, on R? defined
by
folz,y) = f(z,y,v),

for all (z,y) € R%. We consider the function 1) on R? defined in §9; we define a
function 1’ and a 1-form @, on R?, with v € R, by

1//(557 y) = eiiy - eiCE’ aj?) - ¢v dd/ - wldw’m
for (z,y) € R%. We also consider the dilation 7 of R? defined by 7(x) = 2z, for

all x € R2.

We consider the functions fl, fg and f{ on X. For a € R, if v = cos? v, we

verify that the relations

1 B 1
L*¢Zfl = *T*wva L*QSZf{ = —cosa-sina '7*1/1/7
2 V2
(10.8) ,
Voafo = B T Yy, Cohw = Wi cosa-sina - 7w,

hold; hence we have

* % p 1 *
(10.9) Catfrs = orts T Ur.sv

and, by (10.5), we obtain

1 COS & - sin «

(10.10) (°650(w)(0/92,0/0x) = ———%

(e—Qix + e?i(ac—y))‘

Let r1,72 > 0 be given integers. We consider the symmetric 2-forms hy, k;
and k:;-, with 0 <[ <5 and j = 1,2, 3, associated in §5 with the integers 71 and ro,
and the corresponding subspaces V;, r,, Wy r, and W . of C°(S 2T¢) generated
by these forms. By means of the relations (10.2)—(10.5) and (10.7)-(10.10), we
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easily see that there exist polynomials J, J;, L; and M; belonging to Q[X] such
that the equalities

1 s
Wg\/g/zqsa(fﬁ,rz)dzzJ(COSQOL),

/Z(szhl)(Cth)dZ = Ji(cos? a),

1
23
s [ (0k)(6.0) 42 = Lyfeosta),

(10.11)

sz/ ¢a )(C1,G)dZ COSOZ\/.;HOKMJ-(COSQQ),

for 0 <I<5and 1< j<3andall « € R. The linear mappings
¢7"177’2 : ‘/;’177’2 - C[Y]7 \IlrlyrQ : WTLTQ - C[Y]7

/
Wi e

C[Y}7

7'1,7'2

sending the elements h € V;, ,,, k € W, ;, and k' € W . into the polynomials

Dy, ry(h), Uy ry (k) and @) . (K') of C[Y], respectively, determined by

71,72

By, () 05 ) = Wlf / (63)(c1,2) 02

\Ilrl,rz (k‘)(COS a Cla <2

wvil,
%wm(kxco&a s / SR (G Gr) 42

for all a € R, are well-defined. Clearly, by (10.11) we have

(I)TI»W(hl) =Ji, \Ijm,rz(kj) = Lj, v, (k;) = M;,

71,72

for 0 <1 <5 and for j = 1,2,3; hence the rank of ®,, ,, (resp. Wy, ,,, ¥ )
is equal to the dimension of the subspace of C[Y] generated by the polynomi-
als J;, with 0 < [ < 5 (resp. Lj, Mj, with j = 1,2,3). An element of V,, ,,

(vesp. Wy ry, W) . ) satisfying the Guillemin condition belongs to the kernel

1,72

of @, ,, (resp. Uy o, ‘I/;"1,T2)5 thus we have the inclusions

(10 12) ‘/;"177“2 mN2,(C C Ker ‘I)m 72 er,rg ﬂ./\/'27(c C Ker \Ij'f’l,’r‘g;
Wy, o NN2c C Ker \IJT1 -

Proposition 10.1. Let r1,79 be given integers satisfying the relations (6.3) and
0<ry <ry. Let m > 0 be the integer such that ro = r; + 3m.
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(i) The relation

holds.
(ii) Forl=0,1,3, there exists a polynomial P, € Q[Y] such that

1
T o9ritre

(10.13) J(Y) Y™ (1 - Y)™ - P(Y).

The polynomial Py is equal to —P and is of degree 2r1. If ri > 1, the polynomial
Py is non-zero and its degree is < 2ry — 2. Ifr1 > 2, the degree of the polynomial
Ps5 is equal to 2r and the determinant of the matriz

C(Pg) C1 (Pg) CQT(Pg)
is non-zero; moreover, the polynomials Py, P1 and Ps are linearly independent.
(iii) For j =1,2, there exists a polynomial Q; € Q[Y] such that

1

Y7 (1= V)" Qu(Y).

The degree of the polynomial Q1 is equal to 2r1 + 1. If r1 > 1, the determinant

(C(Ql) Cl(Ql))
c(Q2) c1(Q2)

is mon-zero; moreover, the polynomials Q1 and Q2 are linearly independent.

of the matriz

Proof. We write r = r; and s = ry. By means of formula (9.5), we obtain explicit
expressions for the polynomials J, J; and L;, with [ = 0,1,3 and j = 1,2. Asser-
tion (i) is an immediate consequence of formulas (9.5) and (9.9), with d; = da = 0.
Using formulas (9.5) and (9.9), we demonstrate the existence of a polynomial P
satisfying the relation (10.13) and a polynomial @; satisfying the relation (10.14).
In fact, Py is equal to —P. If r > 1, we see that

1 1

N) = gm

2 2
/ Ur s, y) ) dz dy,
0 0
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for all v € R; hence P is equal to the polynomial 4Q(1]:(1)70 of degree 2r—2. If r > 2,

we have
1 1 2 2
J3(v) = WW/ / (r—2,50 - X) (2, y,v) dz dy,
o Jo
for all v € R, where x is the function on R? defined by
x(z,y,v) = (1 —v)(ve!@Y) — 7)) 4 2W=2) _ e,
for (z,y,v) € R, and so P is the polynomial defined by
2,0 2,0 2,0 2,0
P(Y) = 8(Y2(1 -Y)? 101 — (1= Y>2Q0,1,1 + Q020 — y? 1,1,0)'

Thus by (9.11), we obtain

when r > 1, and

(07 —8)(r),

3m+r
o) =832, + 38g) =s(*" )

= 3m+r
2,0 2,0
1 +Co11—Cooa) = 16( m >(9010 — @9 + wg)(r),

3m—+r
cor(Ps) = 8C)7, = 8< m )908(7")

when r > 2. By means of the formulas (8.2), (8.3), (8.6) and (8.7), we express
these coefficients as multiples of ¢ (r), and then easily see that the determinant
of the matrix of assertion (ii) is negative when r > 2. From these results, we
deduce all the properties of the polynomials P, given in (ii). Similarly, we also
find that

2Q:1(Y) =-(1-Y)P(Y),
and for r > 1 that
Q2 = 4(1+Y)(Y?Qrg0(Y) = Qp10) (V)

then using formulas (9.11), (9.13), (8.3) and (8.6), we obtain the properties of
the polynomials @; described in (iii). O
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The proof of the following result is entirely similar to that of assertions (ii)
and (iii) of the preceding proposition and will be omitted; the formulas (8.1),
(8.3), (8.4) and (8.6) and the first relation of (8.5) are the only results of §8

required here.

Proposition 10.2. Let r1,ry be given integers satisfying the relations (6.4) and
0<ry <rg. Let m > 1 be the integer such that ro =1y +3m — 1. For j =1,2,
there exists a polynomial R; belonging to Q[Y] such that

1

(10.15) M;(Y) = 5

Yyl —y)™ T Ry(Y).

The polynomial Ry is non-zero. If r1 > 1, the determinant of the matrix

(C(Rl) C1 (R1)>
c(Rz) c1(Ry)
is mon-zero; moreover, the polynomials Ry and Ra are linearly independent.

Proposition 10.3. Let 1,7y be given integers satisfying the relations (6.4) and
0 <ry <ry. Let m > 0 be the integer such that r1 = ro + 3m + 1; we set
m’ =sup (m —1,0). For j =1,2, there exists a polynomial R} belonging to Q[Y]
such that

1

(10.16) Mi(Y) = 3

Y™ (1Y) Ri(Y).

The polynomial R} is non-zero. If r1 > 1, the determinant of the matriz

<c1(R'1> cz<R’1>>
c1(Ry) ci(Ry)

18 non-zero, where | = 2 when m > 1, and | = 0 when m = 0; moreover, the

polynomials R} and RY are linearly independent.

Proof. By means of formula (9.7), we obtain explicit expressions for the poly-
nomials M;, with j = 1,2. Using formulas (9.7) and (9.9), we demonstrate the
existence of a polynomial R;- satisfying the relation (10.16). Then using the for-
mulas (9.11), (8.1), (8.3), (8.5) and (8.10), we obtain all the remaining properties
of these polynomials described in this proposition. O

Let r1,79 > 0 be given integers. First, suppose that the relations (6.3) and
0 < ry < re are true. According to Propositions 10.1, the polynomials J and
L1 are non-zero; therefore there exists ag € R such that J (0032 ag) # 0. Hence
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by (10.11), the function f,, ,, and the 2-form f,, ,,5(¢’(&)) do not satisfy the
Guillemin condition; thus Proposition 6.2 and the first assertion of Proposi-
tion 6.4,(i) hold. From Proposition 10.1,(ii), we also deduce that

rank ®,, », > min (r1 + 1, 3).

According to the first inclusion of (10.12) and Proposition 5.2,(i), we obtain the
results of Proposition 6.3,(i). The inequality

rank ¥, ,, > min (r; +1,2)

is a direct consequence of Proposition 10.1,(iii); from the second inclusion of
(10.12) and Proposition 5.3,(i), we then obtain the second assertion of Proposi-
tion 6.4,(i). Now, assume moreover that r; > 1 and consider the forms k| and &,
associated in §5 with the integers r1,r9 and the space V,,’h,,2 generated by these
forms. According to (5.7) and Proposition 10.1,(ii), for all & € R, we see that

By B (0) = ¢ (1~ )" - (4P + 3P1)(0),

where v = cos? o; moreover, by (9.13) the coefficient of degree 2r; of the polyno-
mial 4Py + 3P; is equal to 44(Py) = 4¢1(r1). By the first inclusion of (10.12), it

follows that the inequality
dim (V! ,, N Nagc) <1

holds. This completes the proof of Proposition 6.3.

Finally, suppose that only the relation (6.4) holds. From Propositions 10.2
and 10.3, we deduce that the polynomial M; is non-zero and that the inequality
rank ¥y, . > min (r; +1,2)
holds. Therefore there exists a; € R such that Ml(cos2 a1) # 0 and cosa -
sina; # 0. By (10.11), we infer that the 2-form f,., ,,&(w) does not satisfy the
Guillemin condition. From the last inclusion of (10.12) and Proposition 5.3,(i),

we then obtain the second assertion of Proposition 6.4,(ii). This completes the
proof of Proposition 5.4.
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CHAPTER II: THE UNITARY GROUPS
11. THE SPECIAL AND THE REDUCED UNITARY GROUPS

Let G be a simple Lie group; we suppose that X = G. If B denotes the Killing
form of the Lie algebra gg of G, we endow X with the bi-invariant Riemannian
metric go induced by —B. As usual, we identify the G-module gy with the
tangent space of X at the identity element eg of G. We consider the involutive
automorphism s of the group G = G x G which sends (g1, g2) into (g2, g1). The
fixed point set of s is the diagonal subgroup G* of G x G; thus the pair (G ,G*)isa
Riemannian symmetric pair. Since the homogeneous space G /G* is diffeomorphic
to the group G under the mapping G/G* — G, sending (g1, g2)G* into 9192_1,
where g1, g2 € G, we may identify X with the homogeneous space G /G*. Then
the action of the group G on the space X is given by

(91,92) - a = gragy "

for all g1,g2,a € G; it induces G-module structures on the spaces C(G) and
C>®(SPTE). A symmetric form on X is G-invariant if and only if it is bi-invariant
under the action of G. Thus the metric gy on X is G-invariant and the manifold
X endowed with this metric is an irreducible symmetric space.

We denote by I' the dual of the Lie group G; we may identify the dual of the
group G with the product I'xI". We consider the G-module structures on C*®(G),
C>=(T¢) and C*(SPT:) induced by the action of G on X. If (,7') is an element
of ' x T, as in §1 we consider the isotypic components CE’;’}V,)(G), CE’;)W/)(T@) and
CE’;V,)(S’T’T&) of the G-modules C*(G), C*°(1¢) and C*(SPT{), respectively,
corresponding to (7v,7’). The two G-modules C(O;’N,)(T(c) and CE’;’}V,)(T(E) are
clearly isomorphic. If E, and E, are irreducible G-modules corresponding to =y
and v/, respectively, a G-submodule W of the isotypic component C’E’;’W,)(ST’T &)
is isomorphic to k copies of the irreducible G-module £, ® E./; this integer k is
called the multiplicity of the G-module W and shall be denoted by Mult W. The
spaces C*°(G) and C*°(SPT{) inherit structures of G-modules arising from the
left (resp. right) action of G on X. The corresponding representation 7 (resp. 7')
of G on C*°(G) is the left (resp. right) regular representation; we shall also
consider the corresponding representation (m, C*°(SPT)) (resp. (n’, C*°(SPTE)))
of G on C*(SPTE). We shall denote by C°(G) and CS°(SPTE) the isotypic
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components of the G-modules (7, C*°(G)) and (7, C*°(SPTE)), respectively, cor-
responding to an element v of T'. If (v,7’) is an element of " x T, the isotypic

component CE’;’V,)(S”T(E) is a G-submodule of C°(SPTE).

The complexification g of the Lie algebra gg is an irreducible G-module, and,
by means of its Killing form, we are able to identify this G-module with its dual.
We view the complexification A¢ of the space A of left-invariant 1-forms on G
as a G-submodule of C>°(T¢); more generally, if p is an integer > 1, we view the
p-th symmetric power SP A of A and its complexification SP A¢ as G-submodules
of C*(SPT¢). Clearly, the space Ac is a trivial G-submodule of (m, C*(T¢))
and a G-submodule of (7, C*°(SPT{)) isomorphic to the irreducible G-module g.
Thus the space SPAc is a trivial G-submodule of (7, C*°(SPT{)) and is also a G-
submodule of (7/, C*°(SPTY)). If V,, is the G-module equal to the p-th symmetric
power SPg of g endowed with the trivial action of G and ~ is an element of T',
since the cotangent bundle 7™ of G is trivial, the isotypic component C2°(SPT¢)
is isomorphic to C°(G) @ V.

The left (resp. right) action of the group G on itself induces a morphism ®
(resp. ®') from gy to the Lie algebra of vector fields on G, whose image is the
space of left-invariant (resp. right-invariant) vector fields on G. The mappings ®
and ®' extend to C-linear morphisms from g to the space of all complex vector
fields on G. For £ € g, the restriction of —®(&) (resp. ®’'(£)) to G is the right-
invariant (resp. left-invariant) vector field on G whose value at ey is the vector £
of go viewed as a tangent vector at eg.

Let g be the element of I' corresponding to the trivial irreducible G-module C.
The Lie algebra g is an irreducible G-module corresponding to an element v
of I'. The space K of all Killing vector fields on X, i.e., the space of all solutions
&€ € C(T) of the equation Dy& = 0, is equal to the direct sum ®(go) & P'(go).
Thus we may view its complexification K¢ as the G-submodule ®(g) @ @'(g)
of C*(1¢), where

Ke C CE)O (Te) o C2 . \(Te),

(111) '70:'71) (71770)
B() C 02 (Te),  ®(g) C CF . (To).

Throughout this chapter, we shall suppose henceforth that X = G is the group
SU(n), with n > 3, and always consider the symmetric space X endowed with
the Riemannian metric g = o). We consider the abelian subalgebra b of go, the
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subalgebra n of g and the linear forms A; on b introduced in §2. Also we shall
always identify the dual " of the group G = SU(n) with the set of linear forms
on h described in §2. If 7 is an element of I, let £, be an irreducible G-module
corresponding to 7.

In the following, by Cj, Ay and By, we shall mean the left-invariant vec-
tor fields on G determined by the corresponding elements of gg. Throughout
this chapter, we consider the left-invariant 1-forms {wo, wj, wjk, @i} on G, with
1 < j,k < n, determined by

wo = wp, = wj; =0, Wik = —Wkj, Wik = Wy,

for 1 < j,k <n, and

w;(Cy) = dj, wik(Cr) =0, w;x(Cr) =0,
wj(Ars) =0, wjk(Ars) = (5jr(5k57 wjk(Ars) =0,
wj(BTS) =0, wjk(Brs) =Y, wjk(B’rs) = 5jr5ks,

foralll <l <n—-—1and 1 < j,k,r,s < n, with j < k and r < s. For
1<j<k<n, we set

ij = Wjk — iwjk, éjk = wjk + iwjk
of Ag; then the 1-forms {wy, ;5,0 }, with1 <! <n—1and 1< j <k <n, form
a basis for the G-module Ac.

If n = 3, according to Lemma 2.1 of [5] and the remark following this lemma,
and the relations (2.4)—(2.6) of [5], we easily verify that
66 (w1) = w? 4 2wy - wo — 2wa 4 O12 - O19 + O13 - O13 — 2623 - Bo3,

(11.2) ) , 5 - _ _
66 (w2) = 2wy — 2wy - wp — w5 + 26012 - O12 — O13 - 13 — Oa3 - Oa3;

from the relations (2.10) of [5], we deduce that

(113) 26 (012) = wa - O12 — 1013 - Oa3, 26 (03) = —w1 - Oz — b3 - O12,
. 25’(913) = (wl — CUQ) - 013 + 012 - O23.

Throughout this chapter, we shall consider the symmetric 3-form ¢ = o4 on X,
the G-equivariant monomorphism & : T* — S27* and the first-order differential
operator

D, :T®F— S%T*
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associated with o in §1, where F' is the trivial real line bundle over G. Using
Maple and the formulas (11.2) and (11.3), we see that the operator D, is of
finite type when n = 3; in fact, the morphism (4.11), which is equal to the second
prolongation of the symbol of Dy, is injective. Therefore by Proposition 6.2 of [6],

we obtain:

Proposition 11.1. The differential operator D, on X = SU(3) is elliptic.

Let v,7' be elements of I". The contragredient G-module EZ of E, is isomorphic
to the G-module E5. Hence according to the Peter-Weyl theorem, the isotypic
component C’E’iﬁ,)(G) vanishes unless v/ = 7; moreover, the isotypic component
CG ) (G) is an irreducible G-submodule of C*°(G) equal to the submodule C5°(G)
of the G-module (7,C*(G)), and the weight subspace Cy of the G-submodule
C§°(G) corresponding to the highest weight ~ is an irreducible G-submodule
of (7',C*(@)) isomorphic to E5. Since the isotypic component CS°(SPT() is
isomorphic to C°(G) ® Vj, its weight subspace C,(SPT¢) corresponding to the
highest weight v is the G-submodule C,-SP Ac of (7', C*°(SPT()), and is therefore
isomorphic to E5 ® SPg as a G-module. The weight space C(, ,(SPT¢) of the
G-module C*°(SPTY) corresponding to the highest weight (y,v’) is contained in
the weight space of the G-submodule C,-SPAc of (7', C5°(SPT)) corresponding
to the weight +/; in fact, we have

‘I)/(U)U =0, @’(f)u = ’7,(5)”’ }

11.4 Ciyy(SPTE) =< uelCy-SPA
(11.4) (rv) (SPTE) { v c for all n € n™, € € by

(see [5, §4]). From these observations, we infer that the multiplicity of the

G-module C@oﬂ

Cy,y) (SPTE), is given by

,)(SPTE), which is equal to the dimension of the weight subspace

(11.5) Mult CF 1 (SPT¢) = dim Home (E./, E5 ® SPg).

A linear form A on b is a weight of the G-module CF’?'W)(SPTE) with respect

to the representation 7 (resp. 7') if and only if —\ is a weight of its complex
conjugate CE’?V,)(SPT@. Therefore, if § is the element 7/ of I', we have the
equality

(11.6) O 5 (SPTE) = CF_ (SPTE)

(")

of G-modules.



900 Jacques Gasqui and Hubert Goldschmidt

The highest weight of the irreducible G-module g is equal to 2A; +A2. The Car-
tan product F of the irreducible G-module g with itself is the unique G-submodule
of S?g whose highest weight is equal to 4\; +2)\s. As above, we identify SPg with
the symmetric p-th power SPg* of g* by means of the Killing form B; thus B gener-
ates a trivial G-submodule { B} of S2g. As we identify the G-modules gy and T,
the complexification of the morphism ¢ : T, — SQTE*O determines a monomor-
phism & : g — S?g of G-modules. Then &(g) is an irreducible G-submodule of S2g
whose highest weight is equal to 21+ A2. It follows that the sum {B} & F & & (g)
is direct and is a G-submodule of S%2g. When n = 3, it is easily verified the equal-
ity

S%g={B}® F ®5(g)
holds; in this case, for v, € ', by Schur’s lemma we therefore see that
dimHomg (Ey, E, ® S%g) = 0y~ 4 dim Homg (Ey/, By ® F)

(11.7)
+ dim Homg (B, Ey ® g),

for all v € T', where 6., 4 is equal to 1 if v/ = v and 0 otherwise.

The center of G = SU(n) is the cyclic subgroup S of order n generated by the
element
ag = eQiﬂ/nIn
of G, where I, is the n x n identity matrix. The group ¥ = G = G/S is a
symmetric space of compact type, which is the reduced space of the symmetric

space G and which we call the reduced unitary group; it is isomorphic to the
adjoint group of su(n) (see [5, §7]).

Let I' be the subset of I' consisting of all elements 7, . , of T, where
ri,...,Tn—1 are non-negative integers satisfying the relation

(11.8) ri+2rg 44+ (n—1)r,—1 =0 mod n.

If E is a G-module, we denote by E° the G-submodule of E consisting of all
S-invariant elements of FE.

We consider the natural projection 7 : G — G. If 7 is an element of T', the
isomorphism 7* : C®(Y) — C*(X)* induces an isomorphism of G-modules

* ., (Y00 00 S
T CR(Y) — C(X)
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of G-modules; according to Lemma 5.1,(ii) of [4], we know that
(11.9) C(X)% = C(X)
if and only if v belongs to I

The element ~; of I is equal to @i + wy,—1 and so belongs to . Since 1 = V1,
according to the relation (4.6) of [5], the irreducible G-module B = C57(X) is
invariant under conjugation and hence it is equal to the complexification of the
G-submodule

Be={feB|f="f}
of C°(X). Thus since 71 belongs to I, the G-module By = C2(Y) is equal to
the complexification of the subspace
Byr={feBy|f=1[}
of CR°(Y') and the mapping 7 induces an isomorphism 7* : Byg — Brg.
The symmetric form ¢ induces a symmetric 3-form oy on Y such that
o =70y

and we consider the morphism of vector bundles

oy : Ty — S*Ty
induced by the symmetric 3-form oy. If ¢ is a 1-form on Y, we have
(11.10) oy (p) = ().

According to Lemma 2.3 of [5] or Lemma 3.1 of [4], a 1-form ¢ on X satisfies the
Guillemin condition if and only if the symmetric 2-form () on X satisfies the
Guillemin condition. Thus for all v € I', since the differential operators Dy and

od are homogeneous, we have the inclusions
( ) DoC>®(T)® + 6dCP(X)° € Noa N C™=(S%T%)%,
11.11
DoC°(T)® + 6dC°(X)S € Ny N O (SPTE)”,

for all v € T.
According to Proposition 6.2 of [5] and its proof, we know that
DoC*(T) N edCR°(X) = 6dB,
(11.12)
DyC*(Tc) N6dC™(X) = 6dB,

where B = C;’f(X)S.
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Proposition 11.2. Let X be the symmetric space equal to the simple Lie group
SU(n), with n > 3, and Y be the symmetric space SU(n)/S. Assume that the
operator D, is elliptic. Then the following assertions are equivalent:

(i) The equality
Noy = DoC>™(Ty) + 6y dCR°(Y)
holds.
(ii) The equality
Nac N C®(S?TE)S = DC™®(Te)® + 6dC™=(X)%
holds.
(iii) We have

(11.13) Noc N O (SPTE)% = {0},
(11.14) Noc NCE 3 (SPT2)% = DoCE, L (Te)®,

and the equality

(11.15) Noc NCE i (8°TE)® = DoCEn(Te)® + 5dCE 5 (X)®

holds for all v,y € T', whenever (v,~") is not equal to (y0,70) or (v1,71)-
(iv) The equality (11.13) holds and

Mult (No,c NCE 4 (SPTE)) < Mult CF 1 (TE)® — 1

whenever the element (v,v') of T x T is equal to (yo,71) or (71,70); moreover, if

~ is an element of I which is not equal to vy or V1, the inequality

Mult (MVa,c N CE 5 (SPTE)%) < Mult CFF - (T¢)° + 1

holds, and the inequality

Mult (Na,c N O A (SPTE)%) < Mult O (TE)°

holds for all elements (v,7') of T x T satisfying one of the following conditions:

(a) ’7/ 7& 5’ and (77’7/) 7é (70)71)7 (71770);
(b) v =7 and v does not belong to I';

€ v=7"=mn.



Infinitesimal Isospectral Deformations of Symmetric Spaces, II... 903

Proof. Lemma 2.17 of [2], together with the relations (2.6) of [2] and (11.10), gives
us the equivalence of (i) and (ii). Since D, is an elliptic homogeneous differential
operator, from Proposition 2.2,(iii) and the inclusions (2.12) of [2], by (11.11) we
infer that assertion (ii) is equivalent to the fact that the equality (11.15) holds
for all v € I". According to the relations (11.12), the equality (11.15), with
v = 14" = 71, is equivalent to (11.14). When v = v/ = 79, we know that ¥ = ~
and that the spaces dCf7 ., (X) and C& s (Tt) vanish. Thus the assertions (ii)
and (iii) are equivalent. Since Mult Covoﬁ) (X)® is equal to 1 when the element

of T belongs to I and vanishes otherwise, and since the G-modules CE’;’ w’)(T c)
and CE’;’,Y,)(T(S), with v,+" € T, are isomorphic, the equivalence of (iii) and (iv)
follows from the relations (11.1), (11.11) and (11.12). O

12. HIGHEST WEIGHT VECTORS AND MULTIPLICITIES

Henceforth in this paper, we shall suppose that n = 3 and that X is the
symmetric space G = SU(3). We consider G as a real submanifold of the complex
manifold M3 and denote by z;, the restriction to G of the function zj; on M3
defined in §5. Here we consider the subalgebra n™ generated by the elements Ejj,
of g, with j < k.

From the relations (3.10) of [5], we deduce that

P'(n)z31 = 0, '(n)z13 =0,
D' (E12)z32 = 231, P’ (E12)z33 = 0,
D' (Eg3)z32 = 0, D' (Eo3)233 = 232,
(12.1) ' (E13)z32 = 0, ' (F13)z33 = 231,
' (E12)z11 = —Z12, P’ (E12)z12 = 0,
D' (Eg3)z11 = 0, D' (Ey3)z12 = —7Z13,
'(E13)211 = —Z13, P'(F13)z12 = 0,

®'(n)b13 = 0, P’ (Fa3)013 = 012,

(12.2) o _ o
D' (E12)013 = —023, D' (E13)613 = i(w1 + w2)
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and
®'(E12)012 = 0, ' (E12)0h12 = i(2w1 — wo),
D' (Eg3)012 = —b13, @' (Eg3)f12 = 0,
P'(E13)012 = 0, ' (E13)012 = 023,
D' (E12)03 = 013, P’ (E12)023 = 0,
(12.3) ' (Fa3)023 = 0, ' (Ea3)023 = i(2w2 — wy),
P’ (E13)023 = 0, ' (E13)023 = —012,
' (E12)w = —ifa, &' (E19)ws = 0,
' (Fa3)wr = 0, &' (Fag3)ws = —ifag,
' (E13)wi = —ib3, ' (E13)wy = —ib13,
for all n € n*. Clearly, the 1-forms
V1 = 013,
Vo = 232613 — 231093, U3 = z32bh2 + 233013 — 123101,
Uy = Z126h3 — Z13012, U5 = z116h3 + Z12003 + 1213w2,
U = Z (2321608 — 23210;1)

1<j<k<3
+ (231211 — 232Z12)w1 + 1(232Z12 — 233Z13)wa,
U7 = 239233013 — 231233003 + 235012 + 23,012 — 1231 232(2w1 — wa),
Vs = 211212013 + Ziob23 — 211213012 + Zis023 + iZ12713(2ws — wi)

on X are all non-zero. Using the relations (12.1), (12.2) and (12.3), we easily
verify that

(12.4) @' (n)9; =0,
forallpent and 1 <j < 8.
If r,s > 0 are integers, we consider the function
fris = 231713

onG. Ifr,s € Z, withr < 0ors <0, weset f.s = 0. If vis the element sty +rws
of I', with r,s > 0, in [5, §4] we saw that the function f,, is a highest weight
vector of the irreducible G-submodule Cy of (7/,C*°(G)) and that its weight is
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equal to ¥ = rwy + sws; in other words, we have

(12'5) (I),(n)fr,s =0, (I),(g)fr,s = '_V(f)fr,sa

for all n € n* and £ € by.

If {va}aca is a family of elements belonging to a vector space V', we shall also
denote by {v,} the subspace of V' generated by this family. We denote by P the
subset

(4,2), (3,3), (3,0), (2,4), (2,1), (2,-2), (1,2), (1,-1),
(07 S)a (07 0)7 (07 _3)7 (_17 1)7 (_L _2)a (_2a Q)a

(=2,-1), (=2,—4), (=3,0), (—3,-3), (—4,-2)

of Z x Z. We consider the subsets

Py = {(4’ 2)? (27 1), (070)7 (_2 _1)7 (_47_2)}7
P ={(3,0), (2,-2), (1,-1), (0,-3), ( -2), (—2,—4
(=1, —

), (=3,-3)},
P ={(2,1), (1,2), (1,—1), (0,0), (-1 ), ,=2), (=

(=
2,-1)}

)

of P. We also consider the involution ¥ of P which is determined by the relations
U(q) = g, for all ¢ € Py, and

U(3,3) = (3,0), U(2,4)=(2,-2), ¥(1,2)=(1,-1), ¥(0,3)=(0,-3),
U(—1,1) = (=1,-2), U(-2,2)=(-2,-4), T(-3,0)=(—3,-3).

We note that P is the disjoint union of the subsets Py, P; and W(Py).

Now let r, s > 0 be given integers. For (a,b) € P, we now define subspaces Vcib
of C*(T¢) by

‘/0/,0 = {f’/‘—l,sﬁfﬂa f?”,s—lﬂ5}7

Vo1 ={frsh}, Vi 1 ={fr-15-19},
Vig = {fr-1,s92}, VI o ={frs—20s},
V1I,—1 = {fr,s—1794}7 Vi171 = {fr—2,5197}§

if (a,b) € P does not belong to P’, we set V, , = {0}.
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We consider the sections h; of C°(S?T¢), with 0 <[ < 35, defined by

ho = fr,s9,

hs = fr_1,s-1VU3-Vs,
he = ifr s (V1)

hg =ifr-1,s-15(Js),
hig =ifr—1,56(VJ2),

his =i frs—16(04),
hig =i fr—2.50(97),
ho1 = ifrs—26(Us),

hay = frsU1-01,

hor = fr—3,s92-U7,
h3o = fr—2,s—296 Vs,
h3s = frs—3U4-Vs,

hi =ifrs-16(J5),
hy =ifr—1,56(03),
h7 = fr_1,601-93,
hio = fr—2,s-193Us,
his = fr—2,s92-93,
hie = fr—1,5—1U3-Y4,
hig = fr—3,s93-07,
hoo = fr—1,s—203-Us,
hos = fr—1,s01-02,
hog = fr—a,s97-07,
ha1 = frs—10U1-V4,
h3s = frs—40g-Us,

hy = fr_2 40313,
hs = frs—2U5-Us,
hg = frs—101-Vs,
hi1 = fr—1,s—205 U,
his = fro1,s-192-Us,
hi7 = frs—204-Us,
hao = fr—2,s—195-07,
hog = frs—3Us5-Us,
hoe = fr—2,s02:02,
hog = fr—3,s-106-V7,
hag = frs—2U4-V4,
h3s = fr_1,s—37U6- 3.

For 1 <[ < 35, note that the expression for the section h; given here is of the
form f,_c, s—er¥j, Uk, Or if_¢) o1 0(V;,), where e;,e; > 0and 1 < jj,k < 8 are
integers independent of r and s. We set eg = 66 = 0. Clearly, for all 0 <[ < 35,
when r > ¢; and s > e}, the form h; is non-zero.

For (a,b) € P, we define subspaces Vg, of C*(S?*T¢) by
Vo1 = {he, hr, hg}, V_o 1 = {hg, hio, h11},
Vi = {hi2, hi3, h1a}, Vi,—1 = {his, his, hir},
V_1,1 = {hig, h19, hao}, V_1,—2 = {ha1, haa, hos},

Vi = {ho}, V33 = {has}, Vo4 = {has},
Vo,3 = {har}, V_g2 = {has}, V_30 = {ha},
Vo4 2 ={hso}, Vso = {hai}, Voo = {hs2},
Vo,—3 = {hss}, Voo 4 = {hsa}, V_3._3={hss};

finally, V0 is the subspace of C*°(S?Ty) generated by the functions {h;}, with
0 < j < 5. We remark that

(12.6) (Vap) C Vap,
for all (a,b) € P.
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Since a form belonging to Ac is left-invariant, it is also invariant under the

right action of the center S. On the other hand, we easily see that

77/(&0)23]' =

2im/3
€ / 2355

for j = 1,2,3. It follows that

(12.7)

7'['/(0,0)9 _ eQi(T+25)ﬂ/307

7' (ag)z1j =

e4z7r/3

2155

W/(ao)h _ 62i(r+25)7r/3h7

for all @ € V , and h € Vo, with (a,b) € P.

If p,q > 0 are given integers, let ¢} be the integer equal to 1 if p > ¢ and 0
otherwise. For (a,b) € P, we consider the integers Ni(a,b) and Na(a,b) defined
by the relations

and the

N1(07O) = 6714 +€iu

N3(0,0) = 5 + &5 + e'e]

following table:
(a,b) | Ni(a,b) | Na(a,b) (a,b) Ni(a,b) | Na(a,b)
(4,2) 0 1 (—4,-2) 0 e
(3,3) 0 et (3,0) 0 e
(2,4) 0 e (2,-2) 0 &
(2,1) 1 el +ef | (—2,-1) | efe] | ehe; +eles
(1,2) €] eh +eley | (1,-1) 3 €5 + e1€e]
0,3) 0 el (0, —3) 0 &3
(L1 | & |Greet| ((L-2)| e | eg+els
(-2,2)| 0 e | (=2,-4)| 0 &
(—3,0) 0 ehes (—3,-3) 0 eles

Using the expressions for the sections ¥; and the formulas (11.2) and (11.3),

we easily verify the following:

Lemma 12.1. Let r,s > 0 be given integers. If (a,b) is an element of P, the
non-zero generators of the space V, (resp. V(;b) form a basis of this space, and

we have

where a’

dimV, ,, = Ni(a,b),
= |a| and b’ = |b].

dim Va,b =N (a, b) + NQ(CL, b) -+ 50(1’5%’7
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Let a,b € Z be given integers. If § is an element of I, we consider the element
6a,b =0+ alr + b

of h*; throughout this section, this notation always supersedes the one introduced
in §11. We now consider the element v = sw; + rws of I'. Then we know that
7 = rwy + swo and we see that 7, belongs to I' if and only if

(12.8) r+s+a>s+b>0.

When the inequalities (12.8) hold, we consider the irreducible G-module Ej, ,
corresponding to the element #,; of I'. We note that 7, is equal to 7 if and
only if a = b = 0. Moreover, if r = s = 0, we have 590 = 7 and 21 = v1;
if r = s =1, we have Y0,0 = V1 and Y-2,—1 = Y0-

We also consider the subset P of P consisting of pairs (a,b) € P satisfying the
relations (12.8). By means of Lemma 4.2 of [5], for (a,b) € P, we easily see that

(12.9) Vi, CCy-Ac, Vap C Cy-S? Ac;
in fact, we have

a,,b = {O}a Va,b = {0}7
if (a,b) does not belong to P.

In [5, §5], we noted that, for 1 < j < k < 3, the element w; is a vector of Ac of
weight 0, and that the elements 6, and éjk are vectors of Ac of weight \; — Ay,
and \; — \j, respectively, when we view Ac as a G-submodule of (7", C>°(T¢)).
According to formulas (3.10) of [5], we know that

CI),(Cl)ij = 120k — Ok—1,1),

for all 1 < j,k <3 and [ = 1,2. By means of the relations (11.4), (12.4), (12.5),
(12.9), and the preceding remarks, we easily verify that

a

(12.10) Vip CClumun(T8)s Vab C Clyga ) (S°TE),

for all (a,b) € P.

Let (a,b) be an element of P. If (¢, d) is the element W(a,b) of P, we easily
verify that 7.4 belongs to I and that

:Ya,b = Ye,ds
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from the equality (11.6), we therefore obtain the relations

< (SPTY).

(12.11) Claun(87I0) = CF )

The Littlewood-Richardson rule (see [1, pp. 455-456]) gives us the decompo-
sitions of the G-modules Fy ® g and Ey ® F' into irreducible submodules; in
particular, it tells us that the spaces Homg (E/, E5 ® g) and Homg (Ey/, E5® F)
vanish unless 7' = 74, with (a,b) € P, and that

dim Homg (Ej5, ,, By ® g) = Ni(a,b), dimHomg (E5, ,, E5 ® F') = Na(a,b),

a,b?
for (a,b) € P.
By (11.5) and (11.7), from the above discussion we obtain the following result:

Lemma 12.2. Let r,s > 0 be given integers; let v be the element swi + rws

of T and let 4 be an arbitrary element of I'. The G-modules C™° ,)(Té) and

(v
CE’WOW,)(SQT(S) vanish unless 7' = ¥4, where (a,b) is an element of P. If (a,b)

is an element of P satisfying Yap = 7', then the multiplicities of the G-modules

C&an (T¢) and CE2

(,m/)(SQTE) are given by the relations

Mult O 5, (T¢) = Ni(a,b),

(12.12) - -
Mult C(’Yﬂa,b)(s T(C) =M (a, b) + Nz(a, b) ~+ d0a’O0p s

where a’ = |a| and b/ = |b].

From the the inclusions (12.10) and Lemmas 12.1 and 4.1, we obtain the fol-
lowing result:

Lemma 12.3. Let r,s > 0 be given integers.

(i) If (a,b) is an element of P’ satisfying (12.8), we have the equality
C(’Y?ﬁa,b)(TE) = (If,b
(ii) If (a,b) is an element of P satisfying (12.8), we have the equality

Cly7a) (S?TE) = V-

The preceding lemma and the relations (12.7) give us the following:
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Proposition 12.4. Let r,s > 0 be given integers and let v be the element
swy +rwy of I'. For v € T and p = 1,2, the G-module CF;’W,)(SPT(E)S is

equal to CE’;’V,)(S”T(E) if the relation
. r+s= mo
12.13 2 0 d3

holds and ~' is equal to 4, with (a,b) € P, and vanishes otherwise.

In §14, we shall prove the following three results:

Proposition 12.5. Let r, s be given integers satisfying 0 < r < s and the rela-

tion (12.13). Then the function f.s on X does not satisfy the Guillemin condi-
tion.

Proposition 12.6. Let r, s be given integers satisfying 0 < r < s and the rela-
tion (12.13).

(i) Let (a,b) be a given element of P —{(0,0)}; assume that (r,s,a,b) is not
equal to (0,0,2,1) or (1,1, —2,—1). If (a,b) belongs to P1, assume also that s > r.
Then we have the inequality

dim (V,, " Nac) < Ni(a,b).

(i) If (r,s) # (0,0), (1,1), we have the inequality
dim (Vb}o ﬂ./\/’27(c) < Nl(O, 0) + 1.

(iii) If (r,s) = (1,1), we have the relations
dim (Vo0 N N2c) <2, Voo 1 NN = {0}.

(iv) If (r,s) = (0,0), we have the equalities
Voo NNac = Vo1 NNy = {0}.

Proposition 12.7. Let r,s > 0 be given integers satisfying 0 < r < s and the
relation (12.13). Let (a,b) be a given element of P' — {(0,0)}. If (a,b) belongs
to Py, assume also that s > r. Then we have the relations

5(Va’76) NNz = {0}, dim (6(Vy o) NNac) < 1.

According to Lemma 2.3 of [5] and the relation (12.6), under the hypotheses
of Proposition 12.7, we see that this proposition implies that

Vi N Nic = {0}, dim (Vg NN1c) < 1.
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13. MAIN RESULTS

We consider the reduced space Y = SU(3)/S of the symmetric space X. Let
r,s > 0 be given integers and let v be the element sty + rwsy of I According
to Lemma 4.2 of [5] and Proposition 12.4, we know that f, is a highest weight

vector of the irreducible G-module C&a (X) and that the equality (11.9) holds

if and only if the relation (12.13) is true. Hence from the equalities (12.11), with
p =1 and (a,b) = (0,0), Proposition 2.29 of [2] and Proposition 12.5, we deduce
the following result:

Proposition 13.1. Let Y be the reduced group SU(3)/S. The mazimal flat
Radon transform for functions on the symmetric space Y is injective.

According to Lemmas 12.2 and 12.3,(ii), Propositions 12.4 and 12.6, the re-
lations (12.11) and the remarks appearing after Lemma 12.1, we see that asser-
tion (iv) of Proposition 11.2 is true when n = 3; from Propositions 11.1 and 11.2,
we then deduce the following result:

Theorem 13.2. Let Y be the reduced group SU(3)/S. Then the equality
Noy = DoC>®(Ty) + 6y dCg°(Y)
holds.

If P denotes the orthogonal projection corresponding to the decomposition
(1.1) on the space Y, according to Lemma 1.1 of [3] and Lemma 2.3 of [5] (see
also Lemma 3.1 of [4]) the mapping

P,, =Poyd: Cg(Y) — I(Y)

is well-defined. We denote by Fy the orthogonal complement of the finite-
dimensional space Fj, = R(Y) @ By in Cg°(Y). From Proposition 1.2 of [3],
the relations (11.12), and Theorem 13.2, we obtain:

Theorem 13.3. Let Y be the reduced group SU(3)/S. Then the equality
I(Y) = PoydCg°(Y)

holds and the mapping
Poyd:Fy — I(Y)

s an isomorphism.
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The preceding theorem is a complement to Theorem 7.4 of [5] with n = 3.
From Lemmas 12.2 and 12.3,(i), and Propositions 1.2, 12.4 and 12.7, and the
remark which follows the latter proposition, and the relations (12.11), we deduce
the following result:

Theorem 13.4. Let Y be the reduced group SU(3)/S. A 1-form on'Y satisfies

the Guillemin condition if and only it is exact.

14. PROOFS OF PROPOSITIONS 12.5, 12.6 AND 12.7

In this section, we consider the symmetric space X = G = SU(3) and denote
by

L R2 -G
the mapping (10.1). This mapping induces by passage to the quotient an imbed-
ding

R?/A — G,

whose image is the maximal torus H of G. This torus H is also a maximal flat
totally geodesic torus of X = G viewed as a symmetric space.

We consider the standard coordinate system (x,y) on R? and endow this space

with the flat Riemannian metric
g=dx -dx+dy-dy—dz-dy.

According to the relation (3.10) of [4], we know that
(14.1) g=g;
hence if f is a function on X, we easily see that

2w 2w
(14.2) / FdH = /3 / Fu(e,y)) da dy.

H o Jo

In [4, §3], we saw that the parallel vector fields ¢; and (2 on H determined by

(14.3) w(0/0x)(x,y) = Q(u(z,y),  w(0/9y)(x,y) = C(u(x,y)),

for (x,y) € R?, are equal to the restrictions to H of the vector fields C; and Cs,
respectively (see also [5, §2]). Thus if ¢ is a 1-form on X, according to the
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formulas (3.5) and (3.6) of [4] (or formulas (2.4) and (2.5) of [5]), we have

("6 (p)(0/0x,0/0x) = (L*cp(@/ax) + 2L*gp(8/8y)),

Wl Wl

(14.4) 16 ()(0/0x,0/dy) = 3 (v"(0/0x) — 1" 0(9/y)),

2 ()(0/0,0/0y) = —5 (20°6(0/02) + 7 0(0/D)).

If ¢ is an element of SO(3), we consider the maximal torus H = Ad¢ - H
of X; if f is a function on X, we have

far' = [ (aaoyfan.
H' H
and we easily see that
(14.5) (Ad @) zjk, = L (Ad §)" 25
for 1 <j,k <3.
We consider the functions ¢ and ¢ on R? introduced in §8. If r,s > 0 are
integers, we also consider the function
sz;’l’,s = I;ZJT' 7;8
on R3.
If f is a function on R3 and v € R, we consider the function f, on R? defined
by
f’u(x;y) = f(xa Y, U)a
for all (z,y) € R2.

For a € R, we consider the element ¢, of SO(3) introduced in §10 and the

maximal flat totally geodesic torus Hy, = Ad ¢ - H of X. For a € R, if we write

v = cos? a, we verify that

7 1
L*(Ad (;504)*'213 = %, L*(Ad @Z)a)*le = L*(Ad ¢a)*233 = 51/]“’

N[

(14.6)
cosa-sina (e — '),

(L*(Ad qﬁa)*zjg) (xz,y) = \2
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for j = 1,3 and all (z,y) € R?, and

1
U (Ad o) we = §(sim2 a-fwy — cos? o - Vwy) = =1 (Ad ¢a)*wr,
(14.7) " (Ad ¢a)* 013 = %((1 +sin® ) - fwy — (1 +cos®a) - t*wr),

(Ad ¢a)* 0 = ~_cosa-sina- (w1 + wa),

V2
if (j,k) is equal to (1,2) or (2,3); if r,s > 0 are integers, from (14.6) it follows
that

* * 1 7
(148) 2 (Ad ¢o¢) fr,s = ﬁ wr,s,v‘

For 0 <1 < 35, we define integers p; by

1 for 12 <1 <23, and | = 25,29, 31, 35,
b=
0 otherwise.
Let Y be an indeterminate over C. If P is an element of C[Y'], we denote by ¢;(P)
its coefficient of degree j and write ¢(P) = ¢o(P). For j = 1,2, we define
projections
i ClY|@ ClY] @ C[Y] — C[Y] & C[Y]
by
(P, Py, Ps) = (P, Py),  ma(Pr, Po, Ps) = (P1, Ps),
for P, Py, P € (C[Y]
Let r,s > 0 be given integers; we now consider the symmetric 2-forms h;,

with 0 < [ < 35, and the spaces V,;, with (a,b) € P, associated with the

integers r, s.

Let 0 <1 < 35 be a given integer. By means of the relations (14.1)—(14.8),
we easily see that there exist polynomials J and [ jx, with j, k = 1,2, belonging
to Q[Y] such that the equalities

! / G frs dH = J(cos2 a),
H

472\/3
cos v - sin «

1 !
M/H(%hz)(Cj,Ck)dH: <ﬂ)p I jk(cos® @),

hold for all & € R. We write J; = I; 11, Kj = I; 29 and M; = I; 1 9. If J (resp. J;)
does not vanish, there exists ap € R such that J(cos?ag) (resp. Ji(cos®ap))

(14.9)
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and cos ag - sin oy are non-zero; therefore by (14.9), the function f, ¢ (resp. the
2-form h;) does not satisfy the Guillemin condition.

Let (a,b) be a given element of P; suppose that the space V,; is non-zero.
Let {hi, hyy1,- .., hiq} be the generators of the space V,; considered in §12. We
know that either ¢ =5 and [ = 0, or ¢ = 2 and [ belongs to the set of integers

Ly = {6,9,12,15,18,21},

or ¢ =0 and 24 <[ < 35; also we note that the integers p;;; are independent
of 0 < j < gq. According to (14.9), for j, k = 1,2, the linear mapping

®P%: Vo — CLY],

sending an element h of V,; into the polynomial @i’}i(h) determined by

(cos « - sin o 1
V2 472/3

for all @ € R, is well-defined. We consider the mappings
Dop = (D, P27, 0,7) : Vo — C[Y] @ C[Y] @ C[Y],

)" whmeota) =y [ (630G art
H

Dopj=mjoPayp: Vap — ClY] @ C[Y],
with j = 1,2, and write ¥, = <I>(1L’ll). Clearly, by (14.9) we have

oy (higs) = (Ji4j, Kigj, My ),

for 0 < j < ¢; hence the rank of ¥, is equal to the dimension of the sub-
space of C[Y] generated by its elements {J;, Jiy1,...,Ji+¢}. An element of Vg,
satisfying the Guillemin condition belongs to the kernel of ®,;; so we have the

inclusions
Vb ﬂ/\/'z,(c C Ker®,;, C Ker®,;; C Ker W,
with j = 1,2. Hence if one of the inequalities
(14.10) rank @, ; > Na(a,b),
with 5 = 1 or 2, or the inequality
(14.11) rank W, > Na(a,b)

holds, we know that
rank @, , > Na(a,b)
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and, from Lemma 3.1, we deduce that
(14.12) dim (Vo N Naoc) < Ni(a,b) + doardow s
where @’ = |a| and V' = |b).

We consider the sets of integers

Ly ={15,16,21,22,31, 32,33, 34, 35}, Ly ={6,7,12,13,21,22}.

For 0 <1 < 35, we define integers m; € Z by
m+ 1 for | = 26,27, 28,
m—1 for | = 15,16,21,22, 31, 35,
sup(m —1,1) for [ = 32,33, 34,

m otherwise;

when [ belongs to Lo and m > 1, we note that the integer m; is non-negative.
We also note that e; = ¢, for all [ € L. We consider the polynomial P € Q[Y]
of degree 2r given by (9.12).

Proposition 14.1. Let r,s be given integers satisfying the relation (12.13) and
0<r<s. Let m > 0 be the integer such that s =r +3m. Let 0 <1 < 35 be a
given integer.

(i) The relation

_ 1
T 9r+ts

J(Y) Y™y —1)™ . P(Y)

holds.

(ii) Assume either that  belongs to Ly, or that Il — 1 belongs to Ly, or that
satisfies 0 <1< 2 or 24 <1< 35. Suppose that r > e; and s > eg. If | belongs
to the set Lo, assume also that m > 1. Then there exists a non-zero polynomial
P, € Q[Y] such that

1

(14.13) M) = 5

Y™(Y —1)™ . B(Y).

(iii) Suppose thatl is equal to 9, 15 or 18; if | is equal to 15, assume that m > 1.
If r > ejy1, then we have r > e; and s > eg = eE_H, and the determinant of the
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( o«(B)  al(h) )
c(Pry1) e1(Pryr)

is non-zero, and the polynomials J; and Ji41 are linearly independent.

matric

(iv) Suppose that | belongs to the set Ls. If | is equal to 21 or 22, assume
that m > 1. If r > e, there exists a polynomial Q; € Q[Y], whose constant term
18 non-zero, such that

1

(14.14) Ki(Y) = 5o Y™ (Y = )™ - Qu(Y).

If 1 is equal to 6, 12 or 21 and if r > €11, then we have r > ¢; and s > e; = €2+1’

and the determinant of the matriz

( c(P) (@) )
c(Pry1) e(Quy1)

(v) Suppose that 0 <1 <2. Ifl =1, suppose that s > 1; if | = 2, suppose that
r > 2. There exists a polynomial R; € Q[Y], whose constant term is non-zero,
such that

1S non-zero.

1
= 2r+s

If r > 1, the determinant of the matrix

(C(Po) C(Ro)>

c(P1) c(Ra)

is non-zero. If r > 2, the determinant of the matrix
c(P) e(Ro) e1(Ro)

o(Pr) c(Ry) e1(Ra)
c(P2) c(Rz) c1(Ra)

(14.15) My(Y) Y™ (Y — )™ Ry(Y).

1S NoON-zero.

Proof. By means of formula (9.6), we obtain explicit expressions for the polynomi-
als J, Jy, K4 and My, with 0 < ¢ < 35. Assertion (i) is an immediate consequence
of formulas (9.6) and (9.10), with d; = ds = 0. Next, suppose the hypotheses
of (ii) hold; we saw that the integer m; is non-negative. Using formulas (9.6)
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and (9.10), we demonstrate the existence of a polynomial P satisfying the rela-
tion (14.13), and a polynomial Q; satisfying the relation (14.14) when [ belongs
to the set Ls, and a polynomial M; satisfying the relation (14.15) when 0 <[ < 2.
By means of formulas (9.3) and (9.11), we compute the following coefficient of

the polynomial P;:
(i) if I # 35, its constant term c(P));
(ii) if I = 35 and m = 1 or 2, its constant term ¢(F});
(iii) if I = 35 and m > 3, its leading coefficient co,43(F)).

Using the equalities (8.3)—(8.5) and (8.7), the first relation of (8.11) and the
equality (8.12), we obtain an explicit expression for this coefficient, which shows
that it is a non-zero multiple of o1 (r). We use the same methods and the equal-
ities (7.1) and (8.3)—(8.7), the equalities (8.8)—(8.10) and the second relation
of (8.11) to compute explicitly the coefficient ¢1(P;) when [ belongs to the set
{15, 16, 18,19}, and the coefficient ¢(Q;) when [ belongs to L3, and the coefficients
c(R;) and ¢1(R;) when 0 <[ < 2. Finally, the expressions of these coefficients al-
low us to show that the determinants of assertions (iii)—(v) are non-zero multiples
of ¢1(r) under the appropriate hypotheses. Under the hypotheses of (iii), the non-
vanishing of the determinant of (iii) implies that the polynomials P; and Ppy; are
linearly independent; this gives us the last assertion of (iii). O

From assertions (iii), (iv) and (v) of Proposition 14.1, we deduce the asser-
tions (i), (ii) and (iii), respectively, of the following:

Proposition 14.2. Let r, s be given integers satisfying the relation (12.13) and
1 <r <s. Let m > 0 be the integer such that s = r + 3m. Let (a,b) be an
element of P.

(i) Ifr > 2 and (a,b) = (=2,-1), orifm > 1 and (a,b) = (1,—1), orifr >3
and (a,b) = (—1,1), the rank of the mapping ¥,y is > 2.

(i) If (a,b) = (2,1), or if r > 2 and (a,b) is equal to (1,2), or if m > 1 and
(a,b) = (—1,—-2), the rank of the mapping Pgp1 is > 2.

(iii) The rank of the mapping Po 2 is > min(r+1,3).

Let r,s be given integers satisfying the relation (12.13) and 0 < r < s. Let
m > 0 be the integer such that s = r + 3m. From Proposition 14.1,(i) and a
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remark made above concerning the polynomial J, we infer that the function f; s
on X does not satisfy the Guillemin condition; thus Proposition 12.5 is true.

Let (a,b) be an element of P; if (a,b) belongs to P, assume also that m > 1.
Suppose that the space V, j is non-zero. Let {h, i1, ..., hi4q} be the generators
of the space V,; considered in §12. We know that either ¢ = 5and [ = 0, or ¢ = 2
and [ € Ly, or ¢ =0 and 24 <[ < 35. When (a,b) € Py, we verify that [ belongs
to the set Lo. We easily see that the non-vanishing of V,; implies that r > ¢
and s > e}, and so the 2-form h; is non-zero. Therefore by Proposition 14.1,(ii),
the polynomials P, and J; are non-zero; it follows that

(14.16) rank Wop, > 1.

Thus according to a remark made above, h; does not satisfy the Guillemin con-
dition. Hence if ¢ = 0, we have proved that

(14.17) Vap ﬂ./\/‘gy(c = {0}.

Now suppose that ¢ = 2. If (a,b) is equal to (—=2,—1), (1,—1), or (—1,1),
from Proposition 14.2,(i) and (14.16), we obtain the relation (14.11). On the
other hand, if (a,b) belongs to the set {(2,1),(1,2),(—1,—-2)}, from Proposi-
tion 14.2,(ii) and (14.16), we obtain the relation (14.10), with j = 1. We saw
above that either one of the inequalities (14.10) and (14.11) implies the inequal-
ity (14.12); thus the relations

dim (Va,b m./\/’27(c) <1l= Nl(a, b)
always hold when g = 2. Since h; does not belong to N ¢, we see that
5(V,p) NNoc = {0}

and that the equality (14.17) is true when (r,s,a,b) is equal to (0,0,2,1) or
(1,1,—2,—1). Finally, assume that ¢ = 5 and (a,b) = (0,0). When r > 1, accord-
ing to Proposition 14.2,(iii), the rank of the mapping ® 2 is > 2 and the inequal-
ity (14.10), with j = 2, is true; therefore we obtain the inequality (14.12), and
the first relation of Proposition 12.6,(iii) holds when (r,s) = (1,1). When r =0,
we know that the inequality (14.16) holds; thus (14.12) is also true in this case,
and the equality (14.17) holds when s = 0. Thus we have verified all the relations
of Proposition 12.6 involving V{ 9. According to Proposition 6.1,(ii), when r > 1,
the polynomial P; is non-zero and so h; does not satisfy the Guillemin condition;
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hence the inequality
dim (3(V) N M) < 1
holds. Thus we have completed the proof of Propositions 12.6 and 12.7.

REFERENCES

[1] W. Fulton and J. Harris, “Representation theory: a first course,” Graduate Texts in Math.,
Vol. 129, Springer-Verlag, New York, Berlin, Heidelberg, 1991.

[2] J. Gasqui and H. Goldschmidt, “Radon transforms and the rigidity of the Grassmannians,”
Ann. of Math. Studies, No. 156, Princeton University Press, Princeton, NJ, Oxford, 2004.

, Infinitesimal isospectral deformations of the Grassmannian of 3-planes in R®, Mém.

Soc. Math. Fr. (N.S.), 109 (2007).

[4] , Infinitesimal isospectral deformations of the Lagrangian Grassmannians, Ann. Inst.
Fourier (Grenoble), 57 (2007), 2143-2182.
[5] , Infinitesimal isospectral deformations of symmetric spaces: Quotients of the special

unitary group, Pure and Appl. Math. Q., 6 (2010), 915-982.

[6] H. Goldschmidt, Existence theorems for analytic linear partial differential equations, Ann.
of Math., 86 (1967), 246-270.

[7] V. Guillemin, On micro-local aspects of analysis on compact symmetric spaces, in “Seminar
on micro-local analysis,” by V. Guillemin, M. Kashiwara and T. Kawai, Ann. of Math.
Studies, No. 93, Princeton University Press, University of Tokyo Press, Princeton, NJ, 1979,
79-111.

[8] M. Petkovsek, H. Wilf and D. Zeilberger, “A = B,” A K Peters, Ltd., Wellesley, MA, 1996.

Jacques Gasqui

Institut Fourier, Université Joseph Fourier
100 rue des Maths

BP 74

38402 Saint-Martin d’Heres, France
E-mail: jacques.gasqui@ujf-grenoble.fr

Hubert Goldschmidt
Department of Mathematics
Columbia University, MC 4406
2990 Broadway

New York, NY 10027, USA
E-mail: hg@math.columbia.edu



