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Abstract: We study the space I(X) of infinitesimal isospectral deforma-
tions of an irreducible and reduced symmetric space X of compact type when
X is a quotient of the special unitary group G = SU(n), with n ≥ 3. If X is
the reduced space of the special unitary group SU(n) or of the special La-
grangian Grassmannian SU(n)/SO(n), the non-zero G-invariant symmetric
3-form on X gives rise to a linear mapping Φ0 : C∞

R (X) → I(X), where
C∞
R (X) is the space of real-valued functions on X. Previously, we con-

structed a subspace FX of C∞
R (X) of finite-codimension and showed that

the restriction Φ : FX → I(X) of Φ0 is a monomorphism. Here we prove
that, when n = 3, the mapping Φ is an isomorphism and thus obtain in this
case an explicit description of the deformation space I(X).
Keywords: symmetric space, special unitary group, special Lagrangian
Grassmannian, reduced Lagrangian Grassmannian, Radon transform, infin-
itesimal isospectral deformation, symmetric form, Guillemin condition.

Introduction

Motivated by a result of Guillemin, in [3] we introduced the space I(X) of
infinitesimal isospectral deformations of a Riemannian symmetric space (X, g)
of compact type. We are interested in determining the space I(X) when X is
irreducible and reduced. The reduced space of X constructed in [3] is a symmetric
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space covered by X and which is not the cover of another symmetric space; we
say that X is reduced if it is equal to its reduced space. If I(X) vanishes, we say
that (X, g) is rigid in the sense of Guillemin; in this case, we know that every
isospectral deformation of the metric g is trivial to first-order, and so the space X

is spectrally rigid to first-order.

The only irreducible and reduced spaces for which it is known that the space
of infinitesimal isospectral deformations is non-trivial are quotients of the special
unitary group. In [4] and [5], by means of the homogeneous polynomials of
degree 3 on the Lie algebra of the special unitary group, we produced non-trivial
infinitesimal isospectral deformations of a symmetric space belonging to one of
the following families of irreducible symmetric spaces, where the integer n is ≥ 3:

(i) the reduced space of the symmetric space SU(n)/SO(n);

(ii) the reduced space of the special unitary group SU(n);

(iii) the reduced space of the symmetric space SU(2n)/Sp(n).

In fact, if X is one of these spaces, we constructed an explicit infinite-dimensional
space FX of real-valued functions on X and an injective mapping

Φ : FX → I(X).

The symmetric space SU(n)/SO(n) is the special Lagrangian Grassmannian;
its reduced space, which we call the reduced Lagrangian Grassmannian, is the
quotient of SU(n)/SO(n) by the action of a cyclic group of order n consisting of
isometries. The reduced space of the special unitary group G = SU(n) viewed
as a symmetric space is the quotient group G/S, where S is the center of G; the
latter group is isomorphic to the adjoint group of su(n) and is called the reduced
unitary group.

In this paper, we describe explicitly the deformation spaces of two of these
reduced spaces, which are quotients of the special unitary group SU(3) and which
are of rank 2, namely: the reduced Lagrangian Grassmannian, quotient of the
symmetric space SU(3)/SO(3), and the reduced unitary group SU(3)/S. Here
we show that the mapping Φ is an isomorphism for these two symmetric spaces.

As in [2], we say that a symmetric p-form u on a symmetric space (X, g)
satisfies the Guillemin condition if, for every maximal flat totally geodesic torus Z
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contained in X and for all parallel vector fields ζ on Z, the integral
∫

Z
u(ζ, ζ, . . . , ζ) dZ

vanishes, where dZ is the Riemannian measure of Z. The kernel Np of the Radon
transform for p-forms consists precisely of those forms satisfying the Guillemin
condition.

Let {gt} be a family of Riemannian metrics on X, with g0 = g; assume that
{gt} is an isospectral deformation of g (i.e., that the spectrum of the Laplacian
of the metric gt is independent of t). Guillemin proved, using the methods he
introduced in [7], that the corresponding infinitesimal deformation h = d

dtgt|t=0

of the metric g belongs to the kernel N2. If ϕt is a one-parameter family of
diffeomorphisms of X, the family {ϕ∗t g} is a trivial isospectral deformation; in
fact, the space L2 of Lie derivatives of the metric g is a subspace of N2. This
leads us to define the space I(X) of infinitesimal isospectral deformations as the
orthogonal complement of L2 in N2. Thus we have the orthogonal decomposition

N2 = L2 ⊕ I(X),

and we denote by P the orthogonal projection of N2 onto I(X). If I(X) van-
ishes, the infinitesimal deformation h is a Lie derivative of the metric and the
deformation {gt} is trivial to first-order.

Let (X, g) be a reduced symmetric space belonging to one of the above three
families of reduced spaces. The universal cover X̃ of X is an irreducible symmetric
space corresponding to a Riemannian symmetric pair (G̃,K), which is in fact one
of the following pairs

(G,SO(n)), (G×G,G∗), (G,Sp(n)),

where G = SU(n) for the first two pairs and G = SU(2n) for the latter pair,
with n ≥ 3, and where G∗ is the diagonal of G × G. We view the symmetric
space X as a homogeneous space of the group G̃. The symmetric space X carries
a unique (up to a constant) G̃-invariant symmetric 3-form σ, which is induced by
the G-invariant homogeneous polynomial Q on the Lie algebra g0 of G defined
by

Q(A) = iTrA3,

for all A ∈ g0 (see [3, §2]). The form σ induces an injective mapping σ̃ from the
space of 1-forms on X to the space of symmetric 2-forms on X. According to [4],
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a 1-form θ on X satisfies the Guillemin condition if and only if the symmetric
2-form σ̃(θ) satisfies the Guillemin condition. We consider the G̃-module C∞

R (X)
of real-valued functions on X; if f is an element of C∞

R (X), the symmetric 2-form
σ̃(df) satisfies the Guillemin condition. In [4] and [5], we proved that the space F ′X
of functions f ∈ C∞

R (X) for which the symmetric 2-form σ̃(df) is a Lie derivative
of the metric g is the direct sum of two irreducible G̃-submodules BR and R(X)
of C∞

R (X), where R(X) is the space of constant functions on X. Thus if FX is
the orthogonal complement of F ′X in C∞

R (X), the sum

L2 ⊕ σ̃(dFX)

is direct; thus we know that the mapping

Φ = P ·σ̃ ·d : FX → I(X)

is injective and Φ(FX) is an infinite-dimensional subspace of I(X). The main
results of this paper imply that the mapping Φ is also surjective when n = 3.

Henceforth, we suppose that G = SU(3), and that X̃ is equal either to the
space SU(3)/SO(3), with G̃ = G, or to the group SU(3), with G̃ = G × G. In
both cases, the space X is the quotient of X̃ by the action of a cyclic group Σ of
order 3 consisting of isometries which commute with the action of G̃. We consider
the G̃-module C∞(X̃) of complex-valued functions and the G̃-module C∞(SpT ∗C)
of complex symmetric p-forms on the space X̃. To the form σ, we associate an
elliptic homogeneous differential operator Dσ on X̃ with values in the space of
symmetric 2-forms. In order to demonstrate that the equality

Φ(FX) = I(X)

holds on X, it suffices to show that a Σ-invariant 2-form on X̃ satisfying the
Guillemin condition belongs to the image of Dσ. The ellipticity of Dσ allows us
to exploit the harmonic analysis on the homogenous space X̃ of the group G̃.

In §§3, 4 and 12, using the Littlewood-Richardson rule we compute the mul-
tiplicity of an arbitrary isotypic component of the G̃-module C∞(SpT ∗C), with
p = 1, 2. We then determine in §§5 and 12 all the highest weight vectors of such
an isotypic component and express them in terms of a family of functions and
a finite set of 1-forms on X̃. We wish to point out that the descriptions given
there are remarkably simple. More precisely, we construct two explicit functions
f1 and f2 on X̃ and consider the family U of functions fr,s = f r

1 · fs
2 on X̃, where
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r, s are integers ≥ 0. If X̃ = SU(3)/SO(3), the highest weight vector of an ir-
reducible G̃-module of C∞(SpT ∗C), with p = 1, 2, can be expressed in terms of
functions belonging to the family U and of two explicit 1-forms. On X̃ = SU(3),
we construct explicit 1-forms ϑj , with 1 ≤ j ≤ 8, which are highest weight vec-
tors of irreducible G̃-submodules of C∞(T ∗C); then any highest weight vector of
an irreducible G̃-submodule of C∞(T ∗C) can be expressed as a linear combination
of forms of the type fϑj , with f ∈ U and 1 ≤ j ≤ 8, and any highest weight
vector of an irreducible G̃-submodule of C∞(S2T ∗C) can be expressed as a linear
combination of the forms bel! onging to the family

{u1g, σ̃(u2ϑj), u3ϑk ·ϑl},

with u1, u2, u3 ∈ U and 1 ≤ j, k, l ≤ 8. These descriptions allow us to tell
which of these highest weight vectors are Σ-invariant. Also if W is an isotypic
component of the G̃-module C∞(SpT ∗C), with p = 1, 2, we are able to see that
its G̃-submodule WΣ consisting of its Σ-invariant forms either is equal to W or
vanishes.

Let Ñ2,C denote the G̃-submodule of C∞(S2T ∗C) consisting of complex sym-
metric 2-forms satisfying the Guillemin condition. In order to prove the desired
equality, i.e., that the mapping Φ is surjective, we simply need to show the fol-
lowing: if W is a non-zero isotypic component of the G-submodule C∞(S2T ∗C)
satisfying W = WΣ, the space W ∩ Ñ2,C belongs to the image of Dσ. This last
fact follows from an appropriate bound for the multiplicity of the G̃-submodule
W ∩Ñ2,C, or equivalently for the dimension of the vector space W \∩Ñ2,C, where
W \ is the subspace of W generated by its highest weight vectors. In fact, the
dimension of the space W \ is always ≤ 6, and we achieve this bound by con-
structing a mapping W \ → Rq whose kernel contains W \ ∩ Ñ2,C and showing
that it is surjective, where the integer q depends on W \ and is equal to 1, 2 or 3.
The equality

L2 ∩ σ̃dC∞
R (X) = σ̃dBR,

which implies that the mapping Φ is surjective, enters into defining these bounds.
In §§10 and 14, we obtain the required bounds by computing specific integrals over
a suitably chosen family of maximal flat totally geodesic tori of X̃. We need to
evaluate various coefficients of polynomials arising from certain trigonometric in-
tegrals obtained by means of the identities of §9. We give a complete explanation
for only two such computations in Proposition 10.1; all the others are obtained
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by similar methods. Here as in [3], we require the WZ theory, as described in [8],
to prove the combinatorial identities of §8, which are of independent interest.

The proof of our main results allows us to show that the maximal flat Radon
transform for functions on X is injective and that a 1-form on X satisfying the
Guillemin condition is exact (see §7).

We wish to thank Ian Anderson and Michael Eastwood for verifying by means
of Maple that, for n = 3, the differential operators Dσ of §§4 and 11 are of finite
type.
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CHAPTER I: The Lagrangian Grassmannians

1. Riemannian manifolds

Let X be a differentiable manifold, whose tangent and cotangent bundles we
denote by T = TX and T ∗ = T ∗X , respectively. We consider the space of complex-
valued functions C∞(X) (resp. real-valued functions C∞

R (X)) on X. Let E be a
vector bundle over X; we denote by EC its complexification, by E the sheaf of
sections of E over X and by C∞(E) the space of global sections of E over X.
By SkE, we shall mean the k-th symmetric product of the vector bundle E. We
shall identify SkT ∗ with a sub-bundle of the k-th tensor product

⊗kT ∗ of T ∗ as
in §1, Chapter I of [2]; in particular, if α, β ∈ T ∗, the symmetric product α · β
is identified with the element α ⊗ β + β ⊗ α of

⊗2T ∗. If u is a section of SpT ∗

over X, with p ≥ 1, we consider the morphism of vector bundles

u[ : T → Sp−1T ∗,

defined by
(u[ξ)(η1, . . . , ηp−1) = u(ξ, η1, . . . , ηp−1),

for ξ, η1, . . . , ηp−1 ∈ T .

Let g be a Riemannian metric on X. We denote by g] : T ∗ → T the inverse of
the isomorphism g[ : T → T ∗. If u is a section of SpT ∗ over X, we consider the
morphism of vector bundles

ũ = u[ · g] : T ∗ → Sp−1T ∗.

We also consider the scalar products on the vector spaces C∞(X), C∞(T ) and
C∞(S2T ∗), defined in terms of the Riemannian measure of X and the scalar
products on the vector bundles T and S2T ∗ induced by the metric g.

We denote by Hess f the Hessian of a real-valued function f on X. The Killing
operator

D0 : T → S2T ∗
of (X, g), sends a vector field ξ into the Lie derivative Lξg of g along ξ. We also
consider the divergence operator

div : S2T ∗ → T ∗,
as defined in §1, Chapter I of [2]; we recall that the formal adjoint of D0 is equal
to 2g] · div : S2T ∗ → T . When X is compact, since the operator D0 is elliptic,
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we therefore have the orthogonal decomposition

(1.1) C∞(S2T ∗) = D0C
∞(T )⊕ {h ∈ C∞(S2T ∗) | divh = 0 }

given by the relation (1.11) of [2]; we denote by

P : C∞(S2T ∗) → {h ∈ C∞(S2T ∗) | divh = 0 }
the projection determined by the decomposition (1.1).

We now suppose that X is a symmetric space of compact type. We know
that there is a Riemannian symmetric pair (G,K) of compact type, where G

is a compact, semi-simple Lie group and K is a closed subgroup of G, such
that the space X is isometric to the homogeneous space G/K endowed with a
G-invariant metric. We shall identify X with G/K. We shall denote by g0 the
Lie algebra of G. The pair (G,K) is associated with an orthogonal symmetric Lie
algebra (g0, θ) of compact type, where θ is an involutive automorphism of g0. The
spaces C∞(X), C∞(T ) and C∞(TC) and the spaces C∞(SpT ∗) and C∞(SpT ∗C)
of symmetric p-forms on X inherit structures of G-modules from the action of G

on X.

We consider the G-submodule Np = Np,X of C∞(SpT ∗) consisting of all sym-
metric p-forms satisfying the Guillemin condition; the complexificationNp,C ofNp

shall be viewed as the G-submodule of C∞(SpT ∗C) consisting of all complex sym-
metric p-forms satisfying the Guillemin condition. We recall that D0C

∞(T ) is a
G-submodule of N2 and that dC∞

R (X) is a G-submodule of N1 (see Lemma 2.10
of [2]). We consider the space of infinitesimal isospectral deformations of g defined
by

I(X) = {h ∈ N2 | divh = 0 }.
From the decomposition (1.1), we obtain the orthogonal decomposition

(1.2) N2 = D0C
∞(T )⊕ I(X);

moreover, the orthogonal projection of N2 onto I(X) is equal to the restriction
of the projection P to N2. Thus the vanishing of the space I(X) is equivalent to
the fact that the space X is rigid in the sense of Guillemin (see [3, §1]).

Let Γ be the dual of the group G, that is, the set of equivalence classes of
irreducible G-modules over C. Let F be a G-invariant complex sub-bundle of TC
or SpT ∗C. If γ is an element of Γ, we denote by C∞

γ (X) and C∞
γ (F ) the isotypic

components of the G-modules C∞(X) and C∞(F ), respectively, corresponding
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to γ. Let Γ0 be the subset of Γ consisting of those elements γ of Γ for which the
G-module C∞

γ (X) is non-zero; for γ ∈ Γ0, we know that the G-module C∞
γ (X) is

irreducible. Let γ0 be the element of Γ0 corresponding to the trivial irreducible
G-module C. We know that the space C∞

γ0
(TC) always vanishes.

Let γ be an element of Γ and Eγ be an irreducible G-module corresponding
to γ. A G-submodule W of C∞

γ (F ), with γ ∈ Γ, is isomorphic to the direct sum
of k copies of Eγ ; this integer k is called the multiplicity of the G-module W and
denoted by MultW . If we choose a Cartan subalgebra of the complexification g

of g0 and fix a system of positive roots of g, we recall that the dimension of the
weight subspace of W , corresponding to the highest weight of Eγ , is equal to the
multiplicity of W (see [2, Chapter II]).

Let σ be a G-invariant symmetric 3-form on X; we consider the G-equivariant
morphism of vector bundles

σ̃ : T ∗ → S2T ∗

induced by σ. If the space X is irreducible and the form σ is non-zero, we know
that σ̃ is a monomorphism. If F denotes the trivial real line bundle over X, we
associate with σ the first-order differential operator

Dσ : T ⊕ F → S2T ∗

defined by

Dσ(ξ, f) = D0ξ + σ̃df,

for ξ ∈ C∞(T ) and f ∈ C∞
R (X).

Let Σ be a finite group of isometries of X of order m; suppose that the elements
of Σ commute with the action of G on X and that the group Σ acts without fixed
points. Then the quotient Y = X/Σ is a manifold and the natural projection
$ : X → Y is an m-fold covering. Thus the metric g induces a Riemannian metric
gY on Y such that $∗gY = g. Let (G,K ′) be another Riemannian symmetric
pair associated with the orthogonal symmetric Lie algebra (g0, θ). Assume that
K is a subgroup of K ′ and that there exists a G-equivariant diffeomorphism
ϕ : Y → G/K ′ which has the following property: when we identify X with G/K,
the projection ϕ ◦ $ is equal to the natural projection G/K → G/K ′. Under
these conditions, the space (Y, gY ) is isometric to the symmetric space G/K ′

of compact type endowed with a G-invariant metric. In [3, §1], we saw that the
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reduced space of X can be written as the quotient X/Σ, where Σ is an appropriate
group of isometries of X, and that it also satisfies all of the above assumptions.

We consider the G-submodule C∞(X)Σ of C∞(X) consisting of all Σ-invariant
functions on X. If F is a sub-bundle of TC or SpT ∗C which is invariant under both
the groups G and Σ, we consider the G-submodule C∞(F )Σ of C∞(F ) consisting
of all Σ-invariant sections of F over X. If F is the vector bundle TC or SpT ∗C, we
consider the G-submodules

C∞
γ (X)Σ = C∞(X)Σ ∩ C∞

γ (X), C∞
γ (F )Σ = C∞(F )Σ ∩ C∞

γ (F )

of C∞
γ (X) and C∞

γ (F ), respectively. Let Γ1 be the subset of Γ0 consisting of all
elements γ of Γ0 such that

C∞
γ (X)Σ = C∞

γ (X).

If the symmetric 3-form σ is Σ-invariant, the symmetric form σ induces a
symmetric 3-form σY on Y such that

σ = $∗σY .

We consider the morphism of vector bundles

σ̃Y : T ∗Y → S2T ∗Y

induced by the symmetric 3-form σY . If ϕ is a 1-form on Y , we have

(1.3) $∗σ̃Y (ϕ) = σ̃($∗ϕ).

Suppose that, if ϕ is an arbitrary 1-form on X satisfying the Guillemin con-
dition, the symmetric 2-form σ̃(ϕ) on X also satisfies the Guillemin condition.
Then for all γ ∈ Γ, since the differential operators D0 and σ̃d are homogeneous,
we have the inclusions

(1.4)
D0C

∞(T )Σ + σ̃dC∞
R (X)Σ ⊂ N2 ∩ C∞(S2T ∗)Σ,

D0C
∞
γ (TC)Σ + σ̃dC∞

γ (X)Σ ⊂ N2,C ∩ C∞
γ (S2T ∗C)Σ,

for all γ ∈ Γ.

We now further assume that X is irreducible and is not equal to a simple Lie
group. We may suppose that the Lie group G is simple; then the complexifica-
tion g of the Lie algebra g0 is simple. Let γ1 be the element of Γ which is the
equivalence class of the irreducible G-module g. The space K of all Killing vector
fields on X, i.e., the space of all solutions ξ ∈ C∞(T ) of the equation D0ξ = 0,
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is isomorphic to g0; thus we may view its complexification KC as a G-submodule
of C∞

γ1
(TC). If X is not Hermitian, according to the equality (2.27) of [2] we know

that γ1 does not belong to Γ0 and that

(1.5) C∞
γ1

(TC) = KC.

Proposition 1.1. Suppose that the symmetric space X of compact type is irre-
ducible; assume that it is neither Hermitian nor equal to a simple Lie group.
Let σ be a non-zero symmetric 3-form on X which is both G-invariant and
Σ-invariant and let σY be the symmetric 3-form on the symmetric space Y sat-
isfying $∗σY = σ. Suppose that the following hypotheses hold:

(a) If a 1-form ϕ on X satisfies the Guillemin condition, the symmetric 2-form
σ̃(ϕ) on X also satisfies the Guillemin condition.

(b) There exists an element γ2 of Γ1, not equal to γ0 or γ1, such that

D0C
∞(TC) ∩ σ̃dC∞(X) = σ̃dC∞

γ2
(X).

(c) The differential operator Dσ is elliptic.
Then the following assertions are equivalent:

(i) The equality

N2,Y = D0C
∞(TY ) + σ̃Y dC∞

R (Y )

holds.

(ii) The equality

N2,C ∩ C∞(S2T ∗C)Σ = D0C
∞(TC)Σ + σ̃dC∞(X)Σ

holds.

(iii) We have

N2,C ∩ C∞
γ0

(S2T ∗C)Σ = N2,C ∩ C∞
γ1

(S2T ∗C)Σ = {0},(1.6)

N2,C ∩ C∞
γ2

(S2T ∗C)Σ = D0C
∞
γ2

(TC)Σ,(1.7)

and the equality

(1.8) N2,C ∩ C∞
γ (S2T ∗C)Σ = D0C

∞
γ (TC)Σ + σ̃dC∞

γ (X)Σ

holds for all γ ∈ Γ, with γ 6= γ0, γ1, γ2.
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(iv) The equalities (1.6) hold; moreover, if γ is an arbitrary element of Γ not
equal to γ0 or γ1, the inequality

Mult
(N2,C ∩ C∞

γ (S2T ∗C)Σ
) ≤ 1 + MultC∞

γ (TC)Σ

holds whenever γ belongs to Γ1 and is not equal to γ2, and the inequality

Mult
(N2,C ∩ C∞

γ (S2T ∗C)Σ
) ≤ MultC∞

γ (TC)Σ

holds whenever γ is equal to γ2 or does not belong to Γ1.

Proof. Lemma 2.17 of [2], together with the relations (2.6) of [2] and (1.3), gives
us the equivalence of (i) and (ii). Since Dσ is an elliptic homogeneous differential
operator, from the inclusions (2.12) and Propositions 2.2,(iii) of [2], by (1.4) we
infer that assertion (ii) is equivalent to the fact that the equality (1.8) holds for
all γ ∈ Γ. According to our hypothesis (b), the equality (1.8), with γ = γ2, is
equivalent to (1.7). When γ = γ0, we know that the spaces dC∞

γ (X) and C∞
γ (TC)

vanish. On the other hand, since X is not Hermitian, we saw that the spaces
C∞

γ1
(X) and D0C

∞
γ1

(TC) vanish. Hence the equalities (1.8), with γ equal to γ0

or γ1, are equivalent to the relations (1.6). Thus the assertions (ii) and (iii) are
equivalent. Since MultC∞

γ (X)Σ is equal to 1 when the element γ of Γ belongs
to Γ1 and vanishes otherwise, the equivalence of (iii) and (iv) follows from the
inclusions (1.4) and the hypothesis (b). ¤

We no longer assume that the space X is irreducible and also allow it to be
equal to a Lie group. The following result is a direct consequence of Lemma 2.17
and Proposition 2.32 of [2].

Proposition 1.2. Let X be a symmetric space of compact type and Y be the
symmetric space equal to the quotient of X by the finite group Σ of isometries
of X. Then the following assertions are equivalent:

(i) A 1-form on Y satisfies the Guillemin condition if and only if it is exact.

(ii) The equality
N1,C ∩ C∞(T ∗C)Σ = dC∞(X)Σ

holds.

(iii) The equality
N1,C ∩ C∞

γ (T ∗C)Σ = dC∞
γ (X)Σ

holds for all γ ∈ Γ.
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(iv) The inequality

Mult
(N1,C ∩ C∞

γ (T ∗C)Σ
) ≤ 1

holds whenever γ belongs to Γ1, and the equality

N1,C ∩ C∞
γ (T ∗C)Σ = {0}

holds whenever γ does not belong to Γ1.

2. The special unitary group

Let n ≥ 3 be a given integer. Let X = G be the special unitary group SU(n).
If B denotes the Killing form of the Lie algebra g0 = su(n), we endow X with
the bi-invariant Riemannian metric g0 induced by −B. As usual, we identify the
G-module g0 with the tangent space of X at the identity element e0 = In of G.

We consider the space Mn of all n× n complex matrices. For 1 ≤ j, k ≤ n, let
Ejk = (clr) be the element of Mn determined by cjk = 1 and clr = 0 whenever
(l, r) 6= (j, k). If 1 ≤ j, k ≤ n and 1 ≤ l ≤ n − 1 are integers, with j 6= k, the
matrices

Ajk = Ejk − Ekj , Bjk = i(Ejk + Ekj), Cl = i(Ell − El+1,l+1)

of Mn belong to g0; in fact, the set of all these matrices {Ajk, Bjk, Cl}, with
1 ≤ j < k ≤ n and 1 ≤ l ≤ n− 1, form a basis of g0.

For p ≥ 2, the homogeneous polynomial Qp on g0 defined by

Qp(ξ) = (−i)p Tr ξp,

for all ξ ∈ g0, is G-invariant, non-zero and real-valued; therefore it gives rise to a
non-zero bi-invariant symmetric p-form σ′p on X. We know that the metric g0 is
equal to the symmetric 2-form 2n · σ′2 and that σ′3 is up to a constant the unique
bi-invariant symmetric 3-form on X (see [3, §2]).

We shall always consider the space X = SU(n), with n ≥ 3, endowed with the
Riemannian metric g′ = σ′2. We easily verify that the product of matrices Cj ·Ck

is equal to 0, for all 1 ≤ j, k ≤ n− 1, with |j − k| ≥ 2, and hence that

(2.1) g′(Cj , Cj) = 2, g′(Cl, Cl+1) = −1, g′(Ck, Cq) = 0,
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for all 1 ≤ j, k, q ≤ n− 1 and 1 ≤ l ≤ n− 2, with q ≥ k + 2. Moreover, we verify
that

(2.2) g′(Cl, Bjk) = 0, g′(Bjk, Brs) = 2δjrδls,

for all 1 ≤ l ≤ n− 1 and 1 ≤ j, k, r, s ≤ n and, with j < k and r < s.

We now consider the mapping

ι′ : Rn−1 → G,

which sends θ = (θ1, . . . , θn−1) ∈ Rn−1 into the diagonal matrix

ι′(θ) = diag
(
eix1 , . . . , eixn

)

of G, where

x1 = θ1, xj = θj − θj−1, xn = −θn−1,

for 2 ≤ j ≤ n − 1. If {e′1, . . . , e′n−1} is the standard basis of Rn−1 and Λ′ is the
lattice of Rn−1 generated by the basis {2πe′j}1≤j≤n−1 of Rn−1, the mapping ι′

induces by passage to the quotient an imbedding

ι′ : Rn−1/Λ′ → G.

The image of the mappings ι′ is the maximal torus H of the group G which
consists of all diagonal matrices of G and is therefore a maximal flat totally
geodesic torus of G viewed as a symmetric space. Clearly we have ι′(0) = e0. We
previously considered this maximal torus H of G in [4, §3] and [5, §2].

The complexification h of the Lie algebra h0 of H is a Cartan algebra of the
complexification g = sl(n,C) of the simple Lie algebra g0, and consists of all
diagonal matrices of g. In fact, the matrices {C1, . . . , Cn−1} form a basis of h0.
For 1 ≤ j ≤ n, the linear form λj : h → C, sending the diagonal matrix with
a1, . . . , an ∈ C as its diagonal entries into aj , is purely imaginary on h0. We write
αj = λj − λj+1, for 1 ≤ j ≤ n− 1. Then

{λj − λk | 1 ≤ j, k ≤ n and j 6= k }
is the system of roots of g with respect to h. As in [4, §5], we take

{α1, . . . , αn−1}
as a system of simple roots of g; the corresponding system of positive roots is

∆+ = {λj − λk | 1 ≤ j < k ≤ n }.
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If α is the root λj − λk, with 1 ≤ j, k ≤ n and j 6= k, the root subspace gα

corresponding to α is generated by Ejk (over C). We have the decomposition

g = n− ⊕ h⊕ n+,

where

n+ =
⊕

α∈∆+

gα, n− =
⊕

α∈∆+

g−α;

in fact, n+ is spanned by the elements Ejk of g, with 1 ≤ j < k ≤ n. The
corresponding fundamental weights are

$j = λ1 + · · ·+ λj ,

with 1 ≤ j ≤ n− 1; in fact, $j is the highest weight of the irreducible G-module∧jCn, and we have

$k(Cj) = iδjk,

for 1 ≤ j, k ≤ n− 1. The unique element w0 of the Weyl group of g determined

w0(∆+) = −∆+

is the involutive automorphism satisfying

(2.3) w0($j) = −$n−j ,

for 1 ≤ j ≤ n− 1 (see [4, §5] or [5, §4]). A dominant integral form λ for G may
be written in a unique way

(2.4) λ = γr1,...,rn−1 = r1$1 + · · ·+ rn−1$n−1,

where r1, . . . , rn−1 are non-negative integers. Thus the highest weight of an irre-
ducible (complex) G-module has a unique expression of this form and so is equal
to

(2.5) c1λ1 + · · ·+ cn−1λn−1,

where c1, . . . , cn−1 are integers satisfying c1 ≥ · · · ≥ cn−1 ≥ 0; hence we may
identify the dual Γ of G with the set of all linear forms on h which can be written
in the form (2.4) (or equivalently in the form (2.5)).

If γ = γr1,r2,...,rn−1 is an element of Γ, where r1, r2, . . . , rn−1 are non-negative
integers, by (2.3), the unique element γ̄ of Γ determined by

w0(γ) = −γ̄
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is equal to γrn−1,...,r2,r1 ; in particular, if γ is the element $k of Γ, we have the
equality γ̄ = $n−k.

3. Branching laws and multiplicities

If V is a real or complex vector space, we denote by SkV and
∧lV the k-th

symmetric product and the l-th exterior product of V , respectively. Let n ≥ 3 be
a given integer and let U be the real vector space Rn endowed with its standard
Euclidean scalar product. If k ≥ 2, we consider the kernel Sk

0U∗ of the trace
mapping SkU∗ → Sk−2U∗ defined in [4, §2].

We consider the groups G = SU(n) and K = SO(n). The complexification
UC of U is a G-module, and so the k-th symmetric product SkU∗

C of U∗
C inherits

a G-module structure. In fact, the space SkU∗
C is an irreducible G-module and,

for k ≥ 2, the complexification Sk
0U∗

C of Sk
0U∗ is an irreducible K-module.

A partition π = (π1, . . . , πn−1) is an (n− 1)-tuple of integers satisfying

π1 ≥ π2 ≥ · · · ≥ πn−1 ≥ 0.

We say that a partition π = (π1, . . . , πn−1) is even if all its integers πj are even.
Let

γ = a1$1 + · · ·+ an−1$n−1

be an element of Γ, where a1, . . . , an−1 are non-negative integers. We associate
with the element γ the partition π(γ) = (π1, . . . , πn−1), where

πj = a1 + · · ·+ an−j ,

for 1 ≤ j ≤ n− 1; in fact, this partition uniquely determines the element γ of Γ.
Let N0(γ) be the integer which is equal to 1 if the partition π(γ) is even and 0
otherwise. We consider an irreducible G-module Eγ corresponding to γ. Let k ≥ 1
be a given integer and consider the set Σ(γ, k) of all partitions η = (η1, . . . , ηn−1)
defined as follows: a partition η = (η1, . . . , ηn−1) belongs to Σ(γ, k) if and only if
there exist integers ν1, . . . , νn ≥ 0 satisfying the relations

ηj = νj − νn, νj ≥ πj ≥ νj+1,

ν1 + · · ·+ νn = π1 + · · ·+ πn−1 + k,

for 1 ≤ j ≤ n − 1. We denote by Nk(γ) the cardinality of the set Σ′(γ, k)
consisting of all even partitions of Σ(γ, k).
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Since G is a real form of the group SL(n,C) and the subgroup K of G is equal
to G∩SO(n,C), from Pieri’s formula (see Proposition 15.25,(i) and formula (A.7)
of [1] and [3, §10]) and the relation (10.4) of [3], for k ≥ 2, we deduce that the
multiplicity Mk(γ) of the irreducible K-module Sk

0U∗
C in the decomposition of Eγ

viewed as a K-module is equal to

(3.1) dim HomK(Sk
0U∗

C, Eγ) = Nk(γ)−Nk−2(γ).

By (3.1), we know that M2(γ) is equal to N2(γ)− 1 if the partition π(γ) is even
(i.e., if the integers aj are even) and to N2(γ) otherwise.

If p, q are given integers, let εp
q be the integer equal to 1 if p ≥ q and 0 otherwise.

Lemma 3.1. Suppose that n = 3. Let r1, r2 ≥ 0 be given integers and let γ

be the element γr1,r2 of Γ. Then the integers N2(γ) and M4(γ) are given by the
following table:

Conditions on r1 and r2 N2(γ) M4(γ)

r1, r2 even 1 + εr1
2 + εr2

2 εr1
2 εr2

2 + εr1
4 + εr2

4

r1, r2 odd 1 εr1
3 + εr2

3

r1 even, r2 odd εr1
2 εr1

4 + εr1
2 εr2

3

r1 odd, r2 even εr2
2 εr2

4 + εr1
3 εr2

2

Proof. Let γ = a1$1 + a2$2 be an element of Γ and consider the partition
π(γ) = (π1, π2) associated with γ. We consider the sequences

ξ1 = (π1 + 4, π2), ξ2 = (π1, π2 + 4), ξ3 = (π1 − 4, π2 − 4),

ξ4 = (π1, π2 − 2), ξ5 = (π1 − 2, π2), ξ6 = (π1 + 2, π2 + 2),

η1 = (π1 + 2, π2), η2 = (π1, π2 + 2), η3 = (π1 − 2, π2 − 2)

associated with the partition π(γ). If a1 and a2 are even integers, we see that
a partition belonging to Σ′(γ, 4) (resp. to Σ′(γ, 2)) is a subset of {ξ1, . . . , ξ6}
(resp. of {η1, η2, η3}). We also consider the sequences

ξ7 = (π1, π2 + 1), ξ8 = (π1 + 2, π2 − 1), ξ9 = (π1 − 2, π2 − 3),

ξ10 = (π1 + 1, π2), ξ11 = (π1 − 1, π2 + 2), ξ12 = (π1 − 3, π2 − 2),

ξ13 = (π1 + 3, π2 + 1), ξ14 = (π1 + 1, π2 + 3), ξ15 = (π1 − 1, π2 − 1),

η4 = (π1, π2 − 1), η5 = (π1 − 1, π2), η6 = (π1 + 1, π2 + 1)
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associated with the partition π(γ). If a1 is even and a2 is odd (resp. a1 and
a2 are odd integers), we see that a partition belonging to Σ′(γ, 4) is a subset
of {ξ7, ξ8, ξ9} (resp. of {ξ13, ξ14, ξ15}), and that Σ′(γ, 2) is empty when a1 = 2
and a2 = 1 (resp. when a1 = a2 = 1) and is equal to {η4} (resp. {η6}) other-
wise. Moreover, if a1 is odd and a2 is even, we see that a partition belonging to
Σ′(γ, 4) is a subset of {ξ10, ξ11, ξ12}, and that Σ′(γ, 2) = {η5} when a2 ≥ 2 and
is empty otherwise. Using these remarks, we are able to compute the integers
N2(γ) and N4(γ), from which we obtain the integer M4(γ). ¤

4. The special Lagrangian Grassmannians

Let n be a given integer ≥ 3. Let G be the group SU(n) and let K be the
subgroup SO(n), which is equal to the set of fixed points of the involution s

of G sending a matrix into its complex conjugate. Then (G,K) is a Riemannian
symmetric pair. In the Cartan decomposition

g0 = k0 ⊕ p0

of the Lie algebra g0 of G corresponding to this involution, which we considered
in [4, §6], we know that k0 is the Lie algebra of K and that the K-submodule p0

is the space of all symmetric purely imaginary n× n matrices of trace zero. We
denote by φ∗ the action of an element φ of G on the tangent bundle of X. We
identify p0 with the tangent space of X at the coset x0 of the identity element e0

of G; in fact, if φ is an element of K, we have φ(x0) = x0 and, if ξ is an element
of p0, the vector φ∗ξ of Tx0 is given by

(4.1) φ∗ξ = Ad φ · ξ.

We consider the G-invariant metric g and the symmetric 3-form σ = σ3 on X

introduced in [4, §6]; they are the unique G-invariant symmetric forms whose
restrictions to the space Tx0 = p0 are equal to the restrictions of the symmetric
forms g′ and σ′3, respectively, to the space p0. In fact, they are determined by

g(ξ1, ξ2) = −Tr (ξ1 · ξ2), σ(ξ1, ξ2, ξ3) = iTr (ξ1 · ξ2 · ξ3),

for all ξ1, ξ2, ξ3 ∈ p0. The Riemannian manifold (X, g) is an irreducible symmetric
space (which is not Hermitian), called the special Lagrangian Grassmannian. We
shall consider the objects associated in §§1 and 2 with the symmetric space X

and the group G and use the notation introduced there.



Infinitesimal Isospectral Deformations of Symmetric Spaces, II... 869

The set of matrices {Bjk, Cl}, with 1 ≤ j < k ≤ n and 1 ≤ l ≤ n − 1, form a
basis of p0. For 1 ≤ j ≤ n, we consider the element

C̃j =
1
n

( n−1∑

k=j

(n− k)Ck −
j−1∑

k=1

kCk

)

of p0. According to (2.1) and (2.2), we have

(4.2) g(Cj , Cj) = 2, g(Cl, Cl+1) = −1, g(Ck, Cq) = 0,

for all 1 ≤ j, k, q ≤ n− 1 and 1 ≤ l ≤ n− 2, with q ≥ k + 2, and

(4.3) g(Cl, Bjk) = 0, g(Bjk, Brs) = 2δjrδls,

for all 1 ≤ l ≤ n− 1 and 1 ≤ j, k, r, s ≤ n and, with j < k and r < s.

We consider the G-equivariant monomorphism

σ̃ : T ∗ → S2T ∗

induced by the symmetric 3-form σ and the differential operator Dσ associated
with σ in §1. Let ϕ be an element of T ∗x0

. In [4, §6], we saw that

(4.4) σ̃(ϕ)(Cj , Cl) = 0,

for 1 ≤ j, l ≤ n− 1, with l > j + 1, and that

(4.5) σ̃(ϕ)(Cj , Cj) = ϕ(C̃j + C̃j+1),

for all 1 ≤ j ≤ n− 1; moreover, for all 1 ≤ j ≤ n− 2, we have

(4.6) σ̃(ϕ)(Cj , Cj+1) = −ϕ(C̃j+1).

From the relation (3.7) of [4], we deduce that

(4.7) σ̃(ϕ)(Bjk, Bjk) = ϕ(C̃j + C̃k),

for 1 ≤ j < k ≤ n.

The following lemma is a direct consequence of the expressions for the sym-
metric forms g and σ.

Lemma 4.1. Let A,B, C be elements of p0 and c ∈ R satisfying

(4.8) A ·B + B ·A = icC.

Then we have
σ̃(ϕ)(A,B) =

c

2
ϕ(C),

for all ϕ ∈ T ∗x0
.
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Let {ωj , $jk}, with 1 ≤ j < k ≤ n, be the basis of T ∗x0
determined by

ωj(Cl) = δjl, $jk(Cl) = 0, ωj(Brs) = 0, $jk(Brs) = δjrδks,

for all 1 ≤ l ≤ n−1 and 1 ≤ j, k, r, s ≤ n, with j < k and r < s. For 1 ≤ j, k ≤ n,
we consider the elements ω0, ωn, $jj and $kj of T ∗x0

defined by

ω0 = ωn = $jj = 0, $kj = $jk.

Let U be the set of vectors {Bjk} of p0, with 1 ≤ j < k ≤ n. If A,B are
elements of U , with A 6= B, and 1 ≤ l ≤ n − 1 is a given integer, then we easily
verify that the relation (4.8) holds, where C is an element of U and c = 0 or 1,
and that

A · Cl + Cl ·A = icA,

where c = 0 or ±1. According to this remark, Lemma 4.1 and the relations
(4.4)–(4.7), we see that

(4.9) 2σ̃($jk) = (ωj − ωj−1 + ωk − ωk−1) ·$jk +
n∑

l=1

$jl ·$kl,

for all 1 ≤ j < k ≤ n; moreover, when n = 3, we have

(4.10)
σ̃(ω1) =

1
6

(ω2
1 + 2ω1 · ω2 − 2ω2

2 + $2
12 + $2

13 − 2$2
23),

σ̃(ω2) =
1
6

(2ω2
1 − 2ω1 · ω2 − ω2

2 + 2$2
12 −$2

13 −$2
23).

Using Maple and the formulas (4.9) and (4.10), we see that the operator Dσ

is of finite type when n = 3; in fact, the morphism

(4.11) S3T ∗ ⊗ (T ⊕ F ) → S2T ∗ ⊗ S2T ∗,

which is equal to the second prolongation of the symbol of Dσ, is injective. There-
fore by Proposition 6.2 of [6], we obtain:

Proposition 4.2. When n = 3, the differential operator Dσ on X is elliptic.

According to the relation (7.1) of [4], the equality of G-modules

(4.12) C∞
γ̄ (SpT ∗C) = C∞

γ (SpT ∗C)

holds for all γ ∈ Γ and p ≥ 0.
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We consider the line bundle {g} generated by the section g of S2T ∗, the sub-
bundle E1 of S2T ∗ introduced in [4, §6] and the isomorphisms

S2
0U∗ → T ∗x0,C, S4

0U∗ → E1,C,x0

of K-modules considered there; if γ is an element of Γ, from the Frobenius reci-
procity theorem, we obtain

(4.13) MultC∞
γ (T ∗C) = M2(γ), MultC∞

γ (E1,C) = M4(γ).

In this section, we henceforth suppose that the integer n is equal to 3. By (4.13),
we see that the following proposition is an immediate consequence of Lemma 3.1.

Proposition 4.3. Suppose that n = 3. Let r1, r2 ≥ 0 be given integers and let γ

be the element γr1,r2 of Γ. Then the multiplicities of the G-modules C∞
γ (T ∗C) and

C∞
γ (E1,C) are given by the following table:

Conditions on r1 and r2 MultC∞
γ (T ∗C) MultC∞

γ (E1,C)

r1, r2 even εr1
2 + εr2

2 εr1
2 εr2

2 + εr1
4 + εr2

4

r1, r2 odd 1 εr1
3 + εr2

3

r1 even, r2 odd εr1
2 εr1

4 + εr1
2 εr2

3

r1 odd, r2 even εr2
2 εr2

4 + εr1
3 εr2

2

If r1, r2 ≥ 0 are given integers, we consider the elements

γ1
r1,r2

= (2r1 + 2r2)λ1 + 2r2λ2,

γ2
r1,r2

= (2r1 + 2r2 + 2)λ1 + (2r2 + 1)λ2,

γ3
r1,r2

= (2r1 + 2r2 + 3)λ1 + (2r2 + 1)λ2,

γ4
r1,r2

= (2r1 + 2r2 + 3)λ1 + (2r2 + 2)λ2

of Γ. We easily verify that

(4.14) γj
r1,r2 = γj

r2,r1
, γ3

r1,r2
= γ4

r2,r1
,

for j = 1, 2.

In [4, §7], we saw that the subset Γ0 of Γ is given by

Γ0 = { γ1
r1,r2

| r1, r2 ≥ 0 }.
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Clearly we have γ0 = γ1
0,0 and we also know that γ1 = γ2

0,0. The G-invariant
orthogonal decomposition (6.3) of [4] becomes

S2T ∗ = {g} ⊕ E1 ⊕ σ̃(T ∗);

thus we obtain the equality

C∞
γ (S2T ∗C) = C∞

γ (X) ·g ⊕ C∞
γ (E1,C)⊕ σ̃C∞

γ (T ∗C),

for all γ ∈ Γ. Hence by Proposition 4.3, we have

C∞
γ0

(S2T ∗C) = C∞
γ0

(X) ·g = C ·g.

If γ is an element of Γ, we see that

(4.15) MultC∞
γ (S2T ∗C) = 1 + MultC∞

γ (E1,C) + MultC∞
γ (T ∗C)

whenever γ belongs to Γ0 and is not equal to γ0, and that

(4.16) MultC∞
γ (S2T ∗C) = MultC∞

γ (E1,C) + MultC∞
γ (T ∗C)

whenever γ does not belong to Γ; here the multiplicities MultC∞
γ (E1,C) and

MultC∞
γ (T ∗C) are given by Proposition 4.3. From this proposition, we now deduce

that the G-modules C∞
γ (T ∗C) and C∞

γ (S2T ∗C) both vanish if γ is not of the form
γj

r1,r2 , for some integers r1, r2 ≥ 0 and 1 ≤ j ≤ 4.

5. Symmetric forms

Let n ≥ 3 be a given integer. For 1 ≤ j, k ≤ n, we denote by zjk the function
on the space of matrices Mn which sends a matrix of Mn into its (j, k)-th entry,
and we consider the complex vector field

ξjk =
n∑

l=1

zjl
∂

∂zkl

on Mn. For 1 ≤ j ≤ n, we consider the Cn-valued function Zj on Mn which sends
a matrix of Mn into its j-th row.

If z = (z1, . . . , zn) and w = (w1, . . . , wn) are elements of Cn, we write

〈z, w〉 =
n∑

j=1

zjwj .

Clearly we have
〈Zj , Zl〉(e0) = δjl,
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for 1 ≤ j, l ≤ n. Let 1 ≤ k ≤ n− 1 be a given integer; we consider the Mk-valued
function Ak on Mn defined by

Ak = (〈Zj , Zl〉)1≤j,l≤k

and the complex-valued function

fk = det Ak

on Mn which satisfies fk(e0) = 1. In particular, we have

f1 = 〈Z1, Z1〉, f2 = 〈Z1, Z1〉〈Z2, Z2〉 − 〈Z1, Z2〉2;
we also write f ′1 = 〈Z1, Z2〉.

We consider the group G = SU(n) as a real submanifold of the complex mani-
fold Mn. The left action of the group G on the manifold Mn induces a morphism
Φ from g0 to the Lie algebra of vector fields on Mn, which are tangent to the
submanifold G of Mn. We recall that

Φ(Bjk) = i(ξ̄jk + ξ̄kj − ξjk − ξkj), Φ(Cl) = i(ξ̄ll − ξ̄l+1,l+1 + ξl+1,l+1 − ξll),

for 1 ≤ j < k ≤ n and 1 ≤ l ≤ n− 1.

According to equation (4.7) of [4], we have

(5.1) Φ(Cl)fk = −2iδklfk,

for 1 ≤ k, l ≤ n− 1. We now easily verify that

Φ(B1j)f1 = −2i〈Z1, Zj〉, Φ(Bjk)f1 = 0, Φ(B12)f2 = Φ(Brs)f2 = 0,

Φ(B1k)f2 = 2i(〈Z1, Z2〉〈Z2, Zk〉 − 〈Z2, Z2〉〈Z1, Zk〉),
Φ(B2k)f2 = 2i(〈Z1, Z2〉〈Z1, Zk〉 − 〈Z1, Z1〉〈Z2, Zk〉),
Φ(B1k)f ′1 = −i〈Z2, Zk〉, Φ(B2k)f ′1 = −i〈Z1, Zk〉,

Φ(B12)f ′1 = −i(〈Z1, Z1〉+ 〈Z2, Z2〉), Φ(Cl)f ′1 = −iδ2lf
′
1,

for all 2 ≤ j < k ≤ n, 3 ≤ r < s ≤ n and 1 ≤ l ≤ n− 1. Thus we have

(5.2)
(Φ(Bjk)f1)(e0) = (Φ(Bjk)f2)(e0) = 0,

(Φ(Cl)f ′1)(e0) = 0, (Φ(Bjk)f ′1)(e0) = −2iδ1jδ2k,

for all 1 ≤ j < k ≤ n and 1 ≤ l ≤ n− 1.

We consider the subgroup K = SO(n) of G, the symmetric space X =
SU(n)/SO(n) and the natural projection ρ : G → X. A function f on G which
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is invariant under the right action of K on G determines a function f̃ on X

satisfying ρ∗f̃ = f . Let ξ be an element of g0. The vector field Φ(ξ) on G is
right-invariant; thus the vector field Φ(ξ) is ρ-projectable and the vector field
ξ̂ = ρ∗Φ(ξ) on X is a Killing vector field. Moreover, if f is a function on G which
is invariant under the right action of K, we have the relations

(5.3) (ξ̂ · f̃)(x0) = (Φ(ξ)f)(e0) =




−ξ · f̃ if ξ ∈ p0,

0 if ξ ∈ k0;

here in the expression ξ · f̃ , the vector ξ is viewed as an element of Tx0 . In fact,
the G-module K of all Killing vector fields on X is given by

K = { ξ̂ | ξ ∈ g0 }
and we know that the equality (1.5) holds. Moreover, the vector field η0 on X

induced by the vector field

1
2(Φ(A1n)− iΦ(B1n))

on G is a highest weight vector of the G-module KC. By (5.3), we have

η0(x0) =
i

2
B1n,

where the vector B1n of p0 is viewed as an element of Tx0 ; thus by (4.3), we
obtain

(5.4) g[(η0) = i$1n.

The left action of G on Mn induces a structure of G-module on the space
C∞(Mn); we consider the G-submodule C∞(Mn)K of C∞(Mn) consisting of all
functions which are invariant under the right action of K. If f is an element
of C∞(Mn)K , the restriction of f to G induces by passage to the quotient a
function f̃ on X. The function 〈Zj , Zl〉, with 1 ≤ j, l ≤ n, belongs to C∞(Mn)K .
Let {e1, . . . , en} be the standard basis of U and UC; we easily verify that the
mappings

φ : S2U∗
C → C∞(Mn)K , φ′ : S2UC → C∞(Mn)K ,

which send an element h of S2U∗
C into the function

n∑

j,k=1

h(ej , ek)〈Zj , Zk〉
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and the element ej · ek of S2UC, with 1 ≤ j, k ≤ n, into the function 〈Zj , Zk〉, are
morphisms of G-modules. Hence the imageH of φ is a G-submodule of C∞(Mn)K ;
clearly, the image of φ′ is equal to H. Since the function f1 belonging to H is
non-zero and the G-modules S2U∗

C and S2UC are irreducible, the mappings φ

and φ′ are injective and H is an irreducible G-module. Since H is a submodule
of C∞(Mn)K , the G-submodule

H̃ = { f̃ | f ∈ H}
of C∞(X) is isomorphic to H and therefore also to S2U∗

C. Since the highest
weights of the irreducible G-modules S2U∗

C and S2UC are equal to 2$n−1 and 2$1,
respectively, we obtain the equalities

C∞
2$n−1

(X) = H̃, C∞
2$1

(X) = H̃.

Moreover, for 1 ≤ k ≤ n − 1, the complex-valued function fk on Mn belongs
to C∞(Mn)K and so it induces a function f̃k on X. The complex conjugate f̂k

of f̃k is equal to the function on X induced by the function f̄k. We also consider
the function f̃ ′1 on X induced by the element f ′1 ofH and the complex conjugate f̂ ′1
of f̃ ′1. Clearly we have f̃k(x0) = 1 and f̃ ′1(x0) = 0; from the relations (5.1)–(5.3),
we infer that

(5.5) (df̃1)(x0) = 2iω1, (df̃2)(x0) = 2iω2, (df̃ ′1)(x0) = 2i$12;

thus the 1-form
ω = f̃1df̃ ′1 − f̃ ′1df̃1

satisfies

(5.6) ω(x0) = 2i$12.

The mapping
χ :

∧2C∞(Mn)K → C∞(T ∗C),

defined by
χ(f ∧ f ′) = f̃df̃ ′ − f̃ ′df̃ ,

for f, f ′ ∈ W , is a morphism of G-modules. The 1-form

χ(f̄1 ∧ f̄ ′1) = f̂1df̂ ′1 − f̂ ′1df̂1

on X is equal to the complex conjugate ω̄ of the 1-form ω and is therefore
non-zero. We easily see that the highest weight of the G-module

∧2(S2UC)
is 3λ1 + λ2 and that its highest weight vectors are the non-zero multiples of the



876 Jacques Gasqui and Hubert Goldschmidt

vector v = (e1 · e1) ∧ (e1 · e2). Thus v is a highest weight vector of an irreducible
G-submodule of

∧2(S2UC). From the equalities

ω̄ = χ(f̄1 ∧ f̄ ′1) = χ(φ′(e1 · e1) ∧ φ′(e1 · e2)),

we now deduce that ω̄ is the highest weight vector of an irreducible G-submodule
of C∞(T ∗C) whose highest weight is 3λ1 + λ2.

In this section, we henceforth suppose that n = 3. By Lemma 9.3 of [4], we
have

(5.7) σ̃(df̃1) = − i

6
(
4f̃1g + 3Hess f̃1

)
, σ̃(df̃2) =

i

6
(
4f̃2g + 3Hess f̃2

)
.

Let r1, r2 ≥ 0 be given integers and let γ be the element γ1
r1,r2

of Γ0. The
complex-valued function f̃r1,r2 = f̃ r1

1 ·f̃ r2
2 is equal to the function on X induced by

the function fr1,r2 = f r1
1 ·f r2

2 on G; the complex conjugate f̂r1,r2 = f̂ r1
1 ·f̂ r2

2 of f̃r1,r2

is equal to the function on X induced by the function f̄r1,r2 on G. If r1, r2 ∈ Z,
when at least one of the integers is < 0, we set

f̃r1,r2 = 0.

We consider the 1-forms

ϕ1 = f̃r1−1,r2 df̃1, ϕ2 = f̃r1,r2−1 df̃2;

we also consider the subspace Vr1,r2 of C∞(S2T ∗C) generated by the symmetric
2-forms

h0 = f̃r1,r2g, h′1 = f̃r1−1,r2 σ̃(df̃1), h′2 = f̃r1,r2−1σ̃(df̃2),

h3 = f̃r1−2,r2 df̃1 · df̃1, h4 = f̃r1,r2−2 df̃2 · df̃2, h5 = f̃r1−1,r2−1 df̃1 · df̃2

on X, and the subspace V ′
r1,r2

of Vr1,r2 generated by the 2-forms h′1 = σ̃(ϕ1) and
h′2 = σ̃(ϕ2). We write

h1 = f̃r1−1,r2Hess f̃1, h2 = f̃r1,r2−1Hess f̃2;

according to the equalities (5.7), we see that {hj}0≤j≤5 is also a set of generators
of Vr1,r2 .

According to [4, §7] (cf. Proposition 4.3), we know that the following result is
true:



Infinitesimal Isospectral Deformations of Symmetric Spaces, II... 877

Lemma 5.1. Let r1, r2 ≥ 0 be given integers and let γ be the element γ1
r1,r2

of Γ0.

(i) The function f̂r1,r2 on X is a highest weight vector of the irreducible
G-module C∞

γ (X).

(ii) The non-zero members of the family {ϕ̄1, ϕ̄2} form a basis of the weight
space of the G-module C∞

γ (T ∗C) corresponding to its highest weight.

If the form hj (resp. h′k) is non-zero, with 0 ≤ j ≤ 5 (resp. with k = 1, 2),
from Lemma 5.1,(i) it follows that h̄j (resp. h̄′k) is a highest weight vector of the
G-module C∞

γ (S2T ∗C).

Proposition 5.2. Let r1, r2 ≥ 0 be given integers and let γ be the element γ1
r1,r2

of Γ.

(i) The non-zero vectors of the set {hj}0≤j≤5 form a basis of the vector space
Vr1,r2, and we have

dimVr1,r2 = 1 + εr1
1 + εr2

1 + εr1
1 εr2

1 + εr1
2 + εr2

2 .

(ii) The weight space of the G-module C∞
γ (S2T ∗C) corresponding to the highest

weight γ is equal to the complex conjugate V r1,r2 of the space Vr1,r2.

Proof. From the relations (4.3), (4.7), (5.5) and (5.7), we deduce assertion (i).
The second assertion now follows from Proposition 4.3, the equality (4.15) and
the remark made above concerning the forms h̄j as highest weight vectors. ¤

Since the vector field η0 is a highest weight vector of the G-module KC, the
1-form g[(η0) is a highest weight vector of the irreducible G-module C∞

γ1
(T ∗C),

where γ1 = γ2
0,0. Clearly, the complex conjugate ξ0 of η0 also belongs to KC.

We saw above that the complex conjugate ω̄ of the 1-form ω is a highest weight
vector of the G-module C∞

γ (T ∗C), where γ = γ3
0,0; according to Proposition 4.3,

we know that this G-module is irreducible.

Let r1, r2 ≥ 0 be given integers. From Lemma 5.1,(i), for j = 2 (resp. j = 3), it
follows that f̂r1,r2g

[(η0) (resp. f̂r1,r2ω̄) is a highest weight vector of the irreducible
G-module C∞

γ (T ∗C), where γ = γj
r1,r2 . We consider the symmetric 2-forms

k1 = if̃r1,r2 σ̃(g[(ξ0)), k2 = f̃r1−1,r2 df̃1 · g[(ξ0), k3 = f̃r1,r2−1 df̃2 · g[(ξ0),

k′1 = if̃r1,r2 σ̃(ω), k′2 = f̃r1−1,r2 df̃1 · ω, k′3 = f̃r1,r2−1 df̃2 · ω
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on X, and the subspaces Wr1,r2 and W ′
r1,r2

of C∞(S2T ∗C) generated (over C) by
the forms {k1, k2, k3} and {k′1, k′2, k′3}, respectively.

If the form kj (resp. k′j) is non-zero, with 1 ≤ j ≤ 3, by Lemma 5.1,(i) we see
that k̄′j is a highest weight vector of the G-module C∞

γ (S2T ∗C), where γ = γj
r1,r2 ,

with j = 2 (resp. j = 3).

Proposition 5.3. Let r1, r2 ≥ 0 be given integers and let γ be the element γ2
r1,r2

(resp. γ3
r1,r2

) of Γ.

(i) The non-zero generators of the vector space Wr1,r2 (resp. W ′
r1,r2

) form a
basis of this vector space, and its dimension is equal to 1 + εr1

1 + εr2
1 .

(ii) The weight space of the G-module C∞
γ (S2T ∗C) corresponding to the highest

weight γ is equal to the complex conjugate W r1,r2 (resp. W
′
r1,r2

) of the space
Wr1,r2 (resp. W ′

r1,r2
)

Proof. From the relations (4.9) and (5.4)–(5.6), we deduce assertion (i). The
second assertion now follows from Proposition 4.3, the equality (4.16) and the
remark made above concerning the forms k̄j and k̄′j as highest weight vectors. ¤

6. Symmetric forms and the Guillemin condition

Let n ≥ 3 be a given integer and X be the special Lagrangian Grassmannian
SU(n)/SO(n). The isometry τ of X defined in [4, §10] generates a cyclic group Σ
of order n, and the reduced space Y of X (which we call the reduced Lagrangian
Grassmannian) is equal to the quotient of X by Σ (see [4, §10]).

According to the relations (10.4) of [4], we have

τ∗f̃k = e2iπ/nf̃k, τ∗f̃ ′1 = e2iπ/nf̃ ′1

for 1 ≤ k ≤ n− 1. The 1-form ω on X therefore satisfies

(6.1) τ∗ω = e4iπ/nω;

according to the relations (10.4) of [4], if r1, . . . , rn−1 ≥ 0 are integers, we then
obtain

(6.2) τ∗f̃r1,...,rn−1 = e2iπ(r1+2r2+···+(n−1)rn−1)/nf̃r1,...,rn−1 .
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Thus the 1-form f̃r1,...,rn−1ω is invariant under the isometry τ if and only if the
relation

r1 + 2r2 + · · ·+ (n− 1)rn−1 + 2 ≡ 0 mod n.

holds.

In this section, we henceforth suppose that n = 3. Let r1, r2 ≥ 0 be given
integers. According to (6.2), the function f̃r1,r2 on X is invariant under the
isometry τ if and only if

(6.3) r1 ≡ r2 mod 3.

We remark that the vector field ξ0 is τ -invariant. Therefore the 1-form θ1 =
f̃r1,r2g

[(ξ0) is invariant under the isometry τ if and only if the relation (6.3)
holds; moreover, if the symmetric 2-form hl or kj , associated with the integers
r1, r2 in §5, with 1 ≤ l ≤ 6 and 1 ≤ j ≤ 3, is non-zero, by formula (10.2) of [4]
it is invariant under the isometry τ if and only if the relation (6.3) holds. On
the other hand, by (6.1) and (6.2) we see that the 1-form θ2 = f̃r1,r2ω invariant
under the isometry τ if and only if the relation

(6.4) r1 ≡ r2 + 1 mod 3.

holds; moreover, if the symmetric 2-form k′j , associated with the integers r1, r2

in §5, with 1 ≤ j ≤ 3, is non-zero, by formula (10.2) of [4] it is invariant under
the isometry τ if and only if the relation (6.4) holds.

From the preceding remarks, Lemma 5.1 and Propositions 5.2,(ii) and 5.3,(ii),
we now obtain the following:

Proposition 6.1. Let r1, r2 ≥ 0 and 1 ≤ j ≤ 3 be given integers and let γ be the
element γj

r1,r2 of Γ.

(i) If j = 1, the G-module C∞
γ (X)Σ is equal to C∞

γ (X) if and only if r1 and
r2 satisfy (6.3).

(ii) For j, p = 1, 2, the G-module C∞
γ (SpT ∗C)Σ is equal to C∞

γ (SpT ∗C) if the
relation (6.3) holds and it vanishes otherwise.

(iii) For j = 3 and p = 1, 2, the G-module C∞
γ (SpT ∗C)Σ is equal to C∞

γ (SpT ∗C)
if the relation (6.4) holds and it vanishes otherwise.

Proposition 6.1,(i) tells us that the subset Γ1 of Γ0 is given by

Γ1 = { γ1
r1,r2

| r1, r2 ≥ 0 and r1 ≡ r2 mod 3 }.
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In §10, we shall prove the following three results:

Proposition 6.2. Let r1, r2 be given integers satisfying the relation (6.3) and
0 ≤ r1 ≤ r2. Then the function f̃r1,r2 on X does not satisfy the Guillemin condi-
tion.

Proposition 6.3. Let r1, r2 be given integers satisfying the relation (6.3) and
0 ≤ r1 ≤ r2.

(i) Suppose that (r1, r2) 6= (0, 0), (1, 1). Then we have

V0,0 ∩N2,C = {0}, dim (V1,1 ∩N2,C) ≤ 2,

dim (Vr1,r2 ∩N2,C) ≤ 1 + εr1
1 + εr2

1 .

(ii) Suppose that r1, r2 ≥ 1. Then we have

dim (V ′
r1,r2

∩N2,C) ≤ 1.

Proposition 6.4. Let r1, r2 ≥ 0 be given integers.

(i) Suppose that the relation (6.3) holds and that 0 ≤ r1 ≤ r2. Then the
symmetric 2-form k1 = if̃r1,r2 σ̃(g[(ξ0)) does not satisfy the Guillemin condition.
Moreover, if r1 + r2 > 0, we have

dim (Wr1,r2 ∩N2,C) ≤ 1.

(ii) Suppose that the relation (6.4) holds. Then the symmetric 2-form k′1 =
if̃r1,r2 σ̃(ω) does not satisfy the Guillemin condition. Moreover, we have

dim (W ′
r1,r2

∩N2,C) ≤ 1.

We remark that the first assertion of Proposition 6.4,(i) implies that

W0,0 ∩N2,C = {0}.
Using the equalities (4.12) and (4.14), from Propositions 4.3, 5.2,(ii), 5.3,(ii),
6.3,(i) and 6.4, we obtain the following result:

Proposition 6.5. Let r1, r2 ≥ 0 be given integers and let γ be the element γj
r1,r2

of Γ, with 1 ≤ j ≤ 3.

(i) If j = 1 and r1 = r2 = 0, we have

N2,C ∩ C∞
γ (S2T ∗C) = {0}.
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(ii) If j = 1 and the relation (6.3) holds, we have

Mult (N2,C ∩ C∞
γ (S2T ∗C)) ≤ 1 + MultC∞

γ (T ∗C)

whenever (r1, r2) 6= (0, 0), (1, 1), and

(6.5) Mult (N2,C ∩ C∞
γ (S2T ∗C)) ≤ MultC∞

γ (T ∗C)

otherwise.

(iii) If j = 2 and r1 = r2 = 0, we have

N2,C ∩ C∞
γ (S2T ∗C) = {0}.

Suppose that the relation (6.3) (resp. (6.4)) holds; if j = 2 and r1 + r2 > 0 (resp.
if j = 3), then the inequality (6.5) is true.

By means of the equalities (4.12) and (4.14), from Propositions 6.1,(iii) and
6.5,(iii) we deduce the following:

Proposition 6.6. Let r1, r2 ≥ 0 be given integers and let γ be the element γ4
r1,r2

of Γ.

(i) For p = 1, 2, the G-module C∞
γ (SpT ∗C)Σ is equal to C∞

γ (SpT ∗C) if the rela-
tion

(6.6) r1 ≡ r2 + 2 mod 3.

holds and vanishes otherwise.

(ii) If the relation (6.6) holds, then the inequality (6.5) is true.

7. Main results

We consider the symmetric space X = SU(3)/SO(3) and its reduced space Y .

From Proposition 2.29,(i) of [2], Lemma 5.1,(i) and Propositions 6.1,(i) and 6.2,
we deduce the following result:

Proposition 7.1. Let Y be the reduced Lagrangian Grassmannian equal to the
reduced space of X = SU(3)/SO(3). The maximal flat Radon transform for
functions on the symmetric space Y is injective.
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If γ2 is the element γ1
1,1 of Γ1, according to Proposition 9.1 of [4] we have

D0C
∞(TC) ∩ σ̃dC∞(X) = σ̃dC∞

γ2
(X).

Thus the irreducible symmetric space X and the symmetric 3-form σ satisfy
hypothesis (b) of Proposition 1.1. On the other hand, Lemma 6.2 of [4] and
Proposition 4.2 tell us that hypotheses (a) and (c) of this proposition also hold.
According to the remark which appears at the end of §4 and Propositions 6.1,
6.5 and 6.6, we see that assertion (iv) of Proposition 1.1 is true for X, σ and the
group Σ. Then from Proposition 1.1, we deduce the following result:

Theorem 7.2. Let Y be the reduced Lagrangian Grassmannian equal to the re-
duced space of X = SU(3)/SO(3). Then the equality

N2,Y = D0C
∞(TY ) + σ̃Y dC∞

R (Y )

holds.

Since γ̄2 = γ2, according to the relation (4.12), with p = 0, we know that the
irreducible G-module B = C∞

γ2
(X) is invariant under conjugation and hence is

equal to the complexification of the G-submodule

BR = { f ∈ B | f = f̄ }
of C∞

R (X). Thus since γ2 belongs to Γ1, the G-module BY = C∞
γ2

(Y ) is equal to
the complexification of the subspace

BY,R = { f ∈ BY | f = f̄ }
of C∞

R (Y ) and the mapping $ induces an isomorphism $∗ : BY,R → BR.

If P denotes the orthogonal projection corresponding to the decomposition
(1.1) on the space Y , according to Lemma 1.1 of [3] and Lemma 6.2 of [4] the
mapping

PσY = Pσ̃Y d : C∞
R (Y ) → I(Y )

is well-defined. We denote by FY the orthogonal complement of the finite-
dimensional space F ′Y = R(Y ) ⊕ BY in C∞

R (Y ). From Proposition 1.2 of [3],
Proposition 9.1 of [4] and Theorem 7.2, we obtain:

Theorem 7.3. Let Y be the reduced Lagrangian Grassmannian equal to the re-
duced space of X = SU(3)/SO(3). Then the equality

I(Y ) = Pσ̃Y dC∞
R (Y )
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holds and the mapping

Pσ̃Y d : FY → I(Y )

is an isomorphism.

The preceding theorem is a complement to Theorem 10.2 of [4] with n = 3.
According to Lemma 6.2 of [4], with p = 3, and Proposition 4.3 and the ob-
servations which follow it, and the remarks concerning 1-forms which precede
Proposition 5.3, we see that Lemma 5.1,(ii), the equalities (4.12) and (4.14), and
Propositions 1.2, 6.1, 6.3,(ii), 6.4, and 6.6,(i) give us the following result:

Theorem 7.4. Let Y be the reduced Lagrangian Grassmannian equal to the re-
duced space of X = SU(3)/SO(3). A 1-form on Y satisfies the Guillemin condi-
tion if and only it is exact.

8. Some algebraic identities

If p, q are integers, we define the binomial coefficient
(
p
q

)
to be equal to zero

whenever q > p, or whenever one of the integers p, q is negative.

Let m ≥ 0 be a given integer; for 1 ≤ j ≤ 16, we define functions ϕj on N by

ϕ1(r) =
∑

k≥0

(
r

k

)(
2m + r

m + k

)
, ϕ2(r) =

∑

k≥0

(
r − 1

k

)(
2m + r

m + k

)
,

ϕ3(r) =
∑

k≥0

k

(
r

k

)(
2m + r

m + k

)
, ϕ4(r) =

∑

k≥0

k

(
r − 1

k

)(
2m + r

m + k

)
,

ϕ5(r) =
∑

k≥0

(
r

k

)(
2m + r

m + k + 1

)
, ϕ6(r) =

∑

k≥0

k

(
r

k

)(
2m + r

m + k + 1

)
,

ϕ7(r) =
∑

k≥0

(
r − 2

k

)(
2m + r

m + k

)
, ϕ8(r) =

∑

k≥0

(
r − 2

k

)(
2m + r

m + k + 1

)
,

ϕ9(r) =
∑

k≥0

k

(
r − 2

k

)(
2m + r

m + k

)
, ϕ10(r) =

∑

k≥0

k

(
r − 2

k

)(
2m + r

m + k + 1

)
,

ϕ11(r) =
∑

k≥0

(
r

k

)(
2m + r − 1

m + k

)
, ϕ12(r) =

∑

k≥0

k

(
r

k

)(
2m + r − 1

m + k

)
,

ϕ13(r) =
∑

k≥0

k

(
r − 1

k

)(
2m + r

m + k + 1

)
, ϕ14(r) =

∑

k≥0

(
r − 3

k

)(
2m + r

m + k + 1

)
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and

ϕ15(r) =
∑

k≥0

k

(
r − 3

k

)(
2m + r

m + k + 1

)
, ϕ16(r) =

∑

k≥0

(
r − 4

k

)(
2m + r

m + k + 2

)
,

for r ≥ 0. By elementary computations, we verify that

2ϕ3(r) = rϕ1(r),(8.1)

ϕ9(r) = ϕ10(r),(8.2)

for r ≥ 0, and

(8.3) ϕ1(r) = 2ϕ2(r) = 2ϕ11(r),

for r ≥ 1.

Standard techniques of WZ theory, as described in the book [8] and im-
plemented by the EKHAD package for Maple, can be used to show that, for
j = 1, 4, 5, 6, 7, 8, the function ϕj satisfies a recurrence of order 1. We then easily
deduce that

(8.4) ϕ1(r) = 2r

(
2m

m

) r∏

k=1

2m + 2k − 1
m + k

and

(8.5) ϕ5(r) =
m + r

m + r + 1
ϕ1(r), ϕ6(r) =

r(m + r − 1)
2(m + r + 1)

ϕ1(r),

for r ≥ 0. Moreover, if r ≥ 1, we have

(8.6) ϕ4(r) =
(r − 1)(m + r)
2(2m + 2r − 1)

ϕ1(r)

and, if r ≥ 2, we see that

(8.7) ϕ7(r) =
m + r − 1

2(2m + 2r − 1)
ϕ1(r), ϕ8(r) =

m + r

2(2m + 2r − 1)
ϕ1(r).

From the formulas (8.2) and (8.6), we obtain the relations

(8.8) ϕ9(r) = ϕ10(r) =
(r − 2)(m + r)
4(2m + 2r − 1)

ϕ1(r),

for r ≥ 2. From the relations (8.1), (8.4) and (8.5), we easily deduce that

(8.9) ϕ12(r) =
r(m + r − 1)

2(2m + 2r − 1)
ϕ1(r),
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for r ≥ 0; from the formulas (8.4) and (8.9), we obtain the equality

(8.10) ϕ13(r) =
(r − 1)(m + r − 1)

2(2m + 2r − 1)
ϕ1(r),

for r ≥ 1. From the relations (8.3), (8.4) and (8.6), we easily deduce that

(8.11)

ϕ14(r) =
m + r

4(2m + 2r − 1)
ϕ1(r),

ϕ15(r) =
(r − 3)(m + r)(m + r − 1)

4(2m + 2r − 1)(2m + 2r − 3)
ϕ1(r),

for r ≥ 3; on the other hand, from the relations (8.4) and (8.7), we obtain

(8.12) ϕ16(r) =
(m + r − 1)(m + r)

4(2m + 2r − 3)(2m + 2r − 1)
ϕ1(r),

for r ≥ 4.

9. Computing trigonometric integrals

Let Y be an indeterminate over C. If P is an element of C[Y ], we denote
by cj(P ) its coefficient of degree j and write c(P ) = c0(P ); if P is non-zero, we
denote by `(P ) its leading coefficient.

Let r, s be given integers satisfying 0 ≤ r ≤ s and the relation

(9.1) r ≡ s mod 3;

let m ≥ 0 be the integer such that s = r + 3m. Let e, e′ ≥ 0 be given integers. If
α1, α2, α3 ∈ Z are integers satisfying

(9.2) α1 + α2 + α3 = e− e′,

we consider the integers

Ce,e′
α1,α2,α3

=
(

3m + r − e′

m + α1

) ∑

k≥0

(
r − e

k

)(
2m + r − e′ − α1

m + k + α2

)
,

C̃e,e′
α1,α2,α3

=
(

3m + r − e′

m + α1

) ∑

k≥0

k

(
r − e

k

)(
2m + r − e′ − α1

m + k + α2

)
;

we easily verify that

(9.3) Ce,e′
α1,α2,α3

= Ce,e′
α1,α3,α2

.
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Now let d1, d2 be given integers satisfying

(9.4) e− e′ ≡ d1 − d2 (mod 3).

We write

ε1 =
2d1 + d2 + e− e′

3
, ε2 =

d2 − d1 + e− e′

3
,

ε3 =
e− e′ − d1 − 2d2

3
;

we verify that

ε1 + ε2 + ε3 = e− e′.

The assumption (9.4) implies that ε1, ε2, ε3 are integers. We consider the set

A = { (a1, a2, a3) ∈ N3 | a1 + a2 + a3 = r − e, m + aj + εj ≥ 0, for j = 1, 2, 3 }.

We consider the functions ψ and ψ̃ on R3 defined by

ψ(x, y, v) = veix + (1− v)e−iy + ei(y−x),

ψ̃(x, y, v) = veix + (1− v)e−iy − ei(y−x),

for all (x, y, v) ∈ R3; if p, q ≥ 0 are integers, we also consider the functions

ψp,q = ψp · ψq, ψ̃p,q = ψ̃p · ψ̃q

on R3. If r1, r2 ≥ 0 and a, b ∈ Z are given integers, we see that the functions φ

and φ̃ on R defined by

φ(v) =
1

4π2

∫ 2π

0

∫ 2π

0
ψr1,r2(x, y, v) · ei(ax+by) dx dy,

φ̃(v) =
1

4π2

∫ 2π

0

∫ 2π

0
ψ̃r1,r2(x, y, v) · ei(ax+by) dx dy,

for v ∈ R, are in fact polynomials belonging to Q[Y ].

We now suppose that r ≥ e and s = 3m + r ≥ e′. We easily verify that

1
4π2

∫ 2π

0

∫ 2π

0
ψr−e,s−e′(x, y, v) · ei(d1x+d2y) dx dy = F (v),(9.5)

1
4π2

∫ 2π

0

∫ 2π

0
ψ̃r−e,s−e′(x, y, v) · ei(d1x+d2y) dx dy = F̃ (v),(9.6)
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for all v ∈ R, where F and F̃ are the elements of Q[Y ] given by

F (Y ) =
∑

(a,b,c)∈A

Fa,b,c · Y 2a+m+ε1(1− Y )2c+m+ε3 ,

F̃ (Y ) =
∑

(a,b,c)∈A

Fa,b,c · Y 2a+m+ε1(Y − 1)2c+m+ε3 ,

with

Fa,b,c =
(r − e)! (3m + r − e′)!

a! b! c! (m + a + ε1)! (m + b + ε2)! (m + c + ε3)!
,

for (a, b, c) ∈ A. Clearly we also have the equality

(9.7) 1
4π2

∫ 2π

0

∫ 2π

0
ψs−e′,r−e(x, y, v) · e−i(d1x+d2y) dx dy = F (v).

In particular, if

(9.8) m + εj ≥ 0,

for j = 1, 2, 3, then we may write

F (Y ) = Y m+ε1(1− Y )m+ε3 ·Q(Y ),(9.9)

F̃ (Y ) = (−1)d2 · Y m+ε1(Y − 1)m+ε3 ·Q(Y ),(9.10)

where Q = Qe,e′
ε1,ε2,ε3 is the polynomial of Q[Y ] of degree 2(r − e) equal to

∑

a+b+c=r−e

(r − e)! (3m + r − e′)!
a! b! c! (a + m + ε1)! (b + m + ε2)! (c + m + ε3)!

Y 2a(Y − 1)2c.

The constant term c(Q) and the leading coefficient `(Q) of Q are non-zero; in
fact, we verify that

(9.11) c(Q) = Ce,e′
ε1,ε2,ε3

, c1(Q) = −2 C̃e,e′
ε1,ε3,ε2

, `(Q) = Ce,e′
ε2,ε1,ε3

.

If e = e′ = d1 = d2 = 0, the relation (9.8) holds and the polynomial Q = Q0,0
0,0,0

is equal to the polynomial P of degree 2r given by

(9.12) P (Y ) =
∑

a+b+c=r

r! (3m + r)!
a! b! c! (m + a)! (m + b)! (m + c)!

Y 2a(Y − 1)2b;
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by formula (8.1), we see that the constant term and the leading coefficient of P

are positive integers and that

(9.13)

c(P ) = `(P ) =
(

3m + r

m

)
ϕ1(r),

c1(P ) = −2
(

3m + r

m

)
ϕ3(r) = −r

(
3m + r

m

)
ϕ1(r).

10. Proofs of Propositions 6.2, 6.3 and 6.4

We consider the group G = SU(3), the symmetric space X = G/SO(3) and
the natural projection ρ : G → X. We consider the mapping

(10.1) ι′ : R2 → G

of §2, which sends θ = (x, y) ∈ R2 into the diagonal matrix

ι′(θ) = diag
(
eix, ei(y−x), e−iy

)

of G; we also consider the mapping ι = ρ◦ ι′ : R2 → X. If {e′1, e′2} is the standard
basis of R2 and Λ is the lattice of R2 generated by the basis {πe′1, πe′2} of R2, the
mapping ι induces by passage to the quotient an imbedding

ι : R2/Λ → X.

In [4, §6], we saw that the image Z of ι is a maximal flat totally geodesic torus
of X. Clearly we have ι(0) = x0.

We consider the standard coordinate system (x, y) on R2 and endow this space
with the flat Riemannian metric

g̃ = dx · dx + dy · dy − dx · dy.

According to the relation (6.4) of [4], we know that

(10.2) ι∗g = g̃;

hence if f is a function on X, we easily see that

(10.3)
∫

Z
f dZ =

√
3

∫ π

0

∫ π

0
f(ι(x, y)) dx dy.

As in [4, §6], we also consider the parallel vector fields ζ1 and ζ2 on Z which are
determined by

(10.4) ι∗(∂/∂x)(x, y) = ζ1(ι(x, y)), ι∗(∂/∂y)(x, y) = ζ2(ι(x, y)),
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for (x, y) ∈ R2. If ϕ is a 1-form on X, according to the formulas (6.11) and (6.12)
of [4], we have

(10.5) ι∗σ̃(ϕ)(∂/∂x, ∂/∂x) =
1
3
(
ι∗ϕ(∂/∂x) + 2ι∗ϕ(∂/∂y)

)
.

For α ∈ R, we consider the element

φα =
1√
2




cos α 1 sin α

−√2 sin α 0
√

2 cos α

cos α −1 sin α




of SO(3) and the maximal flat totally geodesic torus Zα = φα(Z) of X. If f is a
function on X, we have ∫

Za

f dZα =
∫

Z
φ∗αf dZ,

for all α ∈ R. For α ∈ R, we verify that

(10.6)

Adφα · C1 =
1
2
(
(1 + cos2 α)B13 − sin2 α (C1 − C2)

−
√

2 cos α · sinα (B12 + B23)
)
,

Adφα · C2 =
1
2
(
cos2 α (C1 − C2)− (1 + sin2 α)B13

−
√

2 cos α · sinα (B12 + B23)
)
.

Since ξ0 is a Killing vector field on X and the mapping

φα ◦ ι : (R2, g̃) → (X, g),

sending θ ∈ R2 into φα(ι(θ)) is totally geodesic, for any element α ∈ R, there is
a parallel vector field ξ′α on R2 such that

ι∗φ∗α g[(ξ0) = g̃[(ξ′α);

in fact, for all θ ∈ R2, the tangent vector (φα∗ξ′α)(ι(θ)) is equal to the orthog-
onal projection of the vector ξ0(φα(ι(θ))) onto the tangent space of the totally
geodesic torus Zα at the point φα(ι(θ)). Therefore, for α ∈ R, the functions
ι∗φ∗α g[(ξ0)(∂/∂x) and ι∗φ∗α g[(ξ0)(∂/∂y) on R2 are constant. According to the
equality (6.7) of [4] and the relations (4.1), (5.4), (10.4) and (10.6), we see that
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the equalities

(10.7)
ι∗φ∗α g[(ξ0)(∂/∂x)(θ) = 〈ζ1, φ

∗
α g[(ξ0)〉(ι(θ)) = − i

2
(1 + cos2 α),

ι∗φ∗α g[(ξ0)(∂/∂y)(θ) = 〈ζ2, φ
∗
α g[(ξ0)〉(ι(θ)) =

i

2
(1 + sin2 α).

are true when θ is the origin of R2; in fact, the previous remark implies that they
hold for all θ ∈ R2.

If f is a function on R3 and v ∈ R, we consider the function fv on R2 defined
by

fv(x, y) = f(x, y, v),

for all (x, y) ∈ R2. We consider the function ψ on R3 defined in §9; we define a
function ψ′ and a 1-form ω̌v on R2, with v ∈ R, by

ψ′(x, y) = e−iy − eix, ω̌v = ψv dψ′ − ψ′dψv,

for (x, y) ∈ R2. We also consider the dilation τ of R2 defined by τ(x) = 2x, for
all x ∈ R2.

We consider the functions f̃1, f̃2 and f̃ ′1 on X. For α ∈ R, if v = cos2 α, we
verify that the relations

(10.8)

ι∗φ∗αf̃1 =
1
2

τ∗ψv, ι∗φ∗αf̃ ′1 =
1√
2

cos α · sinα ·τ∗ψ′,

ι∗φ∗αf̃2 =
1
2

τ∗ψ̄v, ι∗φ∗α ω =
1

2
√

2
cos α · sinα · τ∗ω̌v,

hold; hence we have

(10.9) ι∗φ∗αf̃r,s =
1

2r+s
τ∗ψr,s,v,

and, by (10.5), we obtain

(10.10) (ι∗φ∗α σ̃(ω))(∂/∂x, ∂/∂x) = − i cos α · sinα√
2

·(e−2ix + e2i(x−y)
)
.

Let r1, r2 ≥ 0 be given integers. We consider the symmetric 2-forms hl, kj

and k′j , with 0 ≤ l ≤ 5 and j = 1, 2, 3, associated in §5 with the integers r1 and r2,
and the corresponding subspaces Vr1,r2 , Wr1,r2 and W ′

r1,r2
of C∞(S2T ∗C) generated

by these forms. By means of the relations (10.2)–(10.5) and (10.7)–(10.10), we
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easily see that there exist polynomials J , Jl, Lj and Mj belonging to Q[X] such
that the equalities

(10.11)

1
π2
√

3

∫

Z
φ∗α(f̃r1,r2) dZ = J(cos2 α),

1
π2
√

3

∫

Z
(φ∗αhl)(ζ1, ζ2) dZ = Jl(cos2 α),

1
π2
√

3

∫

Z
(φ∗αkj)(ζ1, ζ1) dZ = Lj(cos2 α),

1
π2
√

3

∫

Z
(φ∗αk′j)(ζ1, ζ1) dZ =

cos α · sinα√
2

Mj(cos2 α),

for 0 ≤ l ≤ 5 and 1 ≤ j ≤ 3 and all α ∈ R. The linear mappings

Φr1,r2 : Vr1,r2 → C[Y ], Ψr1,r2 : Wr1,r2 → C[Y ],

Ψ′
r1,r2

: W ′
r1,r2

→ C[Y ],

sending the elements h ∈ Vr1,r2 , k ∈ Wr1,r2 and k′ ∈ W ′
r1,r2

into the polynomials
Φr1,r2(h), Ψr1,r2(k) and Φ′r1,r2

(k′) of C[Y ], respectively, determined by

Φr1,r2(h)(cos2 α) =
1

π2
√

3

∫

Z
(φ∗αh)(ζ1, ζ2) dZ,

Ψr1,r2(k)(cos2 α) =
1

π2
√

3

∫

Z
(φ∗αk)(ζ1, ζ2) dZ,

cos α · sinα√
2

Ψ′
r1,r2

(k′)(cos2 α) =
1

π2
√

3

∫

Z
(φ∗αk′)(ζ1, ζ1) dZ,

for all α ∈ R, are well-defined. Clearly, by (10.11) we have

Φr1,r2(hl) = Jl, Ψr1,r2(kj) = Lj , Ψ′
r1,r2

(k′j) = Mj ,

for 0 ≤ l ≤ 5 and for j = 1, 2, 3; hence the rank of Φr1,r2 (resp. Ψr1,r2 , Ψ′
r1,r2

)
is equal to the dimension of the subspace of C[Y ] generated by the polynomi-
als Jl, with 0 ≤ l ≤ 5 (resp. Lj , Mj , with j = 1, 2, 3). An element of Vr1,r2

(resp. Wr1,r2 , W ′
r1,r2

) satisfying the Guillemin condition belongs to the kernel
of Φr1,r2 (resp. Ψr1,r2 , Ψ′

r1,r2
); thus we have the inclusions

(10.12)
Vr1,r2 ∩N2,C ⊂ KerΦr1,r2 , Wr1,r2 ∩N2,C ⊂ KerΨr1,r2 ,

W ′
r1,r2

∩N2,C ⊂ KerΨ′
r1,r2

.

Proposition 10.1. Let r1, r2 be given integers satisfying the relations (6.3) and
0 ≤ r1 ≤ r2. Let m ≥ 0 be the integer such that r2 = r1 + 3m.
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(i) The relation

J(Y ) =
1

2r1+r2
Y m (1− Y )m · P (Y )

holds.

(ii) For l = 0, 1, 3, there exists a polynomial Pl ∈ Q[Y ] such that

(10.13) Jl(Y ) =
1

2r1+r2
Y m (1− Y )m · Pl(Y ).

The polynomial P0 is equal to −P and is of degree 2r1. If r1 ≥ 1, the polynomial
P1 is non-zero and its degree is ≤ 2r1− 2. If r1 ≥ 2, the degree of the polynomial
P3 is equal to 2r and the determinant of the matrix




c(P0) c1(P0) c2r(P0)

c(P1) c1(P1) c2r(P1)

c(P3) c1(P3) c2r(P3)




is non-zero; moreover, the polynomials P0, P1 and P3 are linearly independent.

(iii) For j = 1, 2, there exists a polynomial Qj ∈ Q[Y ] such that

(10.14) Lj(Y ) =
1

2r1+r2
Y m (1− Y )m ·Qj(Y ).

The degree of the polynomial Q1 is equal to 2r1 + 1. If r1 ≥ 1, the determinant
of the matrix (

c(Q1) c1(Q1)

c(Q2) c1(Q2)

)

is non-zero; moreover, the polynomials Q1 and Q2 are linearly independent.

Proof. We write r = r1 and s = r2. By means of formula (9.5), we obtain explicit
expressions for the polynomials J , Jl and Lj , with l = 0, 1, 3 and j = 1, 2. Asser-
tion (i) is an immediate consequence of formulas (9.5) and (9.9), with d1 = d2 = 0.
Using formulas (9.5) and (9.9), we demonstrate the existence of a polynomial Pl

satisfying the relation (10.13) and a polynomial Qj satisfying the relation (10.14).
In fact, P0 is equal to −P . If r ≥ 1, we see that

J1(v) =
1

2r+s−2

1
4π2

∫ 2π

0

∫ 2π

0
ψr−1,s,v(x, y)ei(y−x) dx dy,
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for all v ∈ R; hence P1 is equal to the polynomial 4Q1,0
0,1,0 of degree 2r−2. If r ≥ 2,

we have

J3(v) =
1

2r+s−3

1
4π2

∫ 2π

0

∫ 2π

0
(ψr−2,s,v · χ)(x, y, v) dx dy,

for all v ∈ R, where χ is the function on R3 defined by

χ(x, y, v) = (1− v)(vei(x−y) − e−ix) + e2i(y−x) − veiy,

for (x, y, v) ∈ R3, and so P3 is the polynomial defined by

P3(Y ) = 8
(
Y 2(1− Y )2Q2,0

1,0,1 − (1− Y )2Q2,0
0,1,1 + Q2,0

0,2,0 − Y 2Q2,0
1,1,0

)
.

Thus by (9.11), we obtain

c(P1) = 4C1,0
0,1,0 = 4

(
3m + r

m

)
ϕ2(r),

c1(P1) = −2C̃1,0
0,0,1 = −8

(
3m + r

m

)
ϕ4(r)

when r ≥ 1, and

c(P3) = 8
(−C2,0

0,1,1 + C2,0
0,2,0

)
= 8

(
3m + r

m

)
(ϕ7 − ϕ8)(r),

c1(P3) = 16
(
C̃2,0

0,1,1 + C2,0
0,1,1 − C̃2,0

0,0,2

)
= 16

(
3m + r

m

)
(ϕ10 − ϕ9 + ϕ8)(r),

c2r(P3) = 8C2,0
0,1,1 = 8

(
3m + r

m

)
ϕ8(r)

when r ≥ 2. By means of the formulas (8.2), (8.3), (8.6) and (8.7), we express
these coefficients as multiples of ϕ1(r), and then easily see that the determinant
of the matrix of assertion (ii) is negative when r ≥ 2. From these results, we
deduce all the properties of the polynomials Pl given in (ii). Similarly, we also
find that

2Q1(Y ) = −(1− Y )P (Y ),

and for r ≥ 1 that

Q2 = 4(1 + Y )
(
Y 2Q1,0

1,0,0(Y )−Q1,0
0,1,0

)
(Y );

then using formulas (9.11), (9.13), (8.3) and (8.6), we obtain the properties of
the polynomials Qj described in (iii). ¤
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The proof of the following result is entirely similar to that of assertions (ii)
and (iii) of the preceding proposition and will be omitted; the formulas (8.1),
(8.3), (8.4) and (8.6) and the first relation of (8.5) are the only results of §8
required here.

Proposition 10.2. Let r1, r2 be given integers satisfying the relations (6.4) and
0 ≤ r1 ≤ r2. Let m ≥ 1 be the integer such that r2 = r1 + 3m− 1. For j = 1, 2,
there exists a polynomial Rj belonging to Q[Y ] such that

(10.15) Mj(Y ) =
1

2r1+r2
Y m−1 (1− Y )m−1 ·Rj(Y ).

The polynomial R1 is non-zero. If r1 ≥ 1, the determinant of the matrix
(

c(R1) c1(R1)

c(R2) c1(R2)

)

is non-zero; moreover, the polynomials R1 and R2 are linearly independent.

Proposition 10.3. Let r1, r2 be given integers satisfying the relations (6.4) and
0 ≤ r2 ≤ r1. Let m ≥ 0 be the integer such that r1 = r2 + 3m + 1; we set
m′ = sup (m− 1, 0). For j = 1, 2, there exists a polynomial R′

j belonging to Q[Y ]
such that

(10.16) Mj(Y ) =
1

2r1+r2
Y m′

(1− Y )m′ ·R′
j(Y ).

The polynomial R′
1 is non-zero. If r1 ≥ 1, the determinant of the matrix

(
c1(R′

1) cl(R′
1)

c1(R′
2) cl(R′

2)

)

is non-zero, where l = 2 when m ≥ 1, and l = 0 when m = 0; moreover, the
polynomials R′

1 and R′
2 are linearly independent.

Proof. By means of formula (9.7), we obtain explicit expressions for the poly-
nomials Mj , with j = 1, 2. Using formulas (9.7) and (9.9), we demonstrate the
existence of a polynomial R′

j satisfying the relation (10.16). Then using the for-
mulas (9.11), (8.1), (8.3), (8.5) and (8.10), we obtain all the remaining properties
of these polynomials described in this proposition. ¤

Let r1, r2 ≥ 0 be given integers. First, suppose that the relations (6.3) and
0 ≤ r1 ≤ r2 are true. According to Propositions 10.1, the polynomials J and
L1 are non-zero; therefore there exists α0 ∈ R such that J(cos2 α0) 6= 0. Hence
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by (10.11), the function f̃r1,r2 and the 2-form f̃r1,r2 σ̃(g[(ξ0)) do not satisfy the
Guillemin condition; thus Proposition 6.2 and the first assertion of Proposi-
tion 6.4,(i) hold. From Proposition 10.1,(ii), we also deduce that

rankΦr1,r2 ≥ min (r1 + 1, 3).

According to the first inclusion of (10.12) and Proposition 5.2,(i), we obtain the
results of Proposition 6.3,(i). The inequality

rankΨr1,r2 ≥ min (r1 + 1, 2)

is a direct consequence of Proposition 10.1,(iii); from the second inclusion of
(10.12) and Proposition 5.3,(i), we then obtain the second assertion of Proposi-
tion 6.4,(i). Now, assume moreover that r1 ≥ 1 and consider the forms h′1 and h′2
associated in §5 with the integers r1, r2 and the space V ′

r1,r2
generated by these

forms. According to (5.7) and Proposition 10.1,(ii), for all α ∈ R, we see that

Φr1,r2(ih
′
1)(v) =

1
6

vm(1− v)m · (4P0 + 3P1)(v),

where v = cos2 α; moreover, by (9.13) the coefficient of degree 2r1 of the polyno-
mial 4P0 + 3P1 is equal to 4`(P0) = 4ϕ1(r1). By the first inclusion of (10.12), it
follows that the inequality

dim (V ′
r1,r2

∩N2,C) ≤ 1

holds. This completes the proof of Proposition 6.3.

Finally, suppose that only the relation (6.4) holds. From Propositions 10.2
and 10.3, we deduce that the polynomial M1 is non-zero and that the inequality

rankΨ′
r1,r2

≥ min (r1 + 1, 2)

holds. Therefore there exists α1 ∈ R such that M1(cos2 α1) 6= 0 and cos α1 ·
sinα1 6= 0. By (10.11), we infer that the 2-form f̃r1,r2 σ̃(ω) does not satisfy the
Guillemin condition. From the last inclusion of (10.12) and Proposition 5.3,(i),
we then obtain the second assertion of Proposition 6.4,(ii). This completes the
proof of Proposition 5.4.
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CHAPTER II: The unitary groups

11. The special and the reduced unitary groups

Let G be a simple Lie group; we suppose that X = G. If B denotes the Killing
form of the Lie algebra g0 of G, we endow X with the bi-invariant Riemannian
metric g0 induced by −B. As usual, we identify the G-module g0 with the
tangent space of X at the identity element e0 of G. We consider the involutive
automorphism s of the group G̃ = G×G which sends (g1, g2) into (g2, g1). The
fixed point set of s is the diagonal subgroup G∗ of G×G; thus the pair (G̃,G∗) is a
Riemannian symmetric pair. Since the homogeneous space G̃/G∗ is diffeomorphic
to the group G under the mapping G̃/G∗ → G, sending (g1, g2)G∗ into g1g

−1
2 ,

where g1, g2 ∈ G, we may identify X with the homogeneous space G̃/G∗. Then
the action of the group G̃ on the space X is given by

(g1, g2) · a = g1ag−1
2

for all g1, g2, a ∈ G; it induces G̃-module structures on the spaces C∞(G) and
C∞(SpT ∗C). A symmetric form on X is G̃-invariant if and only if it is bi-invariant
under the action of G. Thus the metric g0 on X is G̃-invariant and the manifold
X endowed with this metric is an irreducible symmetric space.

We denote by Γ the dual of the Lie group G; we may identify the dual of the
group G̃ with the product Γ×Γ. We consider the G̃-module structures on C∞(G),
C∞(TC) and C∞(SpT ∗C) induced by the action of G̃ on X. If (γ, γ′) is an element
of Γ× Γ, as in §1 we consider the isotypic components C∞

(γ,γ′)(G), C∞
(γ,γ′)(TC) and

C∞
(γ,γ′)(S

pT ∗C) of the G̃-modules C∞(G), C∞(TC) and C∞(SpT ∗C), respectively,

corresponding to (γ, γ′). The two G̃-modules C∞
(γ,γ′)(TC) and C∞

(γ,γ′)(T
∗
C) are

clearly isomorphic. If Eγ and Eγ′ are irreducible G-modules corresponding to γ

and γ′, respectively, a G̃-submodule W of the isotypic component C∞
(γ,γ′)(S

pT ∗C))

is isomorphic to k copies of the irreducible G̃-module Eγ ⊗ Eγ′ ; this integer k is
called the multiplicity of the G̃-module W and shall be denoted by MultW . The
spaces C∞(G) and C∞(SpT ∗C) inherit structures of G-modules arising from the
left (resp. right) action of G on X. The corresponding representation π (resp. π′)
of G on C∞(G) is the left (resp. right) regular representation; we shall also
consider the corresponding representation (π, C∞(SpT ∗C)) (resp. (π′, C∞(SpT ∗C)))
of G on C∞(SpT ∗C). We shall denote by C∞

γ (G) and C∞
γ (SpT ∗C) the isotypic
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components of the G-modules (π, C∞(G)) and (π, C∞(SpT ∗C)), respectively, cor-
responding to an element γ of Γ. If (γ, γ′) is an element of Γ × Γ, the isotypic
component C∞

(γ,γ′)(S
pT ∗C) is a G̃-submodule of C∞

γ (SpT ∗C).

The complexification g of the Lie algebra g0 is an irreducible G-module, and,
by means of its Killing form, we are able to identify this G-module with its dual.
We view the complexification AC of the space A of left-invariant 1-forms on G

as a G̃-submodule of C∞(T ∗C); more generally, if p is an integer ≥ 1, we view the
p-th symmetric power SpA of A and its complexification SpAC as G̃-submodules
of C∞(SpT ∗C). Clearly, the space AC is a trivial G-submodule of (π, C∞(T ∗C))
and a G-submodule of (π′, C∞(SpT ∗C)) isomorphic to the irreducible G-module g.
Thus the space SpAC is a trivial G-submodule of (π, C∞(SpT ∗C)) and is also a G-
submodule of (π′, C∞(SpT ∗C)). If Vp is the G-module equal to the p-th symmetric
power Spg of g endowed with the trivial action of G and γ is an element of Γ,
since the cotangent bundle T ∗ of G is trivial, the isotypic component C∞

γ (SpT ∗C)
is isomorphic to C∞

γ (G)⊗ Vp.

The left (resp. right) action of the group G on itself induces a morphism Φ
(resp. Φ′) from g0 to the Lie algebra of vector fields on G, whose image is the
space of left-invariant (resp. right-invariant) vector fields on G. The mappings Φ
and Φ′ extend to C-linear morphisms from g to the space of all complex vector
fields on G. For ξ ∈ g0, the restriction of −Φ(ξ) (resp. Φ′(ξ)) to G is the right-
invariant (resp. left-invariant) vector field on G whose value at e0 is the vector ξ

of g0 viewed as a tangent vector at e0.

Let γ0 be the element of Γ corresponding to the trivial irreducible G-module C.
The Lie algebra g is an irreducible G-module corresponding to an element γ1

of Γ. The space K of all Killing vector fields on X, i.e., the space of all solutions
ξ ∈ C∞(T ) of the equation D0ξ = 0, is equal to the direct sum Φ(g0) ⊕ Φ′(g0).
Thus we may view its complexification KC as the G̃-submodule Φ(g) ⊕ Φ′(g)
of C∞(TC), where

(11.1)
KC ⊂ C∞

(γ0,γ1)(TC)⊕ C∞
(γ1,γ0)(TC),

Φ(g) ⊂ C∞
(γ0,γ1)(TC), Φ′(g) ⊂ C∞

(γ1,γ0)(TC).

Throughout this chapter, we shall suppose henceforth that X = G is the group
SU(n), with n ≥ 3, and always consider the symmetric space X endowed with
the Riemannian metric g = σ′2. We consider the abelian subalgebra h0 of g0, the
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subalgebra n of g and the linear forms λj on h introduced in §2. Also we shall
always identify the dual Γ of the group G = SU(n) with the set of linear forms
on h described in §2. If γ is an element of Γ, let Eγ be an irreducible G-module
corresponding to γ.

In the following, by Cj , Akl and Bkl we shall mean the left-invariant vec-
tor fields on G determined by the corresponding elements of g0. Throughout
this chapter, we consider the left-invariant 1-forms {ω0, ωj , ωjk, $jk} on G, with
1 ≤ j, k ≤ n, determined by

ω0 = ωn = $jj = 0, ωjk = −ωkj , $jk = $kj ,

for 1 ≤ j, k ≤ n, and

ωj(Cl) = δjl, ωjk(Cl) = 0, $jk(Cl) = 0,

ωj(Ars) = 0, ωjk(Ars) = δjrδks, $jk(Ars) = 0,

ωj(Brs) = 0, ωjk(Brs) = 0, $jk(Brs) = δjrδks,

for all 1 ≤ l ≤ n − 1 and 1 ≤ j, k, r, s ≤ n, with j < k and r < s. For
1 ≤ j < k ≤ n, we set

θjk = ωjk − i$jk, θ̄jk = ωjk + i$jk

of AC; then the 1-forms {ωl, θjk, θ̄jk}, with 1 ≤ l ≤ n−1 and 1 ≤ j < k ≤ n, form
a basis for the G-module AC.

If n = 3, according to Lemma 2.1 of [5] and the remark following this lemma,
and the relations (2.4)–(2.6) of [5], we easily verify that

6σ̃(ω1) = ω2
1 + 2ω1 · ω2 − 2ω2

2 + θ12 · θ̄12 + θ13 · θ̄13 − 2θ23 · θ̄23,

6σ̃(ω2) = 2ω2
1 − 2ω1 · ω2 − ω2

2 + 2θ12 · θ̄12 − θ13 · θ̄13 − θ23 · θ̄23;
(11.2)

from the relations (2.10) of [5], we deduce that

(11.3)
2σ̃(θ12) = ω2 · θ12 − iθ13 · θ̄23, 2σ̃(θ23) = −ω1 · θ23 − iθ13 · θ̄12,

2σ̃(θ13) = (ω1 − ω2) · θ13 + iθ12 · θ23.

Throughout this chapter, we shall consider the symmetric 3-form σ = σ′3 on X,
the G̃-equivariant monomorphism σ̃ : T ∗ → S2T ∗ and the first-order differential
operator

Dσ : T ⊕ F → S2T ∗
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associated with σ in §1, where F is the trivial real line bundle over G. Using
Maple and the formulas (11.2) and (11.3), we see that the operator Dσ is of
finite type when n = 3; in fact, the morphism (4.11), which is equal to the second
prolongation of the symbol of Dσ, is injective. Therefore by Proposition 6.2 of [6],
we obtain:

Proposition 11.1. The differential operator Dσ on X = SU(3) is elliptic.

Let γ, γ′ be elements of Γ. The contragredient G-module E∗
γ of Eγ is isomorphic

to the G-module Eγ̄ . Hence according to the Peter-Weyl theorem, the isotypic
component C∞

(γ,γ′)(G) vanishes unless γ′ = γ̄; moreover, the isotypic component

C∞
(γ,γ̄)(G) is an irreducible G̃-submodule of C∞(G) equal to the submodule C∞

γ (G)
of the G-module (π, C∞(G)), and the weight subspace Cγ of the G-submodule
C∞

γ (G) corresponding to the highest weight γ is an irreducible G-submodule
of (π′, C∞(G)) isomorphic to Eγ̄ . Since the isotypic component C∞

γ (SpT ∗C) is
isomorphic to C∞

γ (G) ⊗ Vp, its weight subspace Cγ(SpT ∗C) corresponding to the
highest weight γ is the G-submodule Cγ·SpAC of (π′, C∞(SpT ∗C)), and is therefore
isomorphic to Eγ̄ ⊗ Spg as a G-module. The weight space C(γ,γ′)(SpT ∗C) of the
G̃-module C∞(SpT ∗C) corresponding to the highest weight (γ, γ′) is contained in
the weight space of the G-submodule Cγ ·SpAC of (π′, C∞

γ (SpT ∗C)) corresponding
to the weight γ′; in fact, we have

(11.4) C(γ,γ′)(S
pT ∗C) =

{
u ∈ Cγ ·SpAC

∣∣∣∣
Φ′(η)u = 0, Φ′(ξ)u = γ′(ξ)u,

for all η ∈ n+, ξ ∈ h0

}

(see [5, §4]). From these observations, we infer that the multiplicity of the
G̃-module C∞

(γ,γ′)(S
pT ∗C), which is equal to the dimension of the weight subspace

C(γ,γ′)(SpT ∗C), is given by

(11.5) MultC∞
(γ,γ′)(S

pT ∗C) = dim HomG (Eγ′ , Eγ̄ ⊗ Spg).

A linear form λ on h is a weight of the G-module C∞
(γ,γ′)(S

pT ∗C) with respect
to the representation π (resp. π′) if and only if −λ is a weight of its complex
conjugate C∞

(γ,γ′)(S
pT ∗C). Therefore, if δ is the element γ′ of Γ, we have the

equality

(11.6) C∞
(γ̄,δ)(S

pT ∗C) = C∞
(γ,γ′)(S

pT ∗C)

of G̃-modules.
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The highest weight of the irreducible G-module g is equal to 2λ1+λ2. The Car-
tan product F of the irreducible G-module g with itself is the unique G-submodule
of S2g whose highest weight is equal to 4λ1 +2λ2. As above, we identify Spg with
the symmetric p-th power Spg∗ of g∗ by means of the Killing form B; thus B gener-
ates a trivial G-submodule {B} of S2g. As we identify the G-modules g0 and Te0 ,
the complexification of the morphism σ̃ : Te0 → S2T ∗e0

determines a monomor-
phism σ̃ : g → S2g of G-modules. Then σ̃(g) is an irreducible G-submodule of S2g

whose highest weight is equal to 2λ1+λ2. It follows that the sum {B} ⊕ F ⊕ σ̃(g)
is direct and is a G-submodule of S2g. When n = 3, it is easily verified the equal-
ity

S2g = {B} ⊕ F ⊕ σ̃(g)

holds; in this case, for γ, γ′ ∈ Γ, by Schur’s lemma we therefore see that

dimHomG (Eγ′ , Eγ ⊗ S2g) = δγ,γ′ + dimHomG (Eγ′ , Eγ ⊗ F )

+ dimHomG (Eγ′ , Eγ ⊗ g),
(11.7)

for all γ ∈ Γ, where δγ,γ′ is equal to 1 if γ′ = γ and 0 otherwise.

The center of G = SU(n) is the cyclic subgroup S of order n generated by the
element

a0 = e2iπ/nIn

of G, where In is the n × n identity matrix. The group Y = Ǧ = G/S is a
symmetric space of compact type, which is the reduced space of the symmetric
space G and which we call the reduced unitary group; it is isomorphic to the
adjoint group of su(n) (see [5, §7]).

Let Γ̌ be the subset of Γ consisting of all elements γr1,...,rn−1 of Γ, where
r1, . . . , rn−1 are non-negative integers satisfying the relation

(11.8) r1 + 2r2 + · · ·+ (n− 1)rn−1 ≡ 0 mod n.

If E is a G-module, we denote by ES the G-submodule of E consisting of all
S-invariant elements of E.

We consider the natural projection π : G → Ǧ. If γ is an element of Γ, the
isomorphism π∗ : C∞(Y ) → C∞(X)S induces an isomorphism of G-modules

π∗ : C∞
γ (Y ) → C∞

γ (X)S
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of G-modules; according to Lemma 5.1,(ii) of [4], we know that

(11.9) C∞
γ (X)S = C∞

γ (X)

if and only if γ belongs to Γ̌.

The element γ1 of Γ is equal to $1 +$n−1 and so belongs to Γ̌. Since γ̄1 = γ1,
according to the relation (4.6) of [5], the irreducible G-module B = C∞

γ1
(X) is

invariant under conjugation and hence it is equal to the complexification of the
G-submodule

BR = { f ∈ B | f = f̄ }
of C∞

R (X). Thus since γ1 belongs to Γ̌, the G-module BY = C∞
γ1

(Y ) is equal to
the complexification of the subspace

BY,R = { f ∈ BY | f = f̄ }
of C∞

R (Y ) and the mapping π induces an isomorphism π∗ : BY,R → BR.

The symmetric form σ induces a symmetric 3-form σY on Y such that

σ = π∗σY

and we consider the morphism of vector bundles

σ̃Y : T ∗Y → S2T ∗Y

induced by the symmetric 3-form σY . If ϕ is a 1-form on Y , we have

(11.10) π∗σ̃Y (ϕ) = σ̃(π∗ϕ).

According to Lemma 2.3 of [5] or Lemma 3.1 of [4], a 1-form ϕ on X satisfies the
Guillemin condition if and only if the symmetric 2-form σ̃(ϕ) on X satisfies the
Guillemin condition. Thus for all γ ∈ Γ, since the differential operators D0 and
σ̃d are homogeneous, we have the inclusions

D0C
∞(T )S + σ̃dC∞

R (X)S ⊂ N2 ∩ C∞(S2T ∗)S ,

D0C
∞
γ (TC)S + σ̃dC∞

γ (X)S ⊂ N2,C ∩ C∞
γ (S2T ∗C)S ,

(11.11)

for all γ ∈ Γ.

According to Proposition 6.2 of [5] and its proof, we know that

(11.12)
D0C

∞(T ) ∩ σ̃dC∞
R (X) = σ̃dBR,

D0C
∞(TC) ∩ σ̃dC∞(X) = σ̃dB,

where B = C∞
γ1

(X)S .
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Proposition 11.2. Let X be the symmetric space equal to the simple Lie group
SU(n), with n ≥ 3, and Y be the symmetric space SU(n)/S. Assume that the
operator Dσ is elliptic. Then the following assertions are equivalent:

(i) The equality

N2,Y = D0C
∞(TY ) + σ̃Y dC∞

R (Y )

holds.

(ii) The equality

N2,C ∩ C∞(S2T ∗C)S = D0C
∞(TC)S + σ̃dC∞(X)S

holds.

(iii) We have

N2,C ∩ C∞
(γ0,γ0)(S

2T ∗C)S = {0},(11.13)

N2,C ∩ C∞
(γ1,γ1)(S

2T ∗C)S = D0C
∞
(γ1,γ1)(TC)S ,(11.14)

and the equality

(11.15) N2,C ∩ C∞
(γ,γ′)(S

2T ∗C)S = D0C
∞
(γ,γ′)(TC)S + σ̃dC∞

(γ,γ′)(X)S

holds for all γ, γ′ ∈ Γ, whenever (γ, γ′) is not equal to (γ0, γ0) or (γ1, γ1).

(iv) The equality (11.13) holds and

Mult
(N2,C ∩ C∞

(γ,γ′)(S
2T ∗C)S

) ≤ MultC∞
(γ,γ′)(T

∗
C)S − 1

whenever the element (γ, γ′) of Γ× Γ is equal to (γ0, γ1) or (γ1, γ0); moreover, if
γ is an element of Γ̌ which is not equal to γ0 or γ1, the inequality

Mult
(N2,C ∩ C∞

(γ,γ̄)(S
2T ∗C)S

) ≤ MultC∞
(γ,γ̄)(T

∗
C)S + 1

holds, and the inequality

Mult
(N2,C ∩ C∞

(γ,γ′)(S
2T ∗C)S

) ≤ MultC∞
(γ,γ′)(T

∗
C)S

holds for all elements (γ, γ′) of Γ× Γ satisfying one of the following conditions:

(a) γ′ 6= γ̄ and (γ, γ′) 6= (γ0, γ1), (γ1, γ0);

(b) γ′ = γ̄ and γ does not belong to Γ̌;

(c) γ = γ′ = γ1.
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Proof. Lemma 2.17 of [2], together with the relations (2.6) of [2] and (11.10), gives
us the equivalence of (i) and (ii). Since Dσ is an elliptic homogeneous differential
operator, from Proposition 2.2,(iii) and the inclusions (2.12) of [2], by (11.11) we
infer that assertion (ii) is equivalent to the fact that the equality (11.15) holds
for all γ ∈ Γ. According to the relations (11.12), the equality (11.15), with
γ = γ′ = γ1, is equivalent to (11.14). When γ = γ′ = γ0, we know that γ̄ = γ

and that the spaces dC∞
(γ,γ̄)(X) and C∞

(γ,γ̄)(TC) vanish. Thus the assertions (ii)
and (iii) are equivalent. Since MultC∞

(γ,γ̄)(X)S is equal to 1 when the element γ

of Γ belongs to Γ̌ and vanishes otherwise, and since the G̃-modules C∞
(γ,γ′)(TC)

and C∞
(γ,γ′)(T

∗
C), with γ, γ′ ∈ Γ, are isomorphic, the equivalence of (iii) and (iv)

follows from the relations (11.1), (11.11) and (11.12). ¤

12. Highest weight vectors and multiplicities

Henceforth in this paper, we shall suppose that n = 3 and that X is the
symmetric space G = SU(3). We consider G as a real submanifold of the complex
manifold M3 and denote by zjk the restriction to G of the function zjk on M3

defined in §5. Here we consider the subalgebra n+ generated by the elements Ejk

of g, with j < k.

From the relations (3.10) of [5], we deduce that

(12.1)

Φ′(η)z31 = 0, Φ′(η)z̄13 = 0,

Φ′(E12)z32 = z31, Φ′(E12)z33 = 0,

Φ′(E23)z32 = 0, Φ′(E23)z33 = z32,

Φ′(E13)z32 = 0, Φ′(E13)z33 = z31,

Φ′(E12)z̄11 = −z̄12, Φ′(E12)z̄12 = 0,

Φ′(E23)z̄11 = 0, Φ′(E23)z̄12 = −z̄13,

Φ′(E13)z̄11 = −z̄13, Φ′(E13)z̄12 = 0,

for all η ∈ n+. We also verify that

(12.2)
Φ′(η)θ13 = 0, Φ′(E23)θ̄13 = θ̄12,

Φ′(E12)θ̄13 = −θ̄23, Φ′(E13)θ̄13 = i(ω1 + ω2)
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and

(12.3)

Φ′(E12)θ12 = 0, Φ′(E12)θ̄12 = i(2ω1 − ω2),

Φ′(E23)θ12 = −θ13, Φ′(E23)θ̄12 = 0,

Φ′(E13)θ12 = 0, Φ′(E13)θ̄12 = θ23,

Φ′(E12)θ23 = θ13, Φ′(E12)θ̄23 = 0,

Φ′(E23)θ23 = 0, Φ′(E23)θ̄23 = i(2ω2 − ω1),

Φ′(E13)θ23 = 0, Φ′(E13)θ̄23 = −θ12,

Φ′(E12)ω1 = −iθ12, Φ′(E12)ω2 = 0,

Φ′(E23)ω1 = 0, Φ′(E23)ω2 = −iθ23,

Φ′(E13)ω1 = −iθ13, Φ′(E13)ω2 = −iθ13,

for all η ∈ n+. Clearly, the 1-forms

ϑ1 = θ13,

ϑ2 = z32θ13 − z31θ23, ϑ3 = z32θ12 + z33θ13 − iz31ω1,

ϑ4 = z̄12θ13 − z̄13θ12, ϑ5 = z̄11θ13 + z̄12θ23 + iz̄13ω2,

ϑ6 =
∑

1≤j<k≤3

(z3j z̄1kθ̄jk − z3kz̄1jθjk)

+ i(z31z̄11 − z32z̄12)ω1 + i(z32z̄12 − z33z̄13)ω2,

ϑ7 = z32z33θ13 − z31z33θ23 + z2
32θ12 + z2

31θ̄12 − iz31z32(2ω1 − ω2),

ϑ8 = z̄11z̄12θ13 + z̄2
12θ23 − z̄11z̄13θ12 + z̄2

13θ̄23 + iz̄12z̄13(2ω2 − ω1)

on X are all non-zero. Using the relations (12.1), (12.2) and (12.3), we easily
verify that

(12.4) Φ′(η)ϑj = 0,

for all η ∈ n+ and 1 ≤ j ≤ 8.

If r, s ≥ 0 are integers, we consider the function

fr,s = zr
31z̄

s
13

on G. If r, s ∈ Z, with r < 0 or s < 0, we set fr,s = 0. If γ is the element s$1+r$2

of Γ, with r, s ≥ 0, in [5, §4] we saw that the function fr,s is a highest weight
vector of the irreducible G-submodule Cγ of (π′, C∞(G)) and that its weight is
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equal to γ̄ = r$1 + s$2; in other words, we have

(12.5) Φ′(η)fr,s = 0, Φ′(ξ)fr,s = γ̄(ξ)fr,s,

for all η ∈ n+ and ξ ∈ h0.

If {vα}α∈A is a family of elements belonging to a vector space V , we shall also
denote by {vα} the subspace of V generated by this family. We denote by P the
subset

(4, 2), (3, 3), (3, 0), (2, 4), (2, 1), (2,−2), (1, 2), (1,−1),

(0, 3), (0, 0), (0,−3), (−1, 1), (−1,−2), (−2, 2),

(−2,−1), (−2,−4), (−3, 0), (−3,−3), (−4,−2)

of Z× Z. We consider the subsets

P0 = {(4, 2), (2, 1), (0, 0), (−2,−1), (−4,−2)},
P1 = {(3, 0), (2,−2), (1,−1), (0,−3), (−1,−2), (−2,−4), (−3,−3)},
P ′ = {(2, 1), (1, 2), (1,−1), (0, 0), (−1, 1), (−1,−2), (−2,−1)}

of P. We also consider the involution Ψ of P which is determined by the relations
Ψ(q) = q, for all q ∈ P0, and

Ψ(3, 3) = (3, 0), Ψ(2, 4) = (2,−2), Ψ(1, 2) = (1,−1), Ψ(0, 3) = (0,−3),

Ψ(−1, 1) = (−1,−2), Ψ(−2, 2) = (−2,−4), Ψ(−3, 0) = (−3,−3).

We note that P is the disjoint union of the subsets P0, P1 and Ψ(P1).

Now let r, s ≥ 0 be given integers. For (a, b) ∈ P, we now define subspaces V ′
a,b

of C∞(T ∗C) by

V ′
0,0 = {fr−1,sϑ3, fr,s−1ϑ5},

V ′
2,1 = {fr,sϑ1},

V ′
1,2 = {fr−1,sϑ2},

V ′
1,−1 = {fr,s−1ϑ4},

V ′
−2,−1 = {fr−1,s−1ϑ6},

V ′
−1,−2 = {fr,s−2ϑ8},
V ′
−1,1 = {fr−2,sϑ7};

if (a, b) ∈ P does not belong to P ′, we set V ′
a,b = {0}.
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We consider the sections hj of C∞(S2T ∗C), with 0 ≤ l ≤ 35, defined by

h0 = fr,sg, h1 = ifr,s−1 σ̃(ϑ5), h2 = fr−2,sϑ3 ·ϑ3,

h3 = fr−1,s−1ϑ3 ·ϑ5, h4 = ifr−1,s σ̃(ϑ3), h5 = fr,s−2ϑ5 ·ϑ5,

h6 = ifr,s σ̃(ϑ1), h7 = fr−1,sϑ1 ·ϑ3, h8 = fr,s−1ϑ1 ·ϑ5,

h9 = ifr−1,s−1 σ̃(ϑ6), h10 = fr−2,s−1ϑ3 ·ϑ6, h11 = fr−1,s−2ϑ5 ·ϑ6,

h12 = ifr−1,s σ̃(ϑ2), h13 = fr−2,sϑ2 ·ϑ3, h14 = fr−1,s−1ϑ2 ·ϑ5,

h15 = ifr,s−1 σ̃(ϑ4), h16 = fr−1,s−1ϑ3 ·ϑ4, h17 = fr,s−2ϑ4 ·ϑ5,

h18 = ifr−2,s σ̃(ϑ7), h19 = fr−3,sϑ3 ·ϑ7, h20 = fr−2,s−1ϑ5 ·ϑ7,

h21 = ifr,s−2 σ̃(ϑ8), h22 = fr−1,s−2ϑ3 ·ϑ8, h23 = fr,s−3ϑ5 ·ϑ8,

h24 = fr,sϑ1 ·ϑ1, h25 = fr−1,sϑ1 ·ϑ2, h26 = fr−2,sϑ2 ·ϑ2,

h27 = fr−3,sϑ2 ·ϑ7, h28 = fr−4,sϑ7 ·ϑ7, h29 = fr−3,s−1ϑ6 ·ϑ7,

h30 = fr−2,s−2ϑ6 ·ϑ6, h31 = fr,s−1ϑ1 ·ϑ4, h32 = fr,s−2ϑ4 ·ϑ4,

h33 = fr,s−3ϑ4 ·ϑ8, h34 = fr,s−4ϑ8 ·ϑ8, h35 = fr−1,s−3ϑ6 ·ϑ8.

For 1 ≤ l ≤ 35, note that the expression for the section hl given here is of the
form fr−el,s−e′l

ϑjl
·ϑkl

or ifr−el,s−e′l
σ̃(ϑjl

), where el, e
′
l ≥ 0 and 1 ≤ jl, kl ≤ 8 are

integers independent of r and s. We set e0 = e′0 = 0. Clearly, for all 0 ≤ l ≤ 35,
when r ≥ el and s ≥ e′l, the form hl is non-zero.

For (a, b) ∈ P, we define subspaces Va,b of C∞(S2T ∗C) by

V2,1 = {h6, h7, h8}, V−2,−1 = {h9, h10, h11},
V1,2 = {h12, h13, h14}, V1,−1 = {h15, h16, h17},

V−1,1 = {h18, h19, h20}, V−1,−2 = {h21, h22, h23},
V4,2 = {h24}, V3,3 = {h25}, V2,4 = {h26},
V0,3 = {h27}, V−2,2 = {h28}, V−3,0 = {h29},

V−4,−2 = {h30}, V3,0 = {h31}, V2,−2 = {h32},
V0,−3 = {h33}, V−2,−4 = {h34}, V−3,−3 = {h35};

finally, V0,0 is the subspace of C∞(S2T ∗C) generated by the functions {hj}, with
0 ≤ j ≤ 5. We remark that

(12.6) σ̃(V ′
a,b) ⊂ Va,b,

for all (a, b) ∈ P.
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Since a form belonging to AC is left-invariant, it is also invariant under the
right action of the center S. On the other hand, we easily see that

π′(a0)z3j = e2iπ/3z3j , π′(a0)z̄1j = e4iπ/3z̄1j ,

for j = 1, 2, 3. It follows that

(12.7) π′(a0)θ = e2i(r+2s)π/3θ, π′(a0)h = e2i(r+2s)π/3h,

for all θ ∈ V ′
a,b and h ∈ Va,b, with (a, b) ∈ P.

If p, q ≥ 0 are given integers, let εp
q be the integer equal to 1 if p ≥ q and 0

otherwise. For (a, b) ∈ P, we consider the integers N1(a, b) and N2(a, b) defined
by the relations

N1(0, 0) = εr
1 + εs

1, N2(0, 0) = εr
2 + εs

2 + εr
1ε

s
1

and the following table:

(a, b) N1(a, b) N2(a, b) (a, b) N1(a, b) N2(a, b)

(4, 2) 0 1 (−4,−2) 0 εr
2ε

s
2

(3, 3) 0 εr
1 (3, 0) 0 εs

1

(2, 4) 0 εr
2 (2,−2) 0 εs

2

(2, 1) 1 εr
1 + εs

1 (−2,−1) εr
1ε

s
1 εr

2ε
s
1 + εr

1ε
s
2

(1, 2) εr
1 εr

2 + εr
1ε

s
1 (1,−1) εs

1 εs
2 + εr

1ε
s
1

(0, 3) 0 εr
3 (0,−3) 0 εs

3

(−1, 1) εr
2 εr

3 + εr
2ε

s
1 (−1,−2) εs

2 εs
3 + εr

1ε
s
2

(−2, 2) 0 εr
4 (−2,−4) 0 εs

4

(−3, 0) 0 εr
3ε

s
1 (−3,−3) 0 εr

1ε
s
3

Using the expressions for the sections ϑj and the formulas (11.2) and (11.3),
we easily verify the following:

Lemma 12.1. Let r, s ≥ 0 be given integers. If (a, b) is an element of P, the
non-zero generators of the space Va,b (resp. V ′

a,b) form a basis of this space, and
we have

dimV ′
a,b = N1(a, b), dimVa,b = N1(a, b) + N2(a, b) + δ0a′δ0b′ ,

where a′ = |a| and b′ = |b|.
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Let a, b ∈ Z be given integers. If δ is an element of Γ, we consider the element

δa,b = δ + aλ1 + bλ2

of h∗; throughout this section, this notation always supersedes the one introduced
in §11. We now consider the element γ = s$1 + r$2 of Γ. Then we know that
γ̄ = r$1 + s$2 and we see that γ̄a,b belongs to Γ if and only if

(12.8) r + s + a ≥ s + b ≥ 0.

When the inequalities (12.8) hold, we consider the irreducible G-module Eγ̄a,b

corresponding to the element γ̄a,b of Γ. We note that γ̄a,b is equal to γ̄ if and
only if a = b = 0. Moreover, if r = s = 0, we have γ̄0,0 = γ0 and γ̄2,1 = γ1;
if r = s = 1, we have γ̄0,0 = γ1 and γ̄−2,−1 = γ0.

We also consider the subset P̃ of P consisting of pairs (a, b) ∈ P satisfying the
relations (12.8). By means of Lemma 4.2 of [5], for (a, b) ∈ P, we easily see that

(12.9) V ′
a,b ⊂ Cγ ·AC, Va,b ⊂ Cγ ·S2AC;

in fact, we have

V ′
a,b = {0}, Va,b = {0},

if (a, b) does not belong to P̃.

In [5, §5], we noted that, for 1 ≤ j < k ≤ 3, the element ωj is a vector of AC of
weight 0, and that the elements θjk and θ̄jk are vectors of AC of weight λj − λk

and λk − λj , respectively, when we view AC as a G-submodule of (π′, C∞(T ∗C)).
According to formulas (3.10) of [5], we know that

Φ′(Cl)zjk = izjk(δkl − δk−1,l),

for all 1 ≤ j, k ≤ 3 and l = 1, 2. By means of the relations (11.4), (12.4), (12.5),
(12.9), and the preceding remarks, we easily verify that

(12.10) V ′
a,b ⊂ C(γ,γ̄a,b)(T

∗
C), Va,b ⊂ C(γ,γ̄a,b)(S

2T ∗C),

for all (a, b) ∈ P̃.

Let (a, b) be an element of P̃. If (c, d) is the element Ψ(a, b) of P, we easily
verify that γc,d belongs to Γ and that

γ̄a,b = γc,d;
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from the equality (11.6), we therefore obtain the relations

(12.11) C∞
(γ,γ̄a,b)

(SpT ∗C) = C∞
(γ̄,γc,d)(S

pT ∗C).

The Littlewood-Richardson rule (see [1, pp. 455–456]) gives us the decompo-
sitions of the G-modules Eγ̄ ⊗ g and Eγ̄ ⊗ F into irreducible submodules; in
particular, it tells us that the spaces HomG (Eγ′ , Eγ̄⊗g) and HomG (Eγ′ , Eγ̄⊗F )
vanish unless γ′ = γ̄a,b, with (a, b) ∈ P̃, and that

dimHomG (Eγ̄a,b
, Eγ̄ ⊗ g) = N1(a, b), dimHomG (Eγ̄a,b

, Eγ̄ ⊗ F ) = N2(a, b),

for (a, b) ∈ P̃.

By (11.5) and (11.7), from the above discussion we obtain the following result:

Lemma 12.2. Let r, s ≥ 0 be given integers; let γ be the element s$1 + r$2

of Γ and let γ′ be an arbitrary element of Γ. The G̃-modules C∞
(γ,γ′)(T

∗
C) and

C∞
(γ,γ′)(S

2T ∗C) vanish unless γ′ = γ̄a,b, where (a, b) is an element of P̃. If (a, b)

is an element of P̃ satisfying γ̄a,b = γ′, then the multiplicities of the G̃-modules
C∞

(γ,γ′)(T
∗
C) and C∞

(γ,γ′)(S
2T ∗C) are given by the relations

(12.12)
MultC∞

(γ,γ̄a,b)
(T ∗C) = N1(a, b),

MultC∞
(γ,γ̄a,b)

(S2T ∗C) = N1(a, b) + N2(a, b) + δ0a′δ0b′ ,

where a′ = |a| and b′ = |b|.

From the the inclusions (12.10) and Lemmas 12.1 and 4.1, we obtain the fol-
lowing result:

Lemma 12.3. Let r, s ≥ 0 be given integers.

(i) If (a, b) is an element of P ′ satisfying (12.8), we have the equality

C(γ,γ̄a,b)(T
∗
C) = V ′

a,b.

(ii) If (a, b) is an element of P satisfying (12.8), we have the equality

C(γ,γ̄a,b)(S
2T ∗C) = Va,b.

The preceding lemma and the relations (12.7) give us the following:
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Proposition 12.4. Let r, s ≥ 0 be given integers and let γ be the element
s$1 + r$2 of Γ. For γ′ ∈ Γ and p = 1, 2, the G-module C∞

(γ,γ′)(S
pT ∗C)S is

equal to C∞
(γ,γ′)(S

pT ∗C) if the relation

(12.13) 2r + s ≡ 0 (mod 3)

holds and γ′ is equal to γ̄a,b, with (a, b) ∈ P, and vanishes otherwise.

In §14, we shall prove the following three results:

Proposition 12.5. Let r, s be given integers satisfying 0 ≤ r ≤ s and the rela-
tion (12.13). Then the function fr,s on X does not satisfy the Guillemin condi-
tion.

Proposition 12.6. Let r, s be given integers satisfying 0 ≤ r ≤ s and the rela-
tion (12.13).

(i) Let (a, b) be a given element of P − {(0, 0)}; assume that (r, s, a, b) is not
equal to (0, 0, 2, 1) or (1, 1,−2,−1). If (a, b) belongs to P1, assume also that s > r.
Then we have the inequality

dim (Va,b ∩N2,C) ≤ N1(a, b).

(ii) If (r, s) 6= (0, 0), (1, 1), we have the inequality

dim (V0,0 ∩N2,C) ≤ N1(0, 0) + 1.

(iii) If (r, s) = (1, 1), we have the relations

dim (V0,0 ∩N2,C) ≤ 2, V−2,−1 ∩N2,C = {0}.

(iv) If (r, s) = (0, 0), we have the equalities

V0,0 ∩N2,C = V2,1 ∩N2,C = {0}.
Proposition 12.7. Let r, s ≥ 0 be given integers satisfying 0 ≤ r ≤ s and the
relation (12.13). Let (a, b) be a given element of P ′ − {(0, 0)}. If (a, b) belongs
to P1, assume also that s > r. Then we have the relations

σ̃(V ′
a,b) ∩N2,C = {0}, dim (σ̃(V ′

0,0) ∩N2,C) ≤ 1.

According to Lemma 2.3 of [5] and the relation (12.6), under the hypotheses
of Proposition 12.7, we see that this proposition implies that

V ′
a,b ∩N1,C = {0}, dim (V ′

0,0 ∩N1,C) ≤ 1.
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13. Main results

We consider the reduced space Y = SU(3)/S of the symmetric space X. Let
r, s ≥ 0 be given integers and let γ be the element s$1 + r$2 of Γ. According
to Lemma 4.2 of [5] and Proposition 12.4, we know that fr,s is a highest weight
vector of the irreducible G̃-module C∞

(γ,γ̄)(X) and that the equality (11.9) holds
if and only if the relation (12.13) is true. Hence from the equalities (12.11), with
p = 1 and (a, b) = (0, 0), Proposition 2.29 of [2] and Proposition 12.5, we deduce
the following result:

Proposition 13.1. Let Y be the reduced group SU(3)/S. The maximal flat
Radon transform for functions on the symmetric space Y is injective.

According to Lemmas 12.2 and 12.3,(ii), Propositions 12.4 and 12.6, the re-
lations (12.11) and the remarks appearing after Lemma 12.1, we see that asser-
tion (iv) of Proposition 11.2 is true when n = 3; from Propositions 11.1 and 11.2,
we then deduce the following result:

Theorem 13.2. Let Y be the reduced group SU(3)/S. Then the equality

N2,Y = D0C
∞(TY ) + σ̃Y dC∞

R (Y )

holds.

If P denotes the orthogonal projection corresponding to the decomposition
(1.1) on the space Y , according to Lemma 1.1 of [3] and Lemma 2.3 of [5] (see
also Lemma 3.1 of [4]) the mapping

PσY = Pσ̃Y d : C∞
R (Y ) → I(Y )

is well-defined. We denote by FY the orthogonal complement of the finite-
dimensional space F ′Y = R(Y ) ⊕ BY in C∞

R (Y ). From Proposition 1.2 of [3],
the relations (11.12), and Theorem 13.2, we obtain:

Theorem 13.3. Let Y be the reduced group SU(3)/S. Then the equality

I(Y ) = Pσ̃Y dC∞
R (Y )

holds and the mapping
Pσ̃Y d : FY → I(Y )

is an isomorphism.
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The preceding theorem is a complement to Theorem 7.4 of [5] with n = 3.
From Lemmas 12.2 and 12.3,(i), and Propositions 1.2, 12.4 and 12.7, and the
remark which follows the latter proposition, and the relations (12.11), we deduce
the following result:

Theorem 13.4. Let Y be the reduced group SU(3)/S. A 1-form on Y satisfies
the Guillemin condition if and only it is exact.

14. Proofs of Propositions 12.5, 12.6 and 12.7

In this section, we consider the symmetric space X = G = SU(3) and denote
by

ι : R2 → G

the mapping (10.1). This mapping induces by passage to the quotient an imbed-
ding

R2/Λ′ → G,

whose image is the maximal torus H of G. This torus H is also a maximal flat
totally geodesic torus of X = G viewed as a symmetric space.

We consider the standard coordinate system (x, y) on R2 and endow this space
with the flat Riemannian metric

g̃ = dx · dx + dy · dy − dx · dy.

According to the relation (3.10) of [4], we know that

(14.1) ι∗g = g̃;

hence if f is a function on X, we easily see that

(14.2)
∫

H
f dH =

√
3

∫ 2π

0

∫ 2π

0
f(ι(x, y)) dx dy.

In [4, §3], we saw that the parallel vector fields ζ1 and ζ2 on H determined by

(14.3) ι∗(∂/∂x)(x, y) = ζ1(ι(x, y)), ι∗(∂/∂y)(x, y) = ζ2(ι(x, y)),

for (x, y) ∈ R2, are equal to the restrictions to H of the vector fields C1 and C2,
respectively (see also [5, §2]). Thus if ϕ is a 1-form on X, according to the
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formulas (3.5) and (3.6) of [4] (or formulas (2.4) and (2.5) of [5]), we have

(14.4)

ι∗σ̃(ϕ)(∂/∂x, ∂/∂x) =
1
3
(
ι∗ϕ(∂/∂x) + 2ι∗ϕ(∂/∂y)

)
,

ι∗σ̃(ϕ)(∂/∂x, ∂/∂y) =
1
3
(
ι∗ϕ(∂/∂x)− ι∗ϕ(∂/∂y)

)
,

ι∗σ̃(ϕ)(∂/∂y, ∂/∂y) = −1
3
(
2ι∗ϕ(∂/∂x) + ι∗ϕ(∂/∂y)

)
.

If φ is an element of SO(3), we consider the maximal torus H ′ = Ad φ · H
of X; if f is a function on X, we have

∫

H′
f dH ′ =

∫

H
(Adφ)∗f dH,

and we easily see that

(14.5) ι∗(Adφ)∗zjk = ι∗(Adφ)∗zkj

for 1 ≤ j, k ≤ 3.

We consider the functions ψ and ψ̃ on R3 introduced in §8. If r, s ≥ 0 are
integers, we also consider the function

ψ̃r,s = ψ̃r · ψ̃s

on R3.

If f is a function on R3 and v ∈ R, we consider the function fv on R2 defined
by

fv(x, y) = f(x, y, v),

for all (x, y) ∈ R2.

For α ∈ R, we consider the element φα of SO(3) introduced in §10 and the
maximal flat totally geodesic torus Hα = Ad φα ·H of X. For α ∈ R, if we write
v = cos2 α, we verify that

(14.6)

ι∗(Adφα)∗z13 =
1
2

ψ̃v, ι∗(Adφα)∗z11 = ι∗(Adφα)∗z33 =
1
2

ψv,

(
ι∗(Adφα)∗zj2

)
(x, y) =

1√
2

cos α · sinα (e−iy − eix),
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for j = 1, 3 and all (x, y) ∈ R2, and

(14.7)

ι∗(Adφα)∗ω2 =
1
2
(
sin2 α · ι∗ω1 − cos2 α · ι∗ω2

)
= −ι∗(Adφα)∗ω1,

ι∗(Adφα)∗θ13 =
i

2
(
(1 + sin2 α) · ι∗ω2 − (1 + cos2 α) · ι∗ω1

)
,

ι∗(Adφα)∗θjk =
i√
2

cos α · sinα · ι∗(ω1 + ω2),

if (j, k) is equal to (1, 2) or (2, 3); if r, s ≥ 0 are integers, from (14.6) it follows
that

(14.8) ι∗(Adφα)∗fr,s =
1

2r+s
ψ̃r,s,v.

For 0 ≤ l ≤ 35, we define integers pl by

pl =





1 for 12 ≤ l ≤ 23, and l = 25, 29, 31, 35,

0 otherwise.

Let Y be an indeterminate over C. If P is an element of C[Y ], we denote by cj(P )
its coefficient of degree j and write c(P ) = c0(P ). For j = 1, 2, we define
projections

πj : C[Y ]⊕ C[Y ]⊕ C[Y ] → C[Y ]⊕ C[Y ]

by
π1(P1, P2, P3) = (P1, P2), π2(P1, P2, P3) = (P1, P3),

for P1, P2, P3 ∈ C[Y ].

Let r, s ≥ 0 be given integers; we now consider the symmetric 2-forms hl,
with 0 ≤ l ≤ 35, and the spaces Va,b, with (a, b) ∈ P, associated with the
integers r, s.

Let 0 ≤ l ≤ 35 be a given integer. By means of the relations (14.1)–(14.8),
we easily see that there exist polynomials J and Il,j,k, with j, k = 1, 2, belonging
to Q[Y ] such that the equalities

(14.9)

1
4π2

√
3

∫

H
φ∗αfr,s dH = J(cos2 α),

1
4π2

√
3

∫

H
(φ∗αhl)(ζj , ζk) dH =

(cos α · sinα√
2

)pl · Il,j,k(cos2 α),

hold for all α ∈ R. We write Jl = Il,1,1, Kl = Il,2,2 and Ml = Il,1,2. If J (resp. Jl)
does not vanish, there exists α0 ∈ R such that J(cos2 α0) (resp. Jl(cos2 α0))
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and cos α0 · sin α0 are non-zero; therefore by (14.9), the function fr,s (resp. the
2-form hl) does not satisfy the Guillemin condition.

Let (a, b) be a given element of P; suppose that the space Va,b is non-zero.
Let {hl, hl+1, . . . , hl+q} be the generators of the space Va,b considered in §12. We
know that either q = 5 and l = 0, or q = 2 and l belongs to the set of integers

L1 = {6, 9, 12, 15, 18, 21},
or q = 0 and 24 ≤ l ≤ 35; also we note that the integers pl+j are independent
of 0 ≤ j ≤ q. According to (14.9), for j, k = 1, 2, the linear mapping

Φj,k
a,b : Va,b → C[Y ],

sending an element h of Va,b into the polynomial Φj,k
a,b(h) determined by

(cos α · sinα√
2

)pl · Φj,k
a,b(h)(cos2 α) =

1
4π2

√
3

∫

H
(φ∗αh)(ζj , ζk) dH,

for all α ∈ R, is well-defined. We consider the mappings

Φa,b =
(
Φ1,1

a,b,Φ
2,2
a,b,Φ

1,2
a,b

)
: Va,b → C[Y ]⊕ C[Y ]⊕ C[Y ],

Φa,b,j = πj ◦ Φa,b : Va,b → C[Y ]⊕ C[Y ],

with j = 1, 2, and write Ψa,b = Φ1,1
a,b. Clearly, by (14.9) we have

Φa,b(hl+j) = (Jl+j ,Kl+j ,Ml+j),

for 0 ≤ j ≤ q; hence the rank of Ψa,b is equal to the dimension of the sub-
space of C[Y ] generated by its elements {Jl, Jl+1, . . . , Jl+q}. An element of Va,b

satisfying the Guillemin condition belongs to the kernel of Φa,b; so we have the
inclusions

Va,b ∩N2,C ⊂ KerΦa,b ⊂ KerΦa,b,j ⊂ KerΨa,b,

with j = 1, 2. Hence if one of the inequalities

(14.10) rank Φa,b,j ≥ N2(a, b),

with j = 1 or 2, or the inequality

(14.11) rank Ψa,b ≥ N2(a, b)

holds, we know that

rankΦa,b ≥ N2(a, b)
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and, from Lemma 3.1, we deduce that

(14.12) dim (Va,b ∩N2,C) ≤ N1(a, b) + δ0a′δ0b′ ,

where a′ = |a| and b′ = |b|.
We consider the sets of integers

L2 = {15, 16, 21, 22, 31, 32, 33, 34, 35}, L3 = {6, 7, 12, 13, 21, 22}.

For 0 ≤ l ≤ 35, we define integers ml ∈ Z by

ml =





m + 1 for l = 26, 27, 28,

m− 1 for l = 15, 16, 21, 22, 31, 35,

sup(m− 1, 1) for l = 32, 33, 34,

m otherwise;

when l belongs to L2 and m ≥ 1, we note that the integer ml is non-negative.
We also note that e′l = e′l+1, for all l ∈ L1. We consider the polynomial P ∈ Q[Y ]
of degree 2r given by (9.12).

Proposition 14.1. Let r, s be given integers satisfying the relation (12.13) and
0 ≤ r ≤ s. Let m ≥ 0 be the integer such that s = r + 3m. Let 0 ≤ l ≤ 35 be a
given integer.

(i) The relation

J(Y ) =
1

2r+s
Y m (Y − 1)m · P (Y )

holds.

(ii) Assume either that l belongs to L1, or that l − 1 belongs to L1, or that l

satisfies 0 ≤ l ≤ 2 or 24 ≤ l ≤ 35. Suppose that r ≥ el and s ≥ e′l. If l belongs
to the set L2, assume also that m ≥ 1. Then there exists a non-zero polynomial
Pl ∈ Q[Y ] such that

(14.13) Jl(Y ) =
1

2r+s
Y ml (Y − 1)ml · Pl(Y ).

(iii) Suppose that l is equal to 9, 15 or 18; if l is equal to 15, assume that m ≥ 1.
If r ≥ el+1, then we have r ≥ el and s ≥ e′l = e′l+1, and the determinant of the
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matrix (
c(Pl) c1(Pl)

c(Pl+1) c1(Pl+1)

)

is non-zero, and the polynomials Jl and Jl+1 are linearly independent.

(iv) Suppose that l belongs to the set L3. If l is equal to 21 or 22, assume
that m ≥ 1. If r ≥ el, there exists a polynomial Ql ∈ Q[Y ], whose constant term
is non-zero, such that

(14.14) Kl(Y ) =
1

2r+s
Y ml (Y − 1)ml ·Ql(Y ).

If l is equal to 6, 12 or 21 and if r ≥ el+1, then we have r ≥ el and s ≥ e′l = e′l+1,
and the determinant of the matrix

(
c(Pl) c(Ql)

c(Pl+1) c(Ql+1)

)

is non-zero.

(v) Suppose that 0 ≤ l ≤ 2. If l = 1, suppose that s ≥ 1; if l = 2, suppose that
r ≥ 2. There exists a polynomial Rl ∈ Q[Y ], whose constant term is non-zero,
such that

(14.15) Ml(Y ) =
1

2r+s
Y m (Y − 1)m ·Rl(Y ).

If r ≥ 1, the determinant of the matrix
(

c(P0) c(R0)

c(P1) c(R1)

)

is non-zero. If r ≥ 2, the determinant of the matrix



c(P0) c(R0) c1(R0)

c(P1) c(R1) c1(R1)

c(P2) c(R2) c1(R2)




is non-zero.

Proof. By means of formula (9.6), we obtain explicit expressions for the polynomi-
als J , Jq, Kq and Mq, with 0 ≤ q ≤ 35. Assertion (i) is an immediate consequence
of formulas (9.6) and (9.10), with d1 = d2 = 0. Next, suppose the hypotheses
of (ii) hold; we saw that the integer ml is non-negative. Using formulas (9.6)
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and (9.10), we demonstrate the existence of a polynomial Pl satisfying the rela-
tion (14.13), and a polynomial Ql satisfying the relation (14.14) when l belongs
to the set L3, and a polynomial Ml satisfying the relation (14.15) when 0 ≤ l ≤ 2.
By means of formulas (9.3) and (9.11), we compute the following coefficient of
the polynomial Pl:

(i) if l 6= 35, its constant term c(Pl);

(ii) if l = 35 and m = 1 or 2, its constant term c(Pl);

(iii) if l = 35 and m ≥ 3, its leading coefficient c2r+3(Pl).

Using the equalities (8.3)–(8.5) and (8.7), the first relation of (8.11) and the
equality (8.12), we obtain an explicit expression for this coefficient, which shows
that it is a non-zero multiple of ϕ1(r). We use the same methods and the equal-
ities (7.1) and (8.3)–(8.7), the equalities (8.8)–(8.10) and the second relation
of (8.11) to compute explicitly the coefficient c1(Pl) when l belongs to the set
{15, 16, 18, 19}, and the coefficient c(Ql) when l belongs to L3, and the coefficients
c(Rl) and c1(Rl) when 0 ≤ l ≤ 2. Finally, the expressions of these coefficients al-
low us to show that the determinants of assertions (iii)–(v) are non-zero multiples
of ϕ1(r) under the appropriate hypotheses. Under the hypotheses of (iii), the non-
vanishing of the determinant of (iii) implies that the polynomials Pl and Pl+1 are
linearly independent; this gives us the last assertion of (iii). ¤

From assertions (iii), (iv) and (v) of Proposition 14.1, we deduce the asser-
tions (i), (ii) and (iii), respectively, of the following:

Proposition 14.2. Let r, s be given integers satisfying the relation (12.13) and
1 ≤ r ≤ s. Let m ≥ 0 be the integer such that s = r + 3m. Let (a, b) be an
element of P.

(i) If r ≥ 2 and (a, b) = (−2,−1), or if m ≥ 1 and (a, b) = (1,−1), or if r ≥ 3
and (a, b) = (−1, 1), the rank of the mapping Ψa,b is ≥ 2.

(ii) If (a, b) = (2, 1), or if r ≥ 2 and (a, b) is equal to (1, 2), or if m ≥ 1 and
(a, b) = (−1,−2), the rank of the mapping Φa,b,1 is ≥ 2.

(iii) The rank of the mapping Φ0,0,2 is ≥ min(r + 1, 3).

Let r, s be given integers satisfying the relation (12.13) and 0 ≤ r ≤ s. Let
m ≥ 0 be the integer such that s = r + 3m. From Proposition 14.1,(i) and a
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remark made above concerning the polynomial J , we infer that the function fr,s

on X does not satisfy the Guillemin condition; thus Proposition 12.5 is true.

Let (a, b) be an element of P; if (a, b) belongs to P1, assume also that m ≥ 1.
Suppose that the space Va,b is non-zero. Let {hl, hl+1, . . . , hl+q} be the generators
of the space Va,b considered in §12. We know that either q = 5 and l = 0, or q = 2
and l ∈ L1, or q = 0 and 24 ≤ l ≤ 35. When (a, b) ∈ P1, we verify that l belongs
to the set L2. We easily see that the non-vanishing of Va,b implies that r ≥ el

and s ≥ e′l, and so the 2-form hl is non-zero. Therefore by Proposition 14.1,(ii),
the polynomials Pl and Jl are non-zero; it follows that

(14.16) rank Ψa,b ≥ 1.

Thus according to a remark made above, hl does not satisfy the Guillemin con-
dition. Hence if q = 0, we have proved that

(14.17) Va,b ∩N2,C = {0}.

Now suppose that q = 2. If (a, b) is equal to (−2,−1), (1,−1), or (−1, 1),
from Proposition 14.2,(i) and (14.16), we obtain the relation (14.11). On the
other hand, if (a, b) belongs to the set {(2, 1), (1, 2), (−1,−2)}, from Proposi-
tion 14.2,(ii) and (14.16), we obtain the relation (14.10), with j = 1. We saw
above that either one of the inequalities (14.10) and (14.11) implies the inequal-
ity (14.12); thus the relations

dim (Va,b ∩N2,C) ≤ 1 = N1(a, b)

always hold when q = 2. Since hl does not belong to N2,C, we see that

σ̃(V ′
a,b) ∩N2,C = {0}

and that the equality (14.17) is true when (r, s, a, b) is equal to (0, 0, 2, 1) or
(1, 1,−2,−1). Finally, assume that q = 5 and (a, b) = (0, 0). When r ≥ 1, accord-
ing to Proposition 14.2,(iii), the rank of the mapping Φ0,0,2 is ≥ 2 and the inequal-
ity (14.10), with j = 2, is true; therefore we obtain the inequality (14.12), and
the first relation of Proposition 12.6,(iii) holds when (r, s) = (1, 1). When r = 0,
we know that the inequality (14.16) holds; thus (14.12) is also true in this case,
and the equality (14.17) holds when s = 0. Thus we have verified all the relations
of Proposition 12.6 involving V0,0. According to Proposition 6.1,(ii), when r ≥ 1,
the polynomial P1 is non-zero and so h1 does not satisfy the Guillemin condition;
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hence the inequality
dim (σ̃(V ′

0,0) ∩N2,C) ≤ 1

holds. Thus we have completed the proof of Propositions 12.6 and 12.7.
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100 rue des Maths
BP 74
38402 Saint-Martin d’Hères, France
E-mail: jacques.gasqui@ujf-grenoble.fr

Hubert Goldschmidt
Department of Mathematics
Columbia University, MC 4406
2990 Broadway
New York, NY 10027, USA
E-mail: hg@math.columbia.edu


