
Pure and Applied Mathematics Quarterly

Volume 8, Number 3

779—802, 2012

Global Classical Solutions of Initial-boundary Value

Problem for the Equations of Time-like Extremal

Surfaces in the Minkowski Space

Qing-You Sun

Abstract: In this paper, we consider the global existence of classical so-
lutions of the mixed initial-boundary value problem for the equations of
time-like extremal surfaces in the (1+n)-dimensional Minkowski space. Un-
der some suitable assumptions, we prove the global existence and uniqueness
of the C2 solution to this kind of problem.
Keywords: initial-boundary value problem, time-like extremal surface,
global classical solution.

1. Introduction

Let (t, x, y1, · · · , yn) be a point in the (1 + (1 + n))-dimensional Minkowski
space. Consider a time-like surface taking the form

y = φ(t, x), (1)

where y = (y1, · · · , yn)T and φ = (φ1, · · · , φn)T . This surface is called to be an
extremal surface if φ is the critical point of the following area functional

I =
∫∫ √

1− |φt|2 + |φx|2 − |φt|2|φx|2 + 〈φt, φx〉2dxdt, (2)
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where 〈·, ·〉 stands for the inner product. The corresponding Euler-Lagrange
equation is (see Kong, Sun and Zhou [8])

( (1 + |φx|2)φt − 〈φt, φx〉φx√
1− |φt|2 + |φx|2 − |φt|2|φx|2 + 〈φt, φx〉2

)
t
−

( (1− |φt|2)φx + 〈φt, φx〉φt√
1− |φt|2 + |φx|2 − |φt|2|φx|2 + 〈φt, φx〉2

)
x

= 0. (3)

If

1− |φt|2 + |φx|2 − |φt|2|φx|2 + 〈φt, φx〉2 > 0,

the system (3) is the equation for time-like extremal surfaces in the Minkowski
space R1+(1+n). It is an interesting model in Lorentzian geometry. It also arises
in some physical contexts and has been investigated by several authors (e.g.,
[6]-[11]). Kong et al investigated the Cauchy problem for the equations of time-
like extremal surfaces in the Minkowski space R1+n, which corresponds to the
motion of an open string in R1+n (see [7]-[8]). Kong and Zhang [10]-[11] study the
motion of relativistic (in particular, closed) strings moving in the Minkowski space
R1+n and show an interesting and important nonlinear phenomenon: the space-
periodicity implies that time-periodicity in the motion of relativistic closed string
in R1+n. Recently, Huang and Kong [2] investigate the equations for the motion
of relativistic torus in the Minkowski space R1+n, and obtain some interesting
results.

The mixed initial-boundary value problem for the equation (3) plays an im-
portant role in electrodynamics and particle physics (see [1]). Recently, Liu and
Zhou [13] have investigated the initial-boundary value problem for the equations
of the time-like extremal surfaces in the Minkowski space. Based on a result
in Li and Peng [12], under some small assumptions they prove the global exis-
tence and uniqueness of the C2 solution of this kind problem. However, for the
mixed initial-boundary value problem with two boundaries case, the assumptions
in [13] are very strong and not easy to apply, and it seems to me that the result
in Li and Peng [12] does not directly work in this case. In this paper, we shall
weaken these assumptions in [13], improve the proof of the global existence of
the solutions for the mixed initial-boundary value problem with two boundaries
conditions and show the global existence for the problem with one boundary
condition in a different way.
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This paper is organized as follows. In Section 2, we state the main results.
Section 3 is devoted to prove Theorems 2.1-2.2 for the problem with two boundary
conditions. Theorems 2.3-2.4 for the problem with one boundary condition are
proved in Section 4.

2. Statement of Main Results

Following Kong et al [8], let

u = φx, v = φt. (4)

Then the system (3) can be reduced to




ut − vx = 0,

vt − 2〈u, v〉
1 + |u|2 vx − 1− |v|2

1 + |u|2 ux = 0.
(5)

The above system has two district eigenvalues with constant multiplicity n, de-
noted by

λ±(u, v) =
1

1 + |u|2
(−〈u, v〉 ±

√
4(u, v)

)
, (6)

where

4(u, v) = 1− |v|2 + |u|2 − |u|2|v|2 + 〈u, v〉2 > 0. (7)

As in [8], introducing

Ri = vi + λ−ui, Si = vi + λ+ui (i = 1, · · · , n), (8)

by a direct computation, we have (see [8])




∂tλ+ + λ−∂xλ+ = 0,

∂tλ− + λ+∂xλ− = 0,

∂tSi + λ−∂xSi = 0,

∂tRi + λ+∂xRi = 0.

(9)

In this paper, we consider the global existence of classical solutions of the
mixed initial-boundary value problem for the system (3) in time-like case with
the initial condition

t = 0 : φ = f(x), φt = g(x), (10)
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where f is a vector-valued C2 function and g is a vector-valued C1 function. In
terms of f and g, the initial date for λ± and Ri, Si (i = 1, · · · , n) is given by

t = 0 :
λ+ = Λ+(x), λ− = Λ−(x),

Ri = R0
i (x), Si = S0

i (x) (i = 1, · · · , n),
(11)

where

Λ±(x) = (1 + |f ′|2)−1
(− 〈f ′, g〉 ±

√
1− |g|2 + |f ′|2 − |f ′|2|g|2 − 〈f ′, g〉2) (12)

and

R0
i (x) = gi(x) + Λ−(x)f ′i(x), S0

i (x) = gi(x) + Λ+(x)f ′i(x). (13)

In what follows, we state our main results in this paper.

2.1. Two Boundaries Case. We first consider the global existence of classical
solutions of the mixed initial-boundary value problem for the system (3) in time-
like case on the strip domain

D = {(t, x)| t ≥ 0, 0 ≤ x ≤ L}
with the initial data (10) and

(i) the Neumann boundary conditions

x = 0 : φx(t, 0) = h1(t),

x = L : φx(t, L) = h2(t),
(14)

where h1 and h2 are two vector-valued C1 functions, or
(ii) the Dirichlet boundary conditions

x = 0 : φ(t, 0) = H1(t),

x = L : φ(t, L) = H2(t),
(15)

where H1 and H2 are two vector-valued C2 functions.

For the mixed initial-boundary value problem for the system (3) with the initial
condition (10) and the Neumann boundary condition (14), we suppose that the
following compatibility conditions are satisfied at point (0, 0) and (0, L),





f ′(0) = h1(0), h′1(0) = g′(0),

f ′(L) = h2(0), h′2(0) = g′(L).
(16)
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Thus by (4), the initial-boundary value problem (3), (10) and (14) can be rewrit-
ten as





ut − vx = 0,

vt − 2〈u, v〉
1 + |u|2 vx − 1− |v|2

1 + |u|2 ux = 0,

t = 0 : u = f ′(x), v = g(x),

x = 0 : u = h1(t),

x = L : u = h2(t).

(17)

Throughout this paper, for the case of the strip domain D, we always suppose
that the initial data satisfies

−1 ≤ sup
x∈[0,L]

Λ−(x) ≤ −a < 0 < a ≤ inf
x∈[0,L]

Λ+(x) ≤ 1, (18)

where a is positive constant.

Let F (t) be a positive function satisfying

F (t) > 0 is decreasing on [0,+∞), and F (0) +

∫ +∞
0 F (t)dt

L
≤ a

4
. (19)

If the Neumann boundary data (14) satisfies

|h1(t)| ≤ F (t), |h2(t)| ≤ F (t), ∀ t ∈ [0,+∞), (20)

then in Section 3 we shall prove the following global existence result on the
classical solutions of the initial-boundary value problem (3), (10) and (14).

Theorem 2.1. Suppose that the initial data (10) and the Neumann boundary
(14) satisfy (18), (20) and the C2 compatibility (16), then the initial-boundary
value problem (3), (10) and (14) admits a unique global C2 solution φ = φ(t, x)
on the strip domain D.

If the Dirichlet boundary condition (15) satisfies

|H ′
1(t)| ≤ 2F (t), |H ′

2(t)| ≤ 2F (t), ∀ t ∈ [0,+∞), (21)
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and the following C2 compatibility conditions,




f(0) = H1(0), H ′
1(0) = g(0),

H ′′
1 (0)− 2f ′(0) · g(0)

1 + f ′2(0)
g′(0)− 1− g2(0)

1 + f ′2(0)
f ′′(0) = 0,

f(L) = h2(0), H ′
1(0) = g(L),

H ′′
2 (0)− 2f ′(L) · g(L)

1 + f ′2(L)
g′(L)− 1− g2(L)

1 + f ′2(L)
f ′′(L) = 0,

(22)

then in Section 3 we can prove the following global existence result on the strip
domain D.

Theorem 2.2. Suppose that the initial data (10) and the Dirichlet boundary (15)
satisfy (18), (21) and the conditions of C2 compatibility (22), then the initial-
boundary value problem (3), (10) and (15) admits a unique global C2 solution
φ = φ(t, x) on the strip domain D.

Remark 2.1. If the boundary conditions of the system (3) on x = 0 and x = L

are not of the same type, for example, one is Neumann boundary condition and
the other is Dirichlet boundary condition, then under some assumptions similar
to that in Theorems 2.1-2.2, we can prove the global existence of classical solu-
tions of the system (3) similarly.

Remark 2.2. The condition (18) is necessary. Otherwise, the solution may blow
up in finite time (see [9]). For the details on blowup phenomena, we refer to Kong
[3]-[5] .

2.2. One Boundary Case. We next consider the global existence of classical
solutions of the mixed initial-boundary value problem for the system (3) in time-
like case on the domain

Ω = {(t, x)| t ≥ 0, x ≥ 0}

with the initial data (10) and

(i) the Neumann boundary condition

x = 0 : φx(t, 0) = h(t), (23)

where h is a vector-valued C1 function, or
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(ii) the Dirichlet boundary condition

x = 0 : φ(t, 0) = H(t), (24)

where H is a vector-valued C2 function.

For the initial condition (10) and the Neumann boundary condition (23), we
suppose that the following compatibility conditions are satisfied at point (0, 0),

f ′(0) = h(0), h′(0) = g′(0). (25)

Thus by (4), the initial-boundary value problem (3), (10) and (23) can be rewrit-
ten as 




ut − vx = 0,

vt − 2〈u, v〉
1 + |u|2 vx − 1− |v|2

1 + |u|2 ux = 0,

t = 0 : u = f ′(x), v = g(x),

x = 0 : u = h(t).

(26)

Throughout this paper, for the domain Ω we suppose that the initial data
satisfies 




sup
x∈R+

Λ−(x) ≤ −a < 0 < b ≤ inf
x∈R+

Λ+(x),

M , sup
x∈R+

{
|f ′(x)|+ |g(x)|

}
< ∞,

M ′ , sup
x∈R+

{
|f ′′(x)|+ |g′(x)|

}
< ∞,

(27)

where a and b are two positive constants. Without loss of generality, we assume
a < b (Otherwise, we can always replace a smaller number a′).

If the Neumann boundary condition (23) satisfies

|h(t)| ≤ b− a

2
, (28)

then we shall prove the following global existence result in Section 4.

Theorem 2.3. Suppose that the initial data (10) and the Neumann boundary
condition (23) satisfy (27), (28) and the C2 compatibility (25), then the initial-
boundary value problem (3), (10) and (23) admits a unique global C2 solution
φ = φ(t, x) on the domain Ω.

If the Dirichlet boundary condition (24) satisfies

|H ′(t)| ≤ b− a (29)
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and the following C2 compatibility conditions,




f(0) = H(0), H ′(0) = g(0),

H ′′(0)− 2f ′(0) · g(0)
1 + f ′2(0)

g′(0)− 1− g2(0)
1 + f ′2(0)

f ′′(0) = 0,
(30)

then in Section 4 we can prove the following global existence result on the domain
Ω.

Theorem 2.4. Suppose that the initial data (10) and the Dirichlet boundary
condition (24) satisfy (27), (29) and the conditions of C2 compatibility (30),
then the initial-boundary value problem (3), (10) and (24) admits a unique global
C2 solution φ = φ(t, x) on the domain Ω.

Remark 2.3. As shown in Remark 2.2, the first inequality in (27) is necessary.

3. Proof of Theorems 2.1-2.2

To prove Theorem 2.1, we need the following Lemmas.

Lemma 3.1. Under the assumptions (16), (18) and (20), the following Cauchy
problem 




∂tλ+ + λ−∂xλ+ = 0,

∂tλ− + λ+∂xλ− = 0,

t = 0 : λ+ = Λ+(x), λ− = Λ−(x)

(31)

has a unique global smooth solution λ = λ±(t, x) on the strip domain D. Fur-
thermore, on D it holds that

−1 ≤ λ−(t, x) ≤ −a

2
< 0 <

a

2
≤ λ+(t, x) ≤ 1. (32)

Proof. The global existence and uniqueness of the smooth solution to the Cauchy
problem (31) comes from Kong, Sun and Zhou [8] (see Property 2.1 in [8]).
Moreover, it holds that

−1 < λ+(t, x) ≤ 1, −1 ≤ λ−(t, x) < 1 (33)

(see Property 2.2 in [8]).

Denoting

Di ,
{

(t, x) | iL ≤ t ≤ (i + 1)L, 0 ≤ x ≤ L
}

(i = 0, 1, · · · ), (34)
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we prove this Lemma on every Di.

We claim that

−1 ≤ λ−(t, x) < 0 < λ+(t, x) ≤ 1, ∀ (t, x) ∈ D. (35)

We prove (35) by contradiction.

Suppose that (35) is not true, then

T0 , inf
{

t ∈ (0,+∞)
∣∣∣ there is a x0 ∈ [0, L] such that

λ−(t, x0) = 0 or λ+(t, x0) = 0
}

> 0. (36)

For any constant ε > 0, we have by continuity

−1 ≤ λ−(t, x) < 0 < λ+(t, x) ≤ 1, ∀ (t, x) ∈ Dε,

where Dε ,
{

(t, x) | 0 ≤ t ≤ T0 − ε, 0 ≤ x ≤ L
}

. Therefore for t ≤ T0 − ε,
noting (6), we have √

4(u, v) > |〈u, v〉|.
It follows that

1− |v|2 + |u|2 − |u|2|v|2 = (1− |v|2)(1 + |u|2) > 0,

that is
|v| < 1. (37)

For any fixed (t, x) ∈ D0 ∩Dε, we draw the forward characteristic. According
to (33), there are only the following two possibilities shown in Figure 1.

Figure 1: Forward characteristic passing through the point P in D0.

(a) (b)
x

t

x

t

-

6

0 L

L

P

A

`1

-

6

0 L

L

P

A

B

`1

`2
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Case 1. The forward characteristic `1 : x = x1(t, x) intersects x-axis at a point
A(0, α) (see Figure 1(a)), where `1 is defined by





dx1(t)
dt

= λ+(t, x1(t, α)),

x1(0, α) = α.

By the second equation in (31), λ−(t, x) is constant along `1, i.e.,

λ−(P ) = λ−(A).

It follows from (18) that

−1 ≤ λ−(P ) ≤ −a. (38)

Case 2. The forward characteristic `1 : x = x1(t, x) intersects t-axis at a point
A(γ, 0) and the backward characteristic `2 : x = x2(t, x) passing through the
point A intersects x-axis at a point B(0, β) (see Figure 1(b)), where `2 is defined
by 




dx2(t)
dt

= λ−(t, x2(t, β)),

x2(0, β) = β.

Then we have 



λ−(P ) = λ−(A),

λ+(A) = λ+(B).

Noting (6) and (37), we have

λ−(P ) + λ+(B) = λ−(A) + λ+(A)

= − 2〈h1, v〉
1 + |h1|2 (0, γ) ≤ 2|h1|

1 + |h1|2 (γ).

It follows that

λ−(P ) ≤ −λ+(B) +
2|h1|

1 + |h1|2 (γ) ≤ −
(

a− 2|h1|
1 + |h1|2 (γ)

)
. (39)

Combining Case 1 and Case 2 gives

− 1 ≤ λ−(t, x) ≤ −
(

a− 2|h1|
1 + |h1|2 (t0)

)
,

∀ (t, x) ∈ D0 ∩Dε, ∃ t0 ∈
[

0, min{L, T0 − ε}]. (40)
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In the similar way, we can get

a− 2|h2|
1 + |h2|2 (t0) ≤ λ+(t, x) ≤ 1,

∀ (t, x) ∈ D0 ∩Dε, ∃ t0 ∈
[

0, min{L, T0 − ε}]. (41)

Taking λ±(L, x) as the new initial data on t = L if L < T0 − ε and repeating
the previous procedure, then in D1 ∩Dε we have

−1 ≤λ−(t, x) ≤ −
(

a−
1∑

i=0

2|h|
1 + |h|2 (ti)

)
< 0 < a−

1∑

i=0

2|h|
1 + |h|2 (ti) ≤ λ+(t, x) ≤ 1,

∀ (t, x) ∈ D1 ∩Dε, ∃ ti ∈
[
iL, min{(i + 1)L, T0 − ε}] (i = 0, 1), (42)

where h(t) = max
{
h1(t), h2(t)

}
.

Repeating this procedure at most N =
[
T0 − ε

L

]
+ 1 times, we get

− 1 ≤ λ−(t, x) ≤ −
(

a−
n∑

i=0

2|h|
1 + |h|2 (ti)

)
≤ −

(
a−

n∑

i=0

2|h|(ti)
)

,

1 ≥ λ+(t, x) ≥ a−
n∑

i=0

2|h|
1 + |h|2 (ti) ≥ a−

n∑

i=0

2|h|(ti),

∀ (t, x) ∈ Dn ∩Dε (0 ≤ n ≤ N − 1),

∃ ti ∈
[
iL, min{(i + 1)L, T0 − ε}] (i = 0, 1, · · · , n).

(43)
Noting (20), we have (see Figure 2)

∞∑

i=0

|h|(ti) ≤
∞∑

i=0

sup
t∈[iL, (i+1)L]

|h|(t) ≤
∞∑

i=0

sup
t∈[iL, (i+1)L]

F (t)

=
∞∑

i=0

F (iL) =
A
L

≤ F (0) · L +
∫ +∞
0 F (t)dt

L

= F (0) +

∫ +∞
0 F (t)dt

L
,

where A denotes the area of the shaded part in Figure 2.
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6

-

Figure 2: the figure of curve F (t) and series F (iL) (i = 0, 1, · · · ).

F(t)

t-L 0 L 2L 3L 4L 5L 6L

Therefore by (19), it follows from (43) that

− 1 ≤ λ−(t, x) ≤ −(a− a

2
) = −a

2
< 0,

1 ≥ λ+(t, x) ≥ a− a

2
=

a

2
> 0, ∀ (t, x) ∈ [0, T0 − ε]× [0, L]. (44)

By the randomicity of ε and the continuity of λ±(t, x), let ε → 0, we can get

−1 ≤ λ−(T0, x) < 0 < λ+(T0, x) ≤ 1, ∀ x ∈ [0, L]. (45)

This is a contradiction with (36), so (35) holds.

(32) can be proved similar to (44). Thus the proof of Lemma 3.1 is completed.

For the following Lemmas 3.2-3.3, we denote




M0 , sup
x∈[0, L]

{
|f ′(x)|+ |g(x)|

}
,

M ′
0 , sup

x∈[0, L]

{
|f ′′(x)|+ |g′(x)|

}
.

(46)

Noting (20) and f ′, g ∈ C1[0, L], we have

M0 < ∞, M ′
0 < ∞.
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Lemma 3.2. Assume that Ri and Si(i = 1, · · · , n) satisfy (9) and (11), then

max
i=1,··· , n

{
|Ri(t, x)|, |Si(t, x)|

}
≤ C0, ∀(t, x) ∈ D, (47)

where C0 is a positive constant only depending on a and M0.

Proof. By (13) and (33), we can use the initial data and boundary condition to
estimate Ri and Si (i = 1, · · · , n).

For any fixed point P : (t, x) ∈ D, we draw the forward characteristic. Accord-
ing to (33), there are only the following two possibilities shown in Figure 3.

Figure 3: Forward characteristic passing through the point P in D.

(a) (b)
x

t

x

t

-

6

0 L

P

A

`1

-

6

0 L

P

A

`1

Case 1. The forward characteristic `1 : x = x1(t, x) intersects x-axis at a point
A(0, α) (see Figure 3(a)),where `1 satisfies





dx1(t)
dt

= λ+(t, x1(t, α)),

x1(0, α) = α.

By the last equation in the system (9), Ri(t, x) is constant along `1, i.e.,

Ri(P ) = R0
i (A) (i = 1, · · · , n).

By (13) and (33), we have

|R0
i (A)| ≤ |gi(A)|+ |f ′i(A)| ≤ M0 (i = 1, · · · , n).

It yields

|Ri(P )| ≤ M0 (i = 1, · · · , n). (48)
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Case 2. The forward characteristic `1 : x = x1(t, x) intersects t-axis at a point
A(γ, 0) (see Figure 3(b)).

Then by (8), (33) and (37), we get

|Ri(P )| = |Ri(A)| ≤ |vi(A)|+ |λ−||ui(A)|
≤ 1 + |h1(A)|
≤ 1 +

a

4
(i = 1, · · · , n). (49)

Combining (48) and (49) gives

|Ri(t, x)| ≤ K1 (i = 1, · · · , n), (50)

where K1 is a positive constant only depending on a and M0.

By the same way, we can obtain

|Si(t, x)| ≤ K2 (i = 1, · · · , n), (51)

where K2 is a positive constant only depending on a and M0. Thus the proof of
Lemma 3.2 is completed.

Denote
N0(T ) , sup

t∈[0,T ]

{
|h′1(t)|+ |h′2(t)|

}
. (52)

Since h1(t), h2(t) ∈ C1(R+), for any given T we have

N0(T ) < ∞.

Next, we estimate the C1 norm of λ±, Ri and Si (i = 1, · · · , n).

Lemma 3.3. Assume that λ±, Ri and Si (i = 1, · · · , n) satisfy (9) and (11),
then for any given T0,

max
(t,x)∈ D̃(T0)

{
|∂xλ±(t, x)|, max

i=1,··· , n

{
|∂xRi(t, x)|, |∂xSi(t, x)|

}}
≤ C1, (53)

where D̃(T0) , {(t, x)| 0 ≤ t ≤ T0, 0 ≤ x ≤ L} and C1 is a positive constant only
depending on a, M0, M ′

0, N0(T0) and T0.

Proof. Noting (33), by divide the strip domain D into L×L areas (see the notation
(34)), we can find that the characteristic in every area intersect the boundary only
one time. Then we can prove this Lemma by establishing a connection between
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|∂xλ±(t, x)|, |∂xRi(t, x)|, |∂xSi(t, x)| and |∂xΛ±(x)|, |∂xR0
i (x)|, |∂xS0

i (x)| (i =
1, · · · , n) in every area.

By direct computations, from (9) we can get




(∂t + λ−∂x)
(
(λ+ − λ−)∂xλ+

)
= 0,

(∂t + λ+∂x)
(
(λ+ − λ−)∂xλ−

)
= 0,

(∂t + λ−∂x)
(
(λ+ − λ−)∂xSi

)
= 0,

(∂t + λ+∂x)
(
(λ+ − λ−)∂xRi

)
= 0.

(54)

For any fixed point P (t, x) ∈ D0, where D0 is defined in (34), we draw the
forward characteristic through it. According to (33), there are only the following
two possibilities shown in Figure 1.

Case 1. The forward characteristic `1 : x = x1(t, x) intersects x-axis at a point
A(0, α) (see Figure 1(a)),where `1 satisfies





dx1(t)
dt

= λ+(t, x1(t, α)),

x1(0, α) = α.

By (54), we get

(λ+(t, x)− λ−(t, x))∂xλ−(t, x) = (Λ+(α)− Λ−(α))∂xΛ−(α). (55)

Noting (32), we have

|∂xλ−(t, x)| =
∣∣∣∣

Λ+(α)− Λ−(α)
λ+(t, x)− λ−(t, x)

∣∣∣∣ |∂xΛ−(α)|

≤ 2
a
|∂xΛ−(α)|. (56)

Case 2. The forward characteristic `1 : x = x1(t, x) intersects t-axis at a point
A(γ, 0) and the backward characteristic `2 : x = x2(t, x) passing through the
point A intersects x-axis at a point B(0, β) (see Figure 1(b)), where `2 satisfies





dx2(t)
dt

= λ−(t, x2(t, β)),

x2(0, β) = β.

By (8), on the t-axis we have

∂tvi(γ, 0) = ∂tSi(γ, 0)− ∂tλ+(γ, 0)h1i(γ)− λ+(γ, 0)h′1i(γ) (i = 1, · · · , n).
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Along `2, by (9), (32) and (20), we have

|∂tvi(γ, 0)| ≤ |∂tSi(γ, 0)|+ |∂tλ+(γ, 0)| · |h1i(γ)|+ |λ+(γ, 0)| · |h′1i(γ)|
≤ |λ−∂xSi(γ, 0)|+ |λ−∂xλ+(γ, 0)| · |h1i(γ)|+ |λ+(γ, 0)| · |h′1i(γ)|
≤ |∂xSi(γ, 0)|+ a

4
|∂xλ+(γ, 0)|+ N0(T0), (57)

where i = 1, · · · , n.

It follows from (54) that




(λ+(γ, 0)− λ−(γ, 0))∂xλ+(γ, 0) = (Λ+(β)− Λ−(β))∂xΛ+(β),

(λ+(γ, 0)− λ−(γ, 0))∂xSi(γ, 0) = (Λ+(β)− Λ−(β))∂xS0
i (β),

(58)

where i = 1, · · · , n. Hence, by (32) we have




|∂xλ+(γ, 0)| ≤ 2
a
|∂xΛ+(β)|,

|∂xSi(γ, 0)| ≤ 2
a
|∂xS0

i (β)|.
(59)

where i = 1, · · · , n. Then (57) becomes

|∂tvi(γ, 0)| ≤ K1(|∂xΛ+(β)|+ |∂xS0
i (β)|+ 1), (60)

where i = 1, · · · , n and K1 is a positive constant only dependent of a and N0(T0).
By (54) we have, along `1,

(λ+(t, x)− λ−(t, x))∂xλ−(t, x) = (λ+(γ, 0)− λ−(γ, 0))∂xλ−(γ, 0). (61)

On the other hand, by (6) and (37),

|∇uλ−(h1, v)|

=
∣∣∣∣

1
(1 + h2

1)2

[
(1 + h2

1)
(
−v − 2(1− v2)h1 + 2〈h, v〉v

2
√4

)
+ 2(〈h, v〉+

√
4)h

]∣∣∣∣
≤K2, (62)

where K2 is a positive constant only dependent of a. Here, we have made use of

1√
4(u, v)

≤ 2
a
, (63)

which is derived from (6) and (32) by

2
√
4(u, v)

1 + |u|2 = λ+ − λ− ≥ a. (64)
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Similarly, we have

|∇vλ−(h1, v)| ≤ K3, (65)

where K3 is a positive constant only dependent of a.

Then by (32), (9), (60), (62) and (65), we have

|∂xλ−(t, x)| ≤ 2
a
|∂xλ−(γ, 0)|

=
2
a

∣∣∣∣−
1

λ+(γ, 0)
∂tλ−(γ, 0)

∣∣∣∣

≤ 4
a2
|∂tλ−(γ, 0)|

≤ 4
a2

[|∇uλ−(h1, v)| · |h′1(γ)|+ |∇vλ−(h1, v)| · |∂tv(γ)|]

≤ K4

(|∂xΛ+(β)|+ |∂xS0
i (β)|+ 1

)
, (66)

where i = 1, · · · , n and K4 is a positive constant only dependent of a and N0(T0).

Combining (56) and (66) leads to

|∂xλ−(t, x)| ≤ K5

(|∂xΛ+(β)|+ |∂xS0
i (β)|+ 1

)
, ∀ (t, x) ∈ D0, (67)

where i = 1, · · · , n and K5 is a positive constant only dependent of a and N0(T0).

Similar estimates can be obtained in D0 for |∂xλ+(t, x)|, max
i=1,··· ,n

{
|∂xRi(t, x)|

}

and max
i=1,··· ,n

{
|∂xSi(t, x)|

}
. Thus we can get

|∂xλ+(t, x)|+ |∂xλ−(t, x)|+ max
i=1,··· ,n

{
|∂xRi(t, x)|

}
+ max

i=1,··· ,n

{
|∂xSi(t, x)|

}
+ 1

≤K6

(
sup |∂xΛ+|+ sup |∂xΛ−|+ max

i=1,··· ,n

{
sup |∂xR0

i |
}

+ max
i=1,··· ,n

{
sup |∂xS0

i |
}

+ 1
)

,

∀ (t, x) ∈ D0, (68)

where K6 is a positive constant only dependent of a and N0(T0). Here we may
assume that K6 ≥ 1.

Taking ∂xλ±(L, x), ∂xRi(L, x) and ∂xSi(L, x) (i = 1, · · · , n) as the new initial
data on t = L and repeating the previous procedure, then for any (t, x) in D1 we
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have

|∂xλ+(t, x)|+ |∂xλ−(t, x)|+ max
i=1,··· ,n

{
|∂xRi(t, x)|

}
+ max

i=1,··· ,n

{
|∂xSi(t, x)|

}
+ 1

≤K6

(
sup |∂xλ+(L, ·)|+ sup |∂xλ−(L, ·)|+ max

i=1,··· ,n

{
sup |∂xRi(L, ·)|

}

+ max
i=1,··· ,n

{
sup |∂xSi(L, ·)|

}
+ 1

)

≤K6K7

(
sup |∂xΛ+|+ sup |∂xΛ−|+ max

i=1,··· ,n

{
sup |∂xR0

i |
}

+ max
i=1,··· ,n

{
sup |∂xS0

i |
}

+ 1
)
. (69)

where K7 is a positive constant only dependent of a and N0(T0).

Repeating this procedure at most N =
[
T0

L

]
+ 1 times, we get

|∂xλ+(t, x)|+ |∂xλ−(t, x)|+ max
i=1,··· ,n

{
|∂xRi(t, x)|

}
+ max

i=1,··· ,n

{
|∂xSi(t, x)|

}
+ 1

≤K8(N)
(

sup |∂xΛ+|+ sup |∂xΛ−|+ max
i=1,··· ,n

{
sup |∂xR0

i |
}

+ max
i=1,··· ,n

{
sup |∂xS0

i |
}

+ 1
)
, ∀ t ∈ [0, T0], (70)

where K8(N) is a positive constant only dependent of a, N0(T0) and T0.

Noting (12), (13) and (33), we have

|∂xΛ+|+ |∂xΛ−|+ max
i=1,··· ,n

{
|∂xR0

i |
}

+ max
i=1,··· ,n

{
|∂xS0

i |
}
≤ K9, (71)

where K9 is a positive constant only dependent of M0 and M ′
0.

So for any constant (t, x) ∈ [0, T0]× [0, L], we finally have

|∂xλ+(t, x)|+ |∂xλ−(t, x)|+ max
i=1,··· ,n

{
|∂xRi(t, x)|

}
+ max

i=1,··· ,n

{
|∂xSi(t, x)|

}
+1 ≤ K,

(72)
where K is a positive constant only depending on a, M0, M ′

0, N0(T0) and T0.
Thus the proof of Lemma 3.3 is completed.

Proof of Theorem 2.1. By (4), if the classical solution of system (17) exist
globally, then we can obtain the conclusion of Theorem 2.1.

Noting (8), we have

ui(t, x) =
Si(t, x)−Ri(t, x)
λ+(t, x)− λ−(t, x)

, vi(t, x) =
λ+Ri(t, x)− λ−Si(t, x)

λ+(t, x)− λ−(t, x)
, (73)
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where i = 1, · · · , n.

For the initial-boundary value problem (3), (10) and (14), noting (73), under
the assumptions of Theorem 2.1, by Lemmas 3.1-3.3 we can get a priori uniform
estimate of C1 norm of u and v, i.e. system (17) admits a unique global C1

solution. Thus the proof of Theorem 2.1 is completed.

Similar to Lemmas 3.1-3.3, we have the following Lemmas for Dirichlet bound-
ary conditions.

Lemma 3.4. Under the assumptions (22), (18) and (21), the Cauchy problem
(31) has a unique global smooth solution λ = λ±(t, x) on the strip domain D.
Furthermore, on D it holds that

−1 ≤ λ−(t, x) ≤ −a

2
< 0 <

a

2
≤ λ+(t, x) ≤ 1. (74)

The proof of Lemma 3.4 is similar to that of Lemma 3.1, so we omit the details
here. The only difference is that similar to (43) we can get

− 1 ≤ λ−(t, x) ≤ −
(

a−
n∑

i=0

2〈u,H ′〉
1 + |u|2 (ti)

)
≤ −

(
a−

n∑

i=0

|H ′|(ti)
)

,

1 ≥ λ+(t, x) ≥ a−
n∑

i=0

2〈u,H ′〉
1 + |u|2 (ti) ≥ a−

n∑

i=0

|H ′|(ti),

∀ (t, x) ∈ Dn ∩Dε (0 ≤ n ≤ N − 1),

∃ ti ∈
[
iL, min{(i + 1)L, T0 − ε}] (i = 0, 1, · · · , n),

(75)
where H(t) = max

{
H1(t), H2(t)

}
and Dn, Dε, N are defined as before. Then

by (21) we can get the similar conclusion to (44).

Lemma 3.5. Assume that Ri and Si (i = 1, · · · , n) satisfy (9) and (11), then

max
i=1,··· ,n

{
|Ri(t, x)|, |Si(t, x)|

}
≤ C0, ∀ (t, x) ∈ D, (76)

where C0 is a positive constant only dependent of a and M0.

Proof. The proof of Lemma 3.5 is similar to that of Lemma 3.2, the only thing
should be detailed here is the estimate of |u(t, x)| on the boundaries. In what
follows, we estimate |u|.
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Let θ ∈ [0, π] be the angle between the vectors u and H ′ (H ′ denotes H ′
1 or

H ′
2). Then it follows from (6) that

(1 + |u|2)λ± + |u||H ′| cos θ =
√

1− |H ′|2 + |u|2 − |u|2|H ′|2 + |u|2|H ′|2 cos2 θ

on the boundaries. It yields that

(1 + |u|2)λ2
± + |H ′|2 + 2λ±|u||H ′| cos θ = 1. (77)

By | cos θ| ≤ 1 we have

(1 + |u|2)λ2
± + |H ′|2 − 2λ±|u||H ′| ≤ 1.

That is,
(|u|λ± − |H ′|)2 ≤ 1− λ2

±.

It follows from (74) that

|u| ≤
|H ′|+

√
1− λ2±

|λ±| ≤ a + 2
a

. (78)

Thus the proof of Lemma 3.5 is completed.

Lemma 3.6. Assume that λ±, Ri and Si (i = 1, · · · , n) satisfy (9) and (11),
then for any given T0,

max
{
|∂xλ±(t, x)|, max

i=1,··· ,n

{
|∂xRi(t, x)|, |∂xSi(t, x)|

}}
≤ C1 (79)

for any (t, x) ∈ D̃(T0) , {(t, x)| 0 ≤ t ≤ T0, 0 ≤ x ≤ L}, where C1 is a positive
constant only dependent of a, M0, M ′

0, N0(T0) and T0.

The proof of Lemma 3.6 is similar to that of Lemma 3.3, so we omit it here.

Proof of Theorem 2.2. Under the assumptions of Theorem 2.2, by Lemma
3.4-3.6 and noting (73), we can get a priori uniform estimates of C1 norm of u

and v. Then the initial-boundary value problem (3), (10) and (15) has a unique
global C2 solution. Thus the proof of Theorem 2.2 is completed.

Remark 3.1. Noting that we consider the boundary conditions respectively in
the proof of Theorems 2.1-2.2, so Remark 2.1 is correct similarly.

Remark 3.2. Comparing Liu and Zhou [13], we observe that Theorems 2.1-2.2
have two main different points as follows.
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(i) the boundary conditions:
In [13], the Neumann boundary datum (respectively the Dirichlet bound-
ary datum) are small and decaying, i.e.

{
|h1(t)|+ |h2(t)|

}
≤ ε

(1 + t)1+µ

(
respectively

{
|H ′

1(t)|+ |H ′
2(t)|

}
≤ ε

(1 + t)1+µ

)
,

(80)

where µ is an arbitrary positive constant and ε is a positive constant only
depending on a and µ. Apparently they are special case of our conditions.

(ii) the estimates of ||λ±(t, x)||C1, ||Ri(t, x)||C1 and ||Si(t, x)||C1 (i = 1, · · · , n):
In [13], Liu and Zhou prove that ||λ±(t, x)||C1, ||Ri(t, x)||C1 and
||Si(t, x)||C1 (i = 1, · · · , n) are bounded by using Theorem 2.1 in [12]
directly for system (9). But it seems that the derived boundary condi-
tions of system (9) do not satisfy the condition of Theorem 2.1 in [12].
We give a rigorous proof (Lemma 3.3) in a different way.

4. Proof of Theorems 2.3-2.4

In [13], Liu and Zhou prove Theorems 2.3-2.4. We can prove them in a different
way by using some results in [13] and the following Lemma.

Lemma 4.1. Assume that for any given T0 > 0, the following mixed initial-
boundary value problem





∂tr + λ(s)∂xr = 0,

∂ts + µ(r)∂xs = 0,

t = 0 : r = r0(x), s = s0(x),

x = 0 : s = w(t, r),

(81)

where r0, s0 and w are all C1 functions and




λ(s) < 0 < µ(r),

m , sup
x∈R+

{
|r′0(x)|+ |s′0(x)|

}
< ∞,

admits a unique C1 solution (r, s) =
(
r(t, x), s(t, x)

)
on the domain D̃(T ) ,

{(t, x)| 0 ≤ t ≤ T, x ≥ 0} with 0 < T ≤ T0, then the following a priori uniform
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estimate on the C0 norm of solution holds

||r(t, ·)||C0 + ||s(t, ·)||C0 ≤ C(T0), ∀ t ∈ [0, T ],

where C(T0) is a positive constant depending on T0. Then the mixed initial-
boundary value problem (81) admits a unique global C1 solution (r, s) =

(
r(t, x), s(t, x)

)

on the domain Ω = {(t, x)| t ≥ 0, x ≥ 0}.

From the proof of Theorem 2.1 in [12], we can get Lemma 4.1 directly. So we
omit it here.

Proof of Theorem 2.3. For the initial-boundary value problem (3), (10) and
(23), under the assumptions of Theorem 2.3, Liu and Zhou have proved that
||λ±(t, x)||C0 , ||Ri(t, x)||C0 , ||Si(t, x)||C0 (i = 1, · · · , n) are bounded and λ+−λ−
has a positive lower bound on the domain Ω by using the similar methods to
(40) and (47)(see Lemma 2.1 and Lemma 2.2 in [13]). Then according to Lemma
4.1, we find that ||λ±(t, x)||C1 , ||Ri(t, x)||C1 and ||Si(t, x)||C1 (i = 1, · · · , n) are
bounded. Therefore by (73) we get the global existence and uniqueness of the C1

solution of system (26). Thus the proof of Theorem 2.3 is completed.

Remark 4.1. To prove Theorem 2.3, by using Lemma 4.1, we need to check that
if the boundary condition of system (9) satisfies the conditions of Lemma 4.1.
Noting (6) and (8), we can get the boundary condition of system (9) as follow

λ−(t, 0) = λ+(t, 0)− 2
√
4(h(t), v(t, 0))
1 + |h(t)|2 ∀ t ≥ 0 (82)

for the first two equations of system (9) and

Ri(t, 0) = Si(t, 0)− (λ+(t, 0)− λ−(t, 0))hi(t) (i = 1, · · · , n) ∀ t ≥ 0 (83)

for the last two equations of system (9). By the similar way how to get (60),
we can get the estimate of |∂tv| on t-axis. That means the right term of (82)
is C1 with respect to t, i.e. it satisfies the boundary condition of (81). Then
by Lemma 4.1 we have ||λ±(t, x)||C1 are bounded. So |∂tλ±(t, x)| are C1 respect
to t on t-axis. Then by Lemma 4.1, it follows from (83) that ||Ri(t, x)||C1 and
||Si(t, x)||C1 (i = 1, · · · , n) are bounded.

Proof of Theorem 2.4. For the initial-boundary value problem (3), (10) and
(24), under the assumptions of Theorem 2.4, by the similar methods to the proof
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of Theorem 2.3, we can get the global existence and uniqueness of the C2 solution
of system (3). Thus the proof of Theorem 2.4 is completed.

Remark 4.2. In the proof of Theorems 2.3-2.4, the main difference between this
paper and Liu et al [13] is that we use the conclusion of (60) and Lemma 4.1
(Lemma 4.1 can be regarded as a direct extent of the result of [13]) to get the
estimates of ||λ±(t, x)||C1, ||Ri(t, x)||C1 and ||Si(t, x)||C1 (i = 1, · · · , n) directly;
however, Liu and Zhou get the estimates by the characteristic method in detail.
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