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Abstract: The aim of this paper is to characterize the condition under
which a generalized path coalgebra holds Hopf algebra structures, see Theo-
rem 2.2. It generalizes the corresponding result on path coalgebra (see [1]).
The motivation is to construct a new kind of non-pointed Hopf algebras.
Keywords: Generalized path coalgebra, Q0-closed coradical, G-type, C-
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1 Introduction and Preliminaries

Generalized path algebras were introduced in [2] and played an important role in
describing the structures of artinian (in particular, finite dimensional) algebras
[2] [4]. Furthermore, in [5], the dual theory for coalgebras was researched through
the notion of generalized path coalgebras. Since the dual of an algebra need not
be a coalgebra in general, the theory of generalized path coalgebras cannot be
obtained trivially through the dual method from that of generalized path algebras.
Path coalgebras are always pointed. One can think the motivation of generalized
path coalgebras is to build a new kind of non-pointed Hopf algebras by the main
result, Theorem 2.2, in this paper. It is interesting to the classification problem
of Hopf algebras.
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In this paper, we always assume that k is a field and all linear spaces are over
k. The symbol N denotes the set of all non-negative integers.

Let Q = (Q0, Q1) be a quiver. For each β ∈ Q1, let s(β) and t(β) denote
the source and target of the arrow β respectively. Let C = {Ci : vi ∈ Q0} be
a family of k-coalgebras Ci with comultiplication ∆i and counit εi, indexed by
the vertices of Q. The non-zero elements of

⋃
vi∈Q0

Ci are called the C-paths of
length zero. For each n ≥ 1, a C-path of length n is given by a formal sequence
c1β1c2β2 · · · cnβncn+1, where β1 · · ·βn is a path in Q, 0 6= ci ∈ Cs(βi) for each
i = 1, · · · , n, and 0 6= cn+1 ∈ Ct(βn).

By the above definition, the zero 0 is not a C-path.

Let V be the k-linear space spanned by all C-paths. Let W be the subspace
generated by all elements of the form

c1β1 · · ·βj−1(
m∑

l=1

klc
l
j)βjcj+1 · · · cnβncn+1−

m∑

l=1

klc1β1 · · ·βj−1c
l
jβjcj+1 · · · cnβncn+1,

where β1β2 · · ·βn is a path in Q, ci ∈ Cs(βi), cn+1 ∈ Ct(βn) for i = 1, · · · , n, and
kl ∈ k, cl

j ∈ Cs(βj) for l = 1, · · · ,m.

Let R = V/W the quotient of V by W .

Define the comultiplication ∆ and the counit ε of R as follows:

Given a C-path X = c1β1c2β2 · · · cnβncn+1, define

4(X) =
n+1∑

i=1

∑

(ci)

c1β1 · · · ci−1βi−1c
′
i ⊗ c′′i βici+1 · · · cnβncn+1,

ε(X) =

{
0, if the length of X is n > 0
εi(X), if X ∈ Ci for some vi ∈ Q0

,

where
∑

(ci)
c′i ⊗ c′′i = 4i(ci).

It is easy to check that the above comultiplication ∆ and counit ε of R is
well-defined and endows R with a k-coalgebra structure. This coalgebra is called
the C-path coalgebra of Q and we denote it by R = k(Qc, C). Clearly, k(Qc, C)
is a graded coalgebra with length grading, i.e. k(Qc, C) = k(Q0, C) ⊕ k(Q1, C) ⊕
k(Q2, C)⊕ · · ·⊕ k(Qi, C)⊕ · · · , where k(Qi, C) denotes the subspace generated by
all C-paths of length i in k(Qc, C) and 4(k(Qn, C)) ⊆ ∑n

i=0 k(Qi, C)⊗k(Qn−i, C).
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Observe that if Ci = k for all i ∈ Q0, then the coalgebra k(Qc, C) defined above
is the usual path coalgebra kQc of Q, since kQc is defined as the k-space kQ with

comultiplication ∆(p) =
∑

αβ=p α⊗β and counit ε(p) =

{
1, if the length of p is 0
0, otherwise

for path p in Q. Therefore, in general, we call such coalgebra k(Qc, C) a general-
ized path coalgebra when there is no ambiguity on Q and C.

Let k(Qc, C) be a generalized path coalgebra with C = {Ci : vi ∈ Q0}. If
each Ci is a simple coalgebra, then k(Qc, C) is called a normal generalized path
coalgebra. In this paper, all generalized path coalgebras are assumed to be normal
with a finite quiver Q.

Since Theorem 2.2, the main result of this paper, gives the condition for a gen-
eralized path coalgebra to be a Hopf algebra, it can be thought as a generalization
of the result about path coalgebras in [1] given by C.Cibils and M.Rosso.

Let G be a finite group and D be the set of all conjugacy classes of G. Recall
from [1] that the ramification data r of G is an element r = (rD)D∈D of the
product set ND. The Hopf quiver Q = Q(G, r) corresponding to (G, r) is defined
as follows:

(i) Q0 = {vg}g∈G;

(ii) For any x, y ∈ G, if yx−1 ∈ D ∈ D, then there are rD arrows from vx to
vy.

Note that, if d and d′ are conjugate in G, then the number of arrows from vx

to vdx is equal to that of from vx to vd′x.

The path coalgebra kQc = (kQ,∆, ε) is the underlying k-linear space kQ with
the comultiplication ∆ and the counit ε given by

∆(p) = Σβα=p β ⊗ α and ε(p) =

{
1, if p is a vertex
0, otherwise

for any path p in Q.

We know from [1] the important result:

Theorem 1.1. [1] Let Q be a quiver. Then the following statements are equiv-
alent:
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(i) Q is a Hopf quiver of some (G, r);

(ii) Q0 is a group G and kQ1 has a kG-Hopf bimodule structure with comodule
maps δL(α) = s(α)⊗ α and δR(α) = α⊗ t(α) for α ∈ Q1;

(iii) the path coalgebra kQc admits a graded Hopf algebra structure with length
grading.

2 Some notions and the main result

Firstly, it is important to give an alternative definition for C-path coalgebra
through cotensor coalgebra.

Let C be a coalgebra and M ∈ CMC a C-bicomodule with left (resp. right)
comodule structure map δM

L (resp. δM
R ). If N is another C-bimodule, recall that

the cotensor product M♦CN is the kernel of id⊗δN
L −δM

R ⊗id : M⊗N → M⊗C⊗
N . Here the tensor product is taken over k. Note that M♦CN is a C-subbimodule
of M ⊗N with structure maps δM♦CN

L = id⊗ δN
L and δM♦CN

R = δM
R ⊗ id. Since

M♦CN ⊆ M ⊗N , we still write an element in M♦CN as
∑

i mi⊗ni in M ⊗N .

Set CoTC(M) =
⊕

n≥0 M♦n with M♦0 = C, M♦1 = M , M♦2 = M♦CM ,
and M♦n defined inductively. Define the counit ε on CoTC(M) by ε|C = εC ,
ε|M♦n = 0 for n ≥ 1. Define the comultiplication 4 on CoTC(M) by 4|C =
4C , 4|M = δM

L + δM
R . In general, for m1 ⊗ · · · ⊗mn ∈ M♦n with n ≥ 2, define

4(m1 ⊗ · · · ⊗mn) =
δM
L (m1) ⊗m2 ⊗ · · · ⊗mn + m1 ⊗ (m2 ⊗ · · · ⊗mn) + · · · + (m1 ⊗ · · · ⊗mn−1) ⊗

mn + m1 ⊗ · · · ⊗mn−1 ⊗ δM
R (mn)

∈ C⊗M♦n⊕M⊗M♦n−1⊕· · ·⊕M♦n−1⊗M⊕M♦n⊗C ⊆ CoTC(M)⊗CoTC(M).
With such structure maps 4 and ε, CoTC(M) is a coalgebra (see [8]) which is
called the cotensor coalgebra of the bicomodule M over C.

For any x ∈ k(Qc, C), write

4(x) =
∑

(x)

x′ ⊗ x′′ =
∑

i≥0

∑

(x)

(x′)i ⊗ x′′ =
∑

j≥0

∑

(x)

x′ ⊗ (x′′)j

where
∑

(x)(x
′)i ⊗ x′′ denotes the sum of all summands in

∑
(x) x′ ⊗ x′′ with

(x′)i ∈ k(Qi, C) is of length i; similarly,
∑

(x) x′ ⊗ (x′′)j is defined.
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Proposition 2.1. (see [5]) For a normal C-path coalgebra k(Qc, C),
(i) k(Q0, C) =

∑
vi∈Q0

Ci is the coradical of k(Qc, C) as coalgebra;

(ii) k(Qn, C) is a k(Q0, C)-bicomodule via left comodule structure map δL and
right comodule structure map δR given by δL(x) :=

∑
(x)(x

′)0 ⊗ x′′ and δR(x) :=∑
(x) x′ ⊗ (x′′)0 for x ∈ k(Qn, C), n ≥ 0;

(iii) k(Qc, C) ∼= CoTk(Q0,C)(k(Q1, C)) as coalgebras.

Note that by the definition in Page 2, a C-path is always non-zero. We call
β1 · · ·βn (n ≥ 1) the related usual path of a C-path c1β1c2β2 · · · cnβncn+1 and
write

P (c1β1c2β2 · · · cnβncn+1) = β1 · · ·βn.

And, we call the trivial path vi in Q the related usual path of a C-path ci ∈ Ci for
each i, and write P (ci) = vi. Then, P is a map from the C-path set to the path
set in Q.

In k(Qc, C), any non-zero element can be written as
∑s

i=1

∑ri
j=1 Xij , where

all Xij are C-paths and for a fixed i,
∑ri

j=1 Xij is assumed to be non-zero and
P (Xij1) = P (Xij2) for any j1 6= j2, and P (Xi1j) 6= P (Xi2l) when i1 6= i2 for any
j, l.

Due to this presentation, we can extend P to a map P̃ : k(Qc, C) → kQc by
setting

P̃ (0) = 0, P̃ (
s∑

i=1

ri∑

j=1

Xij) =
s∑

i=1

P̃ (
ri∑

j=1

Xij) =
s∑

i=1

P (Xi1)

for a non-zero element
∑s

i=1

∑ri
j=1 Xij ∈ k(Qc, C) as presented in the above para-

graph, where P̃ (
∑ri

j=1 Xij) is defined as P (Xi1) for any i.

Then, this map P̃ : k(Qc, C) → kQc is well-defined. Note that P̃ is neither
k-linear nor surjective, since every non-zero element of the image ImP̃ needs to
be a sum of some distinct paths in Q.

For example, let Q be the Kronecker quiver •
β

--
α •and C1, C2 be simple

coalgebras of dimension greater than 1. Then, for any nonzero c1, d1, c
′
1, d

′
1 ∈ C1,

c2, d2, c
′
2, d

′
2 ∈ C2 with (c1, c

′
1) 6= −(c2, c

′
2), (d1, d

′
1) 6= −(d2, d

′
2) as elements in the
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k-linear space C1 × C2, we have

P̃ (c1αc′1 + c2αc′2 + d1βd′1 + d2βd′2) = α + β.

Definition 2.1. Suppose ∗ : k(Qc, C) × k(Qc, C) → k(Qc, C) is a partial binary
operation. For any X, X ′, Y , Y ′ ∈ k(Qc, C), if P̃ (X) = P̃ (X ′) and P̃ (Y ) =
P̃ (Y ′) imply P̃ (X ∗Y ) = P̃ (X ′ ∗Y ′), then k(Qc, C) is called C-arrow-stable under
the operation ∗.

In this definition, that ∗ is partial implies the domain of ∗ may be a proper
subset of k(Qc, C)× k(Qc, C).

For example, assume that k(Q0, C) has an algebra structure and k(Q1, C) is a
k(Q0, C)-module under some action ·. For ci ∈ Ci, cj ∈ Cj , ck ∈ Ck, and an arrow
α in Q1 from vj to vk, assume

ci · (cjαck) =
m∑

l=1

dsl
βldtl 6= 0, (1)

where each dsl
βldtl 6= 0, dsl

∈ Csl
, dtl ∈ Ctl and βl is an arrow from vsl

to vtl for
l = 1, 2 · · ·m. Suppose for any other 0 6= c′i ∈ Ci, 0 6= c′j ∈ Cj , 0 6= c′k ∈ Ck, there
exist d′sl

∈ Csl
and d′tl ∈ Ctl such that

c′i · (c′jαc′k) =
n∑

l=1

d′sl
β′ld

′
tl
6= 0, (2)

where d′sl
β′ld

′
tl
6= 0, β′l is an arrow from vsl

to vtl for l = 1, 2 · · ·n, and the sets
{β′l : l = 1, 2, · · · , n} = {βl : l = 1, 2, · · · ,m}. Then, k(Q1, C) is C-arrow-stable
under the module action ·. Here and in the sequel, if there are several same
elements in a set, we always consider them as one element. If there exist
0 6= ci ∈ Ci, 0 6= cj ∈ Cj , 0 6= ck ∈ Ck and an arrow α in Q1 from vj to vk such
that ci · (cjαck) = 0, then the C-arrow-stability of k(Q1, C) under the module
action · implies that for any c′i ∈ Ci, c

′
j ∈ Cj , c

′
k ∈ Ck, it always holds that

c′i · (c′jαc′k) = 0.

For another example, suppose that the generalized path coalgebra k(Qc, C)
has a Hopf algebra structure with the multiplication · such that the product of
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two C-paths are always non-zero, that is,

(a1β1a2β2 · · ·anβnan+1) · (b1γ1b2γ2 · · ·bmγmbm+1) =
t∑

l=1

cl
1δ

l
1c

l
2δ

l
2 · · ·cl

wδl
wcl

w+1 6= 0,

(3)
where each cl

1δ
l
1c

l
2δ

l
2 · · · cl

wδl
wcl

w+1 is a C-path, ap ∈ Cip , bq ∈ Cjq , cl
u ∈ Ckl

u
for

p = 1, · · · , n + 1, q = 1, · · · ,m + 1, u = 1, · · · , w + 1, l = 1, · · · , t. Then, the C-
arrow-stability of k(Qc, C) under the multiplication · implies for any 0 6= a′p ∈ Cip ,
0 6= b′q ∈ Cjq for p = 1, · · · , n + 1, q = 1, · · · ,m + 1, there exist 0 6= c′lu ∈ Ckl

u
for

u = 1, · · · , w + 1 and l = 1, · · · , s such that

(a′1β1a
′
2β2 · · ·a′nβna′n+1) ·(b′1γ1b

′
2γ2 · · ·b′mγmb′m+1) =

s∑

l=1

c′l1δ′l1 c′l2δ′l2 · · ·c′lwδ′lwc′lw+1 6= 0,

(4)
where each c′l1δl

1c
′l
2δl

2 · · · c′lwδl
wc′lw+1 is a C-path and the sets {δ′l1 δ′l2 · · · δ′lw : l =

1, 2, · · · , s} = {δl
1δ

l
2 · · · δl

w : l = 1, 2, · · · , t}.
It is known that when k(Qc, C) has a graded Hopf algebra structure with

length grading, the coradical k(Q0, C) =
∑

vi∈Q0
Ci is a Hopf subalgebra of

k(Qc, C) by the definition of grading.

Now, suppose that the coradical k(Q0, C) =
∑

vi∈Q0
Ci of k(Qc, C) has a

Hopf algebra structure. Since Ci and Cj are coalgebras, 4(Ci) ⊆ Ci ⊗ Ci and
4(Cj) ⊆ Cj ⊗ Cj . Then 4(CiCj) = 4(Ci)4(Cj) ⊆ (Ci ⊗ Ci)(Cj ⊗ Cj) =
CiCj ⊗ CiCj . It means that CiCj is a subcoalgebra of the coradical k(Q0, C).
Since Ci (vi ∈ Q0) are all the simple subcoalgebras k(Qc, C), it is easy to see
that there exist vk1 , vk2 , · · · , vkp ∈ Q0 such that CiCj = Ck1 + Ck2 + · · ·+ Ckp if
CiCj 6= 0.

According to these statements, we introduce the following:

Definition 2.2. The coradical k(Q0, C) of k(Qc, C) is said to be Q0-closed if
k(Q0, C) has a Hopf algebra structure satisfying

(i) for any vi, vj ∈ Q0 and any 0 6= ci ∈ Ci, 0 6= cj ∈ Cj, there exists
uniquely a vk ∈ Q0 such that 0 6= cicj ∈ Ck; and

(ii) for any vi, vj , vk ∈ Q0, and any 0 6= ci ∈ Ci, 0 6= cj ∈ Cj, 0 6= ck ∈ Ck,
it holds that 4(ci)(cj ⊗ ck) 6= 0 and (cj ⊗ ck)4(ci) 6= 0.
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Definition 2.3. Let G be a group, the coradical k(Q0, C) of k(Qc, C) is said to be
of G-type if Q0 = {vg}g∈G and k(Q0, C) has a Hopf algebra structure satisfying

(i) for any vi, vj ∈ Q0 and any 0 6= ci ∈ Ci, 0 6= cj ∈ Cj, it holds that
0 6= cicj ∈ Cij;

(ii) for any vi, vj , vk ∈ Q0, and any 0 6= ci ∈ Ci, 0 6= cj ∈ Cj, 0 6= ck ∈ Ck,
it holds that 4(ci)(cj ⊗ ck) 6= 0 and (cj ⊗ ck)4(ci) 6= 0.

Note that Definition 2.2 (ii) is the same to Definition 2.3 (ii). Definition 2.2
(i) implies CiCj = Ck and Definition 2.3 (i) implies CiCj = Cij . Trivially, when
k(Q0, C) is of G-type, it must be Q0-closed; but the converse is not true in general.

We can now state the main result of this paper with proof given in the next
section.

Theorem 2.2. Let k(Qc, C) be a normal generalized path coalgebra over a field
k. Then the following statements are equivalent:

(i) Q is a Hopf quiver of some (G, r) such that k(Q0, C) is of G-type;

(ii) k(Q0, C) is Q0-closed such that k(Q1, C) has a k(Q0, C)-Hopf bimodule
structure with C-arrow-stable module structure and with the comodule structure
maps

δL(x) :=
∑

(x)

(x′)0 ⊗ x′′ and δR(x) :=
∑

(x)

x′ ⊗ (x′′)0

for x ∈ k(Q1, C);
(iii) k(Qc, C) admits a graded Hopf algebra structure with length grading, Q0-

closed coradical and C-arrow-stable multiplication.

Due to this result, we get a Hopf algebra structure H on k(Qc, C) if any one of
three statements holds. In particular, when Q is a finite acyclic quiver and all Ci

are finite-dimensional with dimkCj > 1 for at least one j, H is a finite-dimensional
non-pointed Hopf algebra.



Hopf Algebra Structures Over Generalized Path Coalgebras 701

3 Proof of the main result

Take a coalgebra C and c ∈ C, write 4(c) =
∑

di ⊗ ei. This representation
is not unique. However, if one takes the ei’s linearly independent, the subspace
spanned by the di’s is independent of the representation. Call it Lc. Define
Rc analogously. Moreover, for a subset X ⊆ C, define L(X) =

∑
c∈X Lc and

R(X) =
∑

c∈X Rc.

In [3], we have known:

Lemma 3.1. (see [3]) For a coalgebra C and c ∈ C, it holds that RRc = Rc,
LLc = Lc, LRc = RLc.

It is easy to check that L(c + d) ⊆ Lc + Ld and R(c + d) ⊆ Rc + Rd for any
c, d ∈ C. Thus, we have:

Lemma 3.2. Assume that C is a coalgebra. Then,

(i) a k-subspace D of C is a subcoalgebra if and only if L(D) ⊆ D and
R(D) ⊆ D;

(ii) L(C) and R(C) are subcoalgebras of C;

(iii) L(C) = C = R(C) when C is a simple coalgebra.

Proof. (i) (=⇒): It is trivial from the definitions of L(D) and R(D).

(⇐=): For any d ∈ D, let ∆(d) =
∑t

i=1 d′i⊗d′′i be the shortest representation
of ∆(d), then {d′i}i=1,··· ,t and {d′′i }i=1,··· ,t are both k-linearly independent. Thus,
Ld is generated by {d′i}i=1,··· ,t and Rd is generated by {d′′i }i=1,··· ,t. When L(D) ⊆
D and R(D) ⊆ D, we have d′i ∈ Ld ⊆ L(D) ⊆ D and d′′i ∈ Rd ⊆ R(D) ⊆ D for
i = 1, 2, · · · , t. So D is a subcoalgebra.

(ii) By Lemma 3.1, L(L(C)) = L(
∑

c∈C Lc) ⊆ ∑
c∈C LLc =

∑
c∈C Lc = L(C).

And, R(L(C)) = R(
∑

c∈C Lc) ⊆ ∑
c∈C RLc =

∑
c∈C LRc ⊆ ∑

c∈C Lc = L(C),
where the second “⊆” is from the Rc ⊆ C for any c ∈ C.

Similarly, L(R(C)) ⊆ R(C), R(R(C)) ⊆ R(C). Thus, by (i), this result holds.

(iii) It is obvious due to (ii) and the simplicity of C.
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Proposition 3.3. Suppose B is a Hopf algebra with antipode S. Let D be a
simple subcoalgebra of (B,∆). Then S(D) is a simple subcoalgebra of (B,∆op).

Proof. It is known that S is a coalgebra homomorphism from (B,∆) to (B,∆op).
Note that the inverse image and image of a subcoalgebra is also a subcoalgebra.
It is easy to see S(D) 6= 0 always holds . So, S(D) is a simple subcoalgebra of
(B,∆op).

Proposition 3.4. Suppose that k(Qc, C) has a graded Hopf algebra structure
with length grading and Q0-closed coradical. Then the index set of Q0 possesses
a group structure, denoted as (G, ·), such that k(Q0, C) is of G-type.

Proof. Since k(Qc, C) is a graded Hopf algebra with length grading, the coradical
k(Q0, C) =

∑
vi∈Q0

Ci is a finite dimensional Hopf subalgebra of k(Qc, C).
From the Q0-closure of k(Q0, C), for any vi, vj ∈ Q0, there exists uniquely a

vk ∈ Q0 such that CiCj = Ck. Then we define the multiplication · by i · j =
k. This multiplication · is associative, since the multiplication of k(Qc, C) is
associative.

For the identity 1 of k(Qc, C), k1 is the simple subcoalgebra containing 1.
Then there exists ve ∈ Q0 with Ce = k1.

Suppose S is the antipode of k(Qc, C). Then, the restriction S0 of S on
k(Q0, C) is the antipode of k(Q0, C) and is invertible on k(Q0, C). Then, S(Ci) 6=
0. Thus, by Proposition 3.3, S(Ci) is simple. Then there is vi′ ∈ Q0 such that
S(Ci) = Ci′ .

Since the coradical k(Q0, C) is Q0-closed, there is vk ∈ Q0 with CiCi′ = Ck.
And, CiCi′ = CiS(Ci) ⊇ (id ∗ S)(Ci) = ηε(Ci) = ε(Ci)1 = Ce since trivially
ε(Ci) 6= 0. However, Ck is simple, so we get Ce = Ck. Thus, CiCi′ = Ce.
Similarly Ci′Ci = Ce. Obviously, CiCe = Ci = CeCi for vi ∈ Q0. By the
definition of the multiplication ·, it follows that i · i′ = e = i′ · i and i ·e = e · i = i.
Therefore, the index set of Q0 becomes into a group with identity e and the
inverse i−1 = i′ for any vi ∈ Q0. Denote this group by (G, ·). Then, k(Q0, C) is
of G-type.
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Proposition 3.5. Suppose k(Qc, C) has a graded Hopf algebra structure with
length grading, Q0-closed coradical and C-arrow-stable multiplication. Then kQc

also has a graded Hopf algebra structure with length grading.

Proof. We need to define a multiplication such that the comultiplication ∆ and
the counit ε on kQc are algebra homomorphisms.

Firstly from Proposition 3.4, the index set of Q0 has a group structure, de-
noted by (G, ·). Then for any vi, vj ∈ Q0, define vivj = vi·j .

For any paths β1β2 · · · βn and γ1γ2 · · · γm in kQc with m + n ≥ 1, define

(β1β2 · · · βn) · (γ1γ2 · · · γm) = 0 (5)

if there are two C-paths a1β1a2β2 · · · anβnan+1 and b1γ1b2γ2 · · · bmγmbm+1 in
k(Qc, C) such that

(a1β1a2β2 · · · anβnan+1) · (b1γ1b2γ2 · · · bmγmbm+1) = 0.

Otherwise, define

(β1β2 · · · βn) · (γ1γ2 · · · γm) =
s∑

i=1

P (Xi1) (6)

if there are two C-paths a1β1a2β2 · · · anβnan+1 and b1γ1b2γ2 · · · bmγmbm+1 in
k(Qc, C) such that

(a1β1a2β2 · · · anβnan+1) · (b1γ1b2γ2 · · · bmγmbm+1) =
s∑

i=1

ri∑

j=1

Xij 6= 0

where each Xij is a C-path,
∑ri

j Xij 6= 0 is the sum of some C-paths whose related
usual paths are the same for any i, and P (Xi1j1) 6= P (Xi2j2) when i1 6= i2.

This multiplication is well-defined since the multiplication in k(Qc, C) is C-
arrow-stable. Its associative law and distributive law follow from that of k(Qc, C).
Then kQc is a k-algebra. Since the multiplication in k(Qc, C) is length-graded,
this multiplication in kQc is also length-graded.

It is known k(Qc, C) is a Hopf algebra, so the comultiplication 4 and the
counit ε are algebra homomorphisms, i.e.
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4((a1β1a2β2 · · · anβnan+1) · (b1γ1b2γ2 · · · bmγmbm+1))

= 4(a1β1a2β2 · · · anβnan+1) · 4(b1γ1b2γ2 · · · bmγmbm+1);

ε((a1β1a2β2 · · · anβnan+1) · (b1γ1b2γ2 · · · bmγmbm+1))

= ε(a1β1a2β2 · · · anβnan+1) · ε(b1γ1b2γ2 · · · bmγmbm+1).

Due to their definitions, the formulae of the comultiplication4 and the counit
ε in kQc are the same as that in k(Qc, C). By (5) and (6) and the C-arrow stability
of the multiplication of k(Qc, C), it follows that

4(β1β2 · · · βn · γ1γ2 · · · γm) = 4(β1β2 · · · βn) · 4(γ1γ2 · · · γm)

ε(β1β2 · · · βn · γ1γ2 · · · γm) = ε(β1β2 · · · βn) · ε(γ1γ2 · · · γm)

in kQc. Therefore, kQc is a Hopf algebra.

Suppose k(Qc, C) has a graded Hopf algebra structure with length grading,
Q0-closed coradical and C-arrow-stable multiplication. By Proposition 3.5, kQc

also has a graded Hopf algebra structure with length grading. Then by Theorem
1.1, the index set of Q0 has a group structure, denoted by (G, ∗), such that Q

is a Hopf quiver Q(G, r) for some ramification r. Meanwhile by Proposition 3.4,
the index set of Q0 has another a group structure, denoted by (G, ·), such that
k(Q0, C) is of G-type. In fact, since the two multiplications in the group G are
determined by the multiplication in the Hopf subalgebra k(Q0, C), then these two
group structures (G, ∗) and (G, ·) are coincided. In the summary, we obtain:

Proposition 3.6. Suppose k(Qc, C) has a graded Hopf algebra structure with
length grading, Q0-closed coradical and C-arrow-stable multiplication. Then Q is
a Hopf quiver of some (G, r) such that k(Q0, C) is of G-type.

Lemma 3.7. (see [10]) Let A be a k-algebra and C be a k-coalgebra with
coradical filtration {Ci}i≥0. Then for any f ∈ Homk(C, A), f is invertible in
Homk(C, A) if and only if f |C0 is invertible in Homk(C0, A).
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From this lemma, we can get the following:

Proposition 3.8. Let H be a bialgebra. If the coradical H0 is a Hopf algebra
which is a sub-bialgebra of H as bialgebra, then H is a Hopf algebra.

Proof. In Lemma 3.7, let C = A = H and f = idH . Then, f |H0 = idH0 is
from H0 to H0, also from H0 to H. Since H0 is a Hopf algebra, there exists
S ∈ Homk(H0, H0) ⊆ Homk(H0, H) such that S ∗ idH0 = ηH0εH0 . Since the
identity map of H0 is the same as that of H, then S ∗ f |H0 = ηHεH0 for f |H0 ∈
Homk(H0,H). Then by Lemma 3.7, f = idH is invertible in Homk(H, H) with
inverse f−1 = T . Thus, T is the antipode of H. So, H is a Hopf algebra.

Proposition 3.9. (see [1] [9]) Let ψ0 : X → C be a coalgebra map, and ψ1 : X →
M a C-bicomodule map. Let ψn : X → M⊗n be the composition

ψn : X
4(n−1)

→ X ⊗X ⊗ · · · ⊗X
ψ⊗n

1→ M⊗n, n ≥ 2

Then ψn is a C-bicomodule map with Im(ψn) ⊆ M♦n.

If for each x ∈ X there are only finite i such that ψi(x) 6= 0, then ψ : X →
CoTC(M) is a coalgebra map, where ψ =

∑
i≥0 ψi.

Now it is ready for us to prove the main result in this paper:

Proof. of Theorem 2.2:

(i)⇒(ii): Since k(Q0, C) is of G-type, there is an algebra structure such that
k(Q0, C) is a Hopf algebra and is Q0-closed as the coradical of k(Qc, C). Now,
we give the k(Q0, C)-Hopf bimodule structure on k(Q1, C) depending upon the
kG-Hopf bimodule structure on kQ1 ( see Theorem 1.1) as follows:

(1) the left module action ·:

ci · (cjαck) =
∑

(ci)

(c′icj)(i · α)(c′′i ck)

where ci ∈ Ci, cj ∈ Cj , ck ∈ Ck, α is an arrow in Q1 from vj to vk, and i · α is
the left kG-module action on kQ1;
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(2) the right module action ·:

(cjαck) · ci =
∑

(ci)

(cjc
′
i)(α · i)(ckc

′′
i )

where ci ∈ Ci, cj ∈ Cj , ck ∈ Ck, α is an arrow in Q1 from vj to vk, and α · i is
the right kG-module action on kQ1;

(3) the left comodule coaction δL:

δL(cjαck) =
∑

(cj)

c′j ⊗ c′′j αck

where cj ∈ Cj , ck ∈ Ck, α is an arrow in Q1 from vj to vk;

(4) the right comodule coaction δR:

δR(cjαck) =
∑

(cj)

cjαc′k ⊗ c′′k

where cj ∈ Cj , ck ∈ Ck, α is an arrow in Q1 from vj to vk.

It is trivial that k(Q1, C) is a k(Q0, C)-bimodule, since the module action
is based on the kG-module action on kQ1. And k(Q1, C) is also a k(Q0, C)-
bicomodule by Proposition 2.1 (ii). Moreover, δL and δR are both k(Q0, C)-
bimodule homomorphisms. In fact, for any ci ∈ Ci, cj ∈ Cj , ck ∈ Ck, and any
arrow α in Q1 from vj to vk,

δL(ci · (cjαck)) = δL(
∑

(ci)

(c′icj)(i · α)(c′′i ck))

=
∑

(ci)(cj)

c′ic
′
j ⊗ c′′i c

′′
j (i · α)c′′′i ck,

ci · δL(cjαck) = ci · (
∑

(cj)

c′j ⊗ c′′j αck)

=
∑

(ci)(cj)

c′ic
′
j ⊗ c′′i · (c′′j αck)

=
∑

(ci)(cj)

c′ic
′
j ⊗ c′′i c

′′
j (i · α)c′′′i ck,
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then δL(ci · (cjαck)) = ci · δL(cjαck).

δL((cjαck) · ci) = δL(
∑

(ci)

(cjc
′
i)(α · i)(ckc

′′
i ))

=
∑

(ci)(cj)

c′jc
′
i ⊗ c′′j c

′′
i (α · i)ckc

′′′
i ,

δL(cjαck) · ci = (
∑

(cj)

c′j ⊗ c′′j αck) · ci

=
∑

(ci)(cj)

c′jc
′
i ⊗ (c′′j αck) · c′′i

=
∑

(ci)(cj)

c′jc
′
i ⊗ c′′j c

′′
i (α · i)ckc

′′′
i ,

then δL((cjαck) · ci) = δL(cjαck) · ci.

δR can be discussed similarly.

Therefore, k(Q1, C) is a k(Q0, C)-Hopf bimodule.

The C-arrow-stability of k(Qc, C) under the left and right module actions of
the k(Q0, C)-Hopf bimodule strcutre of k(Q1, C) follows from (1) and (2) and
Definition 2.1. We prove this only for the left module action as follows.

For six non-zero elements ci, di ∈ Ci, cj , dj ∈ Cj , ck, dk ∈ Ck, we have
P̃ (ci) = P̃ (di) = vi, P̃ (cjαck) = P̃ (djαdk) = α, and

P̃ (ci · (cjαck)) = P̃ (
∑

(ci)

(c′icj)(i · α)(c′′i ck)) = P̃ (i · α)

= P̃ (
∑

(di)

(d′idj)(i · α)(d′′i dk))

= P̃ (di · (djαdk))

Note that by the condition of G-type, i.e. Definition 2.3 (ii),
∑

(ci)
(c′icj)(i ·

α)(c′′i ck)) 6= 0 and
∑

(di)
(d′idj)(i · α)(d′′i dk) 6= 0. Thus, the C-arrow-stability of

k(Qc, C) follows under the left module action.
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(ii)⇒(iii): The main part of this proof was given in [6] except for the C-arrow-
stability.

Denote by δL and δR respectively the left coaction and right coaction of the
k(Q0, C)-Hopf bimodule k(Q1, C). Define ψ0 : X = k(Qc, C)⊗k(Qc, C) → k(Q0, C)
to be the composition of

X
p0⊗p0−→ k(Q0, C)⊗ k(Q0, C) m0−→ k(Q0, C)

where m0 means the multiplication in k(Q0, C), p0 is the projection from k(Qc, C)
to k(Q0, C).

(1) ψ0 is a coalgebra map.

Use the subindex to denote the length of a generalized path. For example, if
we denote a generalized path by xi, then the length of xi is i. Thus, in general,
we can write an element in X by

∑
s,t,i,j αst

ij(x
s
i ⊗ xt

j) for αst
ij ∈ k. Therefore,

∆ψ0(
∑

s,t,i,j

αst
ij(x

s
i ⊗ xt

j)) = ∆(
∑
s,t

αst
00x

s
0x

t
0) =

∑
s,t

αst
00∆(xs

0)∆(xt
0)

and

(ψ0 ⊗ ψ0)∆(
∑

s,t,i,j

αst
ij(x

s
i ⊗ xt

j)) = (ψ0 ⊗ ψ0)(id⊗ τ ⊗ id)(
∑

s,t,i,j

αst
ij∆(xs

i )⊗∆(xt
j))

= (ψ0 ⊗ ψ0)(
∑

s,t,i,j

αst
ij(x

s
i )
′ ⊗ (xt

j)
′ ⊗ (xs

i )
′′ ⊗ (xt

j)
′′)

=
∑

s,t,i,j

αst
ij(x

s
i )
′
0 ⊗ (xt

j)
′
0 ⊗ (xs

i )
′′
0 ⊗ (xt

j)
′′
0

=
∑
s,t

αst
00(x

s
0)
′(xt

0)
′ ⊗ (xs

0)
′′(xt

0)
′′

=
∑
s,t

αst
00∆(xs

0)∆(xt
0)

then ∆ψ0 = (ψ0 ⊗ψ0)∆. Note that ∆ on the right-side of the above equalities is
the comultiplication of X. Clearly, εψ0 = ε. Thus ψ0 is a coalgebra map.

Define ψ1 : X = k(Qc, C)⊗ k(Qc, C) −→ k(Q1, C) to be the composition of

X
p0⊗p1+p1⊗p0−→ (k(Q0, C)⊗ k(Q1, C)) + (k(Q1, C)⊗ k(Q0, C)) ml+mr−→ k(Q1, C)

where ml and mr denote the left and right module actions respectively.
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(2) ψ1 is a k(Q0, C)-bicomodule map.

In fact, by Proposition 2.1, k(Qn, C) is a k(Q0, C)-bicomodule via

δL(x) :=
∑

(x)

(x′)0 ⊗ x′′ and δR(x) :=
∑

(x)

x′ ⊗ (x′′)0

where x ∈ k(Qn, C), n ≥ 0. Let
∑

s,t,i,j αst
ij(x

s
i ⊗ xt

j) be an element in X. Then

ψ1(
∑

s,t,i,j

αst
ij(x

s
i ⊗ xt

j)) =
∑
s,t

αst
01x

s
0 · xt

1 +
∑
s,t

αst
10x

s
1 · xt

0,

therefore

δLψ1(
∑

s,t,i,j

αst
ij(x

s
i ⊗ xt

j)) =
∑
s,t

αst
01x

s
0 · δL(xt

1) +
∑
s,t

αst
10δL(xs

1) · xt
0.

On the other hand,

(id⊗ ψ1)δL(
∑

s,t,i,j

αst
ij(x

s
i ⊗ xt

j)) = (id⊗ ψ1)(
∑

s,t,i,j

αst
ijψ0((xs

i )
′ ⊗ (xt

j)
′)⊗ ((xs

i )
′′ ⊗ (xt

j)
′′))

= (id⊗ ψ1)(
∑

s,t,i,j

αst
ij((x

s
i )
′)0((xt

j)
′)0 ⊗ ((xs

i )
′′ ⊗ (xt

j)
′′))

=
∑

s,t,i,j

αst
ij((x

s
i )
′)0((xt

j)
′)0 ⊗ ((xs

i )
′′)0 · ((xt

j)
′′)1

+
∑

s,t,i,j

αst
ij((x

s
i )
′)0((xt

j)
′)0 ⊗ ((xs

i )
′′)1 · ((xt

j)
′′)0

=
∑

s,t,i,j

αst
ij(x

s
i )0δL((xt

j)1) +
∑

s,t,i,j

αst
ijδL((xs

i )1)(x
t
j)0

=
∑
s,t

αst
01x

s
0 · δL(xt

1) +
∑
s,t

αst
10δL(xs

1) · xt
0.

Thus, δLψ1 = (id⊗ ψ1)δL and ψ1 is a left k(Q0, C)-comodule map. Note that δL

on the right-side of the above equalities is the left k(Q0, C)-comodule structure
map of X. Similarly we can prove that δRψ1 = (ψ1 ⊗ id)δR and ψ1 is a right
k(Q0, C)-comodule map. Hence ψ1 is a k(Q0, C)-bicomodule map.

Moreover, define ψn : X
4(n−1)

→ X⊗X⊗· · ·⊗X
ψ⊗n

1→ k(Q1, C)⊗n for n ≥ 2 and
define ψ =

∑
ψn. Then ψ : k(Qc, C) ⊗ k(Qc, C) = X → CoTk(Q0,C)(k(Q1, C)) ∼=

k(Qc, C) is associative since ∆ is coassociative and ⊗ is associative where the
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isomorphism “∼=” is from Proposition 2.1. Thus ψ becomes an associative multi-
plication in k(Qc, C).

By (1), (2) and Proposition 3.9,

ψ : k(Qc, C)⊗ k(Qc, C) → k(Qc, C)

is a coalgebra map. This means that k(Qc, C) is a bialgebra. Due to the known
conditions, the coradical k(Q0, C) of k(Qc, C) is a Hopf algebra meanwhile it is a
sub-bialgebra of k(Qc, C) as bialgebra. Therefore, by Proposition 3.8, k(Qc, C) is
a Hopf algebra.

It is graded with length grading from the definition of the multiplication ψ.

Due to the C-arrow-stability under the left and right module actions in Hopf
bimodule structure, k(Qc, C) is C-arrow-stable under ψ1, then moreover under ψ.
That is, k(Qc, C) is C-arrow-stable under the multiplication of this Hopf algebra
structure.

(iii)⇒(i): By Proposition 3.6.
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