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Compact Commutators of Riesz Transforms

Associated to Schrodinger Operator

Pengtao Li and Lizhong Peng

Abstract: In this paper, we consider the compactness of some commuta-
tors of Riesz transforms associated to Schrodinger operator L = —A + V
on R"™ n > 3, where V is non-zero, nonnegative and belongs to the reverse
Holder class By for ¢ > 5. We prove that if T} = (=A + V)7V, Ty =
(=A + V)712V1/2 and T3 = (=A + V)"Y2V, then the commutators
b,T5],(j = 1,2,3) are compact on LP(R™) when p ranges in an interval
and b € VMO(R").

Keywords: Commutator, Compactness, VMO, Schrédinger operator,

Riesz transform.

INTRODUCTION

Throughout the paper, we assume that L = —A+V be a Schrodinger operator
on R",n > 3 and V is a non-zero, nonnegative potential, and belongs to the
reverse Holder class By for ¢ > n/2. Let Tj,j = 1,2,3 be the Riesz transforms
associated to Schrodinger operators, namely, T = (—A + V)71V, Ty = (—=A +
V)~V2V2 and Ty = (—A + V)72V, The L? boundedness of T}, (j = 1,2, 3)
was widely studied in [3]. Recently, in [1], the authors got the LP boundedness of
the commutator of T}, (j = 1,2, 3) with the symbol b € BMO(R™). In this paper,
we will discuss the LP compactness of the commutators [b,T;] = bT; — T;b, (j =
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1,2,3), where b € VMO(R") = C§°(R"), the closure of C§°(R") functions in
BMO norm.

A nonnegative locally LY integrable function V' on R™ is said to belong to
By, (1 < ¢ < 00), if there exists a constant C' > 0 such that the reverse Holder

(o)< frw)

holds for every ball B in R™.

inequality

By Holder’s inequality, we can get that By C Bg,, for g1 > g2 > 1. One
remarkable feature about the B, class is that if V' € B, for some ¢ > 1 then there
exists an € > 0 which depends only on the dimension n and the constant C in
(1), such that V' € Bgi.. It’s also well known that if V' € By, ¢ > 1 then V(z)dz
is a doubling measure, namely for any r» > 0,z € R"™ and some constant Cy > 0,
one has

/ V(y)dy < Co / V(y)dy. (2)
B(z,2r)

B(z,r)

In [3], Z. Shen proved that if V € B,, then T3 is a Calderdn-Zygmund operator.
According to the classical result of A.Uchiyama ([4]), for b € VMO(R"), [b,T5]
is a compact operator on LP, (1 < p < c0) in the case. So we restrict ourselves to
the case that V' € By, (n/2 < ¢ < n) when we consider the commutator [b, T5].

In the rest of this section, we will state some definitions and lemmas which
will be used in the proofs of the main results.

Definition 0.1. For x € R", the function m(x,V) is defined by

1 1
————— =sup<ir: Viydy <15;. 3
m(xv V) T>18 { =2 /B(x,r) (y) = } ( )

Clearly, for every x € R"™, if r = m, then Tn%z fB(xJ‘) V(y)dy = 1.

The function m(z,V), as deeply studied in [3], plays an important role in
estimating the kernel of T;, (i = 1,2,3). We list some properties of m(x, V') here,
and their proofs can be found in [3].

Lemma 0.2. Assume V € B, for ¢ > n/2, there exist C > 0,c > 0,ky > 0 such
that, for any r,y € R*,0<r < R < oo,
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(1) (@) 0<m(z,V) < o0
2) () m(z, V) ~m(y, V), if v —y| < 7y
(3) (©) 7= Jpm VW) < CONM2 g [50m) V (W)dy.

By (a) and (c) of Lemma 0.2 in [1], the authors got:

Lemma 0.3. ([1], Lemma 1) Suppose V' € B, for some q¢ > n/2 and let K >
logy Co + 1, where Cy is the constant in (2). Then for any © € R"and R > 0, we

have
1

{1+ m(z, V)R Jp( R

V(y)dy < CR"2. (4)

We also list some results concerning the LP boundedness of Tj, (j = 1,2, 3) and
refer the reader to [3] for further details. We will adopt the notation 1/p’ = 1—1/p
for p > 1 throughout the paper.

Theorem 0.4. Suppose V € By and ¢ > n/2, we have:

(1) (i) (3], Theorem 3.1, Page 526) |~ + V)"V fllp < Collflp for o' <
p < oo.

(2) (ii) ([3], Theorem 5.10, Page 542) |(=A+V) 2V £, < Cyllfllp for (29) <
p < 00.

(3) (iii) ([3], Theorem 0.5, Page 514) ||(—=A4V) Y2V f|l, < Cpllfllp for ply <
p < o0,

where 1/pg =1/qg—1/n n/2 <qg<n.
In [1], using Theorem 0.4 and a pointwise estimation of the kernel of T;, (i =

1,2,3), the authors got the LP boundedness of commutator [b,T;], (i = 1,2,3),
where b € BMO(R").

Theorem 0.5. ([1], Theorem 1) (i) SupposeV € Bq,q > n/2. Ifb € BMO(R"),
then for ¢ < p < oo,

|[baT1]f||p < Cp”b||BMO||f||p~

(i) Suppose V € By,q > n/2. If b € BMO(R"™), then for (2q) < p < oo,
I[6; T2l fllp < Collbll Baro flp-

(1it) Suppose V€ By,n/2 < q <n. If b€ BMO(R"™), then for (py) < p < oo

and 1/p1 =1/q—1/n,

|0, T3] fllp < CpllbllBaroll flp-
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Our proof of the compactness follows the well known Frechet-Kolmogorov the-

orem.

Theorem 0.6. (Frechet-Kolmogorov)A subset G of LP(R™),1 < p < o0 is strongly
precompact if and only if it satisfies:

(cl)  supseq [ fllp < oo

(c2) For any € > 0, there exist a closed region K. and d. > 0 such that
IFlvace < = for any f € G

(e3) Forany f € G, lim, o [ f(- +2) = f(-)ll, = 0, uniformly.

Therefore, in order to prove the compactness of the commutators [b, T;], (i =
1,2,3), we only need to test the following three conditions for the commutator
b, T3], (i =1,2,3):

(c1)" supy sy, <1 10, Tl fllp < €

(¢2) For any € > 0, there exists a ball B such that ([, b, T;] f () |Pda) /P <
e fllp <15

(¢3)" For any € > 0, there exists § > 0 such that when |z| < §, we have
116, TLf(-+2) = [0, T Cllp <& [ fllp < 1.

Remark 0.7. Because VMO(R") is the closure of C§°(R") in BMO norm, by
density, we easily see that if [b,T;] is a compact operator on LP(R™) for b €
C3(R™), then for b € VMO(R"), [b,T;] is also a compact operator on LP(R").
So in what follows, we always assume b € C§°(R").

Remark 0.8. By Theorem 0.5, we know that the operators [b, T;], (i = 1,2, 3) are
bounded on LP(R™) for some p > 1, so that each [b, T;] satisfies condition (c1)

obviously.

1. LP BOUNDEDNESS OF MAXIMAL OPERATOR OF Tj, (i =1,2,3)

In this section, we discuss the LP boundedness of maximal operators of T;,(i=1,2,3).

We define the maximal operators of T; as follows:

Definition 1.1. Suppose V € B, for ¢ > n/2. Let Ty = (A + V)V, Th =
(=A+V)"V2VY2 and Ty = (= A + V)2V be the Riesz transforms associated
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to Schrodinger operators. Then the maximal operator T; prq, of 15, (i = 1,2,3)
is defined by:

T%,Max = sup
>0

/ - Ki(z,y)f(y)dy|, (i=1,23).

Lemma 1.2. Suppose V € By,q > n/2. Then the mazimal operator of Ty is
bounded on LP(R™) for p > (.

The proof of Lemma 1.2 needs the following lemma.

Lemma 1.3. ([1], Lemma 2) Suppose V € B, for some g > n/2. Then there
exists § > 0 such that for any integer 1 >0, 0 < h < |z — y|/16,

C 1
‘Kl(l‘,y)’ < {1 —|—m(x,V)|x — y‘}l ‘l’ _ y’n—QV(y)’ (5)
4
Kby y) = K 9)] < m(a:,cvl)|x - _|Z||n2+5v(y). (6)

Proof of Lemma 1.2 Weset T . f (z) = f|x_y|>r Ki(z,y)f(y)dy, B = B(x,r/16)
and divide f into f = f1 4+ fo, where fi = fx16B, so we get

’Tl?ﬂf |B‘/ ’Tlrf |dy
1
< M/B|T1f(y)|dy+W/B|T1f1(y)|dy+|B‘/B|T1f2(y)—Tl’rf(m)|dy

1 1
< M(Tf) (@) + Wumuq/ + 17 [ IT0) = T @)l

1

T q 1/q
M(Ti)(= |B\/ T

Ty fa(y) — Tief (2)|dy

< M(T1f)() + COI(f|7 ) @)V + = / Ty faly) — Top f(2))dy.
B /s

Clearly, we have

;|/ T f2(y) — T f(x)|dy

B|/ /16B 1(y, &) f2(E)d€ — Ki(z,€) f(§)d¢|dy

|x—¢&|>r

< LU w0 K@y
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Now, if we set I} = [ ¢ IK1(y,€) — Ka(w, €)|1£(€)/d€ and h = |y —al, then by
ly — x| <7r/16 < llﬁ\x ¢| for y € B and (6) of Lemma 1.3, we have

. /x_w K1 (9,€) — K (2, €)1 £(6) e

o0

Ci ly — x|°
=02, /zkr<|xg|<2k+1r Mm@ Ve el e —gp 2" Ol

k=0

e’} 5 1/‘] 1/‘1/
< ! viga) | | ()7 de
B kg 1+ m x, V 2’“7“}1 (2k )” 2496 /|17—§|S2k+17‘ |z—g|<2k+1p

MS) @) wla=n i
Z {1—|—m z,V ri}l (2k. )rn 573 (2k+17~) /q (/B(x N )V(&)df)(Z’“HT) /q

CMAAIDEN" Y Grryamars nm 2y
k‘=0

CM(f17) (@)™

Here we have used Lemma 0.3 for R = 2¥r. Finally, we have

|B‘/Ildy_ M) @)Y and Ty aan f(a) < M(Tyf) (@) +C(M(|f17) ()7

| /\

By use of (i) of Theorem 0.4, we have

T2 pax ()l < 1M (T + CIH( 1) ], < ClLfllps for p > ¢ > 1.
This completes the proof of Lemma 1.2.

Similarly, for T prae(f), we have the following lemma.

Lemma 1.4. Suppose V € By, q > n/2. The mazimal operator of Ty is bounded
on LP(R™), for p > (2q).

The proof of Lemma 1.4 needs the following lemma.

Lemma 1.5. ([1], Lemma 3) Suppose V' € By for some q¢ > n/2. Then there
exists § > 0 such that for any integer k >0, 0 < h < |z — y|/16,
< C 1
{1+ m(@, V)|z —yl} [z —y["!
C h|?
R e A a

| Ko (z,y) VI2(y), (7)

| Ko (z+h,y)—Ka(z,y)
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Proof. We set Ty, f(z) = f|x_y‘>r Ks(z,y)f(y)dy and B = B(x, {5), and divide
f into f1 + fa, where f1 = fx165- Then we have

1
o0 @) = o5 /B Ty f(2)]dy

1 1 .
< ’m/B\Tzf(y)!der‘m/BITzfl(y)\dy+|m/B|T2f2(y) ~ Ty, f(z)|dy

=1+ 1+ I3.

Clearly,we have I; = ﬁ [ T2 f(y)|dy < M(Tzf)(x). By use of the L? bounded-

ness of 15, we have

1 1 29)! 1/(2(1)/
I < WHTQfln(Qq)’ < Cmﬂfl”@q)/ <C (M(|f|( ? )(@) -
At last we estimate I3,
1
b= [ | [ Katw o) le)ds - Ka(x, €)£(€)d€| dy
|B‘ B |lz—&|>r

1
= Bl/B/u_gbr [ Ka(y, &) — Ka(x,€)||f(§)]dédy.

Write I; = f\x—gbr |Ka(y, &) — Ko(x,8)||f(§)|dE. Because y € B implies h =
ly — x| < 1/16r < |z —&|, by (8) of Lemma 1.5 and Hélder’s inequality, we have

2<cC ! ly — 2P V2| £(€)|d¢
Y= Jeor AL+ m(z, V)|z — €]} [z — g1+

0o 7“6
<C), /2 : VI2(¢)| £(6)|de

i ¥ 2Fr<|z—¢|<2k+1r {1 + m(ac, V)|l' - g‘}l ’:E - g’n—l—l—é

- 1 7o 2
< 24(¢)d
= Ckz_o {1+ mle, V)2 (2130 </|x_§|<2k+1rv ©) f) x

1/(2q)
( / \f<s><2q>’ds> .
|z —¢|<2Fttr
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Because of V' € By, by Lemma 0.3 and the double property of V(z)dz, we can
get

(2k+1 )n/2q n/2 70 1/2
Cz{um(gg V)2ErH (2Fr)1te /|2_5|<2k+1,.v(5)d5 .

1/(2q)
( / !f(E)!(Qq”d£>
|z—&|<2k+1r

o0 1)
r -n n/2— n !
<O g (017 QR e a5
k=0

CZW(QkT)n_ (M (] f|PD") () @)
k=0
C (M (| 30" ()M 29",

Consequently I3 < ﬁ [ idy < C(M(]f]29")(z))"/(29)", Finally we have

IN

Ty Max () (@) < M(Tof) () + C(M(|£]P0") (2))"/ 0",

This completes the proof of Lemma 1.4. O

It remains to handle the L” boundedness of maximal operator 73 prq,. For this

propose, we need the following lemma.

Lemma 1.6. ([1], Lemma 4) Suppose V € B, for some n/2 < ¢ < n. Then
there exists 6 > 0 such that for any integer k >0 and 0 < h < |x — y|/16,

C 1 V(E) 1
d ,
ST m@ Vgl ey </B<y,|x—y|) et - y') Y

|K3(x + h,y) — K3(z,y)|

Cy |h|° V(E) 1
10
= {1 + m(:c, V)|CC - yI}l |-T - y|"71+5 (/ Jz—yl) |y €|n ly — €t 5 |IL' - |> ( )

Lemma 1.7. Suppose V € By,n/2 < q < n. The mazimal operator T3 prap is
bounded on LP, for p}| < p < oo, where 1/p; =1/q—1/n.
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Proof. For any z, let Ts, f(x) = f\x—y|>r Ks3(z,y)f(y)dy and B = B(z, {5), we
divide f into fi + fo, where fi = fx16B, similarly, we have

1
|T3,rf(-73)| = E /B |T377«f(l‘)|dy
1 1 1
< W/B‘TSf(y)’der\Bl/ |T3f1(y)\dy+|B‘/B]T3f2(y) — Ty, f(2)|dy

< M(T3)(x) + (M(|fP) >>1/p6+|;‘ /B Ty faly) — Tsf (2))dy.

For the third term in the last inequality, we have

|;| /B Ty faly) — Ty f(2)ldy

Ks(y, €) f2(§)dE — K3(x,8) f(§)dg

(16B)e lz—€|>r

1
= 1B /B /lw—£|>r [K3(y, &) — Ks3(x, 8[| f(£)|dEdy.

dy

Let IS,:E = f|:p7§\>r |K3(y7£) - K3(x7£)’|f(£)|d£ Because Yy e th = |y - $| <
1/16r < |z —£|, by use of (10) of Lemma 1.6 we have

Lo — / Ky, €) — Ks(x,€)||£(6)|de
|z—&|>r

< 7"5 40
<C V) g
< lo—g|>r 11 +m(z,V)|z — o — gn—1+0 [/B(g,lf—aq) € — a1 w| | f(E)|d¢

6
o g e
- IB,z + 13,1'

For 132:57 we have

(5
12, = / F(€)de
37 |z—&|>r ‘l‘ - ’n+6

<ory /2 e

=0 ¥ 2Fr<|z—g|<2kFlr

<0r52 s M) @)
M)
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Because |u — &| < |z — ¢ yields |[x —u| < |z — &+ |§ —u] < 2|z — ¢, by (10) of

Lemma 1.6 and the fractional integral for p% = % — %, we have

- Cilf(©)] r0
n.<c / X
= Z 2kr<|p—g|<2k+1r {1 + m(:c, V)‘l’ - gl}l |x - €|n—1+5

k=0
V(u)
d
. ] ¢
C, o V(U)X B(z,2r+17) (W)
< b
B Ckzzo {1+ m(x, V)2kr}l (2ky)n=1+0 / € — ul"t du P2 (de) -

1/p}
( / |f<5>|p’1d5>
B(z,2k+1r)

M@ A o
< C; {1+ m(z, V)2kr } (2kp)n—119 </B(g;72k+1r) 1% (£)d5> (2k+1p)

3

70

k+1,.\n/q—n o( n/p} 1
< CkE_: (2k )n—1+6 (2 - ’l“) ! (2 k+ 1)T) P {1 —i—m(.%',V)QkT’}l </B(x,2k+1r) V(f)df)

o0

C(M(| f,pl 1/1%2 = 1+5 )n/q—n+(n/p’1)+n—2
lc=0

< C(M(|fI75) (@) /7.

Here we have used the fact that n/¢—n+(n/p})+n—2=n—1and 1/p; =1/q—
1/n. Finally, in a similar manner to proving Lemma 1.4, we can get T3 prqq f(2) <
M(Tsf)(x) + C(M(|f[P1)(x))"/P. This completes the proof of Lemma 1.7. O

2. THE COMPACTNESS OF [b,T5], (i =1,2,3)

First of all, we discuss the compactness of [b,T}] on LP.

Theorem 2.1. Suppose V. € By, ¢ > n/2. If Ty = (-A+ V)™V, and b €
VMO(R"™), then [b,T1] is a compact operator on LP for ¢ < p < oc.

Proof. According to Remark 0.8, we only need to prove that [b, T1] satisfies the
conditions (¢2)" and (c3)'.

Step I: The Proof of (¢2)’. According to Remark 0.7, we may assume that
b e C3°(R™) with supp b C B(0, R), the ball of radius R with center at origin.
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For v > 0, set B® = {x € R" : |z| > vR}. Then have

1/p » 1
( /|z>le[b,T1]f(x)lpdx> < ( Lo ( /|yl<R|K1<m,y>|\b<y>|\f<y>dy) dw) |

Lemma 2.2. For any x € B, we have uniformly

yI<

Proof of Lemma 2.2. Because |z| > vR and |y| < R imply |z —y| > (1 — 1)|z|
for v > 2, by use of (5) of Lemma 1.3, we have

1 1
LG T T Ol

1/q
C 1 .
= Tt V) = o)} (1= D22 </|y<RV (y)dy> X
1/q
( / |f<y>|q’|b<y>\q’dy)
ly|<R

1/q
C 1 q "
= W ml V= oy (- D22 </|y<RV Wy)

P 1 1
( / If(y)l”dy> R,
ly|<R

In the last inequality, we have used p > ¢/, ||b|lcc < C and Hoélder’s inequality.
Notice that for [z| > vR and |y| < R, we have |y| < |z|. So if |y| < R, then
|z —y| < (1+ 1)z < 2[z|. As a result we get

v

C 1 o (3-1)
I < K / Vi(ydy | | flpR" .
{1+ m(z, V)1 = 1/v)[z[}! (1 = L)r=2|z|n—2 ( B(x,2|x]) Il

For every y € B(z,2|a]), 2o = 21 (1 3)la| = 2+ Z5) (1= )lz] < 3(1— )]

and (1_11/1))”*2 = (1+-1)""2 < C when v > 3. By V € By, Lemma 0.3 and
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the doubling property of V(z)dz, we have

1 _
7

) Ifll,R" 7 > ) /
I, < ||/ V(y)dy
A mE V=R (= bz o

B =

v

1 1
C I IR™ ™7 g /
< x|TTMaTE V(y)dy
{1+m(z, V)1 = 1/v)]z[}t (1 - Lyn-2 g B(x,2/x|) W)

v

(L _1 _ C
<C|fll,R (7=3%) r|2tn/a=2n / V(y)dy
171z o {1+m(z, V)A = 1/v)|z[} \ JB@30-1/0)) )

< O|| BT 7P |2t a=2n | 12

n(d—1
< Cla[™am fll,R™ 7 .

This completes the proof of Lemma 2.2.

Now, by use of Lemma 2.2, we can complete the proof of condition (¢2). In
fact, for p > ¢/, we have np —np/q—n+1=np/qd —n+1,

1/p U
</ . 7301 <ff>l”dx> <O fll, R 7 ( / |x|np/q-npd$>
lal>vE |z|>vR

< IR/ (R o
C
<

— pn/d—n/p’

_ 1
o/ —nlp

Since p > ¢/, for every € > 0, we can choose v large enough such that <&

Step II: The proof of (¢3)). We will prove: for every ¢ > 0, there exists
de > 0 such that ||[b, T1]f(- + 2) — [0, 1] f(")|lp < € if |2] < 0.
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For every x, we divide [b,T1]f(z + z) — [b,T1] f(z) into four parts as follows:

[b, Th]f(x + 2) — [b, T1] f ()
= / Ki(z + z,y)[b(z + 2) — b(y)] f(y)dy — / Ki(z,y)[b(z) — b(y)] f(y)dy

:/|_ o K0 le) = bla+ )1 )y
+/|_ y |[K1($,y) — Ki(z + z,9)]|[b(z + 2) — b»)]f(y)dy
+/ Ky (2, 9)[b(x) — b)) (y)dy

ja—y|<alz|

_/| | ‘lKl(a?—i—z,y)[b(x—i-Z)—b(y)]f(y)dy
z—y|<alz

= Il,$ + IQ,m + I3,m + I4,ac-

This derives ||[b, T3] f(- + 2) — [0, Tl f()llp < iy il

Clearly, by Definition 1.1 and b € C§°, we have |I1 ;| < |2|T1 pmazf(z). So for
p> ¢, by Lemma 1.2, we have [|[1 2], < |2/ T1araz fllp < Cl2[[| fp-
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For Iy ,, we write a > 16. By (6) of Lemma 1.3, Lemma 0.3 and [|b]| < C,

we have

Il < /| ) = Kl +2) - bWy

o0

6

N =0 Lkaz|<my|<2k+1a|z| {1+m(z,V)|z - y|}l |z — y|n—2+5

|2]° 1

= CZ < {1+mf(x, V)2ka|z|} (2ka|z])n—2+0 /a:y|§2k+1az| V)ls)ldy
Z kel (n—249)
- CZ X (Ol 7( Vq(y)dy)l/q(/

L+ m(@, V)2alz[}!Jjg—y|<ar+ial fe—yl<2*+1alz]

N [P (2 ] (M (1) () J
<
B C {1 + m(x, V)2ka’z‘}l (2ka|2’)n_2+6 B($,2k+1a|z|) V(y)dy)

N (M(If17) ()9
Z 2ka|Z n=2H0 {1 4+ m(z, V)2kal2z[} /B(xzkaznv(y)dy

<cZ\ § 23 \a‘f'n o5 (VA1) (@)

<C ( (A7) @)

So we have || Izl < Cgs [(M(If]7)Y |l, < Cgs || flp, for p > ¢

For I3 ., by use of (5) of Lemma 1.3 and b € C§° we have

.| < /| el =il @iy
r—y|<alz

- / C 1
= Jjs—yl<alz) {1+ m(z,V)|z —y[} o —y["—3

V()| f(y)ldy

0
Ck 1
<> —=VW)lf()ldy
j=—o0 /2j'1az|<|acy|§2ja|z {]— + m(xv V)‘l‘ - y’}l |‘/E - y|n 3

0
<

j=-

V(y)lf(y)ldy

()| dy)"'¢

1 ) /
- ' = V)l f()ldy.
.ZOO (27-1alz|)»=3 {1 + m(z,V)2i1a|z|}! 29| |<|w—y|<2ial] WIf )l
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Notice that V' € B;. So using Holder’s inequality and Lemma 0.3 we can get

1/q
C1(27ta|z])3~
I3, Viy)d
o] < Z T+ m(e, V)" 1a|z|}l /|| Wy | x

1/q
( / | If(y)l"/dy>
|z—y|<27alz|

G e
: :Z (27 1alz))"=3 {1 + m(x, V)2~ La]z[}! (2alz]) /B(w“') Vy)dy

j=—

o

v
(27~ alz[)"=?

(Palz)" 2 (M (IfI7) (@)

< Calz|(M(|f|7) ()7 Z 2/ =2)

j=—00

< Calz|(M(|f|7)(x))"/ 7.

Thus, we have | Iz, < Calz||(M(| 1" )Y ||, < Calz||| f]|p for p > ¢

Similarly we can estimate Iy ,. Because |z — y| < a|z|, we have |z + 2z — y| <
(a + 1)|z]. Notice that V' € B,. So, by use of (5) of Lemma 1.3 and Holder’s

inequality we have

Iia| < / K (@ + 2,9) bz + 2) — b(w)|| £ ()Idy
|z+2z—y|<(a+1)|z|

C 1
<

1% d
< /W et AT m@E T sVt z gl ez g3 WOy

Z / Cilz +z —y)>™
21~ 1(a+1)|z|<|z+2z—y|<27 (a+1)|z| {1 + m(x + z, V)’JZ‘ +z - y‘}l

]_—OO

j—1 a » 3—n
< z i Vi)l F)ldy

+m(z + 2, V)2 Ha + D2} Joi1(ay1)2<latzy| <20 (at1)2]

| N

V()| f(y)ldy

O (1) (@) (2 (a + 1))/

_j:Z (2j 1(a+1)‘z|)n 3{1+m(x+z V)2J ! a+1 Z|} B(z+2,27 (a+1)|z])

V(y)dy)'/a.
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Then, by Holder’s inequality and Lemma 0.3 we get

0 / / . ,
(M(f|7) (@)Y C (2 (a + 1)]|)/ 70l
‘14:1; < Z (23'*1(@ + 1)‘Z|)n73 {1 4 m(li + 2, V)ijl(a n 1)\z|}l X

)

j==o0

(/ , V(y)dy>
B(a+2,21 (at1)|2))

: Z STy 2 DI L @)

< Cla+D)=/(M(IfI7) ()"
We have |1l < C(a+ 1)z [(M(f19)) ]l < Cla+1)|2]|| £l for p > 4"

Finally, we get
I[b, T]f (- + 2) = [, Ta) f ()l

4
<D Mgl
=1

1
< ClellIfllp + €511 fllp + Calzl[ fllp + Cla+ 1) flp-

Consequently, for every € > 0 we can choose a large enough such that

1
a2 a+1)27 57

From this we can see that the . in (¢3) is max{ etk +1 —, 6} This completes
the proof of Theorem 2.1. O

max{ - } < e, and set |z| be small enough, say |2 < min{}, a+1 —}.

By duality, we have the following corollary.

Corollary 2.3. Suppose V € By, ¢ > n/2. Let Tf = V(=A + V)™L be the dual
operator of Ty. If b € VMO(R"), then have [b,T}] is a compact operator on
LP(R™), 1< p<q.

In order to prove the compactness of the commutator [b, T3], we only need to

prove the following lemma.

Lemma 2.4. Suppose b € C§°(R") with supp b=B(0, R). Then for any x,|z| >
vR and p > (2q)" we have

A= /| <R | Ko (,9)|[b(y)]|f (v)|dy < Cla|™/247| f||, R/ 20" —/p,
yl<
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Proof. By (7) of Lemma 1.5, the implication: |z| > vR,|y| < R = |z —y| >
(1 — 1)|z| for v > 2 and Holder’s inequality, we have

A, - / 1K (2, ) 1) 1 ()l dy
ly|<R

Ci ! 1/2 b(y)|d
< /M T P Wby
C; 1

1/2
TG TR =TT Y O Wl
1/2q
G 1 .
ST m@)(- S (/|y|<RV (y)dy) X

/ 1/(2q)
( /| IRl dy> |

Because p > (2¢)’, using b € L and Holder’s inequality again, we have

Cl 1 / 1/2 ”(#_l)
e < (| Vily)dy) || fll,R™ O,
{1+m(e, V)1 = D[} (1= Hn =y <r 8
For every x, we have 2|z| = 1_21(1 — %)|x! =(2+ vzl)(l — %)|x\ < 3(1-— %)]aj\
and (1_11/1})”/2 = (14 +1;)"2 < C when v > 3. So, by V € By, Lemma 0.3 and
the double property of V(x)dz we have

A

C’l|:c\”/2‘1‘”/2 1 / 1/2 n(-L,—1y
s < ( V(y)dy)' 2| fll,R" @
{L+mz, V)1 = D[} (1= D a1 g ) '
1

=Tl

n(l 1 1 .
< C[lfllpR (=) (1— =)z Hg|2 a2 /2

1 "(G2g7 ~3) n/2q—n
S CWHJC”I)R (29)" p ‘$| q

< O f B~ /20
This completes the proof of Lemma 2.4. -

Theorem 2.5. Suppose V- € By, ¢ > n/2 and let Ty = (—A + VT2 g

b e VMO(R™), then commutator [b, Ty| is a compact operator on LP for (2q)" <
p < o0.

Proof. The proof is similar to that of Theorem 2.1, we omit the details. g
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Corollary 2.6. Suppose V € By, ¢ > n/2 and let Ty = VIAR(—A+V)"V2 the
dual operator of To. If b € VMO(R™), then the commutator [b,T5] is a compact
operator on LP for 1 < p < 2q.

Theorem 2.7. Suppose V € By, ¢ > n/2 and let T3 = (=N + V)~V2V. If
b € VMO(R"™), the commutator [b, T3] is a compact operator on LP for (p1)’ <
p<ooandl/py =1/q—1/n.

Proof. By Remark 0.7, we only need to prove that [b, T3] satisfies the conditions
(¢2)" and (¢3)'. We divide the proof into two steps.

Step I:  The proof of (¢2)’. Suppose the support set of b is B(0, R). For v > 0

we have

p 1/p
= </|x|>m </|y<R’K3($7y)|!b(y)|!f(y)!dy> dm) :

By (9) of Lemma 1.6, we have

C 1 V(£) 1
K d¢ |+ .
K@, y)l < {1+ m(z,V)|z —y|} |z —y/" ! (/B(y,|;c_y|) ly —&nt E) |z —y|"

Then we divide I into I; and I, where

P 1/p
Cilo)If ()] 1 V() N
= </|x|>vR </|R T+ m(e, Ve —yH o=yl </B(y,|x_y|> v srn—1d5>dy> ! ) ’

1/p

1 p
"o </|90|>UR </|y<R’x_y|n’b(y)Hf(y)|dy> dm)

For I, because |z| > vR and |y| < R, one has |y| < 1|z| and [z —y| > (1 - 1)|z|
for v > 2. Notice that for b € C3°(R™) we have ||b||oc < C. Therefore, by Holder’s
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inequality we have

1/p
</$|>UR /y|<R |z — y|n| WIIf(v)|dy) da:)
1 1/p
</|cc|>vR 1-— *)”p‘x‘”P (/y|<R ()| f(y)|dy) d:l:)
1/p
1 v P 4P/
</|:t|>vR )np‘x|np‘pr(/|y|<R‘b(y)’ d ) d )

e 1/p
TR / 2"
(1—2)n z|>vr |T]™P

1
(vR)"= /7

IN

IN

IN

<O+ 7) Ifllp R

S

where in the last inequality, we have used the fact that for v > 2, (1+ U—il)” < 2",

It remains to estimate ;. For every |z| > vR, we write

Cx ! V()
e = = —dt | [b dy.
= o T V= = ( o e f) (o)1 £(0)ldy

Lemma 2.8. For |z| > vR, Let I 5 be the same as before. Then

11,0 < CRMVPATIP) g~/ £,
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Proof of Lemma 2.8. Because |z| > vR and |y| < R yield |z —y| > (1 — %)]az\,

setting v > 2 we use the fractional integral for p% =1_ % to obtain

q
C 1
I, < X
M (e, V(L= Dyfaf} (1= Dyn- gt

v

VO
/y|<R </B(y’(1+11))|$|) |y _ £|n71 dg) |b(y)||f(y)|dy

C 1 o
(L (e V)T~ D} (1= DTl

v

V(g)XB(M(lH/U)\x\)d )
/y|<R (/n ly — &1 &) 16 f(y)ldy

< Cylz|'—" / V(E)XB(2.2(141/v)z)
~{t+m(a, V)1 = Pz} R ly — &t

1/p}
( / |b<y>\p1|f<y>\p1dy)
ly|<R
1/q /
Cl 1 / n(l_p*l)il
<C Va(&)de fllpR 7 n
{14+ m(z,V)(1 = 1) [z[} |z]m1 ( B(z,2(1+1/v)[z)) © ) Ml

1/q /
@ 1 / n(1—21) L
<C Va(€&)de fllpR L
{1+ m(a, V)1 = )z} |=[*" ( B(x,2]x]) © ) 7l

<

dg

X
LP1(dy)

In the last inequality, we have used the double property of V' (z)dz and 1+ % <2
forv> 2.

As before, 2|x| = 1_21(1 —Hz[=2+2)1 - )|z <3(1—1)|z| for v >3

v—1
and (1711/0)"_2 =(1+25)"2 < Cfor v >3. By use of V € By, Lemma 0.3
and the double property of V(x)dx, we have

Cil fllp R P —1/p) 1 B
fle = (@ = lale ([ V(€)de
(14 m(z, V)(1 = L)z[} |z v B(e3(1- D)
1 U T i
<Cl(1- 5)|x|]n/q [(1— ;)W] 2||f||pR (1/p,—1/p)
<C(1+ %)Q*H/qmn/qﬂ||f||pRn(1/p’171/p)

< C‘x|n/q—2HprRn(l/p’l—l/p).
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In the last inequality, we have used the fact n/2 < ¢ < n and 2 —n/q > 0 imply
(1+ %)2*”/ 9 < C when v large enough. This completes the proof of Lemma
2.8.

Now we return to the proof of Step I of Theorem 2.7. By Lemma 2.8, we have
1

I < (/ |11, [Pdz)' /P < CRMP/P| | (/ e —d|a|)!/?
lz|>vR : P |z[>vR ’x‘np/plfnJrl
/ 1 C
< n/py—n/p )
< CR"P Hf”p (UR)”/pi_”/P = Un/pll_n/prHp
Because p > p), for every € > 0 we can choose v large enough so that ¢ <e€

/
p"/P1—n/P

and B = B(0,vR). This completes the proof of (¢2)’.

Step II: The proof of (¢3)’. For every z, we divide [b, T3] f(z+z) — [b, T5] f ()
into four parts. In fact, we have

[b, T3] f (2 + 2) — [b, T5] f (x)

- / Ky(z+ 2, 9)[b(z + 2) — b(y)] £ (y)dy — / Ky (w, y)[b(x) — b(y)] £ (4)dy
= Bl,:p + BQ,.’Z + B3,x + B4,x7

where
Bua= [ K)o+ )y
By — / @)~ Kale bt +2) b))y
r—y|>alz
Bia= [ Ko —bw)l Sy

Buo= [ Kalerg)lble+2) b))y

Obviously ||[b, T3] f(- + 2) — [b, T3] f()llp < i, [|Bizly- In the following we
estimate B 4, (i = 1,2, 3,4) separately.

For By ., because b € C§°, we have |b(z + z) — b(z)| < C|z| and then
|B1a| = | o |K3(f'3,y)[b($) —b(x + 2)[f (y)dy| < C|2|T3 p1ax (f) (@)
r—y|>alz

So by Lemma 1.7, for p > p} and 1/p1 = 1/g—1/n we have || Bz, < C|2|[|T3,0maz f|lp <
Cl -
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For By, by (10) of Lemma 1.6 and letting a > 16, we have

Bo| < /| Vs =)~ Kol e+ 2) = b))y

Cilb(a + 2) — b IF )| |l V() |
S/x Sl AL m(z V)l — )] |z—y|n1+6[</3<y,|”|> gt T

< Bj,+ B3,

For B%’x, because [|b]|oc < C, we have

)

z
B3 =/ |7!f( )|dy
2,z o—y[>alz] |33— |n+6
= 1
SEDY | s )y
jZO 2ialz|<|z—y|<2itlalz| ’.CC - y|n+5

<
_CJZO 2](I|Z n+5 /;(12.7+1a|z)|f(y)‘dy

Py 1)
CY. o) < SM()).

Mg

7=0

For Bix, by Holder’s inequality and V' € B, we have
C é
B< A0 R E L
2

Ja|z|<|z—y|<2it1lalz| {1 + ’I’I’L(CB, V)2Ja‘z|}l (2ja|z|)n71+6

489,
——d¢)d
(L(I,2j+3a|z) |y - £|n—1 g) Y

— E L Jt3alz|)
= a + d
=0 {1 —|—m(x, [/)QJ |z]}l 2]a’z n 1 5”/ £Hp1

( / )Py
|z— y|<23+1a\ |

Cul2ala )" (M) () VP ol Y
C - Va(g)de)1
< Z ey V€%

{1+ m(x,V)2a|z|}! (27alz|)n—1+0
M([f|P4) ()P |2|° 43 | 5|\ a—ntn/p
= Z s e V@ @A v
N [1° nfa—n+n/p, CLM(f[P) ()" /7
SCZW 97 g| 2| y¥/ a1 /P = (s VPRI B(I,zmm)v@dg'

Jj=
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Then by Lemma 0.3, we have

5 A oy ; :
B3l < CZ - (2alz|)™/ a7 (2 al2)) R (M| ) () P

QJG‘Z’ n (97l ~[\n—1+8

[e.o]

< CZ |2]° (27 a2 |/ AR/ P L2 (£ (| £ () /1
=0
C =1
< I Y 5

IN

%(M(\ﬂp’l)(x»l/p’l.

735

In the above, we have used the fact: for p > p, n/¢—n+n/p|—n+1-6+n—2 = -0

because 1/p; = 1/q — 1/n. Then we have

C

C / / C
1Bzl < S IM(f)llp + ;H(M(Iflpl))l/plllp < 5lIfll-

For Bs ,, by (9) of Lemma 1.6 we have

< / K2, 9)|[bx) — b1 £ ()] dy
lz—y|<alz|

C [z —y V(€)
< l n—l( n—
a—yl<alz] 11 +m(z, V)|z —y[} |z -y Blya—y)) [V =&l

C 1 / V(&)
(

By.Je—y)) [y = &I"

S (
/|m—y<az| {14+ m(z,V)|z —y|} |z —y[2

1
+f I fw)ldy
lo—y|<alz] 17— y["!
=By, + B3,

Next, we estimate B?}’x and Bg’z separately. For Bgﬁx, we have

1
ngSCJ_Z 9J— 1a‘z|)n 1

L(x,Qjaz|)\B(x,2j—1a|z)

1
d
g

Tdo)|f (y)|dy

[f(y)ldy < Calz|M(f)(x).

yl

)f(y)ldy
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For Bj,, because & € B(y, |z —y|), one has |z —&| < |z —y|+ |y — | < 2]z —y],
so by Hélder’s inequality, we have

1Bj.l <C Z / Cilz g™ o f (y)|dy x
PR B(z,27alz|)\B(z,29 " 1a|z|) {1 + m(xv V)‘m - y‘}

V(E)
(/ B(z,2|z—yl) |y - £|n71d€)

Cy (27 talz|)?™™ /
<C
B Z {14+ m(z, V)27 alz|}! @ 2ia)2)\B(z.20-1al2))

V(&)
—=—d&)d
(/B(ac 2i+1qlz)) [y — &["71 $)dy

Cy(27 7 alz])>™ XB(:): 2i+1g|z |)(§)
=¢ Z Tty | T e i

[f(y)] %

( / | Cf)hdy)
B(z,27alz|)\B(z,27~1alz|)

Using V' € B, and Lemma 0.3, we get

/ . ’ /q
, M) @)% (2ale))% 1
1Bael < Z {1+mx P T oy V(O

MOSF) @) (Dalal)
< Z e Vo ey o e P Ve

0

<2 o el () @) 2l
0
< COIFRY ) S @ alz]) < Cale|(M( ) ()7
j=—o0

< Calz||M(f)lp + Calzl|(M(If[P1)) /7]l < Cal2]||£]lp-
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At last, we estimate By ;. Because |[x—y| < a|z|, we have |[x+2z—y| < (a+1)|z|.
Similarly, we get

Bua| < / Ks(z + 2, 9)|b(z + =) — b(w)||()|dy
lz—y|<alz

C 1
< X
- /x+zy<(a+1)|z| {T+m(z+2V)z+z—-yl} |z +2 -y !
V() 1
(/ —dé + e+ 2z —yllf(y)|dy
st feta B E T Tz g 7@

1 2
= B4,:c + B4,x'

For B? ., we have

1
.- [ W)y
b lz+z—y|<(a+1)|z| ‘.%' +z - y’n—l

0 1
C L TRy

IN

£ (y)ldy

/B(:v+z,2j(a+1)z|)\B(ac+z,2j1(a+1)z|)
< Cla+1D)|z|M(f)(x+ z).

For By ,, because € B(y, |z +2z—yl), one has [z +2z—&| < |z +2—y|+ |y —£| <
2|z + z — y|. As in the proof of Theorem 1, using V € B, and Lemma 0.3 we

obtain
1 Cilz + 2z =yl "I/ (v)] V()
|B4,x - _ l _ £|n—1
jotz—yl<(a+ 1))z {1+ m(@ + 2, V)lz+ 2 =y} \ iy fetz—y) v — £
0
< C(M(IfIP) (z + 2)) /P Z (27 (a+1)|z])
Jj=—00

< Cla+ D)[z|(M(|fP) (@ + 2)) /71,
So we get || Buall, < Cla+D)I2IIM(f)llp+Cla+1)=l|(M(IfP1)) /7], < Cla+
1)|2|[| flp- From the estimates of B; 4, (i = 1,2,3,4) we get that for || f||, <1,
C
1o, 5]+ 2) = [0, TE1F C)llp < Clel + —5 + Calz] + Cla + 1)l2].

Now, for every € > 0 we find a §. > 0 such that |z| < J. implies ||[b, T3] f(- + z) —
[b, T3] f(-)|lp < €. This completes the proof of Theorem 2.7. O

Corollary 2.9. Suppose V € By, ¢ > n/2 and let T = =V (—A + V)*l/2 be the
dual operator of T5. If b € VMO(R™), then the commutator [b,T5] is a compact
operator on LP(R™), 1 < p < po.

dg) dy
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3. THE REVERSE RESULT

In Section 2-3, we have discussed the compactness of the commutator of T;, (i =
1,2,3) on LP(R™). A natural problem is whether the reverse problem holds.
Namely, if [b,T;],(i = 1,2,3) is a compact operator on LP(R"™), do we have
b€ VMO(R™)? In this section, we will study this problem.

Take T5 = V(—A+ V)12 for example. If we set V = 0, the operator reduces
to the classical Riesz transform. In 1978, in [4], A.Uchiyama proved that, for a
singular integral operator T, if [b, T is a compact operator on LP(R™), then b €
VMO(R"™). However, for a general nonnegative V' € By, the converse fails. In [1],
the authors constructed an example to indicate that merely the L? boundedness
of [b,T5] cannot guarantee b € BMO(R™). So by the counterexample in [1], if
[b, T3] is a compact operator on L2, then [b,T5] is also a bounded operator on
L?, but b may not be in BMO(R"™), and hence it may not belong to VMO(R™).

The counterexample in [1] implies that the assumption V' € B, is too weak
and it cannot guarantee the function b € VMO(R™). However if we assume V/
satisfies some additional conditions, then we can get the reverse result.

Theorem 3.1. Let Ty = (—O)Y2(=A+V)~Y2. If b, T5] and [b, Ty] are compact
on L? and V € LN B, for ¢ > n/2, then b € VMO(R").

Proof. Firstly we prove that V1/2(=A)~%/2 is bounded on L*(R"). By use of
Holder inequality and the fractional integration, we can get

IV2(=2) 72 flla < VY2 all(=2) 2 F < IV 31 2

Then we can get that T has an inverse which is bounded on L?(R"). In fact we
have

T f = (A + V)2 (=n)f
(A + V) VAL V) (=L) V2
(—A + V)_I/Q(—A)I/Qf + (—A + V)_1/2V1/2V1/2(—A)_1/2f.

So by the L? boundedness of (—A + V)*1/2(—A)1/2 and (—A + V)*1/2V1/2’ we
get that T, ! is bounded on L?(R™).

Because V(—A)~Y2 is bounded on L?*(R™) and [b, Ty] is compact on L?(R"),
we get that V(—A)~1/2[b, Ty] is also a compact operator on L?. Therefore we
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have [b, V(—=A)"Y2Ty = [b, T3] — V(=A)"'/2[b, Ty] is a compact operator on L2.
Moreover because we have proved that T 'is bounded on L?(R™), we can get
that [b, V(=A)"Y2] = [b,V(=A)"YATyT; ! is a compact operator on L*(R").
Finally, by use of the classical result of A.Uchiyama, we have b € VMO(R™). O
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