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Abstract: Let p be an odd prime with p 6= 3. In this paper we prove that
p2 + p + 1 - 3p − 1.
Keywords: divisibility, binary quadratic diophantine equation, cubic
residue, solvable group.

Let Z,N be the sets of all integers and positive integers respectively. Let p and
q be distinct odd primes. E.T.Parker observed that the very long proof by W.Feit
and J.Thompson [2] that every group of odd order is solvable would be shortened
if it could be proved that (pq − 1)/(p − 1) never divides (qp − 1)/(q − 1)(see
Problem B25 of [3]). This is a very difficult problem. For the special case of
q = 3, J.McKay has established that

p2 + p + 1 - 3p − 1 (1)

for p < 53× 106. But, in general, the problem is not solved as yet. In this paper
we completely solve the case of q = 3 as follows.

Theorem For any odd prime p with p 6= 3, (1) holds.

The proof of our theorem depends on the following two lemmas.

Lemma 1 Let l be an odd prime with l ≡ 1(mod 3). Then the equation

x2 + 3y2 = 4l , x, y ∈ N , gcd(x, y) = 1 (2)
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has exactly two solutions (x, y).

Proof Let m be a positive odd integer. By Theorem 12.4.1 and Exercise
12.4.4 of [4], the equation

x2 + 3y2 = 4m , x, y ∈ N , 2 - xy (3)

has exactly E(m) solutions (x, y), where E(m) is the difference between the
numbers of divisors of m with the forms 3k + 1 and 3k + 2. If m = l, then
E(l) = 2, the equations (2) and (3) have the same solutions . The lemma is
proved.

Lemma 2 Let l be an odd prime with l ≡ 1(mod 3). If 3 is a cubic residue
modulo l, then 4l = a2 + 243b2, where a and b are coprime positive integers.

Proof This is an early result of F.G.Eisenstein [1](see Theorem 9.3.1 and
Exercise 9.23 of [5]).

Proof of Theorem. We assume that p is an odd prime satisfying p 6= 3 and

p2 + p + 1 | 3p − 1 . (4)

Let l = p2 + p + 1. Since l < (p + 1)2, if l is not a prime, then l has a prime
divisor k with 3 < k < p. But, since 3k−1 ≡ 1(mod k) and 3p ≡ 1(mod k) by
(4), we get k − 1 ≡ 0(mod p) and k > p, a contradiction. Therefore, if (4) holds,
then l must be a prime.

If p ≡ 1(mod 3), then 3 | l. But, since l is a prime with l > 3, it is impossible.
So we have

p ≡ 2 (mod 3) (5)

and
l ≡ 1 (mod 3) . (6)

Let g denote a primitive root modulo l. By (4), we get

3p ≡ 1 (mod l) . (7)

Since l − 1 = p(p + 1), we see from (7) that

3 ≡ g(p+1)r (mod l) , r ∈ Z . (8)
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Further, since 3 | p + 1 by (5), we find from (8) that 3 is a cubic residue modulo
l. Therefore, by Lemma 2 with (6), then the equation (2) has a solution (x, y)
satisfying

32 | y . (9)

However, since 4l = (2p + 1)2 + 3 = (p + 2)2 + 3p2, by Lemma 1, (2) has only
the solutions(x, y) = (2p + 1, 1) and (p + 2, p) which do not satisfy (9). Thus, (1)
holds for any odd prime p with p 6= 3. The theorem is proved.
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