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The Model of Paths

Zhixiang Wu

Abstract: In the present paper, we define a new kind of model of paths.
Using this new model, we obtain the well-known first Weyl character formula
and prove the decomposition theorem of the tensor product of two simple
modules over a Kac-Moody algebra.
Keywords: Affine Lie algebras, Weyl formula, path model.

1. Introduction

The aim of the present paper is to introduce a new path model. This new path
model consists of Littelmann’s paths([5,6]) and a new kind of operators acting
on Littelmann’s paths. This newly defined operator is called tail-flip operator.
Using the tail-flip operator, one can obtain the first Weyl formula and the tensor
product decomposition theorem of two simple modules over a Kac-Moody algebra,
without using the theory of LS paths.

To be more precise, let α be a real root of a symmetric ”nontwisted” affine
Kac-Moody algebra G′, π be a piecewise linear path in the space X spanned over
the rational number field by the weights of the affine Kac-Moody algebra G′. We
use [0, 1]Q to denote the set {x|x is a rational number,0 ≤ x ≤ 1}. Define a
tail-flip operator Tα,x for any x ∈ [0, 1]Q as follows.
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If (π(x), ᾰ) is an integer, and either (π(t), ᾰ) ≥ (π(x), ᾰ) for t ≥ x or x = 0,
then

Tα,x(π)(t) =

{
π(t), for 0 ≤ t ≤ x

π(x) + sα(π(t)− π(x)), for x ≤ t ≤ 1
.

Otherwise, Tα,x(π)(t) = 0 for all t ∈ [0, 1]. If α = αi is a simple root, then we
usually use Ti,x to denote the operator Tαi,x.

Let B be a set of piecewise linear paths, which is stable under the action
of tail-flip operators Ti,x for all i and all rational number x ∈ [0, 1]Q. Define
CharB :=

∑
η∈B eη(1) formally. We call CharB the character of B. For example,

let B be the algebra generated by all operators Ti,x over the integer number ring
Z, let π = tλ, t ∈ [0, 1]Q,for some dominant weight λ. If B is the set of all paths
contained in Bπ, then CharB is the character formula of a simple module with
highest weight λ. This result is proved in Proposition 4.1. Suppose ρ is a weight
satisfying (ρ, αi) = 1 for all simple roots αi. Then the character of B can be
computed by using the the Weyl group W of the Kac-Moody algebra G′ in the
following way.

Theorem(1) Let Π+
0 be the set of the piecewise linear paths such that Imη is

in the interior of C(for t > 0), where C is the Tits cone of a nontwised affine
Kac-Moody algebra G′. Suppose B is a set of piecewise linear paths, which is
stable under the action of Ti,x for all rational number x ∈ [0, 1] and simple roots
αi of G′. Then

(
∑

w∈W

sgn(w)ew(ρ))CharB =
∑

η∈B,ρ⊗η∈Π+
0

(
∑

w∈W

sgn(w)ew(ρ+η(1))).

(2) For any dominant weight µ, let Vµ be the corresponding irreducible G′-
representation with highest weight µ, then

CharB =
∑

η∈B,ρ⊗η∈Π+
0

CharVη(1).

The formula (
∑

w∈W sgn(w)ew(ρ))CharB =
∑

η∈B,ρ⊗η∈Π+
0
(
∑

w∈W sgn(w)·
ew(ρ+η(1))) is called the first Weyl character formula. We will prove this theo-
rem by using tail-flip operators.
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Finally, let us give a brief outline of this paper. In Section 2, we review
some basic facts related to root systems of a nontwised affine Kac-Moody algebra
G′([3,p.96]). In Section 3, we define a kind of tail-flip operators on piecewise
linear paths without any restriction on the paths and roots. We call this kind
of operators absolute tail-flip. We obtain some properties of these operators,
and compare these operators with the root operators defined by Littelmann. In
Section 4, we prove the above mentioned theorem.

2. Notation

Let I = {1, · · · , l} and A = (aij)l×l, where A is the Cartan matrix of some
finite dimensional simple Lie algebra G over the complex field C. Fix a Cartan
subalgebra H ⊆ G. Let {αi, i = 1, · · · , l} ( respectively, {αĭ, i = 1, · · · , l}) be the
basis of H∗ ( respectively, of H, such that αĭ(αj) = aij . We also denote αĭ(αj)
by (αj , αĭ). Define the fundamental weight ωi ∈ H∗ of G by ωi(αj̆) = δij , where
δij is the Kronecker’s symbol. Let P0 be the free abelian group generated by
ωi, i = 1, · · · , l. Let θ =

∑l
i=1 aiαi be the highest root of G with respect to H

and θ̆ =
∑l

i=1 aĭαĭ the corresponding coroot.

Set I ′ = I ∪ {0} and let A′ = (aij)i,j∈I′ be the generalized Cartan matrix of
the ”nontwisted” affine Lie algebra G′ associated with G([3,p.96]). As a vector
space,

G′ = G ⊗C C[t, t−1]⊕Cc⊕C∂,

where c is the canonical central element and ad∂ = t d
dt . Then H′ = H⊕Cc⊕C∂

is a Cartan subalgebra of G′. Let α0̆ = c − θ̆. Define δ ∈ H′∗ by δ(∂) = 1
and δ(H ⊕ Cc) = 0. Denote α0 = δ − θ. Then {α0, α1, · · · , αl} (respectively,
{α0̆, α1̆, · · · , αl̆}) is a set of simple roots of G′ (respectively, coroots of G′). Notice
that δ(αĭ) = αi(c) = 0 for i = 0, · · · , l.

Define the fundamental weights ωi ∈ H′∗ of G′ by ωi(αj̆) = δi,j and ωi(∂) = δi,0

for i ∈ I ′. Let P be the free abelian group generated by ωi, i ∈ I ′. Set P = P⊕Zδ,
where Z is the ring of integer number. Let ι(ωi) = ωi − aiω0. Then ι is an
embedding map from P0 to P . Identify P0 with its image inside P which in turn
coincides with the set {λ ∈ P |λ(c) = 0}. Let ξ : P → P/Zδ be the canonical
projection. Notice that P can be identified with P/Zδ and ξ(α0) = −θ.
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For all i ∈ I ′ define an elementary reflection si ∈ AutH′∗ by si(λ) = λ −
λ(αi )̆αi, where λ ∈ H′∗. The Weyl group W of G′(respectively, W of G) identifies
with the group generated by si: i ∈ I ′( respectively, i ∈ I). The set of roots of G′
is a disjoint union of the set of real roots ∪i∈I′Wαi and imaginary roots Zδ \{0}.
We use Φ+ to denote the set of all positive roots of G′. For any real root β, let
β ˘= 2

(β,β)β be the corresponding coroot of β. The reflection sβ is defined via
sβ(λ) = λ − λ(β ˘)β, λ ∈ H′∗. Observe that s0 = sθ as an automorphism of P

and so we can identify W with W , whenever we consider the action of W acting
on P .

3. Paths and roots

3.1 Given a, b ∈ Q the rational number field, set [a, b]Q := {x ∈ Q|a ≤ x ≤ b}.
Let λ be an integral weight. For µ, ν ∈ Wλ write ν ≥ µ if there exists a sequence
of weights ν = ν0, ν1, · · · , νs = µ and positive real roots β1, β2, · · · , βs such that
νi = sβi

νi−1 and (νi−1, βĭ) < 0 for all i = 1, 2, · · · , s. Then ν > µ means that
ν ≥ µ and ν 6= µ. If ν > µ, then define dist(ν, µ) to be the maximal length s of
all possible such sequences. Let a ∈ [0, 1]Q be a rational number. An a-chain for
(µ, ν) is a sequence µ = λ0 > λ1 > · · · > λs = ν of weights in Wλ such that either
s = 0 and µ = λ0 = ν or λi = sβi

(λi−1) for some positive real roots β1, · · · , βs,
and dist(λi−1, λi) = 1, and a(λi−1, βĭ)∈ Z for all i = 1, 2, · · · , s. For a sequence
ν1 > ν2 > · · · > νs of weights in Wλ, and a sequence a0 = 0 < a1 < · · · < as = 1
of rational numbers in [0, 1]Q, define a path as follows:

π(t) =
j−1∑

i=1

(ai − ai−1)νi + (t− aj−1)νj ,

for aj−1 ≤ t ≤ aj . This path is called an LS-path if for all i = 1, 2, · · · , s − 1
there exists an ai-chain for (νi−1, νi). An LS-path is a piecewise linear path. Let
Π (respectively, Π) be the set of all piecewise linear paths π : [0, 1]Q → P ⊗Z Q
( respectively,P ⊗Z Q). Unlike the references, e.g. [5,6,7], we consider the same
path with different parameterizations as different paths. It is obvious that Π ⊆ Π.
Let ZΠ (respectively, ZΠ) be the free Z-module with basis Π (respectively, Π).
Then ZΠ is a submodule of ZΠ. For each i ∈ I ′ and any π ∈ Π or Π, define a
function

hπ,i(t) = (π(t), αĭ), t ∈ [0, 1]Q.
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Let x ∈ [0, 1]Q be any rational number. We define a linear operator τi,x on ZΠ
or ZΠ as follows.

τi,x(π)(t) =

{
π(t), for 0 ≤ t ≤ x

hπ,i(x)αi + si(π), for x ≤ t ≤ 1
,

where π ∈ ZΠ or ZΠ. We call τi,x an absolute tail-flip operator determined by
the simple root αi at x, simply tail-flip operator. The following proposition is
easily obtained from the definition.

Proposition 3.1. (1) τi,xτi,y = τi,yτi,x, for any x, y ∈ [0, 1]Q;

(2) τi,xτi,x = id;

(3) τi,x(π)(1) = π(1) + (hπ,i(x)− hπ,i(1))αi.

Notice that all paths in this paper are piecewise linear paths defined on [0, 1]Q.

3.2 Let m = min{hπ,i(t)|t ∈ [0, 1]Q} be the absolute minimal value of the
function hπ,i(t). Suppose L is the integral part of hπ,i(0)−m and M the integral
part of hπ,i(1)−m. Then one can define the following operators after Littelmann
([5],[6]).

Definition 3.1. (1) If L ≤ 0, then set Ei(π) = 0, otherwise Ei(π) = τi,t1τi,t0(π),
where t0 is minimal such that hπ,i(t0) = m and t1 < t0 is maximal with hπ,i(t1) =
m + 1.

(2) If M ≤ 0, then let Fi(π) = 0, otherwise Fi(π) = τi,t1τi,t0(π), where t0 is
maximal such that hπ,i(t0) = m and t1 > t0 is minimal with hπ,i(t1) = m + 1.

If the piecewise linear path π satisfies π(0) = 0 and m is an integral number,
then Ei(π) = eαi(π) and Fi(π) = fαi(π), where eαi , fαi are the root operators
defined in [5].

3.3 After Littelmann, we call π(1) the weight of the path π. The weight of the
path π is denoted by υ(π). The following lemma is similar to [5,Lemma 1.4] and
[6,Lemma 2.1], so we omit its proof.

Lemma 3.2. (1) If Ei(π) 6= 0, then υ(Ei(π)) = υ(π) + αi and if Fi(π) 6= 0, then
υ(Fi(π)) = υ(π)− αi.

(2) If Ei(π) 6= 0, then Ei(π)(0) = π(0) and if Fi(π) 6= 0, then Fi(π)(0) = π(0).
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(3) Let ρ ∈ P be such that (ρ, αi) = 1 for i ∈ I ′, then Ei(π) = 0 for all i ∈ I ′

if and only if the path π + ρ− π(0) is completely contained in the interior of the
dominant Weyl chamber, Fi(π) = 0 for all i ∈ I ′ if and only if the path π+ρ−π(1)
is completely contained in the interior of the dominant Weyl chamber.

(4) If π′ 6= 0 is a second path, then Ei(π) = π′ if and only if Fi(π′) = π.

3.4 Let L,M be defined as at the beginning of Section 3.2. Suppose both L

and M are larger than zero. For any integer r between 0 and L(respectively,
M), set mr = min{hEr

i (π),i(t)|t ∈ [0, 1]Q} (respectively, mr = min{hF r
i (π),i(t)|t ∈

[0, 1]Q}). Let tr ∈ [0, 1]Q be the minimal (resp. maximal) rational numbers
satisfying hEr

i (π),i(tr) = mr. Then the following proposition holds (we make the
convention that F 0

i = E0
i = id):

Proposition 3.2. For any i ∈ I ′ and π ∈ Π or Π, the following statements hold:

(1) The integral part of hEr
i (π),i(0)−mr is equal to L− r for r = 0, · · · , L.

(2) The integral part of hF r
i (π),i(1)−mr is equal to M − r for r = 0, · · · ,M .

(3) Er
i (π) = τi,trτi,t0(π), for r = 0, · · · , L.

(4) F r
i (π) = τi,trτi,t0(π), for r = 0, · · · ,M .

Proof. We only give the proof of (1) and (4). One can prove (2) and (3) similarly.

(1) We shall use induction on r. Suppose that statement is true on r, i.e.,
the integral part hEr

i (π),i(0)−mr is equal to L− r. Since Er+1
i (π) = Ei(Er

i (π)),
Er+1

i (π)(0) is equal to Er
i (π)(0) by Lemma 3.2. Hence hEr+1

i (π),i(0) = hEr
i (π),i(0).

It is obvious that mr+1 = mr +1. So hEr+1
i (π),i(0)−mr+1 = hEr

i (π),i(0)−mr− 1.
Consequently the integral part of hEr+1

i (π),i(0)−mr+1 is equal to L− r − 1.

(4) Again we shall use induction on r. Assume that the statement holds for
r ∈ N. Then F r+1

i (π) = Fi(F r
i (π)) = Fi(τi,trτi,t0(π)) = τi,tr+1τi,tr(τi,trτi,t0(π)) =

τi,tr+1τi,t0(π) via the induction hypothesis and Proposition 3.1. ¤

3.5 Let Πint be the set of all piecewise paths satisfying π(0) = 0 and π(1) ∈ P .
Let ZΠint be a Z module with the basis Πint. For any Z module M , the set of
endomorphisms of M is denoted by EndM .

Suppose π is a piecewise path such that π(0) = 0, n := (π(1), αĭ) is an integer.
If n ≥ 0, then there exists y ∈ [0, 1]Q maximal with hπ,i(y) = m, the absolute
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minimum of hπ,i. Let q > y be maximal such that hπ,i(q) = m + n. If n < 0,
then there exist x, p ∈ [0, 1]Q such that x is minimal with hπ,i(x) = m and p < x

maximal with hπ,i(p) = m− n. Define S̃i(π) as follows:

S̃i(π) =

{
τi,yτi,q(π), for n ≥ 0
τi,xτi,p(π), for n < 0

Then S̃i
2

= id. Using the above propositions and [6, Theorem 8.1], one can easily
prove that the map ψ, which is defined via ψ(si) = S̃i on the simple reflections in
Weyl group W , can be extended to a representation W → EndZΠint such that
w(π)(1) = w(π(1)) for π ∈ Πint and w ∈ W .

Proposition 3.3. Let π be an LS path such that υ(π) is a weight of some G′-
module V . Assume there is a rational number u such that hπ,i(u) is an integer
number, and hπ,i(u) ≤ hπ,i(t) for all t ≥ u. Then υ(τi,u(π)) is a weight of V .

Proof. Let n := (π(1), αĭ) be the integral number. From the above discussion,
we know that si(π)(1) = π(1) − nαi is a weight of V . If n > 0, then hπ,i(y) =
m ≤ hπ,i(u) ≤ hπ,i(t) ≤ n implies 0 ≤ n − hπ,i(u) ≤ n −m. By [6,Lemma 2.1],
υ(fn−m

αi
(π)) = π(1)− (n−m)αi is a weight of V . Since υ(τi,u(π)) = π(1)− (n−

hπ,i(u))αi, it is a weight of V by [3,Proposition 3.6]. If n ≤ 0, then m = hπ,i(x) ≤
hπ,i(u) ≤ n by the assumption. From this we get m− n ≤ hπ,i(u)− n ≤ 0. Then
υ(en−m

αi
(π)) = π(1) − (m − n)αi is a weight of V by [6, Lemma 2.1]. Hence

υ(τi,u(π)) = π(1)− (n− hπ,i(u))αi is a weight of V . ¤

3.6 For any path π ∈ Π (or Π), denote by π∗(t) = −π(1− t) the dual path of
π. The vector space ZΠ and ZΠ are algebras under the product ⊗ defined as

π1 ⊗ π2(t) :=

{
π1(2t), for 0 ≤ t ≤ 1

2

π1(1) + π(2t− 1), for 1
2 ≤ t ≤ 1

It is obvious that ZΠ is a subalgebra of ZΠ and ∗ is an involution of the algebra
ZΠ(or ZΠ ).

Let At be the algebra generated by all tail-flip operators τi,x over Z. Then ZΠ
and ZΠ become At modules respectively. View PQ := P ⊗Z Q or PQ := P ⊗Z Q
as constant paths. Then PQ (respect. PQ) becomes an At submodule of ZΠ
(respectively, ZΠ). This submodule is stable under the operators E′

is and F ′
is.

Let us use Ae (respectively, Af ) to denote the algebra generated by E′
is (respec-

tively, F ′
is). Then ZΠ/PQ and ZΠ/PQ are modules over Ae and Af . Suppose A
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is the algebra generated by Ae∪Af . Then ZΠ/PQ and ZΠ/PQ are also modules
over A, which can be identified with the path model in [5]. Obviously, ZΠ/PQ

and ZΠ/PQ can be viewed as a submodule of ZΠ (respectively,ZΠ ) generated
by all piecewise linear paths starting from 0. To simplify the notation, we use P
(respectively, P ) to denote the factor module ZΠ/PQ ( respectively, ZΠ/PQ).
The image of a path π in P (respectively, P ) is still denoted by π.

Proposition 3.4. For any π ∈ P or P, and any i ∈ I ′, the following statements
hold.

(1) τi,x(π∗) = (τi,1−x(π))∗.

(2) τi,1−x(τi,x(π)∗) = si(π).

(3) Ei(π∗) = Fi(π)∗ and Fi(π∗) = Ei(π)∗.

3.7 Following Greenstein and Lampron ([2]), we use ξ to denote the canoni-
cal projection from P to P/Zδ. Define (Ξπ)(t) := ξ(π(t)) for any π ∈ P and
any t ∈ [0, 1]Q. By the following proposition, Ξ is an At (Ae, Af , A) module
homomorphism from P to P.

Proposition 3.5. For any π ∈ P, and any i ∈ I ′, Ξ(τi,x(π)) = τi,x(Ξ(π)).
Consequently, Ξ(Ei(π)) = Ei(Ξ(π)) and Ξ(Fi(π)) = Fi(Ξ(π)).

Proof. The proof of Ξ(Ei(π)) = Ei(Ξ(π)) and Ξ(Fi(π)) = Fi(Ξ(π)) has been
given in [2]. We only need to prove that Ξ(τi,x(π)) = τi,x(Ξ(π)). The proof is
similar to the proof of [2, Lemma 5.6]. ¤

4. A first character formula

For any piecewise linear path π ∈ P, the submodule Atπ, which is generated
by the path π over At, unlike Aπ, contains too many paths for our purpose to
prove the Weyl character formula. So we need to define new ”tail-flip” operators
to cut down the number of paths. Let hπ,i(t) be the function defined in Section
3.

Definition 4.1. Let π be a piecewise linear path and x ∈ [0, 1]Q. Then we define
Ti,x(π) as follows:

In the case hπ,i(x) is not an integer, then Ti,x(π) = 0:
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In the case hπ,i(x) > hπ,i(t) for some t > x and x 6= 0, then Ti,x(π) = 0;

In the case x = 0,Ti,0(π) = si(π);

In the case hπ,i(x) is an integer, hπ,i(x) ≤ hπ,i(t) for t > x, then

Ti,x(π)(t) =

{
π(t), for 0 ≤ t ≤ x

hπ,i(x)αi + si(π), for x ≤ t ≤ 1.

Let B be the algebra generated by {Ti,x|i ∈ I ′, x ∈ [0, 1]Q} over Z, and Bm

be the monoid generated by {Ti,x|i ∈ I ′, x ∈ [0, 1]Q}. Since B is a subalgebra
of At, P and P become B modules. For any piecewise linear path π, the module
generated by π is denoted by Bπ, and the set of all paths contained in Bπ is
denoted by B(π). It is obvious that B(π) = {bπ|b ∈ Bm}.

Example Let T be the group generated by {Ti,0|i ∈ I ′}. Then T π = Wπ for
any path π, where (w(π))(t) := w(π(t)) for t ∈ [0, 1]Q. So

∑
η∈B eη(1)is stable

under the action of the Weyl group W , whenever the set of paths B is stable
under the action of Bm.

Proposition 4.1. Let πλ(t) = tλ, t ∈ [0, 1]Q, where λ is a dominant weight. If
B is the set of all paths contained in Bπλ, then CharB is the character formula
of a simple module with highest weight λ.

Proof. Suppose π is a piecewise linear path such that π(0) = 0 and π(1) is an
integral weight. Then there exists y ∈ [0, 1]Q maximal with hπ,i(y) = m, the
absolute minimum of hπ,i. Let q > y be maximal such that hπ,i(q) = m + 1.
Similarly, there exist x, p ∈ [0, 1]Q such that x is minimal with hπ,i(x) = m and
p < x maximal with hπ,i(p) = m + 1. From the definition, we get eαi(π) =
T0,iTp,iT0,iTx,i(π) and fαi(π) = T0,iTq,iT0,iTy,i(π). Thus every set of pahts, which
is stable under the action of all tail-flip operators, is also stable under the action
of all root operators defined in [5,6,7].

On the other hand, suppose Vλ is a simple G′-module determined by a dominant
weight λ. Then η(1) is a weight of Vλ for any piecewise linear path η in Bπλ by
Proposition 3.3. Thus CharVλ =

∑
η∈B eη(1). ¤

Proposition 4.2. Let π be a piecewise linear path satisfying (π(t)|δ) = 1 for all
t ∈ [0, 1]Q. Then the rank of Bπ is finite.
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Proof. To prove this proposition, we use the theory of galleries ([1]). Notice that
W can be viewed as a group generated by the affine reflections si,k, where si,k(λ) =
si(λ) + kαi for all k ∈ Z and i ∈ I ′, λ ∈ H′∗([3]). The hyperplanes Hα,k :=
{λ ∈ H′∗|(λ, ᾰ) = k} for α ∈ Φ+ subdivide the real vector space H′∗R into open
regions, called alcoves. Each alcove A is given by A = {λ ∈ H′∗R|mα < (λ, ᾰ) <

mα+1, for all α ∈ Φ+}, where mα are some integal numbers. Following Gaussent
and Littelmann, a gallery of alcoves of length r is a sequence (∆0, · · · ,∆r) of
alcoves such that ∆i and ∆i+1 are adjacent for 1 ≤ i ≤ r. Every piecewise path
can be contained in one of such gallery. Suppose π is contained in a gallery
(∆0, · · · ,∆r). If the alcoves ∆t and ∆t+1 have a common face on the hyperplane
Hi,m = {λ|(λ, ᾰ) = m}, where m = hπ,i(x), then Tx,i(π) is contained in the
gallery (∆′

0, · · · ,∆′
r), where ∆′

i = ∆i for i = 0, 1, · · · , t, and ∆′
j = si,m(∆j) for

j = t + 1, · · · , r. For any piecewise path π satisfying (π(t)|δ) = 1, we can choose
these galleries (∆0, · · · ,∆r) containing the path π with r minimal. Then the
number of such galleries is finite. Thus, the number of galleries containing all
paths Tx1,i1 · · ·Txj ,ij (π) with minimal length are finite too. So the rank of Bπ is
finite. ¤

Recall that the product of two paths π1, π2 is defined as follows:

π1 ⊗ π2(t) :=

{
π1(2t), for 0 ≤ t ≤ 1

2

π1(1) + π(2t− 1), for 1
2 ≤ t ≤ 1

.

We define π1 ⊗ · · · ⊗ πk := (π1 ⊗ · · · ⊗ πk−1) ⊗ πk inductively if k > 2. If
Xi(i = 1, 2, · · · , k) are sets of paths, then X1⊗· · ·⊗Xk := {π1⊗· · ·⊗πk|πi ∈ Xi}.
We use At(π) to denote the set of all paths contained in the module Atπ.

Proposition 4.3. Let π1 · · ·πr ∈ P, or P such that π = π1 ⊗ · · · ⊗ πr. Then

(1) At(π) = At(π1)⊗ · · · ⊗ At(πr).

(2) B(π) ⊆ B(π1)⊗ · · · ⊗ B(πr).

Proof. (1) To simplify the notation, we give only the proof for the case r = 2,
the proof for r > 2 is similar. For any 0 ≤ x < 1

2 , τi,x(π) = τi,x(π1) ⊗ τi, 1
2
(π2).

If x ≥ 1
2 , then τi,x(π) = π1 ⊗ τi,2x−1(π2). So At(π) ⊆ At(π1) ⊗ At(π2). On the

other hand, we have

τi1,x1 · · · τik,xk
(π1)⊗ τj1,y1 · · · τjs,ys(π2)

= τi1, 1
2
x1
· · · τik, 1

2
xk

τj1, 1
2
(2y1+1) · · · τjs, 1

2
(2ys+1)(π)

,
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for any τi1,x1 · · · τik,xk
(π1) ∈ Atπ1, and τj1,y1 · · · τjs,ys(π2) ∈ Atπ2. Hence At(π) ⊇

At(π1)⊗At(π2) and (1) holds.

(2) Similarly to (1), we only give the proof for the case r = 2. If Ti,x(π1⊗π2) =
0, then Ti,x(π1⊗π2) ∈ B(π1)⊗B(π2). In the following, we assume that Ti,x(π1⊗
π2) 6= 0. In the case x = 0, Ti,0(π1⊗π2) = Ti,0(π1)⊗Ti,0(π2) ∈ B(π1)⊗B(π2); In
the case 0 < x ≤ 1

2 , since hπ1,i(x) ≤ hπ1,i(t) for t > x, Ti,x(π1 ⊗ π2) = Ti,2x(π1)⊗
Ti,0(π2) ∈ B(π1)⊗B(π2). In the case 1

2 < x ≤ 1, if hπ2,i(2x−1) > hπ2,i(t) for some
t > 2x−1, then hπ1,i(1)+hπ2,i(2x−1) > hπ1,i(1)+hπ2,i(t) and Ti,x(π1⊗π2) = 0,
which is contradict to our assumption. Hence hπ2,i(2x − 1) ≤ hπ2,i(t) for all
t ≥ 2x− 1. Thus Ti,x(π1⊗π2) = π1⊗Ti,2x−1(π2) ∈ B(π1)⊗B(π2). Consequently
(2) holds. ¤

If B ⊆ P is a subset, which is stable under the action of all operators Ti,x, then
we have already seen that its character CharB :=

∑
η∈B eη(1) is stable under the

action of the Weyl group W . In fact, CharB can be computed by the following
path version of Weyl’s character formula.

Theorem 4.2. (1) Let Π+
0 be the set of the piecewise linear paths such that Imη

is in the interior of C (for t > 0), where C is the Tits cone of a nontwised affine
Kac-Moody algebra G′. Suppose B is a set of piecewise linear paths, which is
stable under the action of operators Ti,x, where x ∈ [0, 1]Q and i ∈ I ′. Then

(
∑

w∈W

sgn(w)ew(ρ))CharB =
∑

η∈B,ρ⊗η∈Π+
0

(
∑

w∈W

sgn(w)ew(ρ+η(1))).

(2) For any dominant weight µ, let Vµ be the corresponding irreducible G′-
representation, then

CharB =
∑

η∈B,ρ⊗η∈Π+
0

CharVη(1).

Proof. (2) of this proposition follows from (1). To prove (1), we only need to
compare the coefficients of the terms corresponding to dominant weights, i. e.
we have to prove for Ω := {(w, π)|w ∈ W, π ∈ B,w(ρ) + π(1) ∈ P},
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∑

(w,π)∈Ω

sgn(w)ew(ρ)+π(1) =
∑

η∈B,ρ⊗η∈Π+
0

eρ+η(1)).

Let Ω0 := {(id, π) ∈ Ω|ρ⊗π ∈ Π+
0 }. Set Ω′ = Ω−Ω0. To prove the proposition,

we have to show that
∑

(w,π)∈Ω′
sgn(w)ew(ρ)+π(1) = 0.

We will define an involution φ : Ω′ → Ω′ such that φ(w, π) = (w′, π′) has the
property: sgn(w) = −sgn(w′) and w(ρ) + π(1) = w′(ρ) + π′(1). If such an
involution exists, then it is obvious that

∑

(w,π)∈Ω′
sgn(w)ew(ρ)+π(1) = 0.

The construction of the involution. Suppose (w, π) ∈ Ω′ is such that w is
not the identity. Since w(ρ) + π ∈ P+, the path w(ρ) ⊗ π has to meet at least
once a proper face of the dominant Weyl’s chamber C. If w is the identity, then
w(ρ)⊗ π also has to meet a proper face F of C, the pair would otherwise be an
element of Ω0.

For a proper face F of C denote by Ω′(F ) the set of pairs (w, π) ∈ Ω′ which
meet F as the last face. More precisely: w(ρ)⊗ π meets F , and if t0 ∈ [0, 1]Q is
maximal with property such that w(ρ) + π(t0) ∈ F , then w(ρ) + π(t0) is in the
interior of F , and w(ρ) + π(t) is in the interior of C for all t > t0.

The set Ω′ is obviously the disjoint union of the Ω′(F ), so it is sufficient to
define an involution for such an Ω′(F ). Let αi be a simple root orthogonal to F .
For (w, π) ∈ Ω′(F ) set n := (w(ρ), αĭ), note that n 6= 0.

Without loss generality, we can assume n > 0. Then the function hπ,i(t0) =
−n. It is easy to prove Ti,0Ti,t0(π)(1) = π(1)+nαi. It follows that w(ρ)+π(1) =
siw(ρ) + Ti,0Ti,t0(π)(1). Further, w(ρ) ⊗ π(t) = siw(ρ) ⊗ Ti,0Ti,t0(π)(t) for all
t > t0. Hence φ(w, π) = (siw, Ti,t0(π)) ∈ Ω′(F ). ¤

In the following proposition, we use P+ to denote the set of all piecewise linear
paths satisfying (π(t), ᾰ) ≥ 0 for any positive root α.

Proposition 4.4. Suppose π1, π2 ∈ P+. Then

B(π1)⊗ B(π2) = ∪B(π1 ⊗ η), (4.1)
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where the union runs over all paths η ∈ Bπ2 such that π1 ⊗ η ∈ P+.

Proof. Let X = ∪B(π1 ⊗ η), the right side of equation (4.1). Since Ti,xπ1 ⊗ π2 =
Ti,0Ti, 1

2
Ti,0Ti, x

2
(π1 ⊗ π2), Ti,xπ1 ⊗ π2 ∈ X for i ∈ I ′ and x ∈ [0, 1]Q. Now assume

that Ti1,x1 · · ·Tik,xk
π1 ⊗ π2 ∈ X for any i1, · · · , ik ∈ I ′ and any x1, · · · , xk ∈

[0, 1]Q, where k ≥ 1. Let b = Ti1,x1 · · ·Tik,xk
, i ∈ I ′ and x ∈ [0, 1]Q. Then

Ti,xbπ1 ⊗ π2 = Ti,0Ti, 1
2
Ti,0Ti, x

2
(bπ1 ⊗ π2) ∈ X by the assumption. By now we

have already proved that bπ1 ⊗ π2 ∈ X for any b ∈ Bm. Next, we assume that
b1π1 ⊗ b2π2 ∈ X for some b1, b2 ∈ Bm, where b2 = Ti1,x1 · · ·Tik,xk

for some
i1, · · · , ik ∈ I ′ and some x1, · · · , xk ∈ [0, 1]Q, and k ≥ 1. Set b′2 = Tj,yb2,
where j ∈ I ′ and x ∈ [0, 1]Q. Consider the path b1π1 ⊗ b′2π2. If y 6= 0, then
b1π1 ⊗ b′2π2 = Tj, 1

2
(y+1)(b1π1 ⊗ b2π2) ∈ X by the assumption. If y = 0, then

b1π1 ⊗ b′2π2 = Tj,0(Tj,0b1π1 ⊗ b2π2) ∈ X. So B(π1)⊗ B(π2) ⊆ X.

On the other hand, let π1 ⊗ η be a piecewise linear path for some η ∈ B(π2),
and π1 ⊗ η ∈ P+. Suppose b(π1 ⊗ η) ∈ B(π1) ⊗ B(π2) for b = Ti1,x1 · · ·Tik,xk

,
where i1, · · · , ik ∈ I ′ and x1, · · · , xk ∈ [0, 1]Q. Let b′ = Tj,xb, where j ∈ I ′ and
x ∈ [0, 1]Q. Consider the element b′(π1 ⊗ η). If b′(π1 ⊗ η) 6= 0, and b(π1 ⊗ η) =
η1 ⊗ η2 ∈ B(π1)⊗ B(π2), where ηi ∈ B(πi), then

Tj,x(η1 ⊗ η2) =





Tj,0η1 ⊗ Tj,0η2, x = 0
Tj,2xη1 ⊗ Tj,0η2, 0 < x ≤ 1

2

η1 ⊗ Tj,(2x−1)η2,
1
2 < x ≤ 1

Hence b′(π1⊗η) ∈ B(π1)⊗B(π2). Consequently, B(π1)⊗B(π2) = ∪B(π1⊗η). ¤

From Proposition 4.4, we can easily prove the following.

Corollary 4.1. Generalized Littlewood-Richardson Rule. For dominant
weights λ, µ, let π1, π2 ∈ P+ be such that π1(1) = λ and π2(1) = µ. Then the
tensor product of irreducible representations Vλ and Vµ of heightest weight λ, µ is
isomorphic to the direct sum

Vλ ⊗ Vµ ' ⊕Vλ+η(1)

where the sum runs over all paths η ∈ B(π2) such that π1 ⊗ η ∈ P+.

Proof. Recall that B(π) is the set of paths contained in Bπ. Then

Char(B(π1)⊗ B(π2)) = CharB(π1)CharB(π2) = Char(Vπ1(1) ⊗ Vπ2(1)).
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Hence this corollary holds. ¤
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